/* * os_win32.cpp * * Home page of code is: https://www.smartmontools.org * * Copyright (C) 2004-22 Christian Franke * * Original AACRaid code: * Copyright (C) 2015 Nidhi Malhotra * * Original Areca code: * Copyright (C) 2012 Hank Wu * * SPDX-License-Identifier: GPL-2.0-or-later */ #include "config.h" #define WINVER 0x0502 #define _WIN32_WINNT WINVER #include "atacmds.h" #include "scsicmds.h" #include "nvmecmds.h" #include "utility.h" #include "dev_interface.h" #include "dev_ata_cmd_set.h" #include "dev_areca.h" #include "os_win32/wmiquery.h" #include "os_win32/popen.h" // TODO: Move from smartctl.h to other include file extern unsigned char failuretest_permissive; #include #ifdef _DEBUG #include #else #undef assert #define assert(x) /* */ #endif #include // offsetof() #include #include // IOCTL_ATA_PASS_THROUGH, IOCTL_SCSI_PASS_THROUGH, ... // #include // NVME_COMMAND, missing in older versions of Mingw-w64 #ifndef _WIN32 // csmisas.h and aacraid.h require _WIN32 but w32api-headers no longer define it on Cygwin // (aacraid.h also checks for _WIN64 which is also set on Cygwin x64) #define _WIN32 #endif // CSMI support #include "csmisas.h" // aacraid support #include "aacraid.h" #ifndef _WIN64 #define SELECT_WIN_32_64(x32, x64) (x32) #else #define SELECT_WIN_32_64(x32, x64) (x64) #endif // Cygwin does no longer provide strn?icmp() compatibility macros // MSVCRT does not provide strn?casecmp() #if defined(__CYGWIN__) && !defined(stricmp) #define stricmp strcasecmp #define strnicmp strncasecmp #endif const char * os_win32_cpp_cvsid = "$Id: os_win32.cpp 5419 2022-11-22 17:30:56Z chrfranke $"; ///////////////////////////////////////////////////////////////////////////// // Windows I/O-controls, some declarations are missing in the include files extern "C" { // SMART_* IOCTLs, also known as DFP_* (Disk Fault Protection) STATIC_ASSERT(SMART_GET_VERSION == 0x074080); STATIC_ASSERT(SMART_SEND_DRIVE_COMMAND == 0x07c084); STATIC_ASSERT(SMART_RCV_DRIVE_DATA == 0x07c088); STATIC_ASSERT(sizeof(GETVERSIONINPARAMS) == 24); STATIC_ASSERT(sizeof(SENDCMDINPARAMS) == 32+1); STATIC_ASSERT(sizeof(SENDCMDOUTPARAMS) == 16+1); // IDE PASS THROUGH (2000, XP, undocumented) #ifndef IOCTL_IDE_PASS_THROUGH #define IOCTL_IDE_PASS_THROUGH \ CTL_CODE(IOCTL_SCSI_BASE, 0x040A, METHOD_BUFFERED, FILE_READ_ACCESS | FILE_WRITE_ACCESS) #endif // IOCTL_IDE_PASS_THROUGH #pragma pack(1) typedef struct { IDEREGS IdeReg; ULONG DataBufferSize; UCHAR DataBuffer[1]; } ATA_PASS_THROUGH; #pragma pack() STATIC_ASSERT(IOCTL_IDE_PASS_THROUGH == 0x04d028); STATIC_ASSERT(sizeof(ATA_PASS_THROUGH) == 12+1); // ATA PASS THROUGH (Win2003, XP SP2) STATIC_ASSERT(IOCTL_ATA_PASS_THROUGH == 0x04d02c); STATIC_ASSERT(sizeof(ATA_PASS_THROUGH_EX) == SELECT_WIN_32_64(40, 48)); // IOCTL_SCSI_PASS_THROUGH[_DIRECT] STATIC_ASSERT(IOCTL_SCSI_PASS_THROUGH == 0x04d004); STATIC_ASSERT(IOCTL_SCSI_PASS_THROUGH_DIRECT == 0x04d014); STATIC_ASSERT(sizeof(SCSI_PASS_THROUGH) == SELECT_WIN_32_64(44, 56)); STATIC_ASSERT(sizeof(SCSI_PASS_THROUGH_DIRECT) == SELECT_WIN_32_64(44, 56)); // SMART IOCTL via SCSI MINIPORT ioctl #ifndef FILE_DEVICE_SCSI #define FILE_DEVICE_SCSI 0x001b #endif #ifndef IOCTL_SCSI_MINIPORT_SMART_VERSION #define IOCTL_SCSI_MINIPORT_SMART_VERSION ((FILE_DEVICE_SCSI << 16) + 0x0500) #define IOCTL_SCSI_MINIPORT_IDENTIFY ((FILE_DEVICE_SCSI << 16) + 0x0501) #define IOCTL_SCSI_MINIPORT_READ_SMART_ATTRIBS ((FILE_DEVICE_SCSI << 16) + 0x0502) #define IOCTL_SCSI_MINIPORT_READ_SMART_THRESHOLDS ((FILE_DEVICE_SCSI << 16) + 0x0503) #define IOCTL_SCSI_MINIPORT_ENABLE_SMART ((FILE_DEVICE_SCSI << 16) + 0x0504) #define IOCTL_SCSI_MINIPORT_DISABLE_SMART ((FILE_DEVICE_SCSI << 16) + 0x0505) #define IOCTL_SCSI_MINIPORT_RETURN_STATUS ((FILE_DEVICE_SCSI << 16) + 0x0506) #define IOCTL_SCSI_MINIPORT_ENABLE_DISABLE_AUTOSAVE ((FILE_DEVICE_SCSI << 16) + 0x0507) #define IOCTL_SCSI_MINIPORT_SAVE_ATTRIBUTE_VALUES ((FILE_DEVICE_SCSI << 16) + 0x0508) #define IOCTL_SCSI_MINIPORT_EXECUTE_OFFLINE_DIAGS ((FILE_DEVICE_SCSI << 16) + 0x0509) #define IOCTL_SCSI_MINIPORT_ENABLE_DISABLE_AUTO_OFFLINE ((FILE_DEVICE_SCSI << 16) + 0x050a) #define IOCTL_SCSI_MINIPORT_READ_SMART_LOG ((FILE_DEVICE_SCSI << 16) + 0x050b) #define IOCTL_SCSI_MINIPORT_WRITE_SMART_LOG ((FILE_DEVICE_SCSI << 16) + 0x050c) #endif // IOCTL_SCSI_MINIPORT_SMART_VERSION STATIC_ASSERT(IOCTL_SCSI_MINIPORT == 0x04d008); STATIC_ASSERT(IOCTL_SCSI_MINIPORT_SMART_VERSION == 0x1b0500); STATIC_ASSERT(sizeof(SRB_IO_CONTROL) == 28); // IOCTL_STORAGE_QUERY_PROPERTY STATIC_ASSERT(IOCTL_STORAGE_QUERY_PROPERTY == 0x002d1400); STATIC_ASSERT(sizeof(STORAGE_DEVICE_DESCRIPTOR) == 36+1+3); STATIC_ASSERT(sizeof(STORAGE_PROPERTY_QUERY) == 8+1+3); // IOCTL_STORAGE_QUERY_PROPERTY: Windows 10 enhancements namespace win10 { // enum STORAGE_PROPERTY_ID: new values const STORAGE_PROPERTY_ID StorageAdapterProtocolSpecificProperty = (STORAGE_PROPERTY_ID)49; const STORAGE_PROPERTY_ID StorageDeviceProtocolSpecificProperty = (STORAGE_PROPERTY_ID)50; typedef enum _STORAGE_PROTOCOL_TYPE { ProtocolTypeUnknown = 0, ProtocolTypeScsi, ProtocolTypeAta, ProtocolTypeNvme, ProtocolTypeSd } STORAGE_PROTOCOL_TYPE; typedef enum _STORAGE_PROTOCOL_NVME_DATA_TYPE { NVMeDataTypeUnknown = 0, NVMeDataTypeIdentify, NVMeDataTypeLogPage, NVMeDataTypeFeature } STORAGE_PROTOCOL_NVME_DATA_TYPE; typedef struct _STORAGE_PROTOCOL_SPECIFIC_DATA { STORAGE_PROTOCOL_TYPE ProtocolType; ULONG DataType; ULONG ProtocolDataRequestValue; ULONG ProtocolDataRequestSubValue; ULONG ProtocolDataOffset; ULONG ProtocolDataLength; ULONG FixedProtocolReturnData; ULONG Reserved[3]; } STORAGE_PROTOCOL_SPECIFIC_DATA; STATIC_ASSERT(sizeof(STORAGE_PROTOCOL_SPECIFIC_DATA) == 40); } // namespace win10 // IOCTL_STORAGE_PREDICT_FAILURE STATIC_ASSERT(IOCTL_STORAGE_PREDICT_FAILURE == 0x002d1100); STATIC_ASSERT(sizeof(STORAGE_PREDICT_FAILURE) == 4+512); // IOCTL_STORAGE_PROTOCOL_COMMAND #ifndef IOCTL_STORAGE_PROTOCOL_COMMAND #define IOCTL_STORAGE_PROTOCOL_COMMAND \ CTL_CODE(IOCTL_STORAGE_BASE, 0x04f0, METHOD_BUFFERED, FILE_READ_ACCESS | FILE_WRITE_ACCESS) #endif // IOCTL_STORAGE_PROTOCOL_COMMAND #ifndef STORAGE_PROTOCOL_STRUCTURE_VERSION #define STORAGE_PROTOCOL_STRUCTURE_VERSION 1 typedef struct _STORAGE_PROTOCOL_COMMAND { DWORD Version; DWORD Length; win10::STORAGE_PROTOCOL_TYPE ProtocolType; DWORD Flags; DWORD ReturnStatus; DWORD ErrorCode; DWORD CommandLength; DWORD ErrorInfoLength; DWORD DataToDeviceTransferLength; DWORD DataFromDeviceTransferLength; DWORD TimeOutValue; DWORD ErrorInfoOffset; DWORD DataToDeviceBufferOffset; DWORD DataFromDeviceBufferOffset; DWORD CommandSpecific; DWORD Reserved0; DWORD FixedProtocolReturnData; DWORD Reserved1[3]; BYTE Command[1]; } STORAGE_PROTOCOL_COMMAND; #define STORAGE_PROTOCOL_COMMAND_FLAG_ADAPTER_REQUEST 0x80000000 #define STORAGE_PROTOCOL_SPECIFIC_NVME_ADMIN_COMMAND 0x01 #define STORAGE_PROTOCOL_COMMAND_LENGTH_NVME 0x40 #endif // STORAGE_PROTOCOL_STRUCTURE_VERSION STATIC_ASSERT(IOCTL_STORAGE_PROTOCOL_COMMAND == 0x002dd3c0); STATIC_ASSERT(offsetof(STORAGE_PROTOCOL_COMMAND, Command) == 80); STATIC_ASSERT(sizeof(STORAGE_PROTOCOL_COMMAND) == 84); // NVME_COMMAND from #ifndef NVME_NAMESPACE_ALL typedef union { struct { ULONG OPC : 8; ULONG _unused : 24; }; ULONG AsUlong; } NVME_COMMAND_DWORD0; typedef struct { NVME_COMMAND_DWORD0 CDW0; ULONG NSID; ULONGLONG _unused[4]; union { struct { ULONG CDW10; ULONG CDW11; ULONG CDW12; ULONG CDW13; ULONG CDW14; ULONG CDW15; } GENERAL; // Others: Not used } u; } NVME_COMMAND; #endif STATIC_ASSERT(sizeof(NVME_COMMAND) == STORAGE_PROTOCOL_COMMAND_LENGTH_NVME); STATIC_ASSERT(offsetof(NVME_COMMAND, u.GENERAL.CDW10) == 40); // 3ware specific versions of SMART ioctl structs #define SMART_VENDOR_3WARE 0x13C1 // identifies 3ware specific parameters #pragma pack(1) typedef struct _GETVERSIONINPARAMS_EX { BYTE bVersion; BYTE bRevision; BYTE bReserved; BYTE bIDEDeviceMap; DWORD fCapabilities; DWORD dwDeviceMapEx; // 3ware specific: RAID drive bit map WORD wIdentifier; // Vendor specific identifier WORD wControllerId; // 3ware specific: Controller ID (0,1,...) ULONG dwReserved[2]; } GETVERSIONINPARAMS_EX; typedef struct _SENDCMDINPARAMS_EX { DWORD cBufferSize; IDEREGS irDriveRegs; BYTE bDriveNumber; BYTE bPortNumber; // 3ware specific: port number WORD wIdentifier; // Vendor specific identifier DWORD dwReserved[4]; BYTE bBuffer[1]; } SENDCMDINPARAMS_EX; #pragma pack() STATIC_ASSERT(sizeof(GETVERSIONINPARAMS_EX) == sizeof(GETVERSIONINPARAMS)); STATIC_ASSERT(sizeof(SENDCMDINPARAMS_EX) == sizeof(SENDCMDINPARAMS)); // NVME_PASS_THROUGH #ifndef NVME_PASS_THROUGH_SRB_IO_CODE #define NVME_SIG_STR "NvmeMini" #define NVME_STORPORT_DRIVER 0xe000 #define NVME_PASS_THROUGH_SRB_IO_CODE \ CTL_CODE(NVME_STORPORT_DRIVER, 0x0800, METHOD_BUFFERED, FILE_ANY_ACCESS) #pragma pack(1) typedef struct _NVME_PASS_THROUGH_IOCTL { SRB_IO_CONTROL SrbIoCtrl; ULONG VendorSpecific[6]; ULONG NVMeCmd[16]; // Command DW[0...15] ULONG CplEntry[4]; // Completion DW[0...3] ULONG Direction; // 0=No, 1=Out, 2=In, 3=I/O ULONG QueueId; // 0=AdminQ ULONG DataBufferLen; // sizeof(DataBuffer) if Data In ULONG MetaDataLen; ULONG ReturnBufferLen; // offsetof(DataBuffer), plus sizeof(DataBuffer) if Data Out UCHAR DataBuffer[1]; } NVME_PASS_THROUGH_IOCTL; #pragma pack() #endif // NVME_PASS_THROUGH_SRB_IO_CODE STATIC_ASSERT(NVME_PASS_THROUGH_SRB_IO_CODE == (int)0xe0002000); STATIC_ASSERT(sizeof(NVME_PASS_THROUGH_IOCTL) == 152+1); STATIC_ASSERT(sizeof(NVME_PASS_THROUGH_IOCTL) == offsetof(NVME_PASS_THROUGH_IOCTL, DataBuffer)+1); // CSMI structs STATIC_ASSERT(sizeof(IOCTL_HEADER) == sizeof(SRB_IO_CONTROL)); STATIC_ASSERT(sizeof(CSMI_SAS_DRIVER_INFO_BUFFER) == 204); STATIC_ASSERT(sizeof(CSMI_SAS_PHY_INFO_BUFFER) == 2080); STATIC_ASSERT(sizeof(CSMI_SAS_STP_PASSTHRU_BUFFER) == 168); // aacraid struct STATIC_ASSERT(sizeof(SCSI_REQUEST_BLOCK) == SELECT_WIN_32_64(64, 88)); } // extern "C" ///////////////////////////////////////////////////////////////////////////// namespace os_win32 { // no need to publish anything, name provided for Doxygen #ifdef _MSC_VER #pragma warning(disable:4250) #endif static int is_permissive() { if (!failuretest_permissive) { pout("To continue, add one or more '-T permissive' options.\n"); return 0; } failuretest_permissive--; return 1; } // return number for drive letter, -1 on error // "[A-Za-z]:([/\\][.]?)?" => 0-25 // Accepts trailing '"' to fix broken "X:\" parameter passing from .bat files static int drive_letter(const char * s) { return ( (('A' <= s[0] && s[0] <= 'Z') || ('a' <= s[0] && s[0] <= 'z')) && s[1] == ':' && (!s[2] || ( strchr("/\\\"", s[2]) && (!s[3] || (s[3] == '.' && !s[4]))) ) ? (s[0] & 0x1f) - 1 : -1); } // Skip trailing "/dev/", do not allow "/dev/X:" static const char * skipdev(const char * s) { return (!strncmp(s, "/dev/", 5) && drive_letter(s+5) < 0 ? s+5 : s); } // "sd[a-z]" -> 0-25, "sd[a-z][a-z]" -> 26-701 static int sdxy_to_phydrive(const char (& xy)[2+1]) { int phydrive = xy[0] - 'a'; if (xy[1]) phydrive = (phydrive + 1) * ('z' - 'a' + 1) + (xy[1] - 'a'); return phydrive; } static void copy_swapped(unsigned char * dest, const char * src, int destsize) { int srclen = strcspn(src, "\r\n"); int i; for (i = 0; i < destsize-1 && i < srclen-1; i+=2) { dest[i] = src[i+1]; dest[i+1] = src[i]; } if (i < destsize-1 && i < srclen) dest[i+1] = src[i]; } ///////////////////////////////////////////////////////////////////////////// // win_smart_device class win_smart_device : virtual public /*implements*/ smart_device { public: win_smart_device() : smart_device(never_called), m_fh(INVALID_HANDLE_VALUE) { } virtual ~win_smart_device(); virtual bool is_open() const; virtual bool close(); protected: /// Set handle for open() in derived classes. void set_fh(HANDLE fh) { m_fh = fh; } /// Return handle for derived classes. HANDLE get_fh() const { return m_fh; } private: HANDLE m_fh; ///< File handle }; // Common routines for devices with HANDLEs win_smart_device::~win_smart_device() { if (m_fh != INVALID_HANDLE_VALUE) ::CloseHandle(m_fh); } bool win_smart_device::is_open() const { return (m_fh != INVALID_HANDLE_VALUE); } bool win_smart_device::close() { if (m_fh == INVALID_HANDLE_VALUE) return true; BOOL rc = ::CloseHandle(m_fh); m_fh = INVALID_HANDLE_VALUE; return !!rc; } ///////////////////////////////////////////////////////////////////////////// #define SMART_CYL_LOW 0x4F #define SMART_CYL_HI 0xC2 static void print_ide_regs(const IDEREGS * r, int out) { pout("%s=0x%02x,%s=0x%02x, SC=0x%02x, SN=0x%02x, CL=0x%02x, CH=0x%02x, SEL=0x%02x\n", (out?"STS":"CMD"), r->bCommandReg, (out?"ERR":" FR"), r->bFeaturesReg, r->bSectorCountReg, r->bSectorNumberReg, r->bCylLowReg, r->bCylHighReg, r->bDriveHeadReg); } static void print_ide_regs_io(const IDEREGS * ri, const IDEREGS * ro) { pout(" Input : "); print_ide_regs(ri, 0); if (ro) { pout(" Output: "); print_ide_regs(ro, 1); } } ///////////////////////////////////////////////////////////////////////////// // call SMART_GET_VERSION, return device map or -1 on error static int smart_get_version(HANDLE hdevice, GETVERSIONINPARAMS_EX * ata_version_ex = 0) { GETVERSIONINPARAMS vers; memset(&vers, 0, sizeof(vers)); const GETVERSIONINPARAMS_EX & vers_ex = (const GETVERSIONINPARAMS_EX &)vers; DWORD num_out; if (!DeviceIoControl(hdevice, SMART_GET_VERSION, NULL, 0, &vers, sizeof(vers), &num_out, NULL)) { if (ata_debugmode) pout(" SMART_GET_VERSION failed, Error=%u\n", (unsigned)GetLastError()); errno = ENOSYS; return -1; } assert(num_out == sizeof(GETVERSIONINPARAMS)); if (ata_debugmode > 1) { pout(" SMART_GET_VERSION succeeded, bytes returned: %u\n" " Vers = %d.%d, Caps = 0x%x, DeviceMap = 0x%02x\n", (unsigned)num_out, vers.bVersion, vers.bRevision, (unsigned)vers.fCapabilities, vers.bIDEDeviceMap); if (vers_ex.wIdentifier == SMART_VENDOR_3WARE) pout(" Identifier = %04x(3WARE), ControllerId=%u, DeviceMapEx = 0x%08x\n", vers_ex.wIdentifier, vers_ex.wControllerId, (unsigned)vers_ex.dwDeviceMapEx); } if (ata_version_ex) *ata_version_ex = vers_ex; // TODO: Check vers.fCapabilities here? return vers.bIDEDeviceMap; } // call SMART_* ioctl static int smart_ioctl(HANDLE hdevice, IDEREGS * regs, char * data, unsigned datasize, int port) { SENDCMDINPARAMS inpar; SENDCMDINPARAMS_EX & inpar_ex = (SENDCMDINPARAMS_EX &)inpar; unsigned char outbuf[sizeof(SENDCMDOUTPARAMS)-1 + 512]; const SENDCMDOUTPARAMS * outpar; DWORD code, num_out; unsigned int size_out; const char * name; memset(&inpar, 0, sizeof(inpar)); inpar.irDriveRegs = *regs; // Older drivers may require bits 5 and 7 set // ATA-3: bits shall be set, ATA-4 and later: bits are obsolete inpar.irDriveRegs.bDriveHeadReg |= 0xa0; // Drive number 0-3 was required on Win9x/ME only //inpar.irDriveRegs.bDriveHeadReg |= (drive & 1) << 4; //inpar.bDriveNumber = drive; if (port >= 0) { // Set RAID port inpar_ex.wIdentifier = SMART_VENDOR_3WARE; inpar_ex.bPortNumber = port; } if (datasize == 512) { code = SMART_RCV_DRIVE_DATA; name = "SMART_RCV_DRIVE_DATA"; inpar.cBufferSize = size_out = 512; } else if (datasize == 0) { code = SMART_SEND_DRIVE_COMMAND; name = "SMART_SEND_DRIVE_COMMAND"; if (regs->bFeaturesReg == ATA_SMART_STATUS) size_out = sizeof(IDEREGS); // ioctl returns new IDEREGS as data // Note: cBufferSize must be 0 on Win9x else size_out = 0; } else { errno = EINVAL; return -1; } memset(&outbuf, 0, sizeof(outbuf)); if (!DeviceIoControl(hdevice, code, &inpar, sizeof(SENDCMDINPARAMS)-1, outbuf, sizeof(SENDCMDOUTPARAMS)-1 + size_out, &num_out, NULL)) { // CAUTION: DO NOT change "regs" Parameter in this case, see win_ata_device::ata_pass_through() long err = GetLastError(); if (ata_debugmode && (err != ERROR_INVALID_PARAMETER || ata_debugmode > 1)) { pout(" %s failed, Error=%ld\n", name, err); print_ide_regs_io(regs, NULL); } errno = ( err == ERROR_INVALID_FUNCTION/*9x*/ || err == ERROR_INVALID_PARAMETER/*NT/2K/XP*/ || err == ERROR_NOT_SUPPORTED ? ENOSYS : EIO); return -1; } // NOTE: On Win9x, inpar.irDriveRegs now contains the returned regs outpar = (const SENDCMDOUTPARAMS *)outbuf; if (outpar->DriverStatus.bDriverError) { if (ata_debugmode) { pout(" %s failed, DriverError=0x%02x, IDEError=0x%02x\n", name, outpar->DriverStatus.bDriverError, outpar->DriverStatus.bIDEError); print_ide_regs_io(regs, NULL); } errno = (!outpar->DriverStatus.bIDEError ? ENOSYS : EIO); return -1; } if (ata_debugmode > 1) { pout(" %s succeeded, bytes returned: %u (buffer %u)\n", name, (unsigned)num_out, (unsigned)outpar->cBufferSize); print_ide_regs_io(regs, (regs->bFeaturesReg == ATA_SMART_STATUS ? (const IDEREGS *)(outpar->bBuffer) : NULL)); } if (datasize) memcpy(data, outpar->bBuffer, 512); else if (regs->bFeaturesReg == ATA_SMART_STATUS) { if (nonempty(outpar->bBuffer, sizeof(IDEREGS))) memcpy(regs, outpar->bBuffer, sizeof(IDEREGS)); else { // Workaround for driver not returning regs if (ata_debugmode) pout(" WARNING: driver does not return ATA registers in output buffer!