summaryrefslogtreecommitdiffstats
path: root/src/vdbe.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 14:07:11 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 14:07:11 +0000
commit63847496f14c813a5d80efd5b7de0f1294ffe1e3 (patch)
tree01c7571c7c762ceee70638549a99834fdd7c411b /src/vdbe.c
parentInitial commit. (diff)
downloadsqlite3-63847496f14c813a5d80efd5b7de0f1294ffe1e3.tar.xz
sqlite3-63847496f14c813a5d80efd5b7de0f1294ffe1e3.zip
Adding upstream version 3.45.1.upstream/3.45.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--src/vdbe.c9131
1 files changed, 9131 insertions, 0 deletions
diff --git a/src/vdbe.c b/src/vdbe.c
new file mode 100644
index 0000000..6d45bbb
--- /dev/null
+++ b/src/vdbe.c
@@ -0,0 +1,9131 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** The code in this file implements the function that runs the
+** bytecode of a prepared statement.
+**
+** Various scripts scan this source file in order to generate HTML
+** documentation, headers files, or other derived files. The formatting
+** of the code in this file is, therefore, important. See other comments
+** in this file for details. If in doubt, do not deviate from existing
+** commenting and indentation practices when changing or adding code.
+*/
+#include "sqliteInt.h"
+#include "vdbeInt.h"
+
+/*
+** Invoke this macro on memory cells just prior to changing the
+** value of the cell. This macro verifies that shallow copies are
+** not misused. A shallow copy of a string or blob just copies a
+** pointer to the string or blob, not the content. If the original
+** is changed while the copy is still in use, the string or blob might
+** be changed out from under the copy. This macro verifies that nothing
+** like that ever happens.
+*/
+#ifdef SQLITE_DEBUG
+# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
+#else
+# define memAboutToChange(P,M)
+#endif
+
+/*
+** The following global variable is incremented every time a cursor
+** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
+** procedures use this information to make sure that indices are
+** working correctly. This variable has no function other than to
+** help verify the correct operation of the library.
+*/
+#ifdef SQLITE_TEST
+int sqlite3_search_count = 0;
+#endif
+
+/*
+** When this global variable is positive, it gets decremented once before
+** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
+** field of the sqlite3 structure is set in order to simulate an interrupt.
+**
+** This facility is used for testing purposes only. It does not function
+** in an ordinary build.
+*/
+#ifdef SQLITE_TEST
+int sqlite3_interrupt_count = 0;
+#endif
+
+/*
+** The next global variable is incremented each type the OP_Sort opcode
+** is executed. The test procedures use this information to make sure that
+** sorting is occurring or not occurring at appropriate times. This variable
+** has no function other than to help verify the correct operation of the
+** library.
+*/
+#ifdef SQLITE_TEST
+int sqlite3_sort_count = 0;
+#endif
+
+/*
+** The next global variable records the size of the largest MEM_Blob
+** or MEM_Str that has been used by a VDBE opcode. The test procedures
+** use this information to make sure that the zero-blob functionality
+** is working correctly. This variable has no function other than to
+** help verify the correct operation of the library.
+*/
+#ifdef SQLITE_TEST
+int sqlite3_max_blobsize = 0;
+static void updateMaxBlobsize(Mem *p){
+ if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
+ sqlite3_max_blobsize = p->n;
+ }
+}
+#endif
+
+/*
+** This macro evaluates to true if either the update hook or the preupdate
+** hook are enabled for database connect DB.
+*/
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+# define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
+#else
+# define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
+#endif
+
+/*
+** The next global variable is incremented each time the OP_Found opcode
+** is executed. This is used to test whether or not the foreign key
+** operation implemented using OP_FkIsZero is working. This variable
+** has no function other than to help verify the correct operation of the
+** library.
+*/
+#ifdef SQLITE_TEST
+int sqlite3_found_count = 0;
+#endif
+
+/*
+** Test a register to see if it exceeds the current maximum blob size.
+** If it does, record the new maximum blob size.
+*/
+#if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
+# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
+#else
+# define UPDATE_MAX_BLOBSIZE(P)
+#endif
+
+#ifdef SQLITE_DEBUG
+/* This routine provides a convenient place to set a breakpoint during
+** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after
+** each opcode is printed. Variables "pc" (program counter) and pOp are
+** available to add conditionals to the breakpoint. GDB example:
+**
+** break test_trace_breakpoint if pc=22
+**
+** Other useful labels for breakpoints include:
+** test_addop_breakpoint(pc,pOp)
+** sqlite3CorruptError(lineno)
+** sqlite3MisuseError(lineno)
+** sqlite3CantopenError(lineno)
+*/
+static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){
+ static u64 n = 0;
+ (void)pc;
+ (void)pOp;
+ (void)v;
+ n++;
+ if( n==LARGEST_UINT64 ) abort(); /* So that n is used, preventing a warning */
+}
+#endif
+
+/*
+** Invoke the VDBE coverage callback, if that callback is defined. This
+** feature is used for test suite validation only and does not appear an
+** production builds.
+**
+** M is the type of branch. I is the direction taken for this instance of
+** the branch.
+**
+** M: 2 - two-way branch (I=0: fall-thru 1: jump )
+** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL )
+** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3)
+**
+** In other words, if M is 2, then I is either 0 (for fall-through) or
+** 1 (for when the branch is taken). If M is 3, the I is 0 for an
+** ordinary fall-through, I is 1 if the branch was taken, and I is 2
+** if the result of comparison is NULL. For M=3, I=2 the jump may or
+** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
+** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2
+** depending on if the operands are less than, equal, or greater than.
+**
+** iSrcLine is the source code line (from the __LINE__ macro) that
+** generated the VDBE instruction combined with flag bits. The source
+** code line number is in the lower 24 bits of iSrcLine and the upper
+** 8 bytes are flags. The lower three bits of the flags indicate
+** values for I that should never occur. For example, if the branch is
+** always taken, the flags should be 0x05 since the fall-through and
+** alternate branch are never taken. If a branch is never taken then
+** flags should be 0x06 since only the fall-through approach is allowed.
+**
+** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
+** interested in equal or not-equal. In other words, I==0 and I==2
+** should be treated as equivalent
+**
+** Since only a line number is retained, not the filename, this macro
+** only works for amalgamation builds. But that is ok, since these macros
+** should be no-ops except for special builds used to measure test coverage.
+*/
+#if !defined(SQLITE_VDBE_COVERAGE)
+# define VdbeBranchTaken(I,M)
+#else
+# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
+ static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
+ u8 mNever;
+ assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */
+ assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
+ assert( I<M ); /* I can only be 2 if M is 3 or 4 */
+ /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
+ I = 1<<I;
+ /* The upper 8 bits of iSrcLine are flags. The lower three bits of
+ ** the flags indicate directions that the branch can never go. If
+ ** a branch really does go in one of those directions, assert right
+ ** away. */
+ mNever = iSrcLine >> 24;
+ assert( (I & mNever)==0 );
+ if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
+ /* Invoke the branch coverage callback with three arguments:
+ ** iSrcLine - the line number of the VdbeCoverage() macro, with
+ ** flags removed.
+ ** I - Mask of bits 0x07 indicating which cases are are
+ ** fulfilled by this instance of the jump. 0x01 means
+ ** fall-thru, 0x02 means taken, 0x04 means NULL. Any
+ ** impossible cases (ex: if the comparison is never NULL)
+ ** are filled in automatically so that the coverage
+ ** measurement logic does not flag those impossible cases
+ ** as missed coverage.
+ ** M - Type of jump. Same as M argument above
+ */
+ I |= mNever;
+ if( M==2 ) I |= 0x04;
+ if( M==4 ){
+ I |= 0x08;
+ if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
+ }
+ sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
+ iSrcLine&0xffffff, I, M);
+ }
+#endif
+
+/*
+** An ephemeral string value (signified by the MEM_Ephem flag) contains
+** a pointer to a dynamically allocated string where some other entity
+** is responsible for deallocating that string. Because the register
+** does not control the string, it might be deleted without the register
+** knowing it.
+**
+** This routine converts an ephemeral string into a dynamically allocated
+** string that the register itself controls. In other words, it
+** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
+*/
+#define Deephemeralize(P) \
+ if( ((P)->flags&MEM_Ephem)!=0 \
+ && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
+
+/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
+#define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
+
+/*
+** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
+** if we run out of memory.
+*/
+static VdbeCursor *allocateCursor(
+ Vdbe *p, /* The virtual machine */
+ int iCur, /* Index of the new VdbeCursor */
+ int nField, /* Number of fields in the table or index */
+ u8 eCurType /* Type of the new cursor */
+){
+ /* Find the memory cell that will be used to store the blob of memory
+ ** required for this VdbeCursor structure. It is convenient to use a
+ ** vdbe memory cell to manage the memory allocation required for a
+ ** VdbeCursor structure for the following reasons:
+ **
+ ** * Sometimes cursor numbers are used for a couple of different
+ ** purposes in a vdbe program. The different uses might require
+ ** different sized allocations. Memory cells provide growable
+ ** allocations.
+ **
+ ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
+ ** be freed lazily via the sqlite3_release_memory() API. This
+ ** minimizes the number of malloc calls made by the system.
+ **
+ ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
+ ** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
+ ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
+ */
+ Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
+
+ int nByte;
+ VdbeCursor *pCx = 0;
+ nByte =
+ ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
+ (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
+
+ assert( iCur>=0 && iCur<p->nCursor );
+ if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
+ sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]);
+ p->apCsr[iCur] = 0;
+ }
+
+ /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure
+ ** the pMem used to hold space for the cursor has enough storage available
+ ** in pMem->zMalloc. But for the special case of the aMem[] entries used
+ ** to hold cursors, it is faster to in-line the logic. */
+ assert( pMem->flags==MEM_Undefined );
+ assert( (pMem->flags & MEM_Dyn)==0 );
+ assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc );
+ if( pMem->szMalloc<nByte ){
+ if( pMem->szMalloc>0 ){
+ sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
+ }
+ pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte);
+ if( pMem->zMalloc==0 ){
+ pMem->szMalloc = 0;
+ return 0;
+ }
+ pMem->szMalloc = nByte;
+ }
+
+ p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc;
+ memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
+ pCx->eCurType = eCurType;
+ pCx->nField = nField;
+ pCx->aOffset = &pCx->aType[nField];
+ if( eCurType==CURTYPE_BTREE ){
+ pCx->uc.pCursor = (BtCursor*)
+ &pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
+ sqlite3BtreeCursorZero(pCx->uc.pCursor);
+ }
+ return pCx;
+}
+
+/*
+** The string in pRec is known to look like an integer and to have a
+** floating point value of rValue. Return true and set *piValue to the
+** integer value if the string is in range to be an integer. Otherwise,
+** return false.
+*/
+static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
+ i64 iValue;
+ iValue = sqlite3RealToI64(rValue);
+ if( sqlite3RealSameAsInt(rValue,iValue) ){
+ *piValue = iValue;
+ return 1;
+ }
+ return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
+}
+
+/*
+** Try to convert a value into a numeric representation if we can
+** do so without loss of information. In other words, if the string
+** looks like a number, convert it into a number. If it does not
+** look like a number, leave it alone.
+**
+** If the bTryForInt flag is true, then extra effort is made to give
+** an integer representation. Strings that look like floating point
+** values but which have no fractional component (example: '48.00')
+** will have a MEM_Int representation when bTryForInt is true.
+**
+** If bTryForInt is false, then if the input string contains a decimal
+** point or exponential notation, the result is only MEM_Real, even
+** if there is an exact integer representation of the quantity.
+*/
+static void applyNumericAffinity(Mem *pRec, int bTryForInt){
+ double rValue;
+ u8 enc = pRec->enc;
+ int rc;
+ assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
+ rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
+ if( rc<=0 ) return;
+ if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
+ pRec->flags |= MEM_Int;
+ }else{
+ pRec->u.r = rValue;
+ pRec->flags |= MEM_Real;
+ if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
+ }
+ /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the
+ ** string representation after computing a numeric equivalent, because the
+ ** string representation might not be the canonical representation for the
+ ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */
+ pRec->flags &= ~MEM_Str;
+}
+
+/*
+** Processing is determine by the affinity parameter:
+**
+** SQLITE_AFF_INTEGER:
+** SQLITE_AFF_REAL:
+** SQLITE_AFF_NUMERIC:
+** Try to convert pRec to an integer representation or a
+** floating-point representation if an integer representation
+** is not possible. Note that the integer representation is
+** always preferred, even if the affinity is REAL, because
+** an integer representation is more space efficient on disk.
+**
+** SQLITE_AFF_FLEXNUM:
+** If the value is text, then try to convert it into a number of
+** some kind (integer or real) but do not make any other changes.
+**
+** SQLITE_AFF_TEXT:
+** Convert pRec to a text representation.
+**
+** SQLITE_AFF_BLOB:
+** SQLITE_AFF_NONE:
+** No-op. pRec is unchanged.
+*/
+static void applyAffinity(
+ Mem *pRec, /* The value to apply affinity to */
+ char affinity, /* The affinity to be applied */
+ u8 enc /* Use this text encoding */
+){
+ if( affinity>=SQLITE_AFF_NUMERIC ){
+ assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
+ || affinity==SQLITE_AFF_NUMERIC || affinity==SQLITE_AFF_FLEXNUM );
+ if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
+ if( (pRec->flags & (MEM_Real|MEM_IntReal))==0 ){
+ if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
+ }else if( affinity<=SQLITE_AFF_REAL ){
+ sqlite3VdbeIntegerAffinity(pRec);
+ }
+ }
+ }else if( affinity==SQLITE_AFF_TEXT ){
+ /* Only attempt the conversion to TEXT if there is an integer or real
+ ** representation (blob and NULL do not get converted) but no string
+ ** representation. It would be harmless to repeat the conversion if
+ ** there is already a string rep, but it is pointless to waste those
+ ** CPU cycles. */
+ if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
+ if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
+ testcase( pRec->flags & MEM_Int );
+ testcase( pRec->flags & MEM_Real );
+ testcase( pRec->flags & MEM_IntReal );
+ sqlite3VdbeMemStringify(pRec, enc, 1);
+ }
+ }
+ pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
+ }
+}
+
+/*
+** Try to convert the type of a function argument or a result column
+** into a numeric representation. Use either INTEGER or REAL whichever
+** is appropriate. But only do the conversion if it is possible without
+** loss of information and return the revised type of the argument.
+*/
+int sqlite3_value_numeric_type(sqlite3_value *pVal){
+ int eType = sqlite3_value_type(pVal);
+ if( eType==SQLITE_TEXT ){
+ Mem *pMem = (Mem*)pVal;
+ applyNumericAffinity(pMem, 0);
+ eType = sqlite3_value_type(pVal);
+ }
+ return eType;
+}
+
+/*
+** Exported version of applyAffinity(). This one works on sqlite3_value*,
+** not the internal Mem* type.
+*/
+void sqlite3ValueApplyAffinity(
+ sqlite3_value *pVal,
+ u8 affinity,
+ u8 enc
+){
+ applyAffinity((Mem *)pVal, affinity, enc);
+}
+
+/*
+** pMem currently only holds a string type (or maybe a BLOB that we can
+** interpret as a string if we want to). Compute its corresponding
+** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
+** accordingly.
+*/
+static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
+ int rc;
+ sqlite3_int64 ix;
+ assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
+ assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
+ if( ExpandBlob(pMem) ){
+ pMem->u.i = 0;
+ return MEM_Int;
+ }
+ rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
+ if( rc<=0 ){
+ if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
+ pMem->u.i = ix;
+ return MEM_Int;
+ }else{
+ return MEM_Real;
+ }
+ }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
+ pMem->u.i = ix;
+ return MEM_Int;
+ }
+ return MEM_Real;
+}
+
+/*
+** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
+** none.
+**
+** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
+** But it does set pMem->u.r and pMem->u.i appropriately.
+*/
+static u16 numericType(Mem *pMem){
+ assert( (pMem->flags & MEM_Null)==0
+ || pMem->db==0 || pMem->db->mallocFailed );
+ if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null) ){
+ testcase( pMem->flags & MEM_Int );
+ testcase( pMem->flags & MEM_Real );
+ testcase( pMem->flags & MEM_IntReal );
+ return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null);
+ }
+ assert( pMem->flags & (MEM_Str|MEM_Blob) );
+ testcase( pMem->flags & MEM_Str );
+ testcase( pMem->flags & MEM_Blob );
+ return computeNumericType(pMem);
+ return 0;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Write a nice string representation of the contents of cell pMem
+** into buffer zBuf, length nBuf.
+*/
+void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){
+ int f = pMem->flags;
+ static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
+ if( f&MEM_Blob ){
+ int i;
+ char c;
+ if( f & MEM_Dyn ){
+ c = 'z';
+ assert( (f & (MEM_Static|MEM_Ephem))==0 );
+ }else if( f & MEM_Static ){
+ c = 't';
+ assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
+ }else if( f & MEM_Ephem ){
+ c = 'e';
+ assert( (f & (MEM_Static|MEM_Dyn))==0 );
+ }else{
+ c = 's';
+ }
+ sqlite3_str_appendf(pStr, "%cx[", c);
+ for(i=0; i<25 && i<pMem->n; i++){
+ sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF));
+ }
+ sqlite3_str_appendf(pStr, "|");
+ for(i=0; i<25 && i<pMem->n; i++){
+ char z = pMem->z[i];
+ sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z);
+ }
+ sqlite3_str_appendf(pStr,"]");
+ if( f & MEM_Zero ){
+ sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero);
+ }
+ }else if( f & MEM_Str ){
+ int j;
+ u8 c;
+ if( f & MEM_Dyn ){
+ c = 'z';
+ assert( (f & (MEM_Static|MEM_Ephem))==0 );
+ }else if( f & MEM_Static ){
+ c = 't';
+ assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
+ }else if( f & MEM_Ephem ){
+ c = 'e';
+ assert( (f & (MEM_Static|MEM_Dyn))==0 );
+ }else{
+ c = 's';
+ }
+ sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n);
+ for(j=0; j<25 && j<pMem->n; j++){
+ c = pMem->z[j];
+ sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.');
+ }
+ sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]);
+ if( f & MEM_Term ){
+ sqlite3_str_appendf(pStr, "(0-term)");
+ }
+ }
+}
+#endif
+
+#ifdef SQLITE_DEBUG
+/*
+** Print the value of a register for tracing purposes:
+*/
+static void memTracePrint(Mem *p){
+ if( p->flags & MEM_Undefined ){
+ printf(" undefined");
+ }else if( p->flags & MEM_Null ){
+ printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
+ }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
+ printf(" si:%lld", p->u.i);
+ }else if( (p->flags & (MEM_IntReal))!=0 ){
+ printf(" ir:%lld", p->u.i);
+ }else if( p->flags & MEM_Int ){
+ printf(" i:%lld", p->u.i);
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ }else if( p->flags & MEM_Real ){
+ printf(" r:%.17g", p->u.r);
+#endif
+ }else if( sqlite3VdbeMemIsRowSet(p) ){
+ printf(" (rowset)");
+ }else{
+ StrAccum acc;
+ char zBuf[1000];
+ sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
+ sqlite3VdbeMemPrettyPrint(p, &acc);
+ printf(" %s", sqlite3StrAccumFinish(&acc));
+ }
+ if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
+}
+static void registerTrace(int iReg, Mem *p){
+ printf("R[%d] = ", iReg);
+ memTracePrint(p);
+ if( p->pScopyFrom ){
+ printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg]));
+ }
+ printf("\n");
+ sqlite3VdbeCheckMemInvariants(p);
+}
+/**/ void sqlite3PrintMem(Mem *pMem){
+ memTracePrint(pMem);
+ printf("\n");
+ fflush(stdout);
+}
+#endif
+
+#ifdef SQLITE_DEBUG
+/*
+** Show the values of all registers in the virtual machine. Used for
+** interactive debugging.
+*/
+void sqlite3VdbeRegisterDump(Vdbe *v){
+ int i;
+ for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i);
+}
+#endif /* SQLITE_DEBUG */
+
+
+#ifdef SQLITE_DEBUG
+# define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
+#else
+# define REGISTER_TRACE(R,M)
+#endif
+
+#ifndef NDEBUG
+/*
+** This function is only called from within an assert() expression. It
+** checks that the sqlite3.nTransaction variable is correctly set to
+** the number of non-transaction savepoints currently in the
+** linked list starting at sqlite3.pSavepoint.
+**
+** Usage:
+**
+** assert( checkSavepointCount(db) );
+*/
+static int checkSavepointCount(sqlite3 *db){
+ int n = 0;
+ Savepoint *p;
+ for(p=db->pSavepoint; p; p=p->pNext) n++;
+ assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
+ return 1;
+}
+#endif
+
+/*
+** Return the register of pOp->p2 after first preparing it to be
+** overwritten with an integer value.
+*/
+static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
+ sqlite3VdbeMemSetNull(pOut);
+ pOut->flags = MEM_Int;
+ return pOut;
+}
+static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
+ Mem *pOut;
+ assert( pOp->p2>0 );
+ assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
+ pOut = &p->aMem[pOp->p2];
+ memAboutToChange(p, pOut);
+ if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
+ return out2PrereleaseWithClear(pOut);
+ }else{
+ pOut->flags = MEM_Int;
+ return pOut;
+ }
+}
+
+/*
+** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning
+** with pOp->p3. Return the hash.
+*/
+static u64 filterHash(const Mem *aMem, const Op *pOp){
+ int i, mx;
+ u64 h = 0;
+
+ assert( pOp->p4type==P4_INT32 );
+ for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){
+ const Mem *p = &aMem[i];
+ if( p->flags & (MEM_Int|MEM_IntReal) ){
+ h += p->u.i;
+ }else if( p->flags & MEM_Real ){
+ h += sqlite3VdbeIntValue(p);
+ }else if( p->flags & (MEM_Str|MEM_Blob) ){
+ /* All strings have the same hash and all blobs have the same hash,
+ ** though, at least, those hashes are different from each other and
+ ** from NULL. */
+ h += 4093 + (p->flags & (MEM_Str|MEM_Blob));
+ }
+ }
+ return h;
+}
+
+
+/*
+** For OP_Column, factor out the case where content is loaded from
+** overflow pages, so that the code to implement this case is separate
+** the common case where all content fits on the page. Factoring out
+** the code reduces register pressure and helps the common case
+** to run faster.
+*/
+static SQLITE_NOINLINE int vdbeColumnFromOverflow(
+ VdbeCursor *pC, /* The BTree cursor from which we are reading */
+ int iCol, /* The column to read */
+ int t, /* The serial-type code for the column value */
+ i64 iOffset, /* Offset to the start of the content value */
+ u32 cacheStatus, /* Current Vdbe.cacheCtr value */
+ u32 colCacheCtr, /* Current value of the column cache counter */
+ Mem *pDest /* Store the value into this register. */
+){
+ int rc;
+ sqlite3 *db = pDest->db;
+ int encoding = pDest->enc;
+ int len = sqlite3VdbeSerialTypeLen(t);
+ assert( pC->eCurType==CURTYPE_BTREE );
+ if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) return SQLITE_TOOBIG;
+ if( len > 4000 && pC->pKeyInfo==0 ){
+ /* Cache large column values that are on overflow pages using
+ ** an RCStr (reference counted string) so that if they are reloaded,
+ ** that do not have to be copied a second time. The overhead of
+ ** creating and managing the cache is such that this is only
+ ** profitable for larger TEXT and BLOB values.
+ **
+ ** Only do this on table-btrees so that writes to index-btrees do not
+ ** need to clear the cache. This buys performance in the common case
+ ** in exchange for generality.
+ */
+ VdbeTxtBlbCache *pCache;
+ char *pBuf;
+ if( pC->colCache==0 ){
+ pC->pCache = sqlite3DbMallocZero(db, sizeof(VdbeTxtBlbCache) );
+ if( pC->pCache==0 ) return SQLITE_NOMEM;
+ pC->colCache = 1;
+ }
+ pCache = pC->pCache;
+ if( pCache->pCValue==0
+ || pCache->iCol!=iCol
+ || pCache->cacheStatus!=cacheStatus
+ || pCache->colCacheCtr!=colCacheCtr
+ || pCache->iOffset!=sqlite3BtreeOffset(pC->uc.pCursor)
+ ){
+ if( pCache->pCValue ) sqlite3RCStrUnref(pCache->pCValue);
+ pBuf = pCache->pCValue = sqlite3RCStrNew( len+3 );
+ if( pBuf==0 ) return SQLITE_NOMEM;
+ rc = sqlite3BtreePayload(pC->uc.pCursor, iOffset, len, pBuf);
+ if( rc ) return rc;
+ pBuf[len] = 0;
+ pBuf[len+1] = 0;
+ pBuf[len+2] = 0;
+ pCache->iCol = iCol;
+ pCache->cacheStatus = cacheStatus;
+ pCache->colCacheCtr = colCacheCtr;
+ pCache->iOffset = sqlite3BtreeOffset(pC->uc.pCursor);
+ }else{
+ pBuf = pCache->pCValue;
+ }
+ assert( t>=12 );
+ sqlite3RCStrRef(pBuf);
+ if( t&1 ){
+ rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, encoding,
+ sqlite3RCStrUnref);
+ pDest->flags |= MEM_Term;
+ }else{
+ rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, 0,
+ sqlite3RCStrUnref);
+ }
+ }else{
+ rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, iOffset, len, pDest);
+ if( rc ) return rc;
+ sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
+ if( (t&1)!=0 && encoding==SQLITE_UTF8 ){
+ pDest->z[len] = 0;
+ pDest->flags |= MEM_Term;
+ }
+ }
+ pDest->flags &= ~MEM_Ephem;
+ return rc;
+}
+
+
+/*
+** Return the symbolic name for the data type of a pMem
+*/
+static const char *vdbeMemTypeName(Mem *pMem){
+ static const char *azTypes[] = {
+ /* SQLITE_INTEGER */ "INT",
+ /* SQLITE_FLOAT */ "REAL",
+ /* SQLITE_TEXT */ "TEXT",
+ /* SQLITE_BLOB */ "BLOB",
+ /* SQLITE_NULL */ "NULL"
+ };
+ return azTypes[sqlite3_value_type(pMem)-1];
+}
+
+/*
+** Execute as much of a VDBE program as we can.
+** This is the core of sqlite3_step().
+*/
+int sqlite3VdbeExec(
+ Vdbe *p /* The VDBE */
+){
+ Op *aOp = p->aOp; /* Copy of p->aOp */
+ Op *pOp = aOp; /* Current operation */
+#ifdef SQLITE_DEBUG
+ Op *pOrigOp; /* Value of pOp at the top of the loop */
+ int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */
+ u8 iCompareIsInit = 0; /* iCompare is initialized */
+#endif
+ int rc = SQLITE_OK; /* Value to return */
+ sqlite3 *db = p->db; /* The database */
+ u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
+ u8 encoding = ENC(db); /* The database encoding */
+ int iCompare = 0; /* Result of last comparison */
+ u64 nVmStep = 0; /* Number of virtual machine steps */
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */
+#endif
+ Mem *aMem = p->aMem; /* Copy of p->aMem */
+ Mem *pIn1 = 0; /* 1st input operand */
+ Mem *pIn2 = 0; /* 2nd input operand */
+ Mem *pIn3 = 0; /* 3rd input operand */
+ Mem *pOut = 0; /* Output operand */
+ u32 colCacheCtr = 0; /* Column cache counter */
+#if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
+ u64 *pnCycle = 0;
+ int bStmtScanStatus = IS_STMT_SCANSTATUS(db)!=0;
+#endif
+ /*** INSERT STACK UNION HERE ***/
+
+ assert( p->eVdbeState==VDBE_RUN_STATE ); /* sqlite3_step() verifies this */
+ if( DbMaskNonZero(p->lockMask) ){
+ sqlite3VdbeEnter(p);
+ }
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ if( db->xProgress ){
+ u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
+ assert( 0 < db->nProgressOps );
+ nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
+ }else{
+ nProgressLimit = LARGEST_UINT64;
+ }
+#endif
+ if( p->rc==SQLITE_NOMEM ){
+ /* This happens if a malloc() inside a call to sqlite3_column_text() or
+ ** sqlite3_column_text16() failed. */
+ goto no_mem;
+ }
+ assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
+ testcase( p->rc!=SQLITE_OK );
+ p->rc = SQLITE_OK;
+ assert( p->bIsReader || p->readOnly!=0 );
+ p->iCurrentTime = 0;
+ assert( p->explain==0 );
+ db->busyHandler.nBusy = 0;
+ if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
+ sqlite3VdbeIOTraceSql(p);
+#ifdef SQLITE_DEBUG
+ sqlite3BeginBenignMalloc();
+ if( p->pc==0
+ && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
+ ){
+ int i;
+ int once = 1;
+ sqlite3VdbePrintSql(p);
+ if( p->db->flags & SQLITE_VdbeListing ){
+ printf("VDBE Program Listing:\n");
+ for(i=0; i<p->nOp; i++){
+ sqlite3VdbePrintOp(stdout, i, &aOp[i]);
+ }
+ }
+ if( p->db->flags & SQLITE_VdbeEQP ){
+ for(i=0; i<p->nOp; i++){
+ if( aOp[i].opcode==OP_Explain ){
+ if( once ) printf("VDBE Query Plan:\n");
+ printf("%s\n", aOp[i].p4.z);
+ once = 0;
+ }
+ }
+ }
+ if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
+ }
+ sqlite3EndBenignMalloc();
+#endif
+ for(pOp=&aOp[p->pc]; 1; pOp++){
+ /* Errors are detected by individual opcodes, with an immediate
+ ** jumps to abort_due_to_error. */
+ assert( rc==SQLITE_OK );
+
+ assert( pOp>=aOp && pOp<&aOp[p->nOp]);
+ nVmStep++;
+
+#if defined(VDBE_PROFILE)
+ pOp->nExec++;
+ pnCycle = &pOp->nCycle;
+ if( sqlite3NProfileCnt==0 ) *pnCycle -= sqlite3Hwtime();
+#elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
+ if( bStmtScanStatus ){
+ pOp->nExec++;
+ pnCycle = &pOp->nCycle;
+ *pnCycle -= sqlite3Hwtime();
+ }
+#endif
+
+ /* Only allow tracing if SQLITE_DEBUG is defined.
+ */
+#ifdef SQLITE_DEBUG
+ if( db->flags & SQLITE_VdbeTrace ){
+ sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
+ test_trace_breakpoint((int)(pOp - aOp),pOp,p);
+ }
+#endif
+
+
+ /* Check to see if we need to simulate an interrupt. This only happens
+ ** if we have a special test build.
+ */
+#ifdef SQLITE_TEST
+ if( sqlite3_interrupt_count>0 ){
+ sqlite3_interrupt_count--;
+ if( sqlite3_interrupt_count==0 ){
+ sqlite3_interrupt(db);
+ }
+ }
+#endif
+
+ /* Sanity checking on other operands */
+#ifdef SQLITE_DEBUG
+ {
+ u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
+ if( (opProperty & OPFLG_IN1)!=0 ){
+ assert( pOp->p1>0 );
+ assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
+ assert( memIsValid(&aMem[pOp->p1]) );
+ assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
+ REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
+ }
+ if( (opProperty & OPFLG_IN2)!=0 ){
+ assert( pOp->p2>0 );
+ assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
+ assert( memIsValid(&aMem[pOp->p2]) );
+ assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
+ REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
+ }
+ if( (opProperty & OPFLG_IN3)!=0 ){
+ assert( pOp->p3>0 );
+ assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
+ assert( memIsValid(&aMem[pOp->p3]) );
+ assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
+ REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
+ }
+ if( (opProperty & OPFLG_OUT2)!=0 ){
+ assert( pOp->p2>0 );
+ assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
+ memAboutToChange(p, &aMem[pOp->p2]);
+ }
+ if( (opProperty & OPFLG_OUT3)!=0 ){
+ assert( pOp->p3>0 );
+ assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
+ memAboutToChange(p, &aMem[pOp->p3]);
+ }
+ }
+#endif
+#ifdef SQLITE_DEBUG
+ pOrigOp = pOp;
+#endif
+
+ switch( pOp->opcode ){
+
+/*****************************************************************************
+** What follows is a massive switch statement where each case implements a
+** separate instruction in the virtual machine. If we follow the usual
+** indentation conventions, each case should be indented by 6 spaces. But
+** that is a lot of wasted space on the left margin. So the code within
+** the switch statement will break with convention and be flush-left. Another
+** big comment (similar to this one) will mark the point in the code where
+** we transition back to normal indentation.
+**
+** The formatting of each case is important. The makefile for SQLite
+** generates two C files "opcodes.h" and "opcodes.c" by scanning this
+** file looking for lines that begin with "case OP_". The opcodes.h files
+** will be filled with #defines that give unique integer values to each
+** opcode and the opcodes.c file is filled with an array of strings where
+** each string is the symbolic name for the corresponding opcode. If the
+** case statement is followed by a comment of the form "/# same as ... #/"
+** that comment is used to determine the particular value of the opcode.
+**
+** Other keywords in the comment that follows each case are used to
+** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
+** Keywords include: in1, in2, in3, out2, out3. See
+** the mkopcodeh.awk script for additional information.
+**
+** Documentation about VDBE opcodes is generated by scanning this file
+** for lines of that contain "Opcode:". That line and all subsequent
+** comment lines are used in the generation of the opcode.html documentation
+** file.
+**
+** SUMMARY:
+**
+** Formatting is important to scripts that scan this file.
+** Do not deviate from the formatting style currently in use.
+**
+*****************************************************************************/
+
+/* Opcode: Goto * P2 * * *
+**
+** An unconditional jump to address P2.
+** The next instruction executed will be
+** the one at index P2 from the beginning of
+** the program.
+**
+** The P1 parameter is not actually used by this opcode. However, it
+** is sometimes set to 1 instead of 0 as a hint to the command-line shell
+** that this Goto is the bottom of a loop and that the lines from P2 down
+** to the current line should be indented for EXPLAIN output.
+*/
+case OP_Goto: { /* jump */
+
+#ifdef SQLITE_DEBUG
+ /* In debugging mode, when the p5 flags is set on an OP_Goto, that
+ ** means we should really jump back to the preceding OP_ReleaseReg
+ ** instruction. */
+ if( pOp->p5 ){
+ assert( pOp->p2 < (int)(pOp - aOp) );
+ assert( pOp->p2 > 1 );
+ pOp = &aOp[pOp->p2 - 2];
+ assert( pOp[1].opcode==OP_ReleaseReg );
+ goto check_for_interrupt;
+ }
+#endif
+
+jump_to_p2_and_check_for_interrupt:
+ pOp = &aOp[pOp->p2 - 1];
+
+ /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
+ ** OP_VNext, or OP_SorterNext) all jump here upon
+ ** completion. Check to see if sqlite3_interrupt() has been called
+ ** or if the progress callback needs to be invoked.
+ **
+ ** This code uses unstructured "goto" statements and does not look clean.
+ ** But that is not due to sloppy coding habits. The code is written this
+ ** way for performance, to avoid having to run the interrupt and progress
+ ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
+ ** faster according to "valgrind --tool=cachegrind" */
+check_for_interrupt:
+ if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ /* Call the progress callback if it is configured and the required number
+ ** of VDBE ops have been executed (either since this invocation of
+ ** sqlite3VdbeExec() or since last time the progress callback was called).
+ ** If the progress callback returns non-zero, exit the virtual machine with
+ ** a return code SQLITE_ABORT.
+ */
+ while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
+ assert( db->nProgressOps!=0 );
+ nProgressLimit += db->nProgressOps;
+ if( db->xProgress(db->pProgressArg) ){
+ nProgressLimit = LARGEST_UINT64;
+ rc = SQLITE_INTERRUPT;
+ goto abort_due_to_error;
+ }
+ }
+#endif
+
+ break;
+}
+
+/* Opcode: Gosub P1 P2 * * *
+**
+** Write the current address onto register P1
+** and then jump to address P2.
+*/
+case OP_Gosub: { /* jump */
+ assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
+ pIn1 = &aMem[pOp->p1];
+ assert( VdbeMemDynamic(pIn1)==0 );
+ memAboutToChange(p, pIn1);
+ pIn1->flags = MEM_Int;
+ pIn1->u.i = (int)(pOp-aOp);
+ REGISTER_TRACE(pOp->p1, pIn1);
+ goto jump_to_p2_and_check_for_interrupt;
+}
+
+/* Opcode: Return P1 P2 P3 * *
+**
+** Jump to the address stored in register P1. If P1 is a return address
+** register, then this accomplishes a return from a subroutine.
+**
+** If P3 is 1, then the jump is only taken if register P1 holds an integer
+** values, otherwise execution falls through to the next opcode, and the
+** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an
+** integer or else an assert() is raised. P3 should be set to 1 when
+** this opcode is used in combination with OP_BeginSubrtn, and set to 0
+** otherwise.
+**
+** The value in register P1 is unchanged by this opcode.
+**
+** P2 is not used by the byte-code engine. However, if P2 is positive
+** and also less than the current address, then the "EXPLAIN" output
+** formatter in the CLI will indent all opcodes from the P2 opcode up
+** to be not including the current Return. P2 should be the first opcode
+** in the subroutine from which this opcode is returning. Thus the P2
+** value is a byte-code indentation hint. See tag-20220407a in
+** wherecode.c and shell.c.
+*/
+case OP_Return: { /* in1 */
+ pIn1 = &aMem[pOp->p1];
+ if( pIn1->flags & MEM_Int ){
+ if( pOp->p3 ){ VdbeBranchTaken(1, 2); }
+ pOp = &aOp[pIn1->u.i];
+ }else if( ALWAYS(pOp->p3) ){
+ VdbeBranchTaken(0, 2);
+ }
+ break;
+}
+
+/* Opcode: InitCoroutine P1 P2 P3 * *
+**
+** Set up register P1 so that it will Yield to the coroutine
+** located at address P3.
