diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-13 14:07:11 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-13 14:07:11 +0000 |
commit | 63847496f14c813a5d80efd5b7de0f1294ffe1e3 (patch) | |
tree | 01c7571c7c762ceee70638549a99834fdd7c411b /src/vdbesort.c | |
parent | Initial commit. (diff) | |
download | sqlite3-63847496f14c813a5d80efd5b7de0f1294ffe1e3.tar.xz sqlite3-63847496f14c813a5d80efd5b7de0f1294ffe1e3.zip |
Adding upstream version 3.45.1.upstream/3.45.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/vdbesort.c')
-rw-r--r-- | src/vdbesort.c | 2766 |
1 files changed, 2766 insertions, 0 deletions
diff --git a/src/vdbesort.c b/src/vdbesort.c new file mode 100644 index 0000000..0083690 --- /dev/null +++ b/src/vdbesort.c @@ -0,0 +1,2766 @@ +/* +** 2011-07-09 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code for the VdbeSorter object, used in concert with +** a VdbeCursor to sort large numbers of keys for CREATE INDEX statements +** or by SELECT statements with ORDER BY clauses that cannot be satisfied +** using indexes and without LIMIT clauses. +** +** The VdbeSorter object implements a multi-threaded external merge sort +** algorithm that is efficient even if the number of elements being sorted +** exceeds the available memory. +** +** Here is the (internal, non-API) interface between this module and the +** rest of the SQLite system: +** +** sqlite3VdbeSorterInit() Create a new VdbeSorter object. +** +** sqlite3VdbeSorterWrite() Add a single new row to the VdbeSorter +** object. The row is a binary blob in the +** OP_MakeRecord format that contains both +** the ORDER BY key columns and result columns +** in the case of a SELECT w/ ORDER BY, or +** the complete record for an index entry +** in the case of a CREATE INDEX. +** +** sqlite3VdbeSorterRewind() Sort all content previously added. +** Position the read cursor on the +** first sorted element. +** +** sqlite3VdbeSorterNext() Advance the read cursor to the next sorted +** element. +** +** sqlite3VdbeSorterRowkey() Return the complete binary blob for the +** row currently under the read cursor. +** +** sqlite3VdbeSorterCompare() Compare the binary blob for the row +** currently under the read cursor against +** another binary blob X and report if +** X is strictly less than the read cursor. +** Used to enforce uniqueness in a +** CREATE UNIQUE INDEX statement. +** +** sqlite3VdbeSorterClose() Close the VdbeSorter object and reclaim +** all resources. +** +** sqlite3VdbeSorterReset() Refurbish the VdbeSorter for reuse. This +** is like Close() followed by Init() only +** much faster. +** +** The interfaces above must be called in a particular order. Write() can +** only occur in between Init()/Reset() and Rewind(). Next(), Rowkey(), and +** Compare() can only occur in between Rewind() and Close()/Reset(). i.e. +** +** Init() +** for each record: Write() +** Rewind() +** Rowkey()/Compare() +** Next() +** Close() +** +** Algorithm: +** +** Records passed to the sorter via calls to Write() are initially held +** unsorted in main memory. Assuming the amount of memory used never exceeds +** a threshold, when Rewind() is called the set of records is sorted using +** an in-memory merge sort. In this case, no temporary files are required +** and subsequent calls to Rowkey(), Next() and Compare() read records +** directly from main memory. +** +** If the amount of space used to store records in main memory exceeds the +** threshold, then the set of records currently in memory are sorted and +** written to a temporary file in "Packed Memory Array" (PMA) format. +** A PMA created at this point is known as a "level-0 PMA". Higher levels +** of PMAs may be created by merging existing PMAs together - for example +** merging two or more level-0 PMAs together creates a level-1 PMA. +** +** The threshold for the amount of main memory to use before flushing +** records to a PMA is roughly the same as the limit configured for the +** page-cache of the main database. Specifically, the threshold is set to +** the value returned by "PRAGMA main.page_size" multiplied by +** that returned by "PRAGMA main.cache_size", in bytes. +** +** If the sorter is running in single-threaded mode, then all PMAs generated +** are appended to a single temporary file. Or, if the sorter is running in +** multi-threaded mode then up to (N+1) temporary files may be opened, where +** N is the configured number of worker threads. In this case, instead of +** sorting the records and writing the PMA to a temporary file itself, the +** calling thread usually launches a worker thread to do so. Except, if +** there are already N worker threads running, the main thread does the work +** itself. +** +** The sorter is running in multi-threaded mode if (a) the library was built +** with pre-processor symbol SQLITE_MAX_WORKER_THREADS set to a value greater +** than zero, and (b) worker threads have been enabled at runtime by calling +** "PRAGMA threads=N" with some value of N greater than 0. +** +** When Rewind() is called, any data remaining in memory is flushed to a +** final PMA. So at this point the data is stored in some number of sorted +** PMAs within temporary files on disk. +** +** If there are fewer than SORTER_MAX_MERGE_COUNT PMAs in total and the +** sorter is running in single-threaded mode, then these PMAs are merged +** incrementally as keys are retrieved from the sorter by the VDBE. The +** MergeEngine object, described in further detail below, performs this +** merge. +** +** Or, if running in multi-threaded mode, then a background thread is +** launched to merge the existing PMAs. Once the background thread has +** merged T bytes of data into a single sorted PMA, the main thread +** begins reading keys from that PMA while the background thread proceeds +** with merging the next T bytes of data. And so on. +** +** Parameter T is set to half the value of the memory threshold used +** by Write() above to determine when to create a new PMA. +** +** If there are more than SORTER_MAX_MERGE_COUNT PMAs in total when +** Rewind() is called, then a hierarchy of incremental-merges is used. +** First, T bytes of data from the first SORTER_MAX_MERGE_COUNT PMAs on +** disk are merged together. Then T bytes of data from the second set, and +** so on, such that no operation ever merges more than SORTER_MAX_MERGE_COUNT +** PMAs at a time. This done is to improve locality. +** +** If running in multi-threaded mode and there are more than +** SORTER_MAX_MERGE_COUNT PMAs on disk when Rewind() is called, then more +** than one background thread may be created. Specifically, there may be +** one background thread for each temporary file on disk, and one background +** thread to merge the output of each of the others to a single PMA for +** the main thread to read from. +*/ +#include "sqliteInt.h" +#include "vdbeInt.h" + +/* +** If SQLITE_DEBUG_SORTER_THREADS is defined, this module outputs various +** messages to stderr that may be helpful in understanding the performance +** characteristics of the sorter in multi-threaded mode. +*/ +#if 0 +# define SQLITE_DEBUG_SORTER_THREADS 1 +#endif + +/* +** Hard-coded maximum amount of data to accumulate in memory before flushing +** to a level 0 PMA. The purpose of this limit is to prevent various integer +** overflows. 512MiB. +*/ +#define SQLITE_MAX_PMASZ (1<<29) + +/* +** Private objects used by the sorter +*/ +typedef struct MergeEngine MergeEngine; /* Merge PMAs together */ +typedef struct PmaReader PmaReader; /* Incrementally read one PMA */ +typedef struct PmaWriter PmaWriter; /* Incrementally write one PMA */ +typedef struct SorterRecord SorterRecord; /* A record being sorted */ +typedef struct SortSubtask SortSubtask; /* A sub-task in the sort process */ +typedef struct SorterFile SorterFile; /* Temporary file object wrapper */ +typedef struct SorterList SorterList; /* In-memory list of records */ +typedef struct IncrMerger IncrMerger; /* Read & merge multiple PMAs */ + +/* +** A container for a temp file handle and the current amount of data +** stored in the file. +*/ +struct SorterFile { + sqlite3_file *pFd; /* File handle */ + i64 iEof; /* Bytes of data stored in pFd */ +}; + +/* +** An in-memory list of objects to be sorted. +** +** If aMemory==0 then each object is allocated separately and the objects +** are connected using SorterRecord.u.pNext. If aMemory!=0 then all objects +** are stored in the aMemory[] bulk memory, one right after the other, and +** are connected using SorterRecord.u.iNext. +*/ +struct SorterList { + SorterRecord *pList; /* Linked list of records */ + u8 *aMemory; /* If non-NULL, bulk memory to hold pList */ + i64 szPMA; /* Size of pList as PMA in bytes */ +}; + +/* +** The MergeEngine object is used to combine two or more smaller PMAs into +** one big PMA using a merge operation. Separate PMAs all need to be +** combined into one big PMA in order to be able to step through the sorted +** records in order. +** +** The aReadr[] array contains a PmaReader object for each of the PMAs being +** merged. An aReadr[] object either points to a valid key or else is at EOF. +** ("EOF" means "End Of File". When aReadr[] is at EOF there is no more data.) +** For the purposes of the paragraphs below, we assume that the array is +** actually N elements in size, where N is the smallest power of 2 greater +** to or equal to the number of PMAs being merged. The extra aReadr[] elements +** are treated as if they are empty (always at EOF). +** +** The aTree[] array is also N elements in size. The value of N is stored in +** the MergeEngine.nTree variable. +** +** The final (N/2) elements of aTree[] contain the results of comparing +** pairs of PMA keys together. Element i contains the result of +** comparing aReadr[2*i-N] and aReadr[2*i-N+1]. Whichever key is smaller, the +** aTree element is set to the index of it. +** +** For the purposes of this comparison, EOF is considered greater than any +** other key value. If the keys are equal (only possible with two EOF +** values), it doesn't matter which index is stored. +** +** The (N/4) elements of aTree[] that precede the final (N/2) described +** above contains the index of the smallest of each block of 4 PmaReaders +** And so on. So that aTree[1] contains the index of the PmaReader that +** currently points to the smallest key value. aTree[0] is unused. +** +** Example: +** +** aReadr[0] -> Banana +** aReadr[1] -> Feijoa +** aReadr[2] -> Elderberry +** aReadr[3] -> Currant +** aReadr[4] -> Grapefruit +** aReadr[5] -> Apple +** aReadr[6] -> Durian +** aReadr[7] -> EOF +** +** aTree[] = { X, 5 0, 5 0, 3, 5, 6 } +** +** The current element is "Apple" (the value of the key indicated by +** PmaReader 5). When the Next() operation is invoked, PmaReader 5 will +** be advanced to the next key in its segment. Say the next key is +** "Eggplant": +** +** aReadr[5] -> Eggplant +** +** The contents of aTree[] are updated first by comparing the new PmaReader +** 5 key to the current key of PmaReader 4 (still "Grapefruit"). The PmaReader +** 5 value is still smaller, so aTree[6] is set to 5. And so on up the tree. +** The value of PmaReader 6 - "Durian" - is now smaller than that of PmaReader +** 5, so aTree[3] is set to 6. Key 0 is smaller than key 6 (Banana<Durian), +** so the value written into element 1 of the array is 0. As follows: +** +** aTree[] = { X, 0 0, 6 0, 3, 5, 6 } +** +** In other words, each time we advance to the