summaryrefslogtreecommitdiffstats
path: root/src/date.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 14:07:11 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 14:07:11 +0000
commit63847496f14c813a5d80efd5b7de0f1294ffe1e3 (patch)
tree01c7571c7c762ceee70638549a99834fdd7c411b /src/date.c
parentInitial commit. (diff)
downloadsqlite3-63847496f14c813a5d80efd5b7de0f1294ffe1e3.tar.xz
sqlite3-63847496f14c813a5d80efd5b7de0f1294ffe1e3.zip
Adding upstream version 3.45.1.upstream/3.45.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/date.c')
-rw-r--r--src/date.c1624
1 files changed, 1624 insertions, 0 deletions
diff --git a/src/date.c b/src/date.c
new file mode 100644
index 0000000..e493542
--- /dev/null
+++ b/src/date.c
@@ -0,0 +1,1624 @@
+/*
+** 2003 October 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement date and time
+** functions for SQLite.
+**
+** There is only one exported symbol in this file - the function
+** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
+** All other code has file scope.
+**
+** SQLite processes all times and dates as julian day numbers. The
+** dates and times are stored as the number of days since noon
+** in Greenwich on November 24, 4714 B.C. according to the Gregorian
+** calendar system.
+**
+** 1970-01-01 00:00:00 is JD 2440587.5
+** 2000-01-01 00:00:00 is JD 2451544.5
+**
+** This implementation requires years to be expressed as a 4-digit number
+** which means that only dates between 0000-01-01 and 9999-12-31 can
+** be represented, even though julian day numbers allow a much wider
+** range of dates.
+**
+** The Gregorian calendar system is used for all dates and times,
+** even those that predate the Gregorian calendar. Historians usually
+** use the julian calendar for dates prior to 1582-10-15 and for some
+** dates afterwards, depending on locale. Beware of this difference.
+**
+** The conversion algorithms are implemented based on descriptions
+** in the following text:
+**
+** Jean Meeus
+** Astronomical Algorithms, 2nd Edition, 1998
+** ISBN 0-943396-61-1
+** Willmann-Bell, Inc
+** Richmond, Virginia (USA)
+*/
+#include "sqliteInt.h"
+#include <stdlib.h>
+#include <assert.h>
+#include <time.h>
+
+#ifndef SQLITE_OMIT_DATETIME_FUNCS
+
+/*
+** The MSVC CRT on Windows CE may not have a localtime() function.
+** So declare a substitute. The substitute function itself is
+** defined in "os_win.c".
+*/
+#if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \
+ (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API)
+struct tm *__cdecl localtime(const time_t *);
+#endif
+
+/*
+** A structure for holding a single date and time.
+*/
+typedef struct DateTime DateTime;
+struct DateTime {
+ sqlite3_int64 iJD; /* The julian day number times 86400000 */
+ int Y, M, D; /* Year, month, and day */
+ int h, m; /* Hour and minutes */
+ int tz; /* Timezone offset in minutes */
+ double s; /* Seconds */
+ char validJD; /* True (1) if iJD is valid */
+ char rawS; /* Raw numeric value stored in s */
+ char validYMD; /* True (1) if Y,M,D are valid */
+ char validHMS; /* True (1) if h,m,s are valid */
+ char validTZ; /* True (1) if tz is valid */
+ char tzSet; /* Timezone was set explicitly */
+ char isError; /* An overflow has occurred */
+ char useSubsec; /* Display subsecond precision */
+};
+
+
+/*
+** Convert zDate into one or more integers according to the conversion
+** specifier zFormat.
+**
+** zFormat[] contains 4 characters for each integer converted, except for
+** the last integer which is specified by three characters. The meaning
+** of a four-character format specifiers ABCD is:
+**
+** A: number of digits to convert. Always "2" or "4".
+** B: minimum value. Always "0" or "1".
+** C: maximum value, decoded as:
+** a: 12
+** b: 14
+** c: 24
+** d: 31
+** e: 59
+** f: 9999
+** D: the separator character, or \000 to indicate this is the
+** last number to convert.
+**
+** Example: To translate an ISO-8601 date YYYY-MM-DD, the format would
+** be "40f-21a-20c". The "40f-" indicates the 4-digit year followed by "-".
+** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates
+** the 2-digit day which is the last integer in the set.
+**
+** The function returns the number of successful conversions.
+*/
+static int getDigits(const char *zDate, const char *zFormat, ...){
+ /* The aMx[] array translates the 3rd character of each format
+ ** spec into a max size: a b c d e f */
+ static const u16 aMx[] = { 12, 14, 24, 31, 59, 14712 };
+ va_list ap;
+ int cnt = 0;
+ char nextC;
+ va_start(ap, zFormat);
+ do{
+ char N = zFormat[0] - '0';
+ char min = zFormat[1] - '0';
+ int val = 0;
+ u16 max;
+
+ assert( zFormat[2]>='a' && zFormat[2]<='f' );
+ max = aMx[zFormat[2] - 'a'];
+ nextC = zFormat[3];
+ val = 0;
+ while( N-- ){
+ if( !sqlite3Isdigit(*zDate) ){
+ goto end_getDigits;
+ }
+ val = val*10 + *zDate - '0';
+ zDate++;
+ }
+ if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){
+ goto end_getDigits;
+ }
+ *va_arg(ap,int*) = val;
+ zDate++;
+ cnt++;
+ zFormat += 4;
+ }while( nextC );
+end_getDigits:
+ va_end(ap);
+ return cnt;
+}
+
+/*
+** Parse a timezone extension on the end of a date-time.
+** The extension is of the form:
+**
+** (+/-)HH:MM
+**
+** Or the "zulu" notation:
+**
+** Z
+**
+** If the parse is successful, write the number of minutes
+** of change in p->tz and return 0. If a parser error occurs,
+** return non-zero.
+**
+** A missing specifier is not considered an error.
+*/
+static int parseTimezone(const char *zDate, DateTime *p){
+ int sgn = 0;
+ int nHr, nMn;
+ int c;
+ while( sqlite3Isspace(*zDate) ){ zDate++; }
+ p->tz = 0;
+ c = *zDate;
+ if( c=='-' ){
+ sgn = -1;
+ }else if( c=='+' ){
+ sgn = +1;
+ }else if( c=='Z' || c=='z' ){
+ zDate++;
+ goto zulu_time;
+ }else{
+ return c!=0;
+ }
+ zDate++;
+ if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){
+ return 1;
+ }
+ zDate += 5;
+ p->tz = sgn*(nMn + nHr*60);
+zulu_time:
+ while( sqlite3Isspace(*zDate) ){ zDate++; }
+ p->tzSet = 1;
+ return *zDate!=0;
+}
+
+/*
+** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
+** The HH, MM, and SS must each be exactly 2 digits. The
+** fractional seconds FFFF can be one or more digits.