+**
+** If P2!=0 then the coroutine implementation immediately follows
+** this opcode. So jump over the coroutine implementation to
+** address P2.
+**
+** See also: EndCoroutine
+*/
+case OP_InitCoroutine: { /* jump */
+ assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
+ assert( pOp->p2>=0 && pOp->p2<p->nOp );
+ assert( pOp->p3>=0 && pOp->p3<p->nOp );
+ pOut = &aMem[pOp->p1];
+ assert( !VdbeMemDynamic(pOut) );
+ pOut->u.i = pOp->p3 - 1;
+ pOut->flags = MEM_Int;
+ if( pOp->p2==0 ) break;
+
+ /* Most jump operations do a goto to this spot in order to update
+ ** the pOp pointer. */
+jump_to_p2:
+ assert( pOp->p2>0 ); /* There are never any jumps to instruction 0 */
+ assert( pOp->p2<p->nOp ); /* Jumps must be in range */
+ pOp = &aOp[pOp->p2 - 1];
+ break;
+}
+
+/* Opcode: EndCoroutine P1 * * * *
+**
+** The instruction at the address in register P1 is a Yield.
+** Jump to the P2 parameter of that Yield.
+** After the jump, register P1 becomes undefined.
+**
+** See also: InitCoroutine
+*/
+case OP_EndCoroutine: { /* in1 */
+ VdbeOp *pCaller;
+ pIn1 = &aMem[pOp->p1];
+ assert( pIn1->flags==MEM_Int );
+ assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
+ pCaller = &aOp[pIn1->u.i];
+ assert( pCaller->opcode==OP_Yield );
+ assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
+ pOp = &aOp[pCaller->p2 - 1];
+ pIn1->flags = MEM_Undefined;
+ break;
+}
+
+/* Opcode: Yield P1 P2 * * *
+**
+** Swap the program counter with the value in register P1. This
+** has the effect of yielding to a coroutine.
+**
+** If the coroutine that is launched by this instruction ends with
+** Yield or Return then continue to the next instruction. But if
+** the coroutine launched by this instruction ends with
+** EndCoroutine, then jump to P2 rather than continuing with the
+** next instruction.
+**
+** See also: InitCoroutine
+*/
+case OP_Yield: { /* in1, jump */
+ int pcDest;
+ pIn1 = &aMem[pOp->p1];
+ assert( VdbeMemDynamic(pIn1)==0 );
+ pIn1->flags = MEM_Int;
+ pcDest = (int)pIn1->u.i;
+ pIn1->u.i = (int)(pOp - aOp);
+ REGISTER_TRACE(pOp->p1, pIn1);
+ pOp = &aOp[pcDest];
+ break;
+}
+
+/* Opcode: HaltIfNull P1 P2 P3 P4 P5
+** Synopsis: if r[P3]=null halt
+**
+** Check the value in register P3. If it is NULL then Halt using
+** parameter P1, P2, and P4 as if this were a Halt instruction. If the
+** value in register P3 is not NULL, then this routine is a no-op.
+** The P5 parameter should be 1.
+*/
+case OP_HaltIfNull: { /* in3 */
+ pIn3 = &aMem[pOp->p3];
+#ifdef SQLITE_DEBUG
+ if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
+#endif
+ if( (pIn3->flags & MEM_Null)==0 ) break;
+ /* Fall through into OP_Halt */
+ /* no break */ deliberate_fall_through
+}
+
+/* Opcode: Halt P1 P2 * P4 P5
+**
+** Exit immediately. All open cursors, etc are closed
+** automatically.
+**
+** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
+** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
+** For errors, it can be some other value. If P1!=0 then P2 will determine
+** whether or not to rollback the current transaction. Do not rollback
+** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
+** then back out all changes that have occurred during this execution of the
+** VDBE, but do not rollback the transaction.
+**
+** If P4 is not null then it is an error message string.
+**
+** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
+**
+** 0: (no change)
+** 1: NOT NULL constraint failed: P4
+** 2: UNIQUE constraint failed: P4
+** 3: CHECK constraint failed: P4
+** 4: FOREIGN KEY constraint failed: P4
+**
+** If P5 is not zero and P4 is NULL, then everything after the ":" is
+** omitted.
+**
+** There is an implied "Halt 0 0 0" instruction inserted at the very end of
+** every program. So a jump past the last instruction of the program
+** is the same as executing Halt.
+*/
+case OP_Halt: {
+ VdbeFrame *pFrame;
+ int pcx;
+
+#ifdef SQLITE_DEBUG
+ if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
+#endif
+
+ /* A deliberately coded "OP_Halt SQLITE_INTERNAL * * * *" opcode indicates
+ ** something is wrong with the code generator. Raise an assertion in order
+ ** to bring this to the attention of fuzzers and other testing tools. */
+ assert( pOp->p1!=SQLITE_INTERNAL );
+
+ if( p->pFrame && pOp->p1==SQLITE_OK ){
+ /* Halt the sub-program. Return control to the parent frame. */
+ pFrame = p->pFrame;
+ p->pFrame = pFrame->pParent;
+ p->nFrame--;
+ sqlite3VdbeSetChanges(db, p->nChange);
+ pcx = sqlite3VdbeFrameRestore(pFrame);
+ if( pOp->p2==OE_Ignore ){
+ /* Instruction pcx is the OP_Program that invoked the sub-program
+ ** currently being halted. If the p2 instruction of this OP_Halt
+ ** instruction is set to OE_Ignore, then the sub-program is throwing
+ ** an IGNORE exception. In this case jump to the address specified
+ ** as the p2 of the calling OP_Program. */
+ pcx = p->aOp[pcx].p2-1;
+ }
+ aOp = p->aOp;
+ aMem = p->aMem;
+ pOp = &aOp[pcx];
+ break;
+ }
+ p->rc = pOp->p1;
+ p->errorAction = (u8)pOp->p2;
+ assert( pOp->p5<=4 );
+ if( p->rc ){
+ if( pOp->p5 ){
+ static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
+ "FOREIGN KEY" };
+ testcase( pOp->p5==1 );
+ testcase( pOp->p5==2 );
+ testcase( pOp->p5==3 );
+ testcase( pOp->p5==4 );
+ sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
+ if( pOp->p4.z ){
+ p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
+ }
+ }else{
+ sqlite3VdbeError(p, "%s", pOp->p4.z);
+ }
+ pcx = (int)(pOp - aOp);
+ sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
+ }
+ rc = sqlite3VdbeHalt(p);
+ assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
+ if( rc==SQLITE_BUSY ){
+ p->rc = SQLITE_BUSY;
+ }else{
+ assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
+ assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
+ rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
+ }
+ goto vdbe_return;
+}
+
+/* Opcode: Integer P1 P2 * * *
+** Synopsis: r[P2]=P1
+**
+** The 32-bit integer value P1 is written into register P2.
+*/
+case OP_Integer: { /* out2 */
+ pOut = out2Prerelease(p, pOp);
+ pOut->u.i = pOp->p1;
+ break;
+}
+
+/* Opcode: Int64 * P2 * P4 *
+** Synopsis: r[P2]=P4
+**
+** P4 is a pointer to a 64-bit integer value.
+** Write that value into register P2.
+*/
+case OP_Int64: { /* out2 */
+ pOut = out2Prerelease(p, pOp);
+ assert( pOp->p4.pI64!=0 );
+ pOut->u.i = *pOp->p4.pI64;
+ break;
+}
+
+#ifndef SQLITE_OMIT_FLOATING_POINT
+/* Opcode: Real * P2 * P4 *
+** Synopsis: r[P2]=P4
+**
+** P4 is a pointer to a 64-bit floating point value.
+** Write that value into register P2.
+*/
+case OP_Real: { /* same as TK_FLOAT, out2 */
+ pOut = out2Prerelease(p, pOp);
+ pOut->flags = MEM_Real;
+ assert( !sqlite3IsNaN(*pOp->p4.pReal) );
+ pOut->u.r = *pOp->p4.pReal;
+ break;
+}
+#endif
+
+/* Opcode: String8 * P2 * P4 *
+** Synopsis: r[P2]='P4'
+**
+** P4 points to a nul terminated UTF-8 string. This opcode is transformed
+** into a String opcode before it is executed for the first time. During
+** this transformation, the length of string P4 is computed and stored
+** as the P1 parameter.
+*/
+case OP_String8: { /* same as TK_STRING, out2 */
+ assert( pOp->p4.z!=0 );
+ pOut = out2Prerelease(p, pOp);
+ pOp->p1 = sqlite3Strlen30(pOp->p4.z);
+
+#ifndef SQLITE_OMIT_UTF16
+ if( encoding!=SQLITE_UTF8 ){
+ rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
+ assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
+ if( rc ) goto too_big;
+ if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
+ assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
+ assert( VdbeMemDynamic(pOut)==0 );
+ pOut->szMalloc = 0;
+ pOut->flags |= MEM_Static;
+ if( pOp->p4type==P4_DYNAMIC ){
+ sqlite3DbFree(db, pOp->p4.z);
+ }
+ pOp->p4type = P4_DYNAMIC;
+ pOp->p4.z = pOut->z;
+ pOp->p1 = pOut->n;
+ }
+#endif
+ if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ pOp->opcode = OP_String;
+ assert( rc==SQLITE_OK );
+ /* Fall through to the next case, OP_String */
+ /* no break */ deliberate_fall_through
+}
+
+/* Opcode: String P1 P2 P3 P4 P5
+** Synopsis: r[P2]='P4' (len=P1)
+**
+** The string value P4 of length P1 (bytes) is stored in register P2.
+**
+** If P3 is not zero and the content of register P3 is equal to P5, then
+** the datatype of the register P2 is converted to BLOB. The content is
+** the same sequence of bytes, it is merely interpreted as a BLOB instead
+** of a string, as if it had been CAST. In other words:
+**
+** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
+*/
+case OP_String: { /* out2 */
+ assert( pOp->p4.z!=0 );
+ pOut = out2Prerelease(p, pOp);
+ pOut->flags = MEM_Str|MEM_Static|MEM_Term;
+ pOut->z = pOp->p4.z;
+ pOut->n = pOp->p1;
+ pOut->enc = encoding;
+ UPDATE_MAX_BLOBSIZE(pOut);
+#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
+ if( pOp->p3>0 ){
+ assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
+ pIn3 = &aMem[pOp->p3];
+ assert( pIn3->flags & MEM_Int );
+ if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
+ }
+#endif
+ break;
+}
+
+/* Opcode: BeginSubrtn * P2 * * *
+** Synopsis: r[P2]=NULL
+**
+** Mark the beginning of a subroutine that can be entered in-line
+** or that can be called using OP_Gosub. The subroutine should
+** be terminated by an OP_Return instruction that has a P1 operand that
+** is the same as the P2 operand to this opcode and that has P3 set to 1.
+** If the subroutine is entered in-line, then the OP_Return will simply
+** fall through. But if the subroutine is entered using OP_Gosub, then
+** the OP_Return will jump back to the first instruction after the OP_Gosub.
+**
+** This routine works by loading a NULL into the P2 register. When the
+** return address register contains a NULL, the OP_Return instruction is
+** a no-op that simply falls through to the next instruction (assuming that
+** the OP_Return opcode has a P3 value of 1). Thus if the subroutine is
+** entered in-line, then the OP_Return will cause in-line execution to
+** continue. But if the subroutine is entered via OP_Gosub, then the
+** OP_Return will cause a return to the address following the OP_Gosub.
+**
+** This opcode is identical to OP_Null. It has a different name
+** only to make the byte code easier to read and verify.
+*/
+/* Opcode: Null P1 P2 P3 * *
+** Synopsis: r[P2..P3]=NULL
+**
+** Write a NULL into registers P2. If P3 greater than P2, then also write
+** NULL into register P3 and every register in between P2 and P3. If P3
+** is less than P2 (typically P3 is zero) then only register P2 is
+** set to NULL.
+**
+** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
+** NULL values will not compare equal even if SQLITE_NULLEQ is set on
+** OP_Ne or OP_Eq.
+*/
+case OP_BeginSubrtn:
+case OP_Null: { /* out2 */
+ int cnt;
+ u16 nullFlag;
+ pOut = out2Prerelease(p, pOp);
+ cnt = pOp->p3-pOp->p2;
+ assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
+ pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
+ pOut->n = 0;
+#ifdef SQLITE_DEBUG
+ pOut->uTemp = 0;
+#endif
+ while( cnt>0 ){
+ pOut++;
+ memAboutToChange(p, pOut);
+ sqlite3VdbeMemSetNull(pOut);
+ pOut->flags = nullFlag;
+ pOut->n = 0;
+ cnt--;
+ }
+ break;
+}
+
+/* Opcode: SoftNull P1 * * * *
+** Synopsis: r[P1]=NULL
+**
+** Set register P1 to have the value NULL as seen by the OP_MakeRecord
+** instruction, but do not free any string or blob memory associated with
+** the register, so that if the value was a string or blob that was
+** previously copied using OP_SCopy, the copies will continue to be valid.
+*/
+case OP_SoftNull: {
+ assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
+ pOut = &aMem[pOp->p1];
+ pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
+ break;
+}
+
+/* Opcode: Blob P1 P2 * P4 *
+** Synopsis: r[P2]=P4 (len=P1)
+**
+** P4 points to a blob of data P1 bytes long. Store this
+** blob in register P2. If P4 is a NULL pointer, then construct
+** a zero-filled blob that is P1 bytes long in P2.
+*/
+case OP_Blob: { /* out2 */
+ assert( pOp->p1 <= SQLITE_MAX_LENGTH );
+ pOut = out2Prerelease(p, pOp);
+ if( pOp->p4.z==0 ){
+ sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1);
+ if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem;
+ }else{
+ sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
+ }
+ pOut->enc = encoding;
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: Variable P1 P2 * P4 *
+** Synopsis: r[P2]=parameter(P1,P4)
+**
+** Transfer the values of bound parameter P1 into register P2
+**
+** If the parameter is named, then its name appears in P4.
+** The P4 value is used by sqlite3_bind_parameter_name().
+*/
+case OP_Variable: { /* out2 */
+ Mem *pVar; /* Value being transferred */
+
+ assert( pOp->p1>0 && pOp->p1<=p->nVar );
+ assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
+ pVar = &p->aVar[pOp->p1 - 1];
+ if( sqlite3VdbeMemTooBig(pVar) ){
+ goto too_big;
+ }
+ pOut = &aMem[pOp->p2];
+ if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
+ memcpy(pOut, pVar, MEMCELLSIZE);
+ pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
+ pOut->flags |= MEM_Static|MEM_FromBind;
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: Move P1 P2 P3 * *
+** Synopsis: r[P2@P3]=r[P1@P3]
+**
+** Move the P3 values in register P1..P1+P3-1 over into
+** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
+** left holding a NULL. It is an error for register ranges
+** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
+** for P3 to be less than 1.
+*/
+case OP_Move: {
+ int n; /* Number of registers left to copy */
+ int p1; /* Register to copy from */
+ int p2; /* Register to copy to */
+
+ n = pOp->p3;
+ p1 = pOp->p1;
+ p2 = pOp->p2;
+ assert( n>0 && p1>0 && p2>0 );
+ assert( p1+n<=p2 || p2+n<=p1 );
+
+ pIn1 = &aMem[p1];
+ pOut = &aMem[p2];
+ do{
+ assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
+ assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
+ assert( memIsValid(pIn1) );
+ memAboutToChange(p, pOut);
+ sqlite3VdbeMemMove(pOut, pIn1);
+#ifdef SQLITE_DEBUG
+ pIn1->pScopyFrom = 0;
+ { int i;
+ for(i=1; i<p->nMem; i++){
+ if( aMem[i].pScopyFrom==pIn1 ){
+ aMem[i].pScopyFrom = pOut;
+ }
+ }
+ }
+#endif
+ Deephemeralize(pOut);
+ REGISTER_TRACE(p2++, pOut);
+ pIn1++;
+ pOut++;
+ }while( --n );
+ break;
+}
+
+/* Opcode: Copy P1 P2 P3 * P5
+** Synopsis: r[P2@P3+1]=r[P1@P3+1]
+**
+** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
+**
+** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the
+** destination. The 0x0001 bit of P5 indicates that this Copy opcode cannot
+** be merged. The 0x0001 bit is used by the query planner and does not
+** come into play during query execution.
+**
+** This instruction makes a deep copy of the value. A duplicate
+** is made of any string or blob constant. See also OP_SCopy.
+*/
+case OP_Copy: {
+ int n;
+
+ n = pOp->p3;
+ pIn1 = &aMem[pOp->p1];
+ pOut = &aMem[pOp->p2];
+ assert( pOut!=pIn1 );
+ while( 1 ){
+ memAboutToChange(p, pOut);
+ sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
+ Deephemeralize(pOut);
+ if( (pOut->flags & MEM_Subtype)!=0 && (pOp->p5 & 0x0002)!=0 ){
+ pOut->flags &= ~MEM_Subtype;
+ }
+#ifdef SQLITE_DEBUG
+ pOut->pScopyFrom = 0;
+#endif
+ REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
+ if( (n--)==0 ) break;
+ pOut++;
+ pIn1++;
+ }
+ break;
+}
+
+/* Opcode: SCopy P1 P2 * * *
+** Synopsis: r[P2]=r[P1]
+**
+** Make a shallow copy of register P1 into register P2.
+**
+** This instruction makes a shallow copy of the value. If the value
+** is a string or blob, then the copy is only a pointer to the
+** original and hence if the original changes so will the copy.
+** Worse, if the original is deallocated, the copy becomes invalid.
+** Thus the program must guarantee that the original will not change
+** during the lifetime of the copy. Use OP_Copy to make a complete
+** copy.
+*/
+case OP_SCopy: { /* out2 */
+ pIn1 = &aMem[pOp->p1];
+ pOut = &aMem[pOp->p2];
+ assert( pOut!=pIn1 );
+ sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
+#ifdef SQLITE_DEBUG
+ pOut->pScopyFrom = pIn1;
+ pOut->mScopyFlags = pIn1->flags;
+#endif
+ break;
+}
+
+/* Opcode: IntCopy P1 P2 * * *
+** Synopsis: r[P2]=r[P1]
+**
+** Transfer the integer value held in register P1 into register P2.
+**
+** This is an optimized version of SCopy that works only for integer
+** values.
+*/
+case OP_IntCopy: { /* out2 */
+ pIn1 = &aMem[pOp->p1];
+ assert( (pIn1->flags & MEM_Int)!=0 );
+ pOut = &aMem[pOp->p2];
+ sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
+ break;
+}
+
+/* Opcode: FkCheck * * * * *
+**
+** Halt with an SQLITE_CONSTRAINT error if there are any unresolved
+** foreign key constraint violations. If there are no foreign key
+** constraint violations, this is a no-op.
+**
+** FK constraint violations are also checked when the prepared statement
+** exits. This opcode is used to raise foreign key constraint errors prior
+** to returning results such as a row change count or the result of a
+** RETURNING clause.
+*/
+case OP_FkCheck: {
+ if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ break;
+}
+
+/* Opcode: ResultRow P1 P2 * * *
+** Synopsis: output=r[P1@P2]
+**
+** The registers P1 through P1+P2-1 contain a single row of
+** results. This opcode causes the sqlite3_step() call to terminate
+** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
+** structure to provide access to the r(P1)..r(P1+P2-1) values as
+** the result row.
+*/
+case OP_ResultRow: {
+ assert( p->nResColumn==pOp->p2 );
+ assert( pOp->p1>0 || CORRUPT_DB );
+ assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
+
+ p->cacheCtr = (p->cacheCtr + 2)|1;
+ p->pResultRow = &aMem[pOp->p1];
+#ifdef SQLITE_DEBUG
+ {
+ Mem *pMem = p->pResultRow;
+ int i;
+ for(i=0; i<pOp->p2; i++){
+ assert( memIsValid(&pMem[i]) );
+ REGISTER_TRACE(pOp->p1+i, &pMem[i]);
+ /* The registers in the result will not be used again when the
+ ** prepared statement restarts. This is because sqlite3_column()
+ ** APIs might have caused type conversions of made other changes to
+ ** the register values. Therefore, we can go ahead and break any
+ ** OP_SCopy dependencies. */
+ pMem[i].pScopyFrom = 0;
+ }
+ }
+#endif
+ if( db->mallocFailed ) goto no_mem;
+ if( db->mTrace & SQLITE_TRACE_ROW ){
+ db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
+ }
+ p->pc = (int)(pOp - aOp) + 1;
+ rc = SQLITE_ROW;
+ goto vdbe_return;
+}
+
+/* Opcode: Concat P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]+r[P1]
+**
+** Add the text in register P1 onto the end of the text in
+** register P2 and store the result in register P3.
+** If either the P1 or P2 text are NULL then store NULL in P3.
+**
+** P3 = P2 || P1
+**
+** It is illegal for P1 and P3 to be the same register. Sometimes,
+** if P3 is the same register as P2, the implementation is able
+** to avoid a memcpy().
+*/
+case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
+ i64 nByte; /* Total size of the output string or blob */
+ u16 flags1; /* Initial flags for P1 */
+ u16 flags2; /* Initial flags for P2 */
+
+ pIn1 = &aMem[pOp->p1];
+ pIn2 = &aMem[pOp->p2];
+ pOut = &aMem[pOp->p3];
+ testcase( pOut==pIn2 );
+ assert( pIn1!=pOut );
+ flags1 = pIn1->flags;
+ testcase( flags1 & MEM_Null );
+ testcase( pIn2->flags & MEM_Null );
+ if( (flags1 | pIn2->flags) & MEM_Null ){
+ sqlite3VdbeMemSetNull(pOut);
+ break;
+ }
+ if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
+ if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
+ flags1 = pIn1->flags & ~MEM_Str;
+ }else if( (flags1 & MEM_Zero)!=0 ){
+ if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
+ flags1 = pIn1->flags & ~MEM_Str;
+ }
+ flags2 = pIn2->flags;
+ if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
+ if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
+ flags2 = pIn2->flags & ~MEM_Str;
+ }else if( (flags2 & MEM_Zero)!=0 ){
+ if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
+ flags2 = pIn2->flags & ~MEM_Str;
+ }
+ nByte = pIn1->n + pIn2->n;
+ if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
+ goto no_mem;
+ }
+ MemSetTypeFlag(pOut, MEM_Str);
+ if( pOut!=pIn2 ){
+ memcpy(pOut->z, pIn2->z, pIn2->n);
+ assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
+ pIn2->flags = flags2;
+ }
+ memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
+ assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
+ pIn1->flags = flags1;
+ if( encoding>SQLITE_UTF8 ) nByte &= ~1;
+ pOut->z[nByte]=0;
+ pOut->z[nByte+1] = 0;
+ pOut->flags |= MEM_Term;
+ pOut->n = (int)nByte;
+ pOut->enc = encoding;
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: Add P1 P2 P3 * *
+** Synopsis: r[P3]=r[P1]+r[P2]
+**
+** Add the value in register P1 to the value in register P2
+** and store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: Multiply P1 P2 P3 * *
+** Synopsis: r[P3]=r[P1]*r[P2]
+**
+**
+** Multiply the value in register P1 by the value in register P2
+** and store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: Subtract P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]-r[P1]
+**
+** Subtract the value in register P1 from the value in register P2
+** and store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: Divide P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]/r[P1]
+**
+** Divide the value in register P1 by the value in register P2
+** and store the result in register P3 (P3=P2/P1). If the value in
+** register P1 is zero, then the result is NULL. If either input is
+** NULL, the result is NULL.
+*/
+/* Opcode: Remainder P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]%r[P1]
+**
+** Compute the remainder after integer register P2 is divided by
+** register P1 and store the result in register P3.
+** If the value in register P1 is zero the result is NULL.
+** If either operand is NULL, the result is NULL.
+*/
+case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
+case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
+case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
+case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
+case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
+ u16 type1; /* Numeric type of left operand */
+ u16 type2; /* Numeric type of right operand */
+ i64 iA; /* Integer value of left operand */
+ i64 iB; /* Integer value of right operand */
+ double rA; /* Real value of left operand */
+ double rB; /* Real value of right operand */
+
+ pIn1 = &aMem[pOp->p1];
+ type1 = pIn1->flags;
+ pIn2 = &aMem[pOp->p2];
+ type2 = pIn2->flags;
+ pOut = &aMem[pOp->p3];
+ if( (type1 & type2 & MEM_Int)!=0 ){
+int_math:
+ iA = pIn1->u.i;
+ iB = pIn2->u.i;
+ switch( pOp->opcode ){
+ case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
+ case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
+ case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
+ case OP_Divide: {
+ if( iA==0 ) goto arithmetic_result_is_null;
+ if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
+ iB /= iA;
+ break;
+ }
+ default: {
+ if( iA==0 ) goto arithmetic_result_is_null;
+ if( iA==-1 ) iA = 1;
+ iB %= iA;
+ break;
+ }
+ }
+ pOut->u.i = iB;
+ MemSetTypeFlag(pOut, MEM_Int);
+ }else if( ((type1 | type2) & MEM_Null)!=0 ){
+ goto arithmetic_result_is_null;
+ }else{
+ type1 = numericType(pIn1);
+ type2 = numericType(pIn2);
+ if( (type1 & type2 & MEM_Int)!=0 ) goto int_math;
+fp_math:
+ rA = sqlite3VdbeRealValue(pIn1);
+ rB = sqlite3VdbeRealValue(pIn2);
+ switch( pOp->opcode ){
+ case OP_Add: rB += rA; break;
+ case OP_Subtract: rB -= rA; break;
+ case OP_Multiply: rB *= rA; break;
+ case OP_Divide: {
+ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
+ if( rA==(double)0 ) goto arithmetic_result_is_null;
+ rB /= rA;
+ break;
+ }
+ default: {
+ iA = sqlite3VdbeIntValue(pIn1);
+ iB = sqlite3VdbeIntValue(pIn2);
+ if( iA==0 ) goto arithmetic_result_is_null;
+ if( iA==-1 ) iA = 1;
+ rB = (double)(iB % iA);
+ break;
+ }
+ }
+#ifdef SQLITE_OMIT_FLOATING_POINT
+ pOut->u.i = rB;
+ MemSetTypeFlag(pOut, MEM_Int);
+#else
+ if( sqlite3IsNaN(rB) ){
+ goto arithmetic_result_is_null;
+ }
+ pOut->u.r = rB;
+ MemSetTypeFlag(pOut, MEM_Real);
+#endif
+ }
+ break;
+
+arithmetic_result_is_null:
+ sqlite3VdbeMemSetNull(pOut);
+ break;
+}
+
+/* Opcode: CollSeq P1 * * P4
+**
+** P4 is a pointer to a CollSeq object. If the next call to a user function
+** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
+** be returned. This is used by the built-in min(), max() and nullif()
+** functions.
+**
+** If P1 is not zero, then it is a register that a subsequent min() or
+** max() aggregate will set to 1 if the current row is not the minimum or
+** maximum. The P1 register is initialized to 0 by this instruction.
+**
+** The interface used by the implementation of the aforementioned functions
+** to retrieve the collation sequence set by this opcode is not available
+** publicly. Only built-in functions have access to this feature.
+*/
+case OP_CollSeq: {
+ assert( pOp->p4type==P4_COLLSEQ );
+ if( pOp->p1 ){
+ sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
+ }
+ break;
+}
+
+/* Opcode: BitAnd P1 P2 P3 * *
+** Synopsis: r[P3]=r[P1]&r[P2]
+**
+** Take the bit-wise AND of the values in register P1 and P2 and
+** store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: BitOr P1 P2 P3 * *
+** Synopsis: r[P3]=r[P1]|r[P2]
+**
+** Take the bit-wise OR of the values in register P1 and P2 and
+** store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: ShiftLeft P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]<<r[P1]
+**
+** Shift the integer value in register P2 to the left by the
+** number of bits specified by the integer in register P1.
+** Store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: ShiftRight P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]>>r[P1]
+**
+** Shift the integer value in register P2 to the right by the
+** number of bits specified by the integer in register P1.
+** Store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
+case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
+case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
+case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
+ i64 iA;
+ u64 uA;
+ i64 iB;
+ u8 op;
+
+ pIn1 = &aMem[pOp->p1];
+ pIn2 = &aMem[pOp->p2];
+ pOut = &aMem[pOp->p3];
+ if( (pIn1->flags | pIn2->flags) & MEM_Null ){
+ sqlite3VdbeMemSetNull(pOut);
+ break;
+ }
+ iA = sqlite3VdbeIntValue(pIn2);
+ iB = sqlite3VdbeIntValue(pIn1);
+ op = pOp->opcode;
+ if( op==OP_BitAnd ){
+ iA &= iB;
+ }else if( op==OP_BitOr ){
+ iA |= iB;
+ }else if( iB!=0 ){
+ assert( op==OP_ShiftRight || op==OP_ShiftLeft );
+
+ /* If shifting by a negative amount, shift in the other direction */
+ if( iB<0 ){
+ assert( OP_ShiftRight==OP_ShiftLeft+1 );
+ op = 2*OP_ShiftLeft + 1 - op;
+ iB = iB>(-64) ? -iB : 64;
+ }
+
+ if( iB>=64 ){
+ iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
+ }else{
+ memcpy(&uA, &iA, sizeof(uA));
+ if( op==OP_ShiftLeft ){
+ uA <<= iB;
+ }else{
+ uA >>= iB;
+ /* Sign-extend on a right shift of a negative number */
+ if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
+ }
+ memcpy(&iA, &uA, sizeof(iA));
+ }
+ }
+ pOut->u.i = iA;
+ MemSetTypeFlag(pOut, MEM_Int);
+ break;
+}
+
+/* Opcode: AddImm P1 P2 * * *
+** Synopsis: r[P1]=r[P1]+P2
+**
+** Add the constant P2 to the value in register P1.
+** The result is always an integer.
+**
+** To force any register to be an integer, just add 0.
+*/
+case OP_AddImm: { /* in1 */
+ pIn1 = &aMem[pOp->p1];
+ memAboutToChange(p, pIn1);
+ sqlite3VdbeMemIntegerify(pIn1);
+ *(u64*)&pIn1->u.i += (u64)pOp->p2;
+ break;
+}
+
+/* Opcode: MustBeInt P1 P2 * * *
+**
+** Force the value in register P1 to be an integer. If the value
+** in P1 is not an integer and cannot be converted into an integer
+** without data loss, then jump immediately to P2, or if P2==0
+** raise an SQLITE_MISMATCH exception.
+*/
+case OP_MustBeInt: { /* jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ if( (pIn1->flags & MEM_Int)==0 ){
+ applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
+ if( (pIn1->flags & MEM_Int)==0 ){
+ VdbeBranchTaken(1, 2);
+ if( pOp->p2==0 ){
+ rc = SQLITE_MISMATCH;
+ goto abort_due_to_error;
+ }else{
+ goto jump_to_p2;
+ }
+ }
+ }
+ VdbeBranchTaken(0, 2);
+ MemSetTypeFlag(pIn1, MEM_Int);
+ break;
+}
+
+#ifndef SQLITE_OMIT_FLOATING_POINT
+/* Opcode: RealAffinity P1 * * * *
+**
+** If register P1 holds an integer convert it to a real value.
+**
+** This opcode is used when extracting information from a column that
+** has REAL affinity. Such column values may still be stored as
+** integers, for space efficiency, but after extraction we want them
+** to have only a real value.
+*/
+case OP_RealAffinity: { /* in1 */
+ pIn1 = &aMem[pOp->p1];
+ if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
+ testcase( pIn1->flags & MEM_Int );
+ testcase( pIn1->flags & MEM_IntReal );
+ sqlite3VdbeMemRealify(pIn1);
+ REGISTER_TRACE(pOp->p1, pIn1);
+ }
+ break;
+}
+#endif
+
+#ifndef SQLITE_OMIT_CAST
+/* Opcode: Cast P1 P2 * * *
+** Synopsis: affinity(r[P1])
+**
+** Force the value in register P1 to be the type defined by P2.
+**
+** <ul>
+** <li> P2=='A' &rarr; BLOB
+** <li> P2=='B' &rarr; TEXT
+** <li> P2=='C' &rarr; NUMERIC
+** <li> P2=='D' &rarr; INTEGER
+** <li> P2=='E' &rarr; REAL
+** </ul>
+**
+** A NULL value is not changed by this routine. It remains NULL.
+*/
+case OP_Cast: { /* in1 */
+ assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
+ testcase( pOp->p2==SQLITE_AFF_TEXT );
+ testcase( pOp->p2==SQLITE_AFF_BLOB );
+ testcase( pOp->p2==SQLITE_AFF_NUMERIC );
+ testcase( pOp->p2==SQLITE_AFF_INTEGER );
+ testcase( pOp->p2==SQLITE_AFF_REAL );
+ pIn1 = &aMem[pOp->p1];
+ memAboutToChange(p, pIn1);
+ rc = ExpandBlob(pIn1);
+ if( rc ) goto abort_due_to_error;
+ rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
+ if( rc ) goto abort_due_to_error;
+ UPDATE_MAX_BLOBSIZE(pIn1);
+ REGISTER_TRACE(pOp->p1, pIn1);
+ break;
+}
+#endif /* SQLITE_OMIT_CAST */
+
+/* Opcode: Eq P1 P2 P3 P4 P5
+** Synopsis: IF r[P3]==r[P1]
+**
+** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then
+** jump to address P2.
+**
+** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
+** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
+** to coerce both inputs according to this affinity before the
+** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
+** affinity is used. Note that the affinity conversions are stored
+** back into the input registers P1 and P3. So this opcode can cause
+** persistent changes to registers P1 and P3.
+**
+** Once any conversions have taken place, and neither value is NULL,
+** the values are compared. If both values are blobs then memcmp() is
+** used to determine the results of the comparison. If both values
+** are text, then the appropriate collating function specified in
+** P4 is used to do the comparison. If P4 is not specified then
+** memcmp() is used to compare text string. If both values are
+** numeric, then a numeric comparison is used. If the two values
+** are of different types, then numbers are considered less than
+** strings and strings are considered less than blobs.
+**
+** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
+** true or false and is never NULL. If both operands are NULL then the result
+** of comparison is true. If either operand is NULL then the result is false.
+** If neither operand is NULL the result is the same as it would be if
+** the SQLITE_NULLEQ flag were omitted from P5.
+**
+** This opcode saves the result of comparison for use by the new
+** OP_Jump opcode.
+*/
+/* Opcode: Ne P1 P2 P3 P4 P5
+** Synopsis: IF r[P3]!=r[P1]
+**
+** This works just like the Eq opcode except that the jump is taken if
+** the operands in registers P1 and P3 are not equal. See the Eq opcode for
+** additional information.
+*/
+/* Opcode: Lt P1 P2 P3 P4 P5
+** Synopsis: IF r[P3]<r[P1]
+**
+** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
+** jump to address P2.
+**
+** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
+** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL
+** bit is clear then fall through if either operand is NULL.
+**
+** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
+** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
+** to coerce both inputs according to this affinity before the
+** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
+** affinity is used. Note that the affinity conversions are stored
+** back into the input registers P1 and P3. So this opcode can cause
+** persistent changes to registers P1 and P3.
+**
+** Once any conversions have taken place, and neither value is NULL,
+** the values are compared. If both values are blobs then memcmp() is
+** used to determine the results of the comparison. If both values
+** are text, then the appropriate collating function specified in
+** P4 is used to do the comparison. If P4 is not specified then
+** memcmp() is used to compare text string. If both values are
+** numeric, then a numeric comparison is used. If the two values
+** are of different types, then numbers are considered less than
+** strings and strings are considered less than blobs.
+**
+** This opcode saves the result of comparison for use by the new
+** OP_Jump opcode.
+*/
+/* Opcode: Le P1 P2 P3 P4 P5
+** Synopsis: IF r[P3]<=r[P1]
+**
+** This works just like the Lt opcode except that the jump is taken if
+** the content of register P3 is less than or equal to the content of
+** register P1. See the Lt opcode for additional information.
+*/
+/* Opcode: Gt P1 P2 P3 P4 P5
+** Synopsis: IF r[P3]>r[P1]
+**
+** This works just like the Lt opcode except that the jump is taken if
+** the content of register P3 is greater than the content of
+** register P1. See the Lt opcode for additional information.
+*/
+/* Opcode: Ge P1 P2 P3 P4 P5
+** Synopsis: IF r[P3]>=r[P1]
+**
+** This works just like the Lt opcode except that the jump is taken if
+** the content of register P3 is greater than or equal to the content of
+** register P1. See the Lt opcode for additional information.
+*/
+case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
+case OP_Ne: /* same as TK_NE, jump, in1, in3 */
+case OP_Lt: /* same as TK_LT, jump, in1, in3 */
+case OP_Le: /* same as TK_LE, jump, in1, in3 */
+case OP_Gt: /* same as TK_GT, jump, in1, in3 */
+case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
+ int res, res2; /* Result of the comparison of pIn1 against pIn3 */
+ char affinity; /* Affinity to use for comparison */
+ u16 flags1; /* Copy of initial value of pIn1->flags */
+ u16 flags3; /* Copy of initial value of pIn3->flags */
+
+ pIn1 = &aMem[pOp->p1];
+ pIn3 = &aMem[pOp->p3];
+ flags1 = pIn1->flags;
+ flags3 = pIn3->flags;
+ if( (flags1 & flags3 & MEM_Int)!=0 ){
+ /* Common case of comparison of two integers */
+ if( pIn3->u.i > pIn1->u.i ){
+ if( sqlite3aGTb[pOp->opcode] ){
+ VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
+ goto jump_to_p2;
+ }
+ iCompare = +1;
+ VVA_ONLY( iCompareIsInit = 1; )
+ }else if( pIn3->u.i < pIn1->u.i ){
+ if( sqlite3aLTb[pOp->opcode] ){
+ VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
+ goto jump_to_p2;
+ }
+ iCompare = -1;
+ VVA_ONLY( iCompareIsInit = 1; )
+ }else{
+ if( sqlite3aEQb[pOp->opcode] ){
+ VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
+ goto jump_to_p2;
+ }
+ iCompare = 0;
+ VVA_ONLY( iCompareIsInit = 1; )
+ }
+ VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
+ break;
+ }
+ if( (flags1 | flags3)&MEM_Null ){
+ /* One or both operands are NULL */
+ if( pOp->p5 & SQLITE_NULLEQ ){
+ /* If SQLITE_NULLEQ is set (which will only happen if the operator is
+ ** OP_Eq or OP_Ne) then take the jump or not depending on whether
+ ** or not both operands are null.