\n"); *regs = inpar.irDriveRegs; } } return 0; } ///////////////////////////////////////////////////////////////////////////// // IDE PASS THROUGH (2000, XP, undocumented) // // Based on WinATA.cpp, 2002 c't/Matthias Withopf // ftp://ftp.heise.de/pub/ct/listings/0207-218.zip static int ide_pass_through_ioctl(HANDLE hdevice, IDEREGS * regs, char * data, unsigned datasize) { if (datasize > 512) { errno = EINVAL; return -1; } unsigned int size = sizeof(ATA_PASS_THROUGH)-1 + datasize; ATA_PASS_THROUGH * buf = (ATA_PASS_THROUGH *)VirtualAlloc(NULL, size, MEM_COMMIT, PAGE_READWRITE); DWORD num_out; const unsigned char magic = 0xcf; if (!buf) { errno = ENOMEM; return -1; } buf->IdeReg = *regs; buf->DataBufferSize = datasize; if (datasize) buf->DataBuffer[0] = magic; if (!DeviceIoControl(hdevice, IOCTL_IDE_PASS_THROUGH, buf, size, buf, size, &num_out, NULL)) { long err = GetLastError(); if (ata_debugmode) { pout(" IOCTL_IDE_PASS_THROUGH failed, Error=%ld\n", err); print_ide_regs_io(regs, NULL); } VirtualFree(buf, 0, MEM_RELEASE); errno = (err == ERROR_INVALID_FUNCTION || err == ERROR_NOT_SUPPORTED ? ENOSYS : EIO); return -1; } // Check ATA status if (buf->IdeReg.bCommandReg/*Status*/ & 0x01) { if (ata_debugmode) { pout(" IOCTL_IDE_PASS_THROUGH command failed:\n"); print_ide_regs_io(regs, &buf->IdeReg); } VirtualFree(buf, 0, MEM_RELEASE); errno = EIO; return -1; } // Check and copy data if (datasize) { if ( num_out != size || (buf->DataBuffer[0] == magic && !nonempty(buf->DataBuffer+1, datasize-1))) { if (ata_debugmode) { pout(" IOCTL_IDE_PASS_THROUGH output data missing (%u, %u)\n", (unsigned)num_out, (unsigned)buf->DataBufferSize); print_ide_regs_io(regs, &buf->IdeReg); } VirtualFree(buf, 0, MEM_RELEASE); errno = EIO; return -1; } memcpy(data, buf->DataBuffer, datasize); } if (ata_debugmode > 1) { pout(" IOCTL_IDE_PASS_THROUGH succeeded, bytes returned: %u (buffer %u)\n", (unsigned)num_out, (unsigned)buf->DataBufferSize); print_ide_regs_io(regs, &buf->IdeReg); } *regs = buf->IdeReg; // Caution: VirtualFree() fails if parameter "dwSize" is nonzero VirtualFree(buf, 0, MEM_RELEASE); return 0; } ///////////////////////////////////////////////////////////////////////////// // ATA PASS THROUGH (Win2003, XP SP2) // Warning: // IOCTL_ATA_PASS_THROUGH[_DIRECT] can only handle one interrupt/DRQ data // transfer per command. Therefore, multi-sector transfers are only supported // for the READ/WRITE MULTIPLE [EXT] commands. Other commands like READ/WRITE SECTORS // or READ/WRITE LOG EXT work only with single sector transfers. // The latter are supported on Vista (only) through new ATA_FLAGS_NO_MULTIPLE. // See: // http://social.msdn.microsoft.com/Forums/en-US/storageplatformata/thread/eb408507-f221-455b-9bbb-d1069b29c4da static int ata_pass_through_ioctl(HANDLE hdevice, IDEREGS * regs, IDEREGS * prev_regs, char * data, int datasize) { const int max_sectors = 32; // TODO: Allocate dynamic buffer typedef struct { ATA_PASS_THROUGH_EX apt; ULONG Filler; UCHAR ucDataBuf[max_sectors * 512]; } ATA_PASS_THROUGH_EX_WITH_BUFFERS; const unsigned char magic = 0xcf; ATA_PASS_THROUGH_EX_WITH_BUFFERS ab; memset(&ab, 0, sizeof(ab)); ab.apt.Length = sizeof(ATA_PASS_THROUGH_EX); //ab.apt.PathId = 0; //ab.apt.TargetId = 0; //ab.apt.Lun = 0; ab.apt.TimeOutValue = 60; // seconds unsigned size = offsetof(ATA_PASS_THROUGH_EX_WITH_BUFFERS, ucDataBuf); ab.apt.DataBufferOffset = size; if (datasize > 0) { if (datasize > (int)sizeof(ab.ucDataBuf)) { errno = EINVAL; return -1; } ab.apt.AtaFlags = ATA_FLAGS_DATA_IN; ab.apt.DataTransferLength = datasize; size += datasize; ab.ucDataBuf[0] = magic; } else if (datasize < 0) { if (-datasize > (int)sizeof(ab.ucDataBuf)) { errno = EINVAL; return -1; } ab.apt.AtaFlags = ATA_FLAGS_DATA_OUT; ab.apt.DataTransferLength = -datasize; size += -datasize; memcpy(ab.ucDataBuf, data, -datasize); } else { assert(ab.apt.AtaFlags == 0); assert(ab.apt.DataTransferLength == 0); } assert(sizeof(ab.apt.CurrentTaskFile) == sizeof(IDEREGS)); IDEREGS * ctfregs = (IDEREGS *)ab.apt.CurrentTaskFile; IDEREGS * ptfregs = (IDEREGS *)ab.apt.PreviousTaskFile; *ctfregs = *regs; if (prev_regs) { *ptfregs = *prev_regs; ab.apt.AtaFlags |= ATA_FLAGS_48BIT_COMMAND; } DWORD num_out; if (!DeviceIoControl(hdevice, IOCTL_ATA_PASS_THROUGH, &ab, size, &ab, size, &num_out, NULL)) { long err = GetLastError(); if (ata_debugmode) { pout(" IOCTL_ATA_PASS_THROUGH failed, Error=%ld\n", err); print_ide_regs_io(regs, NULL); } errno = (err == ERROR_INVALID_FUNCTION || err == ERROR_NOT_SUPPORTED ? ENOSYS : EIO); return -1; } // Check ATA status if (ctfregs->bCommandReg/*Status*/ & (0x01/*Err*/|0x08/*DRQ*/)) { if (ata_debugmode) { pout(" IOCTL_ATA_PASS_THROUGH command failed:\n"); print_ide_regs_io(regs, ctfregs); } errno = EIO; return -1; } // Check and copy data if (datasize > 0) { if ( num_out != size || (ab.ucDataBuf[0] == magic && !nonempty(ab.ucDataBuf+1, datasize-1))) { if (ata_debugmode) { pout(" IOCTL_ATA_PASS_THROUGH output data missing (%u)\n", (unsigned)num_out); print_ide_regs_io(regs, ctfregs); } errno = EIO; return -1; } memcpy(data, ab.ucDataBuf, datasize); } if (ata_debugmode > 1) { pout(" IOCTL_ATA_PASS_THROUGH succeeded, bytes returned: %u\n", (unsigned)num_out); print_ide_regs_io(regs, ctfregs); } *regs = *ctfregs; if (prev_regs) *prev_regs = *ptfregs; return 0; } ///////////////////////////////////////////////////////////////////////////// // SMART IOCTL via SCSI MINIPORT ioctl // This function is handled by ATAPI port driver (atapi.sys) or by SCSI // miniport driver (via SCSI port driver scsiport.sys). // It can be used to skip the missing or broken handling of some SMART // command codes (e.g. READ_LOG) in the disk class driver (disk.sys) static int ata_via_scsi_miniport_smart_ioctl(HANDLE hdevice, IDEREGS * regs, char * data, int datasize) { // Select code DWORD code = 0; const char * name = 0; if (regs->bCommandReg == ATA_IDENTIFY_DEVICE) { code = IOCTL_SCSI_MINIPORT_IDENTIFY; name = "IDENTIFY"; } else if (regs->bCommandReg == ATA_SMART_CMD) switch (regs->bFeaturesReg) { case ATA_SMART_READ_VALUES: code = IOCTL_SCSI_MINIPORT_READ_SMART_ATTRIBS; name = "READ_SMART_ATTRIBS"; break; case ATA_SMART_READ_THRESHOLDS: code = IOCTL_SCSI_MINIPORT_READ_SMART_THRESHOLDS; name = "READ_SMART_THRESHOLDS"; break; case ATA_SMART_ENABLE: code = IOCTL_SCSI_MINIPORT_ENABLE_SMART; name = "ENABLE_SMART"; break; case ATA_SMART_DISABLE: code = IOCTL_SCSI_MINIPORT_DISABLE_SMART; name = "DISABLE_SMART"; break; case ATA_SMART_STATUS: code = IOCTL_SCSI_MINIPORT_RETURN_STATUS; name = "RETURN_STATUS"; break; case ATA_SMART_AUTOSAVE: code = IOCTL_SCSI_MINIPORT_ENABLE_DISABLE_AUTOSAVE; name = "ENABLE_DISABLE_AUTOSAVE"; break; //case ATA_SMART_SAVE: // obsolete since ATA-6, not used by smartmontools // code = IOCTL_SCSI_MINIPORT_SAVE_ATTRIBUTE_VALUES; name = "SAVE_ATTRIBUTE_VALUES"; break; case ATA_SMART_IMMEDIATE_OFFLINE: code = IOCTL_SCSI_MINIPORT_EXECUTE_OFFLINE_DIAGS; name = "EXECUTE_OFFLINE_DIAGS"; break; case ATA_SMART_AUTO_OFFLINE: code = IOCTL_SCSI_MINIPORT_ENABLE_DISABLE_AUTO_OFFLINE; name = "ENABLE_DISABLE_AUTO_OFFLINE"; break; case ATA_SMART_READ_LOG_SECTOR: code = IOCTL_SCSI_MINIPORT_READ_SMART_LOG; name = "READ_SMART_LOG"; break; case ATA_SMART_WRITE_LOG_SECTOR: code = IOCTL_SCSI_MINIPORT_WRITE_SMART_LOG; name = "WRITE_SMART_LOG"; break; } if (!code) { errno = ENOSYS; return -1; } // Set SRB struct { SRB_IO_CONTROL srbc; union { SENDCMDINPARAMS in; SENDCMDOUTPARAMS out; } params; char space[512-1]; } sb; STATIC_ASSERT(sizeof(sb) == sizeof(SRB_IO_CONTROL)+sizeof(SENDCMDINPARAMS)-1+512); memset(&sb, 0, sizeof(sb)); unsigned size; if (datasize > 0) { if (datasize > (int)sizeof(sb.space)+1) { errno = EINVAL; return -1; } size = datasize; } else if (datasize < 0) { if (-datasize > (int)sizeof(sb.space)+1) { errno = EINVAL; return -1; } size = -datasize; memcpy(sb.params.in.bBuffer, data, size); } else if (code == IOCTL_SCSI_MINIPORT_RETURN_STATUS) size = sizeof(IDEREGS); else size = 0; sb.srbc.HeaderLength = sizeof(SRB_IO_CONTROL); memcpy(sb.srbc.Signature, "SCSIDISK", 8); // atapi.sys sb.srbc.Timeout = 60; // seconds sb.srbc.ControlCode = code; //sb.srbc.ReturnCode = 0; sb.srbc.Length = sizeof(SENDCMDINPARAMS)-1 + size; sb.params.in.irDriveRegs = *regs; sb.params.in.cBufferSize = size; // Call miniport ioctl size += sizeof(SRB_IO_CONTROL) + sizeof(SENDCMDINPARAMS)-1; DWORD num_out; if (!DeviceIoControl(hdevice, IOCTL_SCSI_MINIPORT, &sb, size, &sb, size, &num_out, NULL)) { long err = GetLastError(); if (ata_debugmode) { pout(" IOCTL_SCSI_MINIPORT_%s failed, Error=%ld\n", name, err); print_ide_regs_io(regs, NULL); } errno = (err == ERROR_INVALID_FUNCTION || err == ERROR_NOT_SUPPORTED ? ENOSYS : EIO); return -1; } // Check result if (sb.srbc.ReturnCode) { if (ata_debugmode) { pout(" IOCTL_SCSI_MINIPORT_%s failed, ReturnCode=0x%08x\n", name, (unsigned)sb.srbc.ReturnCode); print_ide_regs_io(regs, NULL); } errno = EIO; return -1; } if (sb.params.out.DriverStatus.bDriverError) { if (ata_debugmode) { pout(" IOCTL_SCSI_MINIPORT_%s failed, DriverError=0x%02x, IDEError=0x%02x\n", name, sb.params.out.DriverStatus.bDriverError, sb.params.out.DriverStatus.bIDEError); print_ide_regs_io(regs, NULL); } errno = (!sb.params.out.DriverStatus.bIDEError ? ENOSYS : EIO); return -1; } if (ata_debugmode > 1) { pout(" IOCTL_SCSI_MINIPORT_%s succeeded, bytes returned: %u (buffer %u)\n", name, (unsigned)num_out, (unsigned)sb.params.out.cBufferSize); print_ide_regs_io(regs, (code == IOCTL_SCSI_MINIPORT_RETURN_STATUS ? (const IDEREGS *)(sb.params.out.bBuffer) : 0)); } if (datasize > 0) memcpy(data, sb.params.out.bBuffer, datasize); else if (datasize == 0 && code == IOCTL_SCSI_MINIPORT_RETURN_STATUS) memcpy(regs, sb.params.out.bBuffer, sizeof(IDEREGS)); return 0; } ///////////////////////////////////////////////////////////////////////////// // ATA PASS THROUGH via 3ware specific SCSI MINIPORT ioctl static int ata_via_3ware_miniport_ioctl(HANDLE hdevice, IDEREGS * regs, char * data, int datasize, int port) { struct { SRB_IO_CONTROL srbc; IDEREGS regs; UCHAR buffer[512]; } sb; STATIC_ASSERT(sizeof(sb) == sizeof(SRB_IO_CONTROL)+sizeof(IDEREGS)+512); if (!(0 <= datasize && datasize <= (int)sizeof(sb.buffer) && port >= 0)) { errno = EINVAL; return -1; } memset(&sb, 0, sizeof(sb)); strncpy((char *)sb.srbc.Signature, "<3ware>", sizeof(sb.srbc.Signature)); sb.srbc.HeaderLength = sizeof(SRB_IO_CONTROL); sb.srbc.Timeout = 60; // seconds sb.srbc.ControlCode = 0xA0000000; sb.srbc.ReturnCode = 0; sb.srbc.Length = sizeof(IDEREGS) + (datasize > 0 ? datasize : 1); sb.regs = *regs; sb.regs.bReserved = port; DWORD num_out; if (!DeviceIoControl(hdevice, IOCTL_SCSI_MINIPORT, &sb, sizeof(sb), &sb, sizeof(sb), &num_out, NULL)) { long err = GetLastError(); if (ata_debugmode) { pout(" ATA via IOCTL_SCSI_MINIPORT failed, Error=%ld\n", err); print_ide_regs_io(regs, NULL); } errno = (err == ERROR_INVALID_FUNCTION ? ENOSYS : EIO); return -1; } if (sb.srbc.ReturnCode) { if (ata_debugmode) { pout(" ATA via IOCTL_SCSI_MINIPORT failed, ReturnCode=0x%08x\n", (unsigned)sb.srbc.ReturnCode); print_ide_regs_io(regs, NULL); } errno = EIO; return -1; } // Copy data if (datasize > 0) memcpy(data, sb.buffer, datasize); if (ata_debugmode > 1) { pout(" ATA via IOCTL_SCSI_MINIPORT succeeded, bytes returned: %u\n", (unsigned)num_out); print_ide_regs_io(regs, &sb.regs); } *regs = sb.regs; return 0; } ///////////////////////////////////////////////////////////////////////////// // 3ware specific call to update the devicemap returned by SMART_GET_VERSION. // 3DM/CLI "Rescan Controller" function does not to always update it. static int update_3ware_devicemap_ioctl(HANDLE hdevice) { SRB_IO_CONTROL srbc; memset(&srbc, 0, sizeof(srbc)); strncpy((char *)srbc.Signature, "<3ware>", sizeof(srbc.Signature)); srbc.HeaderLength = sizeof(SRB_IO_CONTROL); srbc.Timeout = 60; // seconds srbc.ControlCode = 0xCC010014; srbc.ReturnCode = 0; srbc.Length = 0; DWORD num_out; if (!DeviceIoControl(hdevice, IOCTL_SCSI_MINIPORT, &srbc, sizeof(srbc), &srbc, sizeof(srbc), &num_out, NULL)) { long err = GetLastError(); if (ata_debugmode) pout(" UPDATE DEVICEMAP via IOCTL_SCSI_MINIPORT failed, Error=%ld\n", err); errno = (err == ERROR_INVALID_FUNCTION ? ENOSYS : EIO); return -1; } if (srbc.ReturnCode) { if (ata_debugmode) pout(" UPDATE DEVICEMAP via IOCTL_SCSI_MINIPORT failed, ReturnCode=0x%08x\n", (unsigned)srbc.ReturnCode); errno = EIO; return -1; } if (ata_debugmode > 1) pout(" UPDATE DEVICEMAP via IOCTL_SCSI_MINIPORT succeeded\n"); return 0; } ///////////////////////////////////////////////////////////////////////////// // IOCTL_STORAGE_QUERY_PROPERTY union STORAGE_DEVICE_DESCRIPTOR_DATA { STORAGE_DEVICE_DESCRIPTOR desc; char raw[256]; }; // Get STORAGE_DEVICE_DESCRIPTOR_DATA for device. // (This works without admin rights) static int storage_query_property_ioctl(HANDLE hdevice, STORAGE_DEVICE_DESCRIPTOR_DATA * data) { STORAGE_PROPERTY_QUERY query = {StorageDeviceProperty, PropertyStandardQuery, {0} }; memset(data, 0, sizeof(*data)); DWORD num_out; if (!DeviceIoControl(hdevice, IOCTL_STORAGE_QUERY_PROPERTY, &query, sizeof(query), data, sizeof(*data), &num_out, NULL)) { if (ata_debugmode > 1 || scsi_debugmode > 1) pout(" IOCTL_STORAGE_QUERY_PROPERTY failed, Error=%u\n", (unsigned)GetLastError()); errno = ENOSYS; return -1; } if (ata_debugmode > 1 || scsi_debugmode > 1) { pout(" IOCTL_STORAGE_QUERY_PROPERTY returns:\n" " Vendor: \"%s\"\n" " Product: \"%s\"\n" " Revision: \"%s\"\n" " Removable: %s\n" " BusType: 0x%02x\n", (data->desc.VendorIdOffset ? data->raw+data->desc.VendorIdOffset : "(null)"), (data->desc.ProductIdOffset ? data->raw+data->desc.ProductIdOffset : "(null)"), (data->desc.ProductRevisionOffset ? data->raw+data->desc.ProductRevisionOffset : "(null)"), (data->desc.RemovableMedia? "Yes":"No"), data->desc.BusType ); } return 0; } ///////////////////////////////////////////////////////////////////////////// // IOCTL_STORAGE_PREDICT_FAILURE // Call IOCTL_STORAGE_PREDICT_FAILURE, return PredictFailure value // or -1 on error, optionally return VendorSpecific data. // (This works without admin rights) static int storage_predict_failure_ioctl(HANDLE hdevice, char * data = 0) { STORAGE_PREDICT_FAILURE pred; memset(&pred, 0, sizeof(pred)); DWORD num_out; if (!DeviceIoControl(hdevice, IOCTL_STORAGE_PREDICT_FAILURE, 0, 0, &pred, sizeof(pred), &num_out, NULL)) { if (ata_debugmode > 1) pout(" IOCTL_STORAGE_PREDICT_FAILURE failed, Error=%u\n", (unsigned)GetLastError()); errno = ENOSYS; return -1; } if (ata_debugmode > 1) { pout(" IOCTL_STORAGE_PREDICT_FAILURE returns:\n" " PredictFailure: 0x%08x\n" " VendorSpecific: 0x%02x,0x%02x,0x%02x,...,0x%02x\n", (unsigned)pred.PredictFailure, pred.VendorSpecific[0], pred.VendorSpecific[1], pred.VendorSpecific[2], pred.VendorSpecific[sizeof(pred.VendorSpecific)-1] ); } if (data) memcpy(data, pred.VendorSpecific, sizeof(pred.VendorSpecific)); return (!pred.PredictFailure ? 0 : 1); } // Build IDENTIFY information from STORAGE_DEVICE_DESCRIPTOR static int get_identify_from_device_property(HANDLE hdevice, ata_identify_device * id) { STORAGE_DEVICE_DESCRIPTOR_DATA data; if (storage_query_property_ioctl(hdevice, &data)) return -1; memset(id, 0, sizeof(*id)); // Some drivers split ATA model string into VendorId and ProductId, // others return it as ProductId only. char model[sizeof(id->model) + 1] = ""; unsigned i = 0; if (data.desc.VendorIdOffset) { for ( ;i < sizeof(model)-1 && data.raw[data.desc.VendorIdOffset+i]; i++) model[i] = data.raw[data.desc.VendorIdOffset+i]; } if (data.desc.ProductIdOffset) { // Keep only first trailing blank after VendorId while (i > 0 && model[i-1] == ' ' && (i < 2 || model[i-2] == ' ')) i--; // Ignore VendorId "ATA" if (i <= 4 && !memcmp(model, "ATA", 3) && (i == 3 || model[3] == ' ')) i = 0; for (unsigned j = 0; i < sizeof(model)-1 && data.raw[data.desc.ProductIdOffset+j]; i++, j++) model[i] = data.raw[data.desc.ProductIdOffset+j]; } while (i > 0 && model[i-1] == ' ') i--; model[i] = 0; copy_swapped(id->model, model, sizeof(id->model)); if (data.desc.ProductRevisionOffset) copy_swapped(id->fw_rev, data.raw+data.desc.ProductRevisionOffset, sizeof(id->fw_rev)); id->command_set_1 = 0x0001; id->command_set_2 = 0x4000; // SMART supported, words 82,83 valid id->cfs_enable_1 = 0x0001; id->csf_default = 0x4000; // SMART enabled, words 85,87 valid return 0; } // Get Serial Number in IDENTIFY from WMI static bool get_serial_from_wmi(int drive, ata_identify_device * id) { bool debug = (ata_debugmode > 1); wbem_services ws; if (!ws.connect()) { if (debug) pout("WMI connect failed\n"); return false; } wbem_object wo; if (!ws.query1(wo, "SELECT Model,SerialNumber FROM Win32_DiskDrive WHERE " "DeviceID=\"\\\\\\\\.