next sorter element, log2(N) +** key comparison operations are required, where N is the number of segments +** being merged (rounded up to the next power of 2). +*/ +struct MergeEngine { + int nTree; /* Used size of aTree/aReadr (power of 2) */ + SortSubtask *pTask; /* Used by this thread only */ + int *aTree; /* Current state of incremental merge */ + PmaReader *aReadr; /* Array of PmaReaders to merge data from */ +}; + +/* +** This object represents a single thread of control in a sort operation. +** Exactly VdbeSorter.nTask instances of this object are allocated +** as part of each VdbeSorter object. Instances are never allocated any +** other way. VdbeSorter.nTask is set to the number of worker threads allowed +** (see SQLITE_CONFIG_WORKER_THREADS) plus one (the main thread). Thus for +** single-threaded operation, there is exactly one instance of this object +** and for multi-threaded operation there are two or more instances. +** +** Essentially, this structure contains all those fields of the VdbeSorter +** structure for which each thread requires a separate instance. For example, +** each thread requeries its own UnpackedRecord object to unpack records in +** as part of comparison operations. +** +** Before a background thread is launched, variable bDone is set to 0. Then, +** right before it exits, the thread itself sets bDone to 1. This is used for +** two purposes: +** +** 1. When flushing the contents of memory to a level-0 PMA on disk, to +** attempt to select a SortSubtask for which there is not already an +** active background thread (since doing so causes the main thread +** to block until it finishes). +** +** 2. If SQLITE_DEBUG_SORTER_THREADS is defined, to determine if a call +** to sqlite3ThreadJoin() is likely to block. Cases that are likely to +** block provoke debugging output. +** +** In both cases, the effects of the main thread seeing (bDone==0) even +** after the thread has finished are not dire. So we don't worry about +** memory barriers and such here. +*/ +typedef int (*SorterCompare)(SortSubtask*,int*,const void*,int,const void*,int); +struct SortSubtask { + SQLiteThread *pThread; /* Background thread, if any */ + int bDone; /* Set if thread is finished but not joined */ + int nPMA; /* Number of PMAs currently in file */ + VdbeSorter *pSorter; /* Sorter that owns this sub-task */ + UnpackedRecord *pUnpacked; /* Space to unpack a record */ + SorterList list; /* List for thread to write to a PMA */ + SorterCompare xCompare; /* Compare function to use */ + SorterFile file; /* Temp file for level-0 PMAs */ + SorterFile file2; /* Space for other PMAs */ +}; + + +/* +** Main sorter structure. A single instance of this is allocated for each +** sorter cursor created by the VDBE. +** +** mxKeysize: +** As records are added to the sorter by calls to sqlite3VdbeSorterWrite(), +** this variable is updated so as to be set to the size on disk of the +** largest record in the sorter. +*/ +struct VdbeSorter { + int mnPmaSize; /* Minimum PMA size, in bytes */ + int mxPmaSize; /* Maximum PMA size, in bytes. 0==no limit */ + int mxKeysize; /* Largest serialized key seen so far */ + int pgsz; /* Main database page size */ + PmaReader *pReader; /* Readr data from here after Rewind() */ + MergeEngine *pMerger; /* Or here, if bUseThreads==0 */ + sqlite3 *db; /* Database connection */ + KeyInfo *pKeyInfo; /* How to compare records */ + UnpackedRecord *pUnpacked; /* Used by VdbeSorterCompare() */ + SorterList list; /* List of in-memory records */ + int iMemory; /* Offset of free space in list.aMemory */ + int nMemory; /* Size of list.aMemory allocation in bytes */ + u8 bUsePMA; /* True if one or more PMAs created */ + u8 bUseThreads; /* True to use background threads */ + u8 iPrev; /* Previous thread used to flush PMA */ + u8 nTask; /* Size of aTask[] array */ + u8 typeMask; + SortSubtask aTask[1]; /* One or more subtasks */ +}; + +#define SORTER_TYPE_INTEGER 0x01 +#define SORTER_TYPE_TEXT 0x02 + +/* +** An instance of the following object is used to read records out of a +** PMA, in sorted order. The next key to be read is cached in nKey/aKey. +** aKey might point into aMap or into aBuffer. If neither of those locations +** contain a contiguous representation of the key, then aAlloc is allocated +** and the key is copied into aAlloc and aKey is made to point to aAlloc. +** +** pFd==0 at EOF. +*/ +struct PmaReader { + i64 iReadOff; /* Current read offset */ + i64 iEof; /* 1 byte past EOF for this PmaReader */ + int nAlloc; /* Bytes of space at aAlloc */ + int nKey; /* Number of bytes in key */ + sqlite3_file *pFd; /* File handle we are reading from */ + u8 *aAlloc; /* Space for aKey if aBuffer and pMap wont work */ + u8 *aKey; /* Pointer to current key */ + u8 *aBuffer; /* Current read buffer */ + int nBuffer; /* Size of read buffer in bytes */ + u8 *aMap; /* Pointer to mapping of entire file */ + IncrMerger *pIncr; /* Incremental merger */ +}; + +/* +** Normally, a PmaReader object iterates through an existing PMA stored +** within a temp file. However, if the PmaReader.pIncr variable points to +** an object of the following type, it may be used to iterate/merge through +** multiple PMAs simultaneously. +** +** There are two types of IncrMerger object - single (bUseThread==0) and +** multi-threaded (bUseThread==1). +** +** A multi-threaded IncrMerger object uses two temporary files - aFile[0] +** and aFile[1]. Neither file is allowed to grow to more than mxSz bytes in +** size. When the IncrMerger is initialized, it reads enough data from +** pMerger to populate aFile[0]. It then sets variables within the +** corresponding PmaReader object to read from that file and kicks off +** a background thread to populate aFile[1] with the next mxSz bytes of +** sorted record data from pMerger. +** +** When the PmaReader reaches the end of aFile[0], it blocks until the +** background thread has finished populating aFile[1]. It then exchanges +** the contents of the aFile[0] and aFile[1] variables within this structure, +** sets the PmaReader fields to read from the new aFile[0] and kicks off +** another background thread to populate the new aFile[1]. And so on, until +** the contents of pMerger are exhausted. +** +** A single-threaded IncrMerger does not open any temporary files of its +** own. Instead, it has exclusive access to mxSz bytes of space beginning +** at offset iStartOff of file pTask->file2. And instead of using a +** background thread to prepare data for the PmaReader, with a single +** threaded IncrMerger the allocate part of pTask->file2 is "refilled" with +** keys from pMerger by the calling thread whenever the PmaReader runs out +** of data. +*/ +struct IncrMerger { + SortSubtask *pTask; /* Task that owns this merger */ + MergeEngine *pMerger; /* Merge engine thread reads data from */ + i64 iStartOff; /* Offset to start writing file at */ + int mxSz; /* Maximum bytes of data to store */ + int bEof; /* Set to true when merge is finished */ + int bUseThread; /* True to use a bg thread for this object */ + SorterFile aFile[2]; /* aFile[0] for reading, [1] for writing */ +}; + +/* +** An instance of this object is used for writing a PMA. +** +** The PMA is written one record at a time. Each record is of an arbitrary +** size. But I/O is more efficient if it occurs in page-sized blocks where +** each block is aligned on a page boundary. This object caches writes to +** the PMA so that aligned, page-size blocks are written. +*/ +struct PmaWriter { + int eFWErr; /* Non-zero if in an error state */ + u8 *aBuffer; /* Pointer to write buffer */ + int nBuffer; /* Size of write buffer in bytes */ + int iBufStart; /* First byte of buffer to write */ + int iBufEnd; /* Last byte of buffer to write */ + i64 iWriteOff; /* Offset of start of buffer in file */ + sqlite3_file *pFd; /* File handle to write to */ +}; + +/* +** This object is the header on a single record while that record is being +** held in memory and prior to being written out as part of a PMA. +** +** How the linked list is connected depends on how memory is being managed +** by this module. If using a separate allocation for each in-memory record +** (VdbeSorter.list.aMemory==0), then the list is always connected using the +** SorterRecord.u.pNext pointers. +** +** Or, if using the single large allocation method (VdbeSorter.list.aMemory!=0), +** then while records are being accumulated the list is linked using the +** SorterRecord.u.iNext offset. This is because the aMemory[] array may +** be sqlite3Realloc()ed while records are being accumulated. Once the VM +** has finished passing records to the sorter, or when the in-memory buffer +** is full, the list is sorted. As part of the sorting process, it is +** converted to use the SorterRecord.u.pNext pointers. See function +** vdbeSorterSort() for details. +*/ +struct SorterRecord { + int nVal; /* Size of the record in bytes */ + union { + SorterRecord *pNext; /* Pointer to next record in list */ + int iNext; /* Offset within aMemory of next record */ + } u; + /* The data for the record immediately follows this header */ +}; + +/* Return a pointer to the buffer containing the record data for SorterRecord +** object p. Should be used as if: +** +** void *SRVAL(SorterRecord *p) { return (void*)&p[1]; } +*/ +#define SRVAL(p) ((void*)((SorterRecord*)(p) + 1)) + + +/* Maximum number of PMAs that a single MergeEngine can merge */ +#define SORTER_MAX_MERGE_COUNT 16 + +static int vdbeIncrSwap(IncrMerger*); +static void vdbeIncrFree(IncrMerger *); + +/* +** Free all memory belonging to the PmaReader object passed as the +** argument. All structure fields are set to zero before returning. +*/ +static void vdbePmaReaderClear(PmaReader *pReadr){ + sqlite3_free(pReadr->aAlloc); + sqlite3_free(pReadr->aBuffer); + if( pReadr->aMap ) sqlite3OsUnfetch(pReadr->pFd, 0, pReadr->aMap); + vdbeIncrFree(pReadr->pIncr); + memset(pReadr, 0, sizeof(PmaReader)); +} + +/* +** Read the next nByte bytes of data from the PMA p. +** If successful, set *ppOut to point to a buffer containing the data +** and return SQLITE_OK. Otherwise, if an error occurs, return an SQLite +** error code. +** +** The buffer returned in *ppOut is only valid until the +** next call to this function. +*/ +static int vdbePmaReadBlob( + PmaReader *p, /* PmaReader from which to take the blob */ + int nByte, /* Bytes of data to read */ + u8 **ppOut /* OUT: Pointer to buffer containing data */ +){ + int iBuf; /* Offset within buffer to read from */ + int nAvail; /* Bytes of data available in buffer */ + + if( p->aMap ){ + *ppOut = &p->aMap[p->iReadOff]; + p->iReadOff += nByte; + return SQLITE_OK; + } + + assert( p->aBuffer ); + + /* If there is no more data to be read from the buffer, read the next + ** p->nBuffer bytes of data from the file into it. Or, if there are less + ** than p->nBuffer bytes remaining in the PMA, read all remaining data. */ + iBuf = p->iReadOff % p->nBuffer; + if( iBuf==0 ){ + int nRead; /* Bytes to read from disk */ + int rc; /* sqlite3OsRead() return code */ + + /* Determine how many bytes of data to read. */ + if( (p->iEof - p->iReadOff) > (i64)p->nBuffer ){ + nRead = p->nBuffer; + }else{ + nRead = (int)(p->iEof - p->iReadOff); + } + assert( nRead>0 ); + + /* Readr data from the file. Return early if an error occurs. */ + rc = sqlite3OsRead(p->pFd, p->aBuffer, nRead, p->iReadOff); + assert( rc!=SQLITE_IOERR_SHORT_READ ); + if( rc!