+ */
+ assert( (flags1 & MEM_Cleared)==0 );
+ assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
+ testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
+ if( (flags1&flags3&MEM_Null)!=0
+ && (flags3&MEM_Cleared)==0
+ ){
+ res = 0; /* Operands are equal */
+ }else{
+ res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */
+ }
+ }else{
+ /* SQLITE_NULLEQ is clear and at least one operand is NULL,
+ ** then the result is always NULL.
+ ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
+ */
+ VdbeBranchTaken(2,3);
+ if( pOp->p5 & SQLITE_JUMPIFNULL ){
+ goto jump_to_p2;
+ }
+ iCompare = 1; /* Operands are not equal */
+ VVA_ONLY( iCompareIsInit = 1; )
+ break;
+ }
+ }else{
+ /* Neither operand is NULL and we couldn't do the special high-speed
+ ** integer comparison case. So do a general-case comparison. */
+ affinity = pOp->p5 & SQLITE_AFF_MASK;
+ if( affinity>=SQLITE_AFF_NUMERIC ){
+ if( (flags1 | flags3)&MEM_Str ){
+ if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
+ applyNumericAffinity(pIn1,0);
+ assert( flags3==pIn3->flags || CORRUPT_DB );
+ flags3 = pIn3->flags;
+ }
+ if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
+ applyNumericAffinity(pIn3,0);
+ }
+ }
+ }else if( affinity==SQLITE_AFF_TEXT && ((flags1 | flags3) & MEM_Str)!=0 ){
+ if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
+ testcase( pIn1->flags & MEM_Int );
+ testcase( pIn1->flags & MEM_Real );
+ testcase( pIn1->flags & MEM_IntReal );
+ sqlite3VdbeMemStringify(pIn1, encoding, 1);
+ testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
+ flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
+ if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str;
+ }
+ if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
+ testcase( pIn3->flags & MEM_Int );
+ testcase( pIn3->flags & MEM_Real );
+ testcase( pIn3->flags & MEM_IntReal );
+ sqlite3VdbeMemStringify(pIn3, encoding, 1);
+ testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
+ flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
+ }
+ }
+ assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
+ res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
+ }
+
+ /* At this point, res is negative, zero, or positive if reg[P1] is
+ ** less than, equal to, or greater than reg[P3], respectively. Compute
+ ** the answer to this operator in res2, depending on what the comparison
+ ** operator actually is. The next block of code depends on the fact
+ ** that the 6 comparison operators are consecutive integers in this
+ ** order: NE, EQ, GT, LE, LT, GE */
+ assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
+ assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
+ if( res<0 ){
+ res2 = sqlite3aLTb[pOp->opcode];
+ }else if( res==0 ){
+ res2 = sqlite3aEQb[pOp->opcode];
+ }else{
+ res2 = sqlite3aGTb[pOp->opcode];
+ }
+ iCompare = res;
+ VVA_ONLY( iCompareIsInit = 1; )
+
+ /* Undo any changes made by applyAffinity() to the input registers. */
+ assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
+ pIn3->flags = flags3;
+ assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
+ pIn1->flags = flags1;
+
+ VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
+ if( res2 ){
+ goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: ElseEq * P2 * * *
+**
+** This opcode must follow an OP_Lt or OP_Gt comparison operator. There
+** can be zero or more OP_ReleaseReg opcodes intervening, but no other
+** opcodes are allowed to occur between this instruction and the previous
+** OP_Lt or OP_Gt.
+**
+** If the result of an OP_Eq comparison on the same two operands as
+** the prior OP_Lt or OP_Gt would have been true, then jump to P2. If
+** the result of an OP_Eq comparison on the two previous operands
+** would have been false or NULL, then fall through.
+*/
+case OP_ElseEq: { /* same as TK_ESCAPE, jump */
+
+#ifdef SQLITE_DEBUG
+ /* Verify the preconditions of this opcode - that it follows an OP_Lt or
+ ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */
+ int iAddr;
+ for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){
+ if( aOp[iAddr].opcode==OP_ReleaseReg ) continue;
+ assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt );
+ break;
+ }
+#endif /* SQLITE_DEBUG */
+ assert( iCompareIsInit );
+ VdbeBranchTaken(iCompare==0, 2);
+ if( iCompare==0 ) goto jump_to_p2;
+ break;
+}
+
+
+/* Opcode: Permutation * * * P4 *
+**
+** Set the permutation used by the OP_Compare operator in the next
+** instruction. The permutation is stored in the P4 operand.
+**
+** The permutation is only valid for the next opcode which must be
+** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5.
+**
+** The first integer in the P4 integer array is the length of the array
+** and does not become part of the permutation.
+*/
+case OP_Permutation: {
+ assert( pOp->p4type==P4_INTARRAY );
+ assert( pOp->p4.ai );
+ assert( pOp[1].opcode==OP_Compare );
+ assert( pOp[1].p5 & OPFLAG_PERMUTE );
+ break;
+}
+
+/* Opcode: Compare P1 P2 P3 P4 P5
+** Synopsis: r[P1@P3] <-> r[P2@P3]
+**
+** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
+** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
+** the comparison for use by the next OP_Jump instruct.
+**
+** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
+** determined by the most recent OP_Permutation operator. If the
+** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
+** order.
+**
+** P4 is a KeyInfo structure that defines collating sequences and sort
+** orders for the comparison. The permutation applies to registers
+** only. The KeyInfo elements are used sequentially.
+**
+** The comparison is a sort comparison, so NULLs compare equal,
+** NULLs are less than numbers, numbers are less than strings,
+** and strings are less than blobs.
+**
+** This opcode must be immediately followed by an OP_Jump opcode.
+*/
+case OP_Compare: {
+ int n;
+ int i;
+ int p1;
+ int p2;
+ const KeyInfo *pKeyInfo;
+ u32 idx;
+ CollSeq *pColl; /* Collating sequence to use on this term */
+ int bRev; /* True for DESCENDING sort order */
+ u32 *aPermute; /* The permutation */
+
+ if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
+ aPermute = 0;
+ }else{
+ assert( pOp>aOp );
+ assert( pOp[-1].opcode==OP_Permutation );
+ assert( pOp[-1].p4type==P4_INTARRAY );
+ aPermute = pOp[-1].p4.ai + 1;
+ assert( aPermute!=0 );
+ }
+ n = pOp->p3;
+ pKeyInfo = pOp->p4.pKeyInfo;
+ assert( n>0 );
+ assert( pKeyInfo!=0 );
+ p1 = pOp->p1;
+ p2 = pOp->p2;
+#ifdef SQLITE_DEBUG
+ if( aPermute ){
+ int k, mx = 0;
+ for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k];
+ assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
+ assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
+ }else{
+ assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
+ assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
+ }
+#endif /* SQLITE_DEBUG */
+ for(i=0; i<n; i++){
+ idx = aPermute ? aPermute[i] : (u32)i;
+ assert( memIsValid(&aMem[p1+idx]) );
+ assert( memIsValid(&aMem[p2+idx]) );
+ REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
+ REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
+ assert( i<pKeyInfo->nKeyField );
+ pColl = pKeyInfo->aColl[i];
+ bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
+ iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
+ VVA_ONLY( iCompareIsInit = 1; )
+ if( iCompare ){
+ if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
+ && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null))
+ ){
+ iCompare = -iCompare;
+ }
+ if( bRev ) iCompare = -iCompare;
+ break;
+ }
+ }
+ assert( pOp[1].opcode==OP_Jump );
+ break;
+}
+
+/* Opcode: Jump P1 P2 P3 * *
+**
+** Jump to the instruction at address P1, P2, or P3 depending on whether
+** in the most recent OP_Compare instruction the P1 vector was less than,
+** equal to, or greater than the P2 vector, respectively.
+**
+** This opcode must immediately follow an OP_Compare opcode.
+*/
+case OP_Jump: { /* jump */
+ assert( pOp>aOp && pOp[-1].opcode==OP_Compare );
+ assert( iCompareIsInit );
+ if( iCompare<0 ){
+ VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
+ }else if( iCompare==0 ){
+ VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
+ }else{
+ VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
+ }
+ break;
+}
+
+/* Opcode: And P1 P2 P3 * *
+** Synopsis: r[P3]=(r[P1] && r[P2])
+**
+** Take the logical AND of the values in registers P1 and P2 and
+** write the result into register P3.
+**
+** If either P1 or P2 is 0 (false) then the result is 0 even if
+** the other input is NULL. A NULL and true or two NULLs give
+** a NULL output.
+*/
+/* Opcode: Or P1 P2 P3 * *
+** Synopsis: r[P3]=(r[P1] || r[P2])
+**
+** Take the logical OR of the values in register P1 and P2 and
+** store the answer in register P3.
+**
+** If either P1 or P2 is nonzero (true) then the result is 1 (true)
+** even if the other input is NULL. A NULL and false or two NULLs
+** give a NULL output.
+*/
+case OP_And: /* same as TK_AND, in1, in2, out3 */
+case OP_Or: { /* same as TK_OR, in1, in2, out3 */
+ int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
+ int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
+
+ v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
+ v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
+ if( pOp->opcode==OP_And ){
+ static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
+ v1 = and_logic[v1*3+v2];
+ }else{
+ static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
+ v1 = or_logic[v1*3+v2];
+ }
+ pOut = &aMem[pOp->p3];
+ if( v1==2 ){
+ MemSetTypeFlag(pOut, MEM_Null);
+ }else{
+ pOut->u.i = v1;
+ MemSetTypeFlag(pOut, MEM_Int);
+ }
+ break;
+}
+
+/* Opcode: IsTrue P1 P2 P3 P4 *
+** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
+**
+** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
+** IS NOT FALSE operators.
+**
+** Interpret the value in register P1 as a boolean value. Store that
+** boolean (a 0 or 1) in register P2. Or if the value in register P1 is
+** NULL, then the P3 is stored in register P2. Invert the answer if P4
+** is 1.
+**
+** The logic is summarized like this:
+**
+** <ul>
+** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE
+** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE
+** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE
+** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE
+** </ul>
+*/
+case OP_IsTrue: { /* in1, out2 */
+ assert( pOp->p4type==P4_INT32 );
+ assert( pOp->p4.i==0 || pOp->p4.i==1 );
+ assert( pOp->p3==0 || pOp->p3==1 );
+ sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
+ sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
+ break;
+}
+
+/* Opcode: Not P1 P2 * * *
+** Synopsis: r[P2]= !r[P1]
+**
+** Interpret the value in register P1 as a boolean value. Store the
+** boolean complement in register P2. If the value in register P1 is
+** NULL, then a NULL is stored in P2.
+*/
+case OP_Not: { /* same as TK_NOT, in1, out2 */
+ pIn1 = &aMem[pOp->p1];
+ pOut = &aMem[pOp->p2];
+ if( (pIn1->flags & MEM_Null)==0 ){
+ sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
+ }else{
+ sqlite3VdbeMemSetNull(pOut);
+ }
+ break;
+}
+
+/* Opcode: BitNot P1 P2 * * *
+** Synopsis: r[P2]= ~r[P1]
+**
+** Interpret the content of register P1 as an integer. Store the
+** ones-complement of the P1 value into register P2. If P1 holds
+** a NULL then store a NULL in P2.
+*/
+case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
+ pIn1 = &aMem[pOp->p1];
+ pOut = &aMem[pOp->p2];
+ sqlite3VdbeMemSetNull(pOut);
+ if( (pIn1->flags & MEM_Null)==0 ){
+ pOut->flags = MEM_Int;
+ pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
+ }
+ break;
+}
+
+/* Opcode: Once P1 P2 * * *
+**
+** Fall through to the next instruction the first time this opcode is
+** encountered on each invocation of the byte-code program. Jump to P2
+** on the second and all subsequent encounters during the same invocation.
+**
+** Top-level programs determine first invocation by comparing the P1
+** operand against the P1 operand on the OP_Init opcode at the beginning
+** of the program. If the P1 values differ, then fall through and make
+** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are
+** the same then take the jump.
+**
+** For subprograms, there is a bitmask in the VdbeFrame that determines
+** whether or not the jump should be taken. The bitmask is necessary
+** because the self-altering code trick does not work for recursive
+** triggers.
+*/
+case OP_Once: { /* jump */
+ u32 iAddr; /* Address of this instruction */
+ assert( p->aOp[0].opcode==OP_Init );
+ if( p->pFrame ){
+ iAddr = (int)(pOp - p->aOp);
+ if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
+ VdbeBranchTaken(1, 2);
+ goto jump_to_p2;
+ }
+ p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
+ }else{
+ if( p->aOp[0].p1==pOp->p1 ){
+ VdbeBranchTaken(1, 2);
+ goto jump_to_p2;
+ }
+ }
+ VdbeBranchTaken(0, 2);
+ pOp->p1 = p->aOp[0].p1;
+ break;
+}
+
+/* Opcode: If P1 P2 P3 * *
+**
+** Jump to P2 if the value in register P1 is true. The value
+** is considered true if it is numeric and non-zero. If the value
+** in P1 is NULL then take the jump if and only if P3 is non-zero.
+*/
+case OP_If: { /* jump, in1 */
+ int c;
+ c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
+ VdbeBranchTaken(c!=0, 2);
+ if( c ) goto jump_to_p2;
+ break;
+}
+
+/* Opcode: IfNot P1 P2 P3 * *
+**
+** Jump to P2 if the value in register P1 is False. The value
+** is considered false if it has a numeric value of zero. If the value
+** in P1 is NULL then take the jump if and only if P3 is non-zero.
+*/
+case OP_IfNot: { /* jump, in1 */
+ int c;
+ c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
+ VdbeBranchTaken(c!=0, 2);
+ if( c ) goto jump_to_p2;
+ break;
+}
+
+/* Opcode: IsNull P1 P2 * * *
+** Synopsis: if r[P1]==NULL goto P2
+**
+** Jump to P2 if the value in register P1 is NULL.
+*/
+case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
+ if( (pIn1->flags & MEM_Null)!=0 ){
+ goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: IsType P1 P2 P3 P4 P5
+** Synopsis: if typeof(P1.P3) in P5 goto P2
+**
+** Jump to P2 if the type of a column in a btree is one of the types specified
+** by the P5 bitmask.
+**
+** P1 is normally a cursor on a btree for which the row decode cache is
+** valid through at least column P3. In other words, there should have been
+** a prior OP_Column for column P3 or greater. If the cursor is not valid,
+** then this opcode might give spurious results.
+** The the btree row has fewer than P3 columns, then use P4 as the
+** datatype.
+**
+** If P1 is -1, then P3 is a register number and the datatype is taken
+** from the value in that register.
+**
+** P5 is a bitmask of data types. SQLITE_INTEGER is the least significant
+** (0x01) bit. SQLITE_FLOAT is the 0x02 bit. SQLITE_TEXT is 0x04.
+** SQLITE_BLOB is 0x08. SQLITE_NULL is 0x10.
+**
+** WARNING: This opcode does not reliably distinguish between NULL and REAL
+** when P1>=0. If the database contains a NaN value, this opcode will think
+** that the datatype is REAL when it should be NULL. When P1<0 and the value
+** is already stored in register P3, then this opcode does reliably
+** distinguish between NULL and REAL. The problem only arises then P1>=0.
+**
+** Take the jump to address P2 if and only if the datatype of the
+** value determined by P1 and P3 corresponds to one of the bits in the
+** P5 bitmask.
+**
+*/
+case OP_IsType: { /* jump */
+ VdbeCursor *pC;
+ u16 typeMask;
+ u32 serialType;
+
+ assert( pOp->p1>=(-1) && pOp->p1<p->nCursor );
+ assert( pOp->p1>=0 || (pOp->p3>=0 && pOp->p3<=(p->nMem+1 - p->nCursor)) );
+ if( pOp->p1>=0 ){
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pOp->p3>=0 );
+ if( pOp->p3<pC->nHdrParsed ){
+ serialType = pC->aType[pOp->p3];
+ if( serialType>=12 ){
+ if( serialType&1 ){
+ typeMask = 0x04; /* SQLITE_TEXT */
+ }else{
+ typeMask = 0x08; /* SQLITE_BLOB */
+ }
+ }else{
+ static const unsigned char aMask[] = {
+ 0x10, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x2,
+ 0x01, 0x01, 0x10, 0x10
+ };
+ testcase( serialType==0 );
+ testcase( serialType==1 );
+ testcase( serialType==2 );
+ testcase( serialType==3 );
+ testcase( serialType==4 );
+ testcase( serialType==5 );
+ testcase( serialType==6 );
+ testcase( serialType==7 );
+ testcase( serialType==8 );
+ testcase( serialType==9 );
+ testcase( serialType==10 );
+ testcase( serialType==11 );
+ typeMask = aMask[serialType];
+ }
+ }else{
+ typeMask = 1 << (pOp->p4.i - 1);
+ testcase( typeMask==0x01 );
+ testcase( typeMask==0x02 );
+ testcase( typeMask==0x04 );
+ testcase( typeMask==0x08 );
+ testcase( typeMask==0x10 );
+ }
+ }else{
+ assert( memIsValid(&aMem[pOp->p3]) );
+ typeMask = 1 << (sqlite3_value_type((sqlite3_value*)&aMem[pOp->p3])-1);
+ testcase( typeMask==0x01 );
+ testcase( typeMask==0x02 );
+ testcase( typeMask==0x04 );
+ testcase( typeMask==0x08 );
+ testcase( typeMask==0x10 );
+ }
+ VdbeBranchTaken( (typeMask & pOp->p5)!=0, 2);
+ if( typeMask & pOp->p5 ){
+ goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: ZeroOrNull P1 P2 P3 * *
+** Synopsis: r[P2] = 0 OR NULL
+**
+** If both registers P1 and P3 are NOT NULL, then store a zero in
+** register P2. If either registers P1 or P3 are NULL then put
+** a NULL in register P2.
+*/
+case OP_ZeroOrNull: { /* in1, in2, out2, in3 */
+ if( (aMem[pOp->p1].flags & MEM_Null)!=0
+ || (aMem[pOp->p3].flags & MEM_Null)!=0
+ ){
+ sqlite3VdbeMemSetNull(aMem + pOp->p2);
+ }else{
+ sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0);
+ }
+ break;
+}
+
+/* Opcode: NotNull P1 P2 * * *
+** Synopsis: if r[P1]!=NULL goto P2
+**
+** Jump to P2 if the value in register P1 is not NULL.
+*/
+case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
+ if( (pIn1->flags & MEM_Null)==0 ){
+ goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: IfNullRow P1 P2 P3 * *
+** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
+**
+** Check the cursor P1 to see if it is currently pointing at a NULL row.
+** If it is, then set register P3 to NULL and jump immediately to P2.
+** If P1 is not on a NULL row, then fall through without making any
+** changes.
+**
+** If P1 is not an open cursor, then this opcode is a no-op.
+*/
+case OP_IfNullRow: { /* jump */
+ VdbeCursor *pC;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ if( pC && pC->nullRow ){
+ sqlite3VdbeMemSetNull(aMem + pOp->p3);
+ goto jump_to_p2;
+ }
+ break;
+}
+
+#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
+/* Opcode: Offset P1 P2 P3 * *
+** Synopsis: r[P3] = sqlite_offset(P1)
+**
+** Store in register r[P3] the byte offset into the database file that is the
+** start of the payload for the record at which that cursor P1 is currently
+** pointing.
+**
+** P2 is the column number for the argument to the sqlite_offset() function.
+** This opcode does not use P2 itself, but the P2 value is used by the
+** code generator. The P1, P2, and P3 operands to this opcode are the
+** same as for OP_Column.
+**
+** This opcode is only available if SQLite is compiled with the
+** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
+*/
+case OP_Offset: { /* out3 */
+ VdbeCursor *pC; /* The VDBE cursor */
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ pOut = &p->aMem[pOp->p3];
+ if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){
+ sqlite3VdbeMemSetNull(pOut);
+ }else{
+ if( pC->deferredMoveto ){
+ rc = sqlite3VdbeFinishMoveto(pC);
+ if( rc ) goto abort_due_to_error;
+ }
+ if( sqlite3BtreeEof(pC->uc.pCursor) ){
+ sqlite3VdbeMemSetNull(pOut);
+ }else{
+ sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
+ }
+ }
+ break;
+}
+#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
+
+/* Opcode: Column P1 P2 P3 P4 P5
+** Synopsis: r[P3]=PX cursor P1 column P2
+**
+** Interpret the data that cursor P1 points to as a structure built using
+** the MakeRecord instruction. (See the MakeRecord opcode for additional
+** information about the format of the data.) Extract the P2-th column
+** from this record. If there are less than (P2+1)
+** values in the record, extract a NULL.
+**
+** The value extracted is stored in register P3.
+**
+** If the record contains fewer than P2 fields, then extract a NULL. Or,
+** if the P4 argument is a P4_MEM use the value of the P4 argument as
+** the result.
+**
+** If the OPFLAG_LENGTHARG bit is set in P5 then the result is guaranteed
+** to only be used by the length() function or the equivalent. The content
+** of large blobs is not loaded, thus saving CPU cycles. If the
+** OPFLAG_TYPEOFARG bit is set then the result will only be used by the
+** typeof() function or the IS NULL or IS NOT NULL operators or the
+** equivalent. In this case, all content loading can be omitted.
+*/
+case OP_Column: { /* ncycle */
+ u32 p2; /* column number to retrieve */
+ VdbeCursor *pC; /* The VDBE cursor */
+ BtCursor *pCrsr; /* The B-Tree cursor corresponding to pC */
+ u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
+ int len; /* The length of the serialized data for the column */
+ int i; /* Loop counter */
+ Mem *pDest; /* Where to write the extracted value */
+ Mem sMem; /* For storing the record being decoded */
+ const u8 *zData; /* Part of the record being decoded */
+ const u8 *zHdr; /* Next unparsed byte of the header */
+ const u8 *zEndHdr; /* Pointer to first byte after the header */
+ u64 offset64; /* 64-bit offset */
+ u32 t; /* A type code from the record header */
+ Mem *pReg; /* PseudoTable input register */
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
+ pC = p->apCsr[pOp->p1];
+ p2 = (u32)pOp->p2;
+
+op_column_restart:
+ assert( pC!=0 );
+ assert( p2<(u32)pC->nField
+ || (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) );
+ aOffset = pC->aOffset;
+ assert( aOffset==pC->aType+pC->nField );
+ assert( pC->eCurType!=CURTYPE_VTAB );
+ assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
+ assert( pC->eCurType!=CURTYPE_SORTER );
+
+ if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/
+ if( pC->nullRow ){
+ if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){
+ /* For the special case of as pseudo-cursor, the seekResult field
+ ** identifies the register that holds the record */
+ pReg = &aMem[pC->seekResult];
+ assert( pReg->flags & MEM_Blob );
+ assert( memIsValid(pReg) );
+ pC->payloadSize = pC->szRow = pReg->n;
+ pC->aRow = (u8*)pReg->z;
+ }else{
+ pDest = &aMem[pOp->p3];
+ memAboutToChange(p, pDest);
+ sqlite3VdbeMemSetNull(pDest);
+ goto op_column_out;
+ }
+ }else{
+ pCrsr = pC->uc.pCursor;
+ if( pC->deferredMoveto ){
+ u32 iMap;
+ assert( !pC->isEphemeral );
+ if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0 ){
+ pC = pC->pAltCursor;
+ p2 = iMap - 1;
+ goto op_column_restart;
+ }
+ rc = sqlite3VdbeFinishMoveto(pC);
+ if( rc ) goto abort_due_to_error;
+ }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){
+ rc = sqlite3VdbeHandleMovedCursor(pC);
+ if( rc ) goto abort_due_to_error;
+ goto op_column_restart;
+ }
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pCrsr );
+ assert( sqlite3BtreeCursorIsValid(pCrsr) );
+ pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
+ pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
+ assert( pC->szRow<=pC->payloadSize );
+ assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */
+ }
+ pC->cacheStatus = p->cacheCtr;
+ if( (aOffset[0] = pC->aRow[0])<0x80 ){
+ pC->iHdrOffset = 1;
+ }else{
+ pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset);
+ }
+ pC->nHdrParsed = 0;
+
+ if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/
+ /* pC->aRow does not have to hold the entire row, but it does at least
+ ** need to cover the header of the record. If pC->aRow does not contain
+ ** the complete header, then set it to zero, forcing the header to be
+ ** dynamically allocated. */
+ pC->aRow = 0;
+ pC->szRow = 0;
+
+ /* Make sure a corrupt database has not given us an oversize header.
+ ** Do this now to avoid an oversize memory allocation.
+ **
+ ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
+ ** types use so much data space that there can only be 4096 and 32 of
+ ** them, respectively. So the maximum header length results from a
+ ** 3-byte type for each of the maximum of 32768 columns plus three
+ ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
+ */
+ if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
+ goto op_column_corrupt;
+ }
+ }else{
+ /* This is an optimization. By skipping over the first few tests
+ ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
+ ** measurable performance gain.
+ **
+ ** This branch is taken even if aOffset[0]==0. Such a record is never
+ ** generated by SQLite, and could be considered corruption, but we
+ ** accept it for historical reasons. When aOffset[0]==0, the code this
+ ** branch jumps to reads past the end of the record, but never more
+ ** than a few bytes. Even if the record occurs at the end of the page
+ ** content area, the "page header" comes after the page content and so
+ ** this overread is harmless. Similar overreads can occur for a corrupt
+ ** database file.
+ */
+ zData = pC->aRow;
+ assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
+ testcase( aOffset[0]==0 );
+ goto op_column_read_header;
+ }
+ }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){
+ rc = sqlite3VdbeHandleMovedCursor(pC);
+ if( rc ) goto abort_due_to_error;
+ goto op_column_restart;
+ }
+
+ /* Make sure at least the first p2+1 entries of the header have been
+ ** parsed and valid information is in aOffset[] and pC->aType[].
+ */
+ if( pC->nHdrParsed<=p2 ){
+ /* If there is more header available for parsing in the record, try
+ ** to extract additional fields up through the p2+1-th field
+ */
+ if( pC->iHdrOffset<aOffset[0] ){
+ /* Make sure zData points to enough of the record to cover the header. */
+ if( pC->aRow==0 ){
+ memset(&sMem, 0, sizeof(sMem));
+ rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ zData = (u8*)sMem.z;
+ }else{
+ zData = pC->aRow;
+ }
+
+ /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
+ op_column_read_header:
+ i = pC->nHdrParsed;
+ offset64 = aOffset[i];
+ zHdr = zData + pC->iHdrOffset;
+ zEndHdr = zData + aOffset[0];
+ testcase( zHdr>=zEndHdr );
+ do{
+ if( (pC->aType[i] = t = zHdr[0])<0x80 ){
+ zHdr++;
+ offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
+ }else{
+ zHdr += sqlite3GetVarint32(zHdr, &t);
+ pC->aType[i] = t;
+ offset64 += sqlite3VdbeSerialTypeLen(t);
+ }
+ aOffset[++i] = (u32)(offset64 & 0xffffffff);
+ }while( (u32)i<=p2 && zHdr<zEndHdr );
+
+ /* The record is corrupt if any of the following are true:
+ ** (1) the bytes of the header extend past the declared header size
+ ** (2) the entire header was used but not all data was used
+ ** (3) the end of the data extends beyond the end of the record.
+ */
+ if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
+ || (offset64 > pC->payloadSize)
+ ){
+ if( aOffset[0]==0 ){
+ i = 0;
+ zHdr = zEndHdr;
+ }else{
+ if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
+ goto op_column_corrupt;
+ }
+ }
+
+ pC->nHdrParsed = i;
+ pC->iHdrOffset = (u32)(zHdr - zData);
+ if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
+ }else{
+ t = 0;
+ }
+
+ /* If after trying to extract new entries from the header, nHdrParsed is
+ ** still not up to p2, that means that the record has fewer than p2
+ ** columns. So the result will be either the default value or a NULL.
+ */
+ if( pC->nHdrParsed<=p2 ){
+ pDest = &aMem[pOp->p3];
+ memAboutToChange(p, pDest);
+ if( pOp->p4type==P4_MEM ){
+ sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
+ }else{
+ sqlite3VdbeMemSetNull(pDest);
+ }
+ goto op_column_out;
+ }
+ }else{
+ t = pC->aType[p2];
+ }
+
+ /* Extract the content for the p2+1-th column. Control can only
+ ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
+ ** all valid.
+ */
+ assert( p2<pC->nHdrParsed );
+ assert( rc==SQLITE_OK );
+ pDest = &aMem[pOp->p3];
+ memAboutToChange(p, pDest);
+ assert( sqlite3VdbeCheckMemInvariants(pDest) );
+ if( VdbeMemDynamic(pDest) ){
+ sqlite3VdbeMemSetNull(pDest);
+ }
+ assert( t==pC->aType[p2] );
+ if( pC->szRow>=aOffset[p2+1] ){
+ /* This is the common case where the desired content fits on the original
+ ** page - where the content is not on an overflow page */
+ zData = pC->aRow + aOffset[p2];
+ if( t<12 ){
+ sqlite3VdbeSerialGet(zData, t, pDest);
+ }else{
+ /* If the column value is a string, we need a persistent value, not
+ ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
+ ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
+ */
+ static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
+ pDest->n = len = (t-12)/2;
+ pDest->enc = encoding;
+ if( pDest->szMalloc < len+2 ){
+ if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
+ pDest->flags = MEM_Null;
+ if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
+ }else{
+ pDest->z = pDest->zMalloc;
+ }
+ memcpy(pDest->z, zData, len);
+ pDest->z[len] = 0;
+ pDest->z[len+1] = 0;
+ pDest->flags = aFlag[t&1];
+ }
+ }else{
+ u8 p5;
+ pDest->enc = encoding;
+ assert( pDest->db==db );
+ /* This branch happens only when content is on overflow pages */
+ if( ((p5 = (pOp->p5 & OPFLAG_BYTELENARG))!=0
+ && (p5==OPFLAG_TYPEOFARG
+ || (t>=12 && ((t&1)==0 || p5==OPFLAG_BYTELENARG))
+ )
+ )
+ || sqlite3VdbeSerialTypeLen(t)==0
+ ){
+ /* Content is irrelevant for
+ ** 1. the typeof() function,
+ ** 2. the length(X) function if X is a blob, and
+ ** 3. if the content length is zero.
+ ** So we might as well use bogus content rather than reading
+ ** content from disk.
+ **
+ ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
+ ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
+ ** read more. Use the global constant sqlite3CtypeMap[] as the array,
+ ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
+ ** and it begins with a bunch of zeros.
+ */
+ sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
+ }else{
+ rc = vdbeColumnFromOverflow(pC, p2, t, aOffset[p2],
+ p->cacheCtr, colCacheCtr, pDest);
+ if( rc ){
+ if( rc==SQLITE_NOMEM ) goto no_mem;
+ if( rc==SQLITE_TOOBIG ) goto too_big;
+ goto abort_due_to_error;
+ }
+ }
+ }
+
+op_column_out:
+ UPDATE_MAX_BLOBSIZE(pDest);
+ REGISTER_TRACE(pOp->p3, pDest);
+ break;
+
+op_column_corrupt:
+ if( aOp[0].p3>0 ){
+ pOp = &aOp[aOp[0].p3-1];
+ break;
+ }else{
+ rc = SQLITE_CORRUPT_BKPT;
+ goto abort_due_to_error;
+ }
+}
+
+/* Opcode: TypeCheck P1 P2 P3 P4 *
+** Synopsis: typecheck(r[P1@P2])
+**
+** Apply affinities to the range of P2 registers beginning with P1.
+** Take the affinities from the Table object in P4. If any value
+** cannot be coerced into the correct type, then raise an error.
+**
+** This opcode is similar to OP_Affinity except that this opcode
+** forces the register type to the Table column type. This is used
+** to implement "strict affinity".
+**
+** GENERATED ALWAYS AS ... STATIC columns are only checked if P3
+** is zero. When P3 is non-zero, no type checking occurs for
+** static generated columns. Virtual columns are computed at query time
+** and so they are never checked.
+**
+** Preconditions:
+**
+** <ul>
+** <li> P2 should be the number of non-virtual columns in the
+** table of P4.
+** <li> Table P4 should be a STRICT table.
+** </ul>
+**
+** If any precondition is false, an assertion fault occurs.
+*/
+case OP_TypeCheck: {
+ Table *pTab;
+ Column *aCol;
+ int i;
+
+ assert( pOp->p4type==P4_TABLE );
+ pTab = pOp->p4.pTab;
+ assert( pTab->tabFlags & TF_Strict );
+ assert( pTab->nNVCol==pOp->p2 );
+ aCol = pTab->aCol;
+ pIn1 = &aMem[pOp->p1];
+ for(i=0; i<pTab->nCol; i++){
+ if( aCol[i].colFlags & COLFLAG_GENERATED ){
+ if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue;
+ if( pOp->p3 ){ pIn1++; continue; }
+ }
+ assert( pIn1 < &aMem[pOp->p1+pOp->p2] );
+ applyAffinity(pIn1, aCol[i].affinity, encoding);
+ if( (pIn1->flags & MEM_Null)==0 ){
+ switch( aCol[i].eCType ){
+ case COLTYPE_BLOB: {
+ if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error;
+ break;
+ }
+ case COLTYPE_INTEGER:
+ case COLTYPE_INT: {
+ if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error;
+ break;
+ }
+ case COLTYPE_TEXT: {
+ if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error;
+ break;
+ }
+ case COLTYPE_REAL: {
+ testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real );
+ assert( (pIn1->flags & MEM_IntReal)==0 );
+ if( pIn1->flags & MEM_Int ){
+ /* When applying REAL affinity, if the result is still an MEM_Int
+ ** that will fit in 6 bytes, then change the type to MEM_IntReal
+ ** so that we keep the high-resolution integer value but know that
+ ** the type really wants to be REAL. */
+ testcase( pIn1->u.i==140737488355328LL );
+ testcase( pIn1->u.i==140737488355327LL );
+ testcase( pIn1->u.i==-140737488355328LL );
+ testcase( pIn1->u.i==-140737488355329LL );
+ if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){
+ pIn1->flags |= MEM_IntReal;
+ pIn1->flags &= ~MEM_Int;
+ }else{
+ pIn1->u.r = (double)pIn1->u.i;
+ pIn1->flags |= MEM_Real;
+ pIn1->flags &= ~MEM_Int;
+ }
+ }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){
+ goto vdbe_type_error;
+ }
+ break;
+ }
+ default: {
+ /* COLTYPE_ANY. Accept anything. */
+ break;
+ }
+ }
+ }
+ REGISTER_TRACE((int)(pIn1-aMem), pIn1);
+ pIn1++;
+ }
+ assert( pIn1 == &aMem[pOp->p1+pOp->p2] );
+ break;
+
+vdbe_type_error:
+ sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s",
+ vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1],
+ pTab->zName, aCol[i].zCnName);
+ rc = SQLITE_CONSTRAINT_DATATYPE;
+ goto abort_due_to_error;
+}
+
+/* Opcode: Affinity P1 P2 * P4 *
+** Synopsis: affinity(r[P1@P2])
+**
+** Apply affinities to a range of P2 registers starting with P1.
+**
+** P4 is a string that is P2 characters long. The N-th character of the
+** string indicates the column affinity that should be used for the N-th
+** memory cell in the range.
+*/
+case OP_Affinity: {
+ const char *zAffinity; /* The affinity to be applied */
+
+ zAffinity = pOp->p4.z;
+ assert( zAffinity!=0 );
+ assert( pOp->p2>0 );
+ assert( zAffinity[pOp->p2]==0 );
+ pIn1 = &aMem[pOp->p1];
+ while( 1 /*exit-by-break*/ ){
+ assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
+ assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) );
+ applyAffinity(pIn1, zAffinity[0], encoding);
+ if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
+ /* When applying REAL affinity, if the result is still an MEM_Int
+ ** that will fit in 6 bytes, then change the type to MEM_IntReal
+ ** so that we keep the high-resolution integer value but know that
+ ** the type really wants to be REAL. */
+ testcase( pIn1->u.i==140737488355328LL );
+ testcase( pIn1->u.i==140737488355327LL );
+ testcase( pIn1->u.i==-140737488355328LL );
+ testcase( pIn1->u.i==-140737488355329LL );
+ if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){
+ pIn1->flags |= MEM_IntReal;
+ pIn1->flags &= ~MEM_Int;
+ }else{
+ pIn1->u.r = (double)pIn1->u.i;
+ pIn1->flags |= MEM_Real;
+ pIn1->flags &= ~(MEM_Int|MEM_Str);
+ }
+ }
+ REGISTER_TRACE((int)(pIn1-aMem), pIn1);
+ zAffinity++;
+ if( zAffinity[0]==0 ) break;
+ pIn1++;
+ }
+ break;
+}
+
+/* Opcode: MakeRecord P1 P2 P3 P4 *
+** Synopsis: r[P3]=mkrec(r[P1@P2])
+**
+** Convert P2 registers beginning with P1 into the [record format]
+** use as a data record in a database table or as a key
+** in an index. The OP_Column opcode can decode the record later.