+**
+** Return 1 if there is a parsing error and 0 on success.
+*/
+static int parseHhMmSs(const char *zDate, DateTime *p){
+ int h, m, s;
+ double ms = 0.0;
+ if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){
+ return 1;
+ }
+ zDate += 5;
+ if( *zDate==':' ){
+ zDate++;
+ if( getDigits(zDate, "20e", &s)!=1 ){
+ return 1;
+ }
+ zDate += 2;
+ if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){
+ double rScale = 1.0;
+ zDate++;
+ while( sqlite3Isdigit(*zDate) ){
+ ms = ms*10.0 + *zDate - '0';
+ rScale *= 10.0;
+ zDate++;
+ }
+ ms /= rScale;
+ }
+ }else{
+ s = 0;
+ }
+ p->validJD = 0;
+ p->rawS = 0;
+ p->validHMS = 1;
+ p->h = h;
+ p->m = m;
+ p->s = s + ms;
+ if( parseTimezone(zDate, p) ) return 1;
+ p->validTZ = (p->tz!=0)?1:0;
+ return 0;
+}
+
+/*
+** Put the DateTime object into its error state.
+*/
+static void datetimeError(DateTime *p){
+ memset(p, 0, sizeof(*p));
+ p->isError = 1;
+}
+
+/*
+** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
+** that the YYYY-MM-DD is according to the Gregorian calendar.
+**
+** Reference: Meeus page 61
+*/
+static void computeJD(DateTime *p){
+ int Y, M, D, A, B, X1, X2;
+
+ if( p->validJD ) return;
+ if( p->validYMD ){
+ Y = p->Y;
+ M = p->M;
+ D = p->D;
+ }else{
+ Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */
+ M = 1;
+ D = 1;
+ }
+ if( Y<-4713 || Y>9999 || p->rawS ){
+ datetimeError(p);
+ return;
+ }
+ if( M<=2 ){
+ Y--;
+ M += 12;
+ }
+ A = Y/100;
+ B = 2 - A + (A/4);
+ X1 = 36525*(Y+4716)/100;
+ X2 = 306001*(M+1)/10000;
+ p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000);
+ p->validJD = 1;
+ if( p->validHMS ){
+ p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000 + 0.5);
+ if( p->validTZ ){
+ p->iJD -= p->tz*60000;
+ p->validYMD = 0;
+ p->validHMS = 0;
+ p->validTZ = 0;
+ }
+ }
+}
+
+/*
+** Parse dates of the form
+**
+** YYYY-MM-DD HH:MM:SS.FFF
+** YYYY-MM-DD HH:MM:SS
+** YYYY-MM-DD HH:MM
+** YYYY-MM-DD
+**
+** Write the result into the DateTime structure and return 0
+** on success and 1 if the input string is not a well-formed
+** date.
+*/
+static int parseYyyyMmDd(const char *zDate, DateTime *p){
+ int Y, M, D, neg;
+
+ if( zDate[0]=='-' ){
+ zDate++;
+ neg = 1;
+ }else{
+ neg = 0;
+ }
+ if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){
+ return 1;
+ }
+ zDate += 10;
+ while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; }
+ if( parseHhMmSs(zDate, p)==0 ){
+ /* We got the time */
+ }else if( *zDate==0 ){
+ p->validHMS = 0;
+ }else{
+ return 1;
+ }
+ p->validJD = 0;
+ p->validYMD = 1;
+ p->Y = neg ? -Y : Y;
+ p->M = M;
+ p->D = D;
+ if( p->validTZ ){
+ computeJD(p);
+ }
+ return 0;
+}
+
+/*
+** Set the time to the current time reported by the VFS.
+**
+** Return the number of errors.
+*/
+static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){
+ p->iJD = sqlite3StmtCurrentTime(context);
+ if( p->iJD>0 ){
+ p->validJD = 1;
+ return 0;
+ }else{
+ return 1;
+ }
+}
+
+/*
+** Input "r" is a numeric quantity which might be a julian day number,
+** or the number of seconds since 1970. If the value if r is within
+** range of a julian day number, install it as such and set validJD.
+** If the value is a valid unix timestamp, put it in p->s and set p->rawS.
+*/
+static void setRawDateNumber(DateTime *p, double r){
+ p->s = r;
+ p->rawS = 1;
+ if( r>=0.0 && r<5373484.5 ){
+ p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
+ p->validJD = 1;
+ }
+}
+
+/*
+** Attempt to parse the given string into a julian day number. Return
+** the number of errors.
+**
+** The following are acceptable forms for the input string:
+**
+** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
+** DDDD.DD
+** now
+**
+** In the first form, the +/-HH:MM is always optional. The fractional
+** seconds extension (the ".FFF") is optional. The seconds portion
+** (":SS.FFF") is option. The year and date can be omitted as long
+** as there is a time string. The time string can be omitted as long
+** as there is a year and date.
+*/
+static int parseDateOrTime(
+ sqlite3_context *context,
+ const char *zDate,
+ DateTime *p
+){
+ double r;
+ if( parseYyyyMmDd(zDate,p)==0 ){
+ return 0;
+ }else if( parseHhMmSs(zDate, p)==0 ){
+ return 0;
+ }else if( sqlite3StrICmp(zDate,"now")==0 && sqlite3NotPureFunc(context) ){
+ return setDateTimeToCurrent(context, p);
+ }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8)>0 ){
+ setRawDateNumber(p, r);
+ return 0;
+ }else if( (sqlite3StrICmp(zDate,"subsec")==0
+ || sqlite3StrICmp(zDate,"subsecond")==0)
+ && sqlite3NotPureFunc(context) ){
+ p->useSubsec = 1;
+ return setDateTimeToCurrent(context, p);
+ }
+ return 1;
+}
+
+/* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999.
+** Multiplying this by 86400000 gives 464269060799999 as the maximum value
+** for DateTime.iJD.
+**
+** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with
+** such a large integer literal, so we have to encode it.
+*/
+#define INT_464269060799999 ((((i64)0x1a640)<<32)|0x1072fdff)
+
+/*
+** Return TRUE if the given julian day number is within range.
+**
+** The input is the JulianDay times 86400000.
+*/
+static int validJulianDay(sqlite3_int64 iJD){
+ return iJD>=0 && iJD<=INT_464269060799999;
+}
+
+/*
+** Compute the Year, Month, and Day from the julian day number.