\\\\PHYSICALDRIVE%d\"", drive)) return false; std::string serial = wo.get_str("SerialNumber"); if (debug) pout(" WMI:PhysicalDrive%d: \"%s\", S/N:\"%s\"\n", drive, wo.get_str("Model").c_str(), serial.c_str()); copy_swapped(id->serial_no, serial.c_str(), sizeof(id->serial_no)); return true; } ///////////////////////////////////////////////////////////////////////////// // USB ID detection using WMI // Get USB ID for a physical or logical drive number static bool get_usb_id(int phydrive, int logdrive, unsigned short & vendor_id, unsigned short & product_id) { bool debug = (scsi_debugmode > 1); wbem_services ws; if (!ws.connect()) { if (debug) pout("WMI connect failed\n"); return false; } // Get device name std::string name; wbem_object wo; if (0 <= logdrive && logdrive <= 'Z'-'A') { // Drive letter -> Partition info if (!ws.query1(wo, "ASSOCIATORS OF {Win32_LogicalDisk.DeviceID=\"%c:\"} WHERE ResultClass = Win32_DiskPartition", 'A'+logdrive)) return false; std::string partid = wo.get_str("DeviceID"); if (debug) pout("%c: --> \"%s\" -->\n", 'A'+logdrive, partid.c_str()); // Partition ID -> Physical drive info if (!ws.query1(wo, "ASSOCIATORS OF {Win32_DiskPartition.DeviceID=\"%s\"} WHERE ResultClass = Win32_DiskDrive", partid.c_str())) return false; name = wo.get_str("Model"); if (debug) pout("%s --> \"%s\":\n", wo.get_str("DeviceID").c_str(), name.c_str()); } else if (phydrive >= 0) { // Physical drive number -> Physical drive info if (!ws.query1(wo, "SELECT Model FROM Win32_DiskDrive WHERE DeviceID=\"\\\\\\\\.\\\\PHYSICALDRIVE%d\"", phydrive)) return false; name = wo.get_str("Model"); if (debug) pout("\\.\\\\PHYSICALDRIVE%d --> \"%s\":\n", phydrive, name.c_str()); } else return false; // Get USB_CONTROLLER -> DEVICE associations wbem_enumerator we; if (!ws.query(we, "SELECT Antecedent,Dependent FROM Win32_USBControllerDevice")) return false; unsigned short usb_venid = 0, prev_usb_venid = 0; unsigned short usb_proid = 0, prev_usb_proid = 0; std::string prev_usb_ant; std::string prev_ant, ant, dep; const regular_expression regex("^.*PnPEntity\\.DeviceID=\"([^\"]*)\""); while (we.next(wo)) { prev_ant = ant; // Find next 'USB_CONTROLLER, DEVICE' pair ant = wo.get_str("Antecedent"); dep = wo.get_str("Dependent"); if (debug && ant != prev_ant) pout(" %s:\n", ant.c_str()); // Extract DeviceID regular_expression::match_range match[2]; if (!(regex.execute(dep.c_str(), 2, match) && match[1].rm_so >= 0)) { if (debug) pout(" | (\"%s\")\n", dep.c_str()); continue; } std::string devid(dep.c_str()+match[1].rm_so, match[1].rm_eo-match[1].rm_so); if (str_starts_with(devid, "USB\\\\VID_")) { // USB bridge entry, save CONTROLLER, ID int nc = -1; if (!(sscanf(devid.c_str(), "USB\\\\VID_%4hx&PID_%4hx%n", &prev_usb_venid, &prev_usb_proid, &nc) == 2 && nc == 9+4+5+4)) { prev_usb_venid = prev_usb_proid = 0; } prev_usb_ant = ant; if (debug) pout(" +-> \"%s\" [0x%04x:0x%04x]\n", devid.c_str(), prev_usb_venid, prev_usb_proid); } else if (str_starts_with(devid, "USBSTOR\\\\") || str_starts_with(devid, "SCSI\\\\")) { // USBSTORage or SCSI device found if (debug) pout(" +--> \"%s\"\n", devid.c_str()); // Retrieve name wbem_object wo2; if (!ws.query1(wo2, "SELECT Name FROM Win32_PnPEntity WHERE DeviceID=\"%s\"", devid.c_str())) continue; std::string name2 = wo2.get_str("Name"); // Continue if not name of physical disk drive if (name2 != name) { if (debug) pout(" +---> (\"%s\")\n", name2.c_str()); continue; } // Fail if previous USB bridge is associated to other controller or ID is unknown if (!(ant == prev_usb_ant && prev_usb_venid)) { if (debug) pout(" +---> \"%s\" (Error: No USB bridge found)\n", name2.c_str()); return false; } // Handle multiple devices with same name if (usb_venid) { // Fail if multiple devices with same name have different USB bridge types if (!(usb_venid == prev_usb_venid && usb_proid == prev_usb_proid)) { if (debug) pout(" +---> \"%s\" (Error: More than one USB ID found)\n", name2.c_str()); return false; } } // Found usb_venid = prev_usb_venid; usb_proid = prev_usb_proid; if (debug) pout(" +===> \"%s\" [0x%04x:0x%04x]\n", name2.c_str(), usb_venid, usb_proid); // Continue to check for duplicate names ... } else { if (debug) pout(" | \"%s\"\n", devid.c_str()); } } if (!usb_venid) return false; vendor_id = usb_venid; product_id = usb_proid; return true; } ///////////////////////////////////////////////////////////////////////////// // Call GetDevicePowerState() // returns: 1=active, 0=standby, -1=error // (This would also work for SCSI drives) static int get_device_power_state(HANDLE hdevice) { BOOL state = TRUE; if (!GetDevicePowerState(hdevice, &state)) { long err = GetLastError(); if (ata_debugmode) pout(" GetDevicePowerState() failed, Error=%ld\n", err); errno = (err == ERROR_INVALID_FUNCTION ? ENOSYS : EIO); // TODO: This may not work as expected on transient errors, // because smartd interprets -1 as SLEEP mode regardless of errno. return -1; } if (ata_debugmode > 1) pout(" GetDevicePowerState() succeeded, state=%d\n", state); return state; } ///////////////////////////////////////////////////////////////////////////// // win_ata_device class win_ata_device : public /*implements*/ ata_device, public /*extends*/ win_smart_device { public: win_ata_device(smart_interface * intf, const char * dev_name, const char * req_type); virtual ~win_ata_device(); virtual bool open() override; virtual bool is_powered_down() override; virtual bool ata_pass_through(const ata_cmd_in & in, ata_cmd_out & out) override; virtual bool ata_identify_is_cached() const override; private: bool open(bool query_device); bool open(int phydrive, int logdrive, const char * options, int port, bool query_device); std::string m_options; bool m_usr_options; // options set by user? bool m_admin; // open with admin access? int m_phydrive; // PhysicalDriveN or -1 bool m_id_is_cached; // ata_identify_is_cached() return value. bool m_is_3ware; // LSI/3ware controller detected? int m_port; // LSI/3ware port int m_smartver_state; }; win_ata_device::win_ata_device(smart_interface * intf, const char * dev_name, const char * req_type) : smart_device(intf, dev_name, "ata", req_type), m_usr_options(false), m_admin(false), m_phydrive(-1), m_id_is_cached(false), m_is_3ware(false), m_port(-1), m_smartver_state(0) { } win_ata_device::~win_ata_device() { } // Get default ATA device options static const char * ata_get_def_options() { return "pasifm"; // GetDevicePowerState(), ATA_, SMART_*, IDE_PASS_THROUGH, // STORAGE_*, SCSI_MINIPORT_* } // Open ATA device bool win_ata_device::open() { // Open device for r/w operations return open(false); } bool win_ata_device::open(bool query_device) { const char * name = skipdev(get_dev_name()); int len = strlen(name); // [sh]d[a-z]([a-z])?(:[saicmfp]+)? => Physical drive 0-701, with options char drive[2+1] = "", options[8+1] = ""; int n1 = -1, n2 = -1; if ( sscanf(name, "%*[sh]d%2[a-z]%n:%6[saimfp]%n", drive, &n1, options, &n2) >= 1 && ((n1 == len && !options[0]) || n2 == len) ) { return open(sdxy_to_phydrive(drive), -1, options, -1, query_device); } // [sh]d[a-z],N(:[saicmfp3]+)? => Physical drive 0-701, RAID port N, with options drive[0] = 0; options[0] = 0; n1 = -1; n2 = -1; unsigned port = ~0; if ( sscanf(name, "%*[sh]d%2[a-z],%u%n:%7[saimfp3]%n", drive, &port, &n1, options, &n2) >= 2 && port < 32 && ((n1 == len && !options[0]) || n2 == len) ) { return open(sdxy_to_phydrive(drive), -1, options, port, query_device); } // pd,N => Physical drive , RAID port N int phydrive = -1; port = ~0; n1 = -1; n2 = -1; if ( sscanf(name, "pd%d%n,%u%n", &phydrive, &n1, &port, &n2) >= 1 && phydrive >= 0 && ((n1 == len && (int)port < 0) || (n2 == len && port < 32))) { return open(phydrive, -1, "", (int)port, query_device); } // [a-zA-Z]: => Physical drive behind logical drive 0-25 int logdrive = drive_letter(name); if (logdrive >= 0) { return open(-1, logdrive, "", -1, query_device); } return set_err(EINVAL); } bool win_ata_device::open(int phydrive, int logdrive, const char * options, int port, bool query_device) { m_phydrive = -1; char devpath[30]; if (0 <= phydrive && phydrive <= 255) snprintf(devpath, sizeof(devpath)-1, "\\\\.\\PhysicalDrive%d", (m_phydrive = phydrive)); else if (0 <= logdrive && logdrive <= 'Z'-'A') snprintf(devpath, sizeof(devpath)-1, "\\\\.\\%c:", 'A'+logdrive); else return set_err(ENOENT); // Open device HANDLE h = INVALID_HANDLE_VALUE; if (!(*options && !options[strspn(options, "fp")]) && !query_device) { // Open with admin rights m_admin = true; h = CreateFileA(devpath, GENERIC_READ|GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, 0); } if (h == INVALID_HANDLE_VALUE) { // Open without admin rights m_admin = false; h = CreateFileA(devpath, 0, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, 0); } if (h == INVALID_HANDLE_VALUE) { long err = GetLastError(); if (err == ERROR_FILE_NOT_FOUND) set_err(ENOENT, "%s: not found", devpath); else if (err == ERROR_ACCESS_DENIED) set_err(EACCES, "%s: access denied", devpath); else set_err(EIO, "%s: Error=%ld", devpath, err); return false; } set_fh(h); // Warn once if admin rights are missing if (!m_admin && !query_device) { static bool noadmin_warning = false; if (!noadmin_warning) { pout("Warning: Limited functionality due to missing admin rights\n"); noadmin_warning = true; } } if (ata_debugmode > 1) pout("%s: successfully opened%s\n", devpath, (!m_admin ? " (without admin rights)" :"")); m_usr_options = false; if (*options) { // Save user options m_options = options; m_usr_options = true; } else if (port >= 0) // RAID: SMART_* and SCSI_MINIPORT m_options = "s3"; else { // Set default options according to Windows version static const char * def_options = ata_get_def_options(); m_options = def_options; } // SMART_GET_VERSION may spin up disk, so delay until first real SMART_* call m_port = port; if (port < 0) return true; // 3ware RAID: Get port map GETVERSIONINPARAMS_EX vers_ex; int devmap = smart_get_version(h, &vers_ex); // 3ware RAID if vendor id present m_is_3ware = (vers_ex.wIdentifier == SMART_VENDOR_3WARE); unsigned portmap = 0; if (devmap >= 0) { // 3ware RAID: check vendor id if (!m_is_3ware) { pout("SMART_GET_VERSION returns unknown Identifier = 0x%04x\n" "This is no 3ware 9000 controller or driver has no SMART support.\n", vers_ex.wIdentifier); devmap = -1; } else portmap = vers_ex.dwDeviceMapEx; } if (devmap < 0) { pout("%s: ATA driver has no SMART support\n", devpath); if (!is_permissive()) { close(); return set_err(ENOSYS); } } m_smartver_state = 1; { // 3ware RAID: update devicemap first if (!update_3ware_devicemap_ioctl(h)) { if ( smart_get_version(h, &vers_ex) >= 0 && vers_ex.wIdentifier == SMART_VENDOR_3WARE ) portmap = vers_ex.dwDeviceMapEx; } // Check port existence if (!(portmap & (1U << port))) { if (!is_permissive()) { close(); return set_err(ENOENT, "%s: Port %d is empty or does not exist", devpath, port); } } } return true; } ///////////////////////////////////////////////////////////////////////////// // Query OS if device is powered up or down. bool win_ata_device::is_powered_down() { // To check power mode, we open device for query operations only. // Opening for SMART r/w operations can already spin up the disk. bool self_open = !is_open(); if (self_open) if (!open(true)) return false; int rc = get_device_power_state(get_fh()); if (self_open) close(); return !rc; } ///////////////////////////////////////////////////////////////////////////// // Interface to ATA devices bool win_ata_device::ata_pass_through(const ata_cmd_in & in, ata_cmd_out & out) { // No multi-sector support for now, see above // warning about IOCTL_ATA_PASS_THROUGH if (!ata_cmd_is_supported(in, ata_device::supports_data_out | ata_device::supports_output_regs | ata_device::supports_48bit) ) return false; // 3ware RAID: SMART DISABLE without port number disables SMART functions if ( m_is_3ware && m_port < 0 && in.in_regs.command == ATA_SMART_CMD && in.in_regs.features == ATA_SMART_DISABLE) return set_err(ENOSYS, "SMART DISABLE requires 3ware port number"); // Determine ioctl functions valid for this ATA cmd const char * valid_options = 0; switch (in.in_regs.command) { case ATA_IDENTIFY_DEVICE: case ATA_IDENTIFY_PACKET_DEVICE: // SMART_*, ATA_, IDE_, SCSI_PASS_THROUGH, STORAGE_PREDICT_FAILURE // and SCSI_MINIPORT_* if requested by user valid_options = (m_usr_options ? "saimf" : "saif"); break; case ATA_CHECK_POWER_MODE: // Try GetDevicePowerState() first, ATA/IDE_PASS_THROUGH may spin up disk valid_options = "pai3"; break; case ATA_SMART_CMD: switch (in.in_regs.features) { case ATA_SMART_READ_VALUES: case ATA_SMART_READ_THRESHOLDS: case ATA_SMART_AUTOSAVE: case ATA_SMART_ENABLE: case ATA_SMART_DISABLE: case ATA_SMART_AUTO_OFFLINE: // SMART_*, ATA_, IDE_, SCSI_PASS_THROUGH, STORAGE_PREDICT_FAILURE // and SCSI_MINIPORT_* if requested by user valid_options = (m_usr_options ? "saimf" : "saif"); break; case ATA_SMART_IMMEDIATE_OFFLINE: // SMART_SEND_DRIVE_COMMAND does not support ABORT_SELF_TEST valid_options = (m_usr_options || in.in_regs.lba_low != 127/*ABORT*/ ? "saim3" : "aim3"); break; case ATA_SMART_READ_LOG_SECTOR: // SMART_RCV_DRIVE_DATA does not support READ_LOG // Try SCSI_MINIPORT also to skip buggy class driver // SMART functions do not support multi sector I/O. if (in.size == 512) valid_options = (m_usr_options ? "saim3" : "aim3"); else valid_options = "a"; break; case ATA_SMART_WRITE_LOG_SECTOR: // ATA_PASS_THROUGH, SCSI_MINIPORT, others don't support DATA_OUT // but SCSI_MINIPORT_* only if requested by user and single sector. valid_options = (in.size == 512 && m_usr_options ? "am" : "a"); break; case ATA_SMART_STATUS: valid_options = (m_usr_options ? "saimf" : "saif"); break; default: // Unknown SMART command, handle below break; } break; default: // Other ATA command, handle below break; } if (!valid_options) { // No special ATA command found above, select a generic pass through ioctl. if (!