+**
+** P4 may be a string that is P2 characters long. The N-th character of the
+** string indicates the column affinity that should be used for the N-th
+** field of the index key.
+**
+** The mapping from character to affinity is given by the SQLITE_AFF_
+** macros defined in sqliteInt.h.
+**
+** If P4 is NULL then all index fields have the affinity BLOB.
+**
+** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM
+** compile-time option is enabled:
+**
+** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index
+** of the right-most table that can be null-trimmed.
+**
+** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value
+** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to
+** accept no-change records with serial_type 10. This value is
+** only used inside an assert() and does not affect the end result.
+*/
+case OP_MakeRecord: {
+ Mem *pRec; /* The new record */
+ u64 nData; /* Number of bytes of data space */
+ int nHdr; /* Number of bytes of header space */
+ i64 nByte; /* Data space required for this record */
+ i64 nZero; /* Number of zero bytes at the end of the record */
+ int nVarint; /* Number of bytes in a varint */
+ u32 serial_type; /* Type field */
+ Mem *pData0; /* First field to be combined into the record */
+ Mem *pLast; /* Last field of the record */
+ int nField; /* Number of fields in the record */
+ char *zAffinity; /* The affinity string for the record */
+ u32 len; /* Length of a field */
+ u8 *zHdr; /* Where to write next byte of the header */
+ u8 *zPayload; /* Where to write next byte of the payload */
+
+ /* Assuming the record contains N fields, the record format looks
+ ** like this:
+ **
+ ** ------------------------------------------------------------------------
+ ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
+ ** ------------------------------------------------------------------------
+ **
+ ** Data(0) is taken from register P1. Data(1) comes from register P1+1
+ ** and so forth.
+ **
+ ** Each type field is a varint representing the serial type of the
+ ** corresponding data element (see sqlite3VdbeSerialType()). The
+ ** hdr-size field is also a varint which is the offset from the beginning
+ ** of the record to data0.
+ */
+ nData = 0; /* Number of bytes of data space */
+ nHdr = 0; /* Number of bytes of header space */
+ nZero = 0; /* Number of zero bytes at the end of the record */
+ nField = pOp->p1;
+ zAffinity = pOp->p4.z;
+ assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
+ pData0 = &aMem[nField];
+ nField = pOp->p2;
+ pLast = &pData0[nField-1];
+
+ /* Identify the output register */
+ assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
+ pOut = &aMem[pOp->p3];
+ memAboutToChange(p, pOut);
+
+ /* Apply the requested affinity to all inputs
+ */
+ assert( pData0<=pLast );
+ if( zAffinity ){
+ pRec = pData0;
+ do{
+ applyAffinity(pRec, zAffinity[0], encoding);
+ if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
+ pRec->flags |= MEM_IntReal;
+ pRec->flags &= ~(MEM_Int);
+ }
+ REGISTER_TRACE((int)(pRec-aMem), pRec);
+ zAffinity++;
+ pRec++;
+ assert( zAffinity[0]==0 || pRec<=pLast );
+ }while( zAffinity[0] );
+ }
+
+#ifdef SQLITE_ENABLE_NULL_TRIM
+ /* NULLs can be safely trimmed from the end of the record, as long as
+ ** as the schema format is 2 or more and none of the omitted columns
+ ** have a non-NULL default value. Also, the record must be left with
+ ** at least one field. If P5>0 then it will be one more than the
+ ** index of the right-most column with a non-NULL default value */
+ if( pOp->p5 ){
+ while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
+ pLast--;
+ nField--;
+ }
+ }
+#endif
+
+ /* Loop through the elements that will make up the record to figure
+ ** out how much space is required for the new record. After this loop,
+ ** the Mem.uTemp field of each term should hold the serial-type that will
+ ** be used for that term in the generated record:
+ **
+ ** Mem.uTemp value type
+ ** --------------- ---------------
+ ** 0 NULL
+ ** 1 1-byte signed integer
+ ** 2 2-byte signed integer
+ ** 3 3-byte signed integer
+ ** 4 4-byte signed integer
+ ** 5 6-byte signed integer
+ ** 6 8-byte signed integer
+ ** 7 IEEE float
+ ** 8 Integer constant 0
+ ** 9 Integer constant 1
+ ** 10,11 reserved for expansion
+ ** N>=12 and even BLOB
+ ** N>=13 and odd text
+ **
+ ** The following additional values are computed:
+ ** nHdr Number of bytes needed for the record header
+ ** nData Number of bytes of data space needed for the record
+ ** nZero Zero bytes at the end of the record
+ */
+ pRec = pLast;
+ do{
+ assert( memIsValid(pRec) );
+ if( pRec->flags & MEM_Null ){
+ if( pRec->flags & MEM_Zero ){
+ /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
+ ** table methods that never invoke sqlite3_result_xxxxx() while
+ ** computing an unchanging column value in an UPDATE statement.
+ ** Give such values a special internal-use-only serial-type of 10
+ ** so that they can be passed through to xUpdate and have
+ ** a true sqlite3_value_nochange(). */
+#ifndef SQLITE_ENABLE_NULL_TRIM
+ assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
+#endif
+ pRec->uTemp = 10;
+ }else{
+ pRec->uTemp = 0;
+ }
+ nHdr++;
+ }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
+ /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
+ i64 i = pRec->u.i;
+ u64 uu;
+ testcase( pRec->flags & MEM_Int );
+ testcase( pRec->flags & MEM_IntReal );
+ if( i<0 ){
+ uu = ~i;
+ }else{
+ uu = i;
+ }
+ nHdr++;
+ testcase( uu==127 ); testcase( uu==128 );
+ testcase( uu==32767 ); testcase( uu==32768 );
+ testcase( uu==8388607 ); testcase( uu==8388608 );
+ testcase( uu==2147483647 ); testcase( uu==2147483648LL );
+ testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL );
+ if( uu<=127 ){
+ if( (i&1)==i && p->minWriteFileFormat>=4 ){
+ pRec->uTemp = 8+(u32)uu;
+ }else{
+ nData++;
+ pRec->uTemp = 1;
+ }
+ }else if( uu<=32767 ){
+ nData += 2;
+ pRec->uTemp = 2;
+ }else if( uu<=8388607 ){
+ nData += 3;
+ pRec->uTemp = 3;
+ }else if( uu<=2147483647 ){
+ nData += 4;
+ pRec->uTemp = 4;
+ }else if( uu<=140737488355327LL ){
+ nData += 6;
+ pRec->uTemp = 5;
+ }else{
+ nData += 8;
+ if( pRec->flags & MEM_IntReal ){
+ /* If the value is IntReal and is going to take up 8 bytes to store
+ ** as an integer, then we might as well make it an 8-byte floating
+ ** point value */
+ pRec->u.r = (double)pRec->u.i;
+ pRec->flags &= ~MEM_IntReal;
+ pRec->flags |= MEM_Real;
+ pRec->uTemp = 7;
+ }else{
+ pRec->uTemp = 6;
+ }
+ }
+ }else if( pRec->flags & MEM_Real ){
+ nHdr++;
+ nData += 8;
+ pRec->uTemp = 7;
+ }else{
+ assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
+ assert( pRec->n>=0 );
+ len = (u32)pRec->n;
+ serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
+ if( pRec->flags & MEM_Zero ){
+ serial_type += pRec->u.nZero*2;
+ if( nData ){
+ if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
+ len += pRec->u.nZero;
+ }else{
+ nZero += pRec->u.nZero;
+ }
+ }
+ nData += len;
+ nHdr += sqlite3VarintLen(serial_type);
+ pRec->uTemp = serial_type;
+ }
+ if( pRec==pData0 ) break;
+ pRec--;
+ }while(1);
+
+ /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
+ ** which determines the total number of bytes in the header. The varint
+ ** value is the size of the header in bytes including the size varint
+ ** itself. */
+ testcase( nHdr==126 );
+ testcase( nHdr==127 );
+ if( nHdr<=126 ){
+ /* The common case */
+ nHdr += 1;
+ }else{
+ /* Rare case of a really large header */
+ nVarint = sqlite3VarintLen(nHdr);
+ nHdr += nVarint;
+ if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
+ }
+ nByte = nHdr+nData;
+
+ /* Make sure the output register has a buffer large enough to store
+ ** the new record. The output register (pOp->p3) is not allowed to
+ ** be one of the input registers (because the following call to
+ ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
+ */
+ if( nByte+nZero<=pOut->szMalloc ){
+ /* The output register is already large enough to hold the record.
+ ** No error checks or buffer enlargement is required */
+ pOut->z = pOut->zMalloc;
+ }else{
+ /* Need to make sure that the output is not too big and then enlarge
+ ** the output register to hold the full result */
+ if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
+ goto no_mem;
+ }
+ }
+ pOut->n = (int)nByte;
+ pOut->flags = MEM_Blob;
+ if( nZero ){
+ pOut->u.nZero = nZero;
+ pOut->flags |= MEM_Zero;
+ }
+ UPDATE_MAX_BLOBSIZE(pOut);
+ zHdr = (u8 *)pOut->z;
+ zPayload = zHdr + nHdr;
+
+ /* Write the record */
+ if( nHdr<0x80 ){
+ *(zHdr++) = nHdr;
+ }else{
+ zHdr += sqlite3PutVarint(zHdr,nHdr);
+ }
+ assert( pData0<=pLast );
+ pRec = pData0;
+ while( 1 /*exit-by-break*/ ){
+ serial_type = pRec->uTemp;
+ /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
+ ** additional varints, one per column.
+ ** EVIDENCE-OF: R-64536-51728 The values for each column in the record
+ ** immediately follow the header. */
+ if( serial_type<=7 ){
+ *(zHdr++) = serial_type;
+ if( serial_type==0 ){
+ /* NULL value. No change in zPayload */
+ }else{
+ u64 v;
+ if( serial_type==7 ){
+ assert( sizeof(v)==sizeof(pRec->u.r) );
+ memcpy(&v, &pRec->u.r, sizeof(v));
+ swapMixedEndianFloat(v);
+ }else{
+ v = pRec->u.i;
+ }
+ len = sqlite3SmallTypeSizes[serial_type];
+ assert( len>=1 && len<=8 && len!=5 && len!=7 );
+ switch( len ){
+ default: zPayload[7] = (u8)(v&0xff); v >>= 8;
+ zPayload[6] = (u8)(v&0xff); v >>= 8;
+ case 6: zPayload[5] = (u8)(v&0xff); v >>= 8;
+ zPayload[4] = (u8)(v&0xff); v >>= 8;
+ case 4: zPayload[3] = (u8)(v&0xff); v >>= 8;
+ case 3: zPayload[2] = (u8)(v&0xff); v >>= 8;
+ case 2: zPayload[1] = (u8)(v&0xff); v >>= 8;
+ case 1: zPayload[0] = (u8)(v&0xff);
+ }
+ zPayload += len;
+ }
+ }else if( serial_type<0x80 ){
+ *(zHdr++) = serial_type;
+ if( serial_type>=14 && pRec->n>0 ){
+ assert( pRec->z!=0 );
+ memcpy(zPayload, pRec->z, pRec->n);
+ zPayload += pRec->n;
+ }
+ }else{
+ zHdr += sqlite3PutVarint(zHdr, serial_type);
+ if( pRec->n ){
+ assert( pRec->z!=0 );
+ memcpy(zPayload, pRec->z, pRec->n);
+ zPayload += pRec->n;
+ }
+ }
+ if( pRec==pLast ) break;
+ pRec++;
+ }
+ assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
+ assert( nByte==(int)(zPayload - (u8*)pOut->z) );
+
+ assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
+ REGISTER_TRACE(pOp->p3, pOut);
+ break;
+}
+
+/* Opcode: Count P1 P2 P3 * *
+** Synopsis: r[P2]=count()
+**
+** Store the number of entries (an integer value) in the table or index
+** opened by cursor P1 in register P2.
+**
+** If P3==0, then an exact count is obtained, which involves visiting
+** every btree page of the table. But if P3 is non-zero, an estimate
+** is returned based on the current cursor position.
+*/
+case OP_Count: { /* out2 */
+ i64 nEntry;
+ BtCursor *pCrsr;
+
+ assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
+ pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
+ assert( pCrsr );
+ if( pOp->p3 ){
+ nEntry = sqlite3BtreeRowCountEst(pCrsr);
+ }else{
+ nEntry = 0; /* Not needed. Only used to silence a warning. */
+ rc = sqlite3BtreeCount(db, pCrsr, &nEntry);
+ if( rc ) goto abort_due_to_error;
+ }
+ pOut = out2Prerelease(p, pOp);
+ pOut->u.i = nEntry;
+ goto check_for_interrupt;
+}
+
+/* Opcode: Savepoint P1 * * P4 *
+**
+** Open, release or rollback the savepoint named by parameter P4, depending
+** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
+** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
+** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
+*/
+case OP_Savepoint: {
+ int p1; /* Value of P1 operand */
+ char *zName; /* Name of savepoint */
+ int nName;
+ Savepoint *pNew;
+ Savepoint *pSavepoint;
+ Savepoint *pTmp;
+ int iSavepoint;
+ int ii;
+
+ p1 = pOp->p1;
+ zName = pOp->p4.z;
+
+ /* Assert that the p1 parameter is valid. Also that if there is no open
+ ** transaction, then there cannot be any savepoints.
+ */
+ assert( db->pSavepoint==0 || db->autoCommit==0 );
+ assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
+ assert( db->pSavepoint || db->isTransactionSavepoint==0 );
+ assert( checkSavepointCount(db) );
+ assert( p->bIsReader );
+
+ if( p1==SAVEPOINT_BEGIN ){
+ if( db->nVdbeWrite>0 ){
+ /* A new savepoint cannot be created if there are active write
+ ** statements (i.e. open read/write incremental blob handles).
+ */
+ sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
+ rc = SQLITE_BUSY;
+ }else{
+ nName = sqlite3Strlen30(zName);
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ /* This call is Ok even if this savepoint is actually a transaction
+ ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
+ ** If this is a transaction savepoint being opened, it is guaranteed
+ ** that the db->aVTrans[] array is empty. */
+ assert( db->autoCommit==0 || db->nVTrans==0 );
+ rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
+ db->nStatement+db->nSavepoint);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+#endif
+
+ /* Create a new savepoint structure. */
+ pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
+ if( pNew ){
+ pNew->zName = (char *)&pNew[1];
+ memcpy(pNew->zName, zName, nName+1);
+
+ /* If there is no open transaction, then mark this as a special
+ ** "transaction savepoint". */
+ if( db->autoCommit ){
+ db->autoCommit = 0;
+ db->isTransactionSavepoint = 1;
+ }else{
+ db->nSavepoint++;
+ }
+
+ /* Link the new savepoint into the database handle's list. */
+ pNew->pNext = db->pSavepoint;
+ db->pSavepoint = pNew;
+ pNew->nDeferredCons = db->nDeferredCons;
+ pNew->nDeferredImmCons = db->nDeferredImmCons;
+ }
+ }
+ }else{
+ assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
+ iSavepoint = 0;
+
+ /* Find the named savepoint. If there is no such savepoint, then an
+ ** an error is returned to the user. */
+ for(
+ pSavepoint = db->pSavepoint;
+ pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
+ pSavepoint = pSavepoint->pNext
+ ){
+ iSavepoint++;
+ }
+ if( !pSavepoint ){
+ sqlite3VdbeError(p, "no such savepoint: %s", zName);
+ rc = SQLITE_ERROR;
+ }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
+ /* It is not possible to release (commit) a savepoint if there are
+ ** active write statements.
+ */
+ sqlite3VdbeError(p, "cannot release savepoint - "
+ "SQL statements in progress");
+ rc = SQLITE_BUSY;
+ }else{
+
+ /* Determine whether or not this is a transaction savepoint. If so,
+ ** and this is a RELEASE command, then the current transaction
+ ** is committed.
+ */
+ int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
+ if( isTransaction && p1==SAVEPOINT_RELEASE ){
+ if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
+ goto vdbe_return;
+ }
+ db->autoCommit = 1;
+ if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
+ p->pc = (int)(pOp - aOp);
+ db->autoCommit = 0;
+ p->rc = rc = SQLITE_BUSY;
+ goto vdbe_return;
+ }
+ rc = p->rc;
+ if( rc ){
+ db->autoCommit = 0;
+ }else{
+ db->isTransactionSavepoint = 0;
+ }
+ }else{
+ int isSchemaChange;
+ iSavepoint = db->nSavepoint - iSavepoint - 1;
+ if( p1==SAVEPOINT_ROLLBACK ){
+ isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
+ for(ii=0; ii<db->nDb; ii++){
+ rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
+ SQLITE_ABORT_ROLLBACK,
+ isSchemaChange==0);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ }
+ }else{
+ assert( p1==SAVEPOINT_RELEASE );
+ isSchemaChange = 0;
+ }
+ for(ii=0; ii<db->nDb; ii++){
+ rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ }
+ if( isSchemaChange ){
+ sqlite3ExpirePreparedStatements(db, 0);
+ sqlite3ResetAllSchemasOfConnection(db);
+ db->mDbFlags |= DBFLAG_SchemaChange;
+ }
+ }
+ if( rc ) goto abort_due_to_error;
+
+ /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
+ ** savepoints nested inside of the savepoint being operated on. */
+ while( db->pSavepoint!=pSavepoint ){
+ pTmp = db->pSavepoint;
+ db->pSavepoint = pTmp->pNext;
+ sqlite3DbFree(db, pTmp);
+ db->nSavepoint--;
+ }
+
+ /* If it is a RELEASE, then destroy the savepoint being operated on
+ ** too. If it is a ROLLBACK TO, then set the number of deferred
+ ** constraint violations present in the database to the value stored
+ ** when the savepoint was created. */
+ if( p1==SAVEPOINT_RELEASE ){
+ assert( pSavepoint==db->pSavepoint );
+ db->pSavepoint = pSavepoint->pNext;
+ sqlite3DbFree(db, pSavepoint);
+ if( !isTransaction ){
+ db->nSavepoint--;
+ }
+ }else{
+ assert( p1==SAVEPOINT_ROLLBACK );
+ db->nDeferredCons = pSavepoint->nDeferredCons;
+ db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
+ }
+
+ if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
+ rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ }
+ }
+ }
+ if( rc ) goto abort_due_to_error;
+ if( p->eVdbeState==VDBE_HALT_STATE ){
+ rc = SQLITE_DONE;
+ goto vdbe_return;
+ }
+ break;
+}
+
+/* Opcode: AutoCommit P1 P2 * * *
+**
+** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
+** back any currently active btree transactions. If there are any active
+** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
+** there are active writing VMs or active VMs that use shared cache.
+**
+** This instruction causes the VM to halt.
+*/
+case OP_AutoCommit: {
+ int desiredAutoCommit;
+ int iRollback;
+
+ desiredAutoCommit = pOp->p1;
+ iRollback = pOp->p2;
+ assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
+ assert( desiredAutoCommit==1 || iRollback==0 );
+ assert( db->nVdbeActive>0 ); /* At least this one VM is active */
+ assert( p->bIsReader );
+
+ if( desiredAutoCommit!=db->autoCommit ){
+ if( iRollback ){
+ assert( desiredAutoCommit==1 );
+ sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
+ db->autoCommit = 1;
+ }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
+ /* If this instruction implements a COMMIT and other VMs are writing
+ ** return an error indicating that the other VMs must complete first.
+ */
+ sqlite3VdbeError(p, "cannot commit transaction - "
+ "SQL statements in progress");
+ rc = SQLITE_BUSY;
+ goto abort_due_to_error;
+ }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
+ goto vdbe_return;
+ }else{
+ db->autoCommit = (u8)desiredAutoCommit;
+ }
+ if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
+ p->pc = (int)(pOp - aOp);
+ db->autoCommit = (u8)(1-desiredAutoCommit);
+ p->rc = rc = SQLITE_BUSY;
+ goto vdbe_return;
+ }
+ sqlite3CloseSavepoints(db);
+ if( p->rc==SQLITE_OK ){
+ rc = SQLITE_DONE;
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ goto vdbe_return;
+ }else{
+ sqlite3VdbeError(p,
+ (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
+ (iRollback)?"cannot rollback - no transaction is active":
+ "cannot commit - no transaction is active"));
+
+ rc = SQLITE_ERROR;
+ goto abort_due_to_error;
+ }
+ /*NOTREACHED*/ assert(0);
+}
+
+/* Opcode: Transaction P1 P2 P3 P4 P5
+**
+** Begin a transaction on database P1 if a transaction is not already
+** active.
+** If P2 is non-zero, then a write-transaction is started, or if a
+** read-transaction is already active, it is upgraded to a write-transaction.
+** If P2 is zero, then a read-transaction is started. If P2 is 2 or more
+** then an exclusive transaction is started.
+**
+** P1 is the index of the database file on which the transaction is
+** started. Index 0 is the main database file and index 1 is the
+** file used for temporary tables. Indices of 2 or more are used for
+** attached databases.
+**
+** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
+** true (this flag is set if the Vdbe may modify more than one row and may
+** throw an ABORT exception), a statement transaction may also be opened.
+** More specifically, a statement transaction is opened iff the database
+** connection is currently not in autocommit mode, or if there are other
+** active statements. A statement transaction allows the changes made by this
+** VDBE to be rolled back after an error without having to roll back the
+** entire transaction. If no error is encountered, the statement transaction
+** will automatically commit when the VDBE halts.
+**
+** If P5!=0 then this opcode also checks the schema cookie against P3
+** and the schema generation counter against P4.
+** The cookie changes its value whenever the database schema changes.
+** This operation is used to detect when that the cookie has changed
+** and that the current process needs to reread the schema. If the schema
+** cookie in P3 differs from the schema cookie in the database header or
+** if the schema generation counter in P4 differs from the current
+** generation counter, then an SQLITE_SCHEMA error is raised and execution
+** halts. The sqlite3_step() wrapper function might then reprepare the
+** statement and rerun it from the beginning.
+*/
+case OP_Transaction: {
+ Btree *pBt;
+ Db *pDb;
+ int iMeta = 0;
+
+ assert( p->bIsReader );
+ assert( p->readOnly==0 || pOp->p2==0 );
+ assert( pOp->p2>=0 && pOp->p2<=2 );
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( DbMaskTest(p->btreeMask, pOp->p1) );
+ assert( rc==SQLITE_OK );
+ if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){
+ if( db->flags & SQLITE_QueryOnly ){
+ /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */
+ rc = SQLITE_READONLY;
+ }else{
+ /* Writes prohibited due to a prior SQLITE_CORRUPT in the current
+ ** transaction */
+ rc = SQLITE_CORRUPT;
+ }
+ goto abort_due_to_error;
+ }
+ pDb = &db->aDb[pOp->p1];
+ pBt = pDb->pBt;
+
+ if( pBt ){
+ rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
+ testcase( rc==SQLITE_BUSY_SNAPSHOT );
+ testcase( rc==SQLITE_BUSY_RECOVERY );
+ if( rc!=SQLITE_OK ){
+ if( (rc&0xff)==SQLITE_BUSY ){
+ p->pc = (int)(pOp - aOp);
+ p->rc = rc;
+ goto vdbe_return;
+ }
+ goto abort_due_to_error;
+ }
+
+ if( p->usesStmtJournal
+ && pOp->p2
+ && (db->autoCommit==0 || db->nVdbeRead>1)
+ ){
+ assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE );
+ if( p->iStatement==0 ){
+ assert( db->nStatement>=0 && db->nSavepoint>=0 );
+ db->nStatement++;
+ p->iStatement = db->nSavepoint + db->nStatement;
+ }
+
+ rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
+ }
+
+ /* Store the current value of the database handles deferred constraint
+ ** counter. If the statement transaction needs to be rolled back,
+ ** the value of this counter needs to be restored too. */
+ p->nStmtDefCons = db->nDeferredCons;
+ p->nStmtDefImmCons = db->nDeferredImmCons;
+ }
+ }
+ assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
+ if( rc==SQLITE_OK
+ && pOp->p5
+ && (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i)
+ ){
+ /*
+ ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
+ ** version is checked to ensure that the schema has not changed since the
+ ** SQL statement was prepared.
+ */
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
+ /* If the schema-cookie from the database file matches the cookie
+ ** stored with the in-memory representation of the schema, do
+ ** not reload the schema from the database file.
+ **
+ ** If virtual-tables are in use, this is not just an optimization.
+ ** Often, v-tables store their data in other SQLite tables, which
+ ** are queried from within xNext() and other v-table methods using
+ ** prepared queries. If such a query is out-of-date, we do not want to
+ ** discard the database schema, as the user code implementing the
+ ** v-table would have to be ready for the sqlite3_vtab structure itself
+ ** to be invalidated whenever sqlite3_step() is called from within
+ ** a v-table method.
+ */
+ if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
+ sqlite3ResetOneSchema(db, pOp->p1);
+ }
+ p->expired = 1;
+ rc = SQLITE_SCHEMA;
+
+ /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes()
+ ** from being modified in sqlite3VdbeHalt(). If this statement is
+ ** reprepared, changeCntOn will be set again. */
+ p->changeCntOn = 0;
+ }
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: ReadCookie P1 P2 P3 * *
+**
+** Read cookie number P3 from database P1 and write it into register P2.
+** P3==1 is the schema version. P3==2 is the database format.
+** P3==3 is the recommended pager cache size, and so forth. P1==0 is
+** the main database file and P1==1 is the database file used to store
+** temporary tables.
+**
+** There must be a read-lock on the database (either a transaction
+** must be started or there must be an open cursor) before
+** executing this instruction.
+*/
+case OP_ReadCookie: { /* out2 */
+ int iMeta;
+ int iDb;
+ int iCookie;
+
+ assert( p->bIsReader );
+ iDb = pOp->p1;
+ iCookie = pOp->p3;
+ assert( pOp->p3<SQLITE_N_BTREE_META );
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( db->aDb[iDb].pBt!=0 );
+ assert( DbMaskTest(p->btreeMask, iDb) );
+
+ sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
+ pOut = out2Prerelease(p, pOp);
+ pOut->u.i = iMeta;
+ break;
+}
+
+/* Opcode: SetCookie P1 P2 P3 * P5
+**
+** Write the integer value P3 into cookie number P2 of database P1.
+** P2==1 is the schema version. P2==2 is the database format.
+** P2==3 is the recommended pager cache
+** size, and so forth. P1==0 is the main database file and P1==1 is the
+** database file used to store temporary tables.
+**
+** A transaction must be started before executing this opcode.
+**
+** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal
+** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement
+** has P5 set to 1, so that the internal schema version will be different
+** from the database schema version, resulting in a schema reset.
+*/
+case OP_SetCookie: {
+ Db *pDb;
+
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ assert( pOp->p2<SQLITE_N_BTREE_META );
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( DbMaskTest(p->btreeMask, pOp->p1) );
+ assert( p->readOnly==0 );
+ pDb = &db->aDb[pOp->p1];
+ assert( pDb->pBt!=0 );
+ assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
+ /* See note about index shifting on OP_ReadCookie */
+ rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
+ if( pOp->p2==BTREE_SCHEMA_VERSION ){
+ /* When the schema cookie changes, record the new cookie internally */
+ *(u32*)&pDb->pSchema->schema_cookie = *(u32*)&pOp->p3 - pOp->p5;
+ db->mDbFlags |= DBFLAG_SchemaChange;
+ sqlite3FkClearTriggerCache(db, pOp->p1);
+ }else if( pOp->p2==BTREE_FILE_FORMAT ){
+ /* Record changes in the file format */
+ pDb->pSchema->file_format = pOp->p3;
+ }
+ if( pOp->p1==1 ){
+ /* Invalidate all prepared statements whenever the TEMP database
+ ** schema is changed. Ticket #1644 */
+ sqlite3ExpirePreparedStatements(db, 0);
+ p->expired = 0;
+ }
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: OpenRead P1 P2 P3 P4 P5
+** Synopsis: root=P2 iDb=P3
+**
+** Open a read-only cursor for the database table whose root page is
+** P2 in a database file. The database file is determined by P3.
+** P3==0 means the main database, P3==1 means the database used for
+** temporary tables, and P3>1 means used the corresponding attached
+** database. Give the new cursor an identifier of P1. The P1
+** values need not be contiguous but all P1 values should be small integers.
+** It is an error for P1 to be negative.
+**
+** Allowed P5 bits:
+** <ul>
+** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
+** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
+** of OP_SeekLE/OP_IdxLT)
+** </ul>
+**
+** The P4 value may be either an integer (P4_INT32) or a pointer to
+** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
+** object, then table being opened must be an [index b-tree] where the
+** KeyInfo object defines the content and collating
+** sequence of that index b-tree. Otherwise, if P4 is an integer
+** value, then the table being opened must be a [table b-tree] with a
+** number of columns no less than the value of P4.
+**
+** See also: OpenWrite, ReopenIdx
+*/
+/* Opcode: ReopenIdx P1 P2 P3 P4 P5
+** Synopsis: root=P2 iDb=P3
+**
+** The ReopenIdx opcode works like OP_OpenRead except that it first
+** checks to see if the cursor on P1 is already open on the same
+** b-tree and if it is this opcode becomes a no-op. In other words,
+** if the cursor is already open, do not reopen it.
+**
+** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
+** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must
+** be the same as every other ReopenIdx or OpenRead for the same cursor
+** number.
+**
+** Allowed P5 bits:
+** <ul>
+** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
+** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
+** of OP_SeekLE/OP_IdxLT)
+** </ul>
+**
+** See also: OP_OpenRead, OP_OpenWrite
+*/
+/* Opcode: OpenWrite P1 P2 P3 P4 P5
+** Synopsis: root=P2 iDb=P3
+**
+** Open a read/write cursor named P1 on the table or index whose root
+** page is P2 (or whose root page is held in register P2 if the
+** OPFLAG_P2ISREG bit is set in P5 - see below).
+**
+** The P4 value may be either an integer (P4_INT32) or a pointer to
+** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
+** object, then table being opened must be an [index b-tree] where the
+** KeyInfo object defines the content and collating
+** sequence of that index b-tree. Otherwise, if P4 is an integer
+** value, then the table being opened must be a [table b-tree] with a
+** number of columns no less than the value of P4.
+**
+** Allowed P5 bits:
+** <ul>
+** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
+** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
+** of OP_SeekLE/OP_IdxLT)
+** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
+** and subsequently delete entries in an index btree. This is a
+** hint to the storage engine that the storage engine is allowed to
+** ignore. The hint is not used by the official SQLite b*tree storage
+** engine, but is used by COMDB2.
+** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
+** as the root page, not the value of P2 itself.
+** </ul>
+**
+** This instruction works like OpenRead except that it opens the cursor
+** in read/write mode.
+**
+** See also: OP_OpenRead, OP_ReopenIdx
+*/
+case OP_ReopenIdx: { /* ncycle */
+ int nField;
+ KeyInfo *pKeyInfo;
+ u32 p2;
+ int iDb;
+ int wrFlag;
+ Btree *pX;
+ VdbeCursor *pCur;
+ Db *pDb;
+
+ assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
+ assert( pOp->p4type==P4_KEYINFO );
+ pCur = p->apCsr[pOp->p1];
+ if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
+ assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
+ assert( pCur->eCurType==CURTYPE_BTREE );
+ sqlite3BtreeClearCursor(pCur->uc.pCursor);
+ goto open_cursor_set_hints;
+ }
+ /* If the cursor is not currently open or is open on a different
+ ** index, then fall through into OP_OpenRead to force a reopen */
+case OP_OpenRead: /* ncycle */
+case OP_OpenWrite:
+
+ assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
+ assert( p->bIsReader );
+ assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
+ || p->readOnly==0 );
+
+ if( p->expired==1 ){
+ rc = SQLITE_ABORT_ROLLBACK;
+ goto abort_due_to_error;
+ }
+
+ nField = 0;
+ pKeyInfo = 0;
+ p2 = (u32)pOp->p2;
+ iDb = pOp->p3;
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( DbMaskTest(p->btreeMask, iDb) );
+ pDb = &db->aDb[iDb];
+ pX = pDb->pBt;
+ assert( pX!=0 );
+ if( pOp->opcode==OP_OpenWrite ){
+ assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
+ wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ if( pDb->pSchema->file_format < p->minWriteFileFormat ){
+ p->minWriteFileFormat = pDb->pSchema->file_format;
+ }
+ }else{
+ wrFlag = 0;
+ }
+ if( pOp->p5 & OPFLAG_P2ISREG ){
+ assert( p2>0 );
+ assert( p2<=(u32)(p->nMem+1 - p->nCursor) );
+ assert( pOp->opcode==OP_OpenWrite );
+ pIn2 = &aMem[p2];
+ assert( memIsValid(pIn2) );
+ assert( (pIn2->flags & MEM_Int)!=0 );
+ sqlite3VdbeMemIntegerify(pIn2);
+ p2 = (int)pIn2->u.i;
+ /* The p2 value always comes from a prior OP_CreateBtree opcode and
+ ** that opcode will always set the p2 value to 2 or more or else fail.
+ ** If there were a failure, the prepared statement would have halted
+ ** before reaching this instruction. */
+ assert( p2>=2 );
+ }
+ if( pOp->p4type==P4_KEYINFO ){
+ pKeyInfo = pOp->p4.pKeyInfo;
+ assert( pKeyInfo->enc==ENC(db) );
+ assert( pKeyInfo->db==db );
+ nField = pKeyInfo->nAllField;
+ }else if( pOp->p4type==P4_INT32 ){
+ nField = pOp->p4.i;
+ }
+ assert( pOp->p1>=0 );
+ assert( nField>=0 );
+ testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
+ pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE);
+ if( pCur==0 ) goto no_mem;
+ pCur->iDb = iDb;
+ pCur->nullRow = 1;
+ pCur->isOrdered = 1;
+ pCur->pgnoRoot = p2;
+#ifdef SQLITE_DEBUG
+ pCur->wrFlag = wrFlag;
+#endif
+ rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
+ pCur->pKeyInfo = pKeyInfo;
+ /* Set the VdbeCursor.isTable variable. Previous versions of
+ ** SQLite used to check if the root-page flags were sane at this point
+ ** and report database corruption if they were not, but this check has
+ ** since moved into the btree layer. */
+ pCur->isTable = pOp->p4type!=P4_KEYINFO;
+
+open_cursor_set_hints:
+ assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
+ assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
+ testcase( pOp->p5 & OPFLAG_BULKCSR );
+ testcase( pOp->p2 & OPFLAG_SEEKEQ );
+ sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
+ (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: OpenDup P1 P2 * * *
+**
+** Open a new cursor P1 that points to the same ephemeral table as
+** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral
+** opcode. Only ephemeral cursors may be duplicated.
+**
+** Duplicate ephemeral cursors are used for self-joins of materialized views.
+*/
+case OP_OpenDup: { /* ncycle */
+ VdbeCursor *pOrig; /* The original cursor to be duplicated */
+ VdbeCursor *pCx; /* The new cursor */
+
+ pOrig = p->apCsr[pOp->p2];
+ assert( pOrig );
+ assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */
+
+ pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE);
+ if( pCx==0 ) goto no_mem;
+ pCx->nullRow = 1;
+ pCx->isEphemeral = 1;
+ pCx->pKeyInfo = pOrig->pKeyInfo;
+ pCx->isTable = pOrig->isTable;
+ pCx->pgnoRoot = pOrig->pgnoRoot;
+ pCx->isOrdered = pOrig->isOrdered;
+ pCx->ub.pBtx = pOrig->ub.pBtx;
+ pCx->noReuse = 1;
+ pOrig->noReuse = 1;
+ rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
+ pCx->pKeyInfo, pCx->uc.pCursor);
+ /* The sqlite3BtreeCursor() routine can only fail for the first cursor
+ ** opened for a database. Since there is already an open cursor when this
+ ** opcode is run, the sqlite3BtreeCursor() cannot fail */
+ assert( rc==SQLITE_OK );
+ break;
+}
+
+
+/* Opcode: OpenEphemeral P1 P2 P3 P4 P5
+** Synopsis: nColumn=P2
+**
+** Open a new cursor P1 to a transient table.
+** The cursor is always opened read/write even if
+** the main database is read-only. The ephemeral
+** table is deleted automatically when the cursor is closed.
+**
+** If the cursor P1 is already opened on an ephemeral table, the table
+** is cleared (all content is erased).
+**
+** P2 is the number of columns in the ephemeral table.
+** The cursor points to a BTree table if P4==0 and to a BTree index
+** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
+** that defines the format of keys in the index.
+**
+** The P5 parameter can be a mask of the BTREE_* flags defined
+** in btree.h. These flags control aspects of the operation of
+** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
+** added automatically.
+**
+** If P3 is positive, then reg[P3] is modified slightly so that it
+** can be used as zero-length data for OP_Insert. This is an optimization
+** that avoids an extra OP_Blob opcode to initialize that register.
+*/
+/* Opcode: OpenAutoindex P1 P2 * P4 *
+** Synopsis: nColumn=P2
+**
+** This opcode works the same as OP_OpenEphemeral. It has a
+** different name to distinguish its use. Tables created using
+** by this opcode will be used for automatically created transient
+** indices in joins.