=SQLITE_OK ) return rc; + } + nAvail = p->nBuffer - iBuf; + + if( nByte<=nAvail ){ + /* The requested data is available in the in-memory buffer. In this + ** case there is no need to make a copy of the data, just return a + ** pointer into the buffer to the caller. */ + *ppOut = &p->aBuffer[iBuf]; + p->iReadOff += nByte; + }else{ + /* The requested data is not all available in the in-memory buffer. + ** In this case, allocate space at p->aAlloc[] to copy the requested + ** range into. Then return a copy of pointer p->aAlloc to the caller. */ + int nRem; /* Bytes remaining to copy */ + + /* Extend the p->aAlloc[] allocation if required. */ + if( p->nAlloc<nByte ){ + u8 *aNew; + sqlite3_int64 nNew = MAX(128, 2*(sqlite3_int64)p->nAlloc); + while( nByte>nNew ) nNew = nNew*2; + aNew = sqlite3Realloc(p->aAlloc, nNew); + if( !aNew ) return SQLITE_NOMEM_BKPT; + p->nAlloc = nNew; + p->aAlloc = aNew; + } + + /* Copy as much data as is available in the buffer into the start of + ** p->aAlloc[]. */ + memcpy(p->aAlloc, &p->aBuffer[iBuf], nAvail); + p->iReadOff += nAvail; + nRem = nByte - nAvail; + + /* The following loop copies up to p->nBuffer bytes per iteration into + ** the p->aAlloc[] buffer. */ + while( nRem>0 ){ + int rc; /* vdbePmaReadBlob() return code */ + int nCopy; /* Number of bytes to copy */ + u8 *aNext; /* Pointer to buffer to copy data from */ + + nCopy = nRem; + if( nRem>p->nBuffer ) nCopy = p->nBuffer; + rc = vdbePmaReadBlob(p, nCopy, &aNext); + if( rc!=SQLITE_OK ) return rc; + assert( aNext!=p->aAlloc ); + memcpy(&p->aAlloc[nByte - nRem], aNext, nCopy); + nRem -= nCopy; + } + + *ppOut = p->aAlloc; + } + + return SQLITE_OK; +} + +/* +** Read a varint from the stream of data accessed by p. Set *pnOut to +** the value read. +*/ +static int vdbePmaReadVarint(PmaReader *p, u64 *pnOut){ + int iBuf; + + if( p->aMap ){ + p->iReadOff += sqlite3GetVarint(&p->aMap[p->iReadOff], pnOut); + }else{ + iBuf = p->iReadOff % p->nBuffer; + if( iBuf && (p->nBuffer-iBuf)>=9 ){ + p->iReadOff += sqlite3GetVarint(&p->aBuffer[iBuf], pnOut); + }else{ + u8 aVarint[16], *a; + int i = 0, rc; + do{ + rc = vdbePmaReadBlob(p, 1, &a); + if( rc ) return rc; + aVarint[(i++)&0xf] = a[0]; + }while( (a[0]&0x80)!=0 ); + sqlite3GetVarint(aVarint, pnOut); + } + } + + return SQLITE_OK; +} + +/* +** Attempt to memory map file pFile. If successful, set *pp to point to the +** new mapping and return SQLITE_OK. If the mapping is not attempted +** (because the file is too large or the VFS layer is configured not to use +** mmap), return SQLITE_OK and set *pp to NULL. +** +** Or, if an error occurs, return an SQLite error code. The final value of +** *pp is undefined in this case. +*/ +static int vdbeSorterMapFile(SortSubtask *pTask, SorterFile *pFile, u8 **pp){ + int rc = SQLITE_OK; + if( pFile->iEof<=(i64)(pTask->pSorter->db->nMaxSorterMmap) ){ + sqlite3_file *pFd = pFile->pFd; + if( pFd->pMethods->iVersion>=3 ){ + rc = sqlite3OsFetch(pFd, 0, (int)pFile->iEof, (void**)pp); + testcase( rc!=SQLITE_OK ); + } + } + return rc; +} + +/* +** Attach PmaReader pReadr to file pFile (if it is not already attached to +** that file) and seek it to offset iOff within the file. Return SQLITE_OK +** if successful, or an SQLite error code if an error occurs. +*/ +static int vdbePmaReaderSeek( + SortSubtask *pTask, /* Task context */ + PmaReader *pReadr, /* Reader whose cursor is to be moved */ + SorterFile *pFile, /* Sorter file to read from */ + i64 iOff /* Offset in pFile */ +){ + int rc = SQLITE_OK; + + assert( pReadr->pIncr==0 || pReadr->pIncr->bEof==0 ); + + if( sqlite3FaultSim(201) ) return SQLITE_IOERR_READ; + if( pReadr->aMap ){ + sqlite3OsUnfetch(pReadr->pFd, 0, pReadr->aMap); + pReadr->aMap = 0; + } + pReadr->iReadOff = iOff; + pReadr->iEof = pFile->iEof; + pReadr->pFd = pFile->pFd; + + rc = vdbeSorterMapFile(pTask, pFile, &pReadr->aMap); + if( rc==SQLITE_OK && pReadr->aMap==0 ){ + int pgsz = pTask->pSorter->pgsz; + int iBuf = pReadr->iReadOff % pgsz; + if( pReadr->aBuffer==0 ){ + pReadr->aBuffer = (u8*)sqlite3Malloc(pgsz); + if( pReadr->aBuffer==0 ) rc = SQLITE_NOMEM_BKPT; + pReadr->nBuffer = pgsz; + } + if( rc==SQLITE_OK && iBuf ){ + int nRead = pgsz - iBuf; + if( (pReadr->iReadOff + nRead) > pReadr->iEof ){ + nRead = (int)(pReadr->iEof - pReadr->iReadOff); + } + rc = sqlite3OsRead( + pReadr->pFd, &pReadr->aBuffer[iBuf], nRead, pReadr->iReadOff + ); + testcase( rc!=SQLITE_OK ); + } + } + + return rc; +} + +/* +** Advance PmaReader pReadr to the next key in its PMA. Return SQLITE_OK if +** no error occurs, or an SQLite error code if one does. +*/ +static int vdbePmaReaderNext(PmaReader *pReadr){ + int rc = SQLITE_OK; /* Return Code */ + u64 nRec = 0; /* Size of record in bytes */ + + + if( pReadr->iReadOff>=pReadr->iEof ){ + IncrMerger *pIncr = pReadr->pIncr; + int bEof = 1; + if( pIncr ){ + rc = vdbeIncrSwap(pIncr); + if( rc==SQLITE_OK && pIncr->bEof==0 ){ + rc = vdbePmaReaderSeek( + pIncr->pTask, pReadr, &pIncr->aFile[0], pIncr->iStartOff + ); + bEof = 0; + } + } + + if( bEof ){ + /* This is an EOF condition */ + vdbePmaReaderClear(pReadr); + testcase( rc!=SQLITE_OK ); + return rc; + } + } + + if( rc==SQLITE_OK ){ + rc = vdbePmaReadVarint(pReadr, &nRec); + } + if( rc==SQLITE_OK ){ + pReadr->nKey = (int)nRec; + rc = vdbePmaReadBlob(pReadr, (int)nRec, &pReadr->aKey); + testcase( rc!=SQLITE_OK ); + } + + return rc; +} + +/* +** Initialize PmaReader pReadr to scan through the PMA stored in file pFile +** starting at offset iStart and ending at offset iEof-1. This function +** leaves the PmaReader pointing to the first key in the PMA (or EOF if the +** PMA is empty). +** +** If the pnByte parameter is NULL, then it is assumed that the file +** contains a single PMA, and that that PMA omits the initial length varint. +*/ +static int vdbePmaReaderInit( + SortSubtask *pTask, /* Task context */ + SorterFile *pFile, /* Sorter file to read from */ + i64 iStart, /* Start offset in pFile */ + PmaReader *pReadr, /* PmaReader to populate */ + i64 *pnByte /* IN/OUT: Increment this value by PMA size */ +){ + int rc; + + assert( pFile->iEof>iStart ); + assert( pReadr->aAlloc==0 && pReadr->nAlloc==0 ); + assert( pReadr->aBuffer==0 ); + assert( pReadr->aMap==0 ); + + rc = vdbePmaReaderSeek(pTask, pReadr, pFile, iStart); + if( rc==SQLITE_OK ){ + u64 nByte = 0; /* Size of PMA in bytes */ + rc = vdbePmaReadVarint(pReadr, &nByte); + pReadr->iEof = pReadr->iReadOff + nByte; + *pnByte += nByte; + } + + if( rc==SQLITE_OK ){ + rc = vdbePmaReaderNext(pReadr); + } + return rc; +} + +/* +** A version of vdbeSorterCompare() that assumes that it has already been +** determined that the first field of key1 is equal to the first field of +** key2. +*/ +static int vdbeSorterCompareTail( + SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ + int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ + const void *pKey1, int nKey1, /* Left side of comparison */ + const void *pKey2, int nKey2 /* Right side of comparison */ +){ + UnpackedRecord *r2 = pTask->pUnpacked; + if( *pbKey2Cached==0 ){ + sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2); + *pbKey2Cached = 1; + } + return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, r2, 1); +} + +/* +** Compare key1 (buffer pKey1, size nKey1 bytes) with key2 (buffer pKey2, +** size nKey2 bytes). Use (pTask->pKeyInfo) for the collation sequences +** used by the comparison. Return the result of the comparison. +** +** If IN/OUT parameter *pbKey2Cached is true when this function is called, +** it is assumed that (pTask->pUnpacked) contains the unpacked version +** of key2. If it is false, (pTask->pUnpacked) is populated with the unpacked +** version of key2 and *pbKey2Cached set to true before returning. +** +** If an OOM error is encountered, (pTask->pUnpacked->error_rc) is set +** to SQLITE_NOMEM. +*/ +static int vdbeSorterCompare( + SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ + int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ + const void *pKey1, int nKey1, /* Left side of comparison */ + const void *pKey2, int nKey2 /* Right side of comparison */ +){ + UnpackedRecord *r2 = pTask->pUnpacked; + if( !*pbKey2Cached ){ + sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2); + *pbKey2Cached = 1; + } + return sqlite3VdbeRecordCompare(nKey1, pKey1, r2); +} + +/* +** A specially optimized version of vdbeSorterCompare() that assumes that +** the first field of each key is a TEXT value and that the collation +** sequence to compare them with is BINARY. +*/ +static int vdbeSorterCompareText( + SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ + int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ + const void *pKey1, int nKey1, /* Left side of comparison */ + const void *pKey2, int nKey2 /* Right side of comparison */ +){ + const u8 * const p1 = (const u8 * const)pKey1; + const u8 * const p2 = (const u8 * const)pKey2; + const u8 * const v1 = &p1[ p1[0] ]; /* Pointer to value 1 */ + const u8 * const v2 = &p2[ p2[0] ]; /* Pointer to value 2 */ + + int n1; + int n2; + int res; + + getVarint32NR(&p1[1], n1); + getVarint32NR(&p2[1], n2); + res = memcmp(v1, v2, (MIN(n1, n2) - 13)/2); + if( res==0 ){ + res = n1 - n2; + } + + if( res==0 ){ + if( pTask->pSorter->pKeyInfo->nKeyField>1 ){ + res = vdbeSorterCompareTail( + pTask, pbKey2Cached, pKey1, nKey1, pKey2, nKey2 + ); + } + }else{ + assert( !(pTask->pSorter->pKeyInfo->aSortFlags[0]&KEYINFO_ORDER_BIGNULL) ); + if( pTask->pSorter->pKeyInfo->aSortFlags[0] ){ + res = res * -1; + } + } + + return res; +} + +/* +** A specially optimized version of vdbeSorterCompare() that assumes that +** the first field of each key is an INTEGER value. +*/ +static int vdbeSorterCompareInt( + SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ + int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ + const void *pKey1, int nKey1, /* Left side of comparison */ + const void *pKey2, int nKey2 /* Right side of comparison */ +){ + const u8 * const p1 = (const u8 * const)pKey1; + const u8 * const p2 = (const u8 * const)pKey2; + const int s1 = p1[1]; /* Left hand serial type */ + const int s2 = p2[1]; /* Right hand serial type */ + const u8 * const v1 = &p1[ p1[0] ]; /* Pointer to value 1 */ + const u8 * const v2 = &p2[ p2[0] ]; /* Pointer to value 2 */ + int res; /* Return value */ + + assert( (s1>0 && s1<7) || s1==8 || s1==9 ); + assert( (s2>0 && s2<7) || s2==8 || s2==9 ); + + if( s1==s2 ){ + /* The two values have the same sign. Compare using memcmp(). */ + static const u8 aLen[] = {0, 1, 2, 3, 4, 6, 8, 0, 0, 0 }; + const u8 n = aLen[s1]; + int i; + res = 0; + for(i=0; i<n; i++){ + if( (res = v1[i] - v2[i])!=0 ){ + if( ((v1[0] ^ v2[0]) & 0x80)!=0 ){ + res = v1[0] & 0x80 ? -1 : +1; + } + break; + } + } + }else if( s1>7 && s2>7 ){ + res = s1 - s2; + }else{ + if( s2>7 ){ + res = +1; + }else if( s1>7 ){ + res = -1; + }else{ + res = s1 - s2; + } + assert( res!=0 ); + + if( res>0 ){ + if( *v1 & 0x80 ) res = -1; + }else{ + if( *v2 & 0x80 ) res = +1; + } + } + + if( res==0 ){ + if( pTask->pSorter->pKeyInfo->nKeyField>1 ){ + res = vdbeSorterCompareTail( + pTask, pbKey2Cached, pKey1, nKey1, pKey2, nKey2 + ); + } + }else if( pTask->pSorter->pKeyInfo->aSortFlags[0] ){ + assert( !