+*/
+static void computeYMD(DateTime *p){
+ int Z, A, B, C, D, E, X1;
+ if( p->validYMD ) return;
+ if( !p->validJD ){
+ p->Y = 2000;
+ p->M = 1;
+ p->D = 1;
+ }else if( !validJulianDay(p->iJD) ){
+ datetimeError(p);
+ return;
+ }else{
+ Z = (int)((p->iJD + 43200000)/86400000);
+ A = (int)((Z - 1867216.25)/36524.25);
+ A = Z + 1 + A - (A/4);
+ B = A + 1524;
+ C = (int)((B - 122.1)/365.25);
+ D = (36525*(C&32767))/100;
+ E = (int)((B-D)/30.6001);
+ X1 = (int)(30.6001*E);
+ p->D = B - D - X1;
+ p->M = E<14 ? E-1 : E-13;
+ p->Y = p->M>2 ? C - 4716 : C - 4715;
+ }
+ p->validYMD = 1;
+}
+
+/*
+** Compute the Hour, Minute, and Seconds from the julian day number.
+*/
+static void computeHMS(DateTime *p){
+ int day_ms, day_min; /* milliseconds, minutes into the day */
+ if( p->validHMS ) return;
+ computeJD(p);
+ day_ms = (int)((p->iJD + 43200000) % 86400000);
+ p->s = (day_ms % 60000)/1000.0;
+ day_min = day_ms/60000;
+ p->m = day_min % 60;
+ p->h = day_min / 60;
+ p->rawS = 0;
+ p->validHMS = 1;
+}
+
+/*
+** Compute both YMD and HMS
+*/
+static void computeYMD_HMS(DateTime *p){
+ computeYMD(p);
+ computeHMS(p);
+}
+
+/*
+** Clear the YMD and HMS and the TZ
+*/
+static void clearYMD_HMS_TZ(DateTime *p){
+ p->validYMD = 0;
+ p->validHMS = 0;
+ p->validTZ = 0;
+}
+
+#ifndef SQLITE_OMIT_LOCALTIME
+/*
+** On recent Windows platforms, the localtime_s() function is available
+** as part of the "Secure CRT". It is essentially equivalent to
+** localtime_r() available under most POSIX platforms, except that the
+** order of the parameters is reversed.
+**
+** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
+**
+** If the user has not indicated to use localtime_r() or localtime_s()
+** already, check for an MSVC build environment that provides
+** localtime_s().
+*/
+#if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \
+ && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
+#undef HAVE_LOCALTIME_S
+#define HAVE_LOCALTIME_S 1
+#endif
+
+/*
+** The following routine implements the rough equivalent of localtime_r()
+** using whatever operating-system specific localtime facility that
+** is available. This routine returns 0 on success and
+** non-zero on any kind of error.
+**
+** If the sqlite3GlobalConfig.bLocaltimeFault variable is non-zero then this
+** routine will always fail. If bLocaltimeFault is nonzero and
+** sqlite3GlobalConfig.xAltLocaltime is not NULL, then xAltLocaltime() is
+** invoked in place of the OS-defined localtime() function.
+**
+** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C
+** library function localtime_r() is used to assist in the calculation of
+** local time.
+*/
+static int osLocaltime(time_t *t, struct tm *pTm){
+ int rc;
+#if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S
+ struct tm *pX;
+#if SQLITE_THREADSAFE>0
+ sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
+#endif
+ sqlite3_mutex_enter(mutex);
+ pX = localtime(t);
+#ifndef SQLITE_UNTESTABLE
+ if( sqlite3GlobalConfig.bLocaltimeFault ){
+ if( sqlite3GlobalConfig.xAltLocaltime!=0
+ && 0==sqlite3GlobalConfig.xAltLocaltime((const void*)t,(void*)pTm)
+ ){
+ pX = pTm;
+ }else{
+ pX = 0;
+ }
+ }
+#endif
+ if( pX ) *pTm = *pX;
+#if SQLITE_THREADSAFE>0
+ sqlite3_mutex_leave(mutex);
+#endif
+ rc = pX==0;
+#else
+#ifndef SQLITE_UNTESTABLE
+ if( sqlite3GlobalConfig.bLocaltimeFault ){
+ if( sqlite3GlobalConfig.xAltLocaltime!=0 ){
+ return sqlite3GlobalConfig.xAltLocaltime((const void*)t,(void*)pTm);
+ }else{
+ return 1;
+ }
+ }
+#endif
+#if HAVE_LOCALTIME_R
+ rc = localtime_r(t, pTm)==0;
+#else
+ rc = localtime_s(pTm, t);
+#endif /* HAVE_LOCALTIME_R */
+#endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */
+ return rc;
+}
+#endif /* SQLITE_OMIT_LOCALTIME */
+
+
+#ifndef SQLITE_OMIT_LOCALTIME
+/*
+** Assuming the input DateTime is UTC, move it to its localtime equivalent.
+*/
+static int toLocaltime(
+ DateTime *p, /* Date at which to calculate offset */
+ sqlite3_context *pCtx /* Write error here if one occurs */
+){
+ time_t t;
+ struct tm sLocal;
+ int iYearDiff;
+
+ /* Initialize the contents of sLocal to avoid a compiler warning. */
+ memset(&sLocal, 0, sizeof(sLocal));
+
+ computeJD(p);
+ if( p->iJD<2108667600*(i64)100000 /* 1970-01-01 */
+ || p->iJD>2130141456*(i64)100000 /* 2038-01-18 */
+ ){
+ /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only
+ ** works for years between 1970 and 2037. For dates outside this range,
+ ** SQLite attempts to map the year into an equivalent year within this
+ ** range, do the calculation, then map the year back.
+ */
+ DateTime x = *p;
+ computeYMD_HMS(&x);
+ iYearDiff = (2000 + x.Y%4) - x.Y;
+ x.Y += iYearDiff;
+ x.validJD = 0;
+ computeJD(&x);
+ t = (time_t)(x.iJD/1000 - 21086676*(i64)10000);
+ }else{
+ iYearDiff = 0;
+ t = (time_t)(p->iJD/1000 - 21086676*(i64)10000);
+ }
+ if( osLocaltime(&t, &sLocal) ){
+ sqlite3_result_error(pCtx, "local time unavailable", -1);
+ return SQLITE_ERROR;
+ }
+ p->Y = sLocal.tm_year + 1900 - iYearDiff;
+ p->M = sLocal.tm_mon + 1;
+ p->D = sLocal.tm_mday;
+ p->h = sLocal.tm_hour;
+ p->m = sLocal.tm_min;
+ p->s = sLocal.tm_sec + (p->iJD%1000)*0.001;
+ p->validYMD = 1;
+ p->validHMS = 1;
+ p->validJD = 0;
+ p->rawS = 0;
+ p->validTZ = 0;
+ p->isError = 0;
+ return SQLITE_OK;
+}
+#endif /* SQLITE_OMIT_LOCALTIME */
+
+/*
+** The following table defines various date transformations of the form
+**
+** 'NNN days'
+**
+** Where NNN is an arbitrary floating-point number and "days" can be one
+** of several units of time.