+*/
+case OP_OpenAutoindex: /* ncycle */
+case OP_OpenEphemeral: { /* ncycle */
+ VdbeCursor *pCx;
+ KeyInfo *pKeyInfo;
+
+ static const int vfsFlags =
+ SQLITE_OPEN_READWRITE |
+ SQLITE_OPEN_CREATE |
+ SQLITE_OPEN_EXCLUSIVE |
+ SQLITE_OPEN_DELETEONCLOSE |
+ SQLITE_OPEN_TRANSIENT_DB;
+ assert( pOp->p1>=0 );
+ assert( pOp->p2>=0 );
+ if( pOp->p3>0 ){
+ /* Make register reg[P3] into a value that can be used as the data
+ ** form sqlite3BtreeInsert() where the length of the data is zero. */
+ assert( pOp->p2==0 ); /* Only used when number of columns is zero */
+ assert( pOp->opcode==OP_OpenEphemeral );
+ assert( aMem[pOp->p3].flags & MEM_Null );
+ aMem[pOp->p3].n = 0;
+ aMem[pOp->p3].z = "";
+ }
+ pCx = p->apCsr[pOp->p1];
+ if( pCx && !pCx->noReuse && ALWAYS(pOp->p2<=pCx->nField) ){
+ /* If the ephemeral table is already open and has no duplicates from
+ ** OP_OpenDup, then erase all existing content so that the table is
+ ** empty again, rather than creating a new table. */
+ assert( pCx->isEphemeral );
+ pCx->seqCount = 0;
+ pCx->cacheStatus = CACHE_STALE;
+ rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0);
+ }else{
+ pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE);
+ if( pCx==0 ) goto no_mem;
+ pCx->isEphemeral = 1;
+ rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx,
+ BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
+ vfsFlags);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0);
+ if( rc==SQLITE_OK ){
+ /* If a transient index is required, create it by calling
+ ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
+ ** opening it. If a transient table is required, just use the
+ ** automatically created table with root-page 1 (an BLOB_INTKEY table).
+ */
+ if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
+ assert( pOp->p4type==P4_KEYINFO );
+ rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot,
+ BTREE_BLOBKEY | pOp->p5);
+ if( rc==SQLITE_OK ){
+ assert( pCx->pgnoRoot==SCHEMA_ROOT+1 );
+ assert( pKeyInfo->db==db );
+ assert( pKeyInfo->enc==ENC(db) );
+ rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
+ pKeyInfo, pCx->uc.pCursor);
+ }
+ pCx->isTable = 0;
+ }else{
+ pCx->pgnoRoot = SCHEMA_ROOT;
+ rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR,
+ 0, pCx->uc.pCursor);
+ pCx->isTable = 1;
+ }
+ }
+ pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
+ if( rc ){
+ sqlite3BtreeClose(pCx->ub.pBtx);
+ }
+ }
+ }
+ if( rc ) goto abort_due_to_error;
+ pCx->nullRow = 1;
+ break;
+}
+
+/* Opcode: SorterOpen P1 P2 P3 P4 *
+**
+** This opcode works like OP_OpenEphemeral except that it opens
+** a transient index that is specifically designed to sort large
+** tables using an external merge-sort algorithm.
+**
+** If argument P3 is non-zero, then it indicates that the sorter may
+** assume that a stable sort considering the first P3 fields of each
+** key is sufficient to produce the required results.
+*/
+case OP_SorterOpen: {
+ VdbeCursor *pCx;
+
+ assert( pOp->p1>=0 );
+ assert( pOp->p2>=0 );
+ pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER);
+ if( pCx==0 ) goto no_mem;
+ pCx->pKeyInfo = pOp->p4.pKeyInfo;
+ assert( pCx->pKeyInfo->db==db );
+ assert( pCx->pKeyInfo->enc==ENC(db) );
+ rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: SequenceTest P1 P2 * * *
+** Synopsis: if( cursor[P1].ctr++ ) pc = P2
+**
+** P1 is a sorter cursor. If the sequence counter is currently zero, jump
+** to P2. Regardless of whether or not the jump is taken, increment the
+** the sequence value.
+*/
+case OP_SequenceTest: {
+ VdbeCursor *pC;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( isSorter(pC) );
+ if( (pC->seqCount++)==0 ){
+ goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: OpenPseudo P1 P2 P3 * *
+** Synopsis: P3 columns in r[P2]
+**
+** Open a new cursor that points to a fake table that contains a single
+** row of data. The content of that one row is the content of memory
+** register P2. In other words, cursor P1 becomes an alias for the
+** MEM_Blob content contained in register P2.
+**
+** A pseudo-table created by this opcode is used to hold a single
+** row output from the sorter so that the row can be decomposed into
+** individual columns using the OP_Column opcode. The OP_Column opcode
+** is the only cursor opcode that works with a pseudo-table.
+**
+** P3 is the number of fields in the records that will be stored by
+** the pseudo-table.
+*/
+case OP_OpenPseudo: {
+ VdbeCursor *pCx;
+
+ assert( pOp->p1>=0 );
+ assert( pOp->p3>=0 );
+ pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO);
+ if( pCx==0 ) goto no_mem;
+ pCx->nullRow = 1;
+ pCx->seekResult = pOp->p2;
+ pCx->isTable = 1;
+ /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
+ ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test
+ ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
+ ** which is a performance optimization */
+ pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
+ assert( pOp->p5==0 );
+ break;
+}
+
+/* Opcode: Close P1 * * * *
+**
+** Close a cursor previously opened as P1. If P1 is not
+** currently open, this instruction is a no-op.
+*/
+case OP_Close: { /* ncycle */
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
+ p->apCsr[pOp->p1] = 0;
+ break;
+}
+
+#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
+/* Opcode: ColumnsUsed P1 * * P4 *
+**
+** This opcode (which only exists if SQLite was compiled with
+** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
+** table or index for cursor P1 are used. P4 is a 64-bit integer
+** (P4_INT64) in which the first 63 bits are one for each of the
+** first 63 columns of the table or index that are actually used
+** by the cursor. The high-order bit is set if any column after
+** the 64th is used.
+*/
+case OP_ColumnsUsed: {
+ VdbeCursor *pC;
+ pC = p->apCsr[pOp->p1];
+ assert( pC->eCurType==CURTYPE_BTREE );
+ pC->maskUsed = *(u64*)pOp->p4.pI64;
+ break;
+}
+#endif
+
+/* Opcode: SeekGE P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
+** use the value in register P3 as the key. If cursor P1 refers
+** to an SQL index, then P3 is the first in an array of P4 registers
+** that are used as an unpacked index key.
+**
+** Reposition cursor P1 so that it points to the smallest entry that
+** is greater than or equal to the key value. If there are no records
+** greater than or equal to the key and P2 is not zero, then jump to P2.
+**
+** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
+** opcode will either land on a record that exactly matches the key, or
+** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
+** this opcode must be followed by an IdxLE opcode with the same arguments.
+** The IdxGT opcode will be skipped if this opcode succeeds, but the
+** IdxGT opcode will be used on subsequent loop iterations. The
+** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
+** is an equality search.
+**
+** This opcode leaves the cursor configured to move in forward order,
+** from the beginning toward the end. In other words, the cursor is
+** configured to use Next, not Prev.
+**
+** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
+*/
+/* Opcode: SeekGT P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
+** use the value in register P3 as a key. If cursor P1 refers
+** to an SQL index, then P3 is the first in an array of P4 registers
+** that are used as an unpacked index key.
+**
+** Reposition cursor P1 so that it points to the smallest entry that
+** is greater than the key value. If there are no records greater than
+** the key and P2 is not zero, then jump to P2.
+**
+** This opcode leaves the cursor configured to move in forward order,
+** from the beginning toward the end. In other words, the cursor is
+** configured to use Next, not Prev.
+**
+** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
+*/
+/* Opcode: SeekLT P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
+** use the value in register P3 as a key. If cursor P1 refers
+** to an SQL index, then P3 is the first in an array of P4 registers
+** that are used as an unpacked index key.
+**
+** Reposition cursor P1 so that it points to the largest entry that
+** is less than the key value. If there are no records less than
+** the key and P2 is not zero, then jump to P2.
+**
+** This opcode leaves the cursor configured to move in reverse order,
+** from the end toward the beginning. In other words, the cursor is
+** configured to use Prev, not Next.
+**
+** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
+*/
+/* Opcode: SeekLE P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
+** use the value in register P3 as a key. If cursor P1 refers
+** to an SQL index, then P3 is the first in an array of P4 registers
+** that are used as an unpacked index key.
+**
+** Reposition cursor P1 so that it points to the largest entry that
+** is less than or equal to the key value. If there are no records
+** less than or equal to the key and P2 is not zero, then jump to P2.
+**
+** This opcode leaves the cursor configured to move in reverse order,
+** from the end toward the beginning. In other words, the cursor is
+** configured to use Prev, not Next.
+**
+** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
+** opcode will either land on a record that exactly matches the key, or
+** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
+** this opcode must be followed by an IdxLE opcode with the same arguments.
+** The IdxGE opcode will be skipped if this opcode succeeds, but the
+** IdxGE opcode will be used on subsequent loop iterations. The
+** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
+** is an equality search.
+**
+** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
+*/
+case OP_SeekLT: /* jump, in3, group, ncycle */
+case OP_SeekLE: /* jump, in3, group, ncycle */
+case OP_SeekGE: /* jump, in3, group, ncycle */
+case OP_SeekGT: { /* jump, in3, group, ncycle */
+ int res; /* Comparison result */
+ int oc; /* Opcode */
+ VdbeCursor *pC; /* The cursor to seek */
+ UnpackedRecord r; /* The key to seek for */
+ int nField; /* Number of columns or fields in the key */
+ i64 iKey; /* The rowid we are to seek to */
+ int eqOnly; /* Only interested in == results */
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p2!=0 );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( OP_SeekLE == OP_SeekLT+1 );
+ assert( OP_SeekGE == OP_SeekLT+2 );
+ assert( OP_SeekGT == OP_SeekLT+3 );
+ assert( pC->isOrdered );
+ assert( pC->uc.pCursor!=0 );
+ oc = pOp->opcode;
+ eqOnly = 0;
+ pC->nullRow = 0;
+#ifdef SQLITE_DEBUG
+ pC->seekOp = pOp->opcode;
+#endif
+
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ if( pC->isTable ){
+ u16 flags3, newType;
+ /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
+ assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
+ || CORRUPT_DB );
+
+ /* The input value in P3 might be of any type: integer, real, string,
+ ** blob, or NULL. But it needs to be an integer before we can do
+ ** the seek, so convert it. */
+ pIn3 = &aMem[pOp->p3];
+ flags3 = pIn3->flags;
+ if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
+ applyNumericAffinity(pIn3, 0);
+ }
+ iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */
+ newType = pIn3->flags; /* Record the type after applying numeric affinity */
+ pIn3->flags = flags3; /* But convert the type back to its original */
+
+ /* If the P3 value could not be converted into an integer without
+ ** loss of information, then special processing is required... */
+ if( (newType & (MEM_Int|MEM_IntReal))==0 ){
+ int c;
+ if( (newType & MEM_Real)==0 ){
+ if( (newType & MEM_Null) || oc>=OP_SeekGE ){
+ VdbeBranchTaken(1,2);
+ goto jump_to_p2;
+ }else{
+ rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ goto seek_not_found;
+ }
+ }
+ c = sqlite3IntFloatCompare(iKey, pIn3->u.r);
+
+ /* If the approximation iKey is larger than the actual real search
+ ** term, substitute >= for > and < for <=. e.g. if the search term
+ ** is 4.9 and the integer approximation 5:
+ **
+ ** (x > 4.9) -> (x >= 5)
+ ** (x <= 4.9) -> (x < 5)
+ */
+ if( c>0 ){
+ assert( OP_SeekGE==(OP_SeekGT-1) );
+ assert( OP_SeekLT==(OP_SeekLE-1) );
+ assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
+ if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
+ }
+
+ /* If the approximation iKey is smaller than the actual real search
+ ** term, substitute <= for < and > for >=. */
+ else if( c<0 ){
+ assert( OP_SeekLE==(OP_SeekLT+1) );
+ assert( OP_SeekGT==(OP_SeekGE+1) );
+ assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
+ if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
+ }
+ }
+ rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res);
+ pC->movetoTarget = iKey; /* Used by OP_Delete */
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ }else{
+ /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
+ ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
+ ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
+ ** with the same key.
+ */
+ if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
+ eqOnly = 1;
+ assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
+ assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
+ assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT );
+ assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT );
+ assert( pOp[1].p1==pOp[0].p1 );
+ assert( pOp[1].p2==pOp[0].p2 );
+ assert( pOp[1].p3==pOp[0].p3 );
+ assert( pOp[1].p4.i==pOp[0].p4.i );
+ }
+
+ nField = pOp->p4.i;
+ assert( pOp->p4type==P4_INT32 );
+ assert( nField>0 );
+ r.pKeyInfo = pC->pKeyInfo;
+ r.nField = (u16)nField;
+
+ /* The next line of code computes as follows, only faster:
+ ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
+ ** r.default_rc = -1;
+ ** }else{
+ ** r.default_rc = +1;
+ ** }
+ */
+ r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
+ assert( oc!=OP_SeekGT || r.default_rc==-1 );
+ assert( oc!=OP_SeekLE || r.default_rc==-1 );
+ assert( oc!=OP_SeekGE || r.default_rc==+1 );
+ assert( oc!=OP_SeekLT || r.default_rc==+1 );
+
+ r.aMem = &aMem[pOp->p3];
+#ifdef SQLITE_DEBUG
+ {
+ int i;
+ for(i=0; i<r.nField; i++){
+ assert( memIsValid(&r.aMem[i]) );
+ if( i>0 ) REGISTER_TRACE(pOp->p3+i, &r.aMem[i]);
+ }
+ }
+#endif
+ r.eqSeen = 0;
+ rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ if( eqOnly && r.eqSeen==0 ){
+ assert( res!=0 );
+ goto seek_not_found;
+ }
+ }
+#ifdef SQLITE_TEST
+ sqlite3_search_count++;
+#endif
+ if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
+ if( res<0 || (res==0 && oc==OP_SeekGT) ){
+ res = 0;
+ rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ res = 1;
+ }else{
+ goto abort_due_to_error;
+ }
+ }
+ }else{
+ res = 0;
+ }
+ }else{
+ assert( oc==OP_SeekLT || oc==OP_SeekLE );
+ if( res>0 || (res==0 && oc==OP_SeekLT) ){
+ res = 0;
+ rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ res = 1;
+ }else{
+ goto abort_due_to_error;
+ }
+ }
+ }else{
+ /* res might be negative because the table is empty. Check to
+ ** see if this is the case.
+ */
+ res = sqlite3BtreeEof(pC->uc.pCursor);
+ }
+ }
+seek_not_found:
+ assert( pOp->p2>0 );
+ VdbeBranchTaken(res!=0,2);
+ if( res ){
+ goto jump_to_p2;
+ }else if( eqOnly ){
+ assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
+ pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
+ }
+ break;
+}
+
+
+/* Opcode: SeekScan P1 P2 * * P5
+** Synopsis: Scan-ahead up to P1 rows
+**
+** This opcode is a prefix opcode to OP_SeekGE. In other words, this
+** opcode must be immediately followed by OP_SeekGE. This constraint is
+** checked by assert() statements.
+**
+** This opcode uses the P1 through P4 operands of the subsequent
+** OP_SeekGE. In the text that follows, the operands of the subsequent
+** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only
+** the P1, P2 and P5 operands of this opcode are also used, and are called
+** This.P1, This.P2 and This.P5.
+**
+** This opcode helps to optimize IN operators on a multi-column index
+** where the IN operator is on the later terms of the index by avoiding
+** unnecessary seeks on the btree, substituting steps to the next row
+** of the b-tree instead. A correct answer is obtained if this opcode
+** is omitted or is a no-op.
+**
+** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which
+** is the desired entry that we want the cursor SeekGE.P1 to be pointing
+** to. Call this SeekGE.P3/P4 row the "target".
+**
+** If the SeekGE.P1 cursor is not currently pointing to a valid row,
+** then this opcode is a no-op and control passes through into the OP_SeekGE.
+**
+** If the SeekGE.P1 cursor is pointing to a valid row, then that row
+** might be the target row, or it might be near and slightly before the
+** target row, or it might be after the target row. If the cursor is
+** currently before the target row, then this opcode attempts to position
+** the cursor on or after the target row by invoking sqlite3BtreeStep()
+** on the cursor between 1 and This.P1 times.
+**
+** The This.P5 parameter is a flag that indicates what to do if the
+** cursor ends up pointing at a valid row that is past the target
+** row. If This.P5 is false (0) then a jump is made to SeekGE.P2. If
+** This.P5 is true (non-zero) then a jump is made to This.P2. The P5==0
+** case occurs when there are no inequality constraints to the right of
+** the IN constraint. The jump to SeekGE.P2 ends the loop. The P5!=0 case
+** occurs when there are inequality constraints to the right of the IN
+** operator. In that case, the This.P2 will point either directly to or
+** to setup code prior to the OP_IdxGT or OP_IdxGE opcode that checks for
+** loop terminate.
+**
+** Possible outcomes from this opcode:<ol>
+**
+** <li> If the cursor is initially not pointed to any valid row, then
+** fall through into the subsequent OP_SeekGE opcode.
+**
+** <li> If the cursor is left pointing to a row that is before the target
+** row, even after making as many as This.P1 calls to
+** sqlite3BtreeNext(), then also fall through into OP_SeekGE.
+**
+** <li> If the cursor is left pointing at the target row, either because it
+** was at the target row to begin with or because one or more
+** sqlite3BtreeNext() calls moved the cursor to the target row,
+** then jump to This.P2..,
+**
+** <li> If the cursor started out before the target row and a call to
+** to sqlite3BtreeNext() moved the cursor off the end of the index
+** (indicating that the target row definitely does not exist in the
+** btree) then jump to SeekGE.P2, ending the loop.
+**
+** <li> If the cursor ends up on a valid row that is past the target row
+** (indicating that the target row does not exist in the btree) then
+** jump to SeekOP.P2 if This.P5==0 or to This.P2 if This.P5>0.
+** </ol>
+*/
+case OP_SeekScan: { /* ncycle */
+ VdbeCursor *pC;
+ int res;
+ int nStep;
+ UnpackedRecord r;
+
+ assert( pOp[1].opcode==OP_SeekGE );
+
+ /* If pOp->p5 is clear, then pOp->p2 points to the first instruction past the
+ ** OP_IdxGT that follows the OP_SeekGE. Otherwise, it points to the first
+ ** opcode past the OP_SeekGE itself. */
+ assert( pOp->p2>=(int)(pOp-aOp)+2 );
+#ifdef SQLITE_DEBUG
+ if( pOp->p5==0 ){
+ /* There are no inequality constraints following the IN constraint. */
+ assert( pOp[1].p1==aOp[pOp->p2-1].p1 );
+ assert( pOp[1].p2==aOp[pOp->p2-1].p2 );
+ assert( pOp[1].p3==aOp[pOp->p2-1].p3 );
+ assert( aOp[pOp->p2-1].opcode==OP_IdxGT
+ || aOp[pOp->p2-1].opcode==OP_IdxGE );
+ testcase( aOp[pOp->p2-1].opcode==OP_IdxGE );
+ }else{
+ /* There are inequality constraints. */
+ assert( pOp->p2==(int)(pOp-aOp)+2 );
+ assert( aOp[pOp->p2-1].opcode==OP_SeekGE );
+ }
+#endif
+
+ assert( pOp->p1>0 );
+ pC = p->apCsr[pOp[1].p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( !pC->isTable );
+ if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ printf("... cursor not valid - fall through\n");
+ }
+#endif
+ break;
+ }
+ nStep = pOp->p1;
+ assert( nStep>=1 );
+ r.pKeyInfo = pC->pKeyInfo;
+ r.nField = (u16)pOp[1].p4.i;
+ r.default_rc = 0;
+ r.aMem = &aMem[pOp[1].p3];
+#ifdef SQLITE_DEBUG
+ {
+ int i;
+ for(i=0; i<r.nField; i++){
+ assert( memIsValid(&r.aMem[i]) );
+ REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]);
+ }
+ }
+#endif
+ res = 0; /* Not needed. Only used to silence a warning. */
+ while(1){
+ rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
+ if( rc ) goto abort_due_to_error;
+ if( res>0 && pOp->p5==0 ){
+ seekscan_search_fail:
+ /* Jump to SeekGE.P2, ending the loop */
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ printf("... %d steps and then skip\n", pOp->p1 - nStep);
+ }
+#endif
+ VdbeBranchTaken(1,3);
+ pOp++;
+ goto jump_to_p2;
+ }
+ if( res>=0 ){
+ /* Jump to This.P2, bypassing the OP_SeekGE opcode */
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ printf("... %d steps and then success\n", pOp->p1 - nStep);
+ }
+#endif
+ VdbeBranchTaken(2,3);
+ goto jump_to_p2;
+ break;
+ }
+ if( nStep<=0 ){
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ printf("... fall through after %d steps\n", pOp->p1);
+ }
+#endif
+ VdbeBranchTaken(0,3);
+ break;
+ }
+ nStep--;
+ pC->cacheStatus = CACHE_STALE;
+ rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
+ if( rc ){
+ if( rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ goto seekscan_search_fail;
+ }else{
+ goto abort_due_to_error;
+ }
+ }
+ }
+
+ break;
+}
+
+
+/* Opcode: SeekHit P1 P2 P3 * *
+** Synopsis: set P2<=seekHit<=P3
+**
+** Increase or decrease the seekHit value for cursor P1, if necessary,
+** so that it is no less than P2 and no greater than P3.
+**
+** The seekHit integer represents the maximum of terms in an index for which
+** there is known to be at least one match. If the seekHit value is smaller
+** than the total number of equality terms in an index lookup, then the
+** OP_IfNoHope opcode might run to see if the IN loop can be abandoned
+** early, thus saving work. This is part of the IN-early-out optimization.
+**
+** P1 must be a valid b-tree cursor.
+*/
+case OP_SeekHit: { /* ncycle */
+ VdbeCursor *pC;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pOp->p3>=pOp->p2 );
+ if( pC->seekHit<pOp->p2 ){
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2);
+ }
+#endif
+ pC->seekHit = pOp->p2;
+ }else if( pC->seekHit>pOp->p3 ){
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3);
+ }
+#endif
+ pC->seekHit = pOp->p3;
+ }
+ break;
+}
+
+/* Opcode: IfNotOpen P1 P2 * * *
+** Synopsis: if( !csr[P1] ) goto P2
+**
+** If cursor P1 is not open or if P1 is set to a NULL row using the
+** OP_NullRow opcode, then jump to instruction P2. Otherwise, fall through.
+*/
+case OP_IfNotOpen: { /* jump */
+ VdbeCursor *pCur;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pCur = p->apCsr[pOp->p1];
+ VdbeBranchTaken(pCur==0 || pCur->nullRow, 2);
+ if( pCur==0 || pCur->nullRow ){
+ goto jump_to_p2_and_check_for_interrupt;
+ }
+ break;
+}
+
+/* Opcode: Found P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
+** P4>0 then register P3 is the first of P4 registers that form an unpacked
+** record.
+**
+** Cursor P1 is on an index btree. If the record identified by P3 and P4
+** is a prefix of any entry in P1 then a jump is made to P2 and
+** P1 is left pointing at the matching entry.
+**
+** This operation leaves the cursor in a state where it can be
+** advanced in the forward direction. The Next instruction will work,
+** but not the Prev instruction.
+**
+** See also: NotFound, NoConflict, NotExists. SeekGe
+*/
+/* Opcode: NotFound P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
+** P4>0 then register P3 is the first of P4 registers that form an unpacked
+** record.
+**
+** Cursor P1 is on an index btree. If the record identified by P3 and P4
+** is not the prefix of any entry in P1 then a jump is made to P2. If P1
+** does contain an entry whose prefix matches the P3/P4 record then control
+** falls through to the next instruction and P1 is left pointing at the
+** matching entry.
+**
+** This operation leaves the cursor in a state where it cannot be
+** advanced in either direction. In other words, the Next and Prev
+** opcodes do not work after this operation.
+**
+** See also: Found, NotExists, NoConflict, IfNoHope
+*/
+/* Opcode: IfNoHope P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** Register P3 is the first of P4 registers that form an unpacked
+** record. Cursor P1 is an index btree. P2 is a jump destination.
+** In other words, the operands to this opcode are the same as the
+** operands to OP_NotFound and OP_IdxGT.
+**
+** This opcode is an optimization attempt only. If this opcode always
+** falls through, the correct answer is still obtained, but extra work
+** is performed.
+**
+** A value of N in the seekHit flag of cursor P1 means that there exists
+** a key P3:N that will match some record in the index. We want to know
+** if it is possible for a record P3:P4 to match some record in the
+** index. If it is not possible, we can skip some work. So if seekHit
+** is less than P4, attempt to find out if a match is possible by running
+** OP_NotFound.
+**
+** This opcode is used in IN clause processing for a multi-column key.
+** If an IN clause is attached to an element of the key other than the
+** left-most element, and if there are no matches on the most recent
+** seek over the whole key, then it might be that one of the key element
+** to the left is prohibiting a match, and hence there is "no hope" of
+** any match regardless of how many IN clause elements are checked.
+** In such a case, we abandon the IN clause search early, using this
+** opcode. The opcode name comes from the fact that the
+** jump is taken if there is "no hope" of achieving a match.
+**
+** See also: NotFound, SeekHit
+*/
+/* Opcode: NoConflict P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
+** P4>0 then register P3 is the first of P4 registers that form an unpacked
+** record.
+**
+** Cursor P1 is on an index btree. If the record identified by P3 and P4
+** contains any NULL value, jump immediately to P2. If all terms of the
+** record are not-NULL then a check is done to determine if any row in the
+** P1 index btree has a matching key prefix. If there are no matches, jump
+** immediately to P2. If there is a match, fall through and leave the P1
+** cursor pointing to the matching row.
+**
+** This opcode is similar to OP_NotFound with the exceptions that the
+** branch is always taken if any part of the search key input is NULL.
+**
+** This operation leaves the cursor in a state where it cannot be
+** advanced in either direction. In other words, the Next and Prev
+** opcodes do not work after this operation.
+**
+** See also: NotFound, Found, NotExists
+*/
+case OP_IfNoHope: { /* jump, in3, ncycle */
+ VdbeCursor *pC;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ printf("seekHit is %d\n", pC->seekHit);
+ }
+#endif
+ if( pC->seekHit>=pOp->p4.i ) break;
+ /* Fall through into OP_NotFound */
+ /* no break */ deliberate_fall_through
+}
+case OP_NoConflict: /* jump, in3, ncycle */
+case OP_NotFound: /* jump, in3, ncycle */
+case OP_Found: { /* jump, in3, ncycle */
+ int alreadyExists;
+ int ii;
+ VdbeCursor *pC;
+ UnpackedRecord *pIdxKey;
+ UnpackedRecord r;
+
+#ifdef SQLITE_TEST
+ if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
+#endif
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p4type==P4_INT32 );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+#ifdef SQLITE_DEBUG
+ pC->seekOp = pOp->opcode;
+#endif
+ r.aMem = &aMem[pOp->p3];
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->uc.pCursor!=0 );
+ assert( pC->isTable==0 );
+ r.nField = (u16)pOp->p4.i;
+ if( r.nField>0 ){
+ /* Key values in an array of registers */
+ r.pKeyInfo = pC->pKeyInfo;
+ r.default_rc = 0;
+#ifdef SQLITE_DEBUG
+ for(ii=0; ii<r.nField; ii++){
+ assert( memIsValid(&r.aMem[ii]) );
+ assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
+ if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
+ }
+#endif
+ rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult);
+ }else{
+ /* Composite key generated by OP_MakeRecord */
+ assert( r.aMem->flags & MEM_Blob );
+ assert( pOp->opcode!=OP_NoConflict );
+ rc = ExpandBlob(r.aMem);
+ assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
+ if( rc ) goto no_mem;
+ pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
+ if( pIdxKey==0 ) goto no_mem;
+ sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey);
+ pIdxKey->default_rc = 0;
+ rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult);
+ sqlite3DbFreeNN(db, pIdxKey);
+ }
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ alreadyExists = (pC->seekResult==0);
+ pC->nullRow = 1-alreadyExists;
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ if( pOp->opcode==OP_Found ){
+ VdbeBranchTaken(alreadyExists!=0,2);
+ if( alreadyExists ) goto jump_to_p2;
+ }else{
+ if( !alreadyExists ){
+ VdbeBranchTaken(1,2);
+ goto jump_to_p2;
+ }
+ if( pOp->opcode==OP_NoConflict ){
+ /* For the OP_NoConflict opcode, take the jump if any of the
+ ** input fields are NULL, since any key with a NULL will not
+ ** conflict */
+ for(ii=0; ii<r.nField; ii++){
+ if( r.aMem[ii].flags & MEM_Null ){
+ VdbeBranchTaken(1,2);
+ goto jump_to_p2;
+ }
+ }
+ }
+ VdbeBranchTaken(0,2);
+ if( pOp->opcode==OP_IfNoHope ){
+ pC->seekHit = pOp->p4.i;
+ }
+ }
+ break;
+}
+
+/* Opcode: SeekRowid P1 P2 P3 * *
+** Synopsis: intkey=r[P3]
+**
+** P1 is the index of a cursor open on an SQL table btree (with integer
+** keys). If register P3 does not contain an integer or if P1 does not
+** contain a record with rowid P3 then jump immediately to P2.
+** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
+** a record with rowid P3 then
+** leave the cursor pointing at that record and fall through to the next
+** instruction.
+**
+** The OP_NotExists opcode performs the same operation, but with OP_NotExists
+** the P3 register must be guaranteed to contain an integer value. With this
+** opcode, register P3 might not contain an integer.
+**
+** The OP_NotFound opcode performs the same operation on index btrees
+** (with arbitrary multi-value keys).
+**
+** This opcode leaves the cursor in a state where it cannot be advanced
+** in either direction. In other words, the Next and Prev opcodes will
+** not work following this opcode.
+**
+** See also: Found, NotFound, NoConflict, SeekRowid
+*/
+/* Opcode: NotExists P1 P2 P3 * *
+** Synopsis: intkey=r[P3]
+**
+** P1 is the index of a cursor open on an SQL table btree (with integer
+** keys). P3 is an integer rowid. If P1 does not contain a record with
+** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
+** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
+** leave the cursor pointing at that record and fall through to the next
+** instruction.
+**
+** The OP_SeekRowid opcode performs the same operation but also allows the
+** P3 register to contain a non-integer value, in which case the jump is
+** always taken. This opcode requires that P3 always contain an integer.
+**
+** The OP_NotFound opcode performs the same operation on index btrees
+** (with arbitrary multi-value keys).
+**
+** This opcode leaves the cursor in a state where it cannot be advanced
+** in either direction. In other words, the Next and Prev opcodes will
+** not work following this opcode.
+**
+** See also: Found, NotFound, NoConflict, SeekRowid
+*/
+case OP_SeekRowid: { /* jump, in3, ncycle */
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int res;
+ u64 iKey;
+
+ pIn3 = &aMem[pOp->p3];
+ testcase( pIn3->flags & MEM_Int );
+ testcase( pIn3->flags & MEM_IntReal );
+ testcase( pIn3->flags & MEM_Real );
+ testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str );
+ if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
+ /* If pIn3->u.i does not contain an integer, compute iKey as the
+ ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted
+ ** into an integer without loss of information. Take care to avoid
+ ** changing the datatype of pIn3, however, as it is used by other
+ ** parts of the prepared statement. */
+ Mem x = pIn3[0];
+ applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding);
+ if( (x.flags & MEM_Int)==0 ) goto jump_to_p2;
+ iKey = x.u.i;
+ goto notExistsWithKey;
+ }
+ /* Fall through into OP_NotExists */
+ /* no break */ deliberate_fall_through
+case OP_NotExists: /* jump, in3, ncycle */
+ pIn3 = &aMem[pOp->p3];
+ assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ iKey = pIn3->u.i;
+notExistsWithKey:
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+#ifdef SQLITE_DEBUG
+ if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
+#endif
+ assert( pC->isTable );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ pCrsr = pC->uc.pCursor;
+ assert( pCrsr!=0 );
+ res = 0;
+ rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res);
+ assert( rc==SQLITE_OK || res==0 );
+ pC->movetoTarget = iKey; /* Used by OP_Delete */
+ pC->nullRow = 0;
+ pC->cacheStatus = CACHE_STALE;
+ pC->deferredMoveto = 0;
+ VdbeBranchTaken(res!=0,2);
+ pC->seekResult = res;
+ if( res!=0 ){
+ assert( rc==SQLITE_OK );
+ if( pOp->p2==0 ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ goto jump_to_p2;
+ }
+ }
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: Sequence P1 P2 * * *
+** Synopsis: r[P2]=cursor[P1].ctr++
+**
+** Find the next available sequence number for cursor P1.
+** Write the sequence number into register P2.
+** The sequence number on the cursor is incremented after this
+** instruction.
+*/
+case OP_Sequence: { /* out2 */
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( p->apCsr[pOp->p1]!=0 );
+ assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
+ pOut = out2Prerelease(p, pOp);
+ pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
+ break;
+}
+
+
+/* Opcode: NewRowid P1 P2 P3 * *
+** Synopsis: r[P2]=rowid
+**
+** Get a new integer record number (a.k.a "rowid") used as the key to a table.
+** The record number is not previously used as a key in the database
+** table that cursor P1 points to. The new record number is written
+** written to register P2.
+**
+** If P3>0 then P3 is a register in the root frame of this VDBE that holds
+** the largest previously generated record number. No new record numbers are
+** allowed to be less than this value. When this value reaches its maximum,
+** an SQLITE_FULL error is generated. The P3 register is updated with the '
+** generated record number. This P3 mechanism is used to help implement the
+** AUTOINCREMENT feature.
+*/
+case OP_NewRowid: { /* out2 */
+ i64 v; /* The new rowid */
+ VdbeCursor *pC; /* Cursor of table to get the new rowid */
+ int res; /* Result of an sqlite3BtreeLast() */
+ int cnt; /* Counter to limit the number of searches */
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+ Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
+ VdbeFrame *pFrame; /* Root frame of VDBE */
+#endif
+
+ v = 0;
+ res = 0;
+ pOut = out2Prerelease(p, pOp);
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->isTable );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->uc.pCursor!=0 );
+ {
+ /* The next rowid or record number (different terms for the same
+ ** thing) is obtained in a two-step algorithm.
+ **
+ ** First we attempt to find the largest existing rowid and add one
+ ** to that. But if the largest existing rowid is already the maximum
+ ** positive integer, we have to fall through to the second
+ ** probabilistic algorithm
+ **
+ ** The second algorithm is to select a rowid at random and see if
+ ** it already exists in the table. If it does not exist, we have
+ ** succeeded. If the random rowid does exist, we select a new one
+ ** and try again, up to 100 times.
+ */
+ assert( pC->isTable );
+
+#ifdef SQLITE_32BIT_ROWID
+# define MAX_ROWID 0x7fffffff
+#else
+ /* Some compilers complain about constants of the form 0x7fffffffffffffff.
+ ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
+ ** to provide the constant while making all compilers happy.
+ */
+# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
+#endif
+
+ if( !pC->useRandomRowid ){
+ rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ if( res ){
+ v = 1; /* IMP: R-61914-48074 */
+ }else{
+ assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
+ v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
+ if( v>=MAX_ROWID ){
+ pC->useRandomRowid = 1;
+ }else{
+ v++; /* IMP: R-29538-34987 */
+ }
+ }
+ }
+
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+ if( pOp->p3 ){
+ /* Assert that P3 is a valid memory cell. */
+ assert( pOp->p3>0 );
+ if( p->pFrame ){
+ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
+ /* Assert that P3 is a valid memory cell. */
+ assert( pOp->p3<=pFrame->nMem );
+ pMem = &pFrame->aMem[pOp->p3];
+ }else{
+ /* Assert that P3 is a valid memory cell. */
+ assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
+ pMem = &aMem[pOp->p3];
+ memAboutToChange(p, pMem);
+ }
+ assert( memIsValid(pMem) );
+
+ REGISTER_TRACE(pOp->p3, pMem);
+ sqlite3VdbeMemIntegerify(pMem);
+ assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
+ if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
+ rc = SQLITE_FULL; /* IMP: R-17817-00630 */
+ goto abort_due_to_error;
+ }
+ if( v<pMem->u.i+1 ){
+ v = pMem->u.i + 1;
+ }
+ pMem->u.i = v;
+ }
+#endif
+ if( pC->useRandomRowid ){
+ /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
+ ** largest possible integer (9223372036854775807) then the database
+ ** engine starts picking positive candidate ROWIDs at random until
+ ** it finds one that is not previously used. */
+ assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
+ ** an AUTOINCREMENT table. */
+ cnt = 0;
+ do{
+ sqlite3_randomness(sizeof(v), &v);
+ v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
+ }while( ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v,
+ 0, &res))==SQLITE_OK)
+ && (res==0)
+ && (++cnt<100));
+ if( rc ) goto abort_due_to_error;
+ if( res==0 ){
+ rc = SQLITE_FULL; /* IMP: R-38219-53002 */
+ goto abort_due_to_error;
+ }
+ assert( v>0 ); /* EV: R-40812-03570 */
+ }
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ }
+ pOut->u.i = v;
+ break;
+}
+
+/* Opcode: Insert P1 P2 P3 P4 P5
+** Synopsis: intkey=r[P3] data=r[P2]
+**
+** Write an entry into the table of cursor P1. A new entry is
+** created if it doesn't already exist or the data for an existing
+** entry is overwritten. The data is the value MEM_Blob stored in register
+** number P2. The key is stored in register P3. The key must
+** be a MEM_Int.
+**
+** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
+** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
+** then rowid is stored for subsequent return by the
+** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
+**
+** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
+** run faster by avoiding an unnecessary seek on cursor P1. However,
+** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
+** seeks on the cursor or if the most recent seek used a key equal to P3.
+**
+** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
+** UPDATE operation. Otherwise (if the flag is clear) then this opcode
+** is part of an INSERT operation. The difference is only important to
+** the update hook.
+**
+** Parameter P4 may point to a Table structure, or may be NULL. If it is
+** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
+** following a successful insert.