( in.direction == ata_cmd_in::no_data || (in.direction == ata_cmd_in::data_in && in.size == 512)) || in.in_regs.is_48bit_cmd() ) // DATA_OUT, more than one sector, 48-bit command: ATA_PASS_THROUGH only valid_options = "a"; else // ATA/IDE_PASS_THROUGH valid_options = "ai"; } if (!m_admin) { // Restrict to IOCTL_STORAGE_* if (strchr(valid_options, 'f')) valid_options = "f"; else if (strchr(valid_options, 'p')) valid_options = "p"; else return set_err(ENOSYS, "Function requires admin rights"); } // Set IDEREGS IDEREGS regs, prev_regs; { const ata_in_regs & lo = in.in_regs; regs.bFeaturesReg = lo.features; regs.bSectorCountReg = lo.sector_count; regs.bSectorNumberReg = lo.lba_low; regs.bCylLowReg = lo.lba_mid; regs.bCylHighReg = lo.lba_high; regs.bDriveHeadReg = lo.device; regs.bCommandReg = lo.command; regs.bReserved = 0; } if (in.in_regs.is_48bit_cmd()) { const ata_in_regs & hi = in.in_regs.prev; prev_regs.bFeaturesReg = hi.features; prev_regs.bSectorCountReg = hi.sector_count; prev_regs.bSectorNumberReg = hi.lba_low; prev_regs.bCylLowReg = hi.lba_mid; prev_regs.bCylHighReg = hi.lba_high; prev_regs.bDriveHeadReg = hi.device; prev_regs.bCommandReg = hi.command; prev_regs.bReserved = 0; } // Set data direction int datasize = 0; char * data = 0; switch (in.direction) { case ata_cmd_in::no_data: break; case ata_cmd_in::data_in: datasize = (int)in.size; data = (char *)in.buffer; break; case ata_cmd_in::data_out: datasize = -(int)in.size; data = (char *)in.buffer; break; default: return set_err(EINVAL, "win_ata_device::ata_pass_through: invalid direction=%d", (int)in.direction); } // Try all valid ioctls in the order specified in m_options bool powered_up = false; bool out_regs_set = false; bool id_is_cached = false; const char * options = m_options.c_str(); for (int i = 0; ; i++) { char opt = options[i]; if (!opt) { if (in.in_regs.command == ATA_CHECK_POWER_MODE && powered_up) { // Power up reported by GetDevicePowerState() and no ioctl available // to detect the actual mode of the drive => simulate ATA result ACTIVE/IDLE. regs.bSectorCountReg = 0xff; out_regs_set = true; break; } // No IOCTL found return set_err(ENOSYS); } if (!strchr(valid_options, opt)) // Invalid for this command continue; errno = 0; assert( datasize == 0 || datasize == 512 || (datasize == -512 && strchr("am", opt)) || (datasize > 512 && opt == 'a')); int rc; switch (opt) { default: assert(0); case 's': // call SMART_GET_VERSION once for each drive if (m_smartver_state > 1) { rc = -1; errno = ENOSYS; break; } if (!m_smartver_state) { assert(m_port == -1); GETVERSIONINPARAMS_EX vers_ex; if (smart_get_version(get_fh(), &vers_ex) < 0) { if (!failuretest_permissive) { m_smartver_state = 2; rc = -1; errno = ENOSYS; break; } failuretest_permissive--; } else { // 3ware RAID if vendor id present m_is_3ware = (vers_ex.wIdentifier == SMART_VENDOR_3WARE); } m_smartver_state = 1; } rc = smart_ioctl(get_fh(), ®s, data, datasize, m_port); out_regs_set = (in.in_regs.features == ATA_SMART_STATUS); id_is_cached = (m_port < 0); // Not cached by 3ware driver break; case 'm': rc = ata_via_scsi_miniport_smart_ioctl(get_fh(), ®s, data, datasize); id_is_cached = (m_port < 0); break; case 'a': rc = ata_pass_through_ioctl(get_fh(), ®s, (in.in_regs.is_48bit_cmd() ? &prev_regs : 0), data, datasize); out_regs_set = true; break; case 'i': rc = ide_pass_through_ioctl(get_fh(), ®s, data, datasize); out_regs_set = true; break; case 'f': if (in.in_regs.command == ATA_IDENTIFY_DEVICE) { ata_identify_device * id = reinterpret_cast(data); rc = get_identify_from_device_property(get_fh(), id); if (rc == 0 && m_phydrive >= 0) get_serial_from_wmi(m_phydrive, id); id_is_cached = true; } else if (in.in_regs.command == ATA_SMART_CMD) switch (in.in_regs.features) { case ATA_SMART_READ_VALUES: rc = storage_predict_failure_ioctl(get_fh(), data); if (rc > 0) rc = 0; break; case ATA_SMART_ENABLE: rc = 0; break; case ATA_SMART_STATUS: rc = storage_predict_failure_ioctl(get_fh()); if (rc == 0) { // Good SMART status out.out_regs.lba_high = 0xc2; out.out_regs.lba_mid = 0x4f; } else if (rc > 0) { // Bad SMART status out.out_regs.lba_high = 0x2c; out.out_regs.lba_mid = 0xf4; rc = 0; } break; default: errno = ENOSYS; rc = -1; } else { errno = ENOSYS; rc = -1; } break; case '3': rc = ata_via_3ware_miniport_ioctl(get_fh(), ®s, data, datasize, m_port); out_regs_set = true; break; case 'p': assert(in.in_regs.command == ATA_CHECK_POWER_MODE && in.size == 0); rc = get_device_power_state(get_fh()); if (rc == 0) { // Power down reported by GetDevicePowerState(), using a passthrough ioctl would // spin up the drive => simulate ATA result STANDBY. regs.bSectorCountReg = 0x00; out_regs_set = true; } else if (rc > 0) { // Power up reported by GetDevicePowerState(), but this reflects the actual mode // only if it is selected by the device driver => try a passthrough ioctl to get the // actual mode, if none available simulate ACTIVE/IDLE. powered_up = true; rc = -1; errno = ENOSYS; } break; } if (!rc) // Working ioctl found break; if (errno != ENOSYS) // Abort on I/O error return set_err(errno); out_regs_set = false; // CAUTION: *_ioctl() MUST NOT change "regs" Parameter in the ENOSYS case } // Return IDEREGS if set if (out_regs_set) { ata_out_regs & lo = out.out_regs; lo.error = regs.bFeaturesReg; lo.sector_count = regs.bSectorCountReg; lo.lba_low = regs.bSectorNumberReg; lo.lba_mid = regs.bCylLowReg; lo.lba_high = regs.bCylHighReg; lo.device = regs.bDriveHeadReg; lo.status = regs.bCommandReg; if (in.in_regs.is_48bit_cmd()) { ata_out_regs & hi = out.out_regs.prev; hi.sector_count = prev_regs.bSectorCountReg; hi.lba_low = prev_regs.bSectorNumberReg; hi.lba_mid = prev_regs.bCylLowReg; hi.lba_high = prev_regs.bCylHighReg; } } if ( in.in_regs.command == ATA_IDENTIFY_DEVICE || in.in_regs.command == ATA_IDENTIFY_PACKET_DEVICE) // Update ata_identify_is_cached() result according to ioctl used. m_id_is_cached = id_is_cached; return true; } // Return true if OS caches the ATA identify sector bool win_ata_device::ata_identify_is_cached() const { return m_id_is_cached; } ////////////////////////////////////////////////////////////////////// // csmi_device class csmi_device : virtual public /*extends*/ smart_device { public: enum { max_number_of_ports = 32 }; /// Get bitmask of used ports unsigned get_ports_used(); protected: csmi_device() : smart_device(never_called) { memset(&m_phy_ent, 0, sizeof(m_phy_ent)); } typedef signed char port_2_index_map[max_number_of_ports]; /// Get phy info and port mapping, return #ports or -1 on error int get_phy_info(CSMI_SAS_PHY_INFO & phy_info, port_2_index_map & p2i); /// Select physical drive bool select_port(int port); /// Get info for selected physical drive const CSMI_SAS_PHY_ENTITY & get_phy_ent() const { return m_phy_ent; } /// Call platform-specific CSMI ioctl virtual bool csmi_ioctl(unsigned code, IOCTL_HEADER * csmi_buffer, unsigned csmi_bufsiz) = 0; private: CSMI_SAS_PHY_ENTITY m_phy_ent; ///< CSMI info for this phy static bool guess_amd_drives(CSMI_SAS_PHY_INFO & phy_info, unsigned max_phy_drives); }; ///////////////////////////////////////////////////////////////////////////// bool csmi_device::guess_amd_drives(CSMI_SAS_PHY_INFO & phy_info, unsigned max_phy_drives) { if (max_phy_drives > max_number_of_ports) return false; if (max_phy_drives <= phy_info.bNumberOfPhys) return false; if (nonempty(phy_info.Phy + phy_info.bNumberOfPhys, (max_number_of_ports - phy_info.bNumberOfPhys) * sizeof(phy_info.Phy[0]))) return false; // Phy[phy_info.bNumberOfPhys...] nonempty // Get range of used ports, abort on unexpected values int min_pi = max_number_of_ports, max_pi = 0, i; for (i = 0; i < phy_info.bNumberOfPhys; i++) { const CSMI_SAS_PHY_ENTITY & pe = phy_info.Phy[i]; if (pe.Identify.bPhyIdentifier != i) return false; if (pe.bPortIdentifier >= max_phy_drives) return false; if (nonempty(&pe.Attached.bSASAddress, sizeof(pe.Attached.bSASAddress))) return false; if (min_pi > pe.bPortIdentifier) min_pi = pe.bPortIdentifier; if (max_pi < pe.bPortIdentifier) max_pi = pe.bPortIdentifier; } // Append possibly used ports for (int pi = 0; i < (int)max_phy_drives; i++, pi++) { if (min_pi <= pi && pi <= max_pi) pi = max_pi + 1; if (pi >= (int)max_phy_drives) break; CSMI_SAS_PHY_ENTITY & pe = phy_info.Phy[i]; pe.Identify.bDeviceType = pe.Attached.bDeviceType = CSMI_SAS_END_DEVICE; pe.Attached.bTargetPortProtocol = CSMI_SAS_PROTOCOL_SATA; pe.Identify.bPhyIdentifier = i; pe.bPortIdentifier = pi; } return true; } int csmi_device::get_phy_info(CSMI_SAS_PHY_INFO & phy_info, port_2_index_map & p2i) { // max_number_of_ports must match CSMI_SAS_PHY_INFO.Phy[] array size STATIC_ASSERT(sizeof(phy_info.Phy) == max_number_of_ports * sizeof(phy_info.Phy[0])); // Get driver info to check CSMI support CSMI_SAS_DRIVER_INFO_BUFFER driver_info_buf; memset(&driver_info_buf, 0, sizeof(driver_info_buf)); if (!csmi_ioctl(CC_CSMI_SAS_GET_DRIVER_INFO, &driver_info_buf.IoctlHeader, sizeof(driver_info_buf))) return -1; const CSMI_SAS_DRIVER_INFO & driver_info = driver_info_buf.Information; if (scsi_debugmode > 1) { pout("CSMI_SAS_DRIVER_INFO:\n"); pout(" Name: \"%.81s\"\n", driver_info.szName); pout(" Description: \"%.81s\"\n", driver_info.szDescription); pout(" Revision: %d.%d\n", driver_info.usMajorRevision, driver_info.usMinorRevision); } // Get Phy info CSMI_SAS_PHY_INFO_BUFFER phy_info_buf; memset(&phy_info_buf, 0, sizeof(phy_info_buf)); if (!csmi_ioctl(CC_CSMI_SAS_GET_PHY_INFO, &phy_info_buf.IoctlHeader, sizeof(phy_info_buf))) return -1; phy_info = phy_info_buf.Information; if (phy_info.bNumberOfPhys > max_number_of_ports) { set_err(EIO, "CSMI_SAS_PHY_INFO: Bogus NumberOfPhys=%d", phy_info.bNumberOfPhys); return -1; } // Get RAID info CSMI_SAS_RAID_INFO_BUFFER raid_info_buf; memset(&raid_info_buf, 0, sizeof(raid_info_buf)); if (!csmi_ioctl(CC_CSMI_SAS_GET_RAID_INFO, &raid_info_buf.IoctlHeader, sizeof(raid_info_buf))) { memset(&raid_info_buf, 0, sizeof(raid_info_buf)); // Ignore error } const CSMI_SAS_RAID_INFO & raid_info = raid_info_buf.Information; if (scsi_debugmode > 1 && nonempty(&raid_info_buf, sizeof(raid_info_buf))) { pout("CSMI_SAS_RAID_INFO:\n"); pout(" NumRaidSets: %u\n", (unsigned)raid_info.uNumRaidSets); pout(" MaxDrvPerSet: %u\n", (unsigned)raid_info.uMaxDrivesPerSet); pout(" MaxRaidSets: %u\n", (unsigned)raid_info.uMaxRaidSets); pout(" MaxRaidTypes: %d\n", raid_info.bMaxRaidTypes); pout(" MaxPhyDrives: %u\n", (unsigned)raid_info.uMaxPhysicalDrives); } // Create port -> index map // Intel RST AMD rcraid // Phy[i].Value 9/10.x 14.8 15.2 16.0/17.7 9.2 // --------------------------------------------------------------------- // bPortIdentifier 0xff port 0x00 port (port) // Identify.bPhyIdentifier index? index index port index // Attached.bPhyIdentifier 0x00 0x00 index 0x00 0x00 // // AMD: Phy[] may be incomplete (single drives not counted) and port // numbers may be invalid (single drives skipped). // IRST: Empty ports with hotplug support may appear in Phy[]. int first_guessed_index = max_number_of_ports; if (!memcmp(driver_info.szName, "rcraid", 6+1)) { // Workaround for AMD driver if (guess_amd_drives(phy_info, raid_info.uMaxPhysicalDrives)) first_guessed_index = phy_info.bNumberOfPhys; } int number_of_ports; for (int mode = 0; ; mode++) { for (int i = 0; i < max_number_of_ports; i++) p2i[i] = -1; number_of_ports = 0; bool found = false; for (int i = 0; i < max_number_of_ports; i++) { const CSMI_SAS_PHY_ENTITY & pe = phy_info.Phy[i]; if (pe.Identify.bDeviceType == CSMI_SAS_NO_DEVICE_ATTACHED) continue; // Try to detect which field contains the actual port number. // Use a bPhyIdentifier or the bPortIdentifier if unique // and not always identical to table index, otherwise use index. int port; switch (mode) { case 0: port = pe.Attached.bPhyIdentifier; break; case 1: port = pe.Identify.bPhyIdentifier; break; case 2: port = pe.bPortIdentifier; break; default: port = i; break; } if (!(port < max_number_of_ports && p2i[port] == -1)) { found = false; break; } p2i[port] = i; if (number_of_ports <= port) number_of_ports = port + 1; if (port != i) found = true; } if (found || mode > 2) break; } if (scsi_debugmode > 1) { pout("CSMI_SAS_PHY_INFO: NumberOfPhys=%d\n", phy_info.bNumberOfPhys); for (int i = 0; i < max_number_of_ports; i++) { const CSMI_SAS_PHY_ENTITY & pe = phy_info.Phy[i]; if (!nonempty(&pe, sizeof(pe))) continue; const CSMI_SAS_IDENTIFY & id = pe.Identify, & at = pe.Attached; int port = -1; for (int p = 0; p < max_number_of_ports && port < 0; p++) { if (p2i[p] == i) port = p; } pout("Phy[%d] Port: %2d%s\n", i, port, (i >= first_guessed_index ? " (*guessed*)" : "")); pout(" Type: 0x%02x, 0x%02x\n", id.bDeviceType, at.bDeviceType); pout(" InitProto: 0x%02x, 0x%02x\n", id.bInitiatorPortProtocol, at.bInitiatorPortProtocol); pout(" TargetProto: 0x%02x, 0x%02x\n", id.bTargetPortProtocol, at.bTargetPortProtocol); pout(" PortIdent: 0x%02x\n", pe.bPortIdentifier); pout(" PhyIdent: 0x%02x, 0x%02x\n", id.bPhyIdentifier, at.bPhyIdentifier); pout(" SignalClass: 0x%02x, 0x%02x\n", id.bSignalClass, at.bSignalClass); pout(" Restricted: 0x%02x, 0x%02x\n", id.bRestricted, at.bRestricted); const unsigned char * b = id.bSASAddress; pout(" SASAddress: %02x %02x %02x %02x %02x %02x %02x %02x, ", b[0], b[1], b[2], b[3], b[4], b[5], b[6], b[7]); b = at.bSASAddress; pout( "%02x %02x %02x %02x %02x %02x %02x %02x\n", b[0], b[1], b[2], b[3], b[4], b[5], b[6], b[7]); } } return number_of_ports; } unsigned csmi_device::get_ports_used() { CSMI_SAS_PHY_INFO phy_info; port_2_index_map p2i; int number_of_ports = get_phy_info(phy_info, p2i); if (number_of_ports < 0) return 0; unsigned ports_used = 0; for (int p = 0; p < max_number_of_ports; p++) { int i = p2i[p]; if (i < 0) continue; const CSMI_SAS_PHY_ENTITY & pe = phy_info.Phy[i]; if (pe.Attached.bDeviceType == CSMI_SAS_NO_DEVICE_ATTACHED) continue; switch (pe.Attached.bTargetPortProtocol) { case CSMI_SAS_PROTOCOL_SATA: case CSMI_SAS_PROTOCOL_STP: break; default: continue; } ports_used |= (1U << p); } return ports_used; } bool csmi_device::select_port(int port) { if (!(0 <= port && port < max_number_of_ports)) return set_err(EINVAL, "Invalid port number %d", port); CSMI_SAS_PHY_INFO phy_info; port_2_index_map p2i; int number_of_ports = get_phy_info(phy_info, p2i); if (number_of_ports < 0) return false; int port_index = p2i[port]; if (port_index < 0) { if (port < number_of_ports) return set_err(ENOENT, "Port %d is disabled", port); else return set_err(ENOENT, "Port %d does not exist (#ports: %d)", port, number_of_ports); } const CSMI_SAS_PHY_ENTITY & phy_ent = phy_info.Phy[port_index]; if (phy_ent.Attached.bDeviceType == CSMI_SAS_NO_DEVICE_ATTACHED) return set_err(ENOENT, "No device on port %d", port); switch (phy_ent.Attached.bTargetPortProtocol) { case CSMI_SAS_PROTOCOL_SATA: case CSMI_SAS_PROTOCOL_STP: break; default: return set_err(ENOENT, "No SATA device on port %d (protocol: %d)", port, phy_ent.Attached.bTargetPortProtocol); } m_phy_ent = phy_ent; return true; } ////////////////////////////////////////////////////////////////////// // csmi_ata_device class csmi_ata_device : virtual public /*extends*/ csmi_device, virtual public /*implements*/ ata_device { public: virtual bool ata_pass_through(const ata_cmd_in & in, ata_cmd_out & out) override; protected: csmi_ata_device() : smart_device(never_called) { } }; ////////////////////////////////////////////////////////////////////// bool csmi_ata_device::ata_pass_through(const ata_cmd_in & in, ata_cmd_out & out) { if (!ata_cmd_is_supported(in, ata_device::supports_data_out | ata_device::supports_output_regs | ata_device::supports_multi_sector | ata_device::supports_48bit, "CSMI") ) return false; // Create buffer with appropriate size raw_buffer pthru_raw_buf(sizeof(CSMI_SAS_STP_PASSTHRU_BUFFER) + in.size); CSMI_SAS_STP_PASSTHRU_BUFFER * pthru_buf = (CSMI_SAS_STP_PASSTHRU_BUFFER *)pthru_raw_buf.data(); // Set addresses from Phy info CSMI_SAS_STP_PASSTHRU & pthru = pthru_buf->Parameters; const CSMI_SAS_PHY_ENTITY & phy_ent = get_phy_ent(); pthru.bPhyIdentifier = phy_ent.Identify.bPhyIdentifier; // Used by AMD, ignored by IRST pthru.bPortIdentifier = phy_ent.bPortIdentifier; // Ignored memcpy(pthru.bDestinationSASAddress, phy_ent.Attached.bSASAddress, sizeof(pthru.bDestinationSASAddress)); // Used by IRST (at index 1), ignored by AMD pthru.bConnectionRate = CSMI_SAS_LINK_RATE_NEGOTIATED; // Set transfer mode switch (in.direction) { case ata_cmd_in::no_data: pthru.uFlags = CSMI_SAS_STP_PIO | CSMI_SAS_STP_UNSPECIFIED; break; case ata_cmd_in::data_in: pthru.uFlags = CSMI_SAS_STP_PIO | CSMI_SAS_STP_READ; pthru.uDataLength = in.size; break; case ata_cmd_in::data_out: pthru.uFlags = CSMI_SAS_STP_PIO | CSMI_SAS_STP_WRITE; pthru.uDataLength = in.size; memcpy(pthru_buf->bDataBuffer, in.buffer, in.size); break; default: return set_err(EINVAL, "csmi_ata_device::ata_pass_through: invalid direction=%d", (int)in.direction); } // Set host-to-device FIS { unsigned char * fis = pthru.bCommandFIS; const ata_in_regs & lo = in.in_regs; const ata_in_regs & hi = in.in_regs.prev; fis[ 0] = 0x27; // Type: host-to-device FIS fis[ 1] = 0x80; // Bit7: Update command register fis[ 2] = lo.command; fis[ 3] = lo.features; fis[ 4] = lo.lba_low; fis[ 5] = lo.lba_mid; fis[ 6] = lo.lba_high; fis[ 7] = lo.device; fis[ 8] = hi.lba_low; fis[ 9] = hi.lba_mid; fis[10] = hi.lba_high; fis[11] = hi.features; fis[12] = lo.sector_count; fis[13] = hi.sector_count; } // Call ioctl if (!csmi_ioctl(CC_CSMI_SAS_STP_PASSTHRU, &pthru_buf->IoctlHeader, pthru_raw_buf.size())) { return false; } // Get device-to-host FIS // Assume values are unavailable if all register fields are zero (AMD RAID driver) if (nonempty(pthru_buf->Status.bStatusFIS + 2, 13 - 2 + 1)) { const unsigned char * fis = pthru_buf->Status.bStatusFIS; ata_out_regs & lo = out.out_regs; lo.status = fis[ 2]; lo.error = fis[ 3]; lo.lba_low = fis[ 4]; lo.lba_mid = fis[ 5]; lo.lba_high = fis[ 6]; lo.device = fis[ 7]; lo.sector_count = fis[12]; if (in.in_regs.is_48bit_cmd()) { ata_out_regs & hi = out.out_regs.prev; hi.lba_low = fis[ 8]; hi.lba_mid = fis[ 9]; hi.lba_high = fis[10]; hi.sector_count = fis[13]; } } // Get data if (in.direction == ata_cmd_in::data_in) // TODO: Check ptru_buf->Status.uDataBytes memcpy(in.buffer, pthru_buf->bDataBuffer, in.size); return true; } ////////////////////////////////////////////////////////////////////// // win_csmi_device class win_csmi_device : public /*implements*/ csmi_ata_device { public: win_csmi_device(smart_interface * intf, const char * dev_name, const char * req_type); virtual ~win_csmi_device(); virtual bool open() override; virtual bool close() override; virtual bool is_open() const override; bool open_scsi(); protected: virtual bool csmi_ioctl(unsigned code, IOCTL_HEADER * csmi_buffer, unsigned csmi_bufsiz) override; private: HANDLE m_fh; ///< Controller device handle int m_port; ///< Port number }; ////////////////////////////////////////////////////////////////////// win_csmi_device::win_csmi_device(smart_interface * intf, const char * dev_name, const char * req_type) : smart_device(intf, dev_name, "ata", req_type), m_fh(INVALID_HANDLE_VALUE), m_port(-1) { } win_csmi_device::~win_csmi_device() { if (m_fh != INVALID_HANDLE_VALUE) CloseHandle(m_fh); } bool win_csmi_device::is_open() const { return (m_fh != INVALID_HANDLE_VALUE); } bool win_csmi_device::close() { if (m_fh == INVALID_HANDLE_VALUE) return true; BOOL rc = CloseHandle(m_fh); m_fh = INVALID_HANDLE_VALUE; return !!rc; } bool win_csmi_device::open_scsi() { // Parse name unsigned contr_no = ~0, port = ~0; int nc = -1; const char * name = skipdev(get_dev_name()); if (!