1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
|
#ifndef SG_UNALIGNED_H
#define SG_UNALIGNED_H
/*
* Copyright (c) 2014-2018 Douglas Gilbert.
* All rights reserved.
* Use of this source code is governed by a BSD-style
* license that can be found in the BSD_LICENSE file.
*/
#include <stdbool.h>
#include <stdint.h> /* for uint8_t and friends */
#include <string.h> /* for memcpy */
#ifdef __cplusplus
extern "C" {
#endif
/* These inline functions convert integers (always unsigned) to byte streams
* and vice versa. They have two goals:
* - change the byte ordering of integers between host order and big
* endian ("_be") or little endian ("_le")
* - copy the big or little endian byte stream so it complies with any
* alignment that host integers require
*
* Host integer to given endian byte stream is a "_put_" function taking
* two arguments (integer and pointer to byte stream) returning void.
* Given endian byte stream to host integer is a "_get_" function that takes
* one argument and returns an integer of appropriate size (uint32_t for 24
* bit operations, uint64_t for 48 bit operations).
*
* Big endian byte format "on the wire" is the default used by SCSI
* standards (www.t10.org). Big endian is also the network byte order.
* Little endian is used by ATA, PCI and NVMe.
*/
/* The generic form of these routines was borrowed from the Linux kernel,
* via mhvtl. There is a specialised version of the main functions for
* little endian or big endian provided that not-quite-standard defines for
* endianness are available from the compiler and the <byteswap.h> header
* (a GNU extension) has been detected by ./configure . To force the
* generic version, use './configure --disable-fast-lebe ' . */
/* Note: Assumes that the source and destination locations do not overlap.
* An example of overlapping source and destination:
* sg_put_unaligned_le64(j, ((uint8_t *)&j) + 1);
* Best not to do things like that.
*/
#ifdef HAVE_CONFIG_H
#include "config.h" /* need this to see if HAVE_BYTESWAP_H */
#endif
#undef GOT_UNALIGNED_SPECIALS /* just in case */
#if defined(__BYTE_ORDER__) && defined(HAVE_BYTESWAP_H) && \
! defined(IGNORE_FAST_LEBE)
#if defined(__LITTLE_ENDIAN__) || (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
#define GOT_UNALIGNED_SPECIALS 1
#include <byteswap.h> /* for bswap_16(), bswap_32() and bswap_64() */
// #warning ">>>>>> Doing Little endian special unaligneds"
static inline uint16_t sg_get_unaligned_be16(const void *p)
{
uint16_t u;
memcpy(&u, p, 2);
return bswap_16(u);
}
static inline uint32_t sg_get_unaligned_be32(const void *p)
{
uint32_t u;
memcpy(&u, p, 4);
return bswap_32(u);
}
static inline uint64_t sg_get_unaligned_be64(const void *p)
{
uint64_t u;
memcpy(&u, p, 8);
return bswap_64(u);
}
static inline void sg_put_unaligned_be16(uint16_t val, void *p)
{
uint16_t u = bswap_16(val);
memcpy(p, &u, 2);
}
static inline void sg_put_unaligned_be32(uint32_t val, void *p)
{
uint32_t u = bswap_32(val);
memcpy(p, &u, 4);
}
static inline void sg_put_unaligned_be64(uint64_t val, void *p)
{
uint64_t u = bswap_64(val);
memcpy(p, &u, 8);
}
static inline uint16_t sg_get_unaligned_le16(const void *p)
{
uint16_t u;
memcpy(&u, p, 2);
return u;
}
static inline uint32_t sg_get_unaligned_le32(const void *p)
{
uint32_t u;
memcpy(&u, p, 4);
return u;
}
static inline uint64_t sg_get_unaligned_le64(const void *p)
{
uint64_t u;
memcpy(&u, p, 8);
return u;
}
static inline void sg_put_unaligned_le16(uint16_t val, void *p)
{
memcpy(p, &val, 2);
}
static inline void sg_put_unaligned_le32(uint32_t val, void *p)
{
memcpy(p, &val, 4);
}
static inline void sg_put_unaligned_le64(uint64_t val, void *p)
{
memcpy(p, &val, 8);
}
#elif defined(__BIG_ENDIAN__) || (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
#define GOT_UNALIGNED_SPECIALS 1
#include <byteswap.h>
// #warning ">>>>>> Doing BIG endian special unaligneds"