(pTask->pSorter->pKeyInfo->aSortFlags[0]&KEYINFO_ORDER_BIGNULL) ); + res = res * -1; + } + + return res; +} + +/* +** Initialize the temporary index cursor just opened as a sorter cursor. +** +** Usually, the sorter module uses the value of (pCsr->pKeyInfo->nKeyField) +** to determine the number of fields that should be compared from the +** records being sorted. However, if the value passed as argument nField +** is non-zero and the sorter is able to guarantee a stable sort, nField +** is used instead. This is used when sorting records for a CREATE INDEX +** statement. In this case, keys are always delivered to the sorter in +** order of the primary key, which happens to be make up the final part +** of the records being sorted. So if the sort is stable, there is never +** any reason to compare PK fields and they can be ignored for a small +** performance boost. +** +** The sorter can guarantee a stable sort when running in single-threaded +** mode, but not in multi-threaded mode. +** +** SQLITE_OK is returned if successful, or an SQLite error code otherwise. +*/ +int sqlite3VdbeSorterInit( + sqlite3 *db, /* Database connection (for malloc()) */ + int nField, /* Number of key fields in each record */ + VdbeCursor *pCsr /* Cursor that holds the new sorter */ +){ + int pgsz; /* Page size of main database */ + int i; /* Used to iterate through aTask[] */ + VdbeSorter *pSorter; /* The new sorter */ + KeyInfo *pKeyInfo; /* Copy of pCsr->pKeyInfo with db==0 */ + int szKeyInfo; /* Size of pCsr->pKeyInfo in bytes */ + int sz; /* Size of pSorter in bytes */ + int rc = SQLITE_OK; +#if SQLITE_MAX_WORKER_THREADS==0 +# define nWorker 0 +#else + int nWorker; +#endif + + /* Initialize the upper limit on the number of worker threads */ +#if SQLITE_MAX_WORKER_THREADS>0 + if( sqlite3TempInMemory(db) || sqlite3GlobalConfig.bCoreMutex==0 ){ + nWorker = 0; + }else{ + nWorker = db->aLimit[SQLITE_LIMIT_WORKER_THREADS]; + } +#endif + + /* Do not allow the total number of threads (main thread + all workers) + ** to exceed the maximum merge count */ +#if SQLITE_MAX_WORKER_THREADS>=SORTER_MAX_MERGE_COUNT + if( nWorker>=SORTER_MAX_MERGE_COUNT ){ + nWorker = SORTER_MAX_MERGE_COUNT-1; + } +#endif + + assert( pCsr->pKeyInfo ); + assert( !pCsr->isEphemeral ); + assert( pCsr->eCurType==CURTYPE_SORTER ); + szKeyInfo = sizeof(KeyInfo) + (pCsr->pKeyInfo->nKeyField-1)*sizeof(CollSeq*); + sz = sizeof(VdbeSorter) + nWorker * sizeof(SortSubtask); + + pSorter = (VdbeSorter*)sqlite3DbMallocZero(db, sz + szKeyInfo); + pCsr->uc.pSorter = pSorter; + if( pSorter==0 ){ + rc = SQLITE_NOMEM_BKPT; + }else{ + Btree *pBt = db->aDb[0].pBt; + pSorter->pKeyInfo = pKeyInfo = (KeyInfo*)((u8*)pSorter + sz); + memcpy(pKeyInfo, pCsr->pKeyInfo, szKeyInfo); + pKeyInfo->db = 0; + if( nField && nWorker==0 ){ + pKeyInfo->nKeyField = nField; + } + sqlite3BtreeEnter(pBt); + pSorter->pgsz = pgsz = sqlite3BtreeGetPageSize(pBt); + sqlite3BtreeLeave(pBt); + pSorter->nTask = nWorker + 1; + pSorter->iPrev = (u8)(nWorker - 1); + pSorter->bUseThreads = (pSorter->nTask>1); + pSorter->db = db; + for(i=0; i<pSorter->nTask; i++){ + SortSubtask *pTask = &pSorter->aTask[i]; + pTask->pSorter = pSorter; + } + + if( !sqlite3TempInMemory(db) ){ + i64 mxCache; /* Cache size in bytes*/ + u32 szPma = sqlite3GlobalConfig.szPma; + pSorter->mnPmaSize = szPma * pgsz; + + mxCache = db->aDb[0].pSchema->cache_size; + if( mxCache<0 ){ + /* A negative cache-size value C indicates that the cache is abs(C) + ** KiB in size. */ + mxCache = mxCache * -1024; + }else{ + mxCache = mxCache * pgsz; + } + mxCache = MIN(mxCache, SQLITE_MAX_PMASZ); + pSorter->mxPmaSize = MAX(pSorter->mnPmaSize, (int)mxCache); + + /* Avoid large memory allocations if the application has requested + ** SQLITE_CONFIG_SMALL_MALLOC. */ + if( sqlite3GlobalConfig.bSmallMalloc==0 ){ + assert( pSorter->iMemory==0 ); + pSorter->nMemory = pgsz; + pSorter->list.aMemory = (u8*)sqlite3Malloc(pgsz); + if( !pSorter->list.aMemory ) rc = SQLITE_NOMEM_BKPT; + } + } + + if( pKeyInfo->nAllField<13 + && (pKeyInfo->aColl[0]==0 || pKeyInfo->aColl[0]==db->pDfltColl) + && (pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL)==0 + ){ + pSorter->typeMask = SORTER_TYPE_INTEGER | SORTER_TYPE_TEXT; + } + } + + return rc; +} +#undef nWorker /* Defined at the top of this function */ + +/* +** Free the list of sorted records starting at pRecord. +*/ +static void vdbeSorterRecordFree(sqlite3 *db, SorterRecord *pRecord){ + SorterRecord *p; + SorterRecord *pNext; + for(p=pRecord; p; p=pNext){ + pNext = p->u.pNext; + sqlite3DbFree(db, p); + } +} + +/* +** Free all resources owned by the object indicated by argument pTask. All +** fields of *pTask are zeroed before returning. +*/ +static void vdbeSortSubtaskCleanup(sqlite3 *db, SortSubtask *pTask){ + sqlite3DbFree(db, pTask->pUnpacked); +#if SQLITE_MAX_WORKER_THREADS>0 + /* pTask->list.aMemory can only be non-zero if it was handed memory + ** from the main thread. That only occurs SQLITE_MAX_WORKER_THREADS>0 */ + if( pTask->list.aMemory ){ + sqlite3_free(pTask->list.aMemory); + }else +#endif + { + assert( pTask->list.aMemory==0 ); + vdbeSorterRecordFree(0, pTask->list.pList); + } + if( pTask->file.pFd ){ + sqlite3OsCloseFree(pTask->file.pFd); + } + if( pTask->file2.pFd ){ + sqlite3OsCloseFree(pTask->file2.pFd); + } + memset(pTask, 0, sizeof(SortSubtask)); +} + +#ifdef SQLITE_DEBUG_SORTER_THREADS +static void vdbeSorterWorkDebug(SortSubtask *pTask, const char *zEvent){ + i64 t; + int iTask = (pTask - pTask->pSorter->aTask); + sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t); + fprintf(stderr, "%lld:%d %s\n", t, iTask, zEvent); +} +static void vdbeSorterRewindDebug(const char *zEvent){ + i64 t = 0; + sqlite3_vfs *pVfs = sqlite3_vfs_find(0); + if( ALWAYS(pVfs) ) sqlite3OsCurrentTimeInt64(pVfs, &t); + fprintf(stderr, "%lld:X %s\n", t, zEvent); +} +static void vdbeSorterPopulateDebug( + SortSubtask *pTask, + const char *zEvent +){ + i64 t; + int iTask = (pTask - pTask->pSorter->aTask); + sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t); + fprintf(stderr, "%lld:bg%d %s\n", t, iTask, zEvent); +} +static void vdbeSorterBlockDebug( + SortSubtask *pTask, + int bBlocked, + const char *zEvent +){ + if( bBlocked ){ + i64 t; + sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t); + fprintf(stderr, "%lld:main %s\n", t, zEvent); + } +} +#else +# define vdbeSorterWorkDebug(x,y) +# define vdbeSorterRewindDebug(y) +# define vdbeSorterPopulateDebug(x,y) +# define vdbeSorterBlockDebug(x,y,z) +#endif + +#if SQLITE_MAX_WORKER_THREADS>0 +/* +** Join thread pTask->thread. +*/ +static int vdbeSorterJoinThread(SortSubtask *pTask){ + int rc = SQLITE_OK; + if( pTask->pThread ){ +#ifdef SQLITE_DEBUG_SORTER_THREADS + int bDone = pTask->bDone; +#endif + void *pRet = SQLITE_INT_TO_PTR(SQLITE_ERROR); + vdbeSorterBlockDebug(pTask, !bDone, "enter"); + (void)sqlite3ThreadJoin(pTask->pThread, &pRet); + vdbeSorterBlockDebug(pTask, !bDone, "exit"); + rc = SQLITE_PTR_TO_INT(pRet); + assert( pTask->bDone==1 ); + pTask->bDone = 0; + pTask->pThread = 0; + } + return rc; +} + +/* +** Launch a background thread to run xTask(pIn). +*/ +static int vdbeSorterCreateThread( + SortSubtask *pTask, /* Thread will use this task object */ + void *(*xTask)(void*), /* Routine to run in a separate thread */ + void *pIn /* Argument passed into xTask() */ +){ + assert( pTask->pThread==0 && pTask->bDone==0 ); + return sqlite3ThreadCreate(&pTask->pThread, xTask, pIn); +} + +/* +** Join all outstanding threads launched by SorterWrite() to create +** level-0 PMAs. +*/ +static int vdbeSorterJoinAll(VdbeSorter *pSorter, int rcin){ + int rc = rcin; + int i; + + /* This function is always called by the main user thread. + ** + ** If this function is being called after SorterRewind() has been called, + ** it is possible that thread pSorter->aTask[pSorter->nTask-1].pThread + ** is currently attempt to join one of the other threads. To avoid a race + ** condition where this thread also attempts to join the same object, join + ** thread pSorter->aTask[pSorter->nTask-1].pThread first. */ + for(i=pSorter->nTask-1; i>=0; i--){ + SortSubtask *pTask = &pSorter->aTask[i]; + int rc2 = vdbeSorterJoinThread(pTask); + if( rc==SQLITE_OK ) rc = rc2; + } + return rc; +} +#else +# define vdbeSorterJoinAll(x,rcin) (rcin) +# define vdbeSorterJoinThread(pTask) SQLITE_OK +#endif + +/* +** Allocate a new MergeEngine object capable of handling up to +** nReader PmaReader inputs. +** +** nReader is automatically rounded up to the next power of two. +** nReader may not exceed SORTER_MAX_MERGE_COUNT even after rounding up. +*/ +static MergeEngine *vdbeMergeEngineNew(int nReader){ + int N = 2; /* Smallest power of two >= nReader */ + int nByte; /* Total bytes of space to allocate */ + MergeEngine *pNew; /* Pointer to allocated object to return */ + + assert( nReader<=SORTER_MAX_MERGE_COUNT ); + + while( N<nReader ) N += N; + nByte = sizeof(MergeEngine) + N * (sizeof(int) + sizeof(PmaReader)); + + pNew = sqlite3FaultSim(100) ? 0 : (MergeEngine*)sqlite3MallocZero(nByte); + if( pNew ){ + pNew->nTree = N; + pNew->pTask = 0; + pNew->aReadr = (PmaReader*)&pNew[1]; + pNew->aTree = (int*)&pNew->aReadr[N]; + } + return pNew; +} + +/* +** Free the MergeEngine object passed as the only argument. +*/ +static void vdbeMergeEngineFree(MergeEngine *pMerger){ + int i; + if( pMerger ){ + for(i=0; i<pMerger->nTree; i++){ + vdbePmaReaderClear(&pMerger->aReadr[i]); + } + } + sqlite3_free(pMerger); +} + +/* +** Free all resources associated with the IncrMerger object indicated by +** the first argument. +*/ +static void vdbeIncrFree(IncrMerger *pIncr){ + if( pIncr ){ +#if SQLITE_MAX_WORKER_THREADS>0 + if( pIncr->bUseThread ){ + vdbeSorterJoinThread(pIncr->pTask); + if( pIncr->aFile[0].pFd ) sqlite3OsCloseFree(pIncr->aFile[0].pFd); + if( pIncr->aFile[1].pFd ) sqlite3OsCloseFree(pIncr->aFile[1].pFd); + } +#endif + vdbeMergeEngineFree(pIncr->pMerger); + sqlite3_free(pIncr); + } +} + +/* +** Reset a sorting cursor back to its original empty state. +*/ +void sqlite3VdbeSorterReset(sqlite3 *db, VdbeSorter *pSorter){ + int i; + (void)vdbeSorterJoinAll(pSorter, SQLITE_OK); + assert( pSorter->bUseThreads || pSorter->pReader==0 ); +#if SQLITE_MAX_WORKER_THREADS>0 + if( pSorter->pReader ){ + vdbePmaReaderClear(pSorter->pReader); + sqlite3DbFree(db, pSorter->pReader); + pSorter->pReader = 0; + } +#endif + vdbeMergeEngineFree(pSorter->pMerger); + pSorter->pMerger = 0; + for(i=0; i<pSorter->nTask; i++){ + SortSubtask *pTask = &pSorter->aTask[i]; + vdbeSortSubtaskCleanup(db, pTask); + pTask->pSorter = pSorter; + } + if( pSorter->list.aMemory==0 ){ + vdbeSorterRecordFree(0, pSorter->list.pList); + } + pSorter->list.pList = 0; + pSorter->list.szPMA = 0; + pSorter->bUsePMA = 0; + pSorter->iMemory = 0; + pSorter->mxKeysize = 0; + sqlite3DbFree(db, pSorter->pUnpacked); + pSorter->pUnpacked = 0; +} + +/* +** Free any cursor components allocated by sqlite3VdbeSorterXXX routines. +*/ +void sqlite3VdbeSorterClose(sqlite3 *db, VdbeCursor *pCsr){ + VdbeSorter *pSorter; + assert( pCsr->eCurType==CURTYPE_SORTER ); + pSorter = pCsr->uc.pSorter; + if( pSorter ){ + sqlite3VdbeSorterReset(db, pSorter); + sqlite3_free(pSorter->list.aMemory); + sqlite3DbFree(db, pSorter); + pCsr->uc.pSorter = 0; + } +} + +#if SQLITE_MAX_MMAP_SIZE>0 +/* +** The first argument is a file-handle open on a temporary file. The file +** is guaranteed to be nByte bytes or smaller in size. This function +** attempts to extend the file to nByte bytes in size and to ensure that +** the VFS has memory mapped it. +** +** Whether or not the file does end up memory mapped of course depends on +** the specific VFS implementation. +*/ +static void vdbeSorterExtendFile(sqlite3 *db, sqlite3_file *pFd, i64 nByte){ + if( nByte<=(i64)(db->nMaxSorterMmap) && pFd->pMethods->iVersion>=3 ){ + void *p = 0; + int chunksize = 4*1024; + sqlite3OsFileControlHint(pFd, SQLITE_FCNTL_CHUNK_SIZE, &chunksize); + sqlite3OsFileControlHint(pFd, SQLITE_FCNTL_SIZE_HINT, &nByte); + sqlite3OsFetch(pFd, 0, (int)nByte, &p); + if( p ) sqlite3OsUnfetch(pFd, 0, p); + } +} +#else +# define vdbeSorterExtendFile(x,y,z) +#endif + +/* +** Allocate space for a file-handle and open a temporary file. If successful, +** set *ppFd to point to the malloc'd file-handle and return SQLITE_OK. +** Otherwise, set *ppFd to 0 and return an SQLite error code. +*/ +static int vdbeSorterOpenTempFile( + sqlite3 *db, /* Database handle doing sort */ + i64 nExtend, /* Attempt to extend file to this size */ + sqlite3_file **ppFd +){ + int rc; + if( sqlite3FaultSim(202) ) return SQLITE_IOERR_ACCESS; + rc = sqlite3OsOpenMalloc(db->pVfs, 0, ppFd, + SQLITE_OPEN_TEMP_JOURNAL | + SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | + SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE, &rc + ); + if( rc==SQLITE_OK ){ + i64 max = SQLITE_MAX_MMAP_SIZE; + sqlite3OsFileControlHint(*ppFd, SQLITE_FCNTL_MMAP_SIZE, (void*)&max); + if( nExtend>0 ){ + vdbeSorterExtendFile(db, *ppFd, nExtend); + } + } + return rc; +} + +/* +** If it has not already been allocated, allocate the UnpackedRecord +** structure at pTask->pUnpacked. Return SQLITE_OK if successful (or +** if no allocation was required), or SQLITE_NOMEM otherwise. +*/ +static int vdbeSortAllocUnpacked(SortSubtask *pTask){ + if( pTask->pUnpacked==0 ){ + pTask->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pTask->pSorter->pKeyInfo); + if( pTask->pUnpacked==0 ) return SQLITE_NOMEM_BKPT; + pTask->pUnpacked->nField = pTask->pSorter->pKeyInfo->nKeyField; + pTask->pUnpacked->errCode = 0; + } + return SQLITE_OK; +} + + +/* +** Merge the two sorted lists p1 and p2 into a single list. +*/ +static SorterRecord *vdbeSorterMerge( + SortSubtask *pTask, /* Calling thread context */ + SorterRecord *p1, /* First list to merge */ + SorterRecord *p2 /* Second list to merge */ +){ + SorterRecord *pFinal = 0; + SorterRecord **pp = &pFinal; + int bCached = 0; + + assert( p1!=0 && p2!=0 ); + for(;;){ + int res; + res = pTask->xCompare( + pTask, &bCached, SRVAL(p1), p1->nVal, SRVAL(p2), p2->nVal + ); + + if( res<=0 ){ + *pp = p1; + pp = &p1->u.pNext; + p1 = p1->u.pNext; + if( p1==0 ){ + *pp = p2; + break; + } + }else{ + *pp = p2; + pp = &p2->u.pNext; + p2 = p2->u.pNext; + bCached = 0; + if( p2==0 ){ + *pp = p1; + break; + } + } + } + return pFinal; +} + +/* +** Return the SorterCompare function to compare values collected by the +** sorter object passed as the only argument. +*/ +static SorterCompare vdbeSorterGetCompare(VdbeSorter *p){ + if( p->typeMask==SORTER_TYPE_INTEGER ){ + return vdbeSorterCompareInt; + }else if( p->typeMask==SORTER_TYPE_TEXT ){ + return vdbeSorterCompareText; + } + return vdbeSorterCompare; +} + +/* +** Sort the linked list of records headed at pTask->pList. Return +** SQLITE_OK if successful, or an SQLite error code (i.e. SQLITE_NOMEM) if +** an error occurs. +*/ +static int vdbeSorterSort(SortSubtask *pTask, SorterList *pList){ + int i; + SorterRecord *p; + int rc; + SorterRecord *aSlot[64]; + + rc = vdbeSortAllocUnpacked(pTask); + if( rc!=SQLITE_OK ) return rc; + + p = pList->pList; + pTask->xCompare = vdbeSorterGetCompare(pTask->pSorter); + memset(aSlot, 0, sizeof(aSlot)); + + while( p ){ + SorterRecord *pNext; + if( pList->aMemory ){ + if( (u8*)p==pList->aMemory ){ + pNext = 0; + }else{ + assert( p->u.iNext<sqlite3MallocSize(pList->aMemory) ); + pNext = (SorterRecord*)&pList->aMemory[p->u.iNext]; + } + }else{ + pNext = p->u.pNext; + } + + p->u.pNext = 0; + for(i=0; aSlot[i]; i++){ + p = vdbeSorterMerge(pTask, p, aSlot[i]); + aSlot[i] = 0; + } + aSlot[i] = p; + p = pNext; + } + + p = 0; + for(i=0; i<ArraySize(aSlot); i++){ + if( aSlot[i]==0 ) continue; + p = p ? vdbeSorterMerge(pTask, p, aSlot[i]) : aSlot[i]; + } + pList->pList = p; + + assert( pTask->pUnpacked->errCode==SQLITE_OK + || pTask->pUnpacked->errCode==SQLITE_NOMEM + ); + return pTask->pUnpacked->errCode; +} + +/* +** Initialize a PMA-writer object. +*/ +static void vdbePmaWriterInit( + sqlite3_file *pFd, /* File handle to write to */ + PmaWriter *p, /* Object to populate */ + int nBuf, /* Buffer size */ + i64 iStart /* Offset of pFd to begin writing at */ +){ + memset(p, 0, sizeof(PmaWriter)); + p->aBuffer = (u8*)sqlite3Malloc(nBuf); + if( !p->aBuffer ){ + p->eFWErr = SQLITE_NOMEM_BKPT; + }else{ + p->iBufEnd = p->iBufStart = (iStart % nBuf); + p->iWriteOff = iStart - p->iBufStart; + p->nBuffer = nBuf; + p->pFd = pFd; + } +} + +/* +** Write nData bytes of data to the PMA. Return SQLITE_OK +** if successful, or an SQLite error code if an error occurs. +*/ +static void vdbePmaWriteBlob(PmaWriter *p, u8 *pData, int nData){ + int nRem = nData; + while( nRem>0 && p->eFWErr==0 ){ + int nCopy = nRem; + if( nCopy>(p->nBuffer - p->iBufEnd) ){ + nCopy = p->nBuffer - p->iBufEnd; + } + + memcpy(&p->aBuffer[p->iBufEnd], &pData[nData-nRem], nCopy); + p->iBufEnd += nCopy; + if( p->iBufEnd==p->nBuffer ){ + p->eFWErr = sqlite3OsWrite(p->pFd, + &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart, + p->iWriteOff + p->iBufStart + ); + p->iBufStart = p->iBufEnd = 0; + p->iWriteOff += p->nBuffer; + } + assert( p->iBufEnd<p->nBuffer ); + + nRem -= nCopy; + } +} + +/* +** Flush any buffered data to disk and clean up the PMA-writer object. +** The results of using the PMA-writer after this call are undefined. +** Return SQLITE_OK if flushing the buffered data succeeds or is not +** required. Otherwise, return an SQLite error code. +** +** Before returning, set *piEof to the offset immediately following the +** last byte written to the file. +*/ +static int vdbePmaWriterFinish(PmaWriter *p, i64 *piEof){ + int rc; + if( p->eFWErr==0 && ALWAYS(p->aBuffer) && p->iBufEnd>p->iBufStart ){ + p->eFWErr = sqlite3OsWrite(p->pFd, + &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart, + p->iWriteOff + p->iBufStart + ); + } + *piEof = (p->iWriteOff + p->iBufEnd); + sqlite3_free(p->aBuffer); + rc = p->eFWErr; + memset(p, 0, sizeof(PmaWriter)); + return rc; +} + +/* +** Write value iVal encoded as a varint to the PMA. Return +** SQLITE_OK if successful, or an SQLite error code if an error occurs. +*/ +static void vdbePmaWriteVarint(PmaWriter *p, u64 iVal){ + int nByte; + u8 aByte[10]; + nByte = sqlite3PutVarint(aByte, iVal); + vdbePmaWriteBlob(p, aByte, nByte); +} + +/* +** Write the current contents of in-memory linked-list pList to a level-0 +** PMA in the temp file belonging to sub-task pTask. Return SQLITE_OK if +** successful, or an SQLite error code otherwise. +** +** The format of a PMA is: +** +** * A varint. This varint contains the total number of bytes of content +** in the PMA (not including the varint itself). +** +** * One or more records packed end-to-end in order of ascending keys. +** Each record consists of a varint followed by a blob of data (the +** key). The varint is the number of bytes in the blob of data. +*/ +static int vdbeSorterListToPMA(SortSubtask *pTask, SorterList *pList){ + sqlite3 *db = pTask->pSorter->db; + int rc = SQLITE_OK; /* Return code */ + PmaWriter writer; /* Object used to write to the file */ + +#ifdef SQLITE_DEBUG + /* Set iSz to the expected size of file pTask->file after writing the PMA. + ** This is used by an assert() statement at the end of this function. */ + i64 iSz = pList->szPMA + sqlite3VarintLen(pList->szPMA) + pTask->file.iEof; +#endif + + vdbeSorterWorkDebug(pTask, "enter"); + memset(&writer, 0, sizeof(PmaWriter)); + assert( pList->szPMA>0 ); + + /* If the first temporary PMA file has not been opened, open it now. */ + if( pTask->file.pFd==0 ){ + rc = vdbeSorterOpenTempFile(db, 0, &pTask->file.pFd); + assert( rc!=SQLITE_OK || pTask->file.pFd ); + assert( pTask->file.iEof==0 ); + assert( pTask->nPMA==0 ); + } + + /* Try to get the file to memory map */ + if( rc==SQLITE_OK ){ + vdbeSorterExtendFile(db, pTask->file.pFd, pTask->file.iEof+pList->szPMA+9); + } + + /* Sort the list */ + if( rc==SQLITE_OK ){ + rc = vdbeSorterSort(pTask, pList); + } + + if( rc==SQLITE_OK ){ + SorterRecord *p; + SorterRecord *pNext = 0; + + vdbePmaWriterInit(pTask->file.pFd, &writer, pTask->pSorter->pgsz, + pTask->file.iEof); + pTask->nPMA++; + vdbePmaWriteVarint(&writer, pList->szPMA); + for(p=pList->pList; p; p=pNext){ + pNext = p->u.pNext; + vdbePmaWriteVarint(&writer, p->nVal); + vdbePmaWriteBlob(&writer, SRVAL(p), p->nVal); + if( pList->aMemory==0 ) sqlite3_free(p); + } + pList->pList = p; + rc = vdbePmaWriterFinish(&writer, &pTask->file.iEof); + } + + vdbeSorterWorkDebug(pTask, "exit"); + assert( rc!=SQLITE_OK || pList->pList==0 ); + assert( rc!=SQLITE_OK || pTask->file.iEof==iSz ); + return rc; +} + +/* +** Advance the MergeEngine to its next entry. +** Set *pbEof to true there is no next entry because +** the MergeEngine has reached the end of all its inputs. +** +** Return SQLITE_OK if successful or an error code if an error occurs. +*/ +static int vdbeMergeEngineStep( + MergeEngine *pMerger, /* The merge engine to advance to the next row */ + int *pbEof /* Set TRUE at EOF. Set false for more content */ +){ + int rc; + int iPrev = pMerger->aTree[1];/* Index of PmaReader to advance */ + SortSubtask *pTask = pMerger->pTask; + + /* Advance the current PmaReader */ + rc = vdbePmaReaderNext(&pMerger->aReadr[iPrev]); + + /* Update contents of aTree[] */ + if( rc==SQLITE_OK ){ + int i; /* Index of aTree[] to recalculate */ + PmaReader *pReadr1; /* First PmaReader to compare */ + PmaReader *pReadr2; /* Second PmaReader to compare */ + int bCached = 0; + + /* Find the first two PmaReaders to compare. The one that was just + ** advanced (iPrev) and the one next to it in the array. */ + pReadr1 = &pMerger->aReadr[(iPrev & 0xFFFE)]; + pReadr2 = &pMerger->aReadr[(iPrev | 0x0001)]; + + for(i=(pMerger->nTree+iPrev)/2; i>0; i=i/2){ + /* Compare pReadr1 and pReadr2. Store the result in variable iRes. */ + int iRes; + if( pReadr1->pFd==0 ){ + iRes = +1; + }else if( pReadr2->pFd==0 ){ + iRes = -1; + }else{ + iRes = pTask->xCompare(pTask, &bCached, + pReadr1->aKey, pReadr1->nKey, pReadr2->aKey, pReadr2->nKey + ); + } + + /* If pReadr1 contained the smaller value, set aTree[i] to its index. + ** Then set pReadr2 to the next PmaReader to compare to pReadr1. In this + ** case there is no cache of pReadr2 in pTask->pUnpacked, so set + ** pKey2 to point to the record belonging to pReadr2. + ** + ** Alternatively, if pReadr2 contains the smaller of the two values, + ** set aTree[i] to its index and update pReadr1. If vdbeSorterCompare() + ** was actually called above, then pTask->pUnpacked now contains + ** a value equivalent to pReadr2. So set pKey2 to NULL to prevent + ** vdbeSorterCompare() from decoding pReadr2 again. + ** + ** If the two values were equal, then the value from the oldest + ** PMA should be considered smaller. The VdbeSorter.aReadr[] array + ** is sorted from oldest to newest, so pReadr1 contains older values + ** than pReadr2 iff (pReadr1<pReadr2). */ + if( iRes<0 || (iRes==0 && pReadr1<pReadr2) ){ + pMerger->aTree[i] = (int)(pReadr1 - pMerger->aReadr); + pReadr2 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ]; + bCached = 0; + }else{ + if( pReadr1->pFd ) bCached = 0; + pMerger->aTree[i] = (int)(pReadr2 - pMerger->aReadr); + pReadr1 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ]; + } + } + *pbEof = (pMerger->aReadr[pMerger->aTree[1]].pFd==0); + } + + return (rc==SQLITE_OK ? pTask->pUnpacked->errCode : rc); +} + +#if SQLITE_MAX_WORKER_THREADS>0 +/* +** The main routine for background threads that write level-0 PMAs. +*/ +static void *vdbeSorterFlushThread(void *pCtx){ + SortSubtask *pTask = (SortSubtask*)pCtx; + int rc; /* Return code */ + assert( pTask->bDone==0 ); + rc = vdbeSorterListToPMA(pTask, &pTask->list); + pTask->bDone = 1; + return SQLITE_INT_TO_PTR(rc); +} +#endif /* SQLITE_MAX_WORKER_THREADS>0 */ + +/* +** Flush the current contents of VdbeSorter.list to a new PMA, possibly +** using a background thread. +*/ +static int vdbeSorterFlushPMA(VdbeSorter *pSorter){ +#if SQLITE_MAX_WORKER_THREADS==0 + pSorter->bUsePMA = 1; + return vdbeSorterListToPMA(&pSorter->aTask[0], &pSorter->list); +#else + int rc = SQLITE_OK; + int i; + SortSubtask *pTask = 0; /* Thread context used to create new PMA */ + int nWorker = (pSorter->nTask-1); + + /* Set the flag to indicate that at least one PMA has been written. + ** Or will be, anyhow. */ + pSorter->bUsePMA = 1; + + /* Select a sub-task to sort and flush the current list of in-memory + ** records to disk. If the sorter is running in multi-threaded mode, + ** round-robin between the first (pSorter->nTask-1) tasks. Except, if + ** the background thread from a sub-tasks previous turn is still running, + ** skip it. If the first (pSorter->nTask-1) sub-tasks are all still busy, + ** fall back to using the final sub-task. The first (pSorter->nTask-1) + ** sub-tasks are preferred as they use background threads - the final + ** sub-task uses the main thread. */ + for(i=0; i<nWorker; i++){ + int iTest = (pSorter->iPrev + i + 1) % nWorker; + pTask = &pSorter->aTask[iTest]; + if( pTask->bDone ){ + rc = vdbeSorterJoinThread(pTask); + } + if( rc!=SQLITE_OK || pTask->pThread==0 ) break; + } + + if( rc==SQLITE_OK ){ + if( i==nWorker ){ + /* Use the foreground thread for this operation */ + rc = vdbeSorterListToPMA(&pSorter->aTask[nWorker], &pSorter->list); + }else{ + /* Launch a background thread for this operation */ + u8 *aMem; + void *pCtx; + + assert( pTask!=0 ); + assert( pTask->pThread==0 && pTask->bDone==0 ); + assert( pTask->list.pList==0 ); + assert( pTask->list.aMemory==0 || pSorter->list.aMemory!=0 ); + + aMem = pTask->list.aMemory; + pCtx = (void*)pTask; + pSorter->iPrev = (u8)(pTask - pSorter->aTask); + pTask->list = pSorter->list; + pSorter->list.pList = 0; + pSorter->list.szPMA = 0; + if( aMem ){ + pSorter->list.aMemory = aMem; + pSorter->nMemory = sqlite3MallocSize(aMem); + }else if( pSorter->list.aMemory ){ + pSorter->list.aMemory = sqlite3Malloc(pSorter->nMemory); + if( !pSorter->list.aMemory ) return SQLITE_NOMEM_BKPT; + } + + rc = vdbeSorterCreateThread(pTask, vdbeSorterFlushThread, pCtx); + } + } + + return rc; +#endif /* SQLITE_MAX_WORKER_THREADS!=0 */ +} + +/* +** Add a record to the sorter. +*/ +int sqlite3VdbeSorterWrite( + const VdbeCursor *pCsr, /* Sorter cursor */ + Mem *pVal /* Memory cell containing record */ +){ + VdbeSorter *pSorter; + int rc = SQLITE_OK; /* Return Code */ + SorterRecord *pNew; /* New list element */ + int bFlush; /* True to flush contents of memory to PMA */ + i64 nReq; /* Bytes of memory required */ + i64 nPMA; /* Bytes of PMA space required */ + int t; /* serial type of first record field */ + + assert( pCsr->eCurType==CURTYPE_SORTER ); + pSorter = pCsr->uc.pSorter; + getVarint32NR((const u8*)&pVal->z[1], t); + if( t>0 && t<10 && t!=7 ){ + pSorter->typeMask &= SORTER_TYPE_INTEGER; + }else if( t>10 && (t & 0x01) ){ + pSorter->typeMask &= SORTER_TYPE_TEXT; + }else{ + pSorter->typeMask = 0; + } + + assert( pSorter ); + + /* Figure out whether or not the current contents of memory should be + ** flushed to a PMA before continuing. If so, do so. + ** + ** If using the single large allocation mode (pSorter->aMemory!=0), then + ** flush the contents of memory to a new PMA if (a) at least one value is + ** already in memory and (b) the new value will not fit in memory. + ** + ** Or, if using separate allocations for each record, flush the contents + ** of memory to a PMA if either of the following are true: + ** + ** * The total memory allocated for the in-memory list is greater + ** than (page-size * cache-size), or + ** + ** * The total memory allocated for the in-memory list is greater + ** than (page-size * 10) and sqlite3HeapNearlyFull() returns true. + */ + nReq = pVal->n + sizeof(SorterRecord); + nPMA = pVal->n + sqlite3VarintLen(pVal->n); + if( pSorter->mxPmaSize ){ + if( pSorter->list.aMemory ){ + bFlush = pSorter->iMemory && (pSorter->iMemory+nReq) > pSorter->mxPmaSize; + }else{ + bFlush = ( + (pSorter->list.szPMA > pSorter->mxPmaSize) + || (pSorter->list.szPMA > pSorter->mnPmaSize && sqlite3HeapNearlyFull()) + ); + } + if( bFlush ){ + rc = vdbeSorterFlushPMA(pSorter); + pSorter->list.szPMA = 0; + pSorter->iMemory = 0; + assert( rc!=SQLITE_OK || pSorter->list.pList==0 ); + } + } + + pSorter->list.szPMA += nPMA; + if( nPMA>pSorter->mxKeysize ){ + pSorter->mxKeysize = nPMA; + } + + if( pSorter->list.aMemory ){ + int nMin = pSorter->iMemory + nReq; + + if( nMin>pSorter->nMemory ){ + u8 *aNew; + sqlite3_int64 nNew = 2 * (sqlite3_int64)pSorter->nMemory; + int iListOff = -1; + if( pSorter->list.pList ){ + iListOff = (u8*)pSorter->list.pList - pSorter->list.aMemory; + } + while( nNew < nMin ) nNew = nNew*2; + if( nNew > pSorter->mxPmaSize ) nNew = pSorter->mxPmaSize; + if( nNew < nMin ) nNew = nMin; + aNew = sqlite3Realloc(pSorter->list.aMemory, nNew); + if( !aNew ) return SQLITE_NOMEM_BKPT; + if( iListOff>=0 ){ + pSorter->list.pList = (SorterRecord*)&aNew[iListOff]; + } + pSorter->list.aMemory = aNew; + pSorter->nMemory = nNew; + } + + pNew = (SorterRecord*)&pSorter->list.aMemory[pSorter->iMemory]; + pSorter->iMemory += ROUND8(nReq); + if( pSorter->list.pList ){ + pNew->u.iNext = (int)((u8*)(pSorter->list.pList) - pSorter->list.aMemory); + } + }else{ + pNew = (SorterRecord *)sqlite3Malloc(nReq); + if( pNew==0 ){ + return SQLITE_NOMEM_BKPT; + } + pNew->u.pNext = pSorter->list.pList; + } + + memcpy(SRVAL(pNew), pVal->z, pVal->n); + pNew->nVal = pVal->n; + pSorter->list.pList = pNew; + + return rc; +} + +/* +** Read keys from pIncr->pMerger and populate pIncr->aFile[1]. The format +** of the data stored in aFile[1] is the same as that used by regular PMAs, +** except that the number-of-bytes varint is omitted from the start. +*/ +static int vdbeIncrPopulate(IncrMerger *pIncr){ + int rc = SQLITE_OK; + int rc2; + i64 iStart = pIncr->iStartOff; + SorterFile *pOut = &pIncr->aFile[1]; + SortSubtask *pTask = pIncr->pTask; + MergeEngine *pMerger = pIncr->pMerger; + PmaWriter writer; + assert( pIncr->bEof==0 ); + + vdbeSorterPopulateDebug(pTask, "enter"); + + vdbePmaWriterInit(pOut->pFd, &writer, pTask->pSorter->pgsz, iStart); + while( rc==SQLITE_OK ){ + int dummy; + PmaReader *pReader = &pMerger->aReadr[ pMerger->aTree[1] ]; + int nKey = pReader->nKey; + i64 iEof = writer.iWriteOff + writer.iBufEnd; + + /* Check if the output file is full or if the input has been exhausted. + ** In either case exit the loop. */ + if( pReader->pFd==0 ) break; + if( (iEof + nKey + sqlite3VarintLen(nKey))>(iStart + pIncr->mxSz) ) break; + + /* Write the next key to the output. */ + vdbePmaWriteVarint(&writer, nKey); + vdbePmaWriteBlob(&writer, pReader->aKey, nKey); + assert( pIncr->pMerger->pTask==pTask ); + rc = vdbeMergeEngineStep(pIncr->pMerger, &dummy); + } + + rc2 = vdbePmaWriterFinish(&writer, &pOut->iEof); + if( rc==SQLITE_OK ) rc = rc2; + vdbeSorterPopulateDebug(pTask, "exit"); + return rc; +} + +#if SQLITE_MAX_WORKER_THREADS>0 +/* +** The main routine for background threads that populate aFile[1] of +** multi-threaded IncrMerger objects. +*/ +static void *vdbeIncrPopulateThread(void *pCtx){ + IncrMerger *pIncr = (IncrMerger*)pCtx; + void *pRet = SQLITE_INT_TO_PTR( vdbeIncrPopulate(pIncr) ); + pIncr->pTask->bDone = 1; + return pRet; +} + +/* +** Launch a background thread to populate aFile[1] of pIncr. +*/ +static int vdbeIncrBgPopulate(IncrMerger *pIncr){ + void *p = (void*)pIncr; + assert( pIncr->bUseThread ); + return vdbeSorterCreateThread(pIncr->pTask, vdbeIncrPopulateThread, p); +} +#endif + +/* +** This function is called when the PmaReader corresponding to pIncr has +** finished reading the contents of aFile[0]. Its purpose is to "refill" +** aFile[0] such that the PmaReader should start rereading it from the +** beginning. +** +** For single-threaded objects, this is accomplished by literally reading +** keys from pIncr->pMerger and repopulating aFile[0]. +** +** For multi-threaded objects, all that is required is to wait until the +** background thread is finished (if it is not already) and then swap +** aFile[0] and aFile[1] in place. If the contents of pMerger have not +** been exhausted, this function also launches a new background thread +** to populate the new aFile[1]. +** +** SQLITE_OK is returned on success, or an SQLite error code otherwise. +*/ +static int vdbeIncrSwap(IncrMerger *pIncr){ + int rc = SQLITE_OK; + +#if SQLITE_MAX_WORKER_THREADS>0 + if( pIncr->bUseThread ){ + rc = vdbeSorterJoinThread(pIncr->pTask); + + if( rc==SQLITE_OK ){ + SorterFile f0 = pIncr->aFile[0]; + pIncr->aFile[0] = pIncr->aFile[1]; + pIncr->aFile[1] = f0; + } + + if( rc==SQLITE_OK ){ + if( pIncr->aFile[0].iEof==pIncr->iStartOff ){ + pIncr->bEof = 1; + }else{ + rc = vdbeIncrBgPopulate(pIncr); + } + } + }else +#endif + { + rc = vdbeIncrPopulate(pIncr); + pIncr->aFile[0] = pIncr->aFile[1]; + if( pIncr->aFile[0].iEof==pIncr->iStartOff ){ + pIncr->bEof = 1; + } + } + + return rc; +} + +/* +** Allocate and return a new IncrMerger object to read data from pMerger. +** +** If an OOM condition is encountered, return NULL. In this case free the +** pMerger argument before returning. +*/ +static int vdbeIncrMergerNew( + SortSubtask *pTask, /* The thread that will be using the new IncrMerger */ + MergeEngine *pMerger, /* The MergeEngine that the IncrMerger will control */ + IncrMerger **ppOut /* Write the new IncrMerger here */ +){ + int rc = SQLITE_OK; + IncrMerger *pIncr = *ppOut = (IncrMerger*) + (sqlite3FaultSim(100) ? 0 : sqlite3MallocZero(sizeof(*pIncr))); + if( pIncr ){ + pIncr->pMerger = pMerger; + pIncr->pTask = pTask; + pIncr->mxSz = MAX(pTask->pSorter->mxKeysize+9,pTask->pSorter->mxPmaSize/2); + pTask->file2.iEof += pIncr->mxSz; + }else{ + vdbeMergeEngineFree(pMerger); + rc = SQLITE_NOMEM_BKPT; + } + assert( *ppOut!=0 || rc!=SQLITE_OK ); + return rc; +} + +#if SQLITE_MAX_WORKER_THREADS>0 +/* +** Set the "use-threads" flag on object pIncr. +*/ +static void vdbeIncrMergerSetThreads(IncrMerger *pIncr){ + pIncr->bUseThread = 1; + pIncr->pTask->file2.iEof -= pIncr->mxSz; +} +#endif /* SQLITE_MAX_WORKER_THREADS>0 */ + + + +/* +** Recompute pMerger->aTree[iOut] by comparing the next keys on the +** two PmaReaders that feed that entry. Neither of the PmaReaders +** are advanced. This routine merely does the comparison. +*/ +static void vdbeMergeEngineCompare( + MergeEngine *pMerger, /* Merge engine containing PmaReaders to compare */ + int iOut /* Store the result in pMerger->aTree[iOut] */ +){ + int i1; + int i2; + int iRes; + PmaReader *p1; + PmaReader *p2; + + assert( iOut<pMerger->nTree && iOut>0 ); + + if( iOut>=(pMerger->nTree/2) ){ + i1 = (iOut - pMerger->nTree/2) * 2; + i2 = i1 + 1; + }else{ + i1 = pMerger->aTree[iOut*2]; + i2 = pMerger->aTree[iOut*2+1]; + } + + p1 = &pMerger->aReadr[i1]; + p2 = &pMerger->aReadr[i2]; + + if( p1->pFd==0 ){ + iRes = i2; + }else if( p2->pFd==0 ){ + iRes = i1; + }else{ + SortSubtask *pTask = pMerger->pTask; + int bCached = 0; + int res; + assert( pTask->pUnpacked!