+*/
+static const struct {
+ u8 nName; /* Length of the name */
+ char zName[7]; /* Name of the transformation */
+ float rLimit; /* Maximum NNN value for this transform */
+ float rXform; /* Constant used for this transform */
+} aXformType[] = {
+ { 6, "second", 4.6427e+14, 1.0 },
+ { 6, "minute", 7.7379e+12, 60.0 },
+ { 4, "hour", 1.2897e+11, 3600.0 },
+ { 3, "day", 5373485.0, 86400.0 },
+ { 5, "month", 176546.0, 2592000.0 },
+ { 4, "year", 14713.0, 31536000.0 },
+};
+
+/*
+** If the DateTime p is raw number, try to figure out if it is
+** a julian day number of a unix timestamp. Set the p value
+** appropriately.
+*/
+static void autoAdjustDate(DateTime *p){
+ if( !p->rawS || p->validJD ){
+ p->rawS = 0;
+ }else if( p->s>=-21086676*(i64)10000 /* -4713-11-24 12:00:00 */
+ && p->s<=(25340230*(i64)10000)+799 /* 9999-12-31 23:59:59 */
+ ){
+ double r = p->s*1000.0 + 210866760000000.0;
+ clearYMD_HMS_TZ(p);
+ p->iJD = (sqlite3_int64)(r + 0.5);
+ p->validJD = 1;
+ p->rawS = 0;
+ }
+}
+
+/*
+** Process a modifier to a date-time stamp. The modifiers are
+** as follows:
+**
+** NNN days
+** NNN hours
+** NNN minutes
+** NNN.NNNN seconds
+** NNN months
+** NNN years
+** start of month
+** start of year
+** start of week
+** start of day
+** weekday N
+** unixepoch
+** localtime
+** utc
+**
+** Return 0 on success and 1 if there is any kind of error. If the error
+** is in a system call (i.e. localtime()), then an error message is written
+** to context pCtx. If the error is an unrecognized modifier, no error is
+** written to pCtx.
+*/
+static int parseModifier(
+ sqlite3_context *pCtx, /* Function context */
+ const char *z, /* The text of the modifier */
+ int n, /* Length of zMod in bytes */
+ DateTime *p, /* The date/time value to be modified */
+ int idx /* Parameter index of the modifier */
+){
+ int rc = 1;
+ double r;
+ switch(sqlite3UpperToLower[(u8)z[0]] ){
+ case 'a': {
+ /*
+ ** auto
+ **
+ ** If rawS is available, then interpret as a julian day number, or
+ ** a unix timestamp, depending on its magnitude.
+ */
+ if( sqlite3_stricmp(z, "auto")==0 ){
+ if( idx>1 ) return 1; /* IMP: R-33611-57934 */
+ autoAdjustDate(p);
+ rc = 0;
+ }
+ break;
+ }
+ case 'j': {
+ /*
+ ** julianday
+ **
+ ** Always interpret the prior number as a julian-day value. If this
+ ** is not the first modifier, or if the prior argument is not a numeric
+ ** value in the allowed range of julian day numbers understood by
+ ** SQLite (0..5373484.5) then the result will be NULL.
+ */
+ if( sqlite3_stricmp(z, "julianday")==0 ){
+ if( idx>1 ) return 1; /* IMP: R-31176-64601 */
+ if( p->validJD && p->rawS ){
+ rc = 0;
+ p->rawS = 0;
+ }
+ }
+ break;
+ }
+#ifndef SQLITE_OMIT_LOCALTIME
+ case 'l': {
+ /* localtime
+ **
+ ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
+ ** show local time.
+ */
+ if( sqlite3_stricmp(z, "localtime")==0 && sqlite3NotPureFunc(pCtx) ){
+ rc = toLocaltime(p, pCtx);
+ }
+ break;
+ }
+#endif
+ case 'u': {
+ /*
+ ** unixepoch
+ **
+ ** Treat the current value of p->s as the number of
+ ** seconds since 1970. Convert to a real julian day number.
+ */
+ if( sqlite3_stricmp(z, "unixepoch")==0 && p->rawS ){
+ if( idx>1 ) return 1; /* IMP: R-49255-55373 */
+ r = p->s*1000.0 + 210866760000000.0;
+ if( r>=0.0 && r<464269060800000.0 ){
+ clearYMD_HMS_TZ(p);
+ p->iJD = (sqlite3_int64)(r + 0.5);
+ p->validJD = 1;
+ p->rawS = 0;
+ rc = 0;
+ }
+ }
+#ifndef SQLITE_OMIT_LOCALTIME
+ else if( sqlite3_stricmp(z, "utc")==0 && sqlite3NotPureFunc(pCtx) ){
+ if( p->tzSet==0 ){
+ i64 iOrigJD; /* Original localtime */
+ i64 iGuess; /* Guess at the corresponding utc time */
+ int cnt = 0; /* Safety to prevent infinite loop */
+ i64 iErr; /* Guess is off by this much */
+
+ computeJD(p);
+ iGuess = iOrigJD = p->iJD;
+ iErr = 0;
+ do{
+ DateTime new;
+ memset(&new, 0, sizeof(new));
+ iGuess -= iErr;
+ new.iJD = iGuess;
+ new.validJD = 1;
+ rc = toLocaltime(&new, pCtx);
+ if( rc ) return rc;
+ computeJD(&new);
+ iErr = new.iJD - iOrigJD;
+ }while( iErr && cnt++<3 );
+ memset(p, 0, sizeof(*p));
+ p->iJD = iGuess;
+ p->validJD = 1;
+ p->tzSet = 1;
+ }
+ rc = SQLITE_OK;
+ }
+#endif
+ break;
+ }
+ case 'w': {
+ /*
+ ** weekday N
+ **
+ ** Move the date to the same time on the next occurrence of
+ ** weekday N where 0==Sunday, 1==Monday, and so forth. If the
+ ** date is already on the appropriate weekday, this is a no-op.