( sscanf(name, "csmi%u,%u%n", &contr_no, &port, &nc) >= 0 && nc == (int)strlen(name) && contr_no <= 9 && port < 32) ) return set_err(EINVAL); // Open controller handle char devpath[30]; snprintf(devpath, sizeof(devpath)-1, "\\\\.\\Scsi%u:", contr_no); HANDLE h = CreateFileA(devpath, GENERIC_READ|GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_WRITE, (SECURITY_ATTRIBUTES *)0, OPEN_EXISTING, 0, 0); if (h == INVALID_HANDLE_VALUE) { long err = GetLastError(); if (err == ERROR_FILE_NOT_FOUND) set_err(ENOENT, "%s: not found", devpath); else if (err == ERROR_ACCESS_DENIED) set_err(EACCES, "%s: access denied", devpath); else set_err(EIO, "%s: Error=%ld", devpath, err); return false; } if (scsi_debugmode > 1) pout(" %s: successfully opened\n", devpath); m_fh = h; m_port = port; return true; } bool win_csmi_device::open() { if (!open_scsi()) return false; // Get Phy info for this drive if (!select_port(m_port)) { close(); return false; } return true; } bool win_csmi_device::csmi_ioctl(unsigned code, IOCTL_HEADER * csmi_buffer, unsigned csmi_bufsiz) { // Determine signature const char * sig; switch (code) { case CC_CSMI_SAS_GET_DRIVER_INFO: sig = CSMI_ALL_SIGNATURE; break; case CC_CSMI_SAS_GET_RAID_INFO: sig = CSMI_RAID_SIGNATURE; break; case CC_CSMI_SAS_GET_PHY_INFO: case CC_CSMI_SAS_STP_PASSTHRU: sig = CSMI_SAS_SIGNATURE; break; default: return set_err(ENOSYS, "Unknown CSMI code=%u", code); } // Set header csmi_buffer->HeaderLength = sizeof(IOCTL_HEADER); strncpy((char *)csmi_buffer->Signature, sig, sizeof(csmi_buffer->Signature)); csmi_buffer->Timeout = CSMI_SAS_TIMEOUT; csmi_buffer->ControlCode = code; csmi_buffer->ReturnCode = 0; csmi_buffer->Length = csmi_bufsiz - sizeof(IOCTL_HEADER); // Call function DWORD num_out = 0; if (!DeviceIoControl(m_fh, IOCTL_SCSI_MINIPORT, csmi_buffer, csmi_bufsiz, csmi_buffer, csmi_bufsiz, &num_out, (OVERLAPPED*)0)) { long err = GetLastError(); if (scsi_debugmode) pout(" IOCTL_SCSI_MINIPORT(CC_CSMI_%u) failed, Error=%ld\n", code, err); if ( err == ERROR_INVALID_FUNCTION || err == ERROR_NOT_SUPPORTED || err == ERROR_DEV_NOT_EXIST) return set_err(ENOSYS, "CSMI is not supported (Error=%ld)", err); else return set_err(EIO, "CSMI(%u) failed with Error=%ld", code, err); } // Check result if (csmi_buffer->ReturnCode) { if (scsi_debugmode) { pout(" IOCTL_SCSI_MINIPORT(CC_CSMI_%u) failed, ReturnCode=%u\n", code, (unsigned)csmi_buffer->ReturnCode); } return set_err(EIO, "CSMI(%u) failed with ReturnCode=%u", code, (unsigned)csmi_buffer->ReturnCode); } if (scsi_debugmode > 1) pout(" IOCTL_SCSI_MINIPORT(CC_CSMI_%u) succeeded, bytes returned: %u\n", code, (unsigned)num_out); return true; } ////////////////////////////////////////////////////////////////////// // win_tw_cli_device // Routines for pseudo device /dev/tw_cli/* // Parses output of 3ware "tw_cli /cx/py show all" or 3DM SMART data window // TODO: This is OS independent class win_tw_cli_device : public /*implements*/ ata_device_with_command_set { public: win_tw_cli_device(smart_interface * intf, const char * dev_name, const char * req_type); virtual bool is_open() const override; virtual bool open() override; virtual bool close() override; protected: virtual int ata_command_interface(smart_command_set command, int select, char * data); private: bool m_ident_valid, m_smart_valid; ata_identify_device m_ident_buf; ata_smart_values m_smart_buf; }; ///////////////////////////////////////////////////////////////////////////// win_tw_cli_device::win_tw_cli_device(smart_interface * intf, const char * dev_name, const char * req_type) : smart_device(intf, dev_name, "tw_cli", req_type), m_ident_valid(false), m_smart_valid(false) { memset(&m_ident_buf, 0, sizeof(m_ident_buf)); memset(&m_smart_buf, 0, sizeof(m_smart_buf)); } bool win_tw_cli_device::is_open() const { return (m_ident_valid || m_smart_valid); } // Get clipboard data static int get_clipboard(char * data, int datasize) { if (!OpenClipboard(NULL)) return -1; HANDLE h = GetClipboardData(CF_TEXT); if (!h) { CloseClipboard(); return 0; } const void * p = GlobalLock(h); int n = GlobalSize(h); if (n > datasize) n = datasize; memcpy(data, p, n); GlobalFree(h); CloseClipboard(); return n; } static const char * findstr(const char * str, const char * sub) { const char * s = strstr(str, sub); return (s ? s+strlen(sub) : ""); } bool win_tw_cli_device::open() { m_ident_valid = m_smart_valid = false; const char * name = skipdev(get_dev_name()); // Read tw_cli or 3DM browser output into buffer char buffer[4096]; int size = -1, n1 = -1, n2 = -1; if (!strcmp(name, "tw_cli/clip")) { // read clipboard size = get_clipboard(buffer, sizeof(buffer)); } else if (!strcmp(name, "tw_cli/stdin")) { // read stdin size = fread(buffer, 1, sizeof(buffer), stdin); } else if (sscanf(name, "tw_cli/%nc%*u/p%*u%n", &n1, &n2) >= 0 && n2 == (int)strlen(name)) { // tw_cli/cx/py => read output from "tw_cli /cx/py show all" char cmd[100]; snprintf(cmd, sizeof(cmd), "tw_cli /%s show all", name+n1); if (ata_debugmode > 1) pout("%s: Run: \"%s\"\n", name, cmd); FILE * f = popen(cmd, "rb"); if (f) { size = fread(buffer, 1, sizeof(buffer), f); pclose(f); } } else { return set_err(EINVAL); } if (ata_debugmode > 1) pout("%s: Read %d bytes\n", name, size); if (size <= 0) return set_err(ENOENT); if (size >= (int)sizeof(buffer)) return set_err(EIO); buffer[size] = 0; if (ata_debugmode > 1) pout("[\n%.100s%s\n]\n", buffer, (size>100?"...":"")); // Fake identify sector STATIC_ASSERT(sizeof(ata_identify_device) == 512); ata_identify_device * id = &m_ident_buf; memset(id, 0, sizeof(*id)); copy_swapped(id->model , findstr(buffer, " Model = " ), sizeof(id->model)); copy_swapped(id->fw_rev , findstr(buffer, " Firmware Version = "), sizeof(id->fw_rev)); copy_swapped(id->serial_no, findstr(buffer, " Serial = " ), sizeof(id->serial_no)); unsigned long nblocks = 0; // "Capacity = N.N GB (N Blocks)" sscanf(findstr(buffer, "Capacity = "), "%*[^(\r\n](%lu", &nblocks); if (nblocks) { id->words047_079[49-47] = 0x0200; // size valid id->words047_079[60-47] = (unsigned short)(nblocks ); // secs_16 id->words047_079[61-47] = (unsigned short)(nblocks>>16); // secs_32 } id->command_set_1 = 0x0001; id->command_set_2 = 0x4000; // SMART supported, words 82,83 valid id->cfs_enable_1 = 0x0001; id->csf_default = 0x4000; // SMART enabled, words 85,87 valid // Parse smart data hex dump const char * s = findstr(buffer, "Drive Smart Data:"); if (!*s) s = findstr(buffer, "Drive SMART Data:"); // tw_cli from 9.5.x if (!*s) { s = findstr(buffer, "S.M.A.R.T. (Controller"); // from 3DM browser window if (*s) { const char * s1 = findstr(s, " 0)) break; s += n; if (*s == '<') // "
" s += strcspn(s, "\r\n"); } if (i < 512) { if (!id->model[1]) { // No useful data found char * err = strstr(buffer, "Error:"); if (!err) err = strstr(buffer, "error :"); if (err && (err = strchr(err, ':'))) { // Show tw_cli error message err++; err[strcspn(err, "\r\n")] = 0; return set_err(EIO, "%s", err); } return set_err(EIO); } sd = 0; } m_ident_valid = true; m_smart_valid = !!sd; return true; } bool win_tw_cli_device::close() { m_ident_valid = m_smart_valid = false; return true; } int win_tw_cli_device::ata_command_interface(smart_command_set command, int /*select*/, char * data) { switch (command) { case IDENTIFY: if (!m_ident_valid) break; memcpy(data, &m_ident_buf, 512); return 0; case READ_VALUES: if (!m_smart_valid) break; memcpy(data, &m_smart_buf, 512); return 0; case ENABLE: case STATUS: case STATUS_CHECK: // Fake "good" SMART status return 0; default: break; } // Arrive here for all unsupported commands set_err(ENOSYS); return -1; } ///////////////////////////////////////////////////////////////////////////// // win_scsi_device // SPT Interface (for SCSI devices and ATA devices behind SATLs) class win_scsi_device : public /*implements*/ scsi_device, virtual public /*extends*/ win_smart_device { public: win_scsi_device(smart_interface * intf, const char * dev_name, const char * req_type); virtual bool open() override; virtual bool scsi_pass_through(scsi_cmnd_io * iop) override; private: bool open(int pd_num, int ld_num, int tape_num, int sub_addr); }; ///////////////////////////////////////////////////////////////////////////// win_scsi_device::win_scsi_device(smart_interface * intf, const char * dev_name, const char * req_type) : smart_device(intf, dev_name, "scsi", req_type) { } bool win_scsi_device::open() { const char * name = skipdev(get_dev_name()); int len = strlen(name); // sd[a-z]([a-z])?,N => Physical drive 0-701, RAID port N char drive[2+1] = ""; int sub_addr = -1; int n1 = -1; int n2 = -1; if ( sscanf(name, "sd%2[a-z]%n,%d%n", drive, &n1, &sub_addr, &n2) >= 1 && ((n1 == len && sub_addr == -1) || (n2 == len && sub_addr >= 0)) ) { return open(sdxy_to_phydrive(drive), -1, -1, sub_addr); } // pd,N => Physical drive , RAID port N int pd_num = -1; sub_addr = -1; n1 = -1; n2 = -1; if ( sscanf(name, "pd%d%n,%d%n", &pd_num, &n1, &sub_addr, &n2) >= 1 && pd_num >= 0 && ((n1 == len && sub_addr == -1) || (n2 == len && sub_addr >= 0))) { return open(pd_num, -1, -1, sub_addr); } // [a-zA-Z]: => Physical drive behind logical drive 0-25 int logdrive = drive_letter(name); if (logdrive >= 0) { return open(-1, logdrive, -1, -1); } // n?st => tape drive (same names used in Cygwin's /dev emulation) int tape_num = -1; n1 = -1; if (sscanf(name, "st%d%n", &tape_num, &n1) == 1 && tape_num >= 0 && n1 == len) { return open(-1, -1, tape_num, -1); } tape_num = -1; n1 = -1; if (sscanf(name, "nst%d%n", &tape_num, &n1) == 1 && tape_num >= 0 && n1 == len) { return open(-1, -1, tape_num, -1); } // tape => tape drive tape_num = -1; n1 = -1; if (sscanf(name, "tape%d%n", &tape_num, &n1) == 1 && tape_num >= 0 && n1 == len) { return open(-1, -1, tape_num, -1); } return set_err(EINVAL); } bool win_scsi_device::open(int pd_num, int ld_num, int tape_num, int /*sub_addr*/) { char b[128]; b[sizeof(b) - 1] = '\0'; if (pd_num >= 0) snprintf(b, sizeof(b) - 1, "\\\\.\\PhysicalDrive%d", pd_num); else if (ld_num >= 0) snprintf(b, sizeof(b) - 1, "\\\\.\\%c:", 'A' + ld_num); else if (tape_num >= 0) snprintf(b, sizeof(b) - 1, "\\\\.\\TAPE%d", tape_num); else { set_err(EINVAL); return false; } // Open device HANDLE h = CreateFileA(b, GENERIC_READ|GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, 0); if (h == INVALID_HANDLE_VALUE) { set_err(ENODEV, "%s: Open failed, Error=%u", b, (unsigned)GetLastError()); return false; } set_fh(h); return true; } typedef struct { SCSI_PASS_THROUGH_DIRECT spt; ULONG Filler; UCHAR ucSenseBuf[64]; } SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER; // Issue command via IOCTL_SCSI_PASS_THROUGH instead of *_DIRECT. // Used if DataTransferLength not supported by *_DIRECT. static long scsi_pass_through_indirect(HANDLE h, SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER * sbd) { struct SCSI_PASS_THROUGH_WITH_BUFFERS { SCSI_PASS_THROUGH spt; ULONG Filler; UCHAR ucSenseBuf[sizeof(sbd->ucSenseBuf)]; UCHAR ucDataBuf[512]; }; SCSI_PASS_THROUGH_WITH_BUFFERS sb; memset(&sb, 0, sizeof(sb)); // DATA_OUT not implemented yet if (!( sbd->spt.DataIn == SCSI_IOCTL_DATA_IN && sbd->spt.DataTransferLength <= sizeof(sb.ucDataBuf))) return ERROR_INVALID_PARAMETER; sb.spt.Length = sizeof(sb.spt); sb.spt.CdbLength = sbd->spt.CdbLength; memcpy(sb.spt.Cdb, sbd->spt.Cdb, sizeof(sb.spt.Cdb)); sb.spt.SenseInfoLength = sizeof(sb.ucSenseBuf); sb.spt.SenseInfoOffset = offsetof(SCSI_PASS_THROUGH_WITH_BUFFERS, ucSenseBuf); sb.spt.DataIn = sbd->spt.DataIn; sb.spt.DataTransferLength = sbd->spt.DataTransferLength; sb.spt.DataBufferOffset = offsetof(SCSI_PASS_THROUGH_WITH_BUFFERS, ucDataBuf); sb.spt.TimeOutValue = sbd->spt.TimeOutValue; DWORD num_out; if (!DeviceIoControl(h, IOCTL_SCSI_PASS_THROUGH, &sb, sizeof(sb), &sb, sizeof(sb), &num_out, 0)) return GetLastError(); sbd->spt.ScsiStatus = sb.spt.ScsiStatus; if (sb.spt.ScsiStatus & SCSI_STATUS_CHECK_CONDITION) memcpy(sbd->ucSenseBuf, sb.ucSenseBuf, sizeof(sbd->ucSenseBuf)); sbd->spt.DataTransferLength = sb.spt.DataTransferLength; if (sbd->spt.DataIn == SCSI_IOCTL_DATA_IN && sb.spt.DataTransferLength > 0) memcpy(sbd->spt.DataBuffer, sb.ucDataBuf, sb.spt.DataTransferLength); return 0; } // Interface to SPT SCSI devices. See scsicmds.h and os_linux.c bool win_scsi_device::scsi_pass_through(struct scsi_cmnd_io * iop) { int report = scsi_debugmode; // TODO if (report > 0) { int k, j; const unsigned char * ucp = iop->cmnd; const char * np; char buff[256]; const int sz = (int)sizeof(buff); np = scsi_get_opcode_name(ucp); j = snprintf(buff, sz, " [%s: ", np ? np : ""); for (k = 0; k < (int)iop->cmnd_len; ++k) j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "%02x ", ucp[k]); if ((report > 1) && (DXFER_TO_DEVICE == iop->dxfer_dir) && (iop->dxferp)) { int trunc = (iop->dxfer_len > 256) ? 1 : 0; j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n Outgoing " "data, len=%d%s:\n", (int)iop->dxfer_len, (trunc ? " [only first 256 bytes shown]" : "")); dStrHex(iop->dxferp, (trunc ? 256 : iop->dxfer_len) , 1); } else j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n"); pout("%s", buff); } SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER sb; if (iop->cmnd_len > (int)sizeof(sb.spt.Cdb)) { set_err(EINVAL, "cmnd_len too large"); return false; } memset(&sb, 0, sizeof(sb)); sb.spt.Length = sizeof(SCSI_PASS_THROUGH_DIRECT); sb.spt.CdbLength = iop->cmnd_len; memcpy(sb.spt.Cdb, iop->cmnd, iop->cmnd_len); sb.spt.SenseInfoLength = sizeof(sb.ucSenseBuf); sb.spt.SenseInfoOffset = offsetof(SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER, ucSenseBuf); sb.spt.TimeOutValue = (iop->timeout ? iop->timeout : 60); bool direct = true; switch (iop->dxfer_dir) { case DXFER_NONE: sb.spt.DataIn = SCSI_IOCTL_DATA_UNSPECIFIED; break; case DXFER_FROM_DEVICE: sb.spt.DataIn = SCSI_IOCTL_DATA_IN; sb.spt.DataTransferLength = iop->dxfer_len; sb.spt.DataBuffer = iop->dxferp; // IOCTL_SCSI_PASS_THROUGH_DIRECT does not support single byte // transfers (needed for SMART STATUS check of JMicron USB bridges) if (sb.spt.DataTransferLength == 1) direct = false; break; case DXFER_TO_DEVICE: sb.spt.DataIn = SCSI_IOCTL_DATA_OUT; sb.spt.DataTransferLength = iop->dxfer_len; sb.spt.DataBuffer = iop->dxferp; break; default: set_err(EINVAL, "bad dxfer_dir"); return false; } long err = 0; if (direct) { DWORD num_out; if (!DeviceIoControl(get_fh(), IOCTL_SCSI_PASS_THROUGH_DIRECT, &sb, sizeof(sb), &sb, sizeof(sb), &num_out, 0)) err = GetLastError(); } else err = scsi_pass_through_indirect(get_fh(), &sb); if (err) return set_err((err == ERROR_INVALID_FUNCTION ? ENOSYS : EIO), "IOCTL_SCSI_PASS_THROUGH%s failed, Error=%ld", (direct ? "_DIRECT" : ""), err); iop->scsi_status = sb.spt.ScsiStatus; if (SCSI_STATUS_CHECK_CONDITION & iop->scsi_status) { int slen = sb.ucSenseBuf[7] + 8; if (slen > (int)sizeof(sb.ucSenseBuf)) slen = sizeof(sb.ucSenseBuf); if (slen > (int)iop->max_sense_len) slen = iop->max_sense_len; memcpy(iop->sensep, sb.ucSenseBuf, slen); iop->resp_sense_len = slen; if (report) { if (report > 1) { pout(" >>> Sense buffer, len=%d:\n", slen); dStrHex(iop->sensep, slen , 1); } if ((iop->sensep[0] & 0x7f) > 0x71) pout(" status=%x: [desc] sense_key=%x asc=%x ascq=%x\n", iop->scsi_status, iop->sensep[1] & 0xf, iop->sensep[2], iop->sensep[3]); else pout(" status=%x: sense_key=%x asc=%x ascq=%x\n", iop->scsi_status, iop->sensep[2] & 0xf, iop->sensep[12], iop->sensep[13]); } } else iop->resp_sense_len = 0; if (iop->dxfer_len > sb.spt.DataTransferLength) iop->resid = iop->dxfer_len - sb.spt.DataTransferLength; else iop->resid = 0; if ((iop->dxfer_dir == DXFER_FROM_DEVICE) && (report > 1)) { int trunc = (iop->dxfer_len > 256) ? 1 : 0; pout(" Incoming data, len=%d, resid=%d%s:\n", (int)iop->dxfer_len, iop->resid, (trunc ? " [only first 256 bytes shown]" : "")); dStrHex(iop->dxferp, (trunc ? 