=0 ); /* from vdbeSortSubtaskMain() */ + res = pTask->xCompare( + pTask, &bCached, p1->aKey, p1->nKey, p2->aKey, p2->nKey + ); + if( res<=0 ){ + iRes = i1; + }else{ + iRes = i2; + } + } + + pMerger->aTree[iOut] = iRes; +} + +/* +** Allowed values for the eMode parameter to vdbeMergeEngineInit() +** and vdbePmaReaderIncrMergeInit(). +** +** Only INCRINIT_NORMAL is valid in single-threaded builds (when +** SQLITE_MAX_WORKER_THREADS==0). The other values are only used +** when there exists one or more separate worker threads. +*/ +#define INCRINIT_NORMAL 0 +#define INCRINIT_TASK 1 +#define INCRINIT_ROOT 2 + +/* +** Forward reference required as the vdbeIncrMergeInit() and +** vdbePmaReaderIncrInit() routines are called mutually recursively when +** building a merge tree. +*/ +static int vdbePmaReaderIncrInit(PmaReader *pReadr, int eMode); + +/* +** Initialize the MergeEngine object passed as the second argument. Once this +** function returns, the first key of merged data may be read from the +** MergeEngine object in the usual fashion. +** +** If argument eMode is INCRINIT_ROOT, then it is assumed that any IncrMerge +** objects attached to the PmaReader objects that the merger reads from have +** already been populated, but that they have not yet populated aFile[0] and +** set the PmaReader objects up to read from it. In this case all that is +** required is to call vdbePmaReaderNext() on each PmaReader to point it at +** its first key. +** +** Otherwise, if eMode is any value other than INCRINIT_ROOT, then use +** vdbePmaReaderIncrMergeInit() to initialize each PmaReader that feeds data +** to pMerger. +** +** SQLITE_OK is returned if successful, or an SQLite error code otherwise. +*/ +static int vdbeMergeEngineInit( + SortSubtask *pTask, /* Thread that will run pMerger */ + MergeEngine *pMerger, /* MergeEngine to initialize */ + int eMode /* One of the INCRINIT_XXX constants */ +){ + int rc = SQLITE_OK; /* Return code */ + int i; /* For looping over PmaReader objects */ + int nTree; /* Number of subtrees to merge */ + + /* Failure to allocate the merge would have been detected prior to + ** invoking this routine */ + assert( pMerger!=0 ); + + /* eMode is always INCRINIT_NORMAL in single-threaded mode */ + assert( SQLITE_MAX_WORKER_THREADS>0 || eMode==INCRINIT_NORMAL ); + + /* Verify that the MergeEngine is assigned to a single thread */ + assert( pMerger->pTask==0 ); + pMerger->pTask = pTask; + + nTree = pMerger->nTree; + for(i=0; i<nTree; i++){ + if( SQLITE_MAX_WORKER_THREADS>0 && eMode==INCRINIT_ROOT ){ + /* PmaReaders should be normally initialized in order, as if they are + ** reading from the same temp file this makes for more linear file IO. + ** However, in the INCRINIT_ROOT case, if PmaReader aReadr[nTask-1] is + ** in use it will block the vdbePmaReaderNext() call while it uses + ** the main thread to fill its buffer. So calling PmaReaderNext() + ** on this PmaReader before any of the multi-threaded PmaReaders takes + ** better advantage of multi-processor hardware. */ + rc = vdbePmaReaderNext(&pMerger->aReadr[nTree-i-1]); + }else{ + rc = vdbePmaReaderIncrInit(&pMerger->aReadr[i], INCRINIT_NORMAL); + } + if( rc!=SQLITE_OK ) return rc; + } + + for(i=pMerger->nTree-1; i>0; i--){ + vdbeMergeEngineCompare(pMerger, i); + } + return pTask->pUnpacked->errCode; +} + +/* +** The PmaReader passed as the first argument is guaranteed to be an +** incremental-reader (pReadr->pIncr!=0). This function serves to open +** and/or initialize the temp file related fields of the IncrMerge +** object at (pReadr->pIncr). +** +** If argument eMode is set to INCRINIT_NORMAL, then all PmaReaders +** in the sub-tree headed by pReadr are also initialized. Data is then +** loaded into the buffers belonging to pReadr and it is set to point to +** the first key in its range. +** +** If argument eMode is set to INCRINIT_TASK, then pReadr is guaranteed +** to be a multi-threaded PmaReader and this function is being called in a +** background thread. In this case all PmaReaders in the sub-tree are +** initialized as for INCRINIT_NORMAL and the aFile[1] buffer belonging to +** pReadr is populated. However, pReadr itself is not set up to point +** to its first key. A call to vdbePmaReaderNext() is still required to do +** that. +** +** The reason this function does not call vdbePmaReaderNext() immediately +** in the INCRINIT_TASK case is that vdbePmaReaderNext() assumes that it has +** to block on thread (pTask->thread) before accessing aFile[1]. But, since +** this entire function is being run by thread (pTask->thread), that will +** lead to the current background thread attempting to join itself. +** +** Finally, if argument eMode is set to INCRINIT_ROOT, it may be assumed +** that pReadr->pIncr is a multi-threaded IncrMerge objects, and that all +** child-trees have already been initialized using IncrInit(INCRINIT_TASK). +** In this case vdbePmaReaderNext() is called on all child PmaReaders and +** the current PmaReader set to point to the first key in its range. +** +** SQLITE_OK is returned if successful, or an SQLite error code otherwise. +*/ +static int vdbePmaReaderIncrMergeInit(PmaReader *pReadr, int eMode){ + int rc = SQLITE_OK; + IncrMerger *pIncr = pReadr->pIncr; + SortSubtask *pTask = pIncr->pTask; + sqlite3 *db = pTask->pSorter->db; + + /* eMode is always INCRINIT_NORMAL in single-threaded mode */ + assert( SQLITE_MAX_WORKER_THREADS>0 || eMode==INCRINIT_NORMAL ); + + rc = vdbeMergeEngineInit(pTask, pIncr->pMerger, eMode); + + /* Set up the required files for pIncr. A multi-threaded IncrMerge object + ** requires two temp files to itself, whereas a single-threaded object + ** only requires a region of pTask->file2. */ + if( rc==SQLITE_OK ){ + int mxSz = pIncr->mxSz; +#if SQLITE_MAX_WORKER_THREADS>0 + if( pIncr->bUseThread ){ + rc = vdbeSorterOpenTempFile(db, mxSz, &pIncr->aFile[0].pFd); + if( rc==SQLITE_OK ){ + rc = vdbeSorterOpenTempFile(db, mxSz, &pIncr->aFile[1].pFd); + } + }else +#endif + /*if( !pIncr->bUseThread )*/{ + if( pTask->file2.pFd==0 ){ + assert( pTask->file2.iEof>0 ); + rc = vdbeSorterOpenTempFile(db, pTask->file2.iEof, &pTask->file2.pFd); + pTask->file2.iEof = 0; + } + if( rc==SQLITE_OK ){ + pIncr->aFile[1].pFd = pTask->file2.pFd; + pIncr->iStartOff = pTask->file2.iEof; + pTask->file2.iEof += mxSz; + } + } + } + +#if SQLITE_MAX_WORKER_THREADS>0 + if( rc==SQLITE_OK && pIncr->bUseThread ){ + /* Use the current thread to populate aFile[1], even though this + ** PmaReader is multi-threaded. If this is an INCRINIT_TASK object, + ** then this function is already running in background thread + ** pIncr->pTask->thread. + ** + ** If this is the INCRINIT_ROOT object, then it is running in the + ** main VDBE thread. But that is Ok, as that thread cannot return + ** control to the VDBE or proceed with anything useful until the + ** first results are ready from this merger object anyway. + */ + assert( eMode==INCRINIT_ROOT || eMode==INCRINIT_TASK ); + rc = vdbeIncrPopulate(pIncr); + } +#endif + + if( rc==SQLITE_OK && (SQLITE_MAX_WORKER_THREADS==0 || eMode!=INCRINIT_TASK) ){ + rc = vdbePmaReaderNext(pReadr); + } + + return rc; +} + +#if SQLITE_MAX_WORKER_THREADS>0 +/* +** The main routine for vdbePmaReaderIncrMergeInit() operations run in +** background threads. +*/ +static void *vdbePmaReaderBgIncrInit(void *pCtx){ + PmaReader *pReader = (PmaReader*)pCtx; + void *pRet = SQLITE_INT_TO_PTR( + vdbePmaReaderIncrMergeInit(pReader,INCRINIT_TASK) + ); + pReader->pIncr->pTask->bDone = 1; + return pRet; +} +#endif + +/* +** If the PmaReader passed as the first argument is not an incremental-reader +** (if pReadr->pIncr==0), then this function is a no-op. Otherwise, it invokes +** the vdbePmaReaderIncrMergeInit() function with the parameters passed to +** this routine to initialize the incremental merge. +** +** If the IncrMerger object is multi-threaded (IncrMerger.bUseThread==1), +** then a background thread is launched to call vdbePmaReaderIncrMergeInit(). +** Or, if the IncrMerger is single threaded, the same function is called +** using the current thread. +*/ +static int vdbePmaReaderIncrInit(PmaReader *pReadr, int eMode){ + IncrMerger *pIncr = pReadr->pIncr; /* Incremental merger */ + int rc = SQLITE_OK; /* Return code */ + if( pIncr ){ +#if SQLITE_MAX_WORKER_THREADS>0 + assert( pIncr->bUseThread==0 || eMode==INCRINIT_TASK ); + if( pIncr->bUseThread ){ + void *pCtx = (void*)pReadr; + rc = vdbeSorterCreateThread(pIncr->pTask, vdbePmaReaderBgIncrInit, pCtx); + }else +#endif + { + rc = vdbePmaReaderIncrMergeInit(pReadr, eMode); + } + } + return rc; +} + +/* +** Allocate a new MergeEngine object to merge the contents of nPMA level-0 +** PMAs from pTask->file. If no error occurs, set *ppOut to point to +** the new object and return SQLITE_OK. Or, if an error does occur, set *ppOut +** to NULL and return an SQLite error code. +** +** When this function is called, *piOffset is set to the offset of the +** first PMA to read from pTask->file. Assuming no error occurs, it is +** set to the offset immediately following the last byte of the last +** PMA before returning. If an error does occur, then the final value of +** *piOffset is undefined. +*/ +static int vdbeMergeEngineLevel0( + SortSubtask *pTask, /* Sorter task to read from */ + int nPMA, /* Number of PMAs to read */ + i64 *piOffset, /* IN/OUT: Readr offset in pTask->file */ + MergeEngine **ppOut /* OUT: New merge-engine */ +){ + MergeEngine *pNew; /* Merge engine to return */ + i64 iOff = *piOffset; + int i; + int rc = SQLITE_OK; + + *ppOut = pNew = vdbeMergeEngineNew(nPMA); + if( pNew==0 ) rc = SQLITE_NOMEM_BKPT; + + for(i=0; i<nPMA && rc==SQLITE_OK; i++){ + i64 nDummy = 0; + PmaReader *pReadr = &pNew->aReadr[i]; + rc = vdbePmaReaderInit(pTask, &pTask->file, iOff, pReadr, &nDummy); + iOff = pReadr->iEof; + } + + if( rc!