+ */
+ if( sqlite3_strnicmp(z, "weekday ", 8)==0
+ && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)>0
+ && r>=0.0 && r<7.0 && (n=(int)r)==r ){
+ sqlite3_int64 Z;
+ computeYMD_HMS(p);
+ p->validTZ = 0;
+ p->validJD = 0;
+ computeJD(p);
+ Z = ((p->iJD + 129600000)/86400000) % 7;
+ if( Z>n ) Z -= 7;
+ p->iJD += (n - Z)*86400000;
+ clearYMD_HMS_TZ(p);
+ rc = 0;
+ }
+ break;
+ }
+ case 's': {
+ /*
+ ** start of TTTTT
+ **
+ ** Move the date backwards to the beginning of the current day,
+ ** or month or year.
+ **
+ ** subsecond
+ ** subsec
+ **
+ ** Show subsecond precision in the output of datetime() and
+ ** unixepoch() and strftime('%s').
+ */
+ if( sqlite3_strnicmp(z, "start of ", 9)!=0 ){
+ if( sqlite3_stricmp(z, "subsec")==0
+ || sqlite3_stricmp(z, "subsecond")==0
+ ){
+ p->useSubsec = 1;
+ rc = 0;
+ }
+ break;
+ }
+ if( !p->validJD && !p->validYMD && !p->validHMS ) break;
+ z += 9;
+ computeYMD(p);
+ p->validHMS = 1;
+ p->h = p->m = 0;
+ p->s = 0.0;
+ p->rawS = 0;
+ p->validTZ = 0;
+ p->validJD = 0;
+ if( sqlite3_stricmp(z,"month")==0 ){
+ p->D = 1;
+ rc = 0;
+ }else if( sqlite3_stricmp(z,"year")==0 ){
+ p->M = 1;
+ p->D = 1;
+ rc = 0;
+ }else if( sqlite3_stricmp(z,"day")==0 ){
+ rc = 0;
+ }
+ break;
+ }
+ case '+':
+ case '-':
+ case '0':
+ case '1':
+ case '2':
+ case '3':
+ case '4':
+ case '5':
+ case '6':
+ case '7':
+ case '8':
+ case '9': {
+ double rRounder;
+ int i;
+ int Y,M,D,h,m,x;
+ const char *z2 = z;
+ char z0 = z[0];
+ for(n=1; z[n]; n++){
+ if( z[n]==':' ) break;
+ if( sqlite3Isspace(z[n]) ) break;
+ if( z[n]=='-' ){
+ if( n==5 && getDigits(&z[1], "40f", &Y)==1 ) break;
+ if( n==6 && getDigits(&z[1], "50f", &Y)==1 ) break;
+ }
+ }
+ if( sqlite3AtoF(z, &r, n, SQLITE_UTF8)<=0 ){
+ assert( rc==1 );
+ break;
+ }
+ if( z[n]=='-' ){
+ /* A modifier of the form (+|-)YYYY-MM-DD adds or subtracts the
+ ** specified number of years, months, and days. MM is limited to
+ ** the range 0-11 and DD is limited to 0-30.
+ */
+ if( z0!='+' && z0!='-' ) break; /* Must start with +/- */
+ if( n==5 ){
+ if( getDigits(&z[1], "40f-20a-20d", &Y, &M, &D)!=3 ) break;
+ }else{
+ assert( n==6 );
+ if( getDigits(&z[1], "50f-20a-20d", &Y, &M, &D)!=3 ) break;
+ z++;
+ }
+ if( M>=12 ) break; /* M range 0..11 */
+ if( D>=31 ) break; /* D range 0..30 */
+ computeYMD_HMS(p);
+ p->validJD = 0;
+ if( z0=='-' ){
+ p->Y -= Y;
+ p->M -= M;
+ D = -D;
+ }else{
+ p->Y += Y;
+ p->M += M;
+ }
+ x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
+ p->Y += x;
+ p->M -= x*12;
+ computeJD(p);
+ p->validHMS = 0;
+ p->validYMD = 0;
+ p->iJD += (i64)D*86400000;
+ if( z[11]==0 ){
+ rc = 0;
+ break;
+ }
+ if( sqlite3Isspace(z[11])
+ && getDigits(&z[12], "20c:20e", &h, &m)==2
+ ){
+ z2 = &z[12];
+ n = 2;
+ }else{
+ break;
+ }
+ }
+ if( z2[n]==':' ){
+ /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
+ ** specified number of hours, minutes, seconds, and fractional seconds
+ ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
+ ** omitted.
+ */
+
+ DateTime tx;
+ sqlite3_int64 day;
+ if( !sqlite3Isdigit(*z2) ) z2++;
+ memset(&tx, 0, sizeof(tx));
+ if( parseHhMmSs(z2, &tx) ) break;
+ computeJD(&tx);
+ tx.iJD -= 43200000;
+ day = tx.iJD/86400000;
+ tx.iJD -= day*86400000;
+ if( z0=='-' ) tx.iJD = -tx.iJD;
+ computeJD(p);
+ clearYMD_HMS_TZ(p);
+ p->iJD += tx.iJD;
+ rc = 0;
+ break;
+ }
+
+ /* If control reaches this point, it means the transformation is
+ ** one of the forms like "+NNN days". */
+ z += n;
+ while( sqlite3Isspace(*z) ) z++;
+ n = sqlite3Strlen30(z);
+ if( n>10 || n<3 ) break;
+ if( sqlite3UpperToLower[(u8)z[n-1]]=='s' ) n--;
+ computeJD(p);
+ assert( rc==1 );
+ rRounder = r<0 ? -0.5 : +0.5;
+ for(i=0; i<ArraySize(aXformType); i++){
+ if( aXformType[i].nName==n
+ && sqlite3_strnicmp(aXformType[i].zName, z, n)==0
+ && r>-aXformType[i].rLimit && r<aXformType[i].rLimit
+ ){
+ switch( i ){
+ case 4: { /* Special processing to add months */
+ assert( strcmp(aXformType[i].zName,"month")==0 );
+ computeYMD_HMS(p);
+ p->M += (int)r;
+ x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
+ p->Y += x;
+ p->M -= x*12;
+ p->validJD = 0;
+ r -= (int)r;
+ break;
+ }
+ case 5: { /* Special processing to add years */
+ int y = (int)r;
+ assert( strcmp(aXformType[i].zName,"year")==0 );
+ computeYMD_HMS(p);
+ p->Y += y;
+ p->validJD = 0;
+ r -= (int)r;
+ break;
+ }
+ }
+ computeJD(p);
+ p->iJD += (sqlite3_int64)(r*1000.0*aXformType[i].rXform + rRounder);
+ rc = 0;
+ break;
+ }
+ }
+ clearYMD_HMS_TZ(p);
+ break;
+ }
+ default: {
+ break;
+ }
+ }
+ return rc;
+}
+
+/*
+** Process time function arguments. argv[0] is a date-time stamp.