256 : iop->dxfer_len) , 1); } return true; } ///////////////////////////////////////////////////////////////////////////// /// Areca RAID support // TODO: combine with above scsi_pass_through_direct() static long scsi_pass_through_direct(HANDLE fd, UCHAR targetid, struct scsi_cmnd_io * iop) { int report = scsi_debugmode; // TODO if (report > 0) { int k, j; const unsigned char * ucp = iop->cmnd; const char * np; char buff[256]; const int sz = (int)sizeof(buff); np = scsi_get_opcode_name(ucp); j = snprintf(buff, sz, " [%s: ", np ? np : ""); for (k = 0; k < (int)iop->cmnd_len; ++k) j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "%02x ", ucp[k]); if ((report > 1) && (DXFER_TO_DEVICE == iop->dxfer_dir) && (iop->dxferp)) { int trunc = (iop->dxfer_len > 256) ? 1 : 0; j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n Outgoing " "data, len=%d%s:\n", (int)iop->dxfer_len, (trunc ? " [only first 256 bytes shown]" : "")); dStrHex(iop->dxferp, (trunc ? 256 : iop->dxfer_len) , 1); } else j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n"); pout("%s", buff); } SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER sb; if (iop->cmnd_len > (int)sizeof(sb.spt.Cdb)) { return EINVAL; } memset(&sb, 0, sizeof(sb)); sb.spt.Length = sizeof(SCSI_PASS_THROUGH_DIRECT); //sb.spt.PathId = 0; sb.spt.TargetId = targetid; //sb.spt.Lun = 0; sb.spt.CdbLength = iop->cmnd_len; memcpy(sb.spt.Cdb, iop->cmnd, iop->cmnd_len); sb.spt.SenseInfoLength = sizeof(sb.ucSenseBuf); sb.spt.SenseInfoOffset = offsetof(SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER, ucSenseBuf); sb.spt.TimeOutValue = (iop->timeout ? iop->timeout : 60); bool direct = true; switch (iop->dxfer_dir) { case DXFER_NONE: sb.spt.DataIn = SCSI_IOCTL_DATA_UNSPECIFIED; break; case DXFER_FROM_DEVICE: sb.spt.DataIn = SCSI_IOCTL_DATA_IN; sb.spt.DataTransferLength = iop->dxfer_len; sb.spt.DataBuffer = iop->dxferp; // IOCTL_SCSI_PASS_THROUGH_DIRECT does not support single byte // transfers (needed for SMART STATUS check of JMicron USB bridges) if (sb.spt.DataTransferLength == 1) direct = false; break; case DXFER_TO_DEVICE: sb.spt.DataIn = SCSI_IOCTL_DATA_OUT; sb.spt.DataTransferLength = iop->dxfer_len; sb.spt.DataBuffer = iop->dxferp; break; default: return EINVAL; } long err = 0; if (direct) { DWORD num_out; if (!DeviceIoControl(fd, IOCTL_SCSI_PASS_THROUGH_DIRECT, &sb, sizeof(sb), &sb, sizeof(sb), &num_out, 0)) err = GetLastError(); } else err = scsi_pass_through_indirect(fd, &sb); if (err) { return err; } iop->scsi_status = sb.spt.ScsiStatus; if (SCSI_STATUS_CHECK_CONDITION & iop->scsi_status) { int slen = sb.ucSenseBuf[7] + 8; if (slen > (int)sizeof(sb.ucSenseBuf)) slen = sizeof(sb.ucSenseBuf); if (slen > (int)iop->max_sense_len) slen = iop->max_sense_len; memcpy(iop->sensep, sb.ucSenseBuf, slen); iop->resp_sense_len = slen; if (report) { if (report > 1) { pout(" >>> Sense buffer, len=%d:\n", slen); dStrHex(iop->sensep, slen , 1); } if ((iop->sensep[0] & 0x7f) > 0x71) pout(" status=%x: [desc] sense_key=%x asc=%x ascq=%x\n", iop->scsi_status, iop->sensep[1] & 0xf, iop->sensep[2], iop->sensep[3]); else pout(" status=%x: sense_key=%x asc=%x ascq=%x\n", iop->scsi_status, iop->sensep[2] & 0xf, iop->sensep[12], iop->sensep[13]); } } else iop->resp_sense_len = 0; if (iop->dxfer_len > sb.spt.DataTransferLength) iop->resid = iop->dxfer_len - sb.spt.DataTransferLength; else iop->resid = 0; if ((iop->dxfer_dir == DXFER_FROM_DEVICE) && (report > 1)) { int trunc = (iop->dxfer_len > 256) ? 1 : 0; pout(" Incoming data, len=%d, resid=%d%s:\n", (int)iop->dxfer_len, iop->resid, (trunc ? " [only first 256 bytes shown]" : "")); dStrHex(iop->dxferp, (trunc ? 256 : iop->dxfer_len) , 1); } return 0; } ///////////////////////////////////////////////////////////////////////////// // win_areca_scsi_device // SAS(SCSI) device behind Areca RAID Controller class win_areca_scsi_device : public /*implements*/ areca_scsi_device, public /*extends*/ win_smart_device { public: win_areca_scsi_device(smart_interface * intf, const char * dev_name, int disknum, int encnum = 1); virtual bool open() override; virtual smart_device * autodetect_open() override; virtual bool arcmsr_lock() override; virtual bool arcmsr_unlock() override; virtual int arcmsr_do_scsi_io(struct scsi_cmnd_io * iop) override; private: HANDLE m_mutex; }; ///////////////////////////////////////////////////////////////////////////// win_areca_scsi_device::win_areca_scsi_device(smart_interface * intf, const char * dev_name, int disknum, int encnum) : smart_device(intf, dev_name, "areca", "areca") { set_fh(INVALID_HANDLE_VALUE); set_disknum(disknum); set_encnum(encnum); set_info().info_name = strprintf("%s [areca_disk#%02d_enc#%02d]", dev_name, disknum, encnum); } bool win_areca_scsi_device::open() { HANDLE hFh; if( is_open() ) { return true; } hFh = CreateFile( get_dev_name(), GENERIC_READ|GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL ); if(hFh == INVALID_HANDLE_VALUE) { return false; } set_fh(hFh); return true; } smart_device * win_areca_scsi_device::autodetect_open() { return this; } int win_areca_scsi_device::arcmsr_do_scsi_io(struct scsi_cmnd_io * iop) { int ioctlreturn = 0; ioctlreturn = scsi_pass_through_direct(get_fh(), 16, iop); if ( ioctlreturn || iop->scsi_status ) { ioctlreturn = scsi_pass_through_direct(get_fh(), 127, iop); if ( ioctlreturn || iop->scsi_status ) { // errors found return -1; } } return ioctlreturn; } bool win_areca_scsi_device::arcmsr_lock() { #define SYNCOBJNAME "Global\\SynIoctlMutex" int ctlrnum = -1; char mutexstr[64]; if (sscanf(get_dev_name(), "\\\\.\\scsi%d:", &ctlrnum) < 1) return set_err(EINVAL, "unable to parse device name"); snprintf(mutexstr, sizeof(mutexstr), "%s%d", SYNCOBJNAME, ctlrnum); m_mutex = CreateMutex(NULL, FALSE, mutexstr); if ( m_mutex == NULL ) { return set_err(EIO, "CreateMutex failed"); } // atomic access to driver WaitForSingleObject(m_mutex, INFINITE); return true; } bool win_areca_scsi_device::arcmsr_unlock() { if( m_mutex != NULL) { ReleaseMutex(m_mutex); CloseHandle(m_mutex); } return true; } ///////////////////////////////////////////////////////////////////////////// // win_areca_ata_device // SATA(ATA) device behind Areca RAID Controller class win_areca_ata_device : public /*implements*/ areca_ata_device, public /*extends*/ win_smart_device { public: win_areca_ata_device(smart_interface * intf, const char * dev_name, int disknum, int encnum = 1); virtual bool open() override; virtual smart_device * autodetect_open() override; virtual bool arcmsr_lock() override; virtual bool arcmsr_unlock() override; virtual int arcmsr_do_scsi_io(struct scsi_cmnd_io * iop) override; private: HANDLE m_mutex; }; ///////////////////////////////////////////////////////////////////////////// win_areca_ata_device::win_areca_ata_device(smart_interface * intf, const char * dev_name, int disknum, int encnum) : smart_device(intf, dev_name, "areca", "areca") { set_fh(INVALID_HANDLE_VALUE); set_disknum(disknum); set_encnum(encnum); set_info().info_name = strprintf("%s [areca_disk#%02d_enc#%02d]", dev_name, disknum, encnum); } bool win_areca_ata_device::open() { HANDLE hFh; if( is_open() ) { return true; } hFh = CreateFile( get_dev_name(), GENERIC_READ|GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL ); if(hFh == INVALID_HANDLE_VALUE) { return false; } set_fh(hFh); return true; } smart_device * win_areca_ata_device::autodetect_open() { // autodetect device type int is_ata = arcmsr_get_dev_type(); if(is_ata < 0) { set_err(EIO); return this; } if(is_ata == 1) { // SATA device return this; } // SAS device smart_device_auto_ptr newdev(new win_areca_scsi_device(smi(), get_dev_name(), get_disknum(), get_encnum())); close(); delete this; newdev->open(); // TODO: Can possibly pass open fd return newdev.release(); } int win_areca_ata_device::arcmsr_do_scsi_io(struct scsi_cmnd_io * iop) { int ioctlreturn = 0; ioctlreturn = scsi_pass_through_direct(get_fh(), 16, iop); if ( ioctlreturn || iop->scsi_status ) { ioctlreturn = scsi_pass_through_direct(get_fh(), 127, iop); if ( ioctlreturn || iop->scsi_status ) { // errors found return -1; } } return ioctlreturn; } bool win_areca_ata_device::arcmsr_lock() { #define SYNCOBJNAME "Global\\SynIoctlMutex" int ctlrnum = -1; char mutexstr[64]; if (sscanf(get_dev_name(), "\\\\.\\scsi%d:", &ctlrnum) < 1) return set_err(EINVAL, "unable to parse device name"); snprintf(mutexstr, sizeof(mutexstr), "%s%d", SYNCOBJNAME, ctlrnum); m_mutex = CreateMutex(NULL, FALSE, mutexstr); if ( m_mutex == NULL ) { return set_err(EIO, "CreateMutex failed"); } // atomic access to driver WaitForSingleObject(m_mutex, INFINITE); return true; } bool win_areca_ata_device::arcmsr_unlock() { if( m_mutex != NULL) { ReleaseMutex(m_mutex); CloseHandle(m_mutex); } return true; } ///////////////////////////////////////////////////////////////////////////// // win_aacraid_device // PMC aacraid Support class win_aacraid_device :public /*implements*/ scsi_device, public /*extends*/ win_smart_device { public: win_aacraid_device(smart_interface *intf, const char *dev_name,unsigned int ctrnum, unsigned int target, unsigned int lun); virtual ~win_aacraid_device(); virtual bool open() override; virtual bool scsi_pass_through(struct scsi_cmnd_io *iop) override; private: //Device Host number int m_ctrnum; //Channel(Lun) of the device int m_lun; //Id of the device int m_target; }; ///////////////////////////////////////////////////////////////////////////// win_aacraid_device::win_aacraid_device(smart_interface * intf, const char *dev_name, unsigned ctrnum, unsigned target, unsigned lun) : smart_device(intf, dev_name, "aacraid", "aacraid"), m_ctrnum(ctrnum), m_lun(lun), m_target(target) { set_info().info_name = strprintf("%s [aacraid_disk_%02d_%02d_%d]", dev_name, m_ctrnum, m_lun, m_target); set_info().dev_type = strprintf("aacraid,%d,%d,%d", m_ctrnum, m_lun, m_target); } win_aacraid_device::~win_aacraid_device() { } bool win_aacraid_device::open() { if (is_open()) return true; HANDLE hFh = CreateFile( get_dev_name(), GENERIC_READ|GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, 0); if (hFh == INVALID_HANDLE_VALUE) return set_err(ENODEV, "Open failed, Error=%u", (unsigned)GetLastError()); set_fh(hFh); return true; } bool win_aacraid_device::scsi_pass_through(struct scsi_cmnd_io *iop) { int report = scsi_debugmode; if (report > 0) { int k, j; const unsigned char * ucp = iop->cmnd; const char * np; char buff[256]; const int sz = (int)sizeof(buff); np = scsi_get_opcode_name(ucp); j = snprintf(buff, sz, " [%s: ", np ? np : ""); for (k = 0; k < (int)iop->cmnd_len; ++k) j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "%02x ", ucp[k]); if ((report > 1) && (DXFER_TO_DEVICE == iop->dxfer_dir) && (iop->dxferp)) { int trunc = (iop->dxfer_len > 256) ? 1 : 0; j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n Outgoing " "data, len=%d%s:\n", (int)iop->dxfer_len, (trunc ? " [only first 256 bytes shown]" : "")); dStrHex(iop->dxferp, (trunc ? 256 : (int)iop->dxfer_len) , 1); } else j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n"); pout("buff %s\n",buff); } // Create buffer with appropriate size constexpr unsigned scsiRequestBlockSize = sizeof(SCSI_REQUEST_BLOCK); constexpr unsigned dataOffset = (sizeof(SRB_IO_CONTROL) + scsiRequestBlockSize + 7) & 0xfffffff8; raw_buffer pthru_raw_buf(dataOffset + iop->dxfer_len + 8); // 32|64-bit: 96|120 + ... char * ioBuffer = reinterpret_cast(pthru_raw_buf.data()); SRB_IO_CONTROL * pSrbIO = (SRB_IO_CONTROL *) ioBuffer; SCSI_REQUEST_BLOCK * pScsiIO = (SCSI_REQUEST_BLOCK *) (ioBuffer + sizeof(SRB_IO_CONTROL)); char *pRequestSenseIO = (char *) (ioBuffer + sizeof(SRB_IO_CONTROL) + scsiRequestBlockSize); char *pDataIO = (char *) (ioBuffer + dataOffset); memset(pScsiIO, 0, scsiRequestBlockSize); pScsiIO->Length = (USHORT) scsiRequestBlockSize; pScsiIO->Function = SRB_FUNCTION_EXECUTE_SCSI; pScsiIO->PathId = 0; pScsiIO->TargetId = m_target; pScsiIO->Lun = m_lun; pScsiIO->CdbLength = (int)iop->cmnd_len; switch(iop->dxfer_dir){ case DXFER_NONE: pScsiIO->SrbFlags = SRB_NoDataXfer; break; case DXFER_FROM_DEVICE: pScsiIO->SrbFlags |= SRB_DataIn; break; case DXFER_TO_DEVICE: pScsiIO->SrbFlags |= SRB_DataOut; break; default: pout("aacraid: bad dxfer_dir\n"); return set_err(EINVAL, "aacraid: bad dxfer_dir\n"); } pScsiIO->DataTransferLength = (ULONG)iop->dxfer_len; pScsiIO->TimeOutValue = iop->timeout; UCHAR *pCdb = (UCHAR *) pScsiIO->Cdb; memcpy(pCdb, iop->cmnd, 16); if (iop->max_sense_len){ memset(pRequestSenseIO, 0, iop->max_sense_len); } if (pScsiIO->SrbFlags & SRB_FLAGS_DATA_OUT){ memcpy(pDataIO, iop->dxferp, iop->dxfer_len); } else if (pScsiIO->SrbFlags & SRB_FLAGS_DATA_IN){ memset(pDataIO, 0, iop->dxfer_len); } DWORD bytesReturned = 0; memset(pSrbIO, 0, sizeof(SRB_IO_CONTROL)); pSrbIO->HeaderLength = sizeof(SRB_IO_CONTROL); memcpy(pSrbIO->Signature, "AACAPI", 7); pSrbIO->ControlCode = ARCIOCTL_SEND_RAW_SRB; pSrbIO->Length = (dataOffset + iop->dxfer_len - sizeof(SRB_IO_CONTROL) + 7) & 0xfffffff8; pSrbIO->Timeout = 3*60; if (!DeviceIoControl( get_fh(), IOCTL_SCSI_MINIPORT, ioBuffer, sizeof(SRB_IO_CONTROL) + pSrbIO->Length, ioBuffer, sizeof(SRB_IO_CONTROL) + pSrbIO->Length, &bytesReturned, NULL) ) { return set_err(EIO, "ARCIOCTL_SEND_RAW_SRB failed, Error=%u", (unsigned)GetLastError()); } iop->scsi_status = pScsiIO->ScsiStatus; if (SCSI_STATUS_CHECK_CONDITION & iop->scsi_status) { int slen = sizeof(pRequestSenseIO) + 8; if (slen > (int)sizeof(pRequestSenseIO)) slen = sizeof(pRequestSenseIO); if (slen > (int)iop->max_sense_len) slen = (int)iop->max_sense_len; memcpy(iop->sensep, pRequestSenseIO, slen); iop->resp_sense_len = slen; if (report) { if (report > 1) { pout(" >>> Sense buffer, len=%d:\n", slen); dStrHex(iop->sensep, slen , 1); } if ((iop->sensep[0] & 0x7f) > 0x71) pout(" status=%x: [desc] sense_key=%x asc=%x ascq=%x\n", iop->scsi_status, iop->sensep[1] & 0xf, iop->sensep[2], iop->sensep[3]); else pout(" status=%x: sense_key=%x asc=%x ascq=%x\n", iop->scsi_status, iop->sensep[2] & 0xf, iop->sensep[12], iop->sensep[13]); } } else { iop->resp_sense_len = 0; } if (iop->dxfer_dir == DXFER_FROM_DEVICE){ memcpy(iop->dxferp,pDataIO, iop->dxfer_len); } if((iop->dxfer_dir == DXFER_FROM_DEVICE) && (report > 1)){ int trunc = (iop->dxfer_len > 256) ? 1 : 0; pout(" Incoming data, len=%d, resid=%d%s:\n", (int)iop->dxfer_len, iop->resid, (trunc ? " [only first 256 bytes shown]" : "")); dStrHex((const uint8_t *)pDataIO, (trunc ? 256 : (int)(iop->dxfer_len)) , 1); } return true; } ///////////////////////////////////////////////////////////////////////////// // win_nvme_device class win_nvme_device : public /*implements*/ nvme_device, public /*extends*/ win_smart_device { public: win_nvme_device(smart_interface * intf, const char * dev_name, const char * req_type, unsigned nsid); virtual bool open() override; virtual bool nvme_pass_through(const nvme_cmd_in & in, nvme_cmd_out & out) override; bool open_scsi(int n); bool probe(); private: int m_scsi_no; }; ///////////////////////////////////////////////////////////////////////////// win_nvme_device::win_nvme_device(smart_interface * intf, const char * dev_name, const char * req_type, unsigned nsid) : smart_device(intf, dev_name, "nvme", req_type), nvme_device(nsid), m_scsi_no(-1) { } bool win_nvme_device::open_scsi(int n) { // TODO: Use common open function for all devices using "\\.\ScsiN:" char devpath[32]; snprintf(devpath, sizeof(devpath)-1, "\\\\.\\Scsi%d:", n); HANDLE h = CreateFileA(devpath, GENERIC_READ|GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_WRITE, (SECURITY_ATTRIBUTES *)0, OPEN_EXISTING, 0, 0); if (h == INVALID_HANDLE_VALUE) { long err = GetLastError(); if (nvme_debugmode > 1) pout(" %s: Open failed, Error=%ld\n", devpath, err); if (err == ERROR_FILE_NOT_FOUND) set_err(ENOENT, "%s: not found", devpath); else if (err == ERROR_ACCESS_DENIED) set_err(EACCES, "%s: access denied", devpath); else set_err(EIO, "%s: Error=%ld", devpath, err); return false; } if (nvme_debugmode > 1) pout(" %s: successfully opened\n", devpath); set_fh(h); return true; } // Check if NVMe DeviceIoControl(IOCTL_SCSI_MINIPORT) pass-through works. // On Win10 and later that returns false with an errorNumber of 1 // ("Incorrect function"). Win10 has new pass-through: // DeviceIoControl(IOCTL_STORAGE_PROTOCOL_COMMAND). However for commonly // requested NVMe commands like Identify and Get Features Microsoft want // "Protocol specific queries" sent. bool win_nvme_device::probe() { smartmontools::nvme_id_ctrl id_ctrl; nvme_cmd_in in; in.set_data_in(smartmontools::nvme_admin_identify, &id_ctrl, sizeof(id_ctrl)); // in.nsid = 0; in.cdw10 = 0x1; nvme_cmd_out out; bool ok = nvme_pass_through(in, out); if (!ok && nvme_debugmode > 1) pout(" nvme probe failed: %s\n", get_errmsg()); return ok; } bool win_nvme_device::open() { if (m_scsi_no < 0) { // First open -> search of NVMe devices const char * name = skipdev(get_dev_name()); char s[2+1] = ""; int n1 = -1, n2 = -1, len = strlen(name); unsigned no = ~0, nsid = 0xffffffff; sscanf(name, "nvm%2[es]%u%nn%u%n", s, &no, &n1, &nsid, &n2); if (!