+**
+** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
+** allocated, then ownership of P2 is transferred to the pseudo-cursor
+** and register P2 becomes ephemeral. If the cursor is changed, the
+** value of register P2 will then change. Make sure this does not
+** cause any problems.)
+**
+** This instruction only works on tables. The equivalent instruction
+** for indices is OP_IdxInsert.
+*/
+case OP_Insert: {
+ Mem *pData; /* MEM cell holding data for the record to be inserted */
+ Mem *pKey; /* MEM cell holding key for the record */
+ VdbeCursor *pC; /* Cursor to table into which insert is written */
+ int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
+ const char *zDb; /* database name - used by the update hook */
+ Table *pTab; /* Table structure - used by update and pre-update hooks */
+ BtreePayload x; /* Payload to be inserted */
+
+ pData = &aMem[pOp->p2];
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( memIsValid(pData) );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->deferredMoveto==0 );
+ assert( pC->uc.pCursor!=0 );
+ assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
+ assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
+ REGISTER_TRACE(pOp->p2, pData);
+ sqlite3VdbeIncrWriteCounter(p, pC);
+
+ pKey = &aMem[pOp->p3];
+ assert( pKey->flags & MEM_Int );
+ assert( memIsValid(pKey) );
+ REGISTER_TRACE(pOp->p3, pKey);
+ x.nKey = pKey->u.i;
+
+ if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
+ assert( pC->iDb>=0 );
+ zDb = db->aDb[pC->iDb].zDbSName;
+ pTab = pOp->p4.pTab;
+ assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
+ }else{
+ pTab = 0;
+ zDb = 0;
+ }
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ /* Invoke the pre-update hook, if any */
+ if( pTab ){
+ if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
+ sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1);
+ }
+ if( db->xUpdateCallback==0 || pTab->aCol==0 ){
+ /* Prevent post-update hook from running in cases when it should not */
+ pTab = 0;
+ }
+ }
+ if( pOp->p5 & OPFLAG_ISNOOP ) break;
+#endif
+
+ assert( (pOp->p5 & OPFLAG_LASTROWID)==0 || (pOp->p5 & OPFLAG_NCHANGE)!=0 );
+ if( pOp->p5 & OPFLAG_NCHANGE ){
+ p->nChange++;
+ if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
+ }
+ assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 );
+ x.pData = pData->z;
+ x.nData = pData->n;
+ seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
+ if( pData->flags & MEM_Zero ){
+ x.nZero = pData->u.nZero;
+ }else{
+ x.nZero = 0;
+ }
+ x.pKey = 0;
+ assert( BTREE_PREFORMAT==OPFLAG_PREFORMAT );
+ rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
+ (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
+ seekResult
+ );
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ colCacheCtr++;
+
+ /* Invoke the update-hook if required. */
+ if( rc ) goto abort_due_to_error;
+ if( pTab ){
+ assert( db->xUpdateCallback!=0 );
+ assert( pTab->aCol!=0 );
+ db->xUpdateCallback(db->pUpdateArg,
+ (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
+ zDb, pTab->zName, x.nKey);
+ }
+ break;
+}
+
+/* Opcode: RowCell P1 P2 P3 * *
+**
+** P1 and P2 are both open cursors. Both must be opened on the same type
+** of table - intkey or index. This opcode is used as part of copying
+** the current row from P2 into P1. If the cursors are opened on intkey
+** tables, register P3 contains the rowid to use with the new record in
+** P1. If they are opened on index tables, P3 is not used.
+**
+** This opcode must be followed by either an Insert or InsertIdx opcode
+** with the OPFLAG_PREFORMAT flag set to complete the insert operation.
+*/
+case OP_RowCell: {
+ VdbeCursor *pDest; /* Cursor to write to */
+ VdbeCursor *pSrc; /* Cursor to read from */
+ i64 iKey; /* Rowid value to insert with */
+ assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert );
+ assert( pOp[1].opcode==OP_Insert || pOp->p3==0 );
+ assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 );
+ assert( pOp[1].p5 & OPFLAG_PREFORMAT );
+ pDest = p->apCsr[pOp->p1];
+ pSrc = p->apCsr[pOp->p2];
+ iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0;
+ rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ break;
+};
+
+/* Opcode: Delete P1 P2 P3 P4 P5
+**
+** Delete the record at which the P1 cursor is currently pointing.
+**
+** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
+** the cursor will be left pointing at either the next or the previous
+** record in the table. If it is left pointing at the next record, then
+** the next Next instruction will be a no-op. As a result, in this case
+** it is ok to delete a record from within a Next loop. If
+** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
+** left in an undefined state.
+**
+** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
+** delete is one of several associated with deleting a table row and
+** all its associated index entries. Exactly one of those deletes is
+** the "primary" delete. The others are all on OPFLAG_FORDELETE
+** cursors or else are marked with the AUXDELETE flag.
+**
+** If the OPFLAG_NCHANGE (0x01) flag of P2 (NB: P2 not P5) is set, then
+** the row change count is incremented (otherwise not).
+**
+** If the OPFLAG_ISNOOP (0x40) flag of P2 (not P5!) is set, then the
+** pre-update-hook for deletes is run, but the btree is otherwise unchanged.
+** This happens when the OP_Delete is to be shortly followed by an OP_Insert
+** with the same key, causing the btree entry to be overwritten.
+**
+** P1 must not be pseudo-table. It has to be a real table with
+** multiple rows.
+**
+** If P4 is not NULL then it points to a Table object. In this case either
+** the update or pre-update hook, or both, may be invoked. The P1 cursor must
+** have been positioned using OP_NotFound prior to invoking this opcode in
+** this case. Specifically, if one is configured, the pre-update hook is
+** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
+** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
+**
+** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
+** of the memory cell that contains the value that the rowid of the row will
+** be set to by the update.
+*/
+case OP_Delete: {
+ VdbeCursor *pC;
+ const char *zDb;
+ Table *pTab;
+ int opflags;
+
+ opflags = pOp->p2;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->uc.pCursor!=0 );
+ assert( pC->deferredMoveto==0 );
+ sqlite3VdbeIncrWriteCounter(p, pC);
+
+#ifdef SQLITE_DEBUG
+ if( pOp->p4type==P4_TABLE
+ && HasRowid(pOp->p4.pTab)
+ && pOp->p5==0
+ && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor)
+ ){
+ /* If p5 is zero, the seek operation that positioned the cursor prior to
+ ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
+ ** the row that is being deleted */
+ i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
+ assert( CORRUPT_DB || pC->movetoTarget==iKey );
+ }
+#endif
+
+ /* If the update-hook or pre-update-hook will be invoked, set zDb to
+ ** the name of the db to pass as to it. Also set local pTab to a copy
+ ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
+ ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
+ ** VdbeCursor.movetoTarget to the current rowid. */
+ if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
+ assert( pC->iDb>=0 );
+ assert( pOp->p4.pTab!=0 );
+ zDb = db->aDb[pC->iDb].zDbSName;
+ pTab = pOp->p4.pTab;
+ if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
+ pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
+ }
+ }else{
+ zDb = 0;
+ pTab = 0;
+ }
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ /* Invoke the pre-update-hook if required. */
+ assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab );
+ if( db->xPreUpdateCallback && pTab ){
+ assert( !(opflags & OPFLAG_ISUPDATE)
+ || HasRowid(pTab)==0
+ || (aMem[pOp->p3].flags & MEM_Int)
+ );
+ sqlite3VdbePreUpdateHook(p, pC,
+ (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
+ zDb, pTab, pC->movetoTarget,
+ pOp->p3, -1
+ );
+ }
+ if( opflags & OPFLAG_ISNOOP ) break;
+#endif
+
+ /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
+ assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
+ assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
+ assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
+
+#ifdef SQLITE_DEBUG
+ if( p->pFrame==0 ){
+ if( pC->isEphemeral==0
+ && (pOp->p5 & OPFLAG_AUXDELETE)==0
+ && (pC->wrFlag & OPFLAG_FORDELETE)==0
+ ){
+ nExtraDelete++;
+ }
+ if( pOp->p2 & OPFLAG_NCHANGE ){
+ nExtraDelete--;
+ }
+ }
+#endif
+
+ rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
+ pC->cacheStatus = CACHE_STALE;
+ colCacheCtr++;
+ pC->seekResult = 0;
+ if( rc ) goto abort_due_to_error;
+
+ /* Invoke the update-hook if required. */
+ if( opflags & OPFLAG_NCHANGE ){
+ p->nChange++;
+ if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){
+ db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
+ pC->movetoTarget);
+ assert( pC->iDb>=0 );
+ }
+ }
+
+ break;
+}
+/* Opcode: ResetCount * * * * *
+**
+** The value of the change counter is copied to the database handle
+** change counter (returned by subsequent calls to sqlite3_changes()).
+** Then the VMs internal change counter resets to 0.
+** This is used by trigger programs.
+*/
+case OP_ResetCount: {
+ sqlite3VdbeSetChanges(db, p->nChange);
+ p->nChange = 0;
+ break;
+}
+
+/* Opcode: SorterCompare P1 P2 P3 P4
+** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
+**
+** P1 is a sorter cursor. This instruction compares a prefix of the
+** record blob in register P3 against a prefix of the entry that
+** the sorter cursor currently points to. Only the first P4 fields
+** of r[P3] and the sorter record are compared.
+**
+** If either P3 or the sorter contains a NULL in one of their significant
+** fields (not counting the P4 fields at the end which are ignored) then
+** the comparison is assumed to be equal.
+**
+** Fall through to next instruction if the two records compare equal to
+** each other. Jump to P2 if they are different.
+*/
+case OP_SorterCompare: {
+ VdbeCursor *pC;
+ int res;
+ int nKeyCol;
+
+ pC = p->apCsr[pOp->p1];
+ assert( isSorter(pC) );
+ assert( pOp->p4type==P4_INT32 );
+ pIn3 = &aMem[pOp->p3];
+ nKeyCol = pOp->p4.i;
+ res = 0;
+ rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
+ VdbeBranchTaken(res!=0,2);
+ if( rc ) goto abort_due_to_error;
+ if( res ) goto jump_to_p2;
+ break;
+};
+
+/* Opcode: SorterData P1 P2 P3 * *
+** Synopsis: r[P2]=data
+**
+** Write into register P2 the current sorter data for sorter cursor P1.
+** Then clear the column header cache on cursor P3.
+**
+** This opcode is normally used to move a record out of the sorter and into
+** a register that is the source for a pseudo-table cursor created using
+** OpenPseudo. That pseudo-table cursor is the one that is identified by
+** parameter P3. Clearing the P3 column cache as part of this opcode saves
+** us from having to issue a separate NullRow instruction to clear that cache.
+*/
+case OP_SorterData: { /* ncycle */
+ VdbeCursor *pC;
+
+ pOut = &aMem[pOp->p2];
+ pC = p->apCsr[pOp->p1];
+ assert( isSorter(pC) );
+ rc = sqlite3VdbeSorterRowkey(pC, pOut);
+ assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ if( rc ) goto abort_due_to_error;
+ p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
+ break;
+}
+
+/* Opcode: RowData P1 P2 P3 * *
+** Synopsis: r[P2]=data
+**
+** Write into register P2 the complete row content for the row at
+** which cursor P1 is currently pointing.
+** There is no interpretation of the data.
+** It is just copied onto the P2 register exactly as
+** it is found in the database file.
+**
+** If cursor P1 is an index, then the content is the key of the row.
+** If cursor P2 is a table, then the content extracted is the data.
+**
+** If the P1 cursor must be pointing to a valid row (not a NULL row)
+** of a real table, not a pseudo-table.
+**
+** If P3!=0 then this opcode is allowed to make an ephemeral pointer
+** into the database page. That means that the content of the output
+** register will be invalidated as soon as the cursor moves - including
+** moves caused by other cursors that "save" the current cursors
+** position in order that they can write to the same table. If P3==0
+** then a copy of the data is made into memory. P3!=0 is faster, but
+** P3==0 is safer.
+**
+** If P3!=0 then the content of the P2 register is unsuitable for use
+** in OP_Result and any OP_Result will invalidate the P2 register content.
+** The P2 register content is invalidated by opcodes like OP_Function or
+** by any use of another cursor pointing to the same table.
+*/
+case OP_RowData: {
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ u32 n;
+
+ pOut = out2Prerelease(p, pOp);
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( isSorter(pC)==0 );
+ assert( pC->nullRow==0 );
+ assert( pC->uc.pCursor!=0 );
+ pCrsr = pC->uc.pCursor;
+
+ /* The OP_RowData opcodes always follow OP_NotExists or
+ ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
+ ** that might invalidate the cursor.
+ ** If this where not the case, on of the following assert()s
+ ** would fail. Should this ever change (because of changes in the code
+ ** generator) then the fix would be to insert a call to
+ ** sqlite3VdbeCursorMoveto().
+ */
+ assert( pC->deferredMoveto==0 );
+ assert( sqlite3BtreeCursorIsValid(pCrsr) );
+
+ n = sqlite3BtreePayloadSize(pCrsr);
+ if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ testcase( n==0 );
+ rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut);
+ if( rc ) goto abort_due_to_error;
+ if( !pOp->p3 ) Deephemeralize(pOut);
+ UPDATE_MAX_BLOBSIZE(pOut);
+ REGISTER_TRACE(pOp->p2, pOut);
+ break;
+}
+
+/* Opcode: Rowid P1 P2 * * *
+** Synopsis: r[P2]=PX rowid of P1
+**
+** Store in register P2 an integer which is the key of the table entry that
+** P1 is currently point to.
+**
+** P1 can be either an ordinary table or a virtual table. There used to
+** be a separate OP_VRowid opcode for use with virtual tables, but this
+** one opcode now works for both table types.
+*/
+case OP_Rowid: { /* out2, ncycle */
+ VdbeCursor *pC;
+ i64 v;
+ sqlite3_vtab *pVtab;
+ const sqlite3_module *pModule;
+
+ pOut = out2Prerelease(p, pOp);
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
+ if( pC->nullRow ){
+ pOut->flags = MEM_Null;
+ break;
+ }else if( pC->deferredMoveto ){
+ v = pC->movetoTarget;
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ }else if( pC->eCurType==CURTYPE_VTAB ){
+ assert( pC->uc.pVCur!=0 );
+ pVtab = pC->uc.pVCur->pVtab;
+ pModule = pVtab->pModule;
+ assert( pModule->xRowid );
+ rc = pModule->xRowid(pC->uc.pVCur, &v);
+ sqlite3VtabImportErrmsg(p, pVtab);
+ if( rc ) goto abort_due_to_error;
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+ }else{
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->uc.pCursor!=0 );
+ rc = sqlite3VdbeCursorRestore(pC);
+ if( rc ) goto abort_due_to_error;
+ if( pC->nullRow ){
+ pOut->flags = MEM_Null;
+ break;
+ }
+ v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
+ }
+ pOut->u.i = v;
+ break;
+}
+
+/* Opcode: NullRow P1 * * * *
+**
+** Move the cursor P1 to a null row. Any OP_Column operations
+** that occur while the cursor is on the null row will always
+** write a NULL.
+**
+** If cursor P1 is not previously opened, open it now to a special
+** pseudo-cursor that always returns NULL for every column.
+*/
+case OP_NullRow: {
+ VdbeCursor *pC;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ if( pC==0 ){
+ /* If the cursor is not already open, create a special kind of
+ ** pseudo-cursor that always gives null rows. */
+ pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO);
+ if( pC==0 ) goto no_mem;
+ pC->seekResult = 0;
+ pC->isTable = 1;
+ pC->noReuse = 1;
+ pC->uc.pCursor = sqlite3BtreeFakeValidCursor();
+ }
+ pC->nullRow = 1;
+ pC->cacheStatus = CACHE_STALE;
+ if( pC->eCurType==CURTYPE_BTREE ){
+ assert( pC->uc.pCursor!=0 );
+ sqlite3BtreeClearCursor(pC->uc.pCursor);
+ }
+#ifdef SQLITE_DEBUG
+ if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
+#endif
+ break;
+}
+
+/* Opcode: SeekEnd P1 * * * *
+**
+** Position cursor P1 at the end of the btree for the purpose of
+** appending a new entry onto the btree.
+**
+** It is assumed that the cursor is used only for appending and so
+** if the cursor is valid, then the cursor must already be pointing
+** at the end of the btree and so no changes are made to
+** the cursor.
+*/
+/* Opcode: Last P1 P2 * * *
+**
+** The next use of the Rowid or Column or Prev instruction for P1
+** will refer to the last entry in the database table or index.
+** If the table or index is empty and P2>0, then jump immediately to P2.
+** If P2 is 0 or if the table or index is not empty, fall through
+** to the following instruction.
+**
+** This opcode leaves the cursor configured to move in reverse order,
+** from the end toward the beginning. In other words, the cursor is
+** configured to use Prev, not Next.
+*/
+case OP_SeekEnd: /* ncycle */
+case OP_Last: { /* jump, ncycle */
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int res;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ pCrsr = pC->uc.pCursor;
+ res = 0;
+ assert( pCrsr!=0 );
+#ifdef SQLITE_DEBUG
+ pC->seekOp = pOp->opcode;
+#endif
+ if( pOp->opcode==OP_SeekEnd ){
+ assert( pOp->p2==0 );
+ pC->seekResult = -1;
+ if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
+ break;
+ }
+ }
+ rc = sqlite3BtreeLast(pCrsr, &res);
+ pC->nullRow = (u8)res;
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ if( rc ) goto abort_due_to_error;
+ if( pOp->p2>0 ){
+ VdbeBranchTaken(res!=0,2);
+ if( res ) goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: IfSmaller P1 P2 P3 * *
+**
+** Estimate the number of rows in the table P1. Jump to P2 if that
+** estimate is less than approximately 2**(0.1*P3).
+*/
+case OP_IfSmaller: { /* jump */
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int res;
+ i64 sz;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ pCrsr = pC->uc.pCursor;
+ assert( pCrsr );
+ rc = sqlite3BtreeFirst(pCrsr, &res);
+ if( rc ) goto abort_due_to_error;
+ if( res==0 ){
+ sz = sqlite3BtreeRowCountEst(pCrsr);
+ if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
+ }
+ VdbeBranchTaken(res!=0,2);
+ if( res ) goto jump_to_p2;
+ break;
+}
+
+
+/* Opcode: SorterSort P1 P2 * * *
+**
+** After all records have been inserted into the Sorter object
+** identified by P1, invoke this opcode to actually do the sorting.
+** Jump to P2 if there are no records to be sorted.
+**
+** This opcode is an alias for OP_Sort and OP_Rewind that is used
+** for Sorter objects.
+*/
+/* Opcode: Sort P1 P2 * * *
+**
+** This opcode does exactly the same thing as OP_Rewind except that
+** it increments an undocumented global variable used for testing.
+**
+** Sorting is accomplished by writing records into a sorting index,
+** then rewinding that index and playing it back from beginning to
+** end. We use the OP_Sort opcode instead of OP_Rewind to do the
+** rewinding so that the global variable will be incremented and
+** regression tests can determine whether or not the optimizer is
+** correctly optimizing out sorts.
+*/
+case OP_SorterSort: /* jump ncycle */
+case OP_Sort: { /* jump ncycle */
+#ifdef SQLITE_TEST
+ sqlite3_sort_count++;
+ sqlite3_search_count--;
+#endif
+ p->aCounter[SQLITE_STMTSTATUS_SORT]++;
+ /* Fall through into OP_Rewind */
+ /* no break */ deliberate_fall_through
+}
+/* Opcode: Rewind P1 P2 * * *
+**
+** The next use of the Rowid or Column or Next instruction for P1
+** will refer to the first entry in the database table or index.
+** If the table or index is empty, jump immediately to P2.
+** If the table or index is not empty, fall through to the following
+** instruction.
+**
+** If P2 is zero, that is an assertion that the P1 table is never
+** empty and hence the jump will never be taken.
+**
+** This opcode leaves the cursor configured to move in forward order,
+** from the beginning toward the end. In other words, the cursor is
+** configured to use Next, not Prev.
+*/
+case OP_Rewind: { /* jump, ncycle */
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int res;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p5==0 );
+ assert( pOp->p2>=0 && pOp->p2<p->nOp );
+
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
+ res = 1;
+#ifdef SQLITE_DEBUG
+ pC->seekOp = OP_Rewind;
+#endif
+ if( isSorter(pC) ){
+ rc = sqlite3VdbeSorterRewind(pC, &res);
+ }else{
+ assert( pC->eCurType==CURTYPE_BTREE );
+ pCrsr = pC->uc.pCursor;
+ assert( pCrsr );
+ rc = sqlite3BtreeFirst(pCrsr, &res);
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ }
+ if( rc ) goto abort_due_to_error;
+ pC->nullRow = (u8)res;
+ if( pOp->p2>0 ){
+ VdbeBranchTaken(res!=0,2);
+ if( res ) goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: Next P1 P2 P3 * P5
+**
+** Advance cursor P1 so that it points to the next key/data pair in its
+** table or index. If there are no more key/value pairs then fall through
+** to the following instruction. But if the cursor advance was successful,
+** jump immediately to P2.
+**
+** The Next opcode is only valid following an SeekGT, SeekGE, or
+** OP_Rewind opcode used to position the cursor. Next is not allowed
+** to follow SeekLT, SeekLE, or OP_Last.
+**
+** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
+** been opened prior to this opcode or the program will segfault.
+**
+** The P3 value is a hint to the btree implementation. If P3==1, that
+** means P1 is an SQL index and that this instruction could have been
+** omitted if that index had been unique. P3 is usually 0. P3 is
+** always either 0 or 1.
+**
+** If P5 is positive and the jump is taken, then event counter
+** number P5-1 in the prepared statement is incremented.
+**
+** See also: Prev
+*/
+/* Opcode: Prev P1 P2 P3 * P5
+**
+** Back up cursor P1 so that it points to the previous key/data pair in its
+** table or index. If there is no previous key/value pairs then fall through
+** to the following instruction. But if the cursor backup was successful,
+** jump immediately to P2.
+**
+**
+** The Prev opcode is only valid following an SeekLT, SeekLE, or
+** OP_Last opcode used to position the cursor. Prev is not allowed
+** to follow SeekGT, SeekGE, or OP_Rewind.
+**
+** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
+** not open then the behavior is undefined.
+**
+** The P3 value is a hint to the btree implementation. If P3==1, that
+** means P1 is an SQL index and that this instruction could have been
+** omitted if that index had been unique. P3 is usually 0. P3 is
+** always either 0 or 1.
+**
+** If P5 is positive and the jump is taken, then event counter
+** number P5-1 in the prepared statement is incremented.
+*/
+/* Opcode: SorterNext P1 P2 * * P5
+**
+** This opcode works just like OP_Next except that P1 must be a
+** sorter object for which the OP_SorterSort opcode has been
+** invoked. This opcode advances the cursor to the next sorted
+** record, or jumps to P2 if there are no more sorted records.
+*/
+case OP_SorterNext: { /* jump */
+ VdbeCursor *pC;
+
+ pC = p->apCsr[pOp->p1];
+ assert( isSorter(pC) );
+ rc = sqlite3VdbeSorterNext(db, pC);
+ goto next_tail;
+
+case OP_Prev: /* jump, ncycle */
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p5==0
+ || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
+ || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->deferredMoveto==0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
+ || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope
+ || pC->seekOp==OP_NullRow);
+ rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3);
+ goto next_tail;
+
+case OP_Next: /* jump, ncycle */
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p5==0
+ || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
+ || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->deferredMoveto==0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
+ || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
+ || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
+ || pC->seekOp==OP_IfNoHope);
+ rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3);
+
+next_tail:
+ pC->cacheStatus = CACHE_STALE;
+ VdbeBranchTaken(rc==SQLITE_OK,2);
+ if( rc==SQLITE_OK ){
+ pC->nullRow = 0;
+ p->aCounter[pOp->p5]++;
+#ifdef SQLITE_TEST
+ sqlite3_search_count++;
+#endif
+ goto jump_to_p2_and_check_for_interrupt;
+ }
+ if( rc!=SQLITE_DONE ) goto abort_due_to_error;
+ rc = SQLITE_OK;
+ pC->nullRow = 1;
+ goto check_for_interrupt;
+}
+
+/* Opcode: IdxInsert P1 P2 P3 P4 P5
+** Synopsis: key=r[P2]
+**
+** Register P2 holds an SQL index key made using the
+** MakeRecord instructions. This opcode writes that key
+** into the index P1. Data for the entry is nil.
+**
+** If P4 is not zero, then it is the number of values in the unpacked
+** key of reg(P2). In that case, P3 is the index of the first register
+** for the unpacked key. The availability of the unpacked key can sometimes
+** be an optimization.
+**
+** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
+** that this insert is likely to be an append.
+**
+** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
+** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
+** then the change counter is unchanged.
+**
+** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
+** run faster by avoiding an unnecessary seek on cursor P1. However,
+** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
+** seeks on the cursor or if the most recent seek used a key equivalent
+** to P2.
+**
+** This instruction only works for indices. The equivalent instruction
+** for tables is OP_Insert.
+*/
+case OP_IdxInsert: { /* in2 */
+ VdbeCursor *pC;
+ BtreePayload x;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ sqlite3VdbeIncrWriteCounter(p, pC);
+ assert( pC!=0 );
+ assert( !isSorter(pC) );
+ pIn2 = &aMem[pOp->p2];
+ assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) );
+ if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->isTable==0 );
+ rc = ExpandBlob(pIn2);
+ if( rc ) goto abort_due_to_error;
+ x.nKey = pIn2->n;
+ x.pKey = pIn2->z;
+ x.aMem = aMem + pOp->p3;
+ x.nMem = (u16)pOp->p4.i;
+ rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
+ (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
+ ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
+ );
+ assert( pC->deferredMoveto==0 );
+ pC->cacheStatus = CACHE_STALE;
+ if( rc) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: SorterInsert P1 P2 * * *
+** Synopsis: key=r[P2]
+**
+** Register P2 holds an SQL index key made using the
+** MakeRecord instructions. This opcode writes that key
+** into the sorter P1. Data for the entry is nil.
+*/
+case OP_SorterInsert: { /* in2 */
+ VdbeCursor *pC;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ sqlite3VdbeIncrWriteCounter(p, pC);
+ assert( pC!=0 );
+ assert( isSorter(pC) );
+ pIn2 = &aMem[pOp->p2];
+ assert( pIn2->flags & MEM_Blob );
+ assert( pC->isTable==0 );
+ rc = ExpandBlob(pIn2);
+ if( rc ) goto abort_due_to_error;
+ rc = sqlite3VdbeSorterWrite(pC, pIn2);
+ if( rc) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: IdxDelete P1 P2 P3 * P5
+** Synopsis: key=r[P2@P3]
+**
+** The content of P3 registers starting at register P2 form
+** an unpacked index key. This opcode removes that entry from the
+** index opened by cursor P1.
+**
+** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
+** if no matching index entry is found. This happens when running
+** an UPDATE or DELETE statement and the index entry to be updated
+** or deleted is not found. For some uses of IdxDelete
+** (example: the EXCEPT operator) it does not matter that no matching
+** entry is found. For those cases, P5 is zero. Also, do not raise
+** this (self-correcting and non-critical) error if in writable_schema mode.
+*/
+case OP_IdxDelete: {
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int res;
+ UnpackedRecord r;
+
+ assert( pOp->p3>0 );
+ assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ sqlite3VdbeIncrWriteCounter(p, pC);
+ pCrsr = pC->uc.pCursor;
+ assert( pCrsr!=0 );
+ r.pKeyInfo = pC->pKeyInfo;
+ r.nField = (u16)pOp->p3;
+ r.default_rc = 0;
+ r.aMem = &aMem[pOp->p2];
+ rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res);
+ if( rc ) goto abort_due_to_error;
+ if( res==0 ){
+ rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
+ if( rc ) goto abort_due_to_error;
+ }else if( pOp->p5 && !sqlite3WritableSchema(db) ){
+ rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption");
+ goto abort_due_to_error;
+ }
+ assert( pC->deferredMoveto==0 );
+ pC->cacheStatus = CACHE_STALE;
+ pC->seekResult = 0;
+ break;
+}
+
+/* Opcode: DeferredSeek P1 * P3 P4 *
+** Synopsis: Move P3 to P1.rowid if needed
+**
+** P1 is an open index cursor and P3 is a cursor on the corresponding
+** table. This opcode does a deferred seek of the P3 table cursor
+** to the row that corresponds to the current row of P1.
+**
+** This is a deferred seek. Nothing actually happens until
+** the cursor is used to read a record. That way, if no reads
+** occur, no unnecessary I/O happens.
+**
+** P4 may be an array of integers (type P4_INTARRAY) containing
+** one entry for each column in the P3 table. If array entry a(i)
+** is non-zero, then reading column a(i)-1 from cursor P3 is
+** equivalent to performing the deferred seek and then reading column i
+** from P1. This information is stored in P3 and used to redirect
+** reads against P3 over to P1, thus possibly avoiding the need to
+** seek and read cursor P3.
+*/
+/* Opcode: IdxRowid P1 P2 * * *
+** Synopsis: r[P2]=rowid
+**
+** Write into register P2 an integer which is the last entry in the record at
+** the end of the index key pointed to by cursor P1. This integer should be
+** the rowid of the table entry to which this index entry points.
+**
+** See also: Rowid, MakeRecord.
+*/
+case OP_DeferredSeek: /* ncycle */
+case OP_IdxRowid: { /* out2, ncycle */
+ VdbeCursor *pC; /* The P1 index cursor */
+ VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */
+ i64 rowid; /* Rowid that P1 current points to */
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) );
+ assert( pC->uc.pCursor!=0 );
+ assert( pC->isTable==0 || IsNullCursor(pC) );
+ assert( pC->deferredMoveto==0 );
+ assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
+
+ /* The IdxRowid and Seek opcodes are combined because of the commonality
+ ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
+ rc = sqlite3VdbeCursorRestore(pC);
+
+ /* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed
+ ** since it was last positioned and an error (e.g. OOM or an IO error)
+ ** occurs while trying to reposition it. */
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+
+ if( !pC->nullRow ){
+ rowid = 0; /* Not needed. Only used to silence a warning. */
+ rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ if( pOp->opcode==OP_DeferredSeek ){
+ assert( pOp->p3>=0 && pOp->p3<p->nCursor );
+ pTabCur = p->apCsr[pOp->p3];
+ assert( pTabCur!=0 );
+ assert( pTabCur->eCurType==CURTYPE_BTREE );
+ assert( pTabCur->uc.pCursor!=0 );
+ assert( pTabCur->isTable );
+ pTabCur->nullRow = 0;
+ pTabCur->movetoTarget = rowid;
+ pTabCur->deferredMoveto = 1;
+ pTabCur->cacheStatus = CACHE_STALE;
+ assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
+ assert( !pTabCur->isEphemeral );
+ pTabCur->ub.aAltMap = pOp->p4.ai;
+ assert( !pC->isEphemeral );
+ pTabCur->pAltCursor = pC;
+ }else{
+ pOut = out2Prerelease(p, pOp);
+ pOut->u.i = rowid;
+ }
+ }else{
+ assert( pOp->opcode==OP_IdxRowid );
+ sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
+ }
+ break;
+}
+
+/* Opcode: FinishSeek P1 * * * *
+**
+** If cursor P1 was previously moved via OP_DeferredSeek, complete that
+** seek operation now, without further delay. If the cursor seek has
+** already occurred, this instruction is a no-op.
+*/
+case OP_FinishSeek: { /* ncycle */
+ VdbeCursor *pC; /* The P1 index cursor */
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ if( pC->deferredMoveto ){
+ rc = sqlite3VdbeFinishMoveto(pC);
+ if( rc ) goto abort_due_to_error;
+ }
+ break;
+}
+
+/* Opcode: IdxGE P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** The P4 register values beginning with P3 form an unpacked index
+** key that omits the PRIMARY KEY. Compare this key value against the index
+** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
+** fields at the end.
+**
+** If the P1 index entry is greater than or equal to the key value
+** then jump to P2. Otherwise fall through to the next instruction.
+*/
+/* Opcode: IdxGT P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** The P4 register values beginning with P3 form an unpacked index
+** key that omits the PRIMARY KEY. Compare this key value against the index
+** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
+** fields at the end.
+**
+** If the P1 index entry is greater than the key value
+** then jump to P2. Otherwise fall through to the next instruction.
+*/
+/* Opcode: IdxLT P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** The P4 register values beginning with P3 form an unpacked index
+** key that omits the PRIMARY KEY or ROWID. Compare this key value against
+** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
+** ROWID on the P1 index.
+**
+** If the P1 index entry is less than the key value then jump to P2.
+** Otherwise fall through to the next instruction.
+*/
+/* Opcode: IdxLE P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** The P4 register values beginning with P3 form an unpacked index
+** key that omits the PRIMARY KEY or ROWID. Compare this key value against
+** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
+** ROWID on the P1 index.
+**
+** If the P1 index entry is less than or equal to the key value then jump
+** to P2. Otherwise fall through to the next instruction.
+*/
+case OP_IdxLE: /* jump, ncycle */
+case OP_IdxGT: /* jump, ncycle */
+case OP_IdxLT: /* jump, ncycle */
+case OP_IdxGE: { /* jump, ncycle */
+ VdbeCursor *pC;
+ int res;
+ UnpackedRecord r;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->isOrdered );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->uc.pCursor!=0);
+ assert( pC->deferredMoveto==0 );
+ assert( pOp->p4type==P4_INT32 );
+ r.pKeyInfo = pC->pKeyInfo;
+ r.nField = (u16)pOp->p4.i;
+ if( pOp->opcode<OP_IdxLT ){
+ assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
+ r.default_rc = -1;
+ }else{
+ assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
+ r.default_rc = 0;
+ }
+ r.aMem = &aMem[pOp->p3];
+#ifdef SQLITE_DEBUG
+ {
+ int i;
+ for(i=0; i<r.nField; i++){
+ assert( memIsValid(&r.aMem[i]) );
+ REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
+ }
+ }
+#endif
+
+ /* Inlined version of sqlite3VdbeIdxKeyCompare() */
+ {
+ i64 nCellKey = 0;
+ BtCursor *pCur;
+ Mem m;
+
+ assert( pC->eCurType==CURTYPE_BTREE );
+ pCur = pC->uc.pCursor;
+ assert( sqlite3BtreeCursorIsValid(pCur) );
+ nCellKey = sqlite3BtreePayloadSize(pCur);
+ /* nCellKey will always be between 0 and 0xffffffff because of the way
+ ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
+ if( nCellKey<=0 || nCellKey>0x7fffffff ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto abort_due_to_error;
+ }
+ sqlite3VdbeMemInit(&m, db, 0);
+ rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
+ if( rc ) goto abort_due_to_error;
+ res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0);
+ sqlite3VdbeMemReleaseMalloc(&m);
+ }
+ /* End of inlined sqlite3VdbeIdxKeyCompare() */
+
+ assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
+ if( (pOp->opcode&1)==(OP_IdxLT&1) ){
+ assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
+ res = -res;
+ }else{
+ assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
+ res++;
+ }
+ VdbeBranchTaken(res>0,2);
+ assert( rc==SQLITE_OK );
+ if( res>0 ) goto jump_to_p2;
+ break;
+}
+
+/* Opcode: Destroy P1 P2 P3 * *
+**
+** Delete an entire database table or index whose root page in the database
+** file is given by P1.
+**
+** The table being destroyed is in the main database file if P3==0. If
+** P3==1 then the table to be destroyed is in the auxiliary database file
+** that is used to store tables create using CREATE TEMPORARY TABLE.
+**
+** If AUTOVACUUM is enabled then it is possible that another root page
+** might be moved into the newly deleted root page in order to keep all
+** root pages contiguous at the beginning of the database. The former
+** value of the root page that moved - its value before the move occurred -
+** is stored in register P2. If no page movement was required (because the
+** table being dropped was already the last one in the database) then a
+** zero is stored in register P2. If AUTOVACUUM is disabled then a zero
+** is stored in register P2.
+**
+** This opcode throws an error if there are any active reader VMs when
+** it is invoked. This is done to avoid the difficulty associated with
+** updating existing cursors when a root page is moved in an AUTOVACUUM
+** database. This error is thrown even if the database is not an AUTOVACUUM
+** db in order to avoid introducing an incompatibility between autovacuum
+** and non-autovacuum modes.
+**
+** See also: Clear
+*/
+case OP_Destroy: { /* out2 */
+ int iMoved;
+ int iDb;
+
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ assert( p->readOnly==0 );
+ assert( pOp->p1>1 );
+ pOut = out2Prerelease(p, pOp);
+ pOut->flags = MEM_Null;
+ if( db->nVdbeRead > db->nVDestroy+1 ){
+ rc = SQLITE_LOCKED;
+ p->errorAction = OE_Abort;
+ goto abort_due_to_error;
+ }else{
+ iDb = pOp->p3;
+ assert( DbMaskTest(p->btreeMask, iDb) );
+ iMoved = 0; /* Not needed. Only to silence a warning. */
+ rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
+ pOut->flags = MEM_Int;
+ pOut->u.i = iMoved;
+ if( rc ) goto abort_due_to_error;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( iMoved!=0 ){
+ sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
+ /* All OP_Destroy operations occur on the same btree */
+ assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
+ resetSchemaOnFault = iDb+1;
+ }
+#endif
+ }
+ break;
+}
+
+/* Opcode: Clear P1 P2 P3
+**
+** Delete all contents of the database table or index whose root page
+** in the database file is given by P1. But, unlike Destroy, do not
+** remove the table or index from the database file.
+**
+** The table being cleared is in the main database file if P2==0. If
+** P2==1 then the table to be cleared is in the auxiliary database file
+** that is used to store tables create using CREATE TEMPORARY TABLE.
+**
+** If the P3 value is non-zero, then the row change count is incremented
+** by the number of rows in the table being cleared. If P3 is greater
+** than zero, then the value stored in register P3 is also incremented
+** by the number of rows in the table being cleared.