+** argv[1] and following are modifiers. Parse them all and write
+** the resulting time into the DateTime structure p. Return 0
+** on success and 1 if there are any errors.
+**
+** If there are zero parameters (if even argv[0] is undefined)
+** then assume a default value of "now" for argv[0].
+*/
+static int isDate(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv,
+ DateTime *p
+){
+ int i, n;
+ const unsigned char *z;
+ int eType;
+ memset(p, 0, sizeof(*p));
+ if( argc==0 ){
+ if( !sqlite3NotPureFunc(context) ) return 1;
+ return setDateTimeToCurrent(context, p);
+ }
+ if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT
+ || eType==SQLITE_INTEGER ){
+ setRawDateNumber(p, sqlite3_value_double(argv[0]));
+ }else{
+ z = sqlite3_value_text(argv[0]);
+ if( !z || parseDateOrTime(context, (char*)z, p) ){
+ return 1;
+ }
+ }
+ for(i=1; i<argc; i++){
+ z = sqlite3_value_text(argv[i]);
+ n = sqlite3_value_bytes(argv[i]);
+ if( z==0 || parseModifier(context, (char*)z, n, p, i) ) return 1;
+ }
+ computeJD(p);
+ if( p->isError || !validJulianDay(p->iJD) ) return 1;
+ if( argc==1 && p->validYMD && p->D>28 ){
+ /* Make sure a YYYY-MM-DD is normalized.
+ ** Example: 2023-02-31 -> 2023-03-03 */
+ assert( p->validJD );
+ p->validYMD = 0;
+ }
+ return 0;
+}
+
+
+/*
+** The following routines implement the various date and time functions
+** of SQLite.
+*/
+
+/*
+** julianday( TIMESTRING, MOD, MOD, ...)
+**
+** Return the julian day number of the date specified in the arguments
+*/
+static void juliandayFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ if( isDate(context, argc, argv, &x)==0 ){
+ computeJD(&x);
+ sqlite3_result_double(context, x.iJD/86400000.0);
+ }
+}
+
+/*
+** unixepoch( TIMESTRING, MOD, MOD, ...)
+**
+** Return the number of seconds (including fractional seconds) since
+** the unix epoch of 1970-01-01 00:00:00 GMT.
+*/
+static void unixepochFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ if( isDate(context, argc, argv, &x)==0 ){
+ computeJD(&x);
+ if( x.useSubsec ){
+ sqlite3_result_double(context, (x.iJD - 21086676*(i64)10000000)/1000.0);
+ }else{
+ sqlite3_result_int64(context, x.iJD/1000 - 21086676*(i64)10000);
+ }
+ }
+}
+
+/*
+** datetime( TIMESTRING, MOD, MOD, ...)
+**
+** Return YYYY-MM-DD HH:MM:SS
+*/
+static void datetimeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ if( isDate(context, argc, argv, &x)==0 ){
+ int Y, s, n;
+ char zBuf[32];
+ computeYMD_HMS(&x);
+ Y = x.Y;
+ if( Y<0 ) Y = -Y;
+ zBuf[1] = '0' + (Y/1000)%10;
+ zBuf[2] = '0' + (Y/100)%10;
+ zBuf[3] = '0' + (Y/10)%10;
+ zBuf[4] = '0' + (Y)%10;
+ zBuf[5] = '-';
+ zBuf[6] = '0' + (x.M/10)%10;
+ zBuf[7] = '0' + (x.M)%10;
+ zBuf[8] = '-';
+ zBuf[9] = '0' + (x.D/10)%10;
+ zBuf[10] = '0' + (x.D)%10;
+ zBuf[11] = ' ';
+ zBuf[12] = '0' + (x.h/10)%10;
+ zBuf[13] = '0' + (x.h)%10;
+ zBuf[14] = ':';
+ zBuf[15] = '0' + (x.m/10)%10;
+ zBuf[16] = '0' + (x.m)%10;
+ zBuf[17] = ':';
+ if( x.useSubsec ){
+ s = (int)(1000.0*x.s + 0.5);
+ zBuf[18] = '0' + (s/10000)%10;
+ zBuf[19] = '0' + (s/1000)%10;
+ zBuf[20] = '.';
+ zBuf[21] = '0' + (s/100)%10;
+ zBuf[22] = '0' + (s/10)%10;
+ zBuf[23] = '0' + (s)%10;
+ zBuf[24] = 0;
+ n = 24;
+ }else{
+ s = (int)x.s;
+ zBuf[18] = '0' + (s/10)%10;
+ zBuf[19] = '0' + (s)%10;
+ zBuf[20] = 0;
+ n = 20;
+ }
+ if( x.Y<0 ){
+ zBuf[0] = '-';
+ sqlite3_result_text(context, zBuf, n, SQLITE_TRANSIENT);
+ }else{
+ sqlite3_result_text(context, &zBuf[1], n-1, SQLITE_TRANSIENT);
+ }
+ }
+}
+
+/*
+** time( TIMESTRING, MOD, MOD, ...)
+**
+** Return HH:MM:SS
+*/
+static void timeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ if( isDate(context, argc, argv, &x)==0 ){
+ int s, n;
+ char zBuf[16];
+ computeHMS(&x);
+ zBuf[0] = '0' + (x.h/10)%10;
+ zBuf[1] = '0' + (x.h)%10;
+ zBuf[2] = ':';
+ zBuf[3] = '0' + (x.m/10)%10;
+ zBuf[4] = '0' + (x.m)%10;
+ zBuf[5] = ':';
+ if( x.useSubsec ){
+ s = (int)(1000.0*x.s + 0.5);
+ zBuf[6] = '0' + (s/10000)%10;
+ zBuf[7] = '0' + (s/1000)%10;
+ zBuf[8] = '.';
+ zBuf[9] = '0' + (s/100)%10;
+ zBuf[10] = '0' + (s/10)%10;
+ zBuf[11] = '0' + (s)%10;
+ zBuf[12] = 0;
+ n = 12;
+ }else{
+ s = (int)x.s;
+ zBuf[6] = '0' + (s/10)%10;
+ zBuf[7] = '0' + (s)%10;
+ zBuf[8] = 0;
+ n = 8;
+ }
+ sqlite3_result_text(context, zBuf, n, SQLITE_TRANSIENT);
+ }
+}
+
+/*
+** date( TIMESTRING, MOD, MOD, ...)