static inline uint16_t sg_get_unaligned_le16(const void *p)
{
uint16_t u;
memcpy(&u, p, 2);
return bswap_16(u);
}
static inline uint32_t sg_get_unaligned_le32(const void *p)
{
uint32_t u;
memcpy(&u, p, 4);
return bswap_32(u);
}
static inline uint64_t sg_get_unaligned_le64(const void *p)
{
uint64_t u;
memcpy(&u, p, 8);
return bswap_64(u);
}
static inline void sg_put_unaligned_le16(uint16_t val, void *p)
{
uint16_t u = bswap_16(val);
memcpy(p, &u, 2);
}
static inline void sg_put_unaligned_le32(uint32_t val, void *p)
{
uint32_t u = bswap_32(val);
memcpy(p, &u, 4);
}
static inline void sg_put_unaligned_le64(uint64_t val, void *p)
{
uint64_t u = bswap_64(val);
memcpy(p, &u, 8);
}
static inline uint16_t sg_get_unaligned_be16(const void *p)
{
uint16_t u;
memcpy(&u, p, 2);
return u;
}
static inline uint32_t sg_get_unaligned_be32(const void *p)
{
uint32_t u;
memcpy(&u, p, 4);
return u;
}
static inline uint64_t sg_get_unaligned_be64(const void *p)
{
uint64_t u;
memcpy(&u, p, 8);
return u;
}
static inline void sg_put_unaligned_be16(uint16_t val, void *p)
{
memcpy(p, &val, 2);
}
static inline void sg_put_unaligned_be32(uint32_t val, void *p)
{
memcpy(p, &val, 4);
}
static inline void sg_put_unaligned_be64(uint64_t val, void *p)
{
memcpy(p, &val, 8);
}
#endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ */
#endif /* #if defined __BYTE_ORDER__ && defined <byteswap.h> &&
* ! defined IGNORE_FAST_LEBE */
#ifndef GOT_UNALIGNED_SPECIALS
/* Now we have no tricks left, so use the only way this can be done
* correctly in C safely: lots of shifts. */
// #warning ">>>>>> Doing GENERIC unaligneds"
static inline uint16_t sg_get_unaligned_be16(const void *p)
{
return ((const uint8_t *)p)[0] << 8 | ((const uint8_t *)p)[1];
}
static inline uint32_t sg_get_unaligned_be32(const void *p)
{
return ((const uint8_t *)p)[0] << 24 | ((const uint8_t *)p)[1] << 16 |
((const uint8_t *)p)[2] << 8 | ((const uint8_t *)p)[3];
}
static inline uint64_t sg_get_unaligned_be64(const void *p)
{
return (uint64_t)sg_get_unaligned_be32(p) << 32 |
sg_get_unaligned_be32((const uint8_t *)p + 4);
}
static inline void sg_put_unaligned_be16(uint16_t val, void *p)
{
((uint8_t *)p)[0] = (uint8_t)(val >> 8);
((uint8_t *)p)[1] = (uint8_t)val;
}
static inline void sg_put_unaligned_be32(uint32_t val, void *p)
{
sg_put_unaligned_be16(val >> 16, p);
sg_put_unaligned_be16(val, (uint8_t *)p + 2);
}
static inline void sg_put_unaligned_be64(uint64_t val, void *p)
{
sg_put_unaligned_be32(val >> 32, p);
sg_put_unaligned_be32(val, (uint8_t *)p + 4);
}
static inline uint16_t sg_get_unaligned_le16(const void *p)
{
return ((const uint8_t *)p)[1] << 8 | ((const uint8_t *)p)[0];
}
static inline uint32_t sg_get_unaligned_le32(const void *p)
{
return ((const uint8_t *)p)[3] << 24 | ((const uint8_t *)p)[2] << 16 |
((const uint8_t *)p)[1] << 8 | ((const uint8_t *)p)[0];
}
static inline uint64_t sg_get_unaligned_le64(const void *p)
{
return (uint64_t)sg_get_unaligned_le32((const uint8_t *)p + 4) << 32 |
sg_get_unaligned_le32(p);
}
static inline void sg_put_unaligned_le16(uint16_t val, void *p)
{
((uint8_t *)p)[0] = val & 0xff;
((uint8_t *)p)[1] = val >> 8;
}
static inline void sg_put_unaligned_le32(uint32_t val, void *p)
{
sg_put_unaligned_le16(val >> 16, (uint8_t *)p + 2);
sg_put_unaligned_le16(val, p);
}
static inline void sg_put_unaligned_le64(uint64_t val, void *p)
{
sg_put_unaligned_le32(val >> 32, (uint8_t *)p + 4);
sg_put_unaligned_le32(val, p);
}
#endif /* #ifndef GOT_UNALIGNED_SPECIALS */
/* Following are lesser used conversions that don't have specializations
* for endianness; big endian first. In summary these are the 24, 48 bit and
* given-length conversions plus the "nz" conditional put conversions. */
/* Now big endian, get 24+48 then put 24+48 */
static inline uint32_t sg_get_unaligned_be24(const void *p)
{