+**
+** See also: Destroy
+*/
+case OP_Clear: {
+ i64 nChange;
+
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ nChange = 0;
+ assert( p->readOnly==0 );
+ assert( DbMaskTest(p->btreeMask, pOp->p2) );
+ rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange);
+ if( pOp->p3 ){
+ p->nChange += nChange;
+ if( pOp->p3>0 ){
+ assert( memIsValid(&aMem[pOp->p3]) );
+ memAboutToChange(p, &aMem[pOp->p3]);
+ aMem[pOp->p3].u.i += nChange;
+ }
+ }
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: ResetSorter P1 * * * *
+**
+** Delete all contents from the ephemeral table or sorter
+** that is open on cursor P1.
+**
+** This opcode only works for cursors used for sorting and
+** opened with OP_OpenEphemeral or OP_SorterOpen.
+*/
+case OP_ResetSorter: {
+ VdbeCursor *pC;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ if( isSorter(pC) ){
+ sqlite3VdbeSorterReset(db, pC->uc.pSorter);
+ }else{
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->isEphemeral );
+ rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
+ if( rc ) goto abort_due_to_error;
+ }
+ break;
+}
+
+/* Opcode: CreateBtree P1 P2 P3 * *
+** Synopsis: r[P2]=root iDb=P1 flags=P3
+**
+** Allocate a new b-tree in the main database file if P1==0 or in the
+** TEMP database file if P1==1 or in an attached database if
+** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
+** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
+** The root page number of the new b-tree is stored in register P2.
+*/
+case OP_CreateBtree: { /* out2 */
+ Pgno pgno;
+ Db *pDb;
+
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ pOut = out2Prerelease(p, pOp);
+ pgno = 0;
+ assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( DbMaskTest(p->btreeMask, pOp->p1) );
+ assert( p->readOnly==0 );
+ pDb = &db->aDb[pOp->p1];
+ assert( pDb->pBt!=0 );
+ rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
+ if( rc ) goto abort_due_to_error;
+ pOut->u.i = pgno;
+ break;
+}
+
+/* Opcode: SqlExec * * * P4 *
+**
+** Run the SQL statement or statements specified in the P4 string.
+** Disable Auth and Trace callbacks while those statements are running if
+** P1 is true.
+*/
+case OP_SqlExec: {
+ char *zErr;
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ sqlite3_xauth xAuth;
+#endif
+ u8 mTrace;
+
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ db->nSqlExec++;
+ zErr = 0;
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ xAuth = db->xAuth;
+#endif
+ mTrace = db->mTrace;
+ if( pOp->p1 ){
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ db->xAuth = 0;
+#endif
+ db->mTrace = 0;
+ }
+ rc = sqlite3_exec(db, pOp->p4.z, 0, 0, &zErr);
+ db->nSqlExec--;
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ db->xAuth = xAuth;
+#endif
+ db->mTrace = mTrace;
+ if( zErr || rc ){
+ sqlite3VdbeError(p, "%s", zErr);
+ sqlite3_free(zErr);
+ if( rc==SQLITE_NOMEM ) goto no_mem;
+ goto abort_due_to_error;
+ }
+ break;
+}
+
+/* Opcode: ParseSchema P1 * * P4 *
+**
+** Read and parse all entries from the schema table of database P1
+** that match the WHERE clause P4. If P4 is a NULL pointer, then the
+** entire schema for P1 is reparsed.
+**
+** This opcode invokes the parser to create a new virtual machine,
+** then runs the new virtual machine. It is thus a re-entrant opcode.
+*/
+case OP_ParseSchema: {
+ int iDb;
+ const char *zSchema;
+ char *zSql;
+ InitData initData;
+
+ /* Any prepared statement that invokes this opcode will hold mutexes
+ ** on every btree. This is a prerequisite for invoking
+ ** sqlite3InitCallback().
+ */
+#ifdef SQLITE_DEBUG
+ for(iDb=0; iDb<db->nDb; iDb++){
+ assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
+ }
+#endif
+
+ iDb = pOp->p1;
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( DbHasProperty(db, iDb, DB_SchemaLoaded)
+ || db->mallocFailed
+ || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) );
+
+#ifndef SQLITE_OMIT_ALTERTABLE
+ if( pOp->p4.z==0 ){
+ sqlite3SchemaClear(db->aDb[iDb].pSchema);
+ db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
+ rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5);
+ db->mDbFlags |= DBFLAG_SchemaChange;
+ p->expired = 0;
+ }else
+#endif
+ {
+ zSchema = LEGACY_SCHEMA_TABLE;
+ initData.db = db;
+ initData.iDb = iDb;
+ initData.pzErrMsg = &p->zErrMsg;
+ initData.mInitFlags = 0;
+ initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt);
+ zSql = sqlite3MPrintf(db,
+ "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
+ db->aDb[iDb].zDbSName, zSchema, pOp->p4.z);
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else{
+ assert( db->init.busy==0 );
+ db->init.busy = 1;
+ initData.rc = SQLITE_OK;
+ initData.nInitRow = 0;
+ assert( !db->mallocFailed );
+ rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
+ if( rc==SQLITE_OK ) rc = initData.rc;
+ if( rc==SQLITE_OK && initData.nInitRow==0 ){
+ /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
+ ** at least one SQL statement. Any less than that indicates that
+ ** the sqlite_schema table is corrupt. */
+ rc = SQLITE_CORRUPT_BKPT;
+ }
+ sqlite3DbFreeNN(db, zSql);
+ db->init.busy = 0;
+ }
+ }
+ if( rc ){
+ sqlite3ResetAllSchemasOfConnection(db);
+ if( rc==SQLITE_NOMEM ){
+ goto no_mem;
+ }
+ goto abort_due_to_error;
+ }
+ break;
+}
+
+#if !defined(SQLITE_OMIT_ANALYZE)
+/* Opcode: LoadAnalysis P1 * * * *
+**
+** Read the sqlite_stat1 table for database P1 and load the content
+** of that table into the internal index hash table. This will cause
+** the analysis to be used when preparing all subsequent queries.
+*/
+case OP_LoadAnalysis: {
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ rc = sqlite3AnalysisLoad(db, pOp->p1);
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+#endif /* !defined(SQLITE_OMIT_ANALYZE) */
+
+/* Opcode: DropTable P1 * * P4 *
+**
+** Remove the internal (in-memory) data structures that describe
+** the table named P4 in database P1. This is called after a table
+** is dropped from disk (using the Destroy opcode) in order to keep
+** the internal representation of the
+** schema consistent with what is on disk.
+*/
+case OP_DropTable: {
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
+ break;
+}
+
+/* Opcode: DropIndex P1 * * P4 *
+**
+** Remove the internal (in-memory) data structures that describe
+** the index named P4 in database P1. This is called after an index
+** is dropped from disk (using the Destroy opcode)
+** in order to keep the internal representation of the
+** schema consistent with what is on disk.
+*/
+case OP_DropIndex: {
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
+ break;
+}
+
+/* Opcode: DropTrigger P1 * * P4 *
+**
+** Remove the internal (in-memory) data structures that describe
+** the trigger named P4 in database P1. This is called after a trigger
+** is dropped from disk (using the Destroy opcode) in order to keep
+** the internal representation of the
+** schema consistent with what is on disk.
+*/
+case OP_DropTrigger: {
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
+ break;
+}
+
+
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK
+/* Opcode: IntegrityCk P1 P2 P3 P4 P5
+**
+** Do an analysis of the currently open database. Store in
+** register P1 the text of an error message describing any problems.
+** If no problems are found, store a NULL in register P1.
+**
+** The register P3 contains one less than the maximum number of allowed errors.
+** At most reg(P3) errors will be reported.
+** In other words, the analysis stops as soon as reg(P1) errors are
+** seen. Reg(P1) is updated with the number of errors remaining.
+**
+** The root page numbers of all tables in the database are integers
+** stored in P4_INTARRAY argument.
+**
+** If P5 is not zero, the check is done on the auxiliary database
+** file, not the main database file.
+**
+** This opcode is used to implement the integrity_check pragma.
+*/
+case OP_IntegrityCk: {
+ int nRoot; /* Number of tables to check. (Number of root pages.) */
+ Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */
+ int nErr; /* Number of errors reported */
+ char *z; /* Text of the error report */
+ Mem *pnErr; /* Register keeping track of errors remaining */
+
+ assert( p->bIsReader );
+ nRoot = pOp->p2;
+ aRoot = pOp->p4.ai;
+ assert( nRoot>0 );
+ assert( aRoot[0]==(Pgno)nRoot );
+ assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
+ pnErr = &aMem[pOp->p3];
+ assert( (pnErr->flags & MEM_Int)!=0 );
+ assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
+ pIn1 = &aMem[pOp->p1];
+ assert( pOp->p5<db->nDb );
+ assert( DbMaskTest(p->btreeMask, pOp->p5) );
+ rc = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
+ (int)pnErr->u.i+1, &nErr, &z);
+ sqlite3VdbeMemSetNull(pIn1);
+ if( nErr==0 ){
+ assert( z==0 );
+ }else if( rc ){
+ sqlite3_free(z);
+ goto abort_due_to_error;
+ }else{
+ pnErr->u.i -= nErr-1;
+ sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
+ }
+ UPDATE_MAX_BLOBSIZE(pIn1);
+ sqlite3VdbeChangeEncoding(pIn1, encoding);
+ goto check_for_interrupt;
+}
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
+
+/* Opcode: RowSetAdd P1 P2 * * *
+** Synopsis: rowset(P1)=r[P2]
+**
+** Insert the integer value held by register P2 into a RowSet object
+** held in register P1.
+**
+** An assertion fails if P2 is not an integer.
+*/
+case OP_RowSetAdd: { /* in1, in2 */
+ pIn1 = &aMem[pOp->p1];
+ pIn2 = &aMem[pOp->p2];
+ assert( (pIn2->flags & MEM_Int)!=0 );
+ if( (pIn1->flags & MEM_Blob)==0 ){
+ if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
+ }
+ assert( sqlite3VdbeMemIsRowSet(pIn1) );
+ sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
+ break;
+}
+
+/* Opcode: RowSetRead P1 P2 P3 * *
+** Synopsis: r[P3]=rowset(P1)
+**
+** Extract the smallest value from the RowSet object in P1
+** and put that value into register P3.
+** Or, if RowSet object P1 is initially empty, leave P3
+** unchanged and jump to instruction P2.
+*/
+case OP_RowSetRead: { /* jump, in1, out3 */
+ i64 val;
+
+ pIn1 = &aMem[pOp->p1];
+ assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
+ if( (pIn1->flags & MEM_Blob)==0
+ || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
+ ){
+ /* The boolean index is empty */
+ sqlite3VdbeMemSetNull(pIn1);
+ VdbeBranchTaken(1,2);
+ goto jump_to_p2_and_check_for_interrupt;
+ }else{
+ /* A value was pulled from the index */
+ VdbeBranchTaken(0,2);
+ sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
+ }
+ goto check_for_interrupt;
+}
+
+/* Opcode: RowSetTest P1 P2 P3 P4
+** Synopsis: if r[P3] in rowset(P1) goto P2
+**
+** Register P3 is assumed to hold a 64-bit integer value. If register P1
+** contains a RowSet object and that RowSet object contains
+** the value held in P3, jump to register P2. Otherwise, insert the
+** integer in P3 into the RowSet and continue on to the
+** next opcode.
+**
+** The RowSet object is optimized for the case where sets of integers
+** are inserted in distinct phases, which each set contains no duplicates.
+** Each set is identified by a unique P4 value. The first set
+** must have P4==0, the final set must have P4==-1, and for all other sets
+** must have P4>0.
+**
+** This allows optimizations: (a) when P4==0 there is no need to test
+** the RowSet object for P3, as it is guaranteed not to contain it,
+** (b) when P4==-1 there is no need to insert the value, as it will
+** never be tested for, and (c) when a value that is part of set X is
+** inserted, there is no need to search to see if the same value was
+** previously inserted as part of set X (only if it was previously
+** inserted as part of some other set).
+*/
+case OP_RowSetTest: { /* jump, in1, in3 */
+ int iSet;
+ int exists;
+
+ pIn1 = &aMem[pOp->p1];
+ pIn3 = &aMem[pOp->p3];
+ iSet = pOp->p4.i;
+ assert( pIn3->flags&MEM_Int );
+
+ /* If there is anything other than a rowset object in memory cell P1,
+ ** delete it now and initialize P1 with an empty rowset
+ */
+ if( (pIn1->flags & MEM_Blob)==0 ){
+ if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
+ }
+ assert( sqlite3VdbeMemIsRowSet(pIn1) );
+ assert( pOp->p4type==P4_INT32 );
+ assert( iSet==-1 || iSet>=0 );
+ if( iSet ){
+ exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
+ VdbeBranchTaken(exists!=0,2);
+ if( exists ) goto jump_to_p2;
+ }
+ if( iSet>=0 ){
+ sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
+ }
+ break;
+}
+
+
+#ifndef SQLITE_OMIT_TRIGGER
+
+/* Opcode: Program P1 P2 P3 P4 P5
+**
+** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
+**
+** P1 contains the address of the memory cell that contains the first memory
+** cell in an array of values used as arguments to the sub-program. P2
+** contains the address to jump to if the sub-program throws an IGNORE
+** exception using the RAISE() function. Register P3 contains the address
+** of a memory cell in this (the parent) VM that is used to allocate the
+** memory required by the sub-vdbe at runtime.
+**
+** P4 is a pointer to the VM containing the trigger program.
+**
+** If P5 is non-zero, then recursive program invocation is enabled.
+*/
+case OP_Program: { /* jump */
+ int nMem; /* Number of memory registers for sub-program */
+ int nByte; /* Bytes of runtime space required for sub-program */
+ Mem *pRt; /* Register to allocate runtime space */
+ Mem *pMem; /* Used to iterate through memory cells */
+ Mem *pEnd; /* Last memory cell in new array */
+ VdbeFrame *pFrame; /* New vdbe frame to execute in */
+ SubProgram *pProgram; /* Sub-program to execute */
+ void *t; /* Token identifying trigger */
+
+ pProgram = pOp->p4.pProgram;
+ pRt = &aMem[pOp->p3];
+ assert( pProgram->nOp>0 );
+
+ /* If the p5 flag is clear, then recursive invocation of triggers is
+ ** disabled for backwards compatibility (p5 is set if this sub-program
+ ** is really a trigger, not a foreign key action, and the flag set
+ ** and cleared by the "PRAGMA recursive_triggers" command is clear).
+ **
+ ** It is recursive invocation of triggers, at the SQL level, that is
+ ** disabled. In some cases a single trigger may generate more than one
+ ** SubProgram (if the trigger may be executed with more than one different
+ ** ON CONFLICT algorithm). SubProgram structures associated with a
+ ** single trigger all have the same value for the SubProgram.token
+ ** variable. */
+ if( pOp->p5 ){
+ t = pProgram->token;
+ for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
+ if( pFrame ) break;
+ }
+
+ if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
+ rc = SQLITE_ERROR;
+ sqlite3VdbeError(p, "too many levels of trigger recursion");
+ goto abort_due_to_error;
+ }
+
+ /* Register pRt is used to store the memory required to save the state
+ ** of the current program, and the memory required at runtime to execute
+ ** the trigger program. If this trigger has been fired before, then pRt
+ ** is already allocated. Otherwise, it must be initialized. */
+ if( (pRt->flags&MEM_Blob)==0 ){
+ /* SubProgram.nMem is set to the number of memory cells used by the
+ ** program stored in SubProgram.aOp. As well as these, one memory
+ ** cell is required for each cursor used by the program. Set local
+ ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
+ */
+ nMem = pProgram->nMem + pProgram->nCsr;
+ assert( nMem>0 );
+ if( pProgram->nCsr==0 ) nMem++;
+ nByte = ROUND8(sizeof(VdbeFrame))
+ + nMem * sizeof(Mem)
+ + pProgram->nCsr * sizeof(VdbeCursor*)
+ + (pProgram->nOp + 7)/8;
+ pFrame = sqlite3DbMallocZero(db, nByte);
+ if( !pFrame ){
+ goto no_mem;
+ }
+ sqlite3VdbeMemRelease(pRt);
+ pRt->flags = MEM_Blob|MEM_Dyn;
+ pRt->z = (char*)pFrame;
+ pRt->n = nByte;
+ pRt->xDel = sqlite3VdbeFrameMemDel;
+
+ pFrame->v = p;
+ pFrame->nChildMem = nMem;
+ pFrame->nChildCsr = pProgram->nCsr;
+ pFrame->pc = (int)(pOp - aOp);
+ pFrame->aMem = p->aMem;
+ pFrame->nMem = p->nMem;
+ pFrame->apCsr = p->apCsr;
+ pFrame->nCursor = p->nCursor;
+ pFrame->aOp = p->aOp;
+ pFrame->nOp = p->nOp;
+ pFrame->token = pProgram->token;
+#ifdef SQLITE_DEBUG
+ pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
+#endif
+
+ pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
+ for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
+ pMem->flags = MEM_Undefined;
+ pMem->db = db;
+ }
+ }else{
+ pFrame = (VdbeFrame*)pRt->z;
+ assert( pRt->xDel==sqlite3VdbeFrameMemDel );
+ assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
+ || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
+ assert( pProgram->nCsr==pFrame->nChildCsr );
+ assert( (int)(pOp - aOp)==pFrame->pc );
+ }
+
+ p->nFrame++;
+ pFrame->pParent = p->pFrame;
+ pFrame->lastRowid = db->lastRowid;
+ pFrame->nChange = p->nChange;
+ pFrame->nDbChange = p->db->nChange;
+ assert( pFrame->pAuxData==0 );
+ pFrame->pAuxData = p->pAuxData;
+ p->pAuxData = 0;
+ p->nChange = 0;
+ p->pFrame = pFrame;
+ p->aMem = aMem = VdbeFrameMem(pFrame);
+ p->nMem = pFrame->nChildMem;
+ p->nCursor = (u16)pFrame->nChildCsr;
+ p->apCsr = (VdbeCursor **)&aMem[p->nMem];
+ pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
+ memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
+ p->aOp = aOp = pProgram->aOp;
+ p->nOp = pProgram->nOp;
+#ifdef SQLITE_DEBUG
+ /* Verify that second and subsequent executions of the same trigger do not
+ ** try to reuse register values from the first use. */
+ {
+ int i;
+ for(i=0; i<p->nMem; i++){
+ aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */
+ MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */
+ }
+ }
+#endif
+ pOp = &aOp[-1];
+ goto check_for_interrupt;
+}
+
+/* Opcode: Param P1 P2 * * *
+**
+** This opcode is only ever present in sub-programs called via the
+** OP_Program instruction. Copy a value currently stored in a memory
+** cell of the calling (parent) frame to cell P2 in the current frames
+** address space. This is used by trigger programs to access the new.*
+** and old.* values.
+**
+** The address of the cell in the parent frame is determined by adding
+** the value of the P1 argument to the value of the P1 argument to the
+** calling OP_Program instruction.
+*/
+case OP_Param: { /* out2 */
+ VdbeFrame *pFrame;
+ Mem *pIn;
+ pOut = out2Prerelease(p, pOp);
+ pFrame = p->pFrame;
+ pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
+ sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
+ break;
+}
+
+#endif /* #ifndef SQLITE_OMIT_TRIGGER */
+
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+/* Opcode: FkCounter P1 P2 * * *
+** Synopsis: fkctr[P1]+=P2
+**
+** Increment a "constraint counter" by P2 (P2 may be negative or positive).
+** If P1 is non-zero, the database constraint counter is incremented
+** (deferred foreign key constraints). Otherwise, if P1 is zero, the
+** statement counter is incremented (immediate foreign key constraints).
+*/
+case OP_FkCounter: {
+ if( db->flags & SQLITE_DeferFKs ){
+ db->nDeferredImmCons += pOp->p2;
+ }else if( pOp->p1 ){
+ db->nDeferredCons += pOp->p2;
+ }else{
+ p->nFkConstraint += pOp->p2;
+ }
+ break;
+}
+
+/* Opcode: FkIfZero P1 P2 * * *
+** Synopsis: if fkctr[P1]==0 goto P2
+**
+** This opcode tests if a foreign key constraint-counter is currently zero.
+** If so, jump to instruction P2. Otherwise, fall through to the next
+** instruction.
+**
+** If P1 is non-zero, then the jump is taken if the database constraint-counter
+** is zero (the one that counts deferred constraint violations). If P1 is
+** zero, the jump is taken if the statement constraint-counter is zero
+** (immediate foreign key constraint violations).
+*/
+case OP_FkIfZero: { /* jump */
+ if( pOp->p1 ){
+ VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
+ if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
+ }else{
+ VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
+ if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
+ }
+ break;
+}
+#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
+
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+/* Opcode: MemMax P1 P2 * * *
+** Synopsis: r[P1]=max(r[P1],r[P2])
+**
+** P1 is a register in the root frame of this VM (the root frame is
+** different from the current frame if this instruction is being executed
+** within a sub-program). Set the value of register P1 to the maximum of
+** its current value and the value in register P2.
+**
+** This instruction throws an error if the memory cell is not initially
+** an integer.
+*/
+case OP_MemMax: { /* in2 */
+ VdbeFrame *pFrame;
+ if( p->pFrame ){
+ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
+ pIn1 = &pFrame->aMem[pOp->p1];
+ }else{
+ pIn1 = &aMem[pOp->p1];
+ }
+ assert( memIsValid(pIn1) );
+ sqlite3VdbeMemIntegerify(pIn1);
+ pIn2 = &aMem[pOp->p2];
+ sqlite3VdbeMemIntegerify(pIn2);
+ if( pIn1->u.i<pIn2->u.i){
+ pIn1->u.i = pIn2->u.i;
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_AUTOINCREMENT */
+
+/* Opcode: IfPos P1 P2 P3 * *
+** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
+**
+** Register P1 must contain an integer.
+** If the value of register P1 is 1 or greater, subtract P3 from the
+** value in P1 and jump to P2.
+**
+** If the initial value of register P1 is less than 1, then the
+** value is unchanged and control passes through to the next instruction.
+*/
+case OP_IfPos: { /* jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ assert( pIn1->flags&MEM_Int );
+ VdbeBranchTaken( pIn1->u.i>0, 2);
+ if( pIn1->u.i>0 ){
+ pIn1->u.i -= pOp->p3;
+ goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: OffsetLimit P1 P2 P3 * *
+** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
+**
+** This opcode performs a commonly used computation associated with
+** LIMIT and OFFSET processing. r[P1] holds the limit counter. r[P3]
+** holds the offset counter. The opcode computes the combined value
+** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
+** value computed is the total number of rows that will need to be
+** visited in order to complete the query.
+**
+** If r[P3] is zero or negative, that means there is no OFFSET
+** and r[P2] is set to be the value of the LIMIT, r[P1].
+**
+** if r[P1] is zero or negative, that means there is no LIMIT
+** and r[P2] is set to -1.
+**
+** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
+*/
+case OP_OffsetLimit: { /* in1, out2, in3 */
+ i64 x;
+ pIn1 = &aMem[pOp->p1];
+ pIn3 = &aMem[pOp->p3];
+ pOut = out2Prerelease(p, pOp);
+ assert( pIn1->flags & MEM_Int );
+ assert( pIn3->flags & MEM_Int );
+ x = pIn1->u.i;
+ if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
+ /* If the LIMIT is less than or equal to zero, loop forever. This
+ ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then
+ ** also loop forever. This is undocumented. In fact, one could argue
+ ** that the loop should terminate. But assuming 1 billion iterations
+ ** per second (far exceeding the capabilities of any current hardware)
+ ** it would take nearly 300 years to actually reach the limit. So
+ ** looping forever is a reasonable approximation. */
+ pOut->u.i = -1;
+ }else{
+ pOut->u.i = x;
+ }
+ break;
+}
+
+/* Opcode: IfNotZero P1 P2 * * *
+** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
+**
+** Register P1 must contain an integer. If the content of register P1 is
+** initially greater than zero, then decrement the value in register P1.
+** If it is non-zero (negative or positive) and then also jump to P2.
+** If register P1 is initially zero, leave it unchanged and fall through.
+*/
+case OP_IfNotZero: { /* jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ assert( pIn1->flags&MEM_Int );
+ VdbeBranchTaken(pIn1->u.i<0, 2);
+ if( pIn1->u.i ){
+ if( pIn1->u.i>0 ) pIn1->u.i--;
+ goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: DecrJumpZero P1 P2 * * *
+** Synopsis: if (--r[P1])==0 goto P2
+**
+** Register P1 must hold an integer. Decrement the value in P1
+** and jump to P2 if the new value is exactly zero.
+*/
+case OP_DecrJumpZero: { /* jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ assert( pIn1->flags&MEM_Int );
+ if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
+ VdbeBranchTaken(pIn1->u.i==0, 2);
+ if( pIn1->u.i==0 ) goto jump_to_p2;
+ break;
+}
+
+
+/* Opcode: AggStep * P2 P3 P4 P5
+** Synopsis: accum=r[P3] step(r[P2@P5])
+**
+** Execute the xStep function for an aggregate.
+** The function has P5 arguments. P4 is a pointer to the
+** FuncDef structure that specifies the function. Register P3 is the
+** accumulator.
+**
+** The P5 arguments are taken from register P2 and its
+** successors.
+*/
+/* Opcode: AggInverse * P2 P3 P4 P5
+** Synopsis: accum=r[P3] inverse(r[P2@P5])
+**
+** Execute the xInverse function for an aggregate.
+** The function has P5 arguments. P4 is a pointer to the
+** FuncDef structure that specifies the function. Register P3 is the
+** accumulator.
+**
+** The P5 arguments are taken from register P2 and its
+** successors.
+*/
+/* Opcode: AggStep1 P1 P2 P3 P4 P5
+** Synopsis: accum=r[P3] step(r[P2@P5])
+**
+** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
+** aggregate. The function has P5 arguments. P4 is a pointer to the
+** FuncDef structure that specifies the function. Register P3 is the
+** accumulator.
+**
+** The P5 arguments are taken from register P2 and its
+** successors.
+**
+** This opcode is initially coded as OP_AggStep0. On first evaluation,
+** the FuncDef stored in P4 is converted into an sqlite3_context and
+** the opcode is changed. In this way, the initialization of the
+** sqlite3_context only happens once, instead of on each call to the
+** step function.
+*/
+case OP_AggInverse:
+case OP_AggStep: {
+ int n;
+ sqlite3_context *pCtx;
+
+ assert( pOp->p4type==P4_FUNCDEF );
+ n = pOp->p5;
+ assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
+ assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
+ assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
+ pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
+ (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
+ if( pCtx==0 ) goto no_mem;
+ pCtx->pMem = 0;
+ pCtx->pOut = (Mem*)&(pCtx->argv[n]);
+ sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
+ pCtx->pFunc = pOp->p4.pFunc;
+ pCtx->iOp = (int)(pOp - aOp);
+ pCtx->pVdbe = p;
+ pCtx->skipFlag = 0;
+ pCtx->isError = 0;
+ pCtx->enc = encoding;
+ pCtx->argc = n;
+ pOp->p4type = P4_FUNCCTX;
+ pOp->p4.pCtx = pCtx;
+
+ /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
+ assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
+
+ pOp->opcode = OP_AggStep1;
+ /* Fall through into OP_AggStep */
+ /* no break */ deliberate_fall_through
+}
+case OP_AggStep1: {
+ int i;
+ sqlite3_context *pCtx;
+ Mem *pMem;
+
+ assert( pOp->p4type==P4_FUNCCTX );
+ pCtx = pOp->p4.pCtx;
+ pMem = &aMem[pOp->p3];
+
+#ifdef SQLITE_DEBUG
+ if( pOp->p1 ){
+ /* This is an OP_AggInverse call. Verify that xStep has always
+ ** been called at least once prior to any xInverse call. */
+ assert( pMem->uTemp==0x1122e0e3 );
+ }else{
+ /* This is an OP_AggStep call. Mark it as such. */
+ pMem->uTemp = 0x1122e0e3;
+ }
+#endif
+
+ /* If this function is inside of a trigger, the register array in aMem[]
+ ** might change from one evaluation to the next. The next block of code
+ ** checks to see if the register array has changed, and if so it
+ ** reinitializes the relevant parts of the sqlite3_context object */
+ if( pCtx->pMem != pMem ){
+ pCtx->pMem = pMem;
+ for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
+ }
+
+#ifdef SQLITE_DEBUG
+ for(i=0; i<pCtx->argc; i++){
+ assert( memIsValid(pCtx->argv[i]) );
+ REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
+ }
+#endif
+
+ pMem->n++;
+ assert( pCtx->pOut->flags==MEM_Null );
+ assert( pCtx->isError==0 );
+ assert( pCtx->skipFlag==0 );
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( pOp->p1 ){
+ (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
+ }else
+#endif
+ (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
+
+ if( pCtx->isError ){
+ if( pCtx->isError>0 ){
+ sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
+ rc = pCtx->isError;
+ }
+ if( pCtx->skipFlag ){
+ assert( pOp[-1].opcode==OP_CollSeq );
+ i = pOp[-1].p1;
+ if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
+ pCtx->skipFlag = 0;
+ }
+ sqlite3VdbeMemRelease(pCtx->pOut);
+ pCtx->pOut->flags = MEM_Null;
+ pCtx->isError = 0;
+ if( rc ) goto abort_due_to_error;
+ }
+ assert( pCtx->pOut->flags==MEM_Null );
+ assert( pCtx->skipFlag==0 );
+ break;
+}
+
+/* Opcode: AggFinal P1 P2 * P4 *
+** Synopsis: accum=r[P1] N=P2
+**
+** P1 is the memory location that is the accumulator for an aggregate
+** or window function. Execute the finalizer function
+** for an aggregate and store the result in P1.
+**
+** P2 is the number of arguments that the step function takes and
+** P4 is a pointer to the FuncDef for this function. The P2
+** argument is not used by this opcode. It is only there to disambiguate
+** functions that can take varying numbers of arguments. The
+** P4 argument is only needed for the case where
+** the step function was not previously called.
+*/
+/* Opcode: AggValue * P2 P3 P4 *
+** Synopsis: r[P3]=value N=P2
+**
+** Invoke the xValue() function and store the result in register P3.
+**
+** P2 is the number of arguments that the step function takes and
+** P4 is a pointer to the FuncDef for this function. The P2
+** argument is not used by this opcode. It is only there to disambiguate
+** functions that can take varying numbers of arguments. The
+** P4 argument is only needed for the case where
+** the step function was not previously called.
+*/
+case OP_AggValue:
+case OP_AggFinal: {
+ Mem *pMem;
+ assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
+ assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
+ pMem = &aMem[pOp->p1];
+ assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( pOp->p3 ){
+ memAboutToChange(p, &aMem[pOp->p3]);
+ rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
+ pMem = &aMem[pOp->p3];
+ }else
+#endif
+ {
+ rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
+ }
+
+ if( rc ){
+ sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
+ goto abort_due_to_error;
+ }
+ sqlite3VdbeChangeEncoding(pMem, encoding);
+ UPDATE_MAX_BLOBSIZE(pMem);
+ REGISTER_TRACE((int)(pMem-aMem), pMem);
+ break;
+}
+
+#ifndef SQLITE_OMIT_WAL
+/* Opcode: Checkpoint P1 P2 P3 * *
+**
+** Checkpoint database P1. This is a no-op if P1 is not currently in
+** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
+** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
+** SQLITE_BUSY or not, respectively. Write the number of pages in the
+** WAL after the checkpoint into mem[P3+1] and the number of pages
+** in the WAL that have been checkpointed after the checkpoint
+** completes into mem[P3+2]. However on an error, mem[P3+1] and
+** mem[P3+2] are initialized to -1.
+*/
+case OP_Checkpoint: {
+ int i; /* Loop counter */
+ int aRes[3]; /* Results */
+ Mem *pMem; /* Write results here */
+
+ assert( p->readOnly==0 );
+ aRes[0] = 0;
+ aRes[1] = aRes[2] = -1;
+ assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
+ || pOp->p2==SQLITE_CHECKPOINT_FULL
+ || pOp->p2==SQLITE_CHECKPOINT_RESTART
+ || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
+ );
+ rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
+ if( rc ){
+ if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
+ rc = SQLITE_OK;
+ aRes[0] = 1;
+ }
+ for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
+ sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
+ }
+ break;
+};
+#endif
+
+#ifndef SQLITE_OMIT_PRAGMA
+/* Opcode: JournalMode P1 P2 P3 * *
+**
+** Change the journal mode of database P1 to P3. P3 must be one of the
+** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
+** modes (delete, truncate, persist, off and memory), this is a simple
+** operation. No IO is required.
+**
+** If changing into or out of WAL mode the procedure is more complicated.
+**
+** Write a string containing the final journal-mode to register P2.
+*/
+case OP_JournalMode: { /* out2 */
+ Btree *pBt; /* Btree to change journal mode of */
+ Pager *pPager; /* Pager associated with pBt */
+ int eNew; /* New journal mode */
+ int eOld; /* The old journal mode */
+#ifndef SQLITE_OMIT_WAL
+ const char *zFilename; /* Name of database file for pPager */
+#endif
+
+ pOut = out2Prerelease(p, pOp);
+ eNew = pOp->p3;
+ assert( eNew==PAGER_JOURNALMODE_DELETE
+ || eNew==PAGER_JOURNALMODE_TRUNCATE
+ || eNew==PAGER_JOURNALMODE_PERSIST
+ || eNew==PAGER_JOURNALMODE_OFF
+ || eNew==PAGER_JOURNALMODE_MEMORY
+ || eNew==PAGER_JOURNALMODE_WAL
+ || eNew==PAGER_JOURNALMODE_QUERY
+ );
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( p->readOnly==0 );
+
+ pBt = db->aDb[pOp->p1].pBt;
+ pPager = sqlite3BtreePager(pBt);
+ eOld = sqlite3PagerGetJournalMode(pPager);
+ if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
+ assert( sqlite3BtreeHoldsMutex(pBt) );
+ if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
+
+#ifndef SQLITE_OMIT_WAL
+ zFilename = sqlite3PagerFilename(pPager, 1);
+
+ /* Do not allow a transition to journal_mode=WAL for a database
+ ** in temporary storage or if the VFS does not support shared memory
+ */
+ if( eNew==PAGER_JOURNALMODE_WAL
+ && (sqlite3Strlen30(zFilename)==0 /* Temp file */
+ || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
+ ){
+ eNew = eOld;
+ }
+
+ if( (eNew!=eOld)
+ && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
+ ){
+ if( !db->autoCommit || db->nVdbeRead>1 ){
+ rc = SQLITE_ERROR;
+ sqlite3VdbeError(p,
+ "cannot change %s wal mode from within a transaction",
+ (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
+ );
+ goto abort_due_to_error;
+ }else{
+
+ if( eOld==PAGER_JOURNALMODE_WAL ){
+ /* If leaving WAL mode, close the log file. If successful, the call
+ ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
+ ** file. An EXCLUSIVE lock may still be held on the database file
+ ** after a successful return.
+ */
+ rc = sqlite3PagerCloseWal(pPager, db);
+ if( rc==SQLITE_OK ){
+ sqlite3PagerSetJournalMode(pPager, eNew);
+ }
+ }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
+ /* Cannot transition directly from MEMORY to WAL. Use mode OFF
+ ** as an intermediate */
+ sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
+ }
+
+ /* Open a transaction on the database file. Regardless of the journal
+ ** mode, this transaction always uses a rollback journal.
+ */
+ assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE );
+ if( rc==SQLITE_OK ){
+ rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
+ }
+ }
+ }
+#endif /* ifndef SQLITE_OMIT_WAL */
+
+ if( rc ) eNew = eOld;
+ eNew = sqlite3PagerSetJournalMode(pPager, eNew);
+
+ pOut->flags = MEM_Str|MEM_Static|MEM_Term;
+ pOut->z = (char *)sqlite3JournalModename(eNew);
+ pOut->n = sqlite3Strlen30(pOut->z);
+ pOut->enc = SQLITE_UTF8;
+ sqlite3VdbeChangeEncoding(pOut, encoding);
+ if( rc ) goto abort_due_to_error;
+ break;
+};
+#endif /* SQLITE_OMIT_PRAGMA */
+
+#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
+/* Opcode: Vacuum P1 P2 * * *
+**
+** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more
+** for an attached database. The "temp" database may not be vacuumed.
+**
+** If P2 is not zero, then it is a register holding a string which is
+** the file into which the result of vacuum should be written. When
+** P2 is zero, the vacuum overwrites the original database.
+*/
+case OP_Vacuum: {
+ assert( p->readOnly==0 );
+ rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
+ pOp->p2 ? &aMem[pOp->p2] : 0);
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+#endif
+
+#if !defined(SQLITE_OMIT_AUTOVACUUM)
+/* Opcode: IncrVacuum P1 P2 * * *
+**
+** Perform a single step of the incremental vacuum procedure on
+** the P1 database. If the vacuum has finished, jump to instruction
+** P2. Otherwise, fall through to the next instruction.
+*/
+case OP_IncrVacuum: { /* jump */
+ Btree *pBt;
+
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( DbMaskTest(p->btreeMask, pOp->p1) );
+ assert( p->readOnly==0 );
+ pBt = db->aDb[pOp->p1].pBt;
+ rc = sqlite3BtreeIncrVacuum(pBt);
+ VdbeBranchTaken(rc==SQLITE_DONE,2);
+ if( rc ){
+ if( rc!=SQLITE_DONE ) goto abort_due_to_error;
+ rc = SQLITE_OK;
+ goto jump_to_p2;
+ }
+ break;
+}
+#endif
+
+/* Opcode: Expire P1 P2 * * *
+**
+** Cause precompiled statements to expire. When an expired statement
+** is executed using sqlite3_step() it will either automatically
+** reprepare itself (if it was originally created using sqlite3_prepare_v2())
+** or it will fail with SQLITE_SCHEMA.