( (n1 == len || (n2 == len && nsid > 0)) && s[0] == 'e' && (!s[1] || s[1] == 's') )) return set_err(EINVAL); if (!s[1]) { // /dev/nvmeN* -> search for nth NVMe device unsigned nvme_cnt = 0; for (int i = 0; i < 32; i++) { if (!open_scsi(i)) { if (get_errno() == EACCES) return false; continue; } // Done if pass-through works and correct number if (probe()) { if (nvme_cnt == no) { m_scsi_no = i; break; } nvme_cnt++; } close(); } if (!is_open()) return set_err(ENOENT); clear_err(); } else { // /dev/nvmesN* -> use "\\.\ScsiN:" if (!open_scsi(no)) return false; m_scsi_no = no; } if (!get_nsid()) set_nsid(nsid); } else { // Reopen same "\\.\ScsiN:" if (!open_scsi(m_scsi_no)) return false; } return true; } bool win_nvme_device::nvme_pass_through(const nvme_cmd_in & in, nvme_cmd_out & out) { // Create buffer with appropriate size raw_buffer pthru_raw_buf(offsetof(NVME_PASS_THROUGH_IOCTL, DataBuffer) + in.size); NVME_PASS_THROUGH_IOCTL * pthru = reinterpret_cast(pthru_raw_buf.data()); // Set NVMe command pthru->SrbIoCtrl.HeaderLength = sizeof(SRB_IO_CONTROL); memcpy(pthru->SrbIoCtrl.Signature, NVME_SIG_STR, sizeof(NVME_SIG_STR)-1); pthru->SrbIoCtrl.Timeout = 60; pthru->SrbIoCtrl.ControlCode = NVME_PASS_THROUGH_SRB_IO_CODE; pthru->SrbIoCtrl.ReturnCode = 0; pthru->SrbIoCtrl.Length = pthru_raw_buf.size() - sizeof(SRB_IO_CONTROL); pthru->NVMeCmd[0] = in.opcode; pthru->NVMeCmd[1] = in.nsid; pthru->NVMeCmd[10] = in.cdw10; pthru->NVMeCmd[11] = in.cdw11; pthru->NVMeCmd[12] = in.cdw12; pthru->NVMeCmd[13] = in.cdw13; pthru->NVMeCmd[14] = in.cdw14; pthru->NVMeCmd[15] = in.cdw15; pthru->Direction = in.direction(); // pthru->QueueId = 0; // AdminQ // pthru->DataBufferLen = 0; if (in.direction() & nvme_cmd_in::data_out) { pthru->DataBufferLen = in.size; memcpy(pthru->DataBuffer, in.buffer, in.size); } // pthru->MetaDataLen = 0; pthru->ReturnBufferLen = pthru_raw_buf.size(); // Call NVME_PASS_THROUGH DWORD num_out = 0; BOOL ok = DeviceIoControl(get_fh(), IOCTL_SCSI_MINIPORT, pthru, pthru_raw_buf.size(), pthru, pthru_raw_buf.size(), &num_out, (OVERLAPPED*)0); // Check status unsigned status = pthru->CplEntry[3] >> 17; if (status) return set_nvme_err(out, status); if (!ok) return set_err(EIO, "NVME_PASS_THROUGH failed, Error=%u", (unsigned)GetLastError()); if (in.direction() & nvme_cmd_in::data_in) memcpy(in.buffer, pthru->DataBuffer, in.size); out.result = pthru->CplEntry[0]; return true; } ///////////////////////////////////////////////////////////////////////////// // win10_nvme_device class win10_nvme_device : public /*implements*/ nvme_device, public /*extends*/ win_smart_device { public: win10_nvme_device(smart_interface * intf, const char * dev_name, const char * req_type, unsigned nsid); virtual bool open() override; virtual bool nvme_pass_through(const nvme_cmd_in & in, nvme_cmd_out & out) override; private: bool open(int phydrive, int logdrive); bool nvme_storage_query_property(const nvme_cmd_in & in, nvme_cmd_out & out); bool nvme_storage_protocol_command(const nvme_cmd_in & in, nvme_cmd_out & out); }; ///////////////////////////////////////////////////////////////////////////// win10_nvme_device::win10_nvme_device(smart_interface * intf, const char * dev_name, const char * req_type, unsigned nsid) : smart_device(intf, dev_name, "nvme", req_type), nvme_device(nsid) { } bool win10_nvme_device::open() { // TODO: Use common /dev/ parsing functions const char * name = skipdev(get_dev_name()); int len = strlen(name); // sd[a-z]([a-z])? => Physical drive 0-701 char drive[2 + 1] = ""; int n = -1; if (sscanf(name, "sd%2[a-z]%n", drive, &n) == 1 && n == len) return open(sdxy_to_phydrive(drive), -1); // pdN => Physical drive N int phydrive = -1; n = -1; if (sscanf(name, "pd%d%n", &phydrive, &n) == 1 && phydrive >= 0 && n == len) return open(phydrive, -1); // [a-zA-Z]: => Physical drive behind logical drive 0-25 int logdrive = drive_letter(name); if (logdrive >= 0) return open(-1, logdrive); return set_err(EINVAL); } bool win10_nvme_device::open(int phydrive, int logdrive) { // TODO: Use common open function for all devices using "\\.\PhysicalDriveN" char devpath[64]; if (phydrive >= 0) snprintf(devpath, sizeof(devpath), "\\\\.\\PhysicalDrive%d", phydrive); else snprintf(devpath, sizeof(devpath), "\\\\.\\%c:", 'A'+logdrive); bool admin = true; HANDLE h = CreateFileA(devpath, GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, (SECURITY_ATTRIBUTES *)0, OPEN_EXISTING, 0, (HANDLE)0); if (h == INVALID_HANDLE_VALUE) { // STORAGE_QUERY_PROPERTY works without GENERIC_READ/WRITE access admin = false; h = CreateFileA(devpath, 0, FILE_SHARE_READ | FILE_SHARE_WRITE, (SECURITY_ATTRIBUTES*)0, OPEN_EXISTING, 0, (HANDLE)0); } if (h == INVALID_HANDLE_VALUE) { long err = GetLastError(); if (nvme_debugmode > 1) pout(" %s: Open failed, Error=%ld\n", devpath, err); if (err == ERROR_FILE_NOT_FOUND) set_err(ENOENT, "%s: not found", devpath); else if (err == ERROR_ACCESS_DENIED) set_err(EACCES, "%s: access denied", devpath); else set_err(EIO, "%s: Error=%ld", devpath, err); return false; } if (nvme_debugmode > 1) pout(" %s: successfully opened%s\n", devpath, (!admin ? " (without admin rights)" : "")); set_fh(h); // Use broadcast namespace if no NSID specified // TODO: Get NSID of current device if (!get_nsid()) set_nsid(0xffffffff); return true; } struct STORAGE_PROTOCOL_SPECIFIC_QUERY_WITH_BUFFER { struct { // STORAGE_PROPERTY_QUERY without AdditionalsParameters[1] STORAGE_PROPERTY_ID PropertyId; STORAGE_QUERY_TYPE QueryType; } PropertyQuery; win10::STORAGE_PROTOCOL_SPECIFIC_DATA ProtocolSpecific; BYTE DataBuffer[1]; }; bool win10_nvme_device::nvme_storage_query_property(const nvme_cmd_in & in, nvme_cmd_out & out) { // Create buffer with appropriate size raw_buffer spsq_raw_buf(offsetof(STORAGE_PROTOCOL_SPECIFIC_QUERY_WITH_BUFFER, DataBuffer) + in.size); STORAGE_PROTOCOL_SPECIFIC_QUERY_WITH_BUFFER * spsq = reinterpret_cast(spsq_raw_buf.data()); // Set NVMe specific STORAGE_PROPERTY_QUERY spsq->PropertyQuery.QueryType = PropertyStandardQuery; spsq->ProtocolSpecific.ProtocolType = win10::ProtocolTypeNvme; switch (in.opcode) { case smartmontools::nvme_admin_identify: if (!in.nsid) // Identify controller spsq->PropertyQuery.PropertyId = win10::StorageAdapterProtocolSpecificProperty; else spsq->PropertyQuery.PropertyId = win10::StorageDeviceProtocolSpecificProperty; spsq->ProtocolSpecific.DataType = win10::NVMeDataTypeIdentify; spsq->ProtocolSpecific.ProtocolDataRequestValue = in.cdw10; spsq->ProtocolSpecific.ProtocolDataRequestSubValue = in.nsid; break; case smartmontools::nvme_admin_get_log_page: spsq->PropertyQuery.PropertyId = win10::StorageDeviceProtocolSpecificProperty; spsq->ProtocolSpecific.DataType = win10::NVMeDataTypeLogPage; spsq->ProtocolSpecific.ProtocolDataRequestValue = in.cdw10 & 0xff; // LID only ? // Older drivers (Win10 1607) ignore SubValue // Newer drivers (Win10 1809) pass SubValue to CDW12 (DW aligned) spsq->ProtocolSpecific.ProtocolDataRequestSubValue = 0; // in.cdw12 (LPOL, NVMe 1.2.1+) ? break; // case smartmontools::nvme_admin_get_features: // TODO default: return set_err(ENOSYS, "NVMe admin command 0x%02x not supported", in.opcode); } spsq->ProtocolSpecific.ProtocolDataOffset = sizeof(spsq->ProtocolSpecific); spsq->ProtocolSpecific.ProtocolDataLength = in.size; if (in.direction() & nvme_cmd_in::data_out) memcpy(spsq->DataBuffer, in.buffer, in.size); if (nvme_debugmode > 1) pout(" [STORAGE_QUERY_PROPERTY: Id=%u, Type=%u, Value=0x%08x, SubVal=0x%08x]\n", (unsigned)spsq->PropertyQuery.PropertyId, (unsigned)spsq->ProtocolSpecific.DataType, (unsigned)spsq->ProtocolSpecific.ProtocolDataRequestValue, (unsigned)spsq->ProtocolSpecific.ProtocolDataRequestSubValue); // Call IOCTL_STORAGE_QUERY_PROPERTY DWORD num_out = 0; long err = 0; if (!DeviceIoControl(get_fh(), IOCTL_STORAGE_QUERY_PROPERTY, spsq, spsq_raw_buf.size(), spsq, spsq_raw_buf.size(), &num_out, (OVERLAPPED*)0)) { err = GetLastError(); } if (nvme_debugmode > 1) pout(" [STORAGE_QUERY_PROPERTY: ReturnData=0x%08x, Reserved[3]={0x%x, 0x%x, 0x%x}]\n", (unsigned)spsq->ProtocolSpecific.FixedProtocolReturnData, (unsigned)spsq->ProtocolSpecific.Reserved[0], (unsigned)spsq->ProtocolSpecific.Reserved[1], (unsigned)spsq->ProtocolSpecific.Reserved[2]); // NVMe status is checked by IOCTL if (err) return set_err(EIO, "IOCTL_STORAGE_QUERY_PROPERTY(NVMe) failed, Error=%ld", err); if (in.direction() & nvme_cmd_in::data_in) memcpy(in.buffer, spsq->DataBuffer, in.size); out.result = spsq->ProtocolSpecific.FixedProtocolReturnData; // Completion DW0 ? return true; } bool win10_nvme_device::nvme_storage_protocol_command(const nvme_cmd_in & in, nvme_cmd_out & /* out */) { // Limit to self-test command for now switch (in.opcode) { case smartmontools::nvme_admin_dev_self_test: break; default: return set_err(ENOSYS, "NVMe admin command 0x%02x not supported", in.opcode); } // This is based on info from https://github.com/ken-yossy/nvmetool-win (License: MIT) // Assume NO_DATA command char spcm_buf[offsetof(STORAGE_PROTOCOL_COMMAND, Command) + STORAGE_PROTOCOL_COMMAND_LENGTH_NVME]{}; STORAGE_PROTOCOL_COMMAND * spcm = reinterpret_cast(spcm_buf); // Set NVMe specific STORAGE_PROTOCOL_COMMAND spcm->Version = STORAGE_PROTOCOL_STRUCTURE_VERSION; spcm->Length = sizeof(STORAGE_PROTOCOL_COMMAND); spcm->ProtocolType = (decltype(spcm->ProtocolType))win10::ProtocolTypeNvme; spcm->Flags = STORAGE_PROTOCOL_COMMAND_FLAG_ADAPTER_REQUEST; spcm->CommandLength = STORAGE_PROTOCOL_COMMAND_LENGTH_NVME; spcm->TimeOutValue = 60; spcm->CommandSpecific = STORAGE_PROTOCOL_SPECIFIC_NVME_ADMIN_COMMAND; NVME_COMMAND * nvcm = reinterpret_cast(&spcm->Command); nvcm->CDW0.OPC = in.opcode; nvcm->NSID = in.nsid; nvcm->u.GENERAL.CDW10 = in.cdw10; if (nvme_debugmode > 1) pout(" [IOCTL_STORAGE_PROTOCOL_COMMAND(NVMe): CDW0.OPC=0x%02x, NSID=0x%04x, CDW10=0x%04x]\n", (unsigned)nvcm->CDW0.OPC, (unsigned)nvcm->NSID, (unsigned)nvcm->u.GENERAL.CDW10); // Call IOCTL_STORAGE_PROTOCOL_COMMAND DWORD num_out = 0; long err = 0; if (!DeviceIoControl(get_fh(), IOCTL_STORAGE_PROTOCOL_COMMAND, spcm, sizeof(spcm_buf), spcm, sizeof(spcm_buf), &num_out, (OVERLAPPED*)0)) { err = GetLastError(); } // NVMe status checked by IOCTL? if (err) return set_err(EIO, "IOCTL_STORAGE_PROTOCOL_COMMAND(NVMe) failed, Error=%ld", err); // out.result = 0; return true; } bool win10_nvme_device::nvme_pass_through(const nvme_cmd_in & in, nvme_cmd_out & out) { if (in.cdw11 || in.cdw12 || in.cdw13 || in.cdw14 || in.cdw15) return set_err(ENOSYS, "Nonzero NVMe command dwords 11-15 not supported"); switch (in.opcode) { case smartmontools::nvme_admin_identify: case smartmontools::nvme_admin_get_log_page: // case smartmontools::nvme_admin_get_features: // TODO return nvme_storage_query_property(in, out); default: return nvme_storage_protocol_command(in, out); } } ///////////////////////////////////////////////////////////////////////////// // win_smart_interface // Platform specific interface class win_smart_interface : public /*implements*/ smart_interface { public: virtual std::string get_os_version_str() override; virtual std::string get_app_examples(const char * appname) override; virtual bool disable_system_auto_standby(bool disable) override; virtual bool scan_smart_devices(smart_device_list & devlist, const char * type, const char * pattern = 0) override; protected: virtual ata_device * get_ata_device(const char * name, const char * type) override; virtual scsi_device * get_scsi_device(const char * name, const char * type) override; virtual nvme_device * get_nvme_device(const char * name, const char * type, unsigned nsid) override; virtual smart_device * autodetect_smart_device(const char * name) override; virtual smart_device * get_custom_smart_device(const char * name, const char * type) override; virtual std::string get_valid_custom_dev_types_str() override; private: smart_device * get_usb_device(const char * name, int phydrive, int logdrive = -1); }; ///////////////////////////////////////////////////////////////////////////// #ifndef _WIN64 // Running on 64-bit Windows as 32-bit app ? static bool is_wow64() { BOOL (WINAPI * IsWow64Process_p)(HANDLE, PBOOL) = (BOOL (WINAPI *)(HANDLE, PBOOL))(void *) GetProcAddress(GetModuleHandleA("kernel32.dll"), "IsWow64Process"); if (!IsWow64Process_p) return false; BOOL w64 = FALSE; if (!IsWow64Process_p(GetCurrentProcess(), &w64)) return false; return !!w64; } #endif // _WIN64 // Return info string about build host and OS version std::string win_smart_interface::get_os_version_str() { char vstr[sizeof(SMARTMONTOOLS_BUILD_HOST)-1+sizeof("-2003r2(64)-sp2.1")+13] = SMARTMONTOOLS_BUILD_HOST; if (vstr[1] < '6') vstr[1] = '6'; char * const vptr = vstr+sizeof(SMARTMONTOOLS_BUILD_HOST)-1; const int vlen = sizeof(vstr)-sizeof(SMARTMONTOOLS_BUILD_HOST); assert(vptr == vstr+strlen(vstr) && vptr+vlen+1 == vstr+sizeof(vstr)); // Starting with Windows 8.1, GetVersionEx() does no longer report the // actual OS version. RtlGetVersion() is not affected. LONG /*NTSTATUS*/ (WINAPI /*NTAPI*/ * RtlGetVersion_p)(LPOSVERSIONINFOEXW) = (LONG (WINAPI *)(LPOSVERSIONINFOEXW))(void *) GetProcAddress(GetModuleHandleA("ntdll.dll"), "RtlGetVersion"); OSVERSIONINFOEXW vi; memset(&vi, 0, sizeof(vi)); vi.dwOSVersionInfoSize = sizeof(vi); if (!RtlGetVersion_p || RtlGetVersion_p(&vi)) { if (!GetVersionExW((OSVERSIONINFOW *)&vi)) return vstr; } const char * w = 0; unsigned build = 0; if ( vi.dwPlatformId == VER_PLATFORM_WIN32_NT && vi.dwMajorVersion <= 0xf && vi.dwMinorVersion <= 0xf) { switch ( (vi.dwMajorVersion << 4 | vi.dwMinorVersion) << 1 | (vi.wProductType > VER_NT_WORKSTATION ? 1 : 0) ) { case 0x50<<1 : case 0x50<<1 | 1: w = "2000"; break; case 0x51<<1 : w = "xp"; break; case 0x52<<1 : w = "xp64"; break; case 0x52<<1 | 1: w = (!GetSystemMetrics(89/*SM_SERVERR2*/) ? "2003" : "2003r2"); break; case 0x60<<1 : w = "vista"; break; case 0x60<<1 | 1: w = "2008"; break; case 0x61<<1 : w = "win7"; break; case 0x61<<1 | 1: w = "2008r2"; break; case 0x62<<1 : w = "win8"; break; case 0x62<<1 | 1: w = "2012"; break; case 0x63<<1 : w = "win8.1"; break; case 0x63<<1 | 1: w = "2012r2"; break; case 0xa0<<1 : switch (vi.dwBuildNumber) { case 10240: w = "w10-1507"; break; case 10586: w = "w10-1511"; break; case 14393: w = "w10-1607"; break; case 15063: w = "w10-1703"; break; case 16299: w = "w10-1709"; break; case 17134: w = "w10-1803"; break; case 17763: w = "w10-1809"; break; case 18362: w = "w10-1903"; break; case 18363: w = "w10-1909"; break; case 19041: w = "w10-2004"; break; case 19042: w = "w10-20H2"; break; case 19043: w = "w10-21H1"; break; case 19044: w = "w10-21H2"; break; case 19045: w = "w10-22H2"; break; case 22000: w = "w11-21H2"; break; case 22621: w = "w11-22H2"; break; default: w = (vi.dwBuildNumber < 22000 ? "w10" : "w11"); build = vi.dwBuildNumber; break; } break; case 0xa0<<1 | 1: switch (vi.dwBuildNumber) { case 14393: w = "2016-1607"; break; case 16299: w = "2016-1709"; break; case 17134: w = "2016-1803"; break; case 17763: w = "2019-1809"; break; case 18362: w = "2019-1903"; break; case 18363: w = "2019-1909"; break; case 19041: w = "2019-2004"; break; case 19042: w = "2019-20H2"; break; case 20348: w = "2022-21H2"; break; default: w = (vi.dwBuildNumber < 17763 ? "2016" : vi.dwBuildNumber < 20348 ? "2019" : "2022"); build = vi.dwBuildNumber; break; } break; } } const char * w64 = ""; #ifndef _WIN64 if (is_wow64()) w64 = "(64)"; #endif if (!w) snprintf(vptr, vlen, "-%s%u.%u%s", (vi.dwPlatformId==VER_PLATFORM_WIN32_NT ? "nt" : "??"), (unsigned)vi.dwMajorVersion, (unsigned)vi.dwMinorVersion, w64); else if (build) snprintf(vptr, vlen, "-%s-b%u%s", w, build, w64); else if (vi.wServicePackMinor) snprintf(vptr, vlen, "-%s-sp%u.