summaryrefslogtreecommitdiffstats
path: root/src/where.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 14:07:11 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 14:07:11 +0000
commit63847496f14c813a5d80efd5b7de0f1294ffe1e3 (patch)
tree01c7571c7c762ceee70638549a99834fdd7c411b /src/where.c
parentInitial commit. (diff)
downloadsqlite3-63847496f14c813a5d80efd5b7de0f1294ffe1e3.tar.xz
sqlite3-63847496f14c813a5d80efd5b7de0f1294ffe1e3.zip
Adding upstream version 3.45.1.upstream/3.45.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/where.c')
-rw-r--r--src/where.c7030
1 files changed, 7030 insertions, 0 deletions
diff --git a/src/where.c b/src/where.c
new file mode 100644
index 0000000..7781366
--- /dev/null
+++ b/src/where.c
@@ -0,0 +1,7030 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This module contains C code that generates VDBE code used to process
+** the WHERE clause of SQL statements. This module is responsible for
+** generating the code that loops through a table looking for applicable
+** rows. Indices are selected and used to speed the search when doing
+** so is applicable. Because this module is responsible for selecting
+** indices, you might also think of this module as the "query optimizer".
+*/
+#include "sqliteInt.h"
+#include "whereInt.h"
+
+/*
+** Extra information appended to the end of sqlite3_index_info but not
+** visible to the xBestIndex function, at least not directly. The
+** sqlite3_vtab_collation() interface knows how to reach it, however.
+**
+** This object is not an API and can be changed from one release to the
+** next. As long as allocateIndexInfo() and sqlite3_vtab_collation()
+** agree on the structure, all will be well.
+*/
+typedef struct HiddenIndexInfo HiddenIndexInfo;
+struct HiddenIndexInfo {
+ WhereClause *pWC; /* The Where clause being analyzed */
+ Parse *pParse; /* The parsing context */
+ int eDistinct; /* Value to return from sqlite3_vtab_distinct() */
+ u32 mIn; /* Mask of terms that are <col> IN (...) */
+ u32 mHandleIn; /* Terms that vtab will handle as <col> IN (...) */
+ sqlite3_value *aRhs[1]; /* RHS values for constraints. MUST BE LAST
+ ** because extra space is allocated to hold up
+ ** to nTerm such values */
+};
+
+/* Forward declaration of methods */
+static int whereLoopResize(sqlite3*, WhereLoop*, int);
+
+/*
+** Return the estimated number of output rows from a WHERE clause
+*/
+LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
+ return pWInfo->nRowOut;
+}
+
+/*
+** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
+** WHERE clause returns outputs for DISTINCT processing.
+*/
+int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
+ return pWInfo->eDistinct;
+}
+
+/*
+** Return the number of ORDER BY terms that are satisfied by the
+** WHERE clause. A return of 0 means that the output must be
+** completely sorted. A return equal to the number of ORDER BY
+** terms means that no sorting is needed at all. A return that
+** is positive but less than the number of ORDER BY terms means that
+** block sorting is required.
+*/
+int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
+ return pWInfo->nOBSat<0 ? 0 : pWInfo->nOBSat;
+}
+
+/*
+** In the ORDER BY LIMIT optimization, if the inner-most loop is known
+** to emit rows in increasing order, and if the last row emitted by the
+** inner-most loop did not fit within the sorter, then we can skip all
+** subsequent rows for the current iteration of the inner loop (because they
+** will not fit in the sorter either) and continue with the second inner
+** loop - the loop immediately outside the inner-most.
+**
+** When a row does not fit in the sorter (because the sorter already
+** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
+** label returned by this function.
+**
+** If the ORDER BY LIMIT optimization applies, the jump destination should
+** be the continuation for the second-inner-most loop. If the ORDER BY
+** LIMIT optimization does not apply, then the jump destination should
+** be the continuation for the inner-most loop.
+**
+** It is always safe for this routine to return the continuation of the
+** inner-most loop, in the sense that a correct answer will result.
+** Returning the continuation the second inner loop is an optimization
+** that might make the code run a little faster, but should not change
+** the final answer.
+*/
+int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
+ WhereLevel *pInner;
+ if( !pWInfo->bOrderedInnerLoop ){
+ /* The ORDER BY LIMIT optimization does not apply. Jump to the
+ ** continuation of the inner-most loop. */
+ return pWInfo->iContinue;
+ }
+ pInner = &pWInfo->a[pWInfo->nLevel-1];
+ assert( pInner->addrNxt!=0 );
+ return pInner->pRJ ? pWInfo->iContinue : pInner->addrNxt;
+}
+
+/*
+** While generating code for the min/max optimization, after handling
+** the aggregate-step call to min() or max(), check to see if any
+** additional looping is required. If the output order is such that
+** we are certain that the correct answer has already been found, then
+** code an OP_Goto to by pass subsequent processing.
+**
+** Any extra OP_Goto that is coded here is an optimization. The
+** correct answer should be obtained regardless. This OP_Goto just
+** makes the answer appear faster.
+*/
+void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){
+ WhereLevel *pInner;
+ int i;
+ if( !pWInfo->bOrderedInnerLoop ) return;
+ if( pWInfo->nOBSat==0 ) return;
+ for(i=pWInfo->nLevel-1; i>=0; i--){
+ pInner = &pWInfo->a[i];
+ if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){
+ sqlite3VdbeGoto(v, pInner->addrNxt);
+ return;
+ }
+ }
+ sqlite3VdbeGoto(v, pWInfo->iBreak);
+}
+
+/*
+** Return the VDBE address or label to jump to in order to continue
+** immediately with the next row of a WHERE clause.
+*/
+int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
+ assert( pWInfo->iContinue!=0 );
+ return pWInfo->iContinue;
+}
+
+/*
+** Return the VDBE address or label to jump to in order to break
+** out of a WHERE loop.
+*/
+int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
+ return pWInfo->iBreak;
+}
+
+/*
+** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
+** operate directly on the rowids returned by a WHERE clause. Return
+** ONEPASS_SINGLE (1) if the statement can operation directly because only
+** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass
+** optimization can be used on multiple
+**
+** If the ONEPASS optimization is used (if this routine returns true)
+** then also write the indices of open cursors used by ONEPASS
+** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data
+** table and iaCur[1] gets the cursor used by an auxiliary index.
+** Either value may be -1, indicating that cursor is not used.
+** Any cursors returned will have been opened for writing.
+**
+** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
+** unable to use the ONEPASS optimization.
+*/
+int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
+ memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
+#ifdef WHERETRACE_ENABLED
+ if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
+ sqlite3DebugPrintf("%s cursors: %d %d\n",
+ pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
+ aiCur[0], aiCur[1]);
+ }
+#endif
+ return pWInfo->eOnePass;
+}
+
+/*
+** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
+** the data cursor to the row selected by the index cursor.
+*/
+int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){
+ return pWInfo->bDeferredSeek;
+}
+
+/*
+** Move the content of pSrc into pDest
+*/
+static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
+ pDest->n = pSrc->n;
+ memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
+}
+
+/*
+** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
+**
+** The new entry might overwrite an existing entry, or it might be
+** appended, or it might be discarded. Do whatever is the right thing
+** so that pSet keeps the N_OR_COST best entries seen so far.
+*/
+static int whereOrInsert(
+ WhereOrSet *pSet, /* The WhereOrSet to be updated */
+ Bitmask prereq, /* Prerequisites of the new entry */
+ LogEst rRun, /* Run-cost of the new entry */
+ LogEst nOut /* Number of outputs for the new entry */
+){
+ u16 i;
+ WhereOrCost *p;
+ for(i=pSet->n, p=pSet->a; i>0; i--, p++){
+ if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
+ goto whereOrInsert_done;
+ }
+ if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
+ return 0;
+ }
+ }
+ if( pSet->n<N_OR_COST ){
+ p = &pSet->a[pSet->n++];
+ p->nOut = nOut;
+ }else{
+ p = pSet->a;
+ for(i=1; i<pSet->n; i++){
+ if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
+ }
+ if( p->rRun<=rRun ) return 0;
+ }
+whereOrInsert_done:
+ p->prereq = prereq;
+ p->rRun = rRun;
+ if( p->nOut>nOut ) p->nOut = nOut;
+ return 1;
+}
+
+/*
+** Return the bitmask for the given cursor number. Return 0 if
+** iCursor is not in the set.
+*/
+Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
+ int i;
+ assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
+ assert( pMaskSet->n>0 || pMaskSet->ix[0]<0 );
+ assert( iCursor>=-1 );
+ if( pMaskSet->ix[0]==iCursor ){
+ return 1;
+ }
+ for(i=1; i<pMaskSet->n; i++){
+ if( pMaskSet->ix[i]==iCursor ){
+ return MASKBIT(i);
+ }
+ }
+ return 0;
+}
+
+/* Allocate memory that is automatically freed when pWInfo is freed.
+*/
+void *sqlite3WhereMalloc(WhereInfo *pWInfo, u64 nByte){
+ WhereMemBlock *pBlock;
+ pBlock = sqlite3DbMallocRawNN(pWInfo->pParse->db, nByte+sizeof(*pBlock));
+ if( pBlock ){
+ pBlock->pNext = pWInfo->pMemToFree;
+ pBlock->sz = nByte;
+ pWInfo->pMemToFree = pBlock;
+ pBlock++;
+ }
+ return (void*)pBlock;
+}
+void *sqlite3WhereRealloc(WhereInfo *pWInfo, void *pOld, u64 nByte){
+ void *pNew = sqlite3WhereMalloc(pWInfo, nByte);
+ if( pNew && pOld ){
+ WhereMemBlock *pOldBlk = (WhereMemBlock*)pOld;
+ pOldBlk--;
+ assert( pOldBlk->sz<nByte );
+ memcpy(pNew, pOld, pOldBlk->sz);
+ }
+ return pNew;
+}
+
+/*
+** Create a new mask for cursor iCursor.
+**
+** There is one cursor per table in the FROM clause. The number of
+** tables in the FROM clause is limited by a test early in the
+** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
+** array will never overflow.
+*/
+static void createMask(WhereMaskSet *pMaskSet, int iCursor){
+ assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
+ pMaskSet->ix[pMaskSet->n++] = iCursor;
+}
+
+/*
+** If the right-hand branch of the expression is a TK_COLUMN, then return
+** a pointer to the right-hand branch. Otherwise, return NULL.
+*/
+static Expr *whereRightSubexprIsColumn(Expr *p){
+ p = sqlite3ExprSkipCollateAndLikely(p->pRight);
+ if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
+ return p;
+ }
+ return 0;
+}
+
+/*
+** Advance to the next WhereTerm that matches according to the criteria
+** established when the pScan object was initialized by whereScanInit().
+** Return NULL if there are no more matching WhereTerms.
+*/
+static WhereTerm *whereScanNext(WhereScan *pScan){
+ int iCur; /* The cursor on the LHS of the term */
+ i16 iColumn; /* The column on the LHS of the term. -1 for IPK */
+ Expr *pX; /* An expression being tested */
+ WhereClause *pWC; /* Shorthand for pScan->pWC */
+ WhereTerm *pTerm; /* The term being tested */
+ int k = pScan->k; /* Where to start scanning */
+
+ assert( pScan->iEquiv<=pScan->nEquiv );
+ pWC = pScan->pWC;
+ while(1){
+ iColumn = pScan->aiColumn[pScan->iEquiv-1];
+ iCur = pScan->aiCur[pScan->iEquiv-1];
+ assert( pWC!=0 );
+ assert( iCur>=0 );
+ do{
+ for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
+ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 || pTerm->leftCursor<0 );
+ if( pTerm->leftCursor==iCur
+ && pTerm->u.x.leftColumn==iColumn
+ && (iColumn!=XN_EXPR
+ || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
+ pScan->pIdxExpr,iCur)==0)
+ && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_OuterON))
+ ){
+ if( (pTerm->eOperator & WO_EQUIV)!=0
+ && pScan->nEquiv<ArraySize(pScan->aiCur)
+ && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0
+ ){
+ int j;
+ for(j=0; j<pScan->nEquiv; j++){
+ if( pScan->aiCur[j]==pX->iTable
+ && pScan->aiColumn[j]==pX->iColumn ){
+ break;
+ }
+ }
+ if( j==pScan->nEquiv ){
+ pScan->aiCur[j] = pX->iTable;
+ pScan->aiColumn[j] = pX->iColumn;
+ pScan->nEquiv++;
+ }
+ }
+ if( (pTerm->eOperator & pScan->opMask)!=0 ){
+ /* Verify the affinity and collating sequence match */
+ if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
+ CollSeq *pColl;
+ Parse *pParse = pWC->pWInfo->pParse;
+ pX = pTerm->pExpr;
+ if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
+ continue;
+ }
+ assert(pX->pLeft);
+ pColl = sqlite3ExprCompareCollSeq(pParse, pX);
+ if( pColl==0 ) pColl = pParse->db->pDfltColl;
+ if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
+ continue;
+ }
+ }
+ if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
+ && (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0))
+ && pX->op==TK_COLUMN
+ && pX->iTable==pScan->aiCur[0]
+ && pX->iColumn==pScan->aiColumn[0]
+ ){
+ testcase( pTerm->eOperator & WO_IS );
+ continue;
+ }
+ pScan->pWC = pWC;
+ pScan->k = k+1;
+#ifdef WHERETRACE_ENABLED
+ if( sqlite3WhereTrace & 0x20000 ){
+ int ii;
+ sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d",
+ pTerm, pScan->nEquiv);
+ for(ii=0; ii<pScan->nEquiv; ii++){
+ sqlite3DebugPrintf(" {%d:%d}",
+ pScan->aiCur[ii], pScan->aiColumn[ii]);
+ }
+ sqlite3DebugPrintf("\n");
+ }
+#endif
+ return pTerm;
+ }
+ }
+ }
+ pWC = pWC->pOuter;
+ k = 0;
+ }while( pWC!=0 );
+ if( pScan->iEquiv>=pScan->nEquiv ) break;
+ pWC = pScan->pOrigWC;
+ k = 0;
+ pScan->iEquiv++;
+ }
+ return 0;
+}
+
+/*
+** This is whereScanInit() for the case of an index on an expression.
+** It is factored out into a separate tail-recursion subroutine so that
+** the normal whereScanInit() routine, which is a high-runner, does not
+** need to push registers onto the stack as part of its prologue.
+*/
+static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
+ pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
+ return whereScanNext(pScan);
+}
+
+/*
+** Initialize a WHERE clause scanner object. Return a pointer to the
+** first match. Return NULL if there are no matches.
+**
+** The scanner will be searching the WHERE clause pWC. It will look
+** for terms of the form "X <op> <expr>" where X is column iColumn of table
+** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx
+** must be one of the indexes of table iCur.
+**
+** The <op> must be one of the operators described by opMask.
+**
+** If the search is for X and the WHERE clause contains terms of the
+** form X=Y then this routine might also return terms of the form
+** "Y <op> <expr>". The number of levels of transitivity is limited,
+** but is enough to handle most commonly occurring SQL statements.
+**
+** If X is not the INTEGER PRIMARY KEY then X must be compatible with
+** index pIdx.
+*/
+static WhereTerm *whereScanInit(
+ WhereScan *pScan, /* The WhereScan object being initialized */
+ WhereClause *pWC, /* The WHERE clause to be scanned */
+ int iCur, /* Cursor to scan for */
+ int iColumn, /* Column to scan for */
+ u32 opMask, /* Operator(s) to scan for */
+ Index *pIdx /* Must be compatible with this index */
+){
+ pScan->pOrigWC = pWC;
+ pScan->pWC = pWC;
+ pScan->pIdxExpr = 0;
+ pScan->idxaff = 0;
+ pScan->zCollName = 0;
+ pScan->opMask = opMask;
+ pScan->k = 0;
+ pScan->aiCur[0] = iCur;
+ pScan->nEquiv = 1;
+ pScan->iEquiv = 1;
+ if( pIdx ){
+ int j = iColumn;
+ iColumn = pIdx->aiColumn[j];
+ if( iColumn==pIdx->pTable->iPKey ){
+ iColumn = XN_ROWID;
+ }else if( iColumn>=0 ){
+ pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
+ pScan->zCollName = pIdx->azColl[j];
+ }else if( iColumn==XN_EXPR ){
+ pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
+ pScan->zCollName = pIdx->azColl[j];
+ pScan->aiColumn[0] = XN_EXPR;
+ return whereScanInitIndexExpr(pScan);
+ }
+ }else if( iColumn==XN_EXPR ){
+ return 0;
+ }
+ pScan->aiColumn[0] = iColumn;
+ return whereScanNext(pScan);
+}
+
+/*
+** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
+** where X is a reference to the iColumn of table iCur or of index pIdx
+** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
+** the op parameter. Return a pointer to the term. Return 0 if not found.
+**
+** If pIdx!=0 then it must be one of the indexes of table iCur.
+** Search for terms matching the iColumn-th column of pIdx
+** rather than the iColumn-th column of table iCur.
+**
+** The term returned might by Y=<expr> if there is another constraint in
+** the WHERE clause that specifies that X=Y. Any such constraints will be
+** identified by the WO_EQUIV bit in the pTerm->eOperator field. The
+** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
+** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
+** other equivalent values. Hence a search for X will return <expr> if X=A1
+** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
+**
+** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
+** then try for the one with no dependencies on <expr> - in other words where
+** <expr> is a constant expression of some kind. Only return entries of
+** the form "X <op> Y" where Y is a column in another table if no terms of
+** the form "X <op> <const-expr>" exist. If no terms with a constant RHS
+** exist, try to return a term that does not use WO_EQUIV.
+*/
+WhereTerm *sqlite3WhereFindTerm(
+ WhereClause *pWC, /* The WHERE clause to be searched */
+ int iCur, /* Cursor number of LHS */
+ int iColumn, /* Column number of LHS */
+ Bitmask notReady, /* RHS must not overlap with this mask */
+ u32 op, /* Mask of WO_xx values describing operator */
+ Index *pIdx /* Must be compatible with this index, if not NULL */
+){
+ WhereTerm *pResult = 0;
+ WhereTerm *p;
+ WhereScan scan;
+
+ p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
+ op &= WO_EQ|WO_IS;
+ while( p ){
+ if( (p->prereqRight & notReady)==0 ){
+ if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
+ testcase( p->eOperator & WO_IS );
+ return p;
+ }
+ if( pResult==0 ) pResult = p;
+ }
+ p = whereScanNext(&scan);
+ }
+ return pResult;
+}
+
+/*
+** This function searches pList for an entry that matches the iCol-th column
+** of index pIdx.
+**
+** If such an expression is found, its index in pList->a[] is returned. If
+** no expression is found, -1 is returned.
+*/
+static int findIndexCol(
+ Parse *pParse, /* Parse context */
+ ExprList *pList, /* Expression list to search */
+ int iBase, /* Cursor for table associated with pIdx */
+ Index *pIdx, /* Index to match column of */
+ int iCol /* Column of index to match */
+){
+ int i;
+ const char *zColl = pIdx->azColl[iCol];
+
+ for(i=0; i<pList->nExpr; i++){
+ Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
+ if( ALWAYS(p!=0)
+ && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN)
+ && p->iColumn==pIdx->aiColumn[iCol]
+ && p->iTable==iBase
+ ){
+ CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
+ if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
+ return i;
+ }
+ }
+ }
+
+ return -1;
+}
+
+/*
+** Return TRUE if the iCol-th column of index pIdx is NOT NULL
+*/
+static int indexColumnNotNull(Index *pIdx, int iCol){
+ int j;
+ assert( pIdx!=0 );
+ assert( iCol>=0 && iCol<pIdx->nColumn );
+ j = pIdx->aiColumn[iCol];
+ if( j>=0 ){
+ return pIdx->pTable->aCol[j].notNull;
+ }else if( j==(-1) ){
+ return 1;
+ }else{
+ assert( j==(-2) );
+ return 0; /* Assume an indexed expression can always yield a NULL */
+
+ }
+}
+
+/*
+** Return true if the DISTINCT expression-list passed as the third argument
+** is redundant.
+**
+** A DISTINCT list is redundant if any subset of the columns in the
+** DISTINCT list are collectively unique and individually non-null.
+*/
+static int isDistinctRedundant(
+ Parse *pParse, /* Parsing context */
+ SrcList *pTabList, /* The FROM clause */
+ WhereClause *pWC, /* The WHERE clause */
+ ExprList *pDistinct /* The result set that needs to be DISTINCT */
+){
+ Table *pTab;
+ Index *pIdx;
+ int i;
+ int iBase;
+
+ /* If there is more than one table or sub-select in the FROM clause of
+ ** this query, then it will not be possible to show that the DISTINCT
+ ** clause is redundant. */
+ if( pTabList->nSrc!=1 ) return 0;
+ iBase = pTabList->a[0].iCursor;
+ pTab = pTabList->a[0].pTab;
+
+ /* If any of the expressions is an IPK column on table iBase, then return
+ ** true. Note: The (p->iTable==iBase) part of this test may be false if the
+ ** current SELECT is a correlated sub-query.
+ */
+ for(i=0; i<pDistinct->nExpr; i++){
+ Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
+ if( NEVER(p==0) ) continue;
+ if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue;
+ if( p->iTable==iBase && p->iColumn<0 ) return 1;
+ }
+
+ /* Loop through all indices on the table, checking each to see if it makes
+ ** the DISTINCT qualifier redundant. It does so if:
+ **
+ ** 1. The index is itself UNIQUE, and
+ **
+ ** 2. All of the columns in the index are either part of the pDistinct
+ ** list, or else the WHERE clause contains a term of the form "col=X",
+ ** where X is a constant value. The collation sequences of the
+ ** comparison and select-list expressions must match those of the index.
+ **
+ ** 3. All of those index columns for which the WHERE clause does not
+ ** contain a "col=X" term are subject to a NOT NULL constraint.
+ */
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ if( !IsUniqueIndex(pIdx) ) continue;
+ if( pIdx->pPartIdxWhere ) continue;
+ for(i=0; i<pIdx->nKeyCol; i++){
+ if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
+ if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
+ if( indexColumnNotNull(pIdx, i)==0 ) break;
+ }
+ }
+ if( i==pIdx->nKeyCol ){
+ /* This index implies that the DISTINCT qualifier is redundant. */
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+
+/*
+** Estimate the logarithm of the input value to base 2.
+*/
+static LogEst estLog(LogEst N){
+ return N<=10 ? 0 : sqlite3LogEst(N) - 33;
+}
+
+/*
+** Convert OP_Column opcodes to OP_Copy in previously generated code.
+**
+** This routine runs over generated VDBE code and translates OP_Column
+** opcodes into OP_Copy when the table is being accessed via co-routine
+** instead of via table lookup.
+**
+** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
+** cursor iTabCur are transformed into OP_Sequence opcode for the
+** iAutoidxCur cursor, in order to generate unique rowids for the
+** automatic index being generated.
+*/
+static void translateColumnToCopy(
+ Parse *pParse, /* Parsing context */
+ int iStart, /* Translate from this opcode to the end */
+ int iTabCur, /* OP_Column/OP_Rowid references to this table */
+ int iRegister, /* The first column is in this register */
+ int iAutoidxCur /* If non-zero, cursor of autoindex being generated */
+){
+ Vdbe *v = pParse->pVdbe;
+ VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
+ int iEnd = sqlite3VdbeCurrentAddr(v);
+ if( pParse->db->mallocFailed ) return;
+ for(; iStart<iEnd; iStart++, pOp++){
+ if( pOp->p1!=iTabCur ) continue;
+ if( pOp->opcode==OP_Column ){
+#ifdef SQLITE_DEBUG
+ if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
+ printf("TRANSLATE OP_Column to OP_Copy at %d\n", iStart);
+ }
+#endif
+ pOp->opcode = OP_Copy;
+ pOp->p1 = pOp->p2 + iRegister;
+ pOp->p2 = pOp->p3;
+ pOp->p3 = 0;
+ pOp->p5 = 2; /* Cause the MEM_Subtype flag to be cleared */
+ }else if( pOp->opcode==OP_Rowid ){
+#ifdef SQLITE_DEBUG
+ if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
+ printf("TRANSLATE OP_Rowid to OP_Sequence at %d\n", iStart);
+ }
+#endif
+ pOp->opcode = OP_Sequence;
+ pOp->p1 = iAutoidxCur;
+#ifdef SQLITE_ALLOW_ROWID_IN_VIEW
+ if( iAutoidxCur==0 ){
+ pOp->opcode = OP_Null;
+ pOp->p3 = 0;
+ }
+#endif
+ }
+ }
+}
+
+/*
+** Two routines for printing the content of an sqlite3_index_info
+** structure. Used for testing and debugging only. If neither
+** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
+** are no-ops.
+*/
+#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
+static void whereTraceIndexInfoInputs(sqlite3_index_info *p){
+ int i;
+ if( (sqlite3WhereTrace & 0x10)==0 ) return;
+ for(i=0; i<p->nConstraint; i++){
+ sqlite3DebugPrintf(
+ " constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n",
+ i,
+ p->aConstraint[i].iColumn,
+ p->aConstraint[i].iTermOffset,
+ p->aConstraint[i].op,
+ p->aConstraint[i].usable,
+ sqlite3_vtab_collation(p,i));
+ }
+ for(i=0; i<p->nOrderBy; i++){
+ sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
+ i,
+ p->aOrderBy[i].iColumn,
+ p->aOrderBy[i].desc);
+ }
+}
+static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){
+ int i;
+ if( (sqlite3WhereTrace & 0x10)==0 ) return;
+ for(i=0; i<p->nConstraint; i++){
+ sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
+ i,
+ p->aConstraintUsage[i].argvIndex,
+ p->aConstraintUsage[i].omit);
+ }
+ sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
+ sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
+ sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
+ sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
+ sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows);
+}
+#else
+#define whereTraceIndexInfoInputs(A)
+#define whereTraceIndexInfoOutputs(A)
+#endif
+
+/*
+** We know that pSrc is an operand of an outer join. Return true if
+** pTerm is a constraint that is compatible with that join.
+**
+** pTerm must be EP_OuterON if pSrc is the right operand of an
+** outer join. pTerm can be either EP_OuterON or EP_InnerON if pSrc
+** is the left operand of a RIGHT join.
+**
+** See https://sqlite.org/forum/forumpost/206d99a16dd9212f
+** for an example of a WHERE clause constraints that may not be used on
+** the right table of a RIGHT JOIN because the constraint implies a
+** not-NULL condition on the left table of the RIGHT JOIN.
+*/
+static int constraintCompatibleWithOuterJoin(
+ const WhereTerm *pTerm, /* WHERE clause term to check */
+ const SrcItem *pSrc /* Table we are trying to access */
+){
+ assert( (pSrc->fg.jointype&(JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ); /* By caller */
+ testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT );
+ testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ );
+ testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) )
+ testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) );
+ if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON)
+ || pTerm->pExpr->w.iJoin != pSrc->iCursor
+ ){
+ return 0;
+ }
+ if( (pSrc->fg.jointype & (JT_LEFT|JT_RIGHT))!=0
+ && ExprHasProperty(pTerm->pExpr, EP_InnerON)
+ ){
+ return 0;
+ }
+ return 1;
+}
+
+
+
+#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
+/*
+** Return TRUE if the WHERE clause term pTerm is of a form where it
+** could be used with an index to access pSrc, assuming an appropriate
+** index existed.
+*/
+static int termCanDriveIndex(
+ const WhereTerm *pTerm, /* WHERE clause term to check */
+ const SrcItem *pSrc, /* Table we are trying to access */
+ const Bitmask notReady /* Tables in outer loops of the join */
+){
+ char aff;
+ if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
+ if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
+ assert( (pSrc->fg.jointype & JT_RIGHT)==0 );
+ if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0
+ && !constraintCompatibleWithOuterJoin(pTerm,pSrc)
+ ){
+ return 0; /* See https://sqlite.org/forum/forumpost/51e6959f61 */
+ }
+ if( (pTerm->prereqRight & notReady)!=0 ) return 0;
+ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
+ if( pTerm->u.x.leftColumn<0 ) return 0;
+ aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity;
+ if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
+ testcase( pTerm->pExpr->op==TK_IS );
+ return 1;
+}
+#endif
+
+
+#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
+
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+/*
+** Argument pIdx represents an automatic index that the current statement
+** will create and populate. Add an OP_Explain with text of the form:
+**
+** CREATE AUTOMATIC INDEX ON <table>(<cols>) [WHERE <expr>]
+**
+** This is only required if sqlite3_stmt_scanstatus() is enabled, to
+** associate an SQLITE_SCANSTAT_NCYCLE and SQLITE_SCANSTAT_NLOOP
+** values with. In order to avoid breaking legacy code and test cases,
+** the OP_Explain is not added if this is an EXPLAIN QUERY PLAN command.
+*/
+static void explainAutomaticIndex(
+ Parse *pParse,
+ Index *pIdx, /* Automatic index to explain */
+ int bPartial, /* True if pIdx is a partial index */
+ int *pAddrExplain /* OUT: Address of OP_Explain */
+){
+ if( IS_STMT_SCANSTATUS(pParse->db) && pParse->explain!=2 ){
+ Table *pTab = pIdx->pTable;
+ const char *zSep = "";
+ char *zText = 0;
+ int ii = 0;
+ sqlite3_str *pStr = sqlite3_str_new(pParse->db);
+ sqlite3_str_appendf(pStr,"CREATE AUTOMATIC INDEX ON %s(", pTab->zName);
+ assert( pIdx->nColumn>1 );
+ assert( pIdx->aiColumn[pIdx->nColumn-1]==XN_ROWID );
+ for(ii=0; ii<(pIdx->nColumn-1); ii++){
+ const char *zName = 0;
+ int iCol = pIdx->aiColumn[ii];
+
+ zName = pTab->aCol[iCol].zCnName;
+ sqlite3_str_appendf(pStr, "%s%s", zSep, zName);
+ zSep = ", ";
+ }
+ zText = sqlite3_str_finish(pStr);
+ if( zText==0 ){
+ sqlite3OomFault(pParse->db);
+ }else{
+ *pAddrExplain = sqlite3VdbeExplain(
+ pParse, 0, "%s)%s", zText, (bPartial ? " WHERE <expr>" : "")
+ );
+ sqlite3_free(zText);
+ }
+ }
+}
+#else
+# define explainAutomaticIndex(a,b,c,d)
+#endif
+
+/*
+** Generate code to construct the Index object for an automatic index
+** and to set up the WhereLevel object pLevel so that the code generator
+** makes use of the automatic index.