+**
+** Return YYYY-MM-DD
+*/
+static void dateFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ if( isDate(context, argc, argv, &x)==0 ){
+ int Y;
+ char zBuf[16];
+ computeYMD(&x);
+ Y = x.Y;
+ if( Y<0 ) Y = -Y;
+ zBuf[1] = '0' + (Y/1000)%10;
+ zBuf[2] = '0' + (Y/100)%10;
+ zBuf[3] = '0' + (Y/10)%10;
+ zBuf[4] = '0' + (Y)%10;
+ zBuf[5] = '-';
+ zBuf[6] = '0' + (x.M/10)%10;
+ zBuf[7] = '0' + (x.M)%10;
+ zBuf[8] = '-';
+ zBuf[9] = '0' + (x.D/10)%10;
+ zBuf[10] = '0' + (x.D)%10;
+ zBuf[11] = 0;
+ if( x.Y<0 ){
+ zBuf[0] = '-';
+ sqlite3_result_text(context, zBuf, 11, SQLITE_TRANSIENT);
+ }else{
+ sqlite3_result_text(context, &zBuf[1], 10, SQLITE_TRANSIENT);
+ }
+ }
+}
+
+/*
+** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
+**
+** Return a string described by FORMAT. Conversions as follows:
+**
+** %d day of month
+** %f ** fractional seconds SS.SSS
+** %H hour 00-24
+** %j day of year 000-366
+** %J ** julian day number
+** %m month 01-12
+** %M minute 00-59
+** %s seconds since 1970-01-01
+** %S seconds 00-59
+** %w day of week 0-6 Sunday==0
+** %W week of year 00-53
+** %Y year 0000-9999
+** %% %
+*/
+static void strftimeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ size_t i,j;
+ sqlite3 *db;
+ const char *zFmt;
+ sqlite3_str sRes;
+
+
+ if( argc==0 ) return;
+ zFmt = (const char*)sqlite3_value_text(argv[0]);
+ if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
+ db = sqlite3_context_db_handle(context);
+ sqlite3StrAccumInit(&sRes, 0, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
+
+ computeJD(&x);
+ computeYMD_HMS(&x);
+ for(i=j=0; zFmt[i]; i++){
+ char cf;
+ if( zFmt[i]!='%' ) continue;
+ if( j<i ) sqlite3_str_append(&sRes, zFmt+j, (int)(i-j));
+ i++;
+ j = i + 1;
+ cf = zFmt[i];
+ switch( cf ){
+ case 'd': /* Fall thru */
+ case 'e': {
+ sqlite3_str_appendf(&sRes, cf=='d' ? "%02d" : "%2d", x.D);
+ break;
+ }
+ case 'f': {
+ double s = x.s;
+ if( s>59.999 ) s = 59.999;
+ sqlite3_str_appendf(&sRes, "%06.3f", s);
+ break;
+ }
+ case 'F': {
+ sqlite3_str_appendf(&sRes, "%04d-%02d-%02d", x.Y, x.M, x.D);
+ break;
+ }
+ case 'H':
+ case 'k': {
+ sqlite3_str_appendf(&sRes, cf=='H' ? "%02d" : "%2d", x.h);
+ break;
+ }
+ case 'I': /* Fall thru */
+ case 'l': {
+ int h = x.h;
+ if( h>12 ) h -= 12;
+ if( h==0 ) h = 12;
+ sqlite3_str_appendf(&sRes, cf=='I' ? "%02d" : "%2d", h);
+ break;
+ }
+ case 'W': /* Fall thru */
+ case 'j': {
+ int nDay; /* Number of days since 1st day of year */
+ DateTime y = x;
+ y.validJD = 0;
+ y.M = 1;
+ y.D = 1;
+ computeJD(&y);
+ nDay = (int)((x.iJD-y.iJD+43200000)/86400000);
+ if( cf=='W' ){
+ int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
+ wd = (int)(((x.iJD+43200000)/86400000)%7);
+ sqlite3_str_appendf(&sRes,"%02d",(nDay+7-wd)/7);
+ }else{
+ sqlite3_str_appendf(&sRes,"%03d",nDay+1);
+ }
+ break;
+ }
+ case 'J': {
+ sqlite3_str_appendf(&sRes,"%.16g",x.iJD/86400000.0);
+ break;
+ }
+ case 'm': {
+ sqlite3_str_appendf(&sRes,"%02d",x.M);
+ break;
+ }
+ case 'M': {
+ sqlite3_str_appendf(&sRes,"%02d",x.m);
+ break;
+ }
+ case 'p': /* Fall thru */
+ case 'P': {
+ if( x.h>=12 ){
+ sqlite3_str_append(&sRes, cf=='p' ? "PM" : "pm", 2);
+ }else{
+ sqlite3_str_append(&sRes, cf=='p' ? "AM" : "am", 2);
+ }
+ break;
+ }
+ case 'R': {
+ sqlite3_str_appendf(&sRes, "%02d:%02d", x.h, x.m);
+ break;
+ }
+ case 's': {
+ if( x.useSubsec ){
+ sqlite3_str_appendf(&sRes,"%.3f",
+ (x.iJD - 21086676*(i64)10000000)/1000.0);
+ }else{
+ i64 iS = (i64)(x.iJD/1000 - 21086676*(i64)10000);
+ sqlite3_str_appendf(&sRes,"%lld",iS);
+ }
+ break;
+ }
+ case 'S': {
+ sqlite3_str_appendf(&sRes,"%02d",(int)x.s);
+ break;
+ }
+ case 'T': {
+ sqlite3_str_appendf(&sRes,"%02d:%02d:%02d", x.h, x.m, (int)x.s);
+ break;
+ }
+ case 'u': /* Fall thru */
+ case 'w': {
+ char c = (char)(((x.iJD+129600000)/86400000) % 7) + '0';
+ if( c=='0' && cf=='u' ) c = '7';
+ sqlite3_str_appendchar(&sRes, 1, c);
+ break;
+ }
+ case 'Y': {
+ sqlite3_str_appendf(&sRes,"%04d",x.Y);
+ break;
+ }
+ case '%': {
+ sqlite3_str_appendchar(&sRes, 1, '%');
+ break;
+ }
+ default: {
+ sqlite3_str_reset(&sRes);
+ return;
+ }
+ }
+ }
+ if( j<i ) sqlite3_str_append(&sRes, zFmt+j, (int)(i-j));
+ sqlite3ResultStrAccum(context, &sRes);
+}
+
+/*
+** current_time()
+**
+** This function returns the same value as time('now').