%u%s", w, vi.wServicePackMajor, vi.wServicePackMinor, w64); else if (vi.wServicePackMajor) snprintf(vptr, vlen, "-%s-sp%u%s", w, vi.wServicePackMajor, w64); else snprintf(vptr, vlen, "-%s%s", w, w64); return vstr; } ata_device * win_smart_interface::get_ata_device(const char * name, const char * type) { const char * testname = skipdev(name); if (!strncmp(testname, "csmi", 4)) return new win_csmi_device(this, name, type); if (!strncmp(testname, "tw_cli", 6)) return new win_tw_cli_device(this, name, type); return new win_ata_device(this, name, type); } scsi_device * win_smart_interface::get_scsi_device(const char * name, const char * type) { return new win_scsi_device(this, name, type); } nvme_device * win_smart_interface::get_nvme_device(const char * name, const char * type, unsigned nsid) { if (str_starts_with(skipdev(name), "nvme")) return new win_nvme_device(this, name, type, nsid); return new win10_nvme_device(this, name, type, nsid); } smart_device * win_smart_interface::get_custom_smart_device(const char * name, const char * type) { // Areca? int disknum = -1, n1 = -1, n2 = -1; int encnum = 1; char devpath[32]; if (sscanf(type, "areca,%n%d/%d%n", &n1, &disknum, &encnum, &n2) >= 1 || n1 == 6) { if (!(1 <= disknum && disknum <= 128)) { set_err(EINVAL, "Option -d areca,N/E (N=%d) must have 1 <= N <= 128", disknum); return 0; } if (!(1 <= encnum && encnum <= 8)) { set_err(EINVAL, "Option -d areca,N/E (E=%d) must have 1 <= E <= 8", encnum); return 0; } name = skipdev(name); #define ARECA_MAX_CTLR_NUM 16 n1 = -1; int ctlrindex = 0; if (sscanf(name, "arcmsr%d%n", &ctlrindex, &n1) >= 1 && n1 == (int)strlen(name)) { /* 1. scan from "\\\\.\\scsi[0]:" up to "\\\\.\\scsi[ARECA_MAX_CTLR_NUM]:" and 2. map arcmsrX into "\\\\.\\scsiX" */ for (int idx = 0; idx < ARECA_MAX_CTLR_NUM; idx++) { memset(devpath, 0, sizeof(devpath)); snprintf(devpath, sizeof(devpath), "\\\\.\\scsi%d:", idx); win_areca_ata_device *arcdev = new win_areca_ata_device(this, devpath, disknum, encnum); if(arcdev->arcmsr_probe()) { if(ctlrindex-- == 0) { return arcdev; } } delete arcdev; } set_err(ENOENT, "No Areca controller found"); } else set_err(EINVAL, "Option -d areca,N/E requires device name /dev/arcmsrX"); return 0; } // aacraid? unsigned ctrnum, lun, target; n1 = -1; n2 = -1; if ( sscanf(type, "aacraid,%u,%u,%u%n,force%n", &ctrnum, &lun, &target, &n1, &n2) >= 3 && (n1 == (int)strlen(type) || n2 == (int)strlen(type))) { if (n2 < 0) { set_err(ENOSYS, "smartmontools AACRAID support is reportedly broken on Windows.\n" "See https://www.smartmontools.org/ticket/1515 for details.\n" "Use '-d aacraid,H,L,ID,force' to try anyway at your own risk.\n" "If you could provide help to fix the problem, please inform\n" PACKAGE_BUGREPORT "\n"); return 0; } #define aacraid_MAX_CTLR_NUM 16 if (ctrnum >= aacraid_MAX_CTLR_NUM) { set_err(EINVAL, "aacraid: invalid host number %u", ctrnum); return 0; } /* 1. scan from "\\\\.\\scsi[0]:" up to "\\\\.\\scsi[AACRAID_MAX_CTLR_NUM]:" and 2. map ARCX into "\\\\.\\scsiX" */ memset(devpath, 0, sizeof(devpath)); unsigned ctlrindex = 0; for (int portNum = 0; portNum < aacraid_MAX_CTLR_NUM; portNum++){ char subKey[63]; snprintf(subKey, sizeof(subKey), "HARDWARE\\DEVICEMAP\\Scsi\\Scsi Port %d", portNum); HKEY hScsiKey = 0; long regStatus = RegOpenKeyExA(HKEY_LOCAL_MACHINE, subKey, 0, KEY_READ, &hScsiKey); if (regStatus == ERROR_SUCCESS){ char driverName[20]; DWORD driverNameSize = sizeof(driverName); DWORD regType = 0; regStatus = RegQueryValueExA(hScsiKey, "Driver", NULL, ®Type, (LPBYTE) driverName, &driverNameSize); if (regStatus == ERROR_SUCCESS){ if (regType == REG_SZ){ if (stricmp(driverName, "arcsas") == 0){ if(ctrnum == ctlrindex){ snprintf(devpath, sizeof(devpath), "\\\\.\\Scsi%d:", portNum); return get_sat_device("sat,auto", new win_aacraid_device(this, devpath, ctrnum, target, lun)); } ctlrindex++; } } } RegCloseKey(hScsiKey); } } set_err(EINVAL, "aacraid: host %u not found", ctrnum); return 0; } return 0; } std::string win_smart_interface::get_valid_custom_dev_types_str() { return "aacraid,H,L,ID, areca,N[/E]"; } // Return value for device detection functions enum win_dev_type { DEV_UNKNOWN = 0, DEV_ATA, DEV_SCSI, DEV_SAT, DEV_USB, DEV_NVME }; // Return true if ATA drive behind a SAT layer static bool is_sat(const STORAGE_DEVICE_DESCRIPTOR_DATA * data) { if (!data->desc.VendorIdOffset) return false; if (strcmp(data->raw + data->desc.VendorIdOffset, "ATA ")) return false; return true; } // Return true if Intel ICHxR RAID volume static bool is_intel_raid_volume(const STORAGE_DEVICE_DESCRIPTOR_DATA * data) { if (!(data->desc.VendorIdOffset && data->desc.ProductIdOffset)) return false; const char * vendor = data->raw + data->desc.VendorIdOffset; if (!(!strnicmp(vendor, "Intel", 5) && strspn(vendor+5, " ") == strlen(vendor+5))) return false; if (strnicmp(data->raw + data->desc.ProductIdOffset, "Raid ", 5)) return false; return true; } // get DEV_* for open handle static win_dev_type get_controller_type(HANDLE hdevice, bool admin, GETVERSIONINPARAMS_EX * ata_version_ex) { // Get BusType from device descriptor STORAGE_DEVICE_DESCRIPTOR_DATA data; if (storage_query_property_ioctl(hdevice, &data)) return DEV_UNKNOWN; // Newer BusType* values are missing in older includes switch ((int)data.desc.BusType) { case BusTypeAta: case 0x0b: // BusTypeSata // Certain Intel AHCI drivers (C600+/C220+) have broken // IOCTL_ATA_PASS_THROUGH support and a working SAT layer if (is_sat(&data)) return DEV_SAT; if (ata_version_ex) memset(ata_version_ex, 0, sizeof(*ata_version_ex)); return DEV_ATA; case BusTypeScsi: case BusTypeRAID: if (is_sat(&data)) return DEV_SAT; // Intel ICHxR RAID volume: reports SMART_GET_VERSION but does not support SMART_* if (is_intel_raid_volume(&data)) return DEV_SCSI; // LSI/3ware RAID volume: supports SMART_* if (admin && smart_get_version(hdevice, ata_version_ex) >= 0) return DEV_ATA; return DEV_SCSI; case 0x09: // BusTypeiScsi case 0x0a: // BusTypeSas if (is_sat(&data)) return DEV_SAT; return DEV_SCSI; case BusTypeUsb: return DEV_USB; case 0x11: // BusTypeNvme return DEV_NVME; case 0x12: //BusTypeSCM case 0x13: //BusTypeUfs case 0x14: //BusTypeMax, default: return DEV_UNKNOWN; } /*NOTREACHED*/ } // get DEV_* for device path static win_dev_type get_controller_type(const char * path, GETVERSIONINPARAMS_EX * ata_version_ex = 0) { bool admin = true; HANDLE h = CreateFileA(path, GENERIC_READ|GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL); if (h == INVALID_HANDLE_VALUE) { admin = false; h = CreateFileA(path, 0, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL); if (h == INVALID_HANDLE_VALUE) return DEV_UNKNOWN; } if (ata_debugmode > 1 || scsi_debugmode > 1) pout(" %s: successfully opened%s\n", path, (!admin ? " (without admin rights)" :"")); win_dev_type type = get_controller_type(h, admin, ata_version_ex); CloseHandle(h); return type; } // get DEV_* for physical drive number static win_dev_type get_phy_drive_type(int drive, GETVERSIONINPARAMS_EX * ata_version_ex) { char path[30]; snprintf(path, sizeof(path)-1, "\\\\.\\PhysicalDrive%d", drive); return get_controller_type(path, ata_version_ex); } static win_dev_type get_phy_drive_type(int drive) { return get_phy_drive_type(drive, 0); } // get DEV_* for logical drive number static win_dev_type get_log_drive_type(int drive) { char path[30]; snprintf(path, sizeof(path)-1, "\\\\.\\%c:", 'A'+drive); return get_controller_type(path); } static win_dev_type get_dev_type(const char * name, int & phydrive, int & logdrive) { phydrive = logdrive = -1; name = skipdev(name); if (!strncmp(name, "st", 2)) return DEV_SCSI; if (!strncmp(name, "nst", 3)) return DEV_SCSI; if (!strncmp(name, "tape", 4)) return DEV_SCSI; logdrive = drive_letter(name); if (logdrive >= 0) { win_dev_type type = get_log_drive_type(logdrive); return (type != DEV_UNKNOWN ? type : DEV_SCSI); } char drive[2+1] = ""; if (sscanf(name, "sd%2[a-z]", drive) == 1) { phydrive = sdxy_to_phydrive(drive); return get_phy_drive_type(phydrive); } if (sscanf(name, "pd%d", &phydrive) == 1 && phydrive >= 0) return get_phy_drive_type(phydrive); return DEV_UNKNOWN; } smart_device * win_smart_interface::get_usb_device(const char * name, int phydrive, int logdrive /* = -1 */) { // Get USB bridge ID unsigned short vendor_id = 0, product_id = 0; if (!get_usb_id(phydrive, logdrive, vendor_id, product_id)) { set_err(EINVAL, "Unable to read USB device ID"); return 0; } // Get type name for this ID const char * usbtype = get_usb_dev_type_by_id(vendor_id, product_id); if (!usbtype) return 0; // Return SAT/USB device for this type return get_scsi_passthrough_device(usbtype, new win_scsi_device(this, name, "")); } smart_device * win_smart_interface::autodetect_smart_device(const char * name) { const char * testname = skipdev(name); if (str_starts_with(testname, "hd")) return new win_ata_device(this, name, ""); if (str_starts_with(testname, "tw_cli")) return new win_tw_cli_device(this, name, ""); if (str_starts_with(testname, "csmi")) return new win_csmi_device(this, name, ""); if (str_starts_with(testname, "nvme")) return new win_nvme_device(this, name, "", 0 /* use default nsid */); int phydrive = -1, logdrive = -1; win_dev_type type = get_dev_type(name, phydrive, logdrive); if (type == DEV_ATA) return new win_ata_device(this, name, ""); if (type == DEV_SCSI) return new win_scsi_device(this, name, ""); if (type == DEV_SAT) return get_sat_device("sat", new win_scsi_device(this, name, "")); if (type == DEV_USB) return get_usb_device(name, phydrive, logdrive); if (type == DEV_NVME) return new win10_nvme_device(this, name, "", 0 /* use default nsid */); return 0; } // Scan for devices bool win_smart_interface::scan_smart_devices(smart_device_list & devlist, const char * type, const char * pattern /* = 0*/) { if (pattern) { set_err(EINVAL, "DEVICESCAN with pattern not implemented yet"); return false; } // Check for "[*,]pd" type bool pd = false; char type2[16+1] = ""; if (type) { int nc = -1; if (!strcmp(type, "pd")) { pd = true; type = 0; } else if (sscanf(type, "%16[^,],pd%n", type2, &nc) == 1 && nc == (int)strlen(type)) { pd = true; type = type2; } } // Set valid types bool ata, scsi, sat, usb, csmi, nvme; if (!type) { ata = scsi = usb = sat = csmi = true; #ifdef WITH_NVME_DEVICESCAN // TODO: Remove when NVMe support is no longer EXPERIMENTAL nvme = true; #else nvme = false; #endif } else { ata = scsi = usb = sat = csmi = nvme = false; if (!strcmp(type, "ata")) ata = true; else if (!strcmp(type, "scsi")) scsi = true; else if (!strcmp(type, "sat")) sat = true; else if (!strcmp(type, "usb")) usb = true; else if (!strcmp(type, "csmi")) csmi = true; else if (!strcmp(type, "nvme")) nvme = true; else { set_err(EINVAL, "Invalid type '%s', valid arguments are: ata[,pd], scsi[,pd], " "sat[,pd], usb[,pd], csmi, nvme, pd", type); return false; } } char name[32]; if (ata || scsi || sat || usb || nvme) { // Scan up to 128 drives and 2 3ware controllers const int max_raid = 2; bool raid_seen[max_raid] = {false, false}; for (int i = 0; i < 128; i++) { if (pd) snprintf(name, sizeof(name), "/dev/pd%d", i); else if (i + 'a' <= 'z') snprintf(name, sizeof(name), "/dev/sd%c", i + 'a'); else snprintf(name, sizeof(name), "/dev/sd%c%c", i / ('z'-'a'+1) - 1 + 'a', i % ('z'-'a'+1) + 'a'); smart_device * dev = 0; GETVERSIONINPARAMS_EX vers_ex; switch (get_phy_drive_type(i, (ata ? &vers_ex : 0))) { case DEV_ATA: // Driver supports SMART_GET_VERSION or STORAGE_QUERY_PROPERTY returned ATA/SATA if (!ata) continue; // Interpret RAID drive map if present if (vers_ex.wIdentifier == SMART_VENDOR_3WARE) { // Skip if too many controllers or logical drive from this controller already seen if (!(vers_ex.wControllerId < max_raid && !raid_seen[vers_ex.wControllerId])) continue; raid_seen[vers_ex.wControllerId] = true; // Add physical drives int len = strlen(name); for (unsigned int pi = 0; pi < 32; pi++) { if (vers_ex.dwDeviceMapEx & (1U << pi)) { snprintf(name+len, sizeof(name)-1-len, ",%u", pi); devlist.push_back( new win_ata_device(this, name, "ata") ); } } continue; } dev = new win_ata_device(this, name, "ata"); break; case DEV_SCSI: // STORAGE_QUERY_PROPERTY returned SCSI/SAS/... if (!scsi) continue; dev = new win_scsi_device(this, name, "scsi"); break; case DEV_SAT: // STORAGE_QUERY_PROPERTY returned VendorId "ATA " if (!sat) continue; dev = get_sat_device("sat", new win_scsi_device(this, name, "")); break; case DEV_USB: // STORAGE_QUERY_PROPERTY returned USB if (!usb) continue; dev = get_usb_device(name, i); if (!dev) // Unknown or unsupported USB ID, return as SCSI dev = new win_scsi_device(this, name, ""); break; case DEV_NVME: // STORAGE_QUERY_PROPERTY returned NVMe if (!nvme) continue; dev = new win10_nvme_device(this, name, "", 0 /* use default nsid */); break; default: // Unknown type continue; } devlist.push_back(dev); } } if (csmi) { // Scan CSMI devices for (int i = 0; i <= 9; i++) { snprintf(name, sizeof(name)-1, "/dev/csmi%d,0", i); win_csmi_device test_dev(this, name, ""); if (!test_dev.open_scsi()) continue; unsigned ports_used = test_dev.get_ports_used(); if (!ports_used) continue; for (int pi = 0; pi < 32; pi++) { if (!(ports_used & (1U << pi))) continue; snprintf(name, sizeof(name)-1, "/dev/csmi%d,%d", i, pi); devlist.push_back( new win_csmi_device(this, name, "ata") ); } } } if (nvme) { // Scan \\.\Scsi[0-31] for up to 10 NVMe devices int nvme_cnt = 0; for (int i = 0; i < 32; i++) { snprintf(name, sizeof(name)-1, "/dev/nvme%d", i); win_nvme_device test_dev(this, name, "", 0); if (!test_dev.open_scsi(i)) { if (test_dev.get_errno() == EACCES) break; continue; } if (!test_dev.probe()) continue; if (++nvme_cnt >= 10) break; } for (int i = 0; i < nvme_cnt; i++) { snprintf(name, sizeof(name)-1, "/dev/nvme%d", i); devlist.push_back( new win_nvme_device(this, name, "nvme", 0) ); } } return true; } // get examples for smartctl std::string win_smart_interface::get_app_examples(const char * appname) { if (strcmp(appname, "smartctl")) return ""; return "=================================================== SMARTCTL EXAMPLES =====\n\n" " smartctl -a /dev/sda (Prints all SMART information)\n\n" " smartctl --smart=on --offlineauto=on --saveauto=on /dev/sda\n" " (Enables SMART on first disk)\n\n" " smartctl -t long /dev/sda (Executes extended disk self-test)\n\n" " smartctl --attributes --log=selftest --quietmode=errorsonly /dev/sda\n" " (Prints Self-Test & Attribute errors)\n" " smartctl -a /dev/sda\n" " (Prints all information for disk on PhysicalDrive 0)\n" " smartctl -a /dev/pd3\n" " (Prints all information for disk on PhysicalDrive 3)\n" " smartctl -a /dev/tape1\n" " (Prints all information for SCSI tape on Tape 1)\n" " smartctl -A /dev/hdb,3\n" " (Prints Attributes for physical drive 3 on 3ware 9000 RAID)\n" " smartctl -A /dev/tw_cli/c0/p1\n" " (Prints Attributes for 3ware controller 0, port 1 using tw_cli)\n" " smartctl --all --device=areca,3/1 /dev/arcmsr0\n" " (Prints all SMART info for 3rd ATA disk of the 1st enclosure\n" " on 1st Areca RAID controller)\n" "\n" " ATA SMART access methods and ordering may be specified by modifiers\n" " following the device name: /dev/hdX:[saicm], where\n" " 's': SMART_* IOCTLs, 'a': IOCTL_ATA_PASS_THROUGH,\n" " 'i': IOCTL_IDE_PASS_THROUGH, 'f': IOCTL_STORAGE_*,\n" " 'm': IOCTL_SCSI_MINIPORT_*.\n" + strprintf( " The default on this system is /dev/sdX:%s\n", ata_get_def_options() ); } bool win_smart_interface::disable_system_auto_standby(bool disable) { if (disable) { SYSTEM_POWER_STATUS ps; if (!GetSystemPowerStatus(&ps)) return set_err(ENOSYS, "Unknown power status"); if (ps.ACLineStatus != 1) { SetThreadExecutionState(ES_CONTINUOUS); if (ps.ACLineStatus == 0) set_err(EIO, "AC offline"); else set_err(EIO, "Unknown AC line status"); return false; } } if (!SetThreadExecutionState(ES_CONTINUOUS | (disable ? ES_SYSTEM_REQUIRED : 0))) return set_err(ENOSYS); return true; } } // namespace ///////////////////////////////////////////////////////////////////////////// // Initialize platform interface and register with smi() void smart_interface::init() { { // Remove "." from DLL search path if supported // to prevent DLL preloading attacks BOOL (WINAPI * SetDllDirectoryA_p)(LPCSTR) = (BOOL (WINAPI *)(LPCSTR))(void *) GetProcAddress(GetModuleHandleA("kernel32.dll"), "SetDllDirectoryA"); if (SetDllDirectoryA_p) SetDllDirectoryA_p(""); } static os_win32::win_smart_interface the_win_interface; smart_interface::set(&the_win_interface); } #ifndef __CYGWIN__ // Get exe directory // (prototype in utiliy.h) std::string get_exe_dir() { char path[MAX_PATH]; // Get path of this exe if (!GetModuleFileNameA(GetModuleHandleA(0), path, sizeof(path))) throw std::runtime_error("GetModuleFileName() failed"); // Replace backslash by slash int sl = -1; for (int i = 0; path[i]; i++) if (path[i] == '\\') { path[i] = '/'; sl = i; } // Remove filename if (sl >= 0) path[sl] = 0; return path; } #endif