+**
+** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
+** then only the currently executing statement is expired.
+**
+** If P2 is 0, then SQL statements are expired immediately. If P2 is 1,
+** then running SQL statements are allowed to continue to run to completion.
+** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
+** that might help the statement run faster but which does not affect the
+** correctness of operation.
+*/
+case OP_Expire: {
+ assert( pOp->p2==0 || pOp->p2==1 );
+ if( !pOp->p1 ){
+ sqlite3ExpirePreparedStatements(db, pOp->p2);
+ }else{
+ p->expired = pOp->p2+1;
+ }
+ break;
+}
+
+/* Opcode: CursorLock P1 * * * *
+**
+** Lock the btree to which cursor P1 is pointing so that the btree cannot be
+** written by an other cursor.
+*/
+case OP_CursorLock: {
+ VdbeCursor *pC;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ sqlite3BtreeCursorPin(pC->uc.pCursor);
+ break;
+}
+
+/* Opcode: CursorUnlock P1 * * * *
+**
+** Unlock the btree to which cursor P1 is pointing so that it can be
+** written by other cursors.
+*/
+case OP_CursorUnlock: {
+ VdbeCursor *pC;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ sqlite3BtreeCursorUnpin(pC->uc.pCursor);
+ break;
+}
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/* Opcode: TableLock P1 P2 P3 P4 *
+** Synopsis: iDb=P1 root=P2 write=P3
+**
+** Obtain a lock on a particular table. This instruction is only used when
+** the shared-cache feature is enabled.
+**
+** P1 is the index of the database in sqlite3.aDb[] of the database
+** on which the lock is acquired. A readlock is obtained if P3==0 or
+** a write lock if P3==1.
+**
+** P2 contains the root-page of the table to lock.
+**
+** P4 contains a pointer to the name of the table being locked. This is only
+** used to generate an error message if the lock cannot be obtained.
+*/
+case OP_TableLock: {
+ u8 isWriteLock = (u8)pOp->p3;
+ if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
+ int p1 = pOp->p1;
+ assert( p1>=0 && p1<db->nDb );
+ assert( DbMaskTest(p->btreeMask, p1) );
+ assert( isWriteLock==0 || isWriteLock==1 );
+ rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
+ if( rc ){
+ if( (rc&0xFF)==SQLITE_LOCKED ){
+ const char *z = pOp->p4.z;
+ sqlite3VdbeError(p, "database table is locked: %s", z);
+ }
+ goto abort_due_to_error;
+ }
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_SHARED_CACHE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VBegin * * * P4 *
+**
+** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
+** xBegin method for that table.
+**
+** Also, whether or not P4 is set, check that this is not being called from
+** within a callback to a virtual table xSync() method. If it is, the error
+** code will be set to SQLITE_LOCKED.
+*/
+case OP_VBegin: {
+ VTable *pVTab;
+ pVTab = pOp->p4.pVtab;
+ rc = sqlite3VtabBegin(db, pVTab);
+ if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VCreate P1 P2 * * *
+**
+** P2 is a register that holds the name of a virtual table in database
+** P1. Call the xCreate method for that table.
+*/
+case OP_VCreate: {
+ Mem sMem; /* For storing the record being decoded */
+ const char *zTab; /* Name of the virtual table */
+
+ memset(&sMem, 0, sizeof(sMem));
+ sMem.db = db;
+ /* Because P2 is always a static string, it is impossible for the
+ ** sqlite3VdbeMemCopy() to fail */
+ assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
+ assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
+ rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
+ assert( rc==SQLITE_OK );
+ zTab = (const char*)sqlite3_value_text(&sMem);
+ assert( zTab || db->mallocFailed );
+ if( zTab ){
+ rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
+ }
+ sqlite3VdbeMemRelease(&sMem);
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VDestroy P1 * * P4 *
+**
+** P4 is the name of a virtual table in database P1. Call the xDestroy method
+** of that table.
+*/
+case OP_VDestroy: {
+ db->nVDestroy++;
+ rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
+ db->nVDestroy--;
+ assert( p->errorAction==OE_Abort && p->usesStmtJournal );
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VOpen P1 * * P4 *
+**
+** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
+** P1 is a cursor number. This opcode opens a cursor to the virtual
+** table and stores that cursor in P1.
+*/
+case OP_VOpen: { /* ncycle */
+ VdbeCursor *pCur;
+ sqlite3_vtab_cursor *pVCur;
+ sqlite3_vtab *pVtab;
+ const sqlite3_module *pModule;
+
+ assert( p->bIsReader );
+ pCur = 0;
+ pVCur = 0;
+ pVtab = pOp->p4.pVtab->pVtab;
+ if( pVtab==0 || NEVER(pVtab->pModule==0) ){
+ rc = SQLITE_LOCKED;
+ goto abort_due_to_error;
+ }
+ pModule = pVtab->pModule;
+ rc = pModule->xOpen(pVtab, &pVCur);
+ sqlite3VtabImportErrmsg(p, pVtab);
+ if( rc ) goto abort_due_to_error;
+
+ /* Initialize sqlite3_vtab_cursor base class */
+ pVCur->pVtab = pVtab;
+
+ /* Initialize vdbe cursor object */
+ pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB);
+ if( pCur ){
+ pCur->uc.pVCur = pVCur;
+ pVtab->nRef++;
+ }else{
+ assert( db->mallocFailed );
+ pModule->xClose(pVCur);
+ goto no_mem;
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VCheck P1 P2 P3 P4 *
+**
+** P4 is a pointer to a Table object that is a virtual table in schema P1
+** that supports the xIntegrity() method. This opcode runs the xIntegrity()
+** method for that virtual table, using P3 as the integer argument. If
+** an error is reported back, the table name is prepended to the error
+** message and that message is stored in P2. If no errors are seen,
+** register P2 is set to NULL.
+*/
+case OP_VCheck: { /* out2 */
+ Table *pTab;
+ sqlite3_vtab *pVtab;
+ const sqlite3_module *pModule;
+ char *zErr = 0;
+
+ pOut = &aMem[pOp->p2];
+ sqlite3VdbeMemSetNull(pOut); /* Innocent until proven guilty */
+ assert( pOp->p4type==P4_TABLEREF );
+ pTab = pOp->p4.pTab;
+ assert( pTab!=0 );
+ assert( pTab->nTabRef>0 );
+ assert( IsVirtual(pTab) );
+ if( pTab->u.vtab.p==0 ) break;
+ pVtab = pTab->u.vtab.p->pVtab;
+ assert( pVtab!=0 );
+ pModule = pVtab->pModule;
+ assert( pModule!=0 );
+ assert( pModule->iVersion>=4 );
+ assert( pModule->xIntegrity!=0 );
+ sqlite3VtabLock(pTab->u.vtab.p);
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ rc = pModule->xIntegrity(pVtab, db->aDb[pOp->p1].zDbSName, pTab->zName,
+ pOp->p3, &zErr);
+ sqlite3VtabUnlock(pTab->u.vtab.p);
+ if( rc ){
+ sqlite3_free(zErr);
+ goto abort_due_to_error;
+ }
+ if( zErr ){
+ sqlite3VdbeMemSetStr(pOut, zErr, -1, SQLITE_UTF8, sqlite3_free);
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VInitIn P1 P2 P3 * *
+** Synopsis: r[P2]=ValueList(P1,P3)
+**
+** Set register P2 to be a pointer to a ValueList object for cursor P1
+** with cache register P3 and output register P3+1. This ValueList object
+** can be used as the first argument to sqlite3_vtab_in_first() and
+** sqlite3_vtab_in_next() to extract all of the values stored in the P1
+** cursor. Register P3 is used to hold the values returned by
+** sqlite3_vtab_in_first() and sqlite3_vtab_in_next().
+*/
+case OP_VInitIn: { /* out2, ncycle */
+ VdbeCursor *pC; /* The cursor containing the RHS values */
+ ValueList *pRhs; /* New ValueList object to put in reg[P2] */
+
+ pC = p->apCsr[pOp->p1];
+ pRhs = sqlite3_malloc64( sizeof(*pRhs) );
+ if( pRhs==0 ) goto no_mem;
+ pRhs->pCsr = pC->uc.pCursor;
+ pRhs->pOut = &aMem[pOp->p3];
+ pOut = out2Prerelease(p, pOp);
+ pOut->flags = MEM_Null;
+ sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3VdbeValueListFree);
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VFilter P1 P2 P3 P4 *
+** Synopsis: iplan=r[P3] zplan='P4'
+**
+** P1 is a cursor opened using VOpen. P2 is an address to jump to if
+** the filtered result set is empty.
+**
+** P4 is either NULL or a string that was generated by the xBestIndex
+** method of the module. The interpretation of the P4 string is left
+** to the module implementation.
+**
+** This opcode invokes the xFilter method on the virtual table specified
+** by P1. The integer query plan parameter to xFilter is stored in register
+** P3. Register P3+1 stores the argc parameter to be passed to the
+** xFilter method. Registers P3+2..P3+1+argc are the argc
+** additional parameters which are passed to
+** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
+**
+** A jump is made to P2 if the result set after filtering would be empty.
+*/
+case OP_VFilter: { /* jump, ncycle */
+ int nArg;
+ int iQuery;
+ const sqlite3_module *pModule;
+ Mem *pQuery;
+ Mem *pArgc;
+ sqlite3_vtab_cursor *pVCur;
+ sqlite3_vtab *pVtab;
+ VdbeCursor *pCur;
+ int res;
+ int i;
+ Mem **apArg;
+
+ pQuery = &aMem[pOp->p3];
+ pArgc = &pQuery[1];
+ pCur = p->apCsr[pOp->p1];
+ assert( memIsValid(pQuery) );
+ REGISTER_TRACE(pOp->p3, pQuery);
+ assert( pCur!=0 );
+ assert( pCur->eCurType==CURTYPE_VTAB );
+ pVCur = pCur->uc.pVCur;
+ pVtab = pVCur->pVtab;
+ pModule = pVtab->pModule;
+
+ /* Grab the index number and argc parameters */
+ assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
+ nArg = (int)pArgc->u.i;
+ iQuery = (int)pQuery->u.i;
+
+ /* Invoke the xFilter method */
+ apArg = p->apArg;
+ for(i = 0; i<nArg; i++){
+ apArg[i] = &pArgc[i+1];
+ }
+ rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
+ sqlite3VtabImportErrmsg(p, pVtab);
+ if( rc ) goto abort_due_to_error;
+ res = pModule->xEof(pVCur);
+ pCur->nullRow = 0;
+ VdbeBranchTaken(res!=0,2);
+ if( res ) goto jump_to_p2;
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VColumn P1 P2 P3 * P5
+** Synopsis: r[P3]=vcolumn(P2)
+**
+** Store in register P3 the value of the P2-th column of
+** the current row of the virtual-table of cursor P1.
+**
+** If the VColumn opcode is being used to fetch the value of
+** an unchanging column during an UPDATE operation, then the P5
+** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange()
+** function to return true inside the xColumn method of the virtual
+** table implementation. The P5 column might also contain other
+** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
+** unused by OP_VColumn.
+*/
+case OP_VColumn: { /* ncycle */
+ sqlite3_vtab *pVtab;
+ const sqlite3_module *pModule;
+ Mem *pDest;
+ sqlite3_context sContext;
+ FuncDef nullFunc;
+
+ VdbeCursor *pCur = p->apCsr[pOp->p1];
+ assert( pCur!=0 );
+ assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
+ pDest = &aMem[pOp->p3];
+ memAboutToChange(p, pDest);
+ if( pCur->nullRow ){
+ sqlite3VdbeMemSetNull(pDest);
+ break;
+ }
+ assert( pCur->eCurType==CURTYPE_VTAB );
+ pVtab = pCur->uc.pVCur->pVtab;
+ pModule = pVtab->pModule;
+ assert( pModule->xColumn );
+ memset(&sContext, 0, sizeof(sContext));
+ sContext.pOut = pDest;
+ sContext.enc = encoding;
+ nullFunc.pUserData = 0;
+ nullFunc.funcFlags = SQLITE_RESULT_SUBTYPE;
+ sContext.pFunc = &nullFunc;
+ assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 );
+ if( pOp->p5 & OPFLAG_NOCHNG ){
+ sqlite3VdbeMemSetNull(pDest);
+ pDest->flags = MEM_Null|MEM_Zero;
+ pDest->u.nZero = 0;
+ }else{
+ MemSetTypeFlag(pDest, MEM_Null);
+ }
+ rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
+ sqlite3VtabImportErrmsg(p, pVtab);
+ if( sContext.isError>0 ){
+ sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
+ rc = sContext.isError;
+ }
+ sqlite3VdbeChangeEncoding(pDest, encoding);
+ REGISTER_TRACE(pOp->p3, pDest);
+ UPDATE_MAX_BLOBSIZE(pDest);
+
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VNext P1 P2 * * *
+**
+** Advance virtual table P1 to the next row in its result set and
+** jump to instruction P2. Or, if the virtual table has reached
+** the end of its result set, then fall through to the next instruction.
+*/
+case OP_VNext: { /* jump, ncycle */
+ sqlite3_vtab *pVtab;
+ const sqlite3_module *pModule;
+ int res;
+ VdbeCursor *pCur;
+
+ pCur = p->apCsr[pOp->p1];
+ assert( pCur!=0 );
+ assert( pCur->eCurType==CURTYPE_VTAB );
+ if( pCur->nullRow ){
+ break;
+ }
+ pVtab = pCur->uc.pVCur->pVtab;
+ pModule = pVtab->pModule;
+ assert( pModule->xNext );
+
+ /* Invoke the xNext() method of the module. There is no way for the
+ ** underlying implementation to return an error if one occurs during
+ ** xNext(). Instead, if an error occurs, true is returned (indicating that
+ ** data is available) and the error code returned when xColumn or
+ ** some other method is next invoked on the save virtual table cursor.
+ */
+ rc = pModule->xNext(pCur->uc.pVCur);
+ sqlite3VtabImportErrmsg(p, pVtab);
+ if( rc ) goto abort_due_to_error;
+ res = pModule->xEof(pCur->uc.pVCur);
+ VdbeBranchTaken(!res,2);
+ if( !res ){
+ /* If there is data, jump to P2 */
+ goto jump_to_p2_and_check_for_interrupt;
+ }
+ goto check_for_interrupt;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VRename P1 * * P4 *
+**
+** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
+** This opcode invokes the corresponding xRename method. The value
+** in register P1 is passed as the zName argument to the xRename method.
+*/
+case OP_VRename: {
+ sqlite3_vtab *pVtab;
+ Mem *pName;
+ int isLegacy;
+
+ isLegacy = (db->flags & SQLITE_LegacyAlter);
+ db->flags |= SQLITE_LegacyAlter;
+ pVtab = pOp->p4.pVtab->pVtab;
+ pName = &aMem[pOp->p1];
+ assert( pVtab->pModule->xRename );
+ assert( memIsValid(pName) );
+ assert( p->readOnly==0 );
+ REGISTER_TRACE(pOp->p1, pName);
+ assert( pName->flags & MEM_Str );
+ testcase( pName->enc==SQLITE_UTF8 );
+ testcase( pName->enc==SQLITE_UTF16BE );
+ testcase( pName->enc==SQLITE_UTF16LE );
+ rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
+ if( rc ) goto abort_due_to_error;
+ rc = pVtab->pModule->xRename(pVtab, pName->z);
+ if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
+ sqlite3VtabImportErrmsg(p, pVtab);
+ p->expired = 0;
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+#endif
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VUpdate P1 P2 P3 P4 P5
+** Synopsis: data=r[P3@P2]
+**
+** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
+** This opcode invokes the corresponding xUpdate method. P2 values
+** are contiguous memory cells starting at P3 to pass to the xUpdate
+** invocation. The value in register (P3+P2-1) corresponds to the
+** p2th element of the argv array passed to xUpdate.
+**
+** The xUpdate method will do a DELETE or an INSERT or both.
+** The argv[0] element (which corresponds to memory cell P3)
+** is the rowid of a row to delete. If argv[0] is NULL then no
+** deletion occurs. The argv[1] element is the rowid of the new
+** row. This can be NULL to have the virtual table select the new
+** rowid for itself. The subsequent elements in the array are
+** the values of columns in the new row.
+**
+** If P2==1 then no insert is performed. argv[0] is the rowid of
+** a row to delete.
+**
+** P1 is a boolean flag. If it is set to true and the xUpdate call
+** is successful, then the value returned by sqlite3_last_insert_rowid()
+** is set to the value of the rowid for the row just inserted.
+**
+** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
+** apply in the case of a constraint failure on an insert or update.
+*/
+case OP_VUpdate: {
+ sqlite3_vtab *pVtab;
+ const sqlite3_module *pModule;
+ int nArg;
+ int i;
+ sqlite_int64 rowid = 0;
+ Mem **apArg;
+ Mem *pX;
+
+ assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
+ || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
+ );
+ assert( p->readOnly==0 );
+ if( db->mallocFailed ) goto no_mem;
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ pVtab = pOp->p4.pVtab->pVtab;
+ if( pVtab==0 || NEVER(pVtab->pModule==0) ){
+ rc = SQLITE_LOCKED;
+ goto abort_due_to_error;
+ }
+ pModule = pVtab->pModule;
+ nArg = pOp->p2;
+ assert( pOp->p4type==P4_VTAB );
+ if( ALWAYS(pModule->xUpdate) ){
+ u8 vtabOnConflict = db->vtabOnConflict;
+ apArg = p->apArg;
+ pX = &aMem[pOp->p3];
+ for(i=0; i<nArg; i++){
+ assert( memIsValid(pX) );
+ memAboutToChange(p, pX);
+ apArg[i] = pX;
+ pX++;
+ }
+ db->vtabOnConflict = pOp->p5;
+ rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
+ db->vtabOnConflict = vtabOnConflict;
+ sqlite3VtabImportErrmsg(p, pVtab);
+ if( rc==SQLITE_OK && pOp->p1 ){
+ assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
+ db->lastRowid = rowid;
+ }
+ if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
+ if( pOp->p5==OE_Ignore ){
+ rc = SQLITE_OK;
+ }else{
+ p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
+ }
+ }else{
+ p->nChange++;
+ }
+ if( rc ) goto abort_due_to_error;
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+/* Opcode: Pagecount P1 P2 * * *
+**
+** Write the current number of pages in database P1 to memory cell P2.
+*/
+case OP_Pagecount: { /* out2 */
+ pOut = out2Prerelease(p, pOp);
+ pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
+ break;
+}
+#endif
+
+
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+/* Opcode: MaxPgcnt P1 P2 P3 * *
+**
+** Try to set the maximum page count for database P1 to the value in P3.
+** Do not let the maximum page count fall below the current page count and
+** do not change the maximum page count value if P3==0.
+**
+** Store the maximum page count after the change in register P2.
+*/
+case OP_MaxPgcnt: { /* out2 */
+ unsigned int newMax;
+ Btree *pBt;
+
+ pOut = out2Prerelease(p, pOp);
+ pBt = db->aDb[pOp->p1].pBt;
+ newMax = 0;
+ if( pOp->p3 ){
+ newMax = sqlite3BtreeLastPage(pBt);
+ if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
+ }
+ pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
+ break;
+}
+#endif
+
+/* Opcode: Function P1 P2 P3 P4 *
+** Synopsis: r[P3]=func(r[P2@NP])
+**
+** Invoke a user function (P4 is a pointer to an sqlite3_context object that
+** contains a pointer to the function to be run) with arguments taken
+** from register P2 and successors. The number of arguments is in
+** the sqlite3_context object that P4 points to.
+** The result of the function is stored
+** in register P3. Register P3 must not be one of the function inputs.
+**
+** P1 is a 32-bit bitmask indicating whether or not each argument to the
+** function was determined to be constant at compile time. If the first
+** argument was constant then bit 0 of P1 is set. This is used to determine
+** whether meta data associated with a user function argument using the
+** sqlite3_set_auxdata() API may be safely retained until the next
+** invocation of this opcode.
+**
+** See also: AggStep, AggFinal, PureFunc
+*/
+/* Opcode: PureFunc P1 P2 P3 P4 *
+** Synopsis: r[P3]=func(r[P2@NP])
+**
+** Invoke a user function (P4 is a pointer to an sqlite3_context object that
+** contains a pointer to the function to be run) with arguments taken
+** from register P2 and successors. The number of arguments is in
+** the sqlite3_context object that P4 points to.
+** The result of the function is stored
+** in register P3. Register P3 must not be one of the function inputs.
+**
+** P1 is a 32-bit bitmask indicating whether or not each argument to the
+** function was determined to be constant at compile time. If the first
+** argument was constant then bit 0 of P1 is set. This is used to determine
+** whether meta data associated with a user function argument using the
+** sqlite3_set_auxdata() API may be safely retained until the next
+** invocation of this opcode.
+**
+** This opcode works exactly like OP_Function. The only difference is in
+** its name. This opcode is used in places where the function must be
+** purely non-deterministic. Some built-in date/time functions can be
+** either deterministic of non-deterministic, depending on their arguments.
+** When those function are used in a non-deterministic way, they will check
+** to see if they were called using OP_PureFunc instead of OP_Function, and
+** if they were, they throw an error.
+**
+** See also: AggStep, AggFinal, Function
+*/
+case OP_PureFunc: /* group */
+case OP_Function: { /* group */
+ int i;
+ sqlite3_context *pCtx;
+
+ assert( pOp->p4type==P4_FUNCCTX );
+ pCtx = pOp->p4.pCtx;
+
+ /* If this function is inside of a trigger, the register array in aMem[]
+ ** might change from one evaluation to the next. The next block of code
+ ** checks to see if the register array has changed, and if so it
+ ** reinitializes the relevant parts of the sqlite3_context object */
+ pOut = &aMem[pOp->p3];
+ if( pCtx->pOut != pOut ){
+ pCtx->pVdbe = p;
+ pCtx->pOut = pOut;
+ pCtx->enc = encoding;
+ for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
+ }
+ assert( pCtx->pVdbe==p );
+
+ memAboutToChange(p, pOut);
+#ifdef SQLITE_DEBUG
+ for(i=0; i<pCtx->argc; i++){
+ assert( memIsValid(pCtx->argv[i]) );
+ REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
+ }
+#endif
+ MemSetTypeFlag(pOut, MEM_Null);
+ assert( pCtx->isError==0 );
+ (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
+
+ /* If the function returned an error, throw an exception */
+ if( pCtx->isError ){
+ if( pCtx->isError>0 ){
+ sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
+ rc = pCtx->isError;
+ }
+ sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
+ pCtx->isError = 0;
+ if( rc ) goto abort_due_to_error;
+ }
+
+ assert( (pOut->flags&MEM_Str)==0
+ || pOut->enc==encoding
+ || db->mallocFailed );
+ assert( !sqlite3VdbeMemTooBig(pOut) );
+
+ REGISTER_TRACE(pOp->p3, pOut);
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: ClrSubtype P1 * * * *
+** Synopsis: r[P1].subtype = 0
+**
+** Clear the subtype from register P1.
+*/
+case OP_ClrSubtype: { /* in1 */
+ pIn1 = &aMem[pOp->p1];
+ pIn1->flags &= ~MEM_Subtype;
+ break;
+}
+
+/* Opcode: GetSubtype P1 P2 * * *
+** Synopsis: r[P2] = r[P1].subtype
+**
+** Extract the subtype value from register P1 and write that subtype
+** into register P2. If P1 has no subtype, then P1 gets a NULL.
+*/
+case OP_GetSubtype: { /* in1 out2 */
+ pIn1 = &aMem[pOp->p1];
+ pOut = &aMem[pOp->p2];
+ if( pIn1->flags & MEM_Subtype ){
+ sqlite3VdbeMemSetInt64(pOut, pIn1->eSubtype);
+ }else{
+ sqlite3VdbeMemSetNull(pOut);
+ }
+ break;
+}
+
+/* Opcode: SetSubtype P1 P2 * * *
+** Synopsis: r[P2].subtype = r[P1]
+**
+** Set the subtype value of register P2 to the integer from register P1.
+** If P1 is NULL, clear the subtype from p2.
+*/
+case OP_SetSubtype: { /* in1 out2 */
+ pIn1 = &aMem[pOp->p1];
+ pOut = &aMem[pOp->p2];
+ if( pIn1->flags & MEM_Null ){
+ pOut->flags &= ~MEM_Subtype;
+ }else{
+ assert( pIn1->flags & MEM_Int );
+ pOut->flags |= MEM_Subtype;
+ pOut->eSubtype = (u8)(pIn1->u.i & 0xff);
+ }
+ break;
+}
+
+/* Opcode: FilterAdd P1 * P3 P4 *
+** Synopsis: filter(P1) += key(P3@P4)
+**
+** Compute a hash on the P4 registers starting with r[P3] and
+** add that hash to the bloom filter contained in r[P1].
+*/
+case OP_FilterAdd: {
+ u64 h;
+
+ assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
+ pIn1 = &aMem[pOp->p1];
+ assert( pIn1->flags & MEM_Blob );
+ assert( pIn1->n>0 );
+ h = filterHash(aMem, pOp);
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ int ii;
+ for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
+ registerTrace(ii, &aMem[ii]);
+ }
+ printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
+ }
+#endif
+ h %= (pIn1->n*8);
+ pIn1->z[h/8] |= 1<<(h&7);
+ break;
+}
+
+/* Opcode: Filter P1 P2 P3 P4 *
+** Synopsis: if key(P3@P4) not in filter(P1) goto P2
+**
+** Compute a hash on the key contained in the P4 registers starting
+** with r[P3]. Check to see if that hash is found in the
+** bloom filter hosted by register P1. If it is not present then
+** maybe jump to P2. Otherwise fall through.
+**
+** False negatives are harmless. It is always safe to fall through,
+** even if the value is in the bloom filter. A false negative causes
+** more CPU cycles to be used, but it should still yield the correct
+** answer. However, an incorrect answer may well arise from a
+** false positive - if the jump is taken when it should fall through.
+*/
+case OP_Filter: { /* jump */
+ u64 h;
+
+ assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
+ pIn1 = &aMem[pOp->p1];
+ assert( (pIn1->flags & MEM_Blob)!=0 );
+ assert( pIn1->n >= 1 );
+ h = filterHash(aMem, pOp);
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ int ii;
+ for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
+ registerTrace(ii, &aMem[ii]);
+ }
+ printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
+ }
+#endif
+ h %= (pIn1->n*8);
+ if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){
+ VdbeBranchTaken(1, 2);
+ p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++;
+ goto jump_to_p2;
+ }else{
+ p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++;
+ VdbeBranchTaken(0, 2);
+ }
+ break;
+}
+
+/* Opcode: Trace P1 P2 * P4 *
+**
+** Write P4 on the statement trace output if statement tracing is
+** enabled.
+**
+** Operand P1 must be 0x7fffffff and P2 must positive.
+*/
+/* Opcode: Init P1 P2 P3 P4 *
+** Synopsis: Start at P2
+**
+** Programs contain a single instance of this opcode as the very first
+** opcode.
+**
+** If tracing is enabled (by the sqlite3_trace()) interface, then
+** the UTF-8 string contained in P4 is emitted on the trace callback.
+** Or if P4 is blank, use the string returned by sqlite3_sql().
+**
+** If P2 is not zero, jump to instruction P2.
+**
+** Increment the value of P1 so that OP_Once opcodes will jump the
+** first time they are evaluated for this run.
+**
+** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
+** error is encountered.
+*/
+case OP_Trace:
+case OP_Init: { /* jump */
+ int i;
+#ifndef SQLITE_OMIT_TRACE
+ char *zTrace;
+#endif
+
+ /* If the P4 argument is not NULL, then it must be an SQL comment string.
+ ** The "--" string is broken up to prevent false-positives with srcck1.c.
+ **
+ ** This assert() provides evidence for:
+ ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
+ ** would have been returned by the legacy sqlite3_trace() interface by
+ ** using the X argument when X begins with "--" and invoking
+ ** sqlite3_expanded_sql(P) otherwise.
+ */
+ assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
+
+ /* OP_Init is always instruction 0 */
+ assert( pOp==p->aOp || pOp->opcode==OP_Trace );
+
+#ifndef SQLITE_OMIT_TRACE
+ if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
+ && p->minWriteFileFormat!=254 /* tag-20220401a */
+ && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
+ ){
+#ifndef SQLITE_OMIT_DEPRECATED
+ if( db->mTrace & SQLITE_TRACE_LEGACY ){
+ char *z = sqlite3VdbeExpandSql(p, zTrace);
+ db->trace.xLegacy(db->pTraceArg, z);
+ sqlite3_free(z);
+ }else
+#endif
+ if( db->nVdbeExec>1 ){
+ char *z = sqlite3MPrintf(db, "-- %s", zTrace);
+ (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
+ sqlite3DbFree(db, z);
+ }else{
+ (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
+ }
+ }
+#ifdef SQLITE_USE_FCNTL_TRACE
+ zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
+ if( zTrace ){
+ int j;
+ for(j=0; j<db->nDb; j++){
+ if( DbMaskTest(p->btreeMask, j)==0 ) continue;
+ sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
+ }
+ }
+#endif /* SQLITE_USE_FCNTL_TRACE */
+#ifdef SQLITE_DEBUG
+ if( (db->flags & SQLITE_SqlTrace)!=0
+ && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
+ ){
+ sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
+ }
+#endif /* SQLITE_DEBUG */
+#endif /* SQLITE_OMIT_TRACE */
+ assert( pOp->p2>0 );
+ if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
+ if( pOp->opcode==OP_Trace ) break;
+ for(i=1; i<p->nOp; i++){
+ if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
+ }
+ pOp->p1 = 0;
+ }
+ pOp->p1++;
+ p->aCounter[SQLITE_STMTSTATUS_RUN]++;
+ goto jump_to_p2;
+}
+
+#ifdef SQLITE_ENABLE_CURSOR_HINTS
+/* Opcode: CursorHint P1 * * P4 *
+**
+** Provide a hint to cursor P1 that it only needs to return rows that
+** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
+** to values currently held in registers. TK_COLUMN terms in the P4
+** expression refer to columns in the b-tree to which cursor P1 is pointing.
+*/
+case OP_CursorHint: {
+ VdbeCursor *pC;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p4type==P4_EXPR );
+ pC = p->apCsr[pOp->p1];
+ if( pC ){
+ assert( pC->eCurType==CURTYPE_BTREE );
+ sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
+ pOp->p4.pExpr, aMem);
+ }
+ break;
+}
+#endif /* SQLITE_ENABLE_CURSOR_HINTS */
+
+#ifdef SQLITE_DEBUG
+/* Opcode: Abortable * * * * *
+**
+** Verify that an Abort can happen. Assert if an Abort at this point
+** might cause database corruption. This opcode only appears in debugging
+** builds.
+**
+** An Abort is safe if either there have been no writes, or if there is
+** an active statement journal.
+*/
+case OP_Abortable: {
+ sqlite3VdbeAssertAbortable(p);
+ break;
+}
+#endif
+
+#ifdef SQLITE_DEBUG
+/* Opcode: ReleaseReg P1 P2 P3 * P5
+** Synopsis: release r[P1@P2] mask P3
+**
+** Release registers from service. Any content that was in the
+** the registers is unreliable after this opcode completes.
+**
+** The registers released will be the P2 registers starting at P1,
+** except if bit ii of P3 set, then do not release register P1+ii.
+** In other words, P3 is a mask of registers to preserve.
+**
+** Releasing a register clears the Mem.pScopyFrom pointer. That means
+** that if the content of the released register was set using OP_SCopy,
+** a change to the value of the source register for the OP_SCopy will no longer
+** generate an assertion fault in sqlite3VdbeMemAboutToChange().
+**
+** If P5 is set, then all released registers have their type set
+** to MEM_Undefined so that any subsequent attempt to read the released
+** register (before it is reinitialized) will generate an assertion fault.
+**
+** P5 ought to be set on every call to this opcode.
+** However, there are places in the code generator will release registers
+** before their are used, under the (valid) assumption that the registers
+** will not be reallocated for some other purpose before they are used and
+** hence are safe to release.
+**
+** This opcode is only available in testing and debugging builds. It is
+** not generated for release builds. The purpose of this opcode is to help
+** validate the generated bytecode. This opcode does not actually contribute
+** to computing an answer.
+*/
+case OP_ReleaseReg: {
+ Mem *pMem;
+ int i;
+ u32 constMask;
+ assert( pOp->p1>0 );
+ assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
+ pMem = &aMem[pOp->p1];
+ constMask = pOp->p3;
+ for(i=0; i<pOp->p2; i++, pMem++){
+ if( i>=32 || (constMask & MASKBIT32(i))==0 ){
+ pMem->pScopyFrom = 0;
+ if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined);
+ }
+ }
+ break;
+}
+#endif
+
+/* Opcode: Noop * * * * *
+**
+** Do nothing. This instruction is often useful as a jump
+** destination.
+*/
+/*
+** The magic Explain opcode are only inserted when explain==2 (which
+** is to say when the EXPLAIN QUERY PLAN syntax is used.)
+** This opcode records information from the optimizer. It is the
+** the same as a no-op. This opcodesnever appears in a real VM program.
+*/
+default: { /* This is really OP_Noop, OP_Explain */
+ assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
+
+ break;
+}
+
+/*****************************************************************************
+** The cases of the switch statement above this line should all be indented
+** by 6 spaces. But the left-most 6 spaces have been removed to improve the
+** readability. From this point on down, the normal indentation rules are
+** restored.
+*****************************************************************************/
+ }
+
+#if defined(VDBE_PROFILE)
+ *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
+ pnCycle = 0;
+#elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
+ if( pnCycle ){
+ *pnCycle += sqlite3Hwtime();
+ pnCycle = 0;
+ }
+#endif
+
+ /* The following code adds nothing to the actual functionality
+ ** of the program. It is only here for testing and debugging.
+ ** On the other hand, it does burn CPU cycles every time through
+ ** the evaluator loop. So we can leave it out when NDEBUG is defined.
+ */
+#ifndef NDEBUG
+ assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
+
+#ifdef SQLITE_DEBUG
+ if( db->flags & SQLITE_VdbeTrace ){
+ u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
+ if( rc!=0 ) printf("rc=%d\n",rc);
+ if( opProperty & (OPFLG_OUT2) ){
+ registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
+ }
+ if( opProperty & OPFLG_OUT3 ){
+ registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
+ }
+ if( opProperty==0xff ){
+ /* Never happens. This code exists to avoid a harmless linkage
+ ** warning about sqlite3VdbeRegisterDump() being defined but not
+ ** used. */
+ sqlite3VdbeRegisterDump(p);
+ }
+ }
+#endif /* SQLITE_DEBUG */
+#endif /* NDEBUG */
+ } /* The end of the for(;;) loop the loops through opcodes */
+
+ /* If we reach this point, it means that execution is finished with
+ ** an error of some kind.
+ */
+abort_due_to_error:
+ if( db->mallocFailed ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else if( rc==SQLITE_IOERR_CORRUPTFS ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }
+ assert( rc );
+#ifdef SQLITE_DEBUG
+ if( db->flags & SQLITE_VdbeTrace ){
+ const char *zTrace = p->zSql;
+ if( zTrace==0 ){
+ if( aOp[0].opcode==OP_Trace ){
+ zTrace = aOp[0].p4.z;
+ }
+ if( zTrace==0 ) zTrace = "???";
+ }
+ printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace);
+ }
+#endif
+ if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
+ sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
+ }
+ p->rc = rc;
+ sqlite3SystemError(db, rc);
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ sqlite3_log(rc, "statement aborts at %d: [%s] %s",
+ (int)(pOp - aOp), p->zSql, p->zErrMsg);
+ if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
+ if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
+ if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){
+ db->flags |= SQLITE_CorruptRdOnly;
+ }
+ rc = SQLITE_ERROR;
+ if( resetSchemaOnFault>0 ){
+ sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
+ }
+
+ /* This is the only way out of this procedure. We have to
+ ** release the mutexes on btrees that were acquired at the
+ ** top. */
+vdbe_return:
+#if defined(VDBE_PROFILE)
+ if( pnCycle ){
+ *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
+ pnCycle = 0;
+ }
+#elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
+ if( pnCycle ){
+ *pnCycle += sqlite3Hwtime();
+ pnCycle = 0;
+ }
+#endif
+
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
+ nProgressLimit += db->nProgressOps;
+ if( db->xProgress(db->pProgressArg) ){
+ nProgressLimit = LARGEST_UINT64;
+ rc = SQLITE_INTERRUPT;
+ goto abort_due_to_error;
+ }
+ }
+#endif
+ p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
+ if( DbMaskNonZero(p->lockMask) ){
+ sqlite3VdbeLeave(p);
+ }
+ assert( rc!=SQLITE_OK || nExtraDelete==0
+ || sqlite3_strlike("DELETE%",p->zSql,0)!=0
+ );
+ return rc;
+
+ /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
+ ** is encountered.
+ */
+too_big:
+ sqlite3VdbeError(p, "string or blob too big");
+ rc = SQLITE_TOOBIG;
+ goto abort_due_to_error;
+
+ /* Jump to here if a malloc() fails.
+ */
+no_mem:
+ sqlite3OomFault(db);
+ sqlite3VdbeError(p, "out of memory");
+ rc = SQLITE_NOMEM_BKPT;
+ goto abort_due_to_error;
+
+ /* Jump to here if the sqlite3_interrupt() API sets the interrupt
+ ** flag.
+ */
+abort_due_to_interrupt:
+ assert( AtomicLoad(&db->u1.isInterrupted) );
+ rc = SQLITE_INTERRUPT;
+ goto abort_due_to_error;
+}