+*/
+static SQLITE_NOINLINE void constructAutomaticIndex(
+ Parse *pParse, /* The parsing context */
+ WhereClause *pWC, /* The WHERE clause */
+ const Bitmask notReady, /* Mask of cursors that are not available */
+ WhereLevel *pLevel /* Write new index here */
+){
+ int nKeyCol; /* Number of columns in the constructed index */
+ WhereTerm *pTerm; /* A single term of the WHERE clause */
+ WhereTerm *pWCEnd; /* End of pWC->a[] */
+ Index *pIdx; /* Object describing the transient index */
+ Vdbe *v; /* Prepared statement under construction */
+ int addrInit; /* Address of the initialization bypass jump */
+ Table *pTable; /* The table being indexed */
+ int addrTop; /* Top of the index fill loop */
+ int regRecord; /* Register holding an index record */
+ int n; /* Column counter */
+ int i; /* Loop counter */
+ int mxBitCol; /* Maximum column in pSrc->colUsed */
+ CollSeq *pColl; /* Collating sequence to on a column */
+ WhereLoop *pLoop; /* The Loop object */
+ char *zNotUsed; /* Extra space on the end of pIdx */
+ Bitmask idxCols; /* Bitmap of columns used for indexing */
+ Bitmask extraCols; /* Bitmap of additional columns */
+ u8 sentWarning = 0; /* True if a warning has been issued */
+ u8 useBloomFilter = 0; /* True to also add a Bloom filter */
+ Expr *pPartial = 0; /* Partial Index Expression */
+ int iContinue = 0; /* Jump here to skip excluded rows */
+ SrcList *pTabList; /* The complete FROM clause */
+ SrcItem *pSrc; /* The FROM clause term to get the next index */
+ int addrCounter = 0; /* Address where integer counter is initialized */
+ int regBase; /* Array of registers where record is assembled */
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ int addrExp = 0; /* Address of OP_Explain */
+#endif
+
+ /* Generate code to skip over the creation and initialization of the
+ ** transient index on 2nd and subsequent iterations of the loop. */
+ v = pParse->pVdbe;
+ assert( v!=0 );
+ addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+
+ /* Count the number of columns that will be added to the index
+ ** and used to match WHERE clause constraints */
+ nKeyCol = 0;
+ pTabList = pWC->pWInfo->pTabList;
+ pSrc = &pTabList->a[pLevel->iFrom];
+ pTable = pSrc->pTab;
+ pWCEnd = &pWC->a[pWC->nTerm];
+ pLoop = pLevel->pWLoop;
+ idxCols = 0;
+ for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
+ Expr *pExpr = pTerm->pExpr;
+ /* Make the automatic index a partial index if there are terms in the
+ ** WHERE clause (or the ON clause of a LEFT join) that constrain which
+ ** rows of the target table (pSrc) that can be used. */
+ if( (pTerm->wtFlags & TERM_VIRTUAL)==0
+ && sqlite3ExprIsSingleTableConstraint(pExpr, pTabList, pLevel->iFrom)
+ ){
+ pPartial = sqlite3ExprAnd(pParse, pPartial,
+ sqlite3ExprDup(pParse->db, pExpr, 0));
+ }
+ if( termCanDriveIndex(pTerm, pSrc, notReady) ){
+ int iCol;
+ Bitmask cMask;
+ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
+ iCol = pTerm->u.x.leftColumn;
+ cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
+ testcase( iCol==BMS );
+ testcase( iCol==BMS-1 );
+ if( !sentWarning ){
+ sqlite3_log(SQLITE_WARNING_AUTOINDEX,
+ "automatic index on %s(%s)", pTable->zName,
+ pTable->aCol[iCol].zCnName);
+ sentWarning = 1;
+ }
+ if( (idxCols & cMask)==0 ){
+ if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
+ goto end_auto_index_create;
+ }
+ pLoop->aLTerm[nKeyCol++] = pTerm;
+ idxCols |= cMask;
+ }
+ }
+ }
+ assert( nKeyCol>0 || pParse->db->mallocFailed );
+ pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
+ pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
+ | WHERE_AUTO_INDEX;
+
+ /* Count the number of additional columns needed to create a
+ ** covering index. A "covering index" is an index that contains all
+ ** columns that are needed by the query. With a covering index, the
+ ** original table never needs to be accessed. Automatic indices must
+ ** be a covering index because the index will not be updated if the
+ ** original table changes and the index and table cannot both be used
+ ** if they go out of sync.
+ */
+ if( IsView(pTable) ){
+ extraCols = ALLBITS;
+ }else{
+ extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
+ }
+ mxBitCol = MIN(BMS-1,pTable->nCol);
+ testcase( pTable->nCol==BMS-1 );
+ testcase( pTable->nCol==BMS-2 );
+ for(i=0; i<mxBitCol; i++){
+ if( extraCols & MASKBIT(i) ) nKeyCol++;
+ }
+ if( pSrc->colUsed & MASKBIT(BMS-1) ){
+ nKeyCol += pTable->nCol - BMS + 1;
+ }
+
+ /* Construct the Index object to describe this index */
+ pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
+ if( pIdx==0 ) goto end_auto_index_create;
+ pLoop->u.btree.pIndex = pIdx;
+ pIdx->zName = "auto-index";
+ pIdx->pTable = pTable;
+ n = 0;
+ idxCols = 0;
+ for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
+ if( termCanDriveIndex(pTerm, pSrc, notReady) ){
+ int iCol;
+ Bitmask cMask;
+ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
+ iCol = pTerm->u.x.leftColumn;
+ cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
+ testcase( iCol==BMS-1 );
+ testcase( iCol==BMS );
+ if( (idxCols & cMask)==0 ){
+ Expr *pX = pTerm->pExpr;
+ idxCols |= cMask;
+ pIdx->aiColumn[n] = pTerm->u.x.leftColumn;
+ pColl = sqlite3ExprCompareCollSeq(pParse, pX);
+ assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */
+ pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
+ n++;
+ if( ALWAYS(pX->pLeft!=0)
+ && sqlite3ExprAffinity(pX->pLeft)!=SQLITE_AFF_TEXT
+ ){
+ /* TUNING: only use a Bloom filter on an automatic index
+ ** if one or more key columns has the ability to hold numeric
+ ** values, since strings all have the same hash in the Bloom
+ ** filter implementation and hence a Bloom filter on a text column
+ ** is not usually helpful. */
+ useBloomFilter = 1;
+ }
+ }
+ }
+ }
+ assert( (u32)n==pLoop->u.btree.nEq );
+
+ /* Add additional columns needed to make the automatic index into
+ ** a covering index */
+ for(i=0; i<mxBitCol; i++){
+ if( extraCols & MASKBIT(i) ){
+ pIdx->aiColumn[n] = i;
+ pIdx->azColl[n] = sqlite3StrBINARY;
+ n++;
+ }
+ }
+ if( pSrc->colUsed & MASKBIT(BMS-1) ){
+ for(i=BMS-1; i<pTable->nCol; i++){
+ pIdx->aiColumn[n] = i;
+ pIdx->azColl[n] = sqlite3StrBINARY;
+ n++;
+ }
+ }
+ assert( n==nKeyCol );
+ pIdx->aiColumn[n] = XN_ROWID;
+ pIdx->azColl[n] = sqlite3StrBINARY;
+
+ /* Create the automatic index */
+ explainAutomaticIndex(pParse, pIdx, pPartial!=0, &addrExp);
+ assert( pLevel->iIdxCur>=0 );
+ pLevel->iIdxCur = pParse->nTab++;
+ sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
+ sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
+ VdbeComment((v, "for %s", pTable->zName));
+ if( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) && useBloomFilter ){
+ sqlite3WhereExplainBloomFilter(pParse, pWC->pWInfo, pLevel);
+ pLevel->regFilter = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Blob, 10000, pLevel->regFilter);
+ }
+
+ /* Fill the automatic index with content */
+ assert( pSrc == &pWC->pWInfo->pTabList->a[pLevel->iFrom] );
+ if( pSrc->fg.viaCoroutine ){
+ int regYield = pSrc->regReturn;
+ addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
+ sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pSrc->addrFillSub);
+ addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield);
+ VdbeCoverage(v);
+ VdbeComment((v, "next row of %s", pSrc->pTab->zName));
+ }else{
+ addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
+ }
+ if( pPartial ){
+ iContinue = sqlite3VdbeMakeLabel(pParse);
+ sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
+ pLoop->wsFlags |= WHERE_PARTIALIDX;
+ }
+ regRecord = sqlite3GetTempReg(pParse);
+ regBase = sqlite3GenerateIndexKey(
+ pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
+ );
+ if( pLevel->regFilter ){
+ sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0,
+ regBase, pLoop->u.btree.nEq);
+ }
+ sqlite3VdbeScanStatusCounters(v, addrExp, addrExp, sqlite3VdbeCurrentAddr(v));
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
+ sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
+ if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
+ if( pSrc->fg.viaCoroutine ){
+ sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
+ testcase( pParse->db->mallocFailed );
+ assert( pLevel->iIdxCur>0 );
+ translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
+ pSrc->regResult, pLevel->iIdxCur);
+ sqlite3VdbeGoto(v, addrTop);
+ pSrc->fg.viaCoroutine = 0;
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
+ sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
+ }
+ sqlite3VdbeJumpHere(v, addrTop);
+ sqlite3ReleaseTempReg(pParse, regRecord);
+
+ /* Jump here when skipping the initialization */
+ sqlite3VdbeJumpHere(v, addrInit);
+ sqlite3VdbeScanStatusRange(v, addrExp, addrExp, -1);
+
+end_auto_index_create:
+ sqlite3ExprDelete(pParse->db, pPartial);
+}
+#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
+
+/*
+** Generate bytecode that will initialize a Bloom filter that is appropriate
+** for pLevel.
+**
+** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER
+** flag set, initialize a Bloomfilter for them as well. Except don't do
+** this recursive initialization if the SQLITE_BloomPulldown optimization has
+** been turned off.
+**
+** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared
+** from the loop, but the regFilter value is set to a register that implements
+** the Bloom filter. When regFilter is positive, the
+** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter
+** and skip the subsequence B-Tree seek if the Bloom filter indicates that
+** no matching rows exist.
+**
+** This routine may only be called if it has previously been determined that
+** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit
+** is set.
+*/
+static SQLITE_NOINLINE void sqlite3ConstructBloomFilter(
+ WhereInfo *pWInfo, /* The WHERE clause */
+ int iLevel, /* Index in pWInfo->a[] that is pLevel */
+ WhereLevel *pLevel, /* Make a Bloom filter for this FROM term */
+ Bitmask notReady /* Loops that are not ready */
+){
+ int addrOnce; /* Address of opening OP_Once */
+ int addrTop; /* Address of OP_Rewind */
+ int addrCont; /* Jump here to skip a row */
+ const WhereTerm *pTerm; /* For looping over WHERE clause terms */
+ const WhereTerm *pWCEnd; /* Last WHERE clause term */
+ Parse *pParse = pWInfo->pParse; /* Parsing context */
+ Vdbe *v = pParse->pVdbe; /* VDBE under construction */
+ WhereLoop *pLoop = pLevel->pWLoop; /* The loop being coded */
+ int iCur; /* Cursor for table getting the filter */
+ IndexedExpr *saved_pIdxEpr; /* saved copy of Parse.pIdxEpr */
+ IndexedExpr *saved_pIdxPartExpr; /* saved copy of Parse.pIdxPartExpr */
+
+ saved_pIdxEpr = pParse->pIdxEpr;
+ saved_pIdxPartExpr = pParse->pIdxPartExpr;
+ pParse->pIdxEpr = 0;
+ pParse->pIdxPartExpr = 0;
+
+ assert( pLoop!=0 );
+ assert( v!=0 );
+ assert( pLoop->wsFlags & WHERE_BLOOMFILTER );
+ assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 );
+
+ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ do{
+ const SrcList *pTabList;
+ const SrcItem *pItem;
+ const Table *pTab;
+ u64 sz;
+ int iSrc;
+ sqlite3WhereExplainBloomFilter(pParse, pWInfo, pLevel);
+ addrCont = sqlite3VdbeMakeLabel(pParse);
+ iCur = pLevel->iTabCur;
+ pLevel->regFilter = ++pParse->nMem;
+
+ /* The Bloom filter is a Blob held in a register. Initialize it
+ ** to zero-filled blob of at least 80K bits, but maybe more if the
+ ** estimated size of the table is larger. We could actually
+ ** measure the size of the table at run-time using OP_Count with
+ ** P3==1 and use that value to initialize the blob. But that makes
+ ** testing complicated. By basing the blob size on the value in the
+ ** sqlite_stat1 table, testing is much easier.
+ */
+ pTabList = pWInfo->pTabList;
+ iSrc = pLevel->iFrom;
+ pItem = &pTabList->a[iSrc];
+ assert( pItem!=0 );
+ pTab = pItem->pTab;
+ assert( pTab!=0 );
+ sz = sqlite3LogEstToInt(pTab->nRowLogEst);
+ if( sz<10000 ){
+ sz = 10000;
+ }else if( sz>10000000 ){
+ sz = 10000000;
+ }
+ sqlite3VdbeAddOp2(v, OP_Blob, (int)sz, pLevel->regFilter);
+
+ addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
+ pWCEnd = &pWInfo->sWC.a[pWInfo->sWC.nTerm];
+ for(pTerm=pWInfo->sWC.a; pTerm<pWCEnd; pTerm++){
+ Expr *pExpr = pTerm->pExpr;
+ if( (pTerm->wtFlags & TERM_VIRTUAL)==0
+ && sqlite3ExprIsSingleTableConstraint(pExpr, pTabList, iSrc)
+ ){
+ sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
+ }
+ }
+ if( pLoop->wsFlags & WHERE_IPK ){
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1);
+ sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, 1);
+ sqlite3ReleaseTempReg(pParse, r1);
+ }else{
+ Index *pIdx = pLoop->u.btree.pIndex;
+ int n = pLoop->u.btree.nEq;
+ int r1 = sqlite3GetTempRange(pParse, n);
+ int jj;
+ for(jj=0; jj<n; jj++){
+ assert( pIdx->pTable==pItem->pTab );
+ sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iCur, jj, r1+jj);
+ }
+ sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, n);
+ sqlite3ReleaseTempRange(pParse, r1, n);
+ }
+ sqlite3VdbeResolveLabel(v, addrCont);
+ sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
+ VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addrTop);
+ pLoop->wsFlags &= ~WHERE_BLOOMFILTER;
+ if( OptimizationDisabled(pParse->db, SQLITE_BloomPulldown) ) break;
+ while( ++iLevel < pWInfo->nLevel ){
+ const SrcItem *pTabItem;
+ pLevel = &pWInfo->a[iLevel];
+ pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
+ if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ) ) continue;
+ pLoop = pLevel->pWLoop;
+ if( NEVER(pLoop==0) ) continue;
+ if( pLoop->prereq & notReady ) continue;
+ if( (pLoop->wsFlags & (WHERE_BLOOMFILTER|WHERE_COLUMN_IN))
+ ==WHERE_BLOOMFILTER
+ ){
+ /* This is a candidate for bloom-filter pull-down (early evaluation).
+ ** The test that WHERE_COLUMN_IN is omitted is important, as we are
+ ** not able to do early evaluation of bloom filters that make use of
+ ** the IN operator */
+ break;
+ }
+ }
+ }while( iLevel < pWInfo->nLevel );
+ sqlite3VdbeJumpHere(v, addrOnce);
+ pParse->pIdxEpr = saved_pIdxEpr;
+ pParse->pIdxPartExpr = saved_pIdxPartExpr;
+}
+
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/*
+** Allocate and populate an sqlite3_index_info structure. It is the
+** responsibility of the caller to eventually release the structure
+** by passing the pointer returned by this function to freeIndexInfo().
+*/
+static sqlite3_index_info *allocateIndexInfo(
+ WhereInfo *pWInfo, /* The WHERE clause */
+ WhereClause *pWC, /* The WHERE clause being analyzed */
+ Bitmask mUnusable, /* Ignore terms with these prereqs */
+ SrcItem *pSrc, /* The FROM clause term that is the vtab */
+ u16 *pmNoOmit /* Mask of terms not to omit */
+){
+ int i, j;
+ int nTerm;
+ Parse *pParse = pWInfo->pParse;
+ struct sqlite3_index_constraint *pIdxCons;
+ struct sqlite3_index_orderby *pIdxOrderBy;
+ struct sqlite3_index_constraint_usage *pUsage;
+ struct HiddenIndexInfo *pHidden;
+ WhereTerm *pTerm;
+ int nOrderBy;
+ sqlite3_index_info *pIdxInfo;
+ u16 mNoOmit = 0;
+ const Table *pTab;
+ int eDistinct = 0;
+ ExprList *pOrderBy = pWInfo->pOrderBy;
+
+ assert( pSrc!=0 );
+ pTab = pSrc->pTab;
+ assert( pTab!=0 );
+ assert( IsVirtual(pTab) );
+
+ /* Find all WHERE clause constraints referring to this virtual table.
+ ** Mark each term with the TERM_OK flag. Set nTerm to the number of
+ ** terms found.
+ */
+ for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
+ pTerm->wtFlags &= ~TERM_OK;
+ if( pTerm->leftCursor != pSrc->iCursor ) continue;
+ if( pTerm->prereqRight & mUnusable ) continue;
+ assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
+ testcase( pTerm->eOperator & WO_IN );
+ testcase( pTerm->eOperator & WO_ISNULL );
+ testcase( pTerm->eOperator & WO_IS );
+ testcase( pTerm->eOperator & WO_ALL );
+ if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
+ if( pTerm->wtFlags & TERM_VNULL ) continue;
+
+ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
+ assert( pTerm->u.x.leftColumn>=XN_ROWID );
+ assert( pTerm->u.x.leftColumn<pTab->nCol );
+ if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0
+ && !constraintCompatibleWithOuterJoin(pTerm,pSrc)
+ ){
+ continue;
+ }
+ nTerm++;
+ pTerm->wtFlags |= TERM_OK;
+ }
+
+ /* If the ORDER BY clause contains only columns in the current
+ ** virtual table then allocate space for the aOrderBy part of
+ ** the sqlite3_index_info structure.
+ */
+ nOrderBy = 0;
+ if( pOrderBy ){
+ int n = pOrderBy->nExpr;
+ for(i=0; i<n; i++){
+ Expr *pExpr = pOrderBy->a[i].pExpr;
+ Expr *pE2;
+
+ /* Skip over constant terms in the ORDER BY clause */
+ if( sqlite3ExprIsConstant(pExpr) ){
+ continue;
+ }
+
+ /* Virtual tables are unable to deal with NULLS FIRST */
+ if( pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL ) break;
+
+ /* First case - a direct column references without a COLLATE operator */
+ if( pExpr->op==TK_COLUMN && pExpr->iTable==pSrc->iCursor ){
+ assert( pExpr->iColumn>=XN_ROWID && pExpr->iColumn<pTab->nCol );
+ continue;
+ }
+
+ /* 2nd case - a column reference with a COLLATE operator. Only match
+ ** of the COLLATE operator matches the collation of the column. */
+ if( pExpr->op==TK_COLLATE
+ && (pE2 = pExpr->pLeft)->op==TK_COLUMN
+ && pE2->iTable==pSrc->iCursor
+ ){
+ const char *zColl; /* The collating sequence name */
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ assert( pExpr->u.zToken!=0 );
+ assert( pE2->iColumn>=XN_ROWID && pE2->iColumn<pTab->nCol );
+ pExpr->iColumn = pE2->iColumn;
+ if( pE2->iColumn<0 ) continue; /* Collseq does not matter for rowid */
+ zColl = sqlite3ColumnColl(&pTab->aCol[pE2->iColumn]);
+ if( zColl==0 ) zColl = sqlite3StrBINARY;
+ if( sqlite3_stricmp(pExpr->u.zToken, zColl)==0 ) continue;
+ }
+
+ /* No matches cause a break out of the loop */
+ break;
+ }
+ if( i==n ){
+ nOrderBy = n;
+ if( (pWInfo->wctrlFlags & WHERE_DISTINCTBY) ){
+ eDistinct = 2 + ((pWInfo->wctrlFlags & WHERE_SORTBYGROUP)!=0);
+ }else if( pWInfo->wctrlFlags & WHERE_GROUPBY ){
+ eDistinct = 1;
+ }
+ }
+ }
+
+ /* Allocate the sqlite3_index_info structure
+ */
+ pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
+ + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
+ + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden)
+ + sizeof(sqlite3_value*)*nTerm );
+ if( pIdxInfo==0 ){
+ sqlite3ErrorMsg(pParse, "out of memory");
+ return 0;
+ }
+ pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
+ pIdxCons = (struct sqlite3_index_constraint*)&pHidden->aRhs[nTerm];
+ pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
+ pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
+ pIdxInfo->aConstraint = pIdxCons;
+ pIdxInfo->aOrderBy = pIdxOrderBy;
+ pIdxInfo->aConstraintUsage = pUsage;
+ pHidden->pWC = pWC;
+ pHidden->pParse = pParse;
+ pHidden->eDistinct = eDistinct;
+ pHidden->mIn = 0;
+ for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
+ u16 op;
+ if( (pTerm->wtFlags & TERM_OK)==0 ) continue;
+ pIdxCons[j].iColumn = pTerm->u.x.leftColumn;
+ pIdxCons[j].iTermOffset = i;
+ op = pTerm->eOperator & WO_ALL;
+ if( op==WO_IN ){
+ if( (pTerm->wtFlags & TERM_SLICE)==0 ){
+ pHidden->mIn |= SMASKBIT32(j);
+ }
+ op = WO_EQ;
+ }
+ if( op==WO_AUX ){
+ pIdxCons[j].op = pTerm->eMatchOp;
+ }else if( op & (WO_ISNULL|WO_IS) ){
+ if( op==WO_ISNULL ){
+ pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
+ }else{
+ pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
+ }
+ }else{
+ pIdxCons[j].op = (u8)op;
+ /* The direct assignment in the previous line is possible only because
+ ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
+ ** following asserts verify this fact. */
+ assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
+ assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
+ assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
+ assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
+ assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
+ assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
+
+ if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
+ && sqlite3ExprIsVector(pTerm->pExpr->pRight)
+ ){
+ testcase( j!=i );
+ if( j<16 ) mNoOmit |= (1 << j);
+ if( op==WO_LT ) pIdxCons[j].op = WO_LE;
+ if( op==WO_GT ) pIdxCons[j].op = WO_GE;
+ }
+ }
+
+ j++;
+ }
+ assert( j==nTerm );
+ pIdxInfo->nConstraint = j;
+ for(i=j=0; i<nOrderBy; i++){
+ Expr *pExpr = pOrderBy->a[i].pExpr;
+ if( sqlite3ExprIsConstant(pExpr) ) continue;
+ assert( pExpr->op==TK_COLUMN
+ || (pExpr->op==TK_COLLATE && pExpr->pLeft->op==TK_COLUMN
+ && pExpr->iColumn==pExpr->pLeft->iColumn) );
+ pIdxOrderBy[j].iColumn = pExpr->iColumn;
+ pIdxOrderBy[j].desc = pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC;
+ j++;
+ }
+ pIdxInfo->nOrderBy = j;
+
+ *pmNoOmit = mNoOmit;
+ return pIdxInfo;
+}
+
+/*
+** Free an sqlite3_index_info structure allocated by allocateIndexInfo()
+** and possibly modified by xBestIndex methods.
+*/
+static void freeIndexInfo(sqlite3 *db, sqlite3_index_info *pIdxInfo){
+ HiddenIndexInfo *pHidden;
+ int i;
+ assert( pIdxInfo!=0 );
+ pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
+ assert( pHidden->pParse!=0 );
+ assert( pHidden->pParse->db==db );
+ for(i=0; i<pIdxInfo->nConstraint; i++){
+ sqlite3ValueFree(pHidden->aRhs[i]); /* IMP: R-14553-25174 */
+ pHidden->aRhs[i] = 0;
+ }
+ sqlite3DbFree(db, pIdxInfo);
+}
+
+/*
+** The table object reference passed as the second argument to this function
+** must represent a virtual table. This function invokes the xBestIndex()
+** method of the virtual table with the sqlite3_index_info object that
+** comes in as the 3rd argument to this function.
+**
+** If an error occurs, pParse is populated with an error message and an
+** appropriate error code is returned. A return of SQLITE_CONSTRAINT from
+** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that
+** the current configuration of "unusable" flags in sqlite3_index_info can
+** not result in a valid plan.
+**
+** Whether or not an error is returned, it is the responsibility of the
+** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
+** that this is required.
+*/
+static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
+ sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
+ int rc;
+
+ whereTraceIndexInfoInputs(p);
+ pParse->db->nSchemaLock++;
+ rc = pVtab->pModule->xBestIndex(pVtab, p);
+ pParse->db->nSchemaLock--;
+ whereTraceIndexInfoOutputs(p);
+
+ if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
+ if( rc==SQLITE_NOMEM ){
+ sqlite3OomFault(pParse->db);
+ }else if( !pVtab->zErrMsg ){
+ sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
+ }else{
+ sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
+ }
+ }
+ if( pTab->u.vtab.p->bAllSchemas ){
+ sqlite3VtabUsesAllSchemas(pParse);
+ }
+ sqlite3_free(pVtab->zErrMsg);
+ pVtab->zErrMsg = 0;
+ return rc;
+}
+#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** Estimate the location of a particular key among all keys in an
+** index. Store the results in aStat as follows:
+**
+** aStat[0] Est. number of rows less than pRec
+** aStat[1] Est. number of rows equal to pRec
+**
+** Return the index of the sample that is the smallest sample that
+** is greater than or equal to pRec. Note that this index is not an index
+** into the aSample[] array - it is an index into a virtual set of samples
+** based on the contents of aSample[] and the number of fields in record
+** pRec.
+*/
+static int whereKeyStats(
+ Parse *pParse, /* Database connection */
+ Index *pIdx, /* Index to consider domain of */
+ UnpackedRecord *pRec, /* Vector of values to consider */
+ int roundUp, /* Round up if true. Round down if false */
+ tRowcnt *aStat /* OUT: stats written here */
+){
+ IndexSample *aSample = pIdx->aSample;
+ int iCol; /* Index of required stats in anEq[] etc. */
+ int i; /* Index of first sample >= pRec */
+ int iSample; /* Smallest sample larger than or equal to pRec */
+ int iMin = 0; /* Smallest sample not yet tested */
+ int iTest; /* Next sample to test */
+ int res; /* Result of comparison operation */
+ int nField; /* Number of fields in pRec */
+ tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */
+
+#ifndef SQLITE_DEBUG
+ UNUSED_PARAMETER( pParse );
+#endif
+ assert( pRec!=0 );
+ assert( pIdx->nSample>0 );
+ assert( pRec->nField>0 );
+
+
+ /* Do a binary search to find the first sample greater than or equal
+ ** to pRec. If pRec contains a single field, the set of samples to search
+ ** is simply the aSample[] array. If the samples in aSample[] contain more
+ ** than one fields, all fields following the first are ignored.
+ **
+ ** If pRec contains N fields, where N is more than one, then as well as the
+ ** samples in aSample[] (truncated to N fields), the search also has to
+ ** consider prefixes of those samples. For example, if the set of samples
+ ** in aSample is:
+ **
+ ** aSample[0] = (a, 5)
+ ** aSample[1] = (a, 10)
+ ** aSample[2] = (b, 5)
+ ** aSample[3] = (c, 100)
+ ** aSample[4] = (c, 105)
+ **
+ ** Then the search space should ideally be the samples above and the
+ ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
+ ** the code actually searches this set:
+ **
+ ** 0: (a)
+ ** 1: (a, 5)
+ ** 2: (a, 10)
+ ** 3: (a, 10)
+ ** 4: (b)
+ ** 5: (b, 5)
+ ** 6: (c)
+ ** 7: (c, 100)
+ ** 8: (c, 105)
+ ** 9: (c, 105)
+ **
+ ** For each sample in the aSample[] array, N samples are present in the
+ ** effective sample array. In the above, samples 0 and 1 are based on
+ ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
+ **
+ ** Often, sample i of each block of N effective samples has (i+1) fields.
+ ** Except, each sample may be extended to ensure that it is greater than or
+ ** equal to the previous sample in the array. For example, in the above,
+ ** sample 2 is the first sample of a block of N samples, so at first it
+ ** appears that it should be 1 field in size. However, that would make it
+ ** smaller than sample 1, so the binary search would not work. As a result,
+ ** it is extended to two fields. The duplicates that this creates do not
+ ** cause any problems.
+ */
+ if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){
+ nField = pIdx->nKeyCol;
+ }else{
+ nField = pIdx->nColumn;
+ }
+ nField = MIN(pRec->nField, nField);
+ iCol = 0;
+ iSample = pIdx->nSample * nField;
+ do{
+ int iSamp; /* Index in aSample[] of test sample */
+ int n; /* Number of fields in test sample */
+
+ iTest = (iMin+iSample)/2;
+ iSamp = iTest / nField;
+ if( iSamp>0 ){
+ /* The proposed effective sample is a prefix of sample aSample[iSamp].
+ ** Specifically, the shortest prefix of at least (1 + iTest%nField)
+ ** fields that is greater than the previous effective sample. */
+ for(n=(iTest % nField) + 1; n<nField; n++){
+ if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
+ }
+ }else{
+ n = iTest + 1;
+ }
+
+ pRec->nField = n;
+ res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
+ if( res<0 ){
+ iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
+ iMin = iTest+1;
+ }else if( res==0 && n<nField ){
+ iLower = aSample[iSamp].anLt[n-1];
+ iMin = iTest+1;
+ res = -1;
+ }else{
+ iSample = iTest;
+ iCol = n-1;
+ }
+ }while( res && iMin<iSample );
+ i = iSample / nField;
+
+#ifdef SQLITE_DEBUG
+ /* The following assert statements check that the binary search code
+ ** above found the right answer. This block serves no purpose other
+ ** than to invoke the asserts. */
+ if( pParse->db->mallocFailed==0 ){
+ if( res==0 ){
+ /* If (res==0) is true, then pRec must be equal to sample i. */
+ assert( i<pIdx->nSample );
+ assert( iCol==nField-1 );
+ pRec->nField = nField;
+ assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
+ || pParse->db->mallocFailed
+ );
+ }else{
+ /* Unless i==pIdx->nSample, indicating that pRec is larger than
+ ** all samples in the aSample[] array, pRec must be smaller than the
+ ** (iCol+1) field prefix of sample i. */
+ assert( i<=pIdx->nSample && i>=0 );
+ pRec->nField = iCol+1;
+ assert( i==pIdx->nSample
+ || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
+ || pParse->db->mallocFailed );
+
+ /* if i==0 and iCol==0, then record pRec is smaller than all samples
+ ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
+ ** be greater than or equal to the (iCol) field prefix of sample i.
+ ** If (i>0), then pRec must also be greater than sample (i-1). */
+ if( iCol>0 ){
+ pRec->nField = iCol;
+ assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
+ || pParse->db->mallocFailed || CORRUPT_DB );
+ }
+ if( i>0 ){
+ pRec->nField = nField;
+ assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
+ || pParse->db->mallocFailed || CORRUPT_DB );
+ }
+ }
+ }
+#endif /* ifdef SQLITE_DEBUG */
+
+ if( res==0 ){
+ /* Record pRec is equal to sample i */
+ assert( iCol==nField-1 );
+ aStat[0] = aSample[i].anLt[iCol];
+ aStat[1] = aSample[i].anEq[iCol];
+ }else{
+ /* At this point, the (iCol+1) field prefix of aSample[i] is the first
+ ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
+ ** is larger than all samples in the array. */
+ tRowcnt iUpper, iGap;
+ if( i>=pIdx->nSample ){
+ iUpper = pIdx->nRowEst0;
+ }else{
+ iUpper = aSample[i].anLt[iCol];
+ }
+
+ if( iLower>=iUpper ){
+ iGap = 0;
+ }else{
+ iGap = iUpper - iLower;
+ }
+ if( roundUp ){
+ iGap = (iGap*2)/3;
+ }else{
+ iGap = iGap/3;
+ }
+ aStat[0] = iLower + iGap;
+ aStat[1] = pIdx->aAvgEq[nField-1];
+ }
+
+ /* Restore the pRec->nField value before returning. */
+ pRec->nField = nField;
+ return i;
+}
+#endif /* SQLITE_ENABLE_STAT4 */
+
+/*
+** If it is not NULL, pTerm is a term that provides an upper or lower
+** bound on a range scan. Without considering pTerm, it is estimated
+** that the scan will visit nNew rows. This function returns the number
+** estimated to be visited after taking pTerm into account.
+**
+** If the user explicitly specified a likelihood() value for this term,
+** then the return value is the likelihood multiplied by the number of
+** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
+** has a likelihood of 0.50, and any other term a likelihood of 0.25.
+*/
+static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
+ LogEst nRet = nNew;
+ if( pTerm ){
+ if( pTerm->truthProb<=0 ){
+ nRet += pTerm->truthProb;
+ }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
+ nRet -= 20; assert( 20==sqlite3LogEst(4) );
+ }
+ }
+ return nRet;
+}
+
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** Return the affinity for a single column of an index.