=SQLITE_OK ){ + vdbeMergeEngineFree(pNew); + *ppOut = 0; + } + *piOffset = iOff; + return rc; +} + +/* +** Return the depth of a tree comprising nPMA PMAs, assuming a fanout of +** SORTER_MAX_MERGE_COUNT. The returned value does not include leaf nodes. +** +** i.e. +** +** nPMA<=16 -> TreeDepth() == 0 +** nPMA<=256 -> TreeDepth() == 1 +** nPMA<=65536 -> TreeDepth() == 2 +*/ +static int vdbeSorterTreeDepth(int nPMA){ + int nDepth = 0; + i64 nDiv = SORTER_MAX_MERGE_COUNT; + while( nDiv < (i64)nPMA ){ + nDiv = nDiv * SORTER_MAX_MERGE_COUNT; + nDepth++; + } + return nDepth; +} + +/* +** pRoot is the root of an incremental merge-tree with depth nDepth (according +** to vdbeSorterTreeDepth()). pLeaf is the iSeq'th leaf to be added to the +** tree, counting from zero. This function adds pLeaf to the tree. +** +** If successful, SQLITE_OK is returned. If an error occurs, an SQLite error +** code is returned and pLeaf is freed. +*/ +static int vdbeSorterAddToTree( + SortSubtask *pTask, /* Task context */ + int nDepth, /* Depth of tree according to TreeDepth() */ + int iSeq, /* Sequence number of leaf within tree */ + MergeEngine *pRoot, /* Root of tree */ + MergeEngine *pLeaf /* Leaf to add to tree */ +){ + int rc = SQLITE_OK; + int nDiv = 1; + int i; + MergeEngine *p = pRoot; + IncrMerger *pIncr; + + rc = vdbeIncrMergerNew(pTask, pLeaf, &pIncr); + + for(i=1; i<nDepth; i++){ + nDiv = nDiv * SORTER_MAX_MERGE_COUNT; + } + + for(i=1; i<nDepth && rc==SQLITE_OK; i++){ + int iIter = (iSeq / nDiv) % SORTER_MAX_MERGE_COUNT; + PmaReader *pReadr = &p->aReadr[iIter]; + + if( pReadr->pIncr==0 ){ + MergeEngine *pNew = vdbeMergeEngineNew(SORTER_MAX_MERGE_COUNT); + if( pNew==0 ){ + rc = SQLITE_NOMEM_BKPT; + }else{ + rc = vdbeIncrMergerNew(pTask, pNew, &pReadr->pIncr); + } + } + if( rc==SQLITE_OK ){ + p = pReadr->pIncr->pMerger; + nDiv = nDiv / SORTER_MAX_MERGE_COUNT; + } + } + + if( rc==SQLITE_OK ){ + p->aReadr[iSeq % SORTER_MAX_MERGE_COUNT].pIncr = pIncr; + }else{ + vdbeIncrFree(pIncr); + } + return rc; +} + +/* +** This function is called as part of a SorterRewind() operation on a sorter +** that has already written two or more level-0 PMAs to one or more temp +** files. It builds a tree of MergeEngine/IncrMerger/PmaReader objects that +** can be used to incrementally merge all PMAs on disk. +** +** If successful, SQLITE_OK is returned and *ppOut set to point to the +** MergeEngine object at the root of the tree before returning. Or, if an +** error occurs, an SQLite error code is returned and the final value +** of *ppOut is undefined. +*/ +static int vdbeSorterMergeTreeBuild( + VdbeSorter *pSorter, /* The VDBE cursor that implements the sort */ + MergeEngine **ppOut /* Write the MergeEngine here */ +){ + MergeEngine *pMain = 0; + int rc = SQLITE_OK; + int iTask; + +#if SQLITE_MAX_WORKER_THREADS>0 + /* If the sorter uses more than one task, then create the top-level + ** MergeEngine here. This MergeEngine will read data from exactly + ** one PmaReader per sub-task. */ + assert( pSorter->bUseThreads || pSorter->nTask==1 ); + if( pSorter->nTask>1 ){ + pMain = vdbeMergeEngineNew(pSorter->nTask); + if( pMain==0 ) rc = SQLITE_NOMEM_BKPT; + } +#endif + + for(iTask=0; rc==SQLITE_OK && iTask<pSorter->nTask; iTask++){ + SortSubtask *pTask = &pSorter->aTask[iTask]; + assert( pTask->nPMA>0 || SQLITE_MAX_WORKER_THREADS>0 ); + if( SQLITE_MAX_WORKER_THREADS==0 || pTask->nPMA ){ + MergeEngine *pRoot = 0; /* Root node of tree for this task */ + int nDepth = vdbeSorterTreeDepth(pTask->nPMA); + i64 iReadOff = 0; + + if( pTask->nPMA<=SORTER_MAX_MERGE_COUNT ){ + rc = vdbeMergeEngineLevel0(pTask, pTask->nPMA, &iReadOff, &pRoot); + }else{ + int i; + int iSeq = 0; + pRoot = vdbeMergeEngineNew(SORTER_MAX_MERGE_COUNT); + if( pRoot==0 ) rc = SQLITE_NOMEM_BKPT; + for(i=0; i<pTask->nPMA && rc==SQLITE_OK; i += SORTER_MAX_MERGE_COUNT){ + MergeEngine *pMerger = 0; /* New level-0 PMA merger */ + int nReader; /* Number of level-0 PMAs to merge */ + + nReader = MIN(pTask->nPMA - i, SORTER_MAX_MERGE_COUNT); + rc = vdbeMergeEngineLevel0(pTask, nReader, &iReadOff, &pMerger); + if( rc==SQLITE_OK ){ + rc = vdbeSorterAddToTree(pTask, nDepth, iSeq++, pRoot, pMerger); + } + } + } + + if( rc==SQLITE_OK ){ +#if SQLITE_MAX_WORKER_THREADS>0 + if( pMain!=0 ){ + rc = vdbeIncrMergerNew(pTask, pRoot, &pMain->aReadr[iTask].pIncr); + }else +#endif + { + assert( pMain==0 ); + pMain = pRoot; + } + }else{ + vdbeMergeEngineFree(pRoot); + } + } + } + + if( rc!=SQLITE_OK ){ + vdbeMergeEngineFree(pMain); + pMain = 0; + } + *ppOut = pMain; + return rc; +} + +/* +** This function is called as part of an sqlite3VdbeSorterRewind() operation +** on a sorter that has written two or more PMAs to temporary files. It sets +** up either VdbeSorter.pMerger (for single threaded sorters) or pReader +** (for multi-threaded sorters) so that it can be used to iterate through +** all records stored in the sorter. +** +** SQLITE_OK is returned if successful, or an SQLite error code otherwise. +*/ +static int vdbeSorterSetupMerge(VdbeSorter *pSorter){ + int rc; /* Return code */ + SortSubtask *pTask0 = &pSorter->aTask[0]; + MergeEngine *pMain = 0; +#if SQLITE_MAX_WORKER_THREADS + sqlite3 *db = pTask0->pSorter->db; + int i; + SorterCompare xCompare = vdbeSorterGetCompare(pSorter); + for(i=0; i<pSorter->nTask; i++){ + pSorter->aTask[i].xCompare = xCompare; + } +#endif + + rc = vdbeSorterMergeTreeBuild(pSorter, &pMain); + if( rc==SQLITE_OK ){ +#if SQLITE_MAX_WORKER_THREADS + assert( pSorter->bUseThreads==0 || pSorter->nTask>1 ); + if( pSorter->bUseThreads ){ + int iTask; + PmaReader *pReadr = 0; + SortSubtask *pLast = &pSorter->aTask[pSorter->nTask-1]; + rc = vdbeSortAllocUnpacked(pLast); + if( rc==SQLITE_OK ){ + pReadr = (PmaReader*)sqlite3DbMallocZero(db, sizeof(PmaReader)); + pSorter->pReader = pReadr; + if( pReadr==0 ) rc = SQLITE_NOMEM_BKPT; + } + if( rc==SQLITE_OK ){ + rc = vdbeIncrMergerNew(pLast, pMain, &pReadr->pIncr); + if( rc==SQLITE_OK ){ + vdbeIncrMergerSetThreads(pReadr->pIncr); + for(iTask=0; iTask<(pSorter->nTask-1); iTask++){ + IncrMerger *pIncr; + if( (pIncr = pMain->aReadr[iTask].pIncr) ){ + vdbeIncrMergerSetThreads(pIncr); + assert( pIncr->pTask!=pLast ); + } + } + for(iTask=0; rc==SQLITE_OK && iTask<pSorter->nTask; iTask++){ + /* Check that: + ** + ** a) The incremental merge object is configured to use the + ** right task, and + ** b) If it is using task (nTask-1), it is configured to run + ** in single-threaded mode. This is important, as the + ** root merge (INCRINIT_ROOT) will be using the same task + ** object. + */ + PmaReader *p = &pMain->aReadr[iTask]; + assert( p->pIncr==0 || ( + (p->pIncr->pTask==&pSorter->aTask[iTask]) /* a */ + && (iTask!=pSorter->nTask-1 || p->pIncr->bUseThread==0) /* b */ + )); + rc = vdbePmaReaderIncrInit(p, INCRINIT_TASK); + } + } + pMain = 0; + } + if( rc==SQLITE_OK ){ + rc = vdbePmaReaderIncrMergeInit(pReadr, INCRINIT_ROOT); + } + }else +#endif + { + rc = vdbeMergeEngineInit(pTask0, pMain, INCRINIT_NORMAL); + pSorter->pMerger = pMain; + pMain = 0; + } + } + + if( rc!=SQLITE_OK ){ + vdbeMergeEngineFree(pMain); + } + return rc; +} + + +/* +** Once the sorter has been populated by calls to sqlite3VdbeSorterWrite, +** this function is called to prepare for iterating through the records +** in sorted order. +*/ +int sqlite3VdbeSorterRewind(const VdbeCursor *pCsr, int *pbEof){ + VdbeSorter *pSorter; + int rc = SQLITE_OK; /* Return code */ + + assert( pCsr->eCurType==CURTYPE_SORTER ); + pSorter = pCsr->uc.pSorter; + assert( pSorter ); + + /* If no data has been written to disk, then do not do so now. Instead, + ** sort the VdbeSorter.pRecord list. The vdbe layer will read data directly + ** from the in-memory list. */ + if( pSorter->bUsePMA==0 ){ + if( pSorter->list.pList ){ + *pbEof = 0; + rc = vdbeSorterSort(&pSorter->aTask[0], &pSorter->list); + }else{ + *pbEof = 1; + } + return rc; + } + + /* Write the current in-memory list to a PMA. When the VdbeSorterWrite() + ** function flushes the contents of memory to disk, it immediately always + ** creates a new list consisting of a single key immediately afterwards. + ** So the list is never empty at this point. */ + assert( pSorter->list.pList ); + rc = vdbeSorterFlushPMA(pSorter); + + /* Join all threads */ + rc = vdbeSorterJoinAll(pSorter, rc); + + vdbeSorterRewindDebug("rewind"); + + /* Assuming no errors have occurred, set up a merger structure to + ** incrementally read and merge all remaining PMAs. */ + assert( pSorter->pReader==0 ); + if( rc==SQLITE_OK ){ + rc = vdbeSorterSetupMerge(pSorter); + *pbEof = 0; + } + + vdbeSorterRewindDebug("rewinddone"); + return rc; +} + +/* +** Advance to the next element in the sorter. Return value: +** +** SQLITE_OK success +** SQLITE_DONE end of data +** otherwise some kind of error. +*/ +int sqlite3VdbeSorterNext(sqlite3 *db, const VdbeCursor *pCsr){ + VdbeSorter *pSorter; + int rc; /* Return code */ + + assert( pCsr->eCurType==CURTYPE_SORTER ); + pSorter = pCsr->uc.pSorter; + assert( pSorter->bUsePMA || (pSorter->pReader==0 && pSorter->pMerger==0) ); + if( pSorter->bUsePMA ){ + assert( pSorter->pReader==0 || pSorter->pMerger==0 ); + assert( pSorter->bUseThreads==0 || pSorter->pReader ); + assert( pSorter->bUseThreads==1 || pSorter->pMerger ); +#if SQLITE_MAX_WORKER_THREADS>0 + if( pSorter->bUseThreads ){ + rc = vdbePmaReaderNext(pSorter->pReader); + if( rc==SQLITE_OK && pSorter->pReader->pFd==0 ) rc = SQLITE_DONE; + }else +#endif + /*if( !pSorter->bUseThreads )*/ { + int res = 0; + assert( pSorter->pMerger!=0 ); + assert( pSorter->pMerger->pTask==(&pSorter->aTask[0]) ); + rc = vdbeMergeEngineStep(pSorter->pMerger, &res); + if( rc==SQLITE_OK && res ) rc = SQLITE_DONE; + } + }else{ + SorterRecord *pFree = pSorter->list.pList; + pSorter->list.pList = pFree->u.pNext; + pFree->u.pNext = 0; + if( pSorter->list.aMemory==0 ) vdbeSorterRecordFree(db, pFree); + rc = pSorter->list.pList ? SQLITE_OK : SQLITE_DONE; + } + return rc; +} + +/* +** Return a pointer to a buffer owned by the sorter that contains the +** current key. +*/ +static void *vdbeSorterRowkey( + const VdbeSorter *pSorter, /* Sorter object */ + int *pnKey /* OUT: Size of current key in bytes */ +){ + void *pKey; + if( pSorter->bUsePMA ){ + PmaReader *pReader; +#if SQLITE_MAX_WORKER_THREADS>0 + if( pSorter->bUseThreads ){ + pReader = pSorter->pReader; + }else +#endif + /*if( !pSorter->bUseThreads )*/{ + pReader = &pSorter->pMerger->aReadr[pSorter->pMerger->aTree[1]]; + } + *pnKey = pReader->nKey; + pKey = pReader->aKey; + }else{ + *pnKey = pSorter->list.pList->nVal; + pKey = SRVAL(pSorter->list.pList); + } + return pKey; +} + +/* +** Copy the current sorter key into the memory cell pOut. +*/ +int sqlite3VdbeSorterRowkey(const VdbeCursor *pCsr, Mem *pOut){ + VdbeSorter *pSorter; + void *pKey; int nKey; /* Sorter key to copy into pOut */ + + assert( pCsr->eCurType==CURTYPE_SORTER ); + pSorter = pCsr->uc.pSorter; + pKey = vdbeSorterRowkey(pSorter, &nKey); + if( sqlite3VdbeMemClearAndResize(pOut, nKey) ){ + return SQLITE_NOMEM_BKPT; + } + pOut->n = nKey; + MemSetTypeFlag(pOut, MEM_Blob); + memcpy(pOut->z, pKey, nKey); + + return SQLITE_OK; +} + +/* +** Compare the key in memory cell pVal with the key that the sorter cursor +** passed as the first argument currently points to. For the purposes of +** the comparison, ignore the rowid field at the end of each record. +** +** If the sorter cursor key contains any NULL values, consider it to be +** less than pVal. Even if pVal also contains NULL values. +** +** If an error occurs, return an SQLite error code (i.e. SQLITE_NOMEM). +** Otherwise, set *pRes to a negative, zero or positive value if the +** key in pVal is smaller than, equal to or larger than the current sorter +** key. +** +** This routine forms the core of the OP_SorterCompare opcode, which in +** turn is used to verify uniqueness when constructing a UNIQUE INDEX. +*/ +int sqlite3VdbeSorterCompare( + const VdbeCursor *pCsr, /* Sorter cursor */ + Mem *pVal, /* Value to compare to current sorter key */ + int nKeyCol, /* Compare this many columns */ + int *pRes /* OUT: Result of comparison */ +){ + VdbeSorter *pSorter; + UnpackedRecord *r2; + KeyInfo *pKeyInfo; + int i; + void *pKey; int nKey; /* Sorter key to compare pVal with */ + + assert( pCsr->eCurType==CURTYPE_SORTER ); + pSorter = pCsr->uc.pSorter; + r2 = pSorter->pUnpacked; + pKeyInfo = pCsr->pKeyInfo; + if( r2==0 ){ + r2 = pSorter->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); + if( r2==0 ) return SQLITE_NOMEM_BKPT; + r2->nField = nKeyCol; + } + assert( r2->nField==nKeyCol ); + + pKey = vdbeSorterRowkey(pSorter, &nKey); + sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, r2); + for(i=0; i<nKeyCol; i++){ + if( r2->aMem[i].flags & MEM_Null ){ + *pRes = -1; + return SQLITE_OK; + } + } + + *pRes = sqlite3VdbeRecordCompare(pVal->n, pVal->z, r2); + return SQLITE_OK; +} |