return ((const uint8_t *)p)[0] << 16 | ((const uint8_t *)p)[1] << 8 |
((const uint8_t *)p)[2];
}
/* Assume 48 bit value placed in uint64_t */
static inline uint64_t sg_get_unaligned_be48(const void *p)
{
return (uint64_t)sg_get_unaligned_be16(p) << 32 |
sg_get_unaligned_be32((const uint8_t *)p + 2);
}
/* Returns 0 if 'num_bytes' is less than or equal to 0 or greater than
* 8 (i.e. sizeof(uint64_t)). Else returns result in uint64_t which is
* an 8 byte unsigned integer. */
static inline uint64_t sg_get_unaligned_be(int num_bytes, const void *p)
{
if ((num_bytes <= 0) || (num_bytes > (int)sizeof(uint64_t)))
return 0;
else {
const uint8_t * xp = (const uint8_t *)p;
uint64_t res = *xp;
for (++xp; num_bytes > 1; ++xp, --num_bytes)
res = (res << 8) | *xp;
return res;
}
}
static inline void sg_put_unaligned_be24(uint32_t val, void *p)
{
((uint8_t *)p)[0] = (val >> 16) & 0xff;
((uint8_t *)p)[1] = (val >> 8) & 0xff;
((uint8_t *)p)[2] = val & 0xff;
}
/* Assume 48 bit value placed in uint64_t */
static inline void sg_put_unaligned_be48(uint64_t val, void *p)
{
sg_put_unaligned_be16(val >> 32, p);
sg_put_unaligned_be32(val, (uint8_t *)p + 2);
}
/* Now little endian, get 24+48 then put 24+48 */
static inline uint32_t sg_get_unaligned_le24(const void *p)
{
return (uint32_t)sg_get_unaligned_le16(p) |
((const uint8_t *)p)[2] << 16;
}
/* Assume 48 bit value placed in uint64_t */
static inline uint64_t sg_get_unaligned_le48(const void *p)
{
return (uint64_t)sg_get_unaligned_le16((const uint8_t *)p + 4) << 32 |
sg_get_unaligned_le32(p);
}
static inline void sg_put_unaligned_le24(uint32_t val, void *p)
{
((uint8_t *)p)[2] = (val >> 16) & 0xff;
((uint8_t *)p)[1] = (val >> 8) & 0xff;
((uint8_t *)p)[0] = val & 0xff;
}
/* Assume 48 bit value placed in uint64_t */
static inline void sg_put_unaligned_le48(uint64_t val, void *p)
{
((uint8_t *)p)[5] = (val >> 40) & 0xff;
((uint8_t *)p)[4] = (val >> 32) & 0xff;
((uint8_t *)p)[3] = (val >> 24) & 0xff;
((uint8_t *)p)[2] = (val >> 16) & 0xff;
((uint8_t *)p)[1] = (val >> 8) & 0xff;
((uint8_t *)p)[0] = val & 0xff;
}
/* Returns 0 if 'num_bytes' is less than or equal to 0 or greater than
* 8 (i.e. sizeof(uint64_t)). Else returns result in uint64_t which is
* an 8 byte unsigned integer. */
static inline uint64_t sg_get_unaligned_le(int num_bytes, const void *p)
{
if ((num_bytes <= 0) || (num_bytes > (int)sizeof(uint64_t)))
return 0;
else {
const uint8_t * xp = (const uint8_t *)p + (num_bytes - 1);
uint64_t res = *xp;
for (--xp; num_bytes > 1; --xp, --num_bytes)
res = (res << 8) | *xp;
return res;
}
}
/* Since cdb and parameter blocks are often memset to zero before these
* unaligned function partially fill them, then check for a val of zero
* and ignore if it is with these variants. First big endian, then little */
static inline void sg_nz_put_unaligned_be16(uint16_t val, void *p)
{
if (val)
sg_put_unaligned_be16(val, p);
}
static inline void sg_nz_put_unaligned_be24(uint32_t val, void *p)
{
if (val) {
((uint8_t *)p)[0] = (val >> 16) & 0xff;
((uint8_t *)p)[1] = (val >> 8) & 0xff;
((uint8_t *)p)[2] = val & 0xff;
}
}
static inline void sg_nz_put_unaligned_be32(uint32_t val, void *p)
{
if (val)
sg_put_unaligned_be32(val, p);
}
static inline void sg_nz_put_unaligned_be64(uint64_t val, void *p)
{
if (val)
sg_put_unaligned_be64(val, p);
}
static inline void sg_nz_put_unaligned_le16(uint16_t val, void *p)
{
if (val)
sg_put_unaligned_le16(val, p);
}
static inline void sg_nz_put_unaligned_le24(uint32_t val, void *p)
{
if (val) {
((uint8_t *)p)[2] = (val >> 16) & 0xff;
((uint8_t *)p)[1] = (val >> 8) & 0xff;
((uint8_t *)p)[0] = val & 0xff;
}
}
static inline void sg_nz_put_unaligned_le32(uint32_t val, void *p)
{
if (val)
sg_put_unaligned_le32(val, p);
}
static inline void sg_nz_put_unaligned_le64(uint64_t val, void *p)
{
if (val)
sg_put_unaligned_le64(val, p);
}
#ifdef __cplusplus
}
#endif
#endif /* SG_UNALIGNED_H */
|