+*/
+char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
+ assert( iCol>=0 && iCol<pIdx->nColumn );
+ if( !pIdx->zColAff ){
+ if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
+ }
+ assert( pIdx->zColAff[iCol]!=0 );
+ return pIdx->zColAff[iCol];
+}
+#endif
+
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** This function is called to estimate the number of rows visited by a
+** range-scan on a skip-scan index. For example:
+**
+** CREATE INDEX i1 ON t1(a, b, c);
+** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
+**
+** Value pLoop->nOut is currently set to the estimated number of rows
+** visited for scanning (a=? AND b=?). This function reduces that estimate
+** by some factor to account for the (c BETWEEN ? AND ?) expression based
+** on the stat4 data for the index. this scan will be performed multiple
+** times (once for each (a,b) combination that matches a=?) is dealt with
+** by the caller.
+**
+** It does this by scanning through all stat4 samples, comparing values
+** extracted from pLower and pUpper with the corresponding column in each
+** sample. If L and U are the number of samples found to be less than or
+** equal to the values extracted from pLower and pUpper respectively, and
+** N is the total number of samples, the pLoop->nOut value is adjusted
+** as follows:
+**
+** nOut = nOut * ( min(U - L, 1) / N )
+**
+** If pLower is NULL, or a value cannot be extracted from the term, L is
+** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
+** U is set to N.
+**
+** Normally, this function sets *pbDone to 1 before returning. However,
+** if no value can be extracted from either pLower or pUpper (and so the
+** estimate of the number of rows delivered remains unchanged), *pbDone
+** is left as is.
+**
+** If an error occurs, an SQLite error code is returned. Otherwise,
+** SQLITE_OK.
+*/
+static int whereRangeSkipScanEst(
+ Parse *pParse, /* Parsing & code generating context */
+ WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
+ WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
+ WhereLoop *pLoop, /* Update the .nOut value of this loop */
+ int *pbDone /* Set to true if at least one expr. value extracted */
+){
+ Index *p = pLoop->u.btree.pIndex;
+ int nEq = pLoop->u.btree.nEq;
+ sqlite3 *db = pParse->db;
+ int nLower = -1;
+ int nUpper = p->nSample+1;
+ int rc = SQLITE_OK;
+ u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
+ CollSeq *pColl;
+
+ sqlite3_value *p1 = 0; /* Value extracted from pLower */
+ sqlite3_value *p2 = 0; /* Value extracted from pUpper */
+ sqlite3_value *pVal = 0; /* Value extracted from record */
+
+ pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
+ if( pLower ){
+ rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
+ nLower = 0;
+ }
+ if( pUpper && rc==SQLITE_OK ){
+ rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
+ nUpper = p2 ? 0 : p->nSample;
+ }
+
+ if( p1 || p2 ){
+ int i;
+ int nDiff;
+ for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
+ rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
+ if( rc==SQLITE_OK && p1 ){
+ int res = sqlite3MemCompare(p1, pVal, pColl);
+ if( res>=0 ) nLower++;
+ }
+ if( rc==SQLITE_OK && p2 ){
+ int res = sqlite3MemCompare(p2, pVal, pColl);
+ if( res>=0 ) nUpper++;
+ }
+ }
+ nDiff = (nUpper - nLower);
+ if( nDiff<=0 ) nDiff = 1;
+
+ /* If there is both an upper and lower bound specified, and the
+ ** comparisons indicate that they are close together, use the fallback
+ ** method (assume that the scan visits 1/64 of the rows) for estimating
+ ** the number of rows visited. Otherwise, estimate the number of rows
+ ** using the method described in the header comment for this function. */
+ if( nDiff!=1 || pUpper==0 || pLower==0 ){
+ int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
+ pLoop->nOut -= nAdjust;
+ *pbDone = 1;
+ WHERETRACE(0x20, ("range skip-scan regions: %u..%u adjust=%d est=%d\n",
+ nLower, nUpper, nAdjust*-1, pLoop->nOut));
+ }
+
+ }else{
+ assert( *pbDone==0 );
+ }
+
+ sqlite3ValueFree(p1);
+ sqlite3ValueFree(p2);
+ sqlite3ValueFree(pVal);
+
+ return rc;
+}
+#endif /* SQLITE_ENABLE_STAT4 */
+
+/*
+** This function is used to estimate the number of rows that will be visited
+** by scanning an index for a range of values. The range may have an upper
+** bound, a lower bound, or both. The WHERE clause terms that set the upper
+** and lower bounds are represented by pLower and pUpper respectively. For
+** example, assuming that index p is on t1(a):
+**
+** ... FROM t1 WHERE a > ? AND a < ? ...
+** |_____| |_____|
+** | |
+** pLower pUpper
+**
+** If either of the upper or lower bound is not present, then NULL is passed in
+** place of the corresponding WhereTerm.
+**
+** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
+** column subject to the range constraint. Or, equivalently, the number of
+** equality constraints optimized by the proposed index scan. For example,
+** assuming index p is on t1(a, b), and the SQL query is:
+**
+** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
+**
+** then nEq is set to 1 (as the range restricted column, b, is the second
+** left-most column of the index). Or, if the query is:
+**
+** ... FROM t1 WHERE a > ? AND a < ? ...
+**
+** then nEq is set to 0.
+**
+** When this function is called, *pnOut is set to the sqlite3LogEst() of the
+** number of rows that the index scan is expected to visit without
+** considering the range constraints. If nEq is 0, then *pnOut is the number of
+** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
+** to account for the range constraints pLower and pUpper.
+**
+** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
+** used, a single range inequality reduces the search space by a factor of 4.
+** and a pair of constraints (x>? AND x<?) reduces the expected number of
+** rows visited by a factor of 64.
+*/
+static int whereRangeScanEst(
+ Parse *pParse, /* Parsing & code generating context */
+ WhereLoopBuilder *pBuilder,
+ WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
+ WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
+ WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */
+){
+ int rc = SQLITE_OK;
+ int nOut = pLoop->nOut;
+ LogEst nNew;
+
+#ifdef SQLITE_ENABLE_STAT4
+ Index *p = pLoop->u.btree.pIndex;
+ int nEq = pLoop->u.btree.nEq;
+
+ if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol)
+ && OptimizationEnabled(pParse->db, SQLITE_Stat4)
+ ){
+ if( nEq==pBuilder->nRecValid ){
+ UnpackedRecord *pRec = pBuilder->pRec;
+ tRowcnt a[2];
+ int nBtm = pLoop->u.btree.nBtm;
+ int nTop = pLoop->u.btree.nTop;
+
+ /* Variable iLower will be set to the estimate of the number of rows in
+ ** the index that are less than the lower bound of the range query. The
+ ** lower bound being the concatenation of $P and $L, where $P is the
+ ** key-prefix formed by the nEq values matched against the nEq left-most
+ ** columns of the index, and $L is the value in pLower.
+ **
+ ** Or, if pLower is NULL or $L cannot be extracted from it (because it
+ ** is not a simple variable or literal value), the lower bound of the
+ ** range is $P. Due to a quirk in the way whereKeyStats() works, even
+ ** if $L is available, whereKeyStats() is called for both ($P) and
+ ** ($P:$L) and the larger of the two returned values is used.
+ **
+ ** Similarly, iUpper is to be set to the estimate of the number of rows
+ ** less than the upper bound of the range query. Where the upper bound
+ ** is either ($P) or ($P:$U). Again, even if $U is available, both values
+ ** of iUpper are requested of whereKeyStats() and the smaller used.
+ **
+ ** The number of rows between the two bounds is then just iUpper-iLower.
+ */
+ tRowcnt iLower; /* Rows less than the lower bound */
+ tRowcnt iUpper; /* Rows less than the upper bound */
+ int iLwrIdx = -2; /* aSample[] for the lower bound */
+ int iUprIdx = -1; /* aSample[] for the upper bound */
+
+ if( pRec ){
+ testcase( pRec->nField!=pBuilder->nRecValid );
+ pRec->nField = pBuilder->nRecValid;
+ }
+ /* Determine iLower and iUpper using ($P) only. */
+ if( nEq==0 ){
+ iLower = 0;
+ iUpper = p->nRowEst0;
+ }else{
+ /* Note: this call could be optimized away - since the same values must
+ ** have been requested when testing key $P in whereEqualScanEst(). */
+ whereKeyStats(pParse, p, pRec, 0, a);
+ iLower = a[0];
+ iUpper = a[0] + a[1];
+ }
+
+ assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
+ assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
+ assert( p->aSortOrder!=0 );
+ if( p->aSortOrder[nEq] ){
+ /* The roles of pLower and pUpper are swapped for a DESC index */
+ SWAP(WhereTerm*, pLower, pUpper);
+ SWAP(int, nBtm, nTop);
+ }
+
+ /* If possible, improve on the iLower estimate using ($P:$L). */
+ if( pLower ){
+ int n; /* Values extracted from pExpr */
+ Expr *pExpr = pLower->pExpr->pRight;
+ rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
+ if( rc==SQLITE_OK && n ){
+ tRowcnt iNew;
+ u16 mask = WO_GT|WO_LE;
+ if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
+ iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
+ iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
+ if( iNew>iLower ) iLower = iNew;
+ nOut--;
+ pLower = 0;
+ }
+ }
+
+ /* If possible, improve on the iUpper estimate using ($P:$U). */
+ if( pUpper ){
+ int n; /* Values extracted from pExpr */
+ Expr *pExpr = pUpper->pExpr->pRight;
+ rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
+ if( rc==SQLITE_OK && n ){
+ tRowcnt iNew;
+ u16 mask = WO_GT|WO_LE;
+ if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
+ iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
+ iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
+ if( iNew<iUpper ) iUpper = iNew;
+ nOut--;
+ pUpper = 0;
+ }
+ }
+
+ pBuilder->pRec = pRec;
+ if( rc==SQLITE_OK ){
+ if( iUpper>iLower ){
+ nNew = sqlite3LogEst(iUpper - iLower);
+ /* TUNING: If both iUpper and iLower are derived from the same
+ ** sample, then assume they are 4x more selective. This brings
+ ** the estimated selectivity more in line with what it would be
+ ** if estimated without the use of STAT4 tables. */
+ if( iLwrIdx==iUprIdx ){ nNew -= 20; }
+ assert( 20==sqlite3LogEst(4) );
+ }else{
+ nNew = 10; assert( 10==sqlite3LogEst(2) );
+ }
+ if( nNew<nOut ){
+ nOut = nNew;
+ }
+ WHERETRACE(0x20, ("STAT4 range scan: %u..%u est=%d\n",
+ (u32)iLower, (u32)iUpper, nOut));
+ }
+ }else{
+ int bDone = 0;
+ rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
+ if( bDone ) return rc;
+ }
+ }
+#else
+ UNUSED_PARAMETER(pParse);
+ UNUSED_PARAMETER(pBuilder);
+ assert( pLower || pUpper );
+#endif
+ assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 || pParse->nErr>0 );
+ nNew = whereRangeAdjust(pLower, nOut);
+ nNew = whereRangeAdjust(pUpper, nNew);
+
+ /* TUNING: If there is both an upper and lower limit and neither limit
+ ** has an application-defined likelihood(), assume the range is
+ ** reduced by an additional 75%. This means that, by default, an open-ended
+ ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
+ ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
+ ** match 1/64 of the index. */
+ if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
+ nNew -= 20;
+ }
+
+ nOut -= (pLower!=0) + (pUpper!=0);
+ if( nNew<10 ) nNew = 10;
+ if( nNew<nOut ) nOut = nNew;
+#if defined(WHERETRACE_ENABLED)
+ if( pLoop->nOut>nOut ){
+ WHERETRACE(0x20,("Range scan lowers nOut from %d to %d\n",
+ pLoop->nOut, nOut));
+ }
+#endif
+ pLoop->nOut = (LogEst)nOut;
+ return rc;
+}
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** Estimate the number of rows that will be returned based on
+** an equality constraint x=VALUE and where that VALUE occurs in
+** the histogram data. This only works when x is the left-most
+** column of an index and sqlite_stat4 histogram data is available
+** for that index. When pExpr==NULL that means the constraint is
+** "x IS NULL" instead of "x=VALUE".
+**
+** Write the estimated row count into *pnRow and return SQLITE_OK.
+** If unable to make an estimate, leave *pnRow unchanged and return
+** non-zero.
+**
+** This routine can fail if it is unable to load a collating sequence
+** required for string comparison, or if unable to allocate memory
+** for a UTF conversion required for comparison. The error is stored
+** in the pParse structure.
+*/
+static int whereEqualScanEst(
+ Parse *pParse, /* Parsing & code generating context */
+ WhereLoopBuilder *pBuilder,
+ Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */
+ tRowcnt *pnRow /* Write the revised row estimate here */
+){
+ Index *p = pBuilder->pNew->u.btree.pIndex;
+ int nEq = pBuilder->pNew->u.btree.nEq;
+ UnpackedRecord *pRec = pBuilder->pRec;
+ int rc; /* Subfunction return code */
+ tRowcnt a[2]; /* Statistics */
+ int bOk;
+
+ assert( nEq>=1 );
+ assert( nEq<=p->nColumn );
+ assert( p->aSample!=0 );
+ assert( p->nSample>0 );
+ assert( pBuilder->nRecValid<nEq );
+
+ /* If values are not available for all fields of the index to the left
+ ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
+ if( pBuilder->nRecValid<(nEq-1) ){
+ return SQLITE_NOTFOUND;
+ }
+
+ /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
+ ** below would return the same value. */
+ if( nEq>=p->nColumn ){
+ *pnRow = 1;
+ return SQLITE_OK;
+ }
+
+ rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
+ pBuilder->pRec = pRec;
+ if( rc!=SQLITE_OK ) return rc;
+ if( bOk==0 ) return SQLITE_NOTFOUND;
+ pBuilder->nRecValid = nEq;
+
+ whereKeyStats(pParse, p, pRec, 0, a);
+ WHERETRACE(0x20,("equality scan regions %s(%d): %d\n",
+ p->zName, nEq-1, (int)a[1]));
+ *pnRow = a[1];
+
+ return rc;
+}
+#endif /* SQLITE_ENABLE_STAT4 */
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** Estimate the number of rows that will be returned based on
+** an IN constraint where the right-hand side of the IN operator
+** is a list of values. Example:
+**
+** WHERE x IN (1,2,3,4)
+**
+** Write the estimated row count into *pnRow and return SQLITE_OK.
+** If unable to make an estimate, leave *pnRow unchanged and return
+** non-zero.
+**
+** This routine can fail if it is unable to load a collating sequence
+** required for string comparison, or if unable to allocate memory
+** for a UTF conversion required for comparison. The error is stored
+** in the pParse structure.
+*/
+static int whereInScanEst(
+ Parse *pParse, /* Parsing & code generating context */
+ WhereLoopBuilder *pBuilder,
+ ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
+ tRowcnt *pnRow /* Write the revised row estimate here */
+){
+ Index *p = pBuilder->pNew->u.btree.pIndex;
+ i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
+ int nRecValid = pBuilder->nRecValid;
+ int rc = SQLITE_OK; /* Subfunction return code */
+ tRowcnt nEst; /* Number of rows for a single term */
+ tRowcnt nRowEst = 0; /* New estimate of the number of rows */
+ int i; /* Loop counter */
+
+ assert( p->aSample!=0 );
+ for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
+ nEst = nRow0;
+ rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
+ nRowEst += nEst;
+ pBuilder->nRecValid = nRecValid;
+ }
+
+ if( rc==SQLITE_OK ){
+ if( nRowEst > (tRowcnt)nRow0 ) nRowEst = nRow0;
+ *pnRow = nRowEst;
+ WHERETRACE(0x20,("IN row estimate: est=%d\n", nRowEst));
+ }
+ assert( pBuilder->nRecValid==nRecValid );
+ return rc;
+}
+#endif /* SQLITE_ENABLE_STAT4 */
+
+
+#ifdef WHERETRACE_ENABLED
+/*
+** Print the content of a WhereTerm object
+*/
+void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){
+ if( pTerm==0 ){
+ sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
+ }else{
+ char zType[8];
+ char zLeft[50];
+ memcpy(zType, "....", 5);
+ if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
+ if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E';
+ if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) zType[2] = 'L';
+ if( pTerm->wtFlags & TERM_CODED ) zType[3] = 'C';
+ if( pTerm->eOperator & WO_SINGLE ){
+ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
+ sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
+ pTerm->leftCursor, pTerm->u.x.leftColumn);
+ }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
+ sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx",
+ pTerm->u.pOrInfo->indexable);
+ }else{
+ sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
+ }
+ sqlite3DebugPrintf(
+ "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
+ iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags);
+ /* The 0x10000 .wheretrace flag causes extra information to be
+ ** shown about each Term */
+ if( sqlite3WhereTrace & 0x10000 ){
+ sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
+ pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight);
+ }
+ if( (pTerm->eOperator & (WO_OR|WO_AND))==0 && pTerm->u.x.iField ){
+ sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField);
+ }
+ if( pTerm->iParent>=0 ){
+ sqlite3DebugPrintf(" iParent=%d", pTerm->iParent);
+ }
+ sqlite3DebugPrintf("\n");
+ sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
+ }
+}
+#endif
+
+#ifdef WHERETRACE_ENABLED
+/*
+** Show the complete content of a WhereClause
+*/
+void sqlite3WhereClausePrint(WhereClause *pWC){
+ int i;
+ for(i=0; i<pWC->nTerm; i++){
+ sqlite3WhereTermPrint(&pWC->a[i], i);
+ }
+}
+#endif
+
+#ifdef WHERETRACE_ENABLED
+/*
+** Print a WhereLoop object for debugging purposes
+**
+** Format example:
+**
+** .--- Position in WHERE clause rSetup, rRun, nOut ---.
+** | |
+** | .--- selfMask nTerm ------. |
+** | | | |
+** | | .-- prereq Idx wsFlags----. | |
+** | | | Name | | |
+** | | | __|__ nEq ---. ___|__ | __|__
+** | / \ / \ / \ | / \ / \ / \
+** 1.002.001 t2.t2xy 2 f 010241 N 2 cost 0,56,31
+*/
+void sqlite3WhereLoopPrint(const WhereLoop *p, const WhereClause *pWC){
+ if( pWC ){
+ WhereInfo *pWInfo = pWC->pWInfo;
+ int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
+ SrcItem *pItem = pWInfo->pTabList->a + p->iTab;
+ Table *pTab = pItem->pTab;
+ Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
+ sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
+ p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
+ sqlite3DebugPrintf(" %12s",
+ pItem->zAlias ? pItem->zAlias : pTab->zName);
+ }else{
+ sqlite3DebugPrintf("%c%2d.%03llx.%03llx %c%d",
+ p->cId, p->iTab, p->maskSelf, p->prereq & 0xfff, p->cId, p->iTab);
+ }
+ if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
+ const char *zName;
+ if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
+ if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
+ int i = sqlite3Strlen30(zName) - 1;
+ while( zName[i]!='_' ) i--;
+ zName += i;
+ }
+ sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
+ }else{
+ sqlite3DebugPrintf("%20s","");
+ }
+ }else{
+ char *z;
+ if( p->u.vtab.idxStr ){
+ z = sqlite3_mprintf("(%d,\"%s\",%#x)",
+ p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
+ }else{
+ z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
+ }
+ sqlite3DebugPrintf(" %-19s", z);
+ sqlite3_free(z);
+ }
+ if( p->wsFlags & WHERE_SKIPSCAN ){
+ sqlite3DebugPrintf(" f %06x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
+ }else{
+ sqlite3DebugPrintf(" f %06x N %d", p->wsFlags, p->nLTerm);
+ }
+ sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
+ if( p->nLTerm && (sqlite3WhereTrace & 0x4000)!=0 ){
+ int i;
+ for(i=0; i<p->nLTerm; i++){
+ sqlite3WhereTermPrint(p->aLTerm[i], i);
+ }
+ }
+}
+void sqlite3ShowWhereLoop(const WhereLoop *p){
+ if( p ) sqlite3WhereLoopPrint(p, 0);
+}
+void sqlite3ShowWhereLoopList(const WhereLoop *p){
+ while( p ){
+ sqlite3ShowWhereLoop(p);
+ p = p->pNextLoop;
+ }
+}
+#endif
+
+/*
+** Convert bulk memory into a valid WhereLoop that can be passed
+** to whereLoopClear harmlessly.
+*/
+static void whereLoopInit(WhereLoop *p){
+ p->aLTerm = p->aLTermSpace;
+ p->nLTerm = 0;
+ p->nLSlot = ArraySize(p->aLTermSpace);
+ p->wsFlags = 0;
+}
+
+/*
+** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact.
+*/
+static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
+ if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
+ if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
+ sqlite3_free(p->u.vtab.idxStr);
+ p->u.vtab.needFree = 0;
+ p->u.vtab.idxStr = 0;
+ }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
+ sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
+ sqlite3DbFreeNN(db, p->u.btree.pIndex);
+ p->u.btree.pIndex = 0;
+ }
+ }
+}
+
+/*
+** Deallocate internal memory used by a WhereLoop object. Leave the
+** object in an initialized state, as if it had been newly allocated.
+*/
+static void whereLoopClear(sqlite3 *db, WhereLoop *p){
+ if( p->aLTerm!=p->aLTermSpace ){
+ sqlite3DbFreeNN(db, p->aLTerm);
+ p->aLTerm = p->aLTermSpace;
+ p->nLSlot = ArraySize(p->aLTermSpace);
+ }
+ whereLoopClearUnion(db, p);
+ p->nLTerm = 0;
+ p->wsFlags = 0;
+}
+
+/*
+** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
+*/
+static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
+ WhereTerm **paNew;
+ if( p->nLSlot>=n ) return SQLITE_OK;
+ n = (n+7)&~7;
+ paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
+ if( paNew==0 ) return SQLITE_NOMEM_BKPT;
+ memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
+ if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
+ p->aLTerm = paNew;
+ p->nLSlot = n;
+ return SQLITE_OK;
+}
+
+/*
+** Transfer content from the second pLoop into the first.
+*/
+static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
+ whereLoopClearUnion(db, pTo);
+ if( pFrom->nLTerm > pTo->nLSlot
+ && whereLoopResize(db, pTo, pFrom->nLTerm)
+ ){
+ memset(pTo, 0, WHERE_LOOP_XFER_SZ);
+ return SQLITE_NOMEM_BKPT;
+ }
+ memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
+ memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
+ if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
+ pFrom->u.vtab.needFree = 0;
+ }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
+ pFrom->u.btree.pIndex = 0;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Delete a WhereLoop object
+*/
+static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
+ assert( db!=0 );
+ whereLoopClear(db, p);
+ sqlite3DbNNFreeNN(db, p);
+}
+
+/*
+** Free a WhereInfo structure
+*/
+static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
+ assert( pWInfo!=0 );
+ assert( db!=0 );
+ sqlite3WhereClauseClear(&pWInfo->sWC);
+ while( pWInfo->pLoops ){
+ WhereLoop *p = pWInfo->pLoops;
+ pWInfo->pLoops = p->pNextLoop;
+ whereLoopDelete(db, p);
+ }
+ while( pWInfo->pMemToFree ){
+ WhereMemBlock *pNext = pWInfo->pMemToFree->pNext;
+ sqlite3DbNNFreeNN(db, pWInfo->pMemToFree);
+ pWInfo->pMemToFree = pNext;
+ }
+ sqlite3DbNNFreeNN(db, pWInfo);
+}
+
+/*
+** Return TRUE if X is a proper subset of Y but is of equal or less cost.
+** In other words, return true if all constraints of X are also part of Y
+** and Y has additional constraints that might speed the search that X lacks
+** but the cost of running X is not more than the cost of running Y.
+**
+** In other words, return true if the cost relationwship between X and Y
+** is inverted and needs to be adjusted.
+**
+** Case 1:
+**
+** (1a) X and Y use the same index.
+** (1b) X has fewer == terms than Y
+** (1c) Neither X nor Y use skip-scan
+** (1d) X does not have a a greater cost than Y
+**
+** Case 2:
+**
+** (2a) X has the same or lower cost, or returns the same or fewer rows,
+** than Y.
+** (2b) X uses fewer WHERE clause terms than Y
+** (2c) Every WHERE clause term used by X is also used by Y
+** (2d) X skips at least as many columns as Y
+** (2e) If X is a covering index, than Y is too
+*/
+static int whereLoopCheaperProperSubset(
+ const WhereLoop *pX, /* First WhereLoop to compare */
+ const WhereLoop *pY /* Compare against this WhereLoop */
+){
+ int i, j;
+ if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0; /* (1d) and (2a) */
+ assert( (pX->wsFlags & WHERE_VIRTUALTABLE)==0 );
+ assert( (pY->wsFlags & WHERE_VIRTUALTABLE)==0 );
+ if( pX->u.btree.nEq < pY->u.btree.nEq /* (1b) */
+ && pX->u.btree.pIndex==pY->u.btree.pIndex /* (1a) */
+ && pX->nSkip==0 && pY->nSkip==0 /* (1c) */
+ ){
+ return 1; /* Case 1 is true */
+ }
+ if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
+ return 0; /* (2b) */
+ }
+ if( pY->nSkip > pX->nSkip ) return 0; /* (2d) */
+ for(i=pX->nLTerm-1; i>=0; i--){
+ if( pX->aLTerm[i]==0 ) continue;
+ for(j=pY->nLTerm-1; j>=0; j--){
+ if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
+ }
+ if( j<0 ) return 0; /* (2c) */
+ }
+ if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
+ && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
+ return 0; /* (2e) */
+ }
+ return 1; /* Case 2 is true */
+}
+
+/*
+** Try to adjust the cost and number of output rows of WhereLoop pTemplate
+** upwards or downwards so that:
+**
+** (1) pTemplate costs less than any other WhereLoops that are a proper
+** subset of pTemplate
+**
+** (2) pTemplate costs more than any other WhereLoops for which pTemplate
+** is a proper subset.
+**
+** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
+** WHERE clause terms than Y and that every WHERE clause term used by X is
+** also used by Y.
+*/
+static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
+ if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
+ for(; p; p=p->pNextLoop){
+ if( p->iTab!=pTemplate->iTab ) continue;
+ if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
+ if( whereLoopCheaperProperSubset(p, pTemplate) ){
+ /* Adjust pTemplate cost downward so that it is cheaper than its
+ ** subset p. */
+ WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
+ pTemplate->rRun, pTemplate->nOut,
+ MIN(p->rRun, pTemplate->rRun),
+ MIN(p->nOut - 1, pTemplate->nOut)));
+ pTemplate->rRun = MIN(p->rRun, pTemplate->rRun);
+ pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut);
+ }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
+ /* Adjust pTemplate cost upward so that it is costlier than p since
+ ** pTemplate is a proper subset of p */
+ WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
+ pTemplate->rRun, pTemplate->nOut,
+ MAX(p->rRun, pTemplate->rRun),
+ MAX(p->nOut + 1, pTemplate->nOut)));
+ pTemplate->rRun = MAX(p->rRun, pTemplate->rRun);
+ pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut);
+ }
+ }
+}
+
+/*
+** Search the list of WhereLoops in *ppPrev looking for one that can be
+** replaced by pTemplate.
+**
+** Return NULL if pTemplate does not belong on the WhereLoop list.
+** In other words if pTemplate ought to be dropped from further consideration.
+**
+** If pX is a WhereLoop that pTemplate can replace, then return the
+** link that points to pX.
+**
+** If pTemplate cannot replace any existing element of the list but needs
+** to be added to the list as a new entry, then return a pointer to the
+** tail of the list.
+*/
+static WhereLoop **whereLoopFindLesser(
+ WhereLoop **ppPrev,
+ const WhereLoop *pTemplate
+){
+ WhereLoop *p;
+ for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
+ if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
+ /* If either the iTab or iSortIdx values for two WhereLoop are different
+ ** then those WhereLoops need to be considered separately. Neither is
+ ** a candidate to replace the other. */
+ continue;
+ }
+ /* In the current implementation, the rSetup value is either zero
+ ** or the cost of building an automatic index (NlogN) and the NlogN
+ ** is the same for compatible WhereLoops. */
+ assert( p->rSetup==0 || pTemplate->rSetup==0
+ || p->rSetup==pTemplate->rSetup );
+
+ /* whereLoopAddBtree() always generates and inserts the automatic index
+ ** case first. Hence compatible candidate WhereLoops never have a larger
+ ** rSetup. Call this SETUP-INVARIANT */
+ assert( p->rSetup>=pTemplate->rSetup );
+
+ /* Any loop using an application-defined index (or PRIMARY KEY or
+ ** UNIQUE constraint) with one or more == constraints is better
+ ** than an automatic index. Unless it is a skip-scan. */
+ if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
+ && (pTemplate->nSkip)==0
+ && (pTemplate->wsFlags & WHERE_INDEXED)!=0
+ && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
+ && (p->prereq & pTemplate->prereq)==pTemplate->prereq
+ ){
+ break;
+ }
+
+ /* If existing WhereLoop p is better than pTemplate, pTemplate can be
+ ** discarded. WhereLoop p is better if:
+ ** (1) p has no more dependencies than pTemplate, and
+ ** (2) p has an equal or lower cost than pTemplate
+ */
+ if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */
+ && p->rSetup<=pTemplate->rSetup /* (2a) */
+ && p->rRun<=pTemplate->rRun /* (2b) */
+ && p->nOut<=pTemplate->nOut /* (2c) */
+ ){
+ return 0; /* Discard pTemplate */
+ }
+
+ /* If pTemplate is always better than p, then cause p to be overwritten
+ ** with pTemplate. pTemplate is better than p if:
+ ** (1) pTemplate has no more dependencies than p, and
+ ** (2) pTemplate has an equal or lower cost than p.
+ */
+ if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */
+ && p->rRun>=pTemplate->rRun /* (2a) */
+ && p->nOut>=pTemplate->nOut /* (2b) */
+ ){
+ assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
+ break; /* Cause p to be overwritten by pTemplate */
+ }
+ }
+ return ppPrev;
+}
+
+/*
+** Insert or replace a WhereLoop entry using the template supplied.
+**
+** An existing WhereLoop entry might be overwritten if the new template
+** is better and has fewer dependencies. Or the template will be ignored
+** and no insert will occur if an existing WhereLoop is faster and has
+** fewer dependencies than the template. Otherwise a new WhereLoop is
+** added based on the template.
+**
+** If pBuilder->pOrSet is not NULL then we care about only the
+** prerequisites and rRun and nOut costs of the N best loops. That
+** information is gathered in the pBuilder->pOrSet object. This special
+** processing mode is used only for OR clause processing.
+**
+** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
+** still might overwrite similar loops with the new template if the
+** new template is better. Loops may be overwritten if the following
+** conditions are met:
+**
+** (1) They have the same iTab.
+** (2) They have the same iSortIdx.
+** (3) The template has same or fewer dependencies than the current loop
+** (4) The template has the same or lower cost than the current loop
+*/
+static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
+ WhereLoop **ppPrev, *p;
+ WhereInfo *pWInfo = pBuilder->pWInfo;
+ sqlite3 *db = pWInfo->pParse->db;
+ int rc;
+
+ /* Stop the search once we hit the query planner search limit */
+ if( pBuilder->iPlanLimit==0 ){
+ WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
+ if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
+ return SQLITE_DONE;
+ }
+ pBuilder->iPlanLimit--;
+
+ whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
+
+ /* If pBuilder->pOrSet is defined, then only keep track of the costs
+ ** and prereqs.