+*/
+static void ctimeFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ timeFunc(context, 0, 0);
+}
+
+/*
+** current_date()
+**
+** This function returns the same value as date('now').
+*/
+static void cdateFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ dateFunc(context, 0, 0);
+}
+
+/*
+** timediff(DATE1, DATE2)
+**
+** Return the amount of time that must be added to DATE2 in order to
+** convert it into DATE2. The time difference format is:
+**
+** +YYYY-MM-DD HH:MM:SS.SSS
+**
+** The initial "+" becomes "-" if DATE1 occurs before DATE2. For
+** date/time values A and B, the following invariant should hold:
+**
+** datetime(A) == (datetime(B, timediff(A,B))
+**
+** Both DATE arguments must be either a julian day number, or an
+** ISO-8601 string. The unix timestamps are not supported by this
+** routine.
+*/
+static void timediffFunc(
+ sqlite3_context *context,
+ int NotUsed1,
+ sqlite3_value **argv
+){
+ char sign;
+ int Y, M;
+ DateTime d1, d2;
+ sqlite3_str sRes;
+ UNUSED_PARAMETER(NotUsed1);
+ if( isDate(context, 1, &argv[0], &d1) ) return;
+ if( isDate(context, 1, &argv[1], &d2) ) return;
+ computeYMD_HMS(&d1);
+ computeYMD_HMS(&d2);
+ if( d1.iJD>=d2.iJD ){
+ sign = '+';
+ Y = d1.Y - d2.Y;
+ if( Y ){
+ d2.Y = d1.Y;
+ d2.validJD = 0;
+ computeJD(&d2);
+ }
+ M = d1.M - d2.M;
+ if( M<0 ){
+ Y--;
+ M += 12;
+ }
+ if( M!=0 ){
+ d2.M = d1.M;
+ d2.validJD = 0;
+ computeJD(&d2);
+ }
+ while( d1.iJD<d2.iJD ){
+ M--;
+ if( M<0 ){
+ M = 11;
+ Y--;
+ }
+ d2.M--;
+ if( d2.M<1 ){
+ d2.M = 12;
+ d2.Y--;
+ }
+ d2.validJD = 0;
+ computeJD(&d2);
+ }
+ d1.iJD -= d2.iJD;
+ d1.iJD += (u64)1486995408 * (u64)100000;
+ }else /* d1<d2 */{
+ sign = '-';
+ Y = d2.Y - d1.Y;
+ if( Y ){
+ d2.Y = d1.Y;
+ d2.validJD = 0;
+ computeJD(&d2);
+ }
+ M = d2.M - d1.M;
+ if( M<0 ){
+ Y--;
+ M += 12;
+ }
+ if( M!=0 ){
+ d2.M = d1.M;
+ d2.validJD = 0;
+ computeJD(&d2);
+ }
+ while( d1.iJD>d2.iJD ){
+ M--;
+ if( M<0 ){
+ M = 11;
+ Y--;
+ }
+ d2.M++;
+ if( d2.M>12 ){
+ d2.M = 1;
+ d2.Y++;
+ }
+ d2.validJD = 0;
+ computeJD(&d2);
+ }
+ d1.iJD = d2.iJD - d1.iJD;
+ d1.iJD += (u64)1486995408 * (u64)100000;
+ }
+ d1.validYMD = 0;
+ d1.validHMS = 0;
+ d1.validTZ = 0;
+ computeYMD_HMS(&d1);
+ sqlite3StrAccumInit(&sRes, 0, 0, 0, 100);
+ sqlite3_str_appendf(&sRes, "%c%04d-%02d-%02d %02d:%02d:%06.3f",
+ sign, Y, M, d1.D-1, d1.h, d1.m, d1.s);
+ sqlite3ResultStrAccum(context, &sRes);
+}
+
+
+/*
+** current_timestamp()
+**
+** This function returns the same value as datetime('now').
+*/
+static void ctimestampFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ datetimeFunc(context, 0, 0);
+}
+#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
+
+#ifdef SQLITE_OMIT_DATETIME_FUNCS
+/*
+** If the library is compiled to omit the full-scale date and time
+** handling (to get a smaller binary), the following minimal version
+** of the functions current_time(), current_date() and current_timestamp()
+** are included instead. This is to support column declarations that
+** include "DEFAULT CURRENT_TIME" etc.
+**
+** This function uses the C-library functions time(), gmtime()
+** and strftime(). The format string to pass to strftime() is supplied
+** as the user-data for the function.
+*/
+static void currentTimeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ time_t t;
+ char *zFormat = (char *)sqlite3_user_data(context);
+ sqlite3_int64 iT;
+ struct tm *pTm;
+ struct tm sNow;
+ char zBuf[20];
+
+ UNUSED_PARAMETER(argc);
+ UNUSED_PARAMETER(argv);
+
+ iT = sqlite3StmtCurrentTime(context);
+ if( iT<=0 ) return;
+ t = iT/1000 - 10000*(sqlite3_int64)21086676;
+#if HAVE_GMTIME_R
+ pTm = gmtime_r(&t, &sNow);
+#else
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN));
+ pTm = gmtime(&t);
+ if( pTm ) memcpy(&sNow, pTm, sizeof(sNow));
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN));
+#endif
+ if( pTm ){
+ strftime(zBuf, 20, zFormat, &sNow);
+ sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
+ }
+}
+#endif
+
+/*
+** This function registered all of the above C functions as SQL
+** functions. This should be the only routine in this file with
+** external linkage.
+*/
+void sqlite3RegisterDateTimeFunctions(void){
+ static FuncDef aDateTimeFuncs[] = {
+#ifndef SQLITE_OMIT_DATETIME_FUNCS
+ PURE_DATE(julianday, -1, 0, 0, juliandayFunc ),
+ PURE_DATE(unixepoch, -1, 0, 0, unixepochFunc ),
+ PURE_DATE(date, -1, 0, 0, dateFunc ),
+ PURE_DATE(time, -1, 0, 0, timeFunc ),
+ PURE_DATE(datetime, -1, 0, 0, datetimeFunc ),
+ PURE_DATE(strftime, -1, 0, 0, strftimeFunc ),
+ PURE_DATE(timediff, 2, 0, 0, timediffFunc ),
+ DFUNCTION(current_time, 0, 0, 0, ctimeFunc ),
+ DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc),
+ DFUNCTION(current_date, 0, 0, 0, cdateFunc ),
+#else
+ STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc),
+ STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc),
+ STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc),
+#endif
+ };
+ sqlite3InsertBuiltinFuncs(aDateTimeFuncs, ArraySize(aDateTimeFuncs));
+}