+ */
+ if( pBuilder->pOrSet!=0 ){
+ if( pTemplate->nLTerm ){
+#if WHERETRACE_ENABLED
+ u16 n = pBuilder->pOrSet->n;
+ int x =
+#endif
+ whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
+ pTemplate->nOut);
+#if WHERETRACE_ENABLED /* 0x8 */
+ if( sqlite3WhereTrace & 0x8 ){
+ sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n);
+ sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
+ }
+#endif
+ }
+ return SQLITE_OK;
+ }
+
+ /* Look for an existing WhereLoop to replace with pTemplate
+ */
+ ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
+
+ if( ppPrev==0 ){
+ /* There already exists a WhereLoop on the list that is better
+ ** than pTemplate, so just ignore pTemplate */
+#if WHERETRACE_ENABLED /* 0x8 */
+ if( sqlite3WhereTrace & 0x8 ){
+ sqlite3DebugPrintf(" skip: ");
+ sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
+ }
+#endif
+ return SQLITE_OK;
+ }else{
+ p = *ppPrev;
+ }
+
+ /* If we reach this point it means that either p[] should be overwritten
+ ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
+ ** WhereLoop and insert it.
+ */
+#if WHERETRACE_ENABLED /* 0x8 */
+ if( sqlite3WhereTrace & 0x8 ){
+ if( p!=0 ){
+ sqlite3DebugPrintf("replace: ");
+ sqlite3WhereLoopPrint(p, pBuilder->pWC);
+ sqlite3DebugPrintf(" with: ");
+ }else{
+ sqlite3DebugPrintf(" add: ");
+ }
+ sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
+ }
+#endif
+ if( p==0 ){
+ /* Allocate a new WhereLoop to add to the end of the list */
+ *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
+ if( p==0 ) return SQLITE_NOMEM_BKPT;
+ whereLoopInit(p);
+ p->pNextLoop = 0;
+ }else{
+ /* We will be overwriting WhereLoop p[]. But before we do, first
+ ** go through the rest of the list and delete any other entries besides
+ ** p[] that are also supplanted by pTemplate */
+ WhereLoop **ppTail = &p->pNextLoop;
+ WhereLoop *pToDel;
+ while( *ppTail ){
+ ppTail = whereLoopFindLesser(ppTail, pTemplate);
+ if( ppTail==0 ) break;
+ pToDel = *ppTail;
+ if( pToDel==0 ) break;
+ *ppTail = pToDel->pNextLoop;
+#if WHERETRACE_ENABLED /* 0x8 */
+ if( sqlite3WhereTrace & 0x8 ){
+ sqlite3DebugPrintf(" delete: ");
+ sqlite3WhereLoopPrint(pToDel, pBuilder->pWC);
+ }
+#endif
+ whereLoopDelete(db, pToDel);
+ }
+ }
+ rc = whereLoopXfer(db, p, pTemplate);
+ if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
+ Index *pIndex = p->u.btree.pIndex;
+ if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
+ p->u.btree.pIndex = 0;
+ }
+ }
+ return rc;
+}
+
+/*
+** Adjust the WhereLoop.nOut value downward to account for terms of the
+** WHERE clause that reference the loop but which are not used by an
+** index.
+*
+** For every WHERE clause term that is not used by the index
+** and which has a truth probability assigned by one of the likelihood(),
+** likely(), or unlikely() SQL functions, reduce the estimated number
+** of output rows by the probability specified.
+**
+** TUNING: For every WHERE clause term that is not used by the index
+** and which does not have an assigned truth probability, heuristics
+** described below are used to try to estimate the truth probability.
+** TODO --> Perhaps this is something that could be improved by better
+** table statistics.
+**
+** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75%
+** value corresponds to -1 in LogEst notation, so this means decrement
+** the WhereLoop.nOut field for every such WHERE clause term.
+**
+** Heuristic 2: If there exists one or more WHERE clause terms of the
+** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
+** final output row estimate is no greater than 1/4 of the total number
+** of rows in the table. In other words, assume that x==EXPR will filter
+** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the
+** "x" column is boolean or else -1 or 0 or 1 is a common default value
+** on the "x" column and so in that case only cap the output row estimate
+** at 1/2 instead of 1/4.
+*/
+static void whereLoopOutputAdjust(
+ WhereClause *pWC, /* The WHERE clause */
+ WhereLoop *pLoop, /* The loop to adjust downward */
+ LogEst nRow /* Number of rows in the entire table */
+){
+ WhereTerm *pTerm, *pX;
+ Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
+ int i, j;
+ LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */
+
+ assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
+ for(i=pWC->nBase, pTerm=pWC->a; i>0; i--, pTerm++){
+ assert( pTerm!=0 );
+ if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
+ if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
+ if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) continue;
+ for(j=pLoop->nLTerm-1; j>=0; j--){
+ pX = pLoop->aLTerm[j];
+ if( pX==0 ) continue;
+ if( pX==pTerm ) break;
+ if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
+ }
+ if( j<0 ){
+ sqlite3ProgressCheck(pWC->pWInfo->pParse);
+ if( pLoop->maskSelf==pTerm->prereqAll ){
+ /* If there are extra terms in the WHERE clause not used by an index
+ ** that depend only on the table being scanned, and that will tend to
+ ** cause many rows to be omitted, then mark that table as
+ ** "self-culling".
+ **
+ ** 2022-03-24: Self-culling only applies if either the extra terms
+ ** are straight comparison operators that are non-true with NULL
+ ** operand, or if the loop is not an OUTER JOIN.
+ */
+ if( (pTerm->eOperator & 0x3f)!=0
+ || (pWC->pWInfo->pTabList->a[pLoop->iTab].fg.jointype
+ & (JT_LEFT|JT_LTORJ))==0
+ ){
+ pLoop->wsFlags |= WHERE_SELFCULL;
+ }
+ }
+ if( pTerm->truthProb<=0 ){
+ /* If a truth probability is specified using the likelihood() hints,
+ ** then use the probability provided by the application. */
+ pLoop->nOut += pTerm->truthProb;
+ }else{
+ /* In the absence of explicit truth probabilities, use heuristics to
+ ** guess a reasonable truth probability. */
+ pLoop->nOut--;
+ if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0
+ && (pTerm->wtFlags & TERM_HIGHTRUTH)==0 /* tag-20200224-1 */
+ ){
+ Expr *pRight = pTerm->pExpr->pRight;
+ int k = 0;
+ testcase( pTerm->pExpr->op==TK_IS );
+ if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
+ k = 10;
+ }else{
+ k = 20;
+ }
+ if( iReduce<k ){
+ pTerm->wtFlags |= TERM_HEURTRUTH;
+ iReduce = k;
+ }
+ }
+ }
+ }
+ }
+ if( pLoop->nOut > nRow-iReduce ){
+ pLoop->nOut = nRow - iReduce;
+ }
+}
+
+/*
+** Term pTerm is a vector range comparison operation. The first comparison
+** in the vector can be optimized using column nEq of the index. This
+** function returns the total number of vector elements that can be used
+** as part of the range comparison.
+**
+** For example, if the query is:
+**
+** WHERE a = ? AND (b, c, d) > (?, ?, ?)
+**
+** and the index:
+**
+** CREATE INDEX ... ON (a, b, c, d, e)
+**
+** then this function would be invoked with nEq=1. The value returned in
+** this case is 3.
+*/
+static int whereRangeVectorLen(
+ Parse *pParse, /* Parsing context */
+ int iCur, /* Cursor open on pIdx */
+ Index *pIdx, /* The index to be used for a inequality constraint */
+ int nEq, /* Number of prior equality constraints on same index */
+ WhereTerm *pTerm /* The vector inequality constraint */
+){
+ int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
+ int i;
+
+ nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
+ for(i=1; i<nCmp; i++){
+ /* Test if comparison i of pTerm is compatible with column (i+nEq)
+ ** of the index. If not, exit the loop. */
+ char aff; /* Comparison affinity */
+ char idxaff = 0; /* Indexed columns affinity */
+ CollSeq *pColl; /* Comparison collation sequence */
+ Expr *pLhs, *pRhs;
+
+ assert( ExprUseXList(pTerm->pExpr->pLeft) );
+ pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
+ pRhs = pTerm->pExpr->pRight;
+ if( ExprUseXSelect(pRhs) ){
+ pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
+ }else{
+ pRhs = pRhs->x.pList->a[i].pExpr;
+ }
+
+ /* Check that the LHS of the comparison is a column reference to
+ ** the right column of the right source table. And that the sort
+ ** order of the index column is the same as the sort order of the
+ ** leftmost index column. */
+ if( pLhs->op!=TK_COLUMN
+ || pLhs->iTable!=iCur
+ || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
+ || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
+ ){
+ break;
+ }
+
+ testcase( pLhs->iColumn==XN_ROWID );
+ aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
+ idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
+ if( aff!=idxaff ) break;
+
+ pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
+ if( pColl==0 ) break;
+ if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
+ }
+ return i;
+}
+
+/*
+** Adjust the cost C by the costMult factor T. This only occurs if
+** compiled with -DSQLITE_ENABLE_COSTMULT
+*/
+#ifdef SQLITE_ENABLE_COSTMULT
+# define ApplyCostMultiplier(C,T) C += T
+#else
+# define ApplyCostMultiplier(C,T)
+#endif
+
+/*
+** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
+** index pIndex. Try to match one more.
+**
+** When this function is called, pBuilder->pNew->nOut contains the
+** number of rows expected to be visited by filtering using the nEq
+** terms only. If it is modified, this value is restored before this
+** function returns.
+**
+** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
+** a fake index used for the INTEGER PRIMARY KEY.
+*/
+static int whereLoopAddBtreeIndex(
+ WhereLoopBuilder *pBuilder, /* The WhereLoop factory */
+ SrcItem *pSrc, /* FROM clause term being analyzed */
+ Index *pProbe, /* An index on pSrc */
+ LogEst nInMul /* log(Number of iterations due to IN) */
+){
+ WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyze context */
+ Parse *pParse = pWInfo->pParse; /* Parsing context */
+ sqlite3 *db = pParse->db; /* Database connection malloc context */
+ WhereLoop *pNew; /* Template WhereLoop under construction */
+ WhereTerm *pTerm; /* A WhereTerm under consideration */
+ int opMask; /* Valid operators for constraints */
+ WhereScan scan; /* Iterator for WHERE terms */
+ Bitmask saved_prereq; /* Original value of pNew->prereq */
+ u16 saved_nLTerm; /* Original value of pNew->nLTerm */
+ u16 saved_nEq; /* Original value of pNew->u.btree.nEq */
+ u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */
+ u16 saved_nTop; /* Original value of pNew->u.btree.nTop */
+ u16 saved_nSkip; /* Original value of pNew->nSkip */
+ u32 saved_wsFlags; /* Original value of pNew->wsFlags */
+ LogEst saved_nOut; /* Original value of pNew->nOut */
+ int rc = SQLITE_OK; /* Return code */
+ LogEst rSize; /* Number of rows in the table */
+ LogEst rLogSize; /* Logarithm of table size */
+ WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
+
+ pNew = pBuilder->pNew;
+ assert( db->mallocFailed==0 || pParse->nErr>0 );
+ if( pParse->nErr ){
+ return pParse->rc;
+ }
+ WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
+ pProbe->pTable->zName,pProbe->zName,
+ pNew->u.btree.nEq, pNew->nSkip, pNew->rRun));
+
+ assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
+ assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
+ if( pNew->wsFlags & WHERE_BTM_LIMIT ){
+ opMask = WO_LT|WO_LE;
+ }else{
+ assert( pNew->u.btree.nBtm==0 );
+ opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
+ }
+ if( pProbe->bUnordered || pProbe->bLowQual ){
+ if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
+ if( pProbe->bLowQual ) opMask &= ~(WO_EQ|WO_IN|WO_IS);
+ }
+
+ assert( pNew->u.btree.nEq<pProbe->nColumn );
+ assert( pNew->u.btree.nEq<pProbe->nKeyCol
+ || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY );
+
+ saved_nEq = pNew->u.btree.nEq;
+ saved_nBtm = pNew->u.btree.nBtm;
+ saved_nTop = pNew->u.btree.nTop;
+ saved_nSkip = pNew->nSkip;
+ saved_nLTerm = pNew->nLTerm;
+ saved_wsFlags = pNew->wsFlags;
+ saved_prereq = pNew->prereq;
+ saved_nOut = pNew->nOut;
+ pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
+ opMask, pProbe);
+ pNew->rSetup = 0;
+ rSize = pProbe->aiRowLogEst[0];
+ rLogSize = estLog(rSize);
+ for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
+ u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */
+ LogEst rCostIdx;
+ LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */
+ int nIn = 0;
+#ifdef SQLITE_ENABLE_STAT4
+ int nRecValid = pBuilder->nRecValid;
+#endif
+ if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
+ && indexColumnNotNull(pProbe, saved_nEq)
+ ){
+ continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
+ }
+ if( pTerm->prereqRight & pNew->maskSelf ) continue;
+
+ /* Do not allow the upper bound of a LIKE optimization range constraint
+ ** to mix with a lower range bound from some other source */
+ if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
+
+ if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0
+ && !constraintCompatibleWithOuterJoin(pTerm,pSrc)
+ ){
+ continue;
+ }
+ if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
+ pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
+ }else{
+ pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
+ }
+ pNew->wsFlags = saved_wsFlags;
+ pNew->u.btree.nEq = saved_nEq;
+ pNew->u.btree.nBtm = saved_nBtm;
+ pNew->u.btree.nTop = saved_nTop;
+ pNew->nLTerm = saved_nLTerm;
+ if( pNew->nLTerm>=pNew->nLSlot
+ && whereLoopResize(db, pNew, pNew->nLTerm+1)
+ ){
+ break; /* OOM while trying to enlarge the pNew->aLTerm array */
+ }
+ pNew->aLTerm[pNew->nLTerm++] = pTerm;
+ pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
+
+ assert( nInMul==0
+ || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
+ || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
+ || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
+ );
+
+ if( eOp & WO_IN ){
+ Expr *pExpr = pTerm->pExpr;
+ if( ExprUseXSelect(pExpr) ){
+ /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */
+ int i;
+ nIn = 46; assert( 46==sqlite3LogEst(25) );
+
+ /* The expression may actually be of the form (x, y) IN (SELECT...).
+ ** In this case there is a separate term for each of (x) and (y).
+ ** However, the nIn multiplier should only be applied once, not once
+ ** for each such term. The following loop checks that pTerm is the
+ ** first such term in use, and sets nIn back to 0 if it is not. */
+ for(i=0; i<pNew->nLTerm-1; i++){
+ if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
+ }
+ }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
+ /* "x IN (value, value, ...)" */
+ nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
+ }
+ if( pProbe->hasStat1 && rLogSize>=10 ){
+ LogEst M, logK, x;
+ /* Let:
+ ** N = the total number of rows in the table
+ ** K = the number of entries on the RHS of the IN operator
+ ** M = the number of rows in the table that match terms to the
+ ** to the left in the same index. If the IN operator is on
+ ** the left-most index column, M==N.
+ **
+ ** Given the definitions above, it is better to omit the IN operator
+ ** from the index lookup and instead do a scan of the M elements,
+ ** testing each scanned row against the IN operator separately, if:
+ **
+ ** M*log(K) < K*log(N)
+ **
+ ** Our estimates for M, K, and N might be inaccurate, so we build in
+ ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
+ ** with the index, as using an index has better worst-case behavior.
+ ** If we do not have real sqlite_stat1 data, always prefer to use
+ ** the index. Do not bother with this optimization on very small
+ ** tables (less than 2 rows) as it is pointless in that case.
+ */
+ M = pProbe->aiRowLogEst[saved_nEq];
+ logK = estLog(nIn);
+ /* TUNING v----- 10 to bias toward indexed IN */
+ x = M + logK + 10 - (nIn + rLogSize);
+ if( x>=0 ){
+ WHERETRACE(0x40,
+ ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) "
+ "prefers indexed lookup\n",
+ saved_nEq, M, logK, nIn, rLogSize, x));
+ }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){
+ WHERETRACE(0x40,
+ ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
+ " nInMul=%d) prefers skip-scan\n",
+ saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
+ pNew->wsFlags |= WHERE_IN_SEEKSCAN;
+ }else{
+ WHERETRACE(0x40,
+ ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
+ " nInMul=%d) prefers normal scan\n",
+ saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
+ continue;
+ }
+ }
+ pNew->wsFlags |= WHERE_COLUMN_IN;
+ }else if( eOp & (WO_EQ|WO_IS) ){
+ int iCol = pProbe->aiColumn[saved_nEq];
+ pNew->wsFlags |= WHERE_COLUMN_EQ;
+ assert( saved_nEq==pNew->u.btree.nEq );
+ if( iCol==XN_ROWID
+ || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
+ ){
+ if( iCol==XN_ROWID || pProbe->uniqNotNull
+ || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
+ ){
+ pNew->wsFlags |= WHERE_ONEROW;
+ }else{
+ pNew->wsFlags |= WHERE_UNQ_WANTED;
+ }
+ }
+ if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS;
+ }else if( eOp & WO_ISNULL ){
+ pNew->wsFlags |= WHERE_COLUMN_NULL;
+ }else{
+ int nVecLen = whereRangeVectorLen(
+ pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
+ );
+ if( eOp & (WO_GT|WO_GE) ){
+ testcase( eOp & WO_GT );
+ testcase( eOp & WO_GE );
+ pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
+ pNew->u.btree.nBtm = nVecLen;
+ pBtm = pTerm;
+ pTop = 0;
+ if( pTerm->wtFlags & TERM_LIKEOPT ){
+ /* Range constraints that come from the LIKE optimization are
+ ** always used in pairs. */
+ pTop = &pTerm[1];
+ assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
+ assert( pTop->wtFlags & TERM_LIKEOPT );
+ assert( pTop->eOperator==WO_LT );
+ if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
+ pNew->aLTerm[pNew->nLTerm++] = pTop;
+ pNew->wsFlags |= WHERE_TOP_LIMIT;
+ pNew->u.btree.nTop = 1;
+ }
+ }else{
+ assert( eOp & (WO_LT|WO_LE) );
+ testcase( eOp & WO_LT );
+ testcase( eOp & WO_LE );
+ pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
+ pNew->u.btree.nTop = nVecLen;
+ pTop = pTerm;
+ pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
+ pNew->aLTerm[pNew->nLTerm-2] : 0;
+ }
+ }
+
+ /* At this point pNew->nOut is set to the number of rows expected to
+ ** be visited by the index scan before considering term pTerm, or the
+ ** values of nIn and nInMul. In other words, assuming that all
+ ** "x IN(...)" terms are replaced with "x = ?". This block updates
+ ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */
+ assert( pNew->nOut==saved_nOut );
+ if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
+ /* Adjust nOut using stat4 data. Or, if there is no stat4
+ ** data, using some other estimate. */
+ whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
+ }else{
+ int nEq = ++pNew->u.btree.nEq;
+ assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
+
+ assert( pNew->nOut==saved_nOut );
+ if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
+ assert( (eOp & WO_IN) || nIn==0 );
+ testcase( eOp & WO_IN );
+ pNew->nOut += pTerm->truthProb;
+ pNew->nOut -= nIn;
+ }else{
+#ifdef SQLITE_ENABLE_STAT4
+ tRowcnt nOut = 0;
+ if( nInMul==0
+ && pProbe->nSample
+ && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol)
+ && ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr))
+ && OptimizationEnabled(db, SQLITE_Stat4)
+ ){
+ Expr *pExpr = pTerm->pExpr;
+ if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
+ testcase( eOp & WO_EQ );
+ testcase( eOp & WO_IS );
+ testcase( eOp & WO_ISNULL );
+ rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
+ }else{
+ rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
+ }
+ if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
+ if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */
+ if( nOut ){
+ pNew->nOut = sqlite3LogEst(nOut);
+ if( nEq==1
+ /* TUNING: Mark terms as "low selectivity" if they seem likely
+ ** to be true for half or more of the rows in the table.
+ ** See tag-202002240-1 */
+ && pNew->nOut+10 > pProbe->aiRowLogEst[0]
+ ){
+#if WHERETRACE_ENABLED /* 0x01 */
+ if( sqlite3WhereTrace & 0x20 ){
+ sqlite3DebugPrintf(
+ "STAT4 determines term has low selectivity:\n");
+ sqlite3WhereTermPrint(pTerm, 999);
+ }
+#endif
+ pTerm->wtFlags |= TERM_HIGHTRUTH;
+ if( pTerm->wtFlags & TERM_HEURTRUTH ){
+ /* If the term has previously been used with an assumption of
+ ** higher selectivity, then set the flag to rerun the
+ ** loop computations. */
+ pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS;
+ }
+ }
+ if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
+ pNew->nOut -= nIn;
+ }
+ }
+ if( nOut==0 )
+#endif
+ {
+ pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
+ if( eOp & WO_ISNULL ){
+ /* TUNING: If there is no likelihood() value, assume that a
+ ** "col IS NULL" expression matches twice as many rows
+ ** as (col=?). */
+ pNew->nOut += 10;
+ }
+ }
+ }
+ }
+
+ /* Set rCostIdx to the cost of visiting selected rows in index. Add
+ ** it to pNew->rRun, which is currently set to the cost of the index
+ ** seek only. Then, if this is a non-covering index, add the cost of
+ ** visiting the rows in the main table. */
+ assert( pSrc->pTab->szTabRow>0 );
+ if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
+ /* The pProbe->szIdxRow is low for an IPK table since the interior
+ ** pages are small. Thus szIdxRow gives a good estimate of seek cost.
+ ** But the leaf pages are full-size, so pProbe->szIdxRow would badly
+ ** under-estimate the scanning cost. */
+ rCostIdx = pNew->nOut + 16;
+ }else{
+ rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
+ }
+ pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
+ if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK|WHERE_EXPRIDX))==0 ){
+ pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
+ }
+ ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
+
+ nOutUnadjusted = pNew->nOut;
+ pNew->rRun += nInMul + nIn;
+ pNew->nOut += nInMul + nIn;
+ whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
+ rc = whereLoopInsert(pBuilder, pNew);
+
+ if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
+ pNew->nOut = saved_nOut;
+ }else{
+ pNew->nOut = nOutUnadjusted;
+ }
+
+ if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
+ && pNew->u.btree.nEq<pProbe->nColumn
+ && (pNew->u.btree.nEq<pProbe->nKeyCol ||
+ pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY)
+ ){
+ if( pNew->u.btree.nEq>3 ){
+ sqlite3ProgressCheck(pParse);
+ }
+ whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
+ }
+ pNew->nOut = saved_nOut;
+#ifdef SQLITE_ENABLE_STAT4
+ pBuilder->nRecValid = nRecValid;
+#endif
+ }
+ pNew->prereq = saved_prereq;
+ pNew->u.btree.nEq = saved_nEq;
+ pNew->u.btree.nBtm = saved_nBtm;
+ pNew->u.btree.nTop = saved_nTop;
+ pNew->nSkip = saved_nSkip;
+ pNew->wsFlags = saved_wsFlags;
+ pNew->nOut = saved_nOut;
+ pNew->nLTerm = saved_nLTerm;
+
+ /* Consider using a skip-scan if there are no WHERE clause constraints
+ ** available for the left-most terms of the index, and if the average
+ ** number of repeats in the left-most terms is at least 18.
+ **
+ ** The magic number 18 is selected on the basis that scanning 17 rows
+ ** is almost always quicker than an index seek (even though if the index
+ ** contains fewer than 2^17 rows we assume otherwise in other parts of
+ ** the code). And, even if it is not, it should not be too much slower.
+ ** On the other hand, the extra seeks could end up being significantly
+ ** more expensive. */
+ assert( 42==sqlite3LogEst(18) );
+ if( saved_nEq==saved_nSkip
+ && saved_nEq+1<pProbe->nKeyCol
+ && saved_nEq==pNew->nLTerm
+ && pProbe->noSkipScan==0
+ && pProbe->hasStat1!=0
+ && OptimizationEnabled(db, SQLITE_SkipScan)
+ && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */
+ && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
+ ){
+ LogEst nIter;
+ pNew->u.btree.nEq++;
+ pNew->nSkip++;
+ pNew->aLTerm[pNew->nLTerm++] = 0;
+ pNew->wsFlags |= WHERE_SKIPSCAN;
+ nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
+ pNew->nOut -= nIter;
+ /* TUNING: Because uncertainties in the estimates for skip-scan queries,
+ ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
+ nIter += 5;
+ whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
+ pNew->nOut = saved_nOut;
+ pNew->u.btree.nEq = saved_nEq;
+ pNew->nSkip = saved_nSkip;
+ pNew->wsFlags = saved_wsFlags;
+ }
+
+ WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
+ pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
+ return rc;
+}
+
+/*
+** Return True if it is possible that pIndex might be useful in
+** implementing the ORDER BY clause in pBuilder.
+**
+** Return False if pBuilder does not contain an ORDER BY clause or
+** if there is no way for pIndex to be useful in implementing that
+** ORDER BY clause.
+*/
+static int indexMightHelpWithOrderBy(
+ WhereLoopBuilder *pBuilder,
+ Index *pIndex,
+ int iCursor
+){
+ ExprList *pOB;
+ ExprList *aColExpr;
+ int ii, jj;
+
+ if( pIndex->bUnordered ) return 0;
+ if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
+ for(ii=0; ii<pOB->nExpr; ii++){
+ Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
+ if( NEVER(pExpr==0) ) continue;
+ if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
+ if( pExpr->iColumn<0 ) return 1;
+ for(jj=0; jj<pIndex->nKeyCol; jj++){
+ if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
+ }
+ }else if( (aColExpr = pIndex->aColExpr)!=0 ){
+ for(jj=0; jj<pIndex->nKeyCol; jj++){
+ if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
+ if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
+ return 1;
+ }
+ }
+ }
+ }
+ return 0;
+}
+
+/* Check to see if a partial index with pPartIndexWhere can be used
+** in the current query. Return true if it can be and false if not.
+*/
+static int whereUsablePartialIndex(
+ int iTab, /* The table for which we want an index */
+ u8 jointype, /* The JT_* flags on the join */
+ WhereClause *pWC, /* The WHERE clause of the query */
+ Expr *pWhere /* The WHERE clause from the partial index */
+){
+ int i;
+ WhereTerm *pTerm;
+ Parse *pParse;
+
+ if( jointype & JT_LTORJ ) return 0;
+ pParse = pWC->pWInfo->pParse;
+ while( pWhere->op==TK_AND ){
+ if( !whereUsablePartialIndex(iTab,jointype,pWC,pWhere->pLeft) ) return 0;
+ pWhere = pWhere->pRight;
+ }
+ if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
+ for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
+ Expr *pExpr;
+ pExpr = pTerm->pExpr;
+ if( (!ExprHasProperty(pExpr, EP_OuterON) || pExpr->w.iJoin==iTab)
+ && ((jointype & JT_OUTER)==0 || ExprHasProperty(pExpr, EP_OuterON))
+ && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
+ && (pTerm->wtFlags & TERM_VNULL)==0
+ ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** pIdx is an index containing expressions. Check it see if any of the
+** expressions in the index match the pExpr expression.
+*/
+static int exprIsCoveredByIndex(
+ const Expr *pExpr,
+ const Index *pIdx,
+ int iTabCur
+){
+ int i;
+ for(i=0; i<pIdx->nColumn; i++){
+ if( pIdx->aiColumn[i]==XN_EXPR
+ && sqlite3ExprCompare(0, pExpr, pIdx->aColExpr->a[i].pExpr, iTabCur)==0
+ ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** Structure passed to the whereIsCoveringIndex Walker callback.
+*/
+typedef struct CoveringIndexCheck CoveringIndexCheck;
+struct CoveringIndexCheck {
+ Index *pIdx; /* The index */
+ int iTabCur; /* Cursor number for the corresponding table */
+ u8 bExpr; /* Uses an indexed expression */
+ u8 bUnidx; /* Uses an unindexed column not within an indexed expr */
+};
+
+/*
+** Information passed in is pWalk->u.pCovIdxCk. Call it pCk.
+**
+** If the Expr node references the table with cursor pCk->iTabCur, then
+** make sure that column is covered by the index pCk->pIdx. We know that
+** all columns less than 63 (really BMS-1) are covered, so we don't need
+** to check them. But we do need to check any column at 63 or greater.
+**
+** If the index does not cover the column, then set pWalk->eCode to
+** non-zero and return WRC_Abort to stop the search.
+**
+** If this node does not disprove that the index can be a covering index,
+** then just return WRC_Continue, to continue the search.
+**
+** If pCk->pIdx contains indexed expressions and one of those expressions
+** matches pExpr, then prune the search.
+*/
+static int whereIsCoveringIndexWalkCallback(Walker *pWalk, Expr *pExpr){
+ int i; /* Loop counter */
+ const Index *pIdx; /* The index of interest */
+ const i16 *aiColumn; /* Columns contained in the index */
+ u16 nColumn; /* Number of columns in the index */
+ CoveringIndexCheck *pCk; /* Info about this search */
+
+ pCk = pWalk->u.pCovIdxCk;
+ pIdx = pCk->pIdx;
+ if( (pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN) ){
+ /* if( pExpr->iColumn<(BMS-1) && pIdx->bHasExpr==0 ) return WRC_Continue;*/
+ if( pExpr->iTable!=pCk->iTabCur ) return WRC_Continue;
+ pIdx = pWalk->u.pCovIdxCk->pIdx;
+ aiColumn = pIdx->aiColumn;
+ nColumn = pIdx->nColumn;
+ for(i=0; i<nColumn; i++){
+ if( aiColumn[i]==pExpr->iColumn ) return WRC_Continue;
+ }
+ pCk->bUnidx = 1;
+ return WRC_Abort;
+ }else if( pIdx->bHasExpr
+ && exprIsCoveredByIndex(pExpr, pIdx, pWalk->u.pCovIdxCk->iTabCur) ){
+ pCk->bExpr = 1;
+ return WRC_Prune;
+ }
+ return WRC_Continue;
+}
+
+
+/*
+** pIdx is an index that covers all of the low-number columns used by
+** pWInfo->pSelect (columns from 0 through 62) or an index that has
+** expressions terms. Hence, we cannot determine whether or not it is
+** a covering index by using the colUsed bitmasks. We have to do a search
+** to see if the index is covering. This routine does that search.
+**
+** The return value is one of these:
+**
+** 0 The index is definitely not a covering index
+**
+** WHERE_IDX_ONLY The index is definitely a covering index
+**
+** WHERE_EXPRIDX The index is likely a covering index, but it is
+** difficult to determine precisely because of the
+** expressions that are indexed. Score it as a
+** covering index, but still keep the main table open
+** just in case we need it.
+**
+** This routine is an optimization. It is always safe to return zero.
+** But returning one of the other two values when zero should have been
+** returned can lead to incorrect bytecode and assertion faults.
+*/
+static SQLITE_NOINLINE u32 whereIsCoveringIndex(
+ WhereInfo *pWInfo, /* The WHERE clause context */
+ Index *pIdx, /* Index that is being tested */
+ int iTabCur /* Cursor for the table being indexed */
+){
+ int i, rc;
+ struct CoveringIndexCheck ck;
+ Walker w;
+ if( pWInfo->pSelect==0 ){
+ /* We don't have access to the full query, so we cannot check to see
+ ** if pIdx is covering. Assume it is not. */
+ return 0;
+ }
+ if( pIdx->bHasExpr==0 ){
+ for(i=0; i<pIdx->nColumn; i++){
+ if( pIdx->aiColumn[i]>=BMS-1 ) break;
+ }
+ if( i>=pIdx->nColumn ){
+ /* pIdx does not index any columns greater than 62, but we know from
+ ** colMask that columns greater than 62 are used, so this is not a
+ ** covering index */
+ return 0;
+ }
+ }
+ ck.pIdx = pIdx;
+ ck.iTabCur = iTabCur;
+ ck.bExpr = 0;
+ ck.bUnidx = 0;
+ memset(&w, 0, sizeof(w));
+ w.xExprCallback = whereIsCoveringIndexWalkCallback;
+ w.xSelectCallback = sqlite3SelectWalkNoop;
+ w.u.pCovIdxCk = &ck;
+ sqlite3WalkSelect(&w, pWInfo->pSelect);
+ if( ck.bUnidx ){
+ rc = 0;
+ }else if( ck.bExpr ){
+ rc = WHERE_EXPRIDX;
+ }else{
+ rc = WHERE_IDX_ONLY;
+ }
+ return rc;
+}
+
+/*
+** This is an sqlite3ParserAddCleanup() callback that is invoked to
+** free the Parse->pIdxEpr list when the Parse object is destroyed.
+*/
+static void whereIndexedExprCleanup(sqlite3 *db, void *pObject){
+ IndexedExpr **pp = (IndexedExpr**)pObject;
+ while( *pp!=0 ){
+ IndexedExpr *p = *pp;
+ *pp = p->pIENext;
+ sqlite3ExprDelete(db, p->pExpr);
+ sqlite3DbFreeNN(db, p);
+ }
+}
+
+/*
+** This function is called for a partial index - one with a WHERE clause - in
+** two scenarios. In both cases, it determines whether or not the WHERE
+** clause on the index implies that a column of the table may be safely
+** replaced by a constant expression. For example, in the following
+** SELECT:
+**
+** CREATE INDEX i1 ON t1(b, c) WHERE a=<expr>;
+** SELECT a, b, c FROM t1 WHERE a=<expr> AND b=?;
+**
+** The "a" in the select-list may be replaced by <expr>, iff:
+**
+** (a) <expr> is a constant expression, and
+** (b) The (a=<expr>) comparison uses the BINARY collation sequence, and
+** (c) Column "a" has an affinity other than NONE or BLOB.
+**
+** If argument pItem is NULL, then pMask must not be NULL. In this case this
+** function is being called as part of determining whether or not pIdx
+** is a covering index. This function clears any bits in (*pMask)
+** corresponding to columns that may be replaced by constants as described
+** above.
+**
+** Otherwise, if pItem is not NULL, then this function is being called
+** as part of coding a loop that uses index pIdx. In this case, add entries
+** to the Parse.pIdxPartExpr list for each column that can be replaced
+** by a constant.
+*/
+static void wherePartIdxExpr(
+ Parse *pParse, /* Parse context */
+ Index *pIdx, /* Partial index being processed */
+ Expr *pPart, /* WHERE clause being processed */
+ Bitmask *pMask, /* Mask to clear bits in */
+ int iIdxCur, /* Cursor number for index */
+ SrcItem *pItem /* The FROM clause entry for the table */
+){
+ assert( pItem==0 || (pItem->fg.jointype & JT_RIGHT)==0 );
+ assert( (pItem==0 || pMask==0) && (pMask!=0 || pItem!=0) );
+
+ if( pPart->op==TK_AND ){
+ wherePartIdxExpr(pParse, pIdx, pPart->pRight, pMask, iIdxCur, pItem);
+ pPart = pPart->pLeft;
+ }
+
+ if( (pPart->op==TK_EQ || pPart->op==TK_IS) ){
+ Expr *pLeft = pPart->pLeft;
+ Expr *pRight = pPart->pRight;
+ u8 aff;
+
+ if( pLeft->op!=TK_COLUMN ) return;
+ if( !sqlite3ExprIsConstant(pRight) ) return;
+ if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pParse, pPart)) ) return;
+ if( pLeft->iColumn<0 ) return;
+ aff = pIdx->pTable->aCol[pLeft->iColumn].affinity;
+ if( aff>=SQLITE_AFF_TEXT ){
+ if( pItem ){
+ sqlite3 *db = pParse->db;
+ IndexedExpr *p = (IndexedExpr*)sqlite3DbMallocRaw(db, sizeof(*p));
+ if( p ){
+ int bNullRow = (pItem->fg.jointype&(JT_LEFT|JT_LTORJ))!=0;
+ p->pExpr = sqlite3ExprDup(db, pRight, 0);
+ p->iDataCur = pItem->iCursor;
+ p->iIdxCur = iIdxCur;
+ p->iIdxCol = pLeft->iColumn;
+ p->bMaybeNullRow = bNullRow;
+ p->pIENext = pParse->pIdxPartExpr;
+ p->aff = aff;
+ pParse->pIdxPartExpr = p;
+ if( p->pIENext==0 ){
+ void *pArg = (void*)&pParse->pIdxPartExpr;
+ sqlite3ParserAddCleanup(pParse, whereIndexedExprCleanup, pArg);
+ }
+ }
+ }else if( pLeft->iColumn<(BMS-1) ){
+ *pMask &= ~((Bitmask)1 << pLeft->iColumn);
+ }
+ }
+ }
+}
+
+
+/*
+** Add all WhereLoop objects for a single table of the join where the table
+** is identified by pBuilder->pNew->iTab. That table is guaranteed to be
+** a b-tree table, not a virtual table.
+**
+** The costs (WhereLoop.rRun) of the b-tree loops added by this function
+** are calculated as follows:
+**
+** For a full scan, assuming the table (or index) contains nRow rows:
+**
+** cost = nRow * 3.0 // full-table scan
+** cost = nRow * K // scan of covering index
+** cost = nRow * (K+3.0) // scan of non-covering index
+**
+** where K is a value between 1.1 and 3.0 set based on the relative
+** estimated average size of the index and table records.
+**
+** For an index scan, where nVisit is the number of index rows visited
+** by the scan, and nSeek is the number of seek operations required on
+** the index b-tree:
+**
+** cost = nSeek * (log(nRow) + K * nVisit) // covering index
+** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index
+**
+** Normally, nSeek is 1. nSeek values greater than 1 come about if the
+** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
+** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
+**
+** The estimated values (nRow, nVisit, nSeek) often contain a large amount
+** of uncertainty. For this reason, scoring is designed to pick plans that
+** "do the least harm" if the estimates are inaccurate. For example, a
+** log(nRow) factor is omitted from a non-covering index scan in order to
+** bias the scoring in favor of using an index, since the worst-case
+** performance of using an index is far better than the worst-case performance
+** of a full table scan.
+*/
+static int whereLoopAddBtree(
+ WhereLoopBuilder *pBuilder, /* WHERE clause information */
+ Bitmask mPrereq /* Extra prerequisites for using this table */
+){
+ WhereInfo *pWInfo; /* WHERE analysis context */
+ Index *pProbe; /* An index we are evaluating */
+ Index sPk; /* A fake index object for the primary key */
+ LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */
+ i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */
+ SrcList *pTabList; /* The FROM clause */
+ SrcItem *pSrc; /* The FROM clause btree term to add */
+ WhereLoop *pNew; /* Template WhereLoop object */
+ int rc = SQLITE_OK; /* Return code */
+ int iSortIdx = 1; /* Index number */
+ int b; /* A boolean value */
+ LogEst rSize; /* number of rows in the table */
+ WhereClause *pWC; /* The parsed WHERE clause */
+ Table *pTab; /* Table being queried */
+
+ pNew = pBuilder->pNew;
+ pWInfo = pBuilder->pWInfo;
+ pTabList = pWInfo->pTabList;
+ pSrc = pTabList->a + pNew->iTab;
+ pTab = pSrc->pTab;
+ pWC = pBuilder->pWC;
+ assert( !IsVirtual(pSrc->pTab) );
+
+ if( pSrc->fg.isIndexedBy ){
+ assert( pSrc->fg.isCte==0 );
+ /* An INDEXED BY clause specifies a particular index to use */
+ pProbe = pSrc->u2.pIBIndex;
+ }else if( !HasRowid(pTab) ){
+ pProbe = pTab->pIndex;
+ }else{
+ /* There is no INDEXED BY clause. Create a fake Index object in local
+ ** variable sPk to represent the rowid primary key index. Make this
+ ** fake index the first in a chain of Index objects with all of the real
+ ** indices to follow */
+ Index *pFirst; /* First of real indices on the table */
+ memset(&sPk, 0, sizeof(Index));
+ sPk.nKeyCol = 1;
+ sPk.nColumn = 1;
+ sPk.aiColumn = &aiColumnPk;
+ sPk.aiRowLogEst = aiRowEstPk;
+ sPk.onError = OE_Replace;
+ sPk.pTable = pTab;
+ sPk.szIdxRow = 3; /* TUNING: Interior rows of IPK table are very small */
+ sPk.idxType = SQLITE_IDXTYPE_IPK;
+ aiRowEstPk[0] = pTab->nRowLogEst;
+ aiRowEstPk[1] = 0;
+ pFirst = pSrc->pTab->pIndex;
+ if( pSrc->fg.notIndexed==0 ){
+ /* The real indices of the table are only considered if the
+ ** NOT INDEXED qualifier is omitted from the FROM clause */
+ sPk.pNext = pFirst;
+ }
+ pProbe = &sPk;
+ }
+ rSize = pTab->nRowLogEst;
+
+#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
+ /* Automatic indexes */
+ if( !pBuilder->pOrSet /* Not part of an OR optimization */
+ && (pWInfo->wctrlFlags & (WHERE_RIGHT_JOIN|WHERE_OR_SUBCLAUSE))==0
+ && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
+ && !pSrc->fg.isIndexedBy /* Has no INDEXED BY clause */
+ && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */
+ && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */
+ && !pSrc->fg.isCorrelated /* Not a correlated subquery */
+ && !pSrc->fg.isRecursive /* Not a recursive common table expression. */
+ && (pSrc->fg.jointype & JT_RIGHT)==0 /* Not the right tab of a RIGHT JOIN */
+ ){
+ /* Generate auto-index WhereLoops */
+ LogEst rLogSize; /* Logarithm of the number of rows in the table */
+ WhereTerm *pTerm;
+ WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
+ rLogSize = estLog(rSize);
+ for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
+ if( pTerm->prereqRight & pNew->maskSelf ) continue;
+ if( termCanDriveIndex(pTerm, pSrc, 0) ){
+ pNew->u.btree.nEq = 1;
+ pNew->nSkip = 0;
+ pNew->u.btree.pIndex = 0;
+ pNew->nLTerm = 1;
+ pNew->aLTerm[0] = pTerm;
+ /* TUNING: One-time cost for computing the automatic index is
+ ** estimated to be X*N*log2(N) where N is the number of rows in
+ ** the table being indexed and where X is 7 (LogEst=28) for normal
+ ** tables or 0.5 (LogEst=-10) for views and subqueries. The value
+ ** of X is smaller for views and subqueries so that the query planner
+ ** will be more aggressive about generating automatic indexes for
+ ** those objects, since there is no opportunity to add schema
+ ** indexes on subqueries and views. */
+ pNew->rSetup = rLogSize + rSize;
+ if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){
+ pNew->rSetup += 28;
+ }else{
+ pNew->rSetup -= 25; /* Greatly reduced setup cost for auto indexes
+ ** on ephemeral materializations of views */
+ }
+ ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
+ if( pNew->rSetup<0 ) pNew->rSetup = 0;
+ /* TUNING: Each index lookup yields 20 rows in the table. This
+ ** is more than the usual guess of 10 rows, since we have no way
+ ** of knowing how selective the index will ultimately be. It would
+ ** not be unreasonable to make this value much larger. */
+ pNew->nOut = 43; assert( 43==sqlite3LogEst(20) );
+ pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
+ pNew->wsFlags = WHERE_AUTO_INDEX;
+ pNew->prereq = mPrereq | pTerm->prereqRight;
+ rc = whereLoopInsert(pBuilder, pNew);
+ }
+ }
+ }
+#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
+
+ /* Loop over all indices. If there was an INDEXED BY clause, then only
+ ** consider index pProbe. */
+ for(; rc==SQLITE_OK && pProbe;
+ pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++
+ ){
+ if( pProbe->pPartIdxWhere!=0
+ && !whereUsablePartialIndex(pSrc->iCursor, pSrc->fg.jointype, pWC,
+ pProbe->pPartIdxWhere)
+ ){
+ testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */
+ continue; /* Partial index inappropriate for this query */
+ }
+ if( pProbe->bNoQuery ) continue;
+ rSize = pProbe->aiRowLogEst[0];
+ pNew->u.btree.nEq = 0;
+ pNew->u.btree.nBtm = 0;
+ pNew->u.btree.nTop = 0;
+ pNew->nSkip = 0;
+ pNew->nLTerm = 0;
+ pNew->iSortIdx = 0;
+ pNew->rSetup = 0;
+ pNew->prereq = mPrereq;
+ pNew->nOut = rSize;
+ pNew->u.btree.pIndex = pProbe;
+ b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
+
+ /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
+ assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
+ if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
+ /* Integer primary key index */
+ pNew->wsFlags = WHERE_IPK;
+
+ /* Full table scan */
+ pNew->iSortIdx = b ? iSortIdx : 0;
+ /* TUNING: Cost of full table scan is 3.0*N. The 3.0 factor is an
+ ** extra cost designed to discourage the use of full table scans,
+ ** since index lookups have better worst-case performance if our
+ ** stat guesses are wrong. Reduce the 3.0 penalty slightly
+ ** (to 2.75) if we have valid STAT4 information for the table.
+ ** At 2.75, a full table scan is preferred over using an index on
+ ** a column with just two distinct values where each value has about
+ ** an equal number of appearances. Without STAT4 data, we still want
+ ** to use an index in that case, since the constraint might be for
+ ** the scarcer of the two values, and in that case an index lookup is
+ ** better.
+ */
+#ifdef SQLITE_ENABLE_STAT4
+ pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0);
+#else
+ pNew->rRun = rSize + 16;
+#endif
+ ApplyCostMultiplier(pNew->rRun, pTab->costMult);
+ whereLoopOutputAdjust(pWC, pNew, rSize);
+ rc = whereLoopInsert(pBuilder, pNew);
+ pNew->nOut = rSize;
+ if( rc ) break;
+ }else{
+ Bitmask m;
+ if( pProbe->isCovering ){
+ m = 0;
+ pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
+ }else{
+ m = pSrc->colUsed & pProbe->colNotIdxed;
+ if( pProbe->pPartIdxWhere ){
+ wherePartIdxExpr(
+ pWInfo->pParse, pProbe, pProbe->pPartIdxWhere, &m, 0, 0
+ );
+ }
+ pNew->wsFlags = WHERE_INDEXED;
+ if( m==TOPBIT || (pProbe->bHasExpr && !pProbe->bHasVCol && m!=0) ){
+ u32 isCov = whereIsCoveringIndex(pWInfo, pProbe, pSrc->iCursor);
+ if( isCov==0 ){
+ WHERETRACE(0x200,
+ ("-> %s is not a covering index"
+ " according to whereIsCoveringIndex()\n", pProbe->zName));
+ assert( m!=0 );
+ }else{
+ m = 0;
+ pNew->wsFlags |= isCov;
+ if( isCov & WHERE_IDX_ONLY ){
+ WHERETRACE(0x200,
+ ("-> %s is a covering expression index"
+ " according to whereIsCoveringIndex()\n", pProbe->zName));
+ }else{
+ assert( isCov==WHERE_EXPRIDX );
+ WHERETRACE(0x200,
+ ("-> %s might be a covering expression index"
+ " according to whereIsCoveringIndex()\n", pProbe->zName));
+ }
+ }
+ }else if( m==0 ){
+ WHERETRACE(0x200,
+ ("-> %s a covering index according to bitmasks\n",
+ pProbe->zName, m==0 ? "is" : "is not"));
+ pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
+ }
+ }
+
+ /* Full scan via index */
+ if( b
+ || !HasRowid(pTab)
+ || pProbe->pPartIdxWhere!=0
+ || pSrc->fg.isIndexedBy
+ || ( m==0
+ && pProbe->bUnordered==0
+ && (pProbe->szIdxRow<pTab->szTabRow)
+ && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
+ && sqlite3GlobalConfig.bUseCis
+ && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
+ )
+ ){
+ pNew->iSortIdx = b ? iSortIdx : 0;
+
+ /* The cost of visiting the index rows is N*K, where K is
+ ** between 1.1 and 3.0, depending on the relative sizes of the
+ ** index and table rows. */
+ pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
+ if( m!=0 ){
+ /* If this is a non-covering index scan, add in the cost of
+ ** doing table lookups. The cost will be 3x the number of
+ ** lookups. Take into account WHERE clause terms that can be
+ ** satisfied using just the index, and that do not require a
+ ** table lookup. */
+ LogEst nLookup = rSize + 16; /* Base cost: N*3 */
+ int ii;
+ int iCur = pSrc->iCursor;
+ WhereClause *pWC2 = &pWInfo->sWC;
+ for(ii=0; ii<pWC2->nTerm; ii++){
+ WhereTerm *pTerm = &pWC2->a[ii];
+ if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
+ break;
+ }
+ /* pTerm can be evaluated using just the index. So reduce
+ ** the expected number of table lookups accordingly */
+ if( pTerm->truthProb<=0 ){
+ nLookup += pTerm->truthProb;
+ }else{
+ nLookup--;
+ if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
+ }
+ }
+
+ pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
+ }
+ ApplyCostMultiplier(pNew->rRun, pTab->costMult);
+ whereLoopOutputAdjust(pWC, pNew, rSize);
+ if( (pSrc->fg.jointype & JT_RIGHT)!=0 && pProbe->aColExpr ){
+ /* Do not do an SCAN of a index-on-expression in a RIGHT JOIN
+ ** because the cursor used to access the index might not be
+ ** positioned to the correct row during the right-join no-match
+ ** loop. */
+ }else{
+ rc = whereLoopInsert(pBuilder, pNew);
+ }
+ pNew->nOut = rSize;
+ if( rc ) break;
+ }
+ }
+
+ pBuilder->bldFlags1 = 0;
+ rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
+ if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
+ /* If a non-unique index is used, or if a prefix of the key for
+ ** unique index is used (making the index functionally non-unique)
+ ** then the sqlite_stat1 data becomes important for scoring the
+ ** plan */
+ pTab->tabFlags |= TF_StatsUsed;
+ }
+#ifdef SQLITE_ENABLE_STAT4
+ sqlite3Stat4ProbeFree(pBuilder->pRec);
+ pBuilder->nRecValid = 0;
+ pBuilder->pRec = 0;
+#endif
+ }
+ return rc;
+}
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+
+/*
+** Return true if pTerm is a virtual table LIMIT or OFFSET term.
+*/
+static int isLimitTerm(WhereTerm *pTerm){
+ assert( pTerm->eOperator==WO_AUX || pTerm->eMatchOp==0 );
+ return pTerm->eMatchOp>=SQLITE_INDEX_CONSTRAINT_LIMIT
+ && pTerm->eMatchOp<=SQLITE_INDEX_CONSTRAINT_OFFSET;
+}
+
+/*
+** Argument pIdxInfo is already populated with all constraints that may
+** be used by the virtual table identified by pBuilder->pNew->iTab. This
+** function marks a subset of those constraints usable, invokes the
+** xBestIndex method and adds the returned plan to pBuilder.
+**
+** A constraint is marked usable if:
+**
+** * Argument mUsable indicates that its prerequisites are available, and
+**
+** * It is not one of the operators specified in the mExclude mask passed
+** as the fourth argument (which in practice is either WO_IN or 0).
+**
+** Argument mPrereq is a mask of tables that must be scanned before the
+** virtual table in question. These are added to the plans prerequisites
+** before it is added to pBuilder.
+**
+** Output parameter *pbIn is set to true if the plan added to pBuilder
+** uses one or more WO_IN terms, or false otherwise.
+*/
+static int whereLoopAddVirtualOne(
+ WhereLoopBuilder *pBuilder,
+ Bitmask mPrereq, /* Mask of tables that must be used. */
+ Bitmask mUsable, /* Mask of usable tables */
+ u16 mExclude, /* Exclude terms using these operators */
+ sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */
+ u16 mNoOmit, /* Do not omit these constraints */
+ int *pbIn, /* OUT: True if plan uses an IN(...) op */
+ int *pbRetryLimit /* OUT: Retry without LIMIT/OFFSET */
+){
+ WhereClause *pWC = pBuilder->pWC;
+ HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
+ struct sqlite3_index_constraint *pIdxCons;
+ struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
+ int i;
+ int mxTerm;
+ int rc = SQLITE_OK;
+ WhereLoop *pNew = pBuilder->pNew;
+ Parse *pParse = pBuilder->pWInfo->pParse;
+ SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
+ int nConstraint = pIdxInfo->nConstraint;
+
+ assert( (mUsable & mPrereq)==mPrereq );
+ *pbIn = 0;
+ pNew->prereq = mPrereq;
+
+ /* Set the usable flag on the subset of constraints identified by
+ ** arguments mUsable and mExclude. */
+ pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
+ for(i=0; i<nConstraint; i++, pIdxCons++){
+ WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
+ pIdxCons->usable = 0;
+ if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
+ && (pTerm->eOperator & mExclude)==0
+ && (pbRetryLimit || !isLimitTerm(pTerm))
+ ){
+ pIdxCons->usable = 1;
+ }
+ }
+
+ /* Initialize the output fields of the sqlite3_index_info structure */
+ memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
+ assert( pIdxInfo->needToFreeIdxStr==0 );
+ pIdxInfo->idxStr = 0;
+ pIdxInfo->idxNum = 0;
+ pIdxInfo->orderByConsumed = 0;
+ pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
+ pIdxInfo->estimatedRows = 25;
+ pIdxInfo->idxFlags = 0;
+ pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
+ pHidden->mHandleIn = 0;
+
+ /* Invoke the virtual table xBestIndex() method */
+ rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
+ if( rc ){
+ if( rc==SQLITE_CONSTRAINT ){
+ /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
+ ** that the particular combination of parameters provided is unusable.
+ ** Make no entries in the loop table.
+ */
+ WHERETRACE(0xffffffff, (" ^^^^--- non-viable plan rejected!\n"));
+ return SQLITE_OK;
+ }
+ return rc;
+ }
+
+ mxTerm = -1;
+ assert( pNew->nLSlot>=nConstraint );
+ memset(pNew->aLTerm, 0, sizeof(pNew->aLTerm[0])*nConstraint );
+ memset(&pNew->u.vtab, 0, sizeof(pNew->u.vtab));
+ pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
+ for(i=0; i<nConstraint; i++, pIdxCons++){
+ int iTerm;
+ if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
+ WhereTerm *pTerm;
+ int j = pIdxCons->iTermOffset;
+ if( iTerm>=nConstraint
+ || j<0
+ || j>=pWC->nTerm
+ || pNew->aLTerm[iTerm]!=0
+ || pIdxCons->usable==0
+ ){
+ sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
+ testcase( pIdxInfo->needToFreeIdxStr );
+ return SQLITE_ERROR;
+ }
+ testcase( iTerm==nConstraint-1 );
+ testcase( j==0 );
+ testcase( j==pWC->nTerm-1 );
+ pTerm = &pWC->a[j];
+ pNew->prereq |= pTerm->prereqRight;
+ assert( iTerm<pNew->nLSlot );
+ pNew->aLTerm[iTerm] = pTerm;
+ if( iTerm>mxTerm ) mxTerm = iTerm;
+ testcase( iTerm==15 );
+ testcase( iTerm==16 );
+ if( pUsage[i].omit ){
+ if( i<16 && ((1<<i)&mNoOmit)==0 ){
+ testcase( i!=iTerm );
+ pNew->u.vtab.omitMask |= 1<<iTerm;
+ }else{
+ testcase( i!=iTerm );
+ }
+ if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET ){
+ pNew->u.vtab.bOmitOffset = 1;
+ }
+ }
+ if( SMASKBIT32(i) & pHidden->mHandleIn ){
+ pNew->u.vtab.mHandleIn |= MASKBIT32(iTerm);
+ }else if( (pTerm->eOperator & WO_IN)!=0 ){
+ /* A virtual table that is constrained by an IN clause may not
+ ** consume the ORDER BY clause because (1) the order of IN terms
+ ** is not necessarily related to the order of output terms and
+ ** (2) Multiple outputs from a single IN value will not merge
+ ** together. */
+ pIdxInfo->orderByConsumed = 0;
+ pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
+ *pbIn = 1; assert( (mExclude & WO_IN)==0 );
+ }
+
+ assert( pbRetryLimit || !isLimitTerm(pTerm) );
+ if( isLimitTerm(pTerm) && *pbIn ){
+ /* If there is an IN(...) term handled as an == (separate call to
+ ** xFilter for each value on the RHS of the IN) and a LIMIT or
+ ** OFFSET term handled as well, the plan is unusable. Set output
+ ** variable *pbRetryLimit to true to tell the caller to retry with
+ ** LIMIT and OFFSET disabled. */
+ if( pIdxInfo->needToFreeIdxStr ){
+ sqlite3_free(pIdxInfo->idxStr);
+ pIdxInfo->idxStr = 0;
+ pIdxInfo->needToFreeIdxStr = 0;
+ }
+ *pbRetryLimit = 1;
+ return SQLITE_OK;
+ }
+ }
+ }
+
+ pNew->nLTerm = mxTerm+1;
+ for(i=0; i<=mxTerm; i++){
+ if( pNew->aLTerm[i]==0 ){
+ /* The non-zero argvIdx values must be contiguous. Raise an
+ ** error if they are not */
+ sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
+ testcase( pIdxInfo->needToFreeIdxStr );
+ return SQLITE_ERROR;
+ }
+ }
+ assert( pNew->nLTerm<=pNew->nLSlot );
+ pNew->u.vtab.idxNum = pIdxInfo->idxNum;
+ pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
+ pIdxInfo->needToFreeIdxStr = 0;
+ pNew->u.vtab.idxStr = pIdxInfo->idxStr;
+ pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
+ pIdxInfo->nOrderBy : 0);
+ pNew->rSetup = 0;
+ pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
+ pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
+
+ /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
+ ** that the scan will visit at most one row. Clear it otherwise. */
+ if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
+ pNew->wsFlags |= WHERE_ONEROW;
+ }else{
+ pNew->wsFlags &= ~WHERE_ONEROW;
+ }
+ rc = whereLoopInsert(pBuilder, pNew);
+ if( pNew->u.vtab.needFree ){
+ sqlite3_free(pNew->u.vtab.idxStr);
+ pNew->u.vtab.needFree = 0;
+ }
+ WHERETRACE(0xffffffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
+ *pbIn, (sqlite3_uint64)mPrereq,
+ (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
+
+ return rc;
+}
+
+/*
+** Return the collating sequence for a constraint passed into xBestIndex.
+**
+** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex.
+** This routine depends on there being a HiddenIndexInfo structure immediately
+** following the sqlite3_index_info structure.
+**
+** Return a pointer to the collation name:
+**
+** 1. If there is an explicit COLLATE operator on the constraint, return it.
+**
+** 2. Else, if the column has an alternative collation, return that.
+**
+** 3. Otherwise, return "BINARY".
+*/
+const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
+ HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
+ const char *zRet = 0;
+ if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
+ CollSeq *pC = 0;
+ int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
+ Expr *pX = pHidden->pWC->a[iTerm].pExpr;
+ if( pX->pLeft ){
+ pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
+ }
+ zRet = (pC ? pC->zName : sqlite3StrBINARY);
+ }
+ return zRet;
+}
+
+/*
+** Return true if constraint iCons is really an IN(...) constraint, or
+** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0)
+** or clear (if bHandle==0) the flag to handle it using an iterator.
+*/
+int sqlite3_vtab_in(sqlite3_index_info *pIdxInfo, int iCons, int bHandle){
+ HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
+ u32 m = SMASKBIT32(iCons);
+ if( m & pHidden->mIn ){
+ if( bHandle==0 ){
+ pHidden->mHandleIn &= ~m;
+ }else if( bHandle>0 ){
+ pHidden->mHandleIn |= m;
+ }
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** This interface is callable from within the xBestIndex callback only.
+**
+** If possible, set (*ppVal) to point to an object containing the value
+** on the right-hand-side of constraint iCons.
+*/
+int sqlite3_vtab_rhs_value(
+ sqlite3_index_info *pIdxInfo, /* Copy of first argument to xBestIndex */
+ int iCons, /* Constraint for which RHS is wanted */
+ sqlite3_value **ppVal /* Write value extracted here */
+){
+ HiddenIndexInfo *pH = (HiddenIndexInfo*)&pIdxInfo[1];
+ sqlite3_value *pVal = 0;
+ int rc = SQLITE_OK;
+ if( iCons<0 || iCons>=pIdxInfo->nConstraint ){
+ rc = SQLITE_MISUSE_BKPT; /* EV: R-30545-25046 */
+ }else{
+ if( pH->aRhs[iCons]==0 ){
+ WhereTerm *pTerm = &pH->pWC->a[pIdxInfo->aConstraint[iCons].iTermOffset];
+ rc = sqlite3ValueFromExpr(
+ pH->pParse->db, pTerm->pExpr->pRight, ENC(pH->pParse->db),
+ SQLITE_AFF_BLOB, &pH->aRhs[iCons]
+ );
+ testcase( rc!=SQLITE_OK );
+ }
+ pVal = pH->aRhs[iCons];
+ }
+ *ppVal = pVal;
+
+ if( rc==SQLITE_OK && pVal==0 ){ /* IMP: R-19933-32160 */
+ rc = SQLITE_NOTFOUND; /* IMP: R-36424-56542 */
+ }
+
+ return rc;
+}
+
+/*
+** Return true if ORDER BY clause may be handled as DISTINCT.
+*/
+int sqlite3_vtab_distinct(sqlite3_index_info *pIdxInfo){
+ HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
+ assert( pHidden->eDistinct>=0 && pHidden->eDistinct<=3 );
+ return pHidden->eDistinct;
+}
+
+/*
+** Cause the prepared statement that is associated with a call to
+** xBestIndex to potentially use all schemas. If the statement being
+** prepared is read-only, then just start read transactions on all
+** schemas. But if this is a write operation, start writes on all
+** schemas.
+**
+** This is used by the (built-in) sqlite_dbpage virtual table.
+*/
+void sqlite3VtabUsesAllSchemas(Parse *pParse){
+ int nDb = pParse->db->nDb;
+ int i;
+ for(i=0; i<nDb; i++){
+ sqlite3CodeVerifySchema(pParse, i);
+ }
+ if( DbMaskNonZero(pParse->writeMask) ){
+ for(i=0; i<nDb; i++){
+ sqlite3BeginWriteOperation(pParse, 0, i);
+ }
+ }
+}
+
+/*
+** Add all WhereLoop objects for a table of the join identified by
+** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table.
+**
+** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
+** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
+** entries that occur before the virtual table in the FROM clause and are
+** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
+** mUnusable mask contains all FROM clause entries that occur after the
+** virtual table and are separated from it by at least one LEFT or
+** CROSS JOIN.
+**
+** For example, if the query were:
+**
+** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
+**
+** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
+**
+** All the tables in mPrereq must be scanned before the current virtual
+** table. So any terms for which all prerequisites are satisfied by
+** mPrereq may be specified as "usable" in all calls to xBestIndex.
+** Conversely, all tables in mUnusable must be scanned after the current
+** virtual table, so any terms for which the prerequisites overlap with
+** mUnusable should always be configured as "not-usable" for xBestIndex.
+*/
+static int whereLoopAddVirtual(
+ WhereLoopBuilder *pBuilder, /* WHERE clause information */
+ Bitmask mPrereq, /* Tables that must be scanned before this one */
+ Bitmask mUnusable /* Tables that must be scanned after this one */
+){
+ int rc = SQLITE_OK; /* Return code */
+ WhereInfo *pWInfo; /* WHERE analysis context */
+ Parse *pParse; /* The parsing context */
+ WhereClause *pWC; /* The WHERE clause */
+ SrcItem *pSrc; /* The FROM clause term to search */
+ sqlite3_index_info *p; /* Object to pass to xBestIndex() */
+ int nConstraint; /* Number of constraints in p */
+ int bIn; /* True if plan uses IN(...) operator */
+ WhereLoop *pNew;
+ Bitmask mBest; /* Tables used by best possible plan */
+ u16 mNoOmit;
+ int bRetry = 0; /* True to retry with LIMIT/OFFSET disabled */
+
+ assert( (mPrereq & mUnusable)==0 );
+ pWInfo = pBuilder->pWInfo;
+ pParse = pWInfo->pParse;
+ pWC = pBuilder->pWC;
+ pNew = pBuilder->pNew;
+ pSrc = &pWInfo->pTabList->a[pNew->iTab];
+ assert( IsVirtual(pSrc->pTab) );
+ p = allocateIndexInfo(pWInfo, pWC, mUnusable, pSrc, &mNoOmit);
+ if( p==0 ) return SQLITE_NOMEM_BKPT;
+ pNew->rSetup = 0;
+ pNew->wsFlags = WHERE_VIRTUALTABLE;
+ pNew->nLTerm = 0;
+ pNew->u.vtab.needFree = 0;
+ nConstraint = p->nConstraint;
+ if( whereLoopResize(pParse->db, pNew, nConstraint) ){
+ freeIndexInfo(pParse->db, p);
+ return SQLITE_NOMEM_BKPT;
+ }
+
+ /* First call xBestIndex() with all constraints usable. */
+ WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
+ WHERETRACE(0x800, (" VirtualOne: all usable\n"));
+ rc = whereLoopAddVirtualOne(
+ pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, &bRetry
+ );
+ if( bRetry ){
+ assert( rc==SQLITE_OK );
+ rc = whereLoopAddVirtualOne(
+ pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, 0
+ );
+ }
+
+ /* If the call to xBestIndex() with all terms enabled produced a plan
+ ** that does not require any source tables (IOW: a plan with mBest==0)
+ ** and does not use an IN(...) operator, then there is no point in making
+ ** any further calls to xBestIndex() since they will all return the same
+ ** result (if the xBestIndex() implementation is sane). */
+ if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
+ int seenZero = 0; /* True if a plan with no prereqs seen */
+ int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */
+ Bitmask mPrev = 0;
+ Bitmask mBestNoIn = 0;
+
+ /* If the plan produced by the earlier call uses an IN(...) term, call
+ ** xBestIndex again, this time with IN(...) terms disabled. */
+ if( bIn ){
+ WHERETRACE(0x800, (" VirtualOne: all usable w/o IN\n"));
+ rc = whereLoopAddVirtualOne(
+ pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn, 0);
+ assert( bIn==0 );
+ mBestNoIn = pNew->prereq & ~mPrereq;
+ if( mBestNoIn==0 ){
+ seenZero = 1;
+ seenZeroNoIN = 1;
+ }
+ }
+
+ /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
+ ** in the set of terms that apply to the current virtual table. */
+ while( rc==SQLITE_OK ){
+ int i;
+ Bitmask mNext = ALLBITS;
+ assert( mNext>0 );
+ for(i=0; i<nConstraint; i++){
+ Bitmask mThis = (
+ pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
+ );
+ if( mThis>mPrev && mThis<mNext ) mNext = mThis;
+ }
+ mPrev = mNext;
+ if( mNext==ALLBITS ) break;
+ if( mNext==mBest || mNext==mBestNoIn ) continue;
+ WHERETRACE(0x800, (" VirtualOne: mPrev=%04llx mNext=%04llx\n",
+ (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
+ rc = whereLoopAddVirtualOne(
+ pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn, 0);
+ if( pNew->prereq==mPrereq ){
+ seenZero = 1;
+ if( bIn==0 ) seenZeroNoIN = 1;
+ }
+ }
+
+ /* If the calls to xBestIndex() in the above loop did not find a plan
+ ** that requires no source tables at all (i.e. one guaranteed to be
+ ** usable), make a call here with all source tables disabled */
+ if( rc==SQLITE_OK && seenZero==0 ){
+ WHERETRACE(0x800, (" VirtualOne: all disabled\n"));
+ rc = whereLoopAddVirtualOne(
+ pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn, 0);
+ if( bIn==0 ) seenZeroNoIN = 1;
+ }
+
+ /* If the calls to xBestIndex() have so far failed to find a plan
+ ** that requires no source tables at all and does not use an IN(...)
+ ** operator, make a final call to obtain one here. */
+ if( rc==SQLITE_OK && seenZeroNoIN==0 ){
+ WHERETRACE(0x800, (" VirtualOne: all disabled and w/o IN\n"));
+ rc = whereLoopAddVirtualOne(
+ pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn, 0);
+ }
+ }
+
+ if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
+ freeIndexInfo(pParse->db, p);
+ WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
+ return rc;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+/*
+** Add WhereLoop entries to handle OR terms. This works for either
+** btrees or virtual tables.
+*/
+static int whereLoopAddOr(
+ WhereLoopBuilder *pBuilder,
+ Bitmask mPrereq,
+ Bitmask mUnusable
+){
+ WhereInfo *pWInfo = pBuilder->pWInfo;
+ WhereClause *pWC;
+ WhereLoop *pNew;
+ WhereTerm *pTerm, *pWCEnd;
+ int rc = SQLITE_OK;
+ int iCur;
+ WhereClause tempWC;
+ WhereLoopBuilder sSubBuild;
+ WhereOrSet sSum, sCur;
+ SrcItem *pItem;
+
+ pWC = pBuilder->pWC;
+ pWCEnd = pWC->a + pWC->nTerm;
+ pNew = pBuilder->pNew;
+ memset(&sSum, 0, sizeof(sSum));
+ pItem = pWInfo->pTabList->a + pNew->iTab;
+ iCur = pItem->iCursor;
+
+ /* The multi-index OR optimization does not work for RIGHT and FULL JOIN */
+ if( pItem->fg.jointype & JT_RIGHT ) return SQLITE_OK;
+
+ for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
+ if( (pTerm->eOperator & WO_OR)!=0
+ && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
+ ){
+ WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
+ WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
+ WhereTerm *pOrTerm;
+ int once = 1;
+ int i, j;
+
+ sSubBuild = *pBuilder;
+ sSubBuild.pOrSet = &sCur;
+
+ WHERETRACE(0x400, ("Begin processing OR-clause %p\n", pTerm));
+ for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
+ if( (pOrTerm->eOperator & WO_AND)!=0 ){
+ sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
+ }else if( pOrTerm->leftCursor==iCur ){
+ tempWC.pWInfo = pWC->pWInfo;
+ tempWC.pOuter = pWC;
+ tempWC.op = TK_AND;
+ tempWC.nTerm = 1;
+ tempWC.nBase = 1;
+ tempWC.a = pOrTerm;
+ sSubBuild.pWC = &tempWC;
+ }else{
+ continue;
+ }
+ sCur.n = 0;
+#ifdef WHERETRACE_ENABLED
+ WHERETRACE(0x400, ("OR-term %d of %p has %d subterms:\n",
+ (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
+ if( sqlite3WhereTrace & 0x20000 ){
+ sqlite3WhereClausePrint(sSubBuild.pWC);
+ }
+#endif
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pItem->pTab) ){
+ rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
+ }else
+#endif
+ {
+ rc = whereLoopAddBtree(&sSubBuild, mPrereq);
+ }
+ if( rc==SQLITE_OK ){
+ rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
+ }
+ testcase( rc==SQLITE_NOMEM && sCur.n>0 );
+ testcase( rc==SQLITE_DONE );
+ if( sCur.n==0 ){
+ sSum.n = 0;
+ break;
+ }else if( once ){
+ whereOrMove(&sSum, &sCur);
+ once = 0;
+ }else{
+ WhereOrSet sPrev;
+ whereOrMove(&sPrev, &sSum);
+ sSum.n = 0;
+ for(i=0; i<sPrev.n; i++){
+ for(j=0; j<sCur.n; j++){
+ whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
+ sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
+ sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
+ }
+ }
+ }
+ }
+ pNew->nLTerm = 1;
+ pNew->aLTerm[0] = pTerm;
+ pNew->wsFlags = WHERE_MULTI_OR;
+ pNew->rSetup = 0;
+ pNew->iSortIdx = 0;
+ memset(&pNew->u, 0, sizeof(pNew->u));
+ for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
+ /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
+ ** of all sub-scans required by the OR-scan. However, due to rounding
+ ** errors, it may be that the cost of the OR-scan is equal to its
+ ** most expensive sub-scan. Add the smallest possible penalty
+ ** (equivalent to multiplying the cost by 1.07) to ensure that
+ ** this does not happen. Otherwise, for WHERE clauses such as the
+ ** following where there is an index on "y":
+ **
+ ** WHERE likelihood(x=?, 0.99) OR y=?
+ **
+ ** the planner may elect to "OR" together a full-table scan and an
+ ** index lookup. And other similarly odd results. */
+ pNew->rRun = sSum.a[i].rRun + 1;
+ pNew->nOut = sSum.a[i].nOut;
+ pNew->prereq = sSum.a[i].prereq;
+ rc = whereLoopInsert(pBuilder, pNew);
+ }
+ WHERETRACE(0x400, ("End processing OR-clause %p\n", pTerm));
+ }
+ }
+ return rc;
+}
+
+/*
+** Add all WhereLoop objects for all tables
+*/
+static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
+ WhereInfo *pWInfo = pBuilder->pWInfo;
+ Bitmask mPrereq = 0;
+ Bitmask mPrior = 0;
+ int iTab;
+ SrcList *pTabList = pWInfo->pTabList;
+ SrcItem *pItem;
+ SrcItem *pEnd = &pTabList->a[pWInfo->nLevel];
+ sqlite3 *db = pWInfo->pParse->db;
+ int rc = SQLITE_OK;
+ int bFirstPastRJ = 0;
+ int hasRightJoin = 0;
+ WhereLoop *pNew;
+
+
+ /* Loop over the tables in the join, from left to right */
+ pNew = pBuilder->pNew;
+
+ /* Verify that pNew has already been initialized */
+ assert( pNew->nLTerm==0 );
+ assert( pNew->wsFlags==0 );
+ assert( pNew->nLSlot>=ArraySize(pNew->aLTermSpace) );
+ assert( pNew->aLTerm!=0 );
+
+ pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
+ for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
+ Bitmask mUnusable = 0;
+ pNew->iTab = iTab;
+ pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
+ pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
+ if( bFirstPastRJ
+ || (pItem->fg.jointype & (JT_OUTER|JT_CROSS|JT_LTORJ))!=0
+ ){
+ /* Add prerequisites to prevent reordering of FROM clause terms
+ ** across CROSS joins and outer joins. The bFirstPastRJ boolean
+ ** prevents the right operand of a RIGHT JOIN from being swapped with
+ ** other elements even further to the right.
+ **
+ ** The JT_LTORJ case and the hasRightJoin flag work together to
+ ** prevent FROM-clause terms from moving from the right side of
+ ** a LEFT JOIN over to the left side of that join if the LEFT JOIN
+ ** is itself on the left side of a RIGHT JOIN.
+ */
+ if( pItem->fg.jointype & JT_LTORJ ) hasRightJoin = 1;
+ mPrereq |= mPrior;
+ bFirstPastRJ = (pItem->fg.jointype & JT_RIGHT)!=0;
+ }else if( !hasRightJoin ){
+ mPrereq = 0;
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pItem->pTab) ){
+ SrcItem *p;
+ for(p=&pItem[1]; p<pEnd; p++){
+ if( mUnusable || (p->fg.jointype & (JT_OUTER|JT_CROSS)) ){
+ mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
+ }
+ }
+ rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
+ }else
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+ {
+ rc = whereLoopAddBtree(pBuilder, mPrereq);
+ }
+ if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
+ rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
+ }
+ mPrior |= pNew->maskSelf;
+ if( rc || db->mallocFailed ){
+ if( rc==SQLITE_DONE ){
+ /* We hit the query planner search limit set by iPlanLimit */
+ sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
+ rc = SQLITE_OK;
+ }else{
+ break;
+ }
+ }
+ }
+
+ whereLoopClear(db, pNew);
+ return rc;
+}
+
+/*
+** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
+** parameters) to see if it outputs rows in the requested ORDER BY
+** (or GROUP BY) without requiring a separate sort operation. Return N:
+**
+** N>0: N terms of the ORDER BY clause are satisfied
+** N==0: No terms of the ORDER BY clause are satisfied
+** N<0: Unknown yet how many terms of ORDER BY might be satisfied.
+**
+** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
+** strict. With GROUP BY and DISTINCT the only requirement is that
+** equivalent rows appear immediately adjacent to one another. GROUP BY
+** and DISTINCT do not require rows to appear in any particular order as long
+** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT
+** the pOrderBy terms can be matched in any order. With ORDER BY, the
+** pOrderBy terms must be matched in strict left-to-right order.
+*/
+static i8 wherePathSatisfiesOrderBy(
+ WhereInfo *pWInfo, /* The WHERE clause */
+ ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */
+ WherePath *pPath, /* The WherePath to check */
+ u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
+ u16 nLoop, /* Number of entries in pPath->aLoop[] */
+ WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */
+ Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */
+){
+ u8 revSet; /* True if rev is known */
+ u8 rev; /* Composite sort order */
+ u8 revIdx; /* Index sort order */
+ u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */
+ u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */
+ u8 isMatch; /* iColumn matches a term of the ORDER BY clause */
+ u16 eqOpMask; /* Allowed equality operators */
+ u16 nKeyCol; /* Number of key columns in pIndex */
+ u16 nColumn; /* Total number of ordered columns in the index */
+ u16 nOrderBy; /* Number terms in the ORDER BY clause */
+ int iLoop; /* Index of WhereLoop in pPath being processed */
+ int i, j; /* Loop counters */
+ int iCur; /* Cursor number for current WhereLoop */
+ int iColumn; /* A column number within table iCur */
+ WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
+ WhereTerm *pTerm; /* A single term of the WHERE clause */
+ Expr *pOBExpr; /* An expression from the ORDER BY clause */
+ CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */
+ Index *pIndex; /* The index associated with pLoop */
+ sqlite3 *db = pWInfo->pParse->db; /* Database connection */
+ Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */
+ Bitmask obDone; /* Mask of all ORDER BY terms */
+ Bitmask orderDistinctMask; /* Mask of all well-ordered loops */
+ Bitmask ready; /* Mask of inner loops */
+
+ /*
+ ** We say the WhereLoop is "one-row" if it generates no more than one
+ ** row of output. A WhereLoop is one-row if all of the following are true:
+ ** (a) All index columns match with WHERE_COLUMN_EQ.
+ ** (b) The index is unique
+ ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
+ ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
+ **
+ ** We say the WhereLoop is "order-distinct" if the set of columns from
+ ** that WhereLoop that are in the ORDER BY clause are different for every
+ ** row of the WhereLoop. Every one-row WhereLoop is automatically
+ ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause
+ ** is not order-distinct. To be order-distinct is not quite the same as being
+ ** UNIQUE since a UNIQUE column or index can have multiple rows that
+ ** are NULL and NULL values are equivalent for the purpose of order-distinct.
+ ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
+ **
+ ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
+ ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
+ ** automatically order-distinct.
+ */
+
+ assert( pOrderBy!=0 );
+ if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
+
+ nOrderBy = pOrderBy->nExpr;
+ testcase( nOrderBy==BMS-1 );
+ if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */
+ isOrderDistinct = 1;
+ obDone = MASKBIT(nOrderBy)-1;
+ orderDistinctMask = 0;
+ ready = 0;
+ eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
+ if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){
+ eqOpMask |= WO_IN;
+ }
+ for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
+ if( iLoop>0 ) ready |= pLoop->maskSelf;
+ if( iLoop<nLoop ){
+ pLoop = pPath->aLoop[iLoop];
+ if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
+ }else{
+ pLoop = pLast;
+ }
+ if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
+ if( pLoop->u.vtab.isOrdered
+ && ((wctrlFlags&(WHERE_DISTINCTBY|WHERE_SORTBYGROUP))!=WHERE_DISTINCTBY)
+ ){
+ obSat = obDone;
+ }
+ break;
+ }else if( wctrlFlags & WHERE_DISTINCTBY ){
+ pLoop->u.btree.nDistinctCol = 0;
+ }
+ iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
+
+ /* Mark off any ORDER BY term X that is a column in the table of
+ ** the current loop for which there is term in the WHERE
+ ** clause of the form X IS NULL or X=? that reference only outer
+ ** loops.
+ */
+ for(i=0; i<nOrderBy; i++){
+ if( MASKBIT(i) & obSat ) continue;
+ pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
+ if( NEVER(pOBExpr==0) ) continue;
+ if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
+ if( pOBExpr->iTable!=iCur ) continue;
+ pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
+ ~ready, eqOpMask, 0);
+ if( pTerm==0 ) continue;
+ if( pTerm->eOperator==WO_IN ){
+ /* IN terms are only valid for sorting in the ORDER BY LIMIT
+ ** optimization, and then only if they are actually used
+ ** by the query plan */
+ assert( wctrlFlags &
+ (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) );
+ for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
+ if( j>=pLoop->nLTerm ) continue;
+ }
+ if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
+ Parse *pParse = pWInfo->pParse;
+ CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr);
+ CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr);
+ assert( pColl1 );
+ if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){
+ continue;
+ }
+ testcase( pTerm->pExpr->op==TK_IS );
+ }
+ obSat |= MASKBIT(i);
+ }
+
+ if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
+ if( pLoop->wsFlags & WHERE_IPK ){
+ pIndex = 0;
+ nKeyCol = 0;
+ nColumn = 1;
+ }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
+ return 0;
+ }else{
+ nKeyCol = pIndex->nKeyCol;
+ nColumn = pIndex->nColumn;
+ assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
+ assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
+ || !HasRowid(pIndex->pTable));
+ /* All relevant terms of the index must also be non-NULL in order
+ ** for isOrderDistinct to be true. So the isOrderDistint value
+ ** computed here might be a false positive. Corrections will be
+ ** made at tag-20210426-1 below */
+ isOrderDistinct = IsUniqueIndex(pIndex)
+ && (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
+ }
+
+ /* Loop through all columns of the index and deal with the ones
+ ** that are not constrained by == or IN.
+ */
+ rev = revSet = 0;
+ distinctColumns = 0;
+ for(j=0; j<nColumn; j++){
+ u8 bOnce = 1; /* True to run the ORDER BY search loop */
+
+ assert( j>=pLoop->u.btree.nEq
+ || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
+ );
+ if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
+ u16 eOp = pLoop->aLTerm[j]->eOperator;
+
+ /* Skip over == and IS and ISNULL terms. (Also skip IN terms when
+ ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL
+ ** terms imply that the index is not UNIQUE NOT NULL in which case
+ ** the loop need to be marked as not order-distinct because it can
+ ** have repeated NULL rows.
+ **
+ ** If the current term is a column of an ((?,?) IN (SELECT...))
+ ** expression for which the SELECT returns more than one column,
+ ** check that it is the only column used by this loop. Otherwise,
+ ** if it is one of two or more, none of the columns can be
+ ** considered to match an ORDER BY term.
+ */
+ if( (eOp & eqOpMask)!=0 ){
+ if( eOp & (WO_ISNULL|WO_IS) ){
+ testcase( eOp & WO_ISNULL );
+ testcase( eOp & WO_IS );
+ testcase( isOrderDistinct );
+ isOrderDistinct = 0;
+ }
+ continue;
+ }else if( ALWAYS(eOp & WO_IN) ){
+ /* ALWAYS() justification: eOp is an equality operator due to the
+ ** j<pLoop->u.btree.nEq constraint above. Any equality other
+ ** than WO_IN is captured by the previous "if". So this one
+ ** always has to be WO_IN. */
+ Expr *pX = pLoop->aLTerm[j]->pExpr;
+ for(i=j+1; i<pLoop->u.btree.nEq; i++){
+ if( pLoop->aLTerm[i]->pExpr==pX ){
+ assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
+ bOnce = 0;
+ break;
+ }
+ }
+ }
+ }
+
+ /* Get the column number in the table (iColumn) and sort order
+ ** (revIdx) for the j-th column of the index.
+ */
+ if( pIndex ){
+ iColumn = pIndex->aiColumn[j];
+ revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
+ if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
+ }else{
+ iColumn = XN_ROWID;
+ revIdx = 0;
+ }
+
+ /* An unconstrained column that might be NULL means that this
+ ** WhereLoop is not well-ordered. tag-20210426-1
+ */
+ if( isOrderDistinct ){
+ if( iColumn>=0
+ && j>=pLoop->u.btree.nEq
+ && pIndex->pTable->aCol[iColumn].notNull==0
+ ){
+ isOrderDistinct = 0;
+ }
+ if( iColumn==XN_EXPR ){
+ isOrderDistinct = 0;
+ }
+ }
+
+ /* Find the ORDER BY term that corresponds to the j-th column
+ ** of the index and mark that ORDER BY term off
+ */
+ isMatch = 0;
+ for(i=0; bOnce && i<nOrderBy; i++){
+ if( MASKBIT(i) & obSat ) continue;
+ pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
+ testcase( wctrlFlags & WHERE_GROUPBY );
+ testcase( wctrlFlags & WHERE_DISTINCTBY );
+ if( NEVER(pOBExpr==0) ) continue;
+ if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
+ if( iColumn>=XN_ROWID ){
+ if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
+ if( pOBExpr->iTable!=iCur ) continue;
+ if( pOBExpr->iColumn!=iColumn ) continue;
+ }else{
+ Expr *pIxExpr = pIndex->aColExpr->a[j].pExpr;
+ if( sqlite3ExprCompareSkip(pOBExpr, pIxExpr, iCur) ){
+ continue;
+ }
+ }
+ if( iColumn!=XN_ROWID ){
+ pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
+ if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
+ }
+ if( wctrlFlags & WHERE_DISTINCTBY ){
+ pLoop->u.btree.nDistinctCol = j+1;
+ }
+ isMatch = 1;
+ break;
+ }
+ if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
+ /* Make sure the sort order is compatible in an ORDER BY clause.
+ ** Sort order is irrelevant for a GROUP BY clause. */
+ if( revSet ){
+ if( (rev ^ revIdx)
+ != (pOrderBy->a[i].fg.sortFlags&KEYINFO_ORDER_DESC)
+ ){
+ isMatch = 0;
+ }
+ }else{
+ rev = revIdx ^ (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC);
+ if( rev ) *pRevMask |= MASKBIT(iLoop);
+ revSet = 1;
+ }
+ }
+ if( isMatch && (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL) ){
+ if( j==pLoop->u.btree.nEq ){
+ pLoop->wsFlags |= WHERE_BIGNULL_SORT;
+ }else{
+ isMatch = 0;
+ }
+ }
+ if( isMatch ){
+ if( iColumn==XN_ROWID ){
+ testcase( distinctColumns==0 );
+ distinctColumns = 1;
+ }
+ obSat |= MASKBIT(i);
+ }else{
+ /* No match found */
+ if( j==0 || j<nKeyCol ){
+ testcase( isOrderDistinct!=0 );
+ isOrderDistinct = 0;
+ }
+ break;
+ }
+ } /* end Loop over all index columns */
+ if( distinctColumns ){
+ testcase( isOrderDistinct==0 );
+ isOrderDistinct = 1;
+ }
+ } /* end-if not one-row */
+
+ /* Mark off any other ORDER BY terms that reference pLoop */
+ if( isOrderDistinct ){
+ orderDistinctMask |= pLoop->maskSelf;
+ for(i=0; i<nOrderBy; i++){
+ Expr *p;
+ Bitmask mTerm;
+ if( MASKBIT(i) & obSat ) continue;
+ p = pOrderBy->a[i].pExpr;
+ mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
+ if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
+ if( (mTerm&~orderDistinctMask)==0 ){
+ obSat |= MASKBIT(i);
+ }
+ }
+ }
+ } /* End the loop over all WhereLoops from outer-most down to inner-most */
+ if( obSat==obDone ) return (i8)nOrderBy;
+ if( !isOrderDistinct ){
+ for(i=nOrderBy-1; i>0; i--){
+ Bitmask m = ALWAYS(i<BMS) ? MASKBIT(i) - 1 : 0;
+ if( (obSat&m)==m ) return i;
+ }
+ return 0;
+ }
+ return -1;
+}
+
+
+/*
+** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
+** the planner assumes that the specified pOrderBy list is actually a GROUP
+** BY clause - and so any order that groups rows as required satisfies the
+** request.
+**
+** Normally, in this case it is not possible for the caller to determine
+** whether or not the rows are really being delivered in sorted order, or
+** just in some other order that provides the required grouping. However,
+** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
+** this function may be called on the returned WhereInfo object. It returns
+** true if the rows really will be sorted in the specified order, or false
+** otherwise.
+**
+** For example, assuming:
+**
+** CREATE INDEX i1 ON t1(x, Y);
+**
+** then
+**
+** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1
+** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0
+*/
+int sqlite3WhereIsSorted(WhereInfo *pWInfo){
+ assert( pWInfo->wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY) );
+ assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
+ return pWInfo->sorted;
+}
+
+#ifdef WHERETRACE_ENABLED
+/* For debugging use only: */
+static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
+ static char zName[65];
+ int i;
+ for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
+ if( pLast ) zName[i++] = pLast->cId;
+ zName[i] = 0;
+ return zName;
+}
+#endif
+
+/*
+** Return the cost of sorting nRow rows, assuming that the keys have
+** nOrderby columns and that the first nSorted columns are already in
+** order.
+*/
+static LogEst whereSortingCost(
+ WhereInfo *pWInfo, /* Query planning context */
+ LogEst nRow, /* Estimated number of rows to sort */
+ int nOrderBy, /* Number of ORDER BY clause terms */
+ int nSorted /* Number of initial ORDER BY terms naturally in order */
+){
+ /* Estimated cost of a full external sort, where N is
+ ** the number of rows to sort is:
+ **
+ ** cost = (K * N * log(N)).
+ **
+ ** Or, if the order-by clause has X terms but only the last Y
+ ** terms are out of order, then block-sorting will reduce the
+ ** sorting cost to:
+ **
+ ** cost = (K * N * log(N)) * (Y/X)
+ **
+ ** The constant K is at least 2.0 but will be larger if there are a
+ ** large number of columns to be sorted, as the sorting time is
+ ** proportional to the amount of content to be sorted. The algorithm
+ ** does not currently distinguish between fat columns (BLOBs and TEXTs)
+ ** and skinny columns (INTs). It just uses the number of columns as
+ ** an approximation for the row width.
+ **
+ ** And extra factor of 2.0 or 3.0 is added to the sorting cost if the sort
+ ** is built using OP_IdxInsert and OP_Sort rather than with OP_SorterInsert.
+ */
+ LogEst rSortCost, nCol;
+ assert( pWInfo->pSelect!=0 );
+ assert( pWInfo->pSelect->pEList!=0 );
+ /* TUNING: sorting cost proportional to the number of output columns: */
+ nCol = sqlite3LogEst((pWInfo->pSelect->pEList->nExpr+59)/30);
+ rSortCost = nRow + nCol;
+ if( nSorted>0 ){
+ /* Scale the result by (Y/X) */
+ rSortCost += sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
+ }
+
+ /* Multiple by log(M) where M is the number of output rows.
+ ** Use the LIMIT for M if it is smaller. Or if this sort is for
+ ** a DISTINCT operator, M will be the number of distinct output
+ ** rows, so fudge it downwards a bit.
+ */
+ if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 ){
+ rSortCost += 10; /* TUNING: Extra 2.0x if using LIMIT */
+ if( nSorted!=0 ){
+ rSortCost += 6; /* TUNING: Extra 1.5x if also using partial sort */
+ }
+ if( pWInfo->iLimit<nRow ){
+ nRow = pWInfo->iLimit;
+ }
+ }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){
+ /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
+ ** reduces the number of output rows by a factor of 2 */
+ if( nRow>10 ){ nRow -= 10; assert( 10==sqlite3LogEst(2) ); }
+ }
+ rSortCost += estLog(nRow);
+ return rSortCost;
+}
+
+/*
+** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
+** attempts to find the lowest cost path that visits each WhereLoop
+** once. This path is then loaded into the pWInfo->a[].pWLoop fields.
+**
+** Assume that the total number of output rows that will need to be sorted
+** will be nRowEst (in the 10*log2 representation). Or, ignore sorting
+** costs if nRowEst==0.
+**
+** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
+** error occurs.
+*/
+static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
+ int mxChoice; /* Maximum number of simultaneous paths tracked */
+ int nLoop; /* Number of terms in the join */
+ Parse *pParse; /* Parsing context */
+ int iLoop; /* Loop counter over the terms of the join */
+ int ii, jj; /* Loop counters */
+ int mxI = 0; /* Index of next entry to replace */
+ int nOrderBy; /* Number of ORDER BY clause terms */
+ LogEst mxCost = 0; /* Maximum cost of a set of paths */
+ LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */
+ int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */
+ WherePath *aFrom; /* All nFrom paths at the previous level */
+ WherePath *aTo; /* The nTo best paths at the current level */
+ WherePath *pFrom; /* An element of aFrom[] that we are working on */
+ WherePath *pTo; /* An element of aTo[] that we are working on */
+ WhereLoop *pWLoop; /* One of the WhereLoop objects */
+ WhereLoop **pX; /* Used to divy up the pSpace memory */
+ LogEst *aSortCost = 0; /* Sorting and partial sorting costs */
+ char *pSpace; /* Temporary memory used by this routine */
+ int nSpace; /* Bytes of space allocated at pSpace */
+
+ pParse = pWInfo->pParse;
+ nLoop = pWInfo->nLevel;
+ /* TUNING: For simple queries, only the best path is tracked.
+ ** For 2-way joins, the 5 best paths are followed.
+ ** For joins of 3 or more tables, track the 10 best paths */
+ mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
+ assert( nLoop<=pWInfo->pTabList->nSrc );
+ WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d, nQueryLoop=%d)\n",
+ nRowEst, pParse->nQueryLoop));
+
+ /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
+ ** case the purpose of this call is to estimate the number of rows returned
+ ** by the overall query. Once this estimate has been obtained, the caller
+ ** will invoke this function a second time, passing the estimate as the
+ ** nRowEst parameter. */
+ if( pWInfo->pOrderBy==0 || nRowEst==0 ){
+ nOrderBy = 0;
+ }else{
+ nOrderBy = pWInfo->pOrderBy->nExpr;
+ }
+
+ /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
+ nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
+ nSpace += sizeof(LogEst) * nOrderBy;
+ pSpace = sqlite3StackAllocRawNN(pParse->db, nSpace);
+ if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
+ aTo = (WherePath*)pSpace;
+ aFrom = aTo+mxChoice;
+ memset(aFrom, 0, sizeof(aFrom[0]));
+ pX = (WhereLoop**)(aFrom+mxChoice);
+ for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
+ pFrom->aLoop = pX;
+ }
+ if( nOrderBy ){
+ /* If there is an ORDER BY clause and it is not being ignored, set up
+ ** space for the aSortCost[] array. Each element of the aSortCost array
+ ** is either zero - meaning it has not yet been initialized - or the
+ ** cost of sorting nRowEst rows of data where the first X terms of
+ ** the ORDER BY clause are already in order, where X is the array
+ ** index. */
+ aSortCost = (LogEst*)pX;
+ memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
+ }
+ assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
+ assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
+
+ /* Seed the search with a single WherePath containing zero WhereLoops.
+ **
+ ** TUNING: Do not let the number of iterations go above 28. If the cost
+ ** of computing an automatic index is not paid back within the first 28
+ ** rows, then do not use the automatic index. */
+ aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) );
+ nFrom = 1;
+ assert( aFrom[0].isOrdered==0 );
+ if( nOrderBy ){
+ /* If nLoop is zero, then there are no FROM terms in the query. Since
+ ** in this case the query may return a maximum of one row, the results
+ ** are already in the requested order. Set isOrdered to nOrderBy to
+ ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
+ ** -1, indicating that the result set may or may not be ordered,
+ ** depending on the loops added to the current plan. */
+ aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
+ }
+
+ /* Compute successively longer WherePaths using the previous generation
+ ** of WherePaths as the basis for the next. Keep track of the mxChoice
+ ** best paths at each generation */
+ for(iLoop=0; iLoop<nLoop; iLoop++){
+ nTo = 0;
+ for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
+ for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
+ LogEst nOut; /* Rows visited by (pFrom+pWLoop) */
+ LogEst rCost; /* Cost of path (pFrom+pWLoop) */
+ LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */
+ i8 isOrdered; /* isOrdered for (pFrom+pWLoop) */
+ Bitmask maskNew; /* Mask of src visited by (..) */
+ Bitmask revMask; /* Mask of rev-order loops for (..) */
+
+ if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
+ if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
+ if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
+ /* Do not use an automatic index if the this loop is expected
+ ** to run less than 1.25 times. It is tempting to also exclude
+ ** automatic index usage on an outer loop, but sometimes an automatic
+ ** index is useful in the outer loop of a correlated subquery. */
+ assert( 10==sqlite3LogEst(2) );
+ continue;
+ }
+
+ /* At this point, pWLoop is a candidate to be the next loop.
+ ** Compute its cost */
+ rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
+ rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
+ nOut = pFrom->nRow + pWLoop->nOut;
+ maskNew = pFrom->maskLoop | pWLoop->maskSelf;
+ isOrdered = pFrom->isOrdered;
+ if( isOrdered<0 ){
+ revMask = 0;
+ isOrdered = wherePathSatisfiesOrderBy(pWInfo,
+ pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
+ iLoop, pWLoop, &revMask);
+ }else{
+ revMask = pFrom->revLoop;
+ }
+ if( isOrdered>=0 && isOrdered<nOrderBy ){
+ if( aSortCost[isOrdered]==0 ){
+ aSortCost[isOrdered] = whereSortingCost(
+ pWInfo, nRowEst, nOrderBy, isOrdered
+ );
+ }
+ /* TUNING: Add a small extra penalty (3) to sorting as an
+ ** extra encouragement to the query planner to select a plan
+ ** where the rows emerge in the correct order without any sorting
+ ** required. */
+ rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 3;
+
+ WHERETRACE(0x002,
+ ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
+ aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
+ rUnsorted, rCost));
+ }else{
+ rCost = rUnsorted;
+ rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */
+ }
+
+ /* Check to see if pWLoop should be added to the set of
+ ** mxChoice best-so-far paths.
+ **
+ ** First look for an existing path among best-so-far paths
+ ** that covers the same set of loops and has the same isOrdered
+ ** setting as the current path candidate.
+ **
+ ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
+ ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
+ ** of legal values for isOrdered, -1..64.
+ */
+ for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
+ if( pTo->maskLoop==maskNew
+ && ((pTo->isOrdered^isOrdered)&0x80)==0
+ ){
+ testcase( jj==nTo-1 );
+ break;
+ }
+ }
+ if( jj>=nTo ){
+ /* None of the existing best-so-far paths match the candidate. */
+ if( nTo>=mxChoice
+ && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
+ ){
+ /* The current candidate is no better than any of the mxChoice
+ ** paths currently in the best-so-far buffer. So discard
+ ** this candidate as not viable. */
+#ifdef WHERETRACE_ENABLED /* 0x4 */
+ if( sqlite3WhereTrace&0x4 ){
+ sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n",
+ wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
+ isOrdered>=0 ? isOrdered+'0' : '?');
+ }
+#endif
+ continue;
+ }
+ /* If we reach this points it means that the new candidate path
+ ** needs to be added to the set of best-so-far paths. */
+ if( nTo<mxChoice ){
+ /* Increase the size of the aTo set by one */
+ jj = nTo++;
+ }else{
+ /* New path replaces the prior worst to keep count below mxChoice */
+ jj = mxI;
+ }
+ pTo = &aTo[jj];
+#ifdef WHERETRACE_ENABLED /* 0x4 */
+ if( sqlite3WhereTrace&0x4 ){
+ sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n",
+ wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
+ isOrdered>=0 ? isOrdered+'0' : '?');
+ }
+#endif
+ }else{
+ /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
+ ** same set of loops and has the same isOrdered setting as the
+ ** candidate path. Check to see if the candidate should replace
+ ** pTo or if the candidate should be skipped.
+ **
+ ** The conditional is an expanded vector comparison equivalent to:
+ ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
+ */
+ if( pTo->rCost<rCost
+ || (pTo->rCost==rCost
+ && (pTo->nRow<nOut
+ || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
+ )
+ )
+ ){
+#ifdef WHERETRACE_ENABLED /* 0x4 */
+ if( sqlite3WhereTrace&0x4 ){
+ sqlite3DebugPrintf(
+ "Skip %s cost=%-3d,%3d,%3d order=%c",
+ wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
+ isOrdered>=0 ? isOrdered+'0' : '?');
+ sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n",
+ wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
+ pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
+ }
+#endif
+ /* Discard the candidate path from further consideration */
+ testcase( pTo->rCost==rCost );
+ continue;
+ }
+ testcase( pTo->rCost==rCost+1 );
+ /* Control reaches here if the candidate path is better than the
+ ** pTo path. Replace pTo with the candidate. */
+#ifdef WHERETRACE_ENABLED /* 0x4 */
+ if( sqlite3WhereTrace&0x4 ){
+ sqlite3DebugPrintf(
+ "Update %s cost=%-3d,%3d,%3d order=%c",
+ wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
+ isOrdered>=0 ? isOrdered+'0' : '?');
+ sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n",
+ wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
+ pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
+ }
+#endif
+ }
+ /* pWLoop is a winner. Add it to the set of best so far */
+ pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
+ pTo->revLoop = revMask;
+ pTo->nRow = nOut;
+ pTo->rCost = rCost;
+ pTo->rUnsorted = rUnsorted;
+ pTo->isOrdered = isOrdered;
+ memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
+ pTo->aLoop[iLoop] = pWLoop;
+ if( nTo>=mxChoice ){
+ mxI = 0;
+ mxCost = aTo[0].rCost;
+ mxUnsorted = aTo[0].nRow;
+ for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
+ if( pTo->rCost>mxCost
+ || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
+ ){
+ mxCost = pTo->rCost;
+ mxUnsorted = pTo->rUnsorted;
+ mxI = jj;
+ }
+ }
+ }
+ }
+ }
+
+#ifdef WHERETRACE_ENABLED /* >=2 */
+ if( sqlite3WhereTrace & 0x02 ){
+ sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
+ for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
+ sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
+ wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
+ pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
+ if( pTo->isOrdered>0 ){
+ sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
+ }else{
+ sqlite3DebugPrintf("\n");
+ }
+ }
+ }
+#endif
+
+ /* Swap the roles of aFrom and aTo for the next generation */
+ pFrom = aTo;
+ aTo = aFrom;
+ aFrom = pFrom;
+ nFrom = nTo;
+ }
+
+ if( nFrom==0 ){
+ sqlite3ErrorMsg(pParse, "no query solution");
+ sqlite3StackFreeNN(pParse->db, pSpace);
+ return SQLITE_ERROR;
+ }
+
+ /* Find the lowest cost path. pFrom will be left pointing to that path */
+ pFrom = aFrom;
+ for(ii=1; ii<nFrom; ii++){
+ if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
+ }
+ assert( pWInfo->nLevel==nLoop );
+ /* Load the lowest cost path into pWInfo */
+ for(iLoop=0; iLoop<nLoop; iLoop++){
+ WhereLevel *pLevel = pWInfo->a + iLoop;
+ pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
+ pLevel->iFrom = pWLoop->iTab;
+ pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
+ }
+ if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
+ && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
+ && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
+ && nRowEst
+ ){
+ Bitmask notUsed;
+ int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
+ WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
+ if( rc==pWInfo->pResultSet->nExpr ){
+ pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
+ }
+ }
+ pWInfo->bOrderedInnerLoop = 0;
+ if( pWInfo->pOrderBy ){
+ pWInfo->nOBSat = pFrom->isOrdered;
+ if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
+ if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
+ pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
+ }
+ if( pWInfo->pSelect->pOrderBy
+ && pWInfo->nOBSat > pWInfo->pSelect->pOrderBy->nExpr ){
+ pWInfo->nOBSat = pWInfo->pSelect->pOrderBy->nExpr;
+ }
+ }else{
+ pWInfo->revMask = pFrom->revLoop;
+ if( pWInfo->nOBSat<=0 ){
+ pWInfo->nOBSat = 0;
+ if( nLoop>0 ){
+ u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
+ if( (wsFlags & WHERE_ONEROW)==0
+ && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
+ ){
+ Bitmask m = 0;
+ int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
+ WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
+ testcase( wsFlags & WHERE_IPK );
+ testcase( wsFlags & WHERE_COLUMN_IN );
+ if( rc==pWInfo->pOrderBy->nExpr ){
+ pWInfo->bOrderedInnerLoop = 1;
+ pWInfo->revMask = m;
+ }
+ }
+ }
+ }else if( nLoop
+ && pWInfo->nOBSat==1
+ && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0
+ ){
+ pWInfo->bOrderedInnerLoop = 1;
+ }
+ }
+ if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
+ && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
+ ){
+ Bitmask revMask = 0;
+ int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
+ pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
+ );
+ assert( pWInfo->sorted==0 );
+ if( nOrder==pWInfo->pOrderBy->nExpr ){
+ pWInfo->sorted = 1;
+ pWInfo->revMask = revMask;
+ }
+ }
+ }
+
+
+ pWInfo->nRowOut = pFrom->nRow;
+
+ /* Free temporary memory and return success */
+ sqlite3StackFreeNN(pParse->db, pSpace);
+ return SQLITE_OK;
+}
+
+/*
+** Most queries use only a single table (they are not joins) and have
+** simple == constraints against indexed fields. This routine attempts
+** to plan those simple cases using much less ceremony than the
+** general-purpose query planner, and thereby yield faster sqlite3_prepare()
+** times for the common case.
+**
+** Return non-zero on success, if this query can be handled by this
+** no-frills query planner. Return zero if this query needs the
+** general-purpose query planner.
+*/
+static int whereShortCut(WhereLoopBuilder *pBuilder){
+ WhereInfo *pWInfo;
+ SrcItem *pItem;
+ WhereClause *pWC;
+ WhereTerm *pTerm;
+ WhereLoop *pLoop;
+ int iCur;
+ int j;
+ Table *pTab;
+ Index *pIdx;
+ WhereScan scan;
+
+ pWInfo = pBuilder->pWInfo;
+ if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
+ assert( pWInfo->pTabList->nSrc>=1 );
+ pItem = pWInfo->pTabList->a;
+ pTab = pItem->pTab;
+ if( IsVirtual(pTab) ) return 0;
+ if( pItem->fg.isIndexedBy || pItem->fg.notIndexed ){
+ testcase( pItem->fg.isIndexedBy );
+ testcase( pItem->fg.notIndexed );
+ return 0;
+ }
+ iCur = pItem->iCursor;
+ pWC = &pWInfo->sWC;
+ pLoop = pBuilder->pNew;
+ pLoop->wsFlags = 0;
+ pLoop->nSkip = 0;
+ pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0);
+ while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
+ if( pTerm ){
+ testcase( pTerm->eOperator & WO_IS );
+ pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
+ pLoop->aLTerm[0] = pTerm;
+ pLoop->nLTerm = 1;
+ pLoop->u.btree.nEq = 1;
+ /* TUNING: Cost of a rowid lookup is 10 */
+ pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */
+ }else{
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ int opMask;
+ assert( pLoop->aLTermSpace==pLoop->aLTerm );
+ if( !IsUniqueIndex(pIdx)
+ || pIdx->pPartIdxWhere!=0
+ || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
+ ) continue;
+ opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
+ for(j=0; j<pIdx->nKeyCol; j++){
+ pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx);
+ while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
+ if( pTerm==0 ) break;
+ testcase( pTerm->eOperator & WO_IS );
+ pLoop->aLTerm[j] = pTerm;
+ }
+ if( j!=pIdx->nKeyCol ) continue;
+ pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
+ if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
+ pLoop->wsFlags |= WHERE_IDX_ONLY;
+ }
+ pLoop->nLTerm = j;
+ pLoop->u.btree.nEq = j;
+ pLoop->u.btree.pIndex = pIdx;
+ /* TUNING: Cost of a unique index lookup is 15 */
+ pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */
+ break;
+ }
+ }
+ if( pLoop->wsFlags ){
+ pLoop->nOut = (LogEst)1;
+ pWInfo->a[0].pWLoop = pLoop;
+ assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
+ pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
+ pWInfo->a[0].iTabCur = iCur;
+ pWInfo->nRowOut = 1;
+ if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr;
+ if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
+ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
+ }
+ if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS;
+#ifdef SQLITE_DEBUG
+ pLoop->cId = '0';
+#endif
+#ifdef WHERETRACE_ENABLED
+ if( sqlite3WhereTrace & 0x02 ){
+ sqlite3DebugPrintf("whereShortCut() used to compute solution\n");
+ }
+#endif
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** Helper function for exprIsDeterministic().
+*/
+static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
+ pWalker->eCode = 0;
+ return WRC_Abort;
+ }
+ return WRC_Continue;
+}
+
+/*
+** Return true if the expression contains no non-deterministic SQL
+** functions. Do not consider non-deterministic SQL functions that are
+** part of sub-select statements.
+*/
+static int exprIsDeterministic(Expr *p){
+ Walker w;
+ memset(&w, 0, sizeof(w));
+ w.eCode = 1;
+ w.xExprCallback = exprNodeIsDeterministic;
+ w.xSelectCallback = sqlite3SelectWalkFail;
+ sqlite3WalkExpr(&w, p);
+ return w.eCode;
+}
+
+
+#ifdef WHERETRACE_ENABLED
+/*
+** Display all WhereLoops in pWInfo
+*/
+static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){
+ if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */
+ WhereLoop *p;
+ int i;
+ static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
+ "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
+ for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
+ p->cId = zLabel[i%(sizeof(zLabel)-1)];
+ sqlite3WhereLoopPrint(p, pWC);
+ }
+ }
+}
+# define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
+#else
+# define WHERETRACE_ALL_LOOPS(W,C)
+#endif
+
+/* Attempt to omit tables from a join that do not affect the result.
+** For a table to not affect the result, the following must be true:
+**
+** 1) The query must not be an aggregate.
+** 2) The table must be the RHS of a LEFT JOIN.
+** 3) Either the query must be DISTINCT, or else the ON or USING clause
+** must contain a constraint that limits the scan of the table to
+** at most a single row.
+** 4) The table must not be referenced by any part of the query apart
+** from its own USING or ON clause.
+** 5) The table must not have an inner-join ON or USING clause if there is
+** a RIGHT JOIN anywhere in the query. Otherwise the ON/USING clause
+** might move from the right side to the left side of the RIGHT JOIN.
+** Note: Due to (2), this condition can only arise if the table is
+** the right-most table of a subquery that was flattened into the
+** main query and that subquery was the right-hand operand of an
+** inner join that held an ON or USING clause.
+**
+** For example, given:
+**
+** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
+** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
+** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
+**
+** then table t2 can be omitted from the following:
+**
+** SELECT v1, v3 FROM t1
+** LEFT JOIN t2 ON (t1.ipk=t2.ipk)
+** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
+**
+** or from:
+**
+** SELECT DISTINCT v1, v3 FROM t1
+** LEFT JOIN t2
+** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
+*/
+static SQLITE_NOINLINE Bitmask whereOmitNoopJoin(
+ WhereInfo *pWInfo,
+ Bitmask notReady
+){
+ int i;
+ Bitmask tabUsed;
+ int hasRightJoin;
+
+ /* Preconditions checked by the caller */
+ assert( pWInfo->nLevel>=2 );
+ assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_OmitNoopJoin) );
+
+ /* These two preconditions checked by the caller combine to guarantee
+ ** condition (1) of the header comment */
+ assert( pWInfo->pResultSet!=0 );
+ assert( 0==(pWInfo->wctrlFlags & WHERE_AGG_DISTINCT) );
+
+ tabUsed = sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pResultSet);
+ if( pWInfo->pOrderBy ){
+ tabUsed |= sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pOrderBy);
+ }
+ hasRightJoin = (pWInfo->pTabList->a[0].fg.jointype & JT_LTORJ)!=0;
+ for(i=pWInfo->nLevel-1; i>=1; i--){
+ WhereTerm *pTerm, *pEnd;
+ SrcItem *pItem;
+ WhereLoop *pLoop;
+ pLoop = pWInfo->a[i].pWLoop;
+ pItem = &pWInfo->pTabList->a[pLoop->iTab];
+ if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ) continue;
+ if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)==0
+ && (pLoop->wsFlags & WHERE_ONEROW)==0
+ ){
+ continue;
+ }
+ if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
+ pEnd = pWInfo->sWC.a + pWInfo->sWC.nTerm;
+ for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){
+ if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
+ if( !ExprHasProperty(pTerm->pExpr, EP_OuterON)
+ || pTerm->pExpr->w.iJoin!=pItem->iCursor
+ ){
+ break;
+ }
+ }
+ if( hasRightJoin
+ && ExprHasProperty(pTerm->pExpr, EP_InnerON)
+ && pTerm->pExpr->w.iJoin==pItem->iCursor
+ ){
+ break; /* restriction (5) */
+ }
+ }
+ if( pTerm<pEnd ) continue;
+ WHERETRACE(0xffffffff, ("-> drop loop %c not used\n", pLoop->cId));
+ notReady &= ~pLoop->maskSelf;
+ for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){
+ if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
+ pTerm->wtFlags |= TERM_CODED;
+ }
+ }
+ if( i!=pWInfo->nLevel-1 ){
+ int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
+ memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
+ }
+ pWInfo->nLevel--;
+ assert( pWInfo->nLevel>0 );
+ }
+ return notReady;
+}
+
+/*
+** Check to see if there are any SEARCH loops that might benefit from
+** using a Bloom filter. Consider a Bloom filter if:
+**
+** (1) The SEARCH happens more than N times where N is the number
+** of rows in the table that is being considered for the Bloom
+** filter.
+** (2) Some searches are expected to find zero rows. (This is determined
+** by the WHERE_SELFCULL flag on the term.)
+** (3) Bloom-filter processing is not disabled. (Checked by the
+** caller.)
+** (4) The size of the table being searched is known by ANALYZE.
+**
+** This block of code merely checks to see if a Bloom filter would be
+** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the
+** WhereLoop. The implementation of the Bloom filter comes further
+** down where the code for each WhereLoop is generated.
+*/
+static SQLITE_NOINLINE void whereCheckIfBloomFilterIsUseful(
+ const WhereInfo *pWInfo
+){
+ int i;
+ LogEst nSearch = 0;
+
+ assert( pWInfo->nLevel>=2 );
+ assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_BloomFilter) );
+ for(i=0; i<pWInfo->nLevel; i++){
+ WhereLoop *pLoop = pWInfo->a[i].pWLoop;
+ const unsigned int reqFlags = (WHERE_SELFCULL|WHERE_COLUMN_EQ);
+ SrcItem *pItem = &pWInfo->pTabList->a[pLoop->iTab];
+ Table *pTab = pItem->pTab;
+ if( (pTab->tabFlags & TF_HasStat1)==0 ) break;
+ pTab->tabFlags |= TF_StatsUsed;
+ if( i>=1
+ && (pLoop->wsFlags & reqFlags)==reqFlags
+ /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */
+ && ALWAYS((pLoop->wsFlags & (WHERE_IPK|WHERE_INDEXED))!=0)
+ ){
+ if( nSearch > pTab->nRowLogEst ){
+ testcase( pItem->fg.jointype & JT_LEFT );
+ pLoop->wsFlags |= WHERE_BLOOMFILTER;
+ pLoop->wsFlags &= ~WHERE_IDX_ONLY;
+ WHERETRACE(0xffffffff, (
+ "-> use Bloom-filter on loop %c because there are ~%.1e "
+ "lookups into %s which has only ~%.1e rows\n",
+ pLoop->cId, (double)sqlite3LogEstToInt(nSearch), pTab->zName,
+ (double)sqlite3LogEstToInt(pTab->nRowLogEst)));
+ }
+ }
+ nSearch += pLoop->nOut;
+ }
+}
+
+/*
+** The index pIdx is used by a query and contains one or more expressions.
+** In other words pIdx is an index on an expression. iIdxCur is the cursor
+** number for the index and iDataCur is the cursor number for the corresponding
+** table.
+**
+** This routine adds IndexedExpr entries to the Parse->pIdxEpr field for
+** each of the expressions in the index so that the expression code generator
+** will know to replace occurrences of the indexed expression with
+** references to the corresponding column of the index.
+*/
+static SQLITE_NOINLINE void whereAddIndexedExpr(
+ Parse *pParse, /* Add IndexedExpr entries to pParse->pIdxEpr */
+ Index *pIdx, /* The index-on-expression that contains the expressions */
+ int iIdxCur, /* Cursor number for pIdx */
+ SrcItem *pTabItem /* The FROM clause entry for the table */
+){
+ int i;
+ IndexedExpr *p;
+ Table *pTab;
+ assert( pIdx->bHasExpr );
+ pTab = pIdx->pTable;
+ for(i=0; i<pIdx->nColumn; i++){
+ Expr *pExpr;
+ int j = pIdx->aiColumn[i];
+ int bMaybeNullRow;
+ if( j==XN_EXPR ){
+ pExpr = pIdx->aColExpr->a[i].pExpr;
+ testcase( pTabItem->fg.jointype & JT_LEFT );
+ testcase( pTabItem->fg.jointype & JT_RIGHT );
+ testcase( pTabItem->fg.jointype & JT_LTORJ );
+ bMaybeNullRow = (pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0;
+ }else if( j>=0 && (pTab->aCol[j].colFlags & COLFLAG_VIRTUAL)!=0 ){
+ pExpr = sqlite3ColumnExpr(pTab, &pTab->aCol[j]);
+ bMaybeNullRow = 0;
+ }else{
+ continue;
+ }
+ if( sqlite3ExprIsConstant(pExpr) ) continue;
+ if( pExpr->op==TK_FUNCTION ){
+ /* Functions that might set a subtype should not be replaced by the
+ ** value taken from an expression index since the index omits the
+ ** subtype. https://sqlite.org/forum/forumpost/68d284c86b082c3e */
+ int n;
+ FuncDef *pDef;
+ sqlite3 *db = pParse->db;
+ assert( ExprUseXList(pExpr) );
+ n = pExpr->x.pList ? pExpr->x.pList->nExpr : 0;
+ pDef = sqlite3FindFunction(db, pExpr->u.zToken, n, ENC(db), 0);
+ if( pDef==0 || (pDef->funcFlags & SQLITE_RESULT_SUBTYPE)!=0 ){
+ continue;
+ }
+ }
+ p = sqlite3DbMallocRaw(pParse->db, sizeof(IndexedExpr));
+ if( p==0 ) break;
+ p->pIENext = pParse->pIdxEpr;
+#ifdef WHERETRACE_ENABLED
+ if( sqlite3WhereTrace & 0x200 ){
+ sqlite3DebugPrintf("New pParse->pIdxEpr term {%d,%d}\n", iIdxCur, i);
+ if( sqlite3WhereTrace & 0x5000 ) sqlite3ShowExpr(pExpr);
+ }
+#endif
+ p->pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
+ p->iDataCur = pTabItem->iCursor;
+ p->iIdxCur = iIdxCur;
+ p->iIdxCol = i;
+ p->bMaybeNullRow = bMaybeNullRow;
+ if( sqlite3IndexAffinityStr(pParse->db, pIdx) ){
+ p->aff = pIdx->zColAff[i];
+ }
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+ p->zIdxName = pIdx->zName;
+#endif
+ pParse->pIdxEpr = p;
+ if( p->pIENext==0 ){
+ void *pArg = (void*)&pParse->pIdxEpr;
+ sqlite3ParserAddCleanup(pParse, whereIndexedExprCleanup, pArg);
+ }
+ }
+}
+
+/*
+** Set the reverse-scan order mask to one for all tables in the query
+** with the exception of MATERIALIZED common table expressions that have
+** their own internal ORDER BY clauses.
+**
+** This implements the PRAGMA reverse_unordered_selects=ON setting.
+** (Also SQLITE_DBCONFIG_REVERSE_SCANORDER).
+*/
+static SQLITE_NOINLINE void whereReverseScanOrder(WhereInfo *pWInfo){
+ int ii;
+ for(ii=0; ii<pWInfo->pTabList->nSrc; ii++){
+ SrcItem *pItem = &pWInfo->pTabList->a[ii];
+ if( !pItem->fg.isCte
+ || pItem->u2.pCteUse->eM10d!=M10d_Yes
+ || NEVER(pItem->pSelect==0)
+ || pItem->pSelect->pOrderBy==0
+ ){
+ pWInfo->revMask |= MASKBIT(ii);
+ }
+ }
+}
+
+/*
+** Generate the beginning of the loop used for WHERE clause processing.
+** The return value is a pointer to an opaque structure that contains
+** information needed to terminate the loop. Later, the calling routine
+** should invoke sqlite3WhereEnd() with the return value of this function
+** in order to complete the WHERE clause processing.
+**
+** If an error occurs, this routine returns NULL.
+**
+** The basic idea is to do a nested loop, one loop for each table in
+** the FROM clause of a select. (INSERT and UPDATE statements are the
+** same as a SELECT with only a single table in the FROM clause.) For
+** example, if the SQL is this:
+**
+** SELECT * FROM t1, t2, t3 WHERE ...;
+**
+** Then the code generated is conceptually like the following:
+**
+** foreach row1 in t1 do \ Code generated
+** foreach row2 in t2 do |-- by sqlite3WhereBegin()
+** foreach row3 in t3 do /
+** ...
+** end \ Code generated
+** end |-- by sqlite3WhereEnd()
+** end /
+**
+** Note that the loops might not be nested in the order in which they
+** appear in the FROM clause if a different order is better able to make
+** use of indices. Note also that when the IN operator appears in
+** the WHERE clause, it might result in additional nested loops for
+** scanning through all values on the right-hand side of the IN.
+**
+** There are Btree cursors associated with each table. t1 uses cursor
+** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
+** And so forth. This routine generates code to open those VDBE cursors
+** and sqlite3WhereEnd() generates the code to close them.
+**
+** The code that sqlite3WhereBegin() generates leaves the cursors named
+** in pTabList pointing at their appropriate entries. The [...] code
+** can use OP_Column and OP_Rowid opcodes on these cursors to extract
+** data from the various tables of the loop.
+**
+** If the WHERE clause is empty, the foreach loops must each scan their
+** entire tables. Thus a three-way join is an O(N^3) operation. But if
+** the tables have indices and there are terms in the WHERE clause that
+** refer to those indices, a complete table scan can be avoided and the
+** code will run much faster. Most of the work of this routine is checking
+** to see if there are indices that can be used to speed up the loop.
+**
+** Terms of the WHERE clause are also used to limit which rows actually
+** make it to the "..." in the middle of the loop. After each "foreach",
+** terms of the WHERE clause that use only terms in that loop and outer
+** loops are evaluated and if false a jump is made around all subsequent
+** inner loops (or around the "..." if the test occurs within the inner-
+** most loop)
+**
+** OUTER JOINS
+**
+** An outer join of tables t1 and t2 is conceptually coded as follows:
+**
+** foreach row1 in t1 do
+** flag = 0
+** foreach row2 in t2 do
+** start:
+** ...
+** flag = 1
+** end
+** if flag==0 then
+** move the row2 cursor to a null row
+** goto start
+** fi
+** end
+**
+** ORDER BY CLAUSE PROCESSING
+**
+** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
+** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
+** if there is one. If there is no ORDER BY clause or if this routine
+** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
+**
+** The iIdxCur parameter is the cursor number of an index. If
+** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
+** to use for OR clause processing. The WHERE clause should use this
+** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
+** the first cursor in an array of cursors for all indices. iIdxCur should
+** be used to compute the appropriate cursor depending on which index is
+** used.
+*/
+WhereInfo *sqlite3WhereBegin(
+ Parse *pParse, /* The parser context */
+ SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */
+ Expr *pWhere, /* The WHERE clause */
+ ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */
+ ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */
+ Select *pSelect, /* The entire SELECT statement */
+ u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */
+ int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number
+ ** If WHERE_USE_LIMIT, then the limit amount */
+){
+ int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */
+ int nTabList; /* Number of elements in pTabList */
+ WhereInfo *pWInfo; /* Will become the return value of this function */
+ Vdbe *v = pParse->pVdbe; /* The virtual database engine */
+ Bitmask notReady; /* Cursors that are not yet positioned */
+ WhereLoopBuilder sWLB; /* The WhereLoop builder */
+ WhereMaskSet *pMaskSet; /* The expression mask set */
+ WhereLevel *pLevel; /* A single level in pWInfo->a[] */
+ WhereLoop *pLoop; /* Pointer to a single WhereLoop object */
+ int ii; /* Loop counter */
+ sqlite3 *db; /* Database connection */
+ int rc; /* Return code */
+ u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */
+
+ assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
+ (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
+ && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
+ ));
+
+ /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
+ assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
+ || (wctrlFlags & WHERE_USE_LIMIT)==0 );
+
+ /* Variable initialization */
+ db = pParse->db;
+ memset(&sWLB, 0, sizeof(sWLB));
+
+ /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
+ testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
+ if( pOrderBy && pOrderBy->nExpr>=BMS ){
+ pOrderBy = 0;
+ wctrlFlags &= ~WHERE_WANT_DISTINCT;
+ }
+
+ /* The number of tables in the FROM clause is limited by the number of
+ ** bits in a Bitmask
+ */
+ testcase( pTabList->nSrc==BMS );
+ if( pTabList->nSrc>BMS ){
+ sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
+ return 0;
+ }
+
+ /* This function normally generates a nested loop for all tables in
+ ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should
+ ** only generate code for the first table in pTabList and assume that
+ ** any cursors associated with subsequent tables are uninitialized.
+ */
+ nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
+
+ /* Allocate and initialize the WhereInfo structure that will become the
+ ** return value. A single allocation is used to store the WhereInfo
+ ** struct, the contents of WhereInfo.a[], the WhereClause structure
+ ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
+ ** field (type Bitmask) it must be aligned on an 8-byte boundary on
+ ** some architectures. Hence the ROUND8() below.
+ */
+ nByteWInfo = ROUND8P(sizeof(WhereInfo));
+ if( nTabList>1 ){
+ nByteWInfo = ROUND8P(nByteWInfo + (nTabList-1)*sizeof(WhereLevel));
+ }
+ pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
+ if( db->mallocFailed ){
+ sqlite3DbFree(db, pWInfo);
+ pWInfo = 0;
+ goto whereBeginError;
+ }
+ pWInfo->pParse = pParse;
+ pWInfo->pTabList = pTabList;
+ pWInfo->pOrderBy = pOrderBy;
+#if WHERETRACE_ENABLED
+ pWInfo->pWhere = pWhere;
+#endif
+ pWInfo->pResultSet = pResultSet;
+ pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
+ pWInfo->nLevel = nTabList;
+ pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
+ pWInfo->wctrlFlags = wctrlFlags;
+ pWInfo->iLimit = iAuxArg;
+ pWInfo->savedNQueryLoop = pParse->nQueryLoop;
+ pWInfo->pSelect = pSelect;
+ memset(&pWInfo->nOBSat, 0,
+ offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
+ memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
+ assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */
+ pMaskSet = &pWInfo->sMaskSet;
+ pMaskSet->n = 0;
+ pMaskSet->ix[0] = -99; /* Initialize ix[0] to a value that can never be
+ ** a valid cursor number, to avoid an initial
+ ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */
+ sWLB.pWInfo = pWInfo;
+ sWLB.pWC = &pWInfo->sWC;
+ sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
+ assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
+ whereLoopInit(sWLB.pNew);
+#ifdef SQLITE_DEBUG
+ sWLB.pNew->cId = '*';
+#endif
+
+ /* Split the WHERE clause into separate subexpressions where each
+ ** subexpression is separated by an AND operator.
+ */
+ sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
+ sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
+
+ /* Special case: No FROM clause
+ */
+ if( nTabList==0 ){
+ if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
+ if( (wctrlFlags & WHERE_WANT_DISTINCT)!=0
+ && OptimizationEnabled(db, SQLITE_DistinctOpt)
+ ){
+ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
+ }
+ ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
+ }else{
+ /* Assign a bit from the bitmask to every term in the FROM clause.
+ **
+ ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
+ **
+ ** The rule of the previous sentence ensures that if X is the bitmask for
+ ** a table T, then X-1 is the bitmask for all other tables to the left of T.
+ ** Knowing the bitmask for all tables to the left of a left join is
+ ** important. Ticket #3015.
+ **
+ ** Note that bitmasks are created for all pTabList->nSrc tables in
+ ** pTabList, not just the first nTabList tables. nTabList is normally
+ ** equal to pTabList->nSrc but might be shortened to 1 if the
+ ** WHERE_OR_SUBCLAUSE flag is set.
+ */
+ ii = 0;
+ do{
+ createMask(pMaskSet, pTabList->a[ii].iCursor);
+ sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
+ }while( (++ii)<pTabList->nSrc );
+ #ifdef SQLITE_DEBUG
+ {
+ Bitmask mx = 0;
+ for(ii=0; ii<pTabList->nSrc; ii++){
+ Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
+ assert( m>=mx );
+ mx = m;
+ }
+ }
+ #endif
+ }
+
+ /* Analyze all of the subexpressions. */
+ sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
+ if( pSelect && pSelect->pLimit ){
+ sqlite3WhereAddLimit(&pWInfo->sWC, pSelect);
+ }
+ if( pParse->nErr ) goto whereBeginError;
+
+ /* The False-WHERE-Term-Bypass optimization:
+ **
+ ** If there are WHERE terms that are false, then no rows will be output,
+ ** so skip over all of the code generated here.
+ **
+ ** Conditions:
+ **
+ ** (1) The WHERE term must not refer to any tables in the join.
+ ** (2) The term must not come from an ON clause on the
+ ** right-hand side of a LEFT or FULL JOIN.
+ ** (3) The term must not come from an ON clause, or there must be
+ ** no RIGHT or FULL OUTER joins in pTabList.
+ ** (4) If the expression contains non-deterministic functions
+ ** that are not within a sub-select. This is not required
+ ** for correctness but rather to preserves SQLite's legacy
+ ** behaviour in the following two cases:
+ **
+ ** WHERE random()>0; -- eval random() once per row
+ ** WHERE (SELECT random())>0; -- eval random() just once overall
+ **
+ ** Note that the Where term need not be a constant in order for this
+ ** optimization to apply, though it does need to be constant relative to
+ ** the current subquery (condition 1). The term might include variables
+ ** from outer queries so that the value of the term changes from one
+ ** invocation of the current subquery to the next.
+ */
+ for(ii=0; ii<sWLB.pWC->nBase; ii++){
+ WhereTerm *pT = &sWLB.pWC->a[ii]; /* A term of the WHERE clause */
+ Expr *pX; /* The expression of pT */
+ if( pT->wtFlags & TERM_VIRTUAL ) continue;
+ pX = pT->pExpr;
+ assert( pX!=0 );
+ assert( pT->prereqAll!=0 || !ExprHasProperty(pX, EP_OuterON) );
+ if( pT->prereqAll==0 /* Conditions (1) and (2) */
+ && (nTabList==0 || exprIsDeterministic(pX)) /* Condition (4) */
+ && !(ExprHasProperty(pX, EP_InnerON) /* Condition (3) */
+ && (pTabList->a[0].fg.jointype & JT_LTORJ)!=0 )
+ ){
+ sqlite3ExprIfFalse(pParse, pX, pWInfo->iBreak, SQLITE_JUMPIFNULL);
+ pT->wtFlags |= TERM_CODED;
+ }
+ }
+
+ if( wctrlFlags & WHERE_WANT_DISTINCT ){
+ if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
+ /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
+ ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
+ wctrlFlags &= ~WHERE_WANT_DISTINCT;
+ pWInfo->wctrlFlags &= ~WHERE_WANT_DISTINCT;
+ }else if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
+ /* The DISTINCT marking is pointless. Ignore it. */
+ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
+ }else if( pOrderBy==0 ){
+ /* Try to ORDER BY the result set to make distinct processing easier */
+ pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
+ pWInfo->pOrderBy = pResultSet;
+ }
+ }
+
+ /* Construct the WhereLoop objects */
+#if defined(WHERETRACE_ENABLED)
+ if( sqlite3WhereTrace & 0xffffffff ){
+ sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
+ if( wctrlFlags & WHERE_USE_LIMIT ){
+ sqlite3DebugPrintf(", limit: %d", iAuxArg);
+ }
+ sqlite3DebugPrintf(")\n");
+ if( sqlite3WhereTrace & 0x8000 ){
+ Select sSelect;
+ memset(&sSelect, 0, sizeof(sSelect));
+ sSelect.selFlags = SF_WhereBegin;
+ sSelect.pSrc = pTabList;
+ sSelect.pWhere = pWhere;
+ sSelect.pOrderBy = pOrderBy;
+ sSelect.pEList = pResultSet;
+ sqlite3TreeViewSelect(0, &sSelect, 0);
+ }
+ if( sqlite3WhereTrace & 0x4000 ){ /* Display all WHERE clause terms */
+ sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
+ sqlite3WhereClausePrint(sWLB.pWC);
+ }
+ }
+#endif
+
+ if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
+ rc = whereLoopAddAll(&sWLB);
+ if( rc ) goto whereBeginError;
+
+#ifdef SQLITE_ENABLE_STAT4
+ /* If one or more WhereTerm.truthProb values were used in estimating
+ ** loop parameters, but then those truthProb values were subsequently
+ ** changed based on STAT4 information while computing subsequent loops,
+ ** then we need to rerun the whole loop building process so that all
+ ** loops will be built using the revised truthProb values. */
+ if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){
+ WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
+ WHERETRACE(0xffffffff,
+ ("**** Redo all loop computations due to"
+ " TERM_HIGHTRUTH changes ****\n"));
+ while( pWInfo->pLoops ){
+ WhereLoop *p = pWInfo->pLoops;
+ pWInfo->pLoops = p->pNextLoop;
+ whereLoopDelete(db, p);
+ }
+ rc = whereLoopAddAll(&sWLB);
+ if( rc ) goto whereBeginError;
+ }
+#endif
+ WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
+
+ wherePathSolver(pWInfo, 0);
+ if( db->mallocFailed ) goto whereBeginError;
+ if( pWInfo->pOrderBy ){
+ wherePathSolver(pWInfo, pWInfo->nRowOut+1);
+ if( db->mallocFailed ) goto whereBeginError;
+ }
+
+ /* TUNING: Assume that a DISTINCT clause on a subquery reduces
+ ** the output size by a factor of 8 (LogEst -30).
+ */
+ if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 ){
+ WHERETRACE(0x0080,("nRowOut reduced from %d to %d due to DISTINCT\n",
+ pWInfo->nRowOut, pWInfo->nRowOut-30));
+ pWInfo->nRowOut -= 30;
+ }
+
+ }
+ assert( pWInfo->pTabList!=0 );
+ if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
+ whereReverseScanOrder(pWInfo);
+ }
+ if( pParse->nErr ){
+ goto whereBeginError;
+ }
+ assert( db->mallocFailed==0 );
+#ifdef WHERETRACE_ENABLED
+ if( sqlite3WhereTrace ){
+ sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
+ if( pWInfo->nOBSat>0 ){
+ sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
+ }
+ switch( pWInfo->eDistinct ){
+ case WHERE_DISTINCT_UNIQUE: {
+ sqlite3DebugPrintf(" DISTINCT=unique");
+ break;
+ }
+ case WHERE_DISTINCT_ORDERED: {
+ sqlite3DebugPrintf(" DISTINCT=ordered");
+ break;
+ }
+ case WHERE_DISTINCT_UNORDERED: {
+ sqlite3DebugPrintf(" DISTINCT=unordered");
+ break;
+ }
+ }
+ sqlite3DebugPrintf("\n");
+ for(ii=0; ii<pWInfo->nLevel; ii++){
+ sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
+ }
+ }
+#endif
+
+ /* Attempt to omit tables from a join that do not affect the result.
+ ** See the comment on whereOmitNoopJoin() for further information.
+ **
+ ** This query optimization is factored out into a separate "no-inline"
+ ** procedure to keep the sqlite3WhereBegin() procedure from becoming
+ ** too large. If sqlite3WhereBegin() becomes too large, that prevents
+ ** some C-compiler optimizers from in-lining the
+ ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to
+ ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons.
+ */
+ notReady = ~(Bitmask)0;
+ if( pWInfo->nLevel>=2
+ && pResultSet!=0 /* these two combine to guarantee */
+ && 0==(wctrlFlags & WHERE_AGG_DISTINCT) /* condition (1) above */
+ && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
+ ){
+ notReady = whereOmitNoopJoin(pWInfo, notReady);
+ nTabList = pWInfo->nLevel;
+ assert( nTabList>0 );
+ }
+
+ /* Check to see if there are any SEARCH loops that might benefit from
+ ** using a Bloom filter.
+ */
+ if( pWInfo->nLevel>=2
+ && OptimizationEnabled(db, SQLITE_BloomFilter)
+ ){
+ whereCheckIfBloomFilterIsUseful(pWInfo);
+ }
+
+#if defined(WHERETRACE_ENABLED)
+ if( sqlite3WhereTrace & 0x4000 ){ /* Display all terms of the WHERE clause */
+ sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
+ sqlite3WhereClausePrint(sWLB.pWC);
+ }
+ WHERETRACE(0xffffffff,("*** Optimizer Finished ***\n"));
+#endif
+ pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
+
+ /* If the caller is an UPDATE or DELETE statement that is requesting
+ ** to use a one-pass algorithm, determine if this is appropriate.
+ **
+ ** A one-pass approach can be used if the caller has requested one
+ ** and either (a) the scan visits at most one row or (b) each
+ ** of the following are true:
+ **
+ ** * the caller has indicated that a one-pass approach can be used
+ ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
+ ** * the table is not a virtual table, and
+ ** * either the scan does not use the OR optimization or the caller
+ ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified
+ ** for DELETE).
+ **
+ ** The last qualification is because an UPDATE statement uses
+ ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
+ ** use a one-pass approach, and this is not set accurately for scans
+ ** that use the OR optimization.
+ */
+ assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
+ if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
+ int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
+ int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
+ assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
+ if( bOnerow || (
+ 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
+ && !IsVirtual(pTabList->a[0].pTab)
+ && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
+ && OptimizationEnabled(db, SQLITE_OnePass)
+ )){
+ pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
+ if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
+ if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
+ bFordelete = OPFLAG_FORDELETE;
+ }
+ pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
+ }
+ }
+ }
+
+ /* Open all tables in the pTabList and any indices selected for
+ ** searching those tables.
+ */
+ for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
+ Table *pTab; /* Table to open */
+ int iDb; /* Index of database containing table/index */
+ SrcItem *pTabItem;
+
+ pTabItem = &pTabList->a[pLevel->iFrom];
+ pTab = pTabItem->pTab;
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ pLoop = pLevel->pWLoop;
+ if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){
+ /* Do nothing */
+ }else
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
+ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
+ int iCur = pTabItem->iCursor;
+ sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
+ }else if( IsVirtual(pTab) ){
+ /* noop */
+ }else
+#endif
+ if( ((pLoop->wsFlags & WHERE_IDX_ONLY)==0
+ && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0)
+ || (pTabItem->fg.jointype & (JT_LTORJ|JT_RIGHT))!=0
+ ){
+ int op = OP_OpenRead;
+ if( pWInfo->eOnePass!=ONEPASS_OFF ){
+ op = OP_OpenWrite;
+ pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
+ };
+ sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
+ assert( pTabItem->iCursor==pLevel->iTabCur );
+ testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
+ testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
+ if( pWInfo->eOnePass==ONEPASS_OFF
+ && pTab->nCol<BMS
+ && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
+ && (pLoop->wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))==0
+ ){
+ /* If we know that only a prefix of the record will be used,
+ ** it is advantageous to reduce the "column count" field in
+ ** the P4 operand of the OP_OpenRead/Write opcode. */
+ Bitmask b = pTabItem->colUsed;
+ int n = 0;
+ for(; b; b=b>>1, n++){}
+ sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
+ assert( n<=pTab->nCol );
+ }
+#ifdef SQLITE_ENABLE_CURSOR_HINTS
+ if( pLoop->u.btree.pIndex!=0 && (pTab->tabFlags & TF_WithoutRowid)==0 ){
+ sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
+ }else
+#endif
+ {
+ sqlite3VdbeChangeP5(v, bFordelete);
+ }
+#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
+ sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
+ (const u8*)&pTabItem->colUsed, P4_INT64);
+#endif
+ }else{
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
+ }
+ if( pLoop->wsFlags & WHERE_INDEXED ){
+ Index *pIx = pLoop->u.btree.pIndex;
+ int iIndexCur;
+ int op = OP_OpenRead;
+ /* iAuxArg is always set to a positive value if ONEPASS is possible */
+ assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
+ if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
+ && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
+ ){
+ /* This is one term of an OR-optimization using the PRIMARY KEY of a
+ ** WITHOUT ROWID table. No need for a separate index */
+ iIndexCur = pLevel->iTabCur;
+ op = 0;
+ }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
+ Index *pJ = pTabItem->pTab->pIndex;
+ iIndexCur = iAuxArg;
+ assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
+ while( ALWAYS(pJ) && pJ!=pIx ){
+ iIndexCur++;
+ pJ = pJ->pNext;
+ }
+ op = OP_OpenWrite;
+ pWInfo->aiCurOnePass[1] = iIndexCur;
+ }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
+ iIndexCur = iAuxArg;
+ op = OP_ReopenIdx;
+ }else{
+ iIndexCur = pParse->nTab++;
+ if( pIx->bHasExpr && OptimizationEnabled(db, SQLITE_IndexedExpr) ){
+ whereAddIndexedExpr(pParse, pIx, iIndexCur, pTabItem);
+ }
+ if( pIx->pPartIdxWhere && (pTabItem->fg.jointype & JT_RIGHT)==0 ){
+ wherePartIdxExpr(
+ pParse, pIx, pIx->pPartIdxWhere, 0, iIndexCur, pTabItem
+ );
+ }
+ }
+ pLevel->iIdxCur = iIndexCur;
+ assert( pIx!=0 );
+ assert( pIx->pSchema==pTab->pSchema );
+ assert( iIndexCur>=0 );
+ if( op ){
+ sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
+ sqlite3VdbeSetP4KeyInfo(pParse, pIx);
+ if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
+ && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
+ && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
+ && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
+ && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
+ && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
+ ){
+ sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ);
+ }
+ VdbeComment((v, "%s", pIx->zName));
+#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
+ {
+ u64 colUsed = 0;
+ int ii, jj;
+ for(ii=0; ii<pIx->nColumn; ii++){
+ jj = pIx->aiColumn[ii];
+ if( jj<0 ) continue;
+ if( jj>63 ) jj = 63;
+ if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
+ colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
+ }
+ sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
+ (u8*)&colUsed, P4_INT64);
+ }
+#endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
+ }
+ }
+ if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
+ if( (pTabItem->fg.jointype & JT_RIGHT)!=0
+ && (pLevel->pRJ = sqlite3WhereMalloc(pWInfo, sizeof(WhereRightJoin)))!=0
+ ){
+ WhereRightJoin *pRJ = pLevel->pRJ;
+ pRJ->iMatch = pParse->nTab++;
+ pRJ->regBloom = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Blob, 65536, pRJ->regBloom);
+ pRJ->regReturn = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pRJ->regReturn);
+ assert( pTab==pTabItem->pTab );
+ if( HasRowid(pTab) ){
+ KeyInfo *pInfo;
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, 1);
+ pInfo = sqlite3KeyInfoAlloc(pParse->db, 1, 0);
+ if( pInfo ){
+ pInfo->aColl[0] = 0;
+ pInfo->aSortFlags[0] = 0;
+ sqlite3VdbeAppendP4(v, pInfo, P4_KEYINFO);
+ }
+ }else{
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab);
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, pPk->nKeyCol);
+ sqlite3VdbeSetP4KeyInfo(pParse, pPk);
+ }
+ pLoop->wsFlags &= ~WHERE_IDX_ONLY;
+ /* The nature of RIGHT JOIN processing is such that it messes up
+ ** the output order. So omit any ORDER BY/GROUP BY elimination
+ ** optimizations. We need to do an actual sort for RIGHT JOIN. */
+ pWInfo->nOBSat = 0;
+ pWInfo->eDistinct = WHERE_DISTINCT_UNORDERED;
+ }
+ }
+ pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
+ if( db->mallocFailed ) goto whereBeginError;
+
+ /* Generate the code to do the search. Each iteration of the for
+ ** loop below generates code for a single nested loop of the VM
+ ** program.
+ */
+ for(ii=0; ii<nTabList; ii++){
+ int addrExplain;
+ int wsFlags;
+ SrcItem *pSrc;
+ if( pParse->nErr ) goto whereBeginError;
+ pLevel = &pWInfo->a[ii];
+ wsFlags = pLevel->pWLoop->wsFlags;
+ pSrc = &pTabList->a[pLevel->iFrom];
+ if( pSrc->fg.isMaterialized ){
+ if( pSrc->fg.isCorrelated ){
+ sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub);
+ }else{
+ int iOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub);
+ sqlite3VdbeJumpHere(v, iOnce);
+ }
+ }
+ assert( pTabList == pWInfo->pTabList );
+ if( (wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))!=0 ){
+ if( (wsFlags & WHERE_AUTO_INDEX)!=0 ){
+#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
+ constructAutomaticIndex(pParse, &pWInfo->sWC, notReady, pLevel);
+#endif
+ }else{
+ sqlite3ConstructBloomFilter(pWInfo, ii, pLevel, notReady);
+ }
+ if( db->mallocFailed ) goto whereBeginError;
+ }
+ addrExplain = sqlite3WhereExplainOneScan(
+ pParse, pTabList, pLevel, wctrlFlags
+ );
+ pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
+ notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
+ pWInfo->iContinue = pLevel->addrCont;
+ if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
+ sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
+ }
+ }
+
+ /* Done. */
+ VdbeModuleComment((v, "Begin WHERE-core"));
+ pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v);
+ return pWInfo;
+
+ /* Jump here if malloc fails */
+whereBeginError:
+ if( pWInfo ){
+ pParse->nQueryLoop = pWInfo->savedNQueryLoop;
+ whereInfoFree(db, pWInfo);
+ }
+#ifdef WHERETRACE_ENABLED
+ /* Prevent harmless compiler warnings about debugging routines
+ ** being declared but never used */
+ sqlite3ShowWhereLoopList(0);
+#endif /* WHERETRACE_ENABLED */
+ return 0;
+}
+
+/*
+** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
+** index rather than the main table. In SQLITE_DEBUG mode, we want
+** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine
+** does that.
+*/
+#ifndef SQLITE_DEBUG
+# define OpcodeRewriteTrace(D,K,P) /* no-op */
+#else
+# define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
+ static void sqlite3WhereOpcodeRewriteTrace(
+ sqlite3 *db,
+ int pc,
+ VdbeOp *pOp
+ ){
+ if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
+ sqlite3VdbePrintOp(0, pc, pOp);
+ }
+#endif
+
+#ifdef SQLITE_DEBUG
+/*
+** Return true if cursor iCur is opened by instruction k of the
+** bytecode. Used inside of assert() only.
+*/
+static int cursorIsOpen(Vdbe *v, int iCur, int k){
+ while( k>=0 ){
+ VdbeOp *pOp = sqlite3VdbeGetOp(v,k--);
+ if( pOp->p1!=iCur ) continue;
+ if( pOp->opcode==OP_Close ) return 0;
+ if( pOp->opcode==OP_OpenRead ) return 1;
+ if( pOp->opcode==OP_OpenWrite ) return 1;
+ if( pOp->opcode==OP_OpenDup ) return 1;
+ if( pOp->opcode==OP_OpenAutoindex ) return 1;
+ if( pOp->opcode==OP_OpenEphemeral ) return 1;
+ }
+ return 0;
+}
+#endif /* SQLITE_DEBUG */
+
+/*
+** Generate the end of the WHERE loop. See comments on
+** sqlite3WhereBegin() for additional information.
+*/
+void sqlite3WhereEnd(WhereInfo *pWInfo){
+ Parse *pParse = pWInfo->pParse;
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ WhereLevel *pLevel;
+ WhereLoop *pLoop;
+ SrcList *pTabList = pWInfo->pTabList;
+ sqlite3 *db = pParse->db;
+ int iEnd = sqlite3VdbeCurrentAddr(v);
+ int nRJ = 0;
+
+ /* Generate loop termination code.
+ */
+ VdbeModuleComment((v, "End WHERE-core"));
+ for(i=pWInfo->nLevel-1; i>=0; i--){
+ int addr;
+ pLevel = &pWInfo->a[i];
+ if( pLevel->pRJ ){
+ /* Terminate the subroutine that forms the interior of the loop of
+ ** the RIGHT JOIN table */
+ WhereRightJoin *pRJ = pLevel->pRJ;
+ sqlite3VdbeResolveLabel(v, pLevel->addrCont);
+ pLevel->addrCont = 0;
+ pRJ->endSubrtn = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp3(v, OP_Return, pRJ->regReturn, pRJ->addrSubrtn, 1);
+ VdbeCoverage(v);
+ nRJ++;
+ }
+ pLoop = pLevel->pWLoop;
+ if( pLevel->op!=OP_Noop ){
+#ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
+ int addrSeek = 0;
+ Index *pIdx;
+ int n;
+ if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
+ && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */
+ && (pLoop->wsFlags & WHERE_INDEXED)!=0
+ && (pIdx = pLoop->u.btree.pIndex)->hasStat1
+ && (n = pLoop->u.btree.nDistinctCol)>0
+ && pIdx->aiRowLogEst[n]>=36
+ ){
+ int r1 = pParse->nMem+1;
+ int j, op;
+ for(j=0; j<n; j++){
+ sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
+ }
+ pParse->nMem += n+1;
+ op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
+ addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
+ VdbeCoverageIf(v, op==OP_SeekLT);
+ VdbeCoverageIf(v, op==OP_SeekGT);
+ sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
+ }
+#endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
+ /* The common case: Advance to the next row */
+ if( pLevel->addrCont ) sqlite3VdbeResolveLabel(v, pLevel->addrCont);
+ sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
+ sqlite3VdbeChangeP5(v, pLevel->p5);
+ VdbeCoverage(v);
+ VdbeCoverageIf(v, pLevel->op==OP_Next);
+ VdbeCoverageIf(v, pLevel->op==OP_Prev);
+ VdbeCoverageIf(v, pLevel->op==OP_VNext);
+ if( pLevel->regBignull ){
+ sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
+ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
+ VdbeCoverage(v);
+ }
+#ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
+ if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
+#endif
+ }else if( pLevel->addrCont ){
+ sqlite3VdbeResolveLabel(v, pLevel->addrCont);
+ }
+ if( (pLoop->wsFlags & WHERE_IN_ABLE)!=0 && pLevel->u.in.nIn>0 ){
+ struct InLoop *pIn;
+ int j;
+ sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
+ for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
+ assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull
+ || pParse->db->mallocFailed );
+ sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
+ if( pIn->eEndLoopOp!=OP_Noop ){
+ if( pIn->nPrefix ){
+ int bEarlyOut =
+ (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
+ && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0;
+ if( pLevel->iLeftJoin ){
+ /* For LEFT JOIN queries, cursor pIn->iCur may not have been
+ ** opened yet. This occurs for WHERE clauses such as
+ ** "a = ? AND b IN (...)", where the index is on (a, b). If
+ ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
+ ** never have been coded, but the body of the loop run to
+ ** return the null-row. So, if the cursor is not open yet,
+ ** jump over the OP_Next or OP_Prev instruction about to
+ ** be coded. */
+ sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur,
+ sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut);
+ VdbeCoverage(v);
+ }
+ if( bEarlyOut ){
+ sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
+ sqlite3VdbeCurrentAddr(v)+2,
+ pIn->iBase, pIn->nPrefix);
+ VdbeCoverage(v);
+ /* Retarget the OP_IsNull against the left operand of IN so
+ ** it jumps past the OP_IfNoHope. This is because the
+ ** OP_IsNull also bypasses the OP_Affinity opcode that is
+ ** required by OP_IfNoHope. */
+ sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
+ }
+ }
+ sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
+ VdbeCoverage(v);
+ VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
+ VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
+ }
+ sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
+ }
+ }
+ sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
+ if( pLevel->pRJ ){
+ sqlite3VdbeAddOp3(v, OP_Return, pLevel->pRJ->regReturn, 0, 1);
+ VdbeCoverage(v);
+ }
+ if( pLevel->addrSkip ){
+ sqlite3VdbeGoto(v, pLevel->addrSkip);
+ VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
+ sqlite3VdbeJumpHere(v, pLevel->addrSkip);
+ sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
+ }
+#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
+ if( pLevel->addrLikeRep ){
+ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
+ pLevel->addrLikeRep);
+ VdbeCoverage(v);
+ }
+#endif
+ if( pLevel->iLeftJoin ){
+ int ws = pLoop->wsFlags;
+ addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
+ assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
+ if( (ws & WHERE_IDX_ONLY)==0 ){
+ assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
+ sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
+ }
+ if( (ws & WHERE_INDEXED)
+ || ((ws & WHERE_MULTI_OR) && pLevel->u.pCoveringIdx)
+ ){
+ if( ws & WHERE_MULTI_OR ){
+ Index *pIx = pLevel->u.pCoveringIdx;
+ int iDb = sqlite3SchemaToIndex(db, pIx->pSchema);
+ sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb);
+ sqlite3VdbeSetP4KeyInfo(pParse, pIx);
+ }
+ sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
+ }
+ if( pLevel->op==OP_Return ){
+ sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
+ }else{
+ sqlite3VdbeGoto(v, pLevel->addrFirst);
+ }
+ sqlite3VdbeJumpHere(v, addr);
+ }
+ VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
+ pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
+ }
+
+ assert( pWInfo->nLevel<=pTabList->nSrc );
+ for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
+ int k, last;
+ VdbeOp *pOp, *pLastOp;
+ Index *pIdx = 0;
+ SrcItem *pTabItem = &pTabList->a[pLevel->iFrom];
+ Table *pTab = pTabItem->pTab;
+ assert( pTab!=0 );
+ pLoop = pLevel->pWLoop;
+
+ /* Do RIGHT JOIN processing. Generate code that will output the
+ ** unmatched rows of the right operand of the RIGHT JOIN with
+ ** all of the columns of the left operand set to NULL.
+ */
+ if( pLevel->pRJ ){
+ sqlite3WhereRightJoinLoop(pWInfo, i, pLevel);
+ continue;
+ }
+
+ /* For a co-routine, change all OP_Column references to the table of
+ ** the co-routine into OP_Copy of result contained in a register.
+ ** OP_Rowid becomes OP_Null.
+ */
+ if( pTabItem->fg.viaCoroutine ){
+ testcase( pParse->db->mallocFailed );
+ translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
+ pTabItem->regResult, 0);
+ continue;
+ }
+
+ /* If this scan uses an index, make VDBE code substitutions to read data
+ ** from the index instead of from the table where possible. In some cases
+ ** this optimization prevents the table from ever being read, which can
+ ** yield a significant performance boost.
+ **
+ ** Calls to the code generator in between sqlite3WhereBegin and
+ ** sqlite3WhereEnd will have created code that references the table
+ ** directly. This loop scans all that code looking for opcodes
+ ** that reference the table and converts them into opcodes that
+ ** reference the index.
+ */
+ if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
+ pIdx = pLoop->u.btree.pIndex;
+ }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
+ pIdx = pLevel->u.pCoveringIdx;
+ }
+ if( pIdx
+ && !db->mallocFailed
+ ){
+ if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){
+ last = iEnd;
+ }else{
+ last = pWInfo->iEndWhere;
+ }
+ if( pIdx->bHasExpr ){
+ IndexedExpr *p = pParse->pIdxEpr;
+ while( p ){
+ if( p->iIdxCur==pLevel->iIdxCur ){
+#ifdef WHERETRACE_ENABLED
+ if( sqlite3WhereTrace & 0x200 ){
+ sqlite3DebugPrintf("Disable pParse->pIdxEpr term {%d,%d}\n",
+ p->iIdxCur, p->iIdxCol);
+ if( sqlite3WhereTrace & 0x5000 ) sqlite3ShowExpr(p->pExpr);
+ }
+#endif
+ p->iDataCur = -1;
+ p->iIdxCur = -1;
+ }
+ p = p->pIENext;
+ }
+ }
+ k = pLevel->addrBody + 1;
+#ifdef SQLITE_DEBUG
+ if( db->flags & SQLITE_VdbeAddopTrace ){
+ printf("TRANSLATE cursor %d->%d in opcode range %d..%d\n",
+ pLevel->iTabCur, pLevel->iIdxCur, k, last-1);
+ }
+ /* Proof that the "+1" on the k value above is safe */
+ pOp = sqlite3VdbeGetOp(v, k - 1);
+ assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur );
+ assert( pOp->opcode!=OP_Rowid || pOp->p1!=pLevel->iTabCur );
+ assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur );
+#endif
+ pOp = sqlite3VdbeGetOp(v, k);
+ pLastOp = pOp + (last - k);
+ assert( pOp<=pLastOp );
+ do{
+ if( pOp->p1!=pLevel->iTabCur ){
+ /* no-op */
+ }else if( pOp->opcode==OP_Column
+#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
+ || pOp->opcode==OP_Offset
+#endif
+ ){
+ int x = pOp->p2;
+ assert( pIdx->pTable==pTab );
+#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
+ if( pOp->opcode==OP_Offset ){
+ /* Do not need to translate the column number */
+ }else
+#endif
+ if( !HasRowid(pTab) ){
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab);
+ x = pPk->aiColumn[x];
+ assert( x>=0 );
+ }else{
+ testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
+ x = sqlite3StorageColumnToTable(pTab,x);
+ }
+ x = sqlite3TableColumnToIndex(pIdx, x);
+ if( x>=0 ){
+ pOp->p2 = x;
+ pOp->p1 = pLevel->iIdxCur;
+ OpcodeRewriteTrace(db, k, pOp);
+ }else{
+ /* Unable to translate the table reference into an index
+ ** reference. Verify that this is harmless - that the
+ ** table being referenced really is open.
+ */
+#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
+ assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
+ || cursorIsOpen(v,pOp->p1,k)
+ || pOp->opcode==OP_Offset
+ );
+#else
+ assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
+ || cursorIsOpen(v,pOp->p1,k)
+ );
+#endif
+ }
+ }else if( pOp->opcode==OP_Rowid ){
+ pOp->p1 = pLevel->iIdxCur;
+ pOp->opcode = OP_IdxRowid;
+ OpcodeRewriteTrace(db, k, pOp);
+ }else if( pOp->opcode==OP_IfNullRow ){
+ pOp->p1 = pLevel->iIdxCur;
+ OpcodeRewriteTrace(db, k, pOp);
+ }
+#ifdef SQLITE_DEBUG
+ k++;
+#endif
+ }while( (++pOp)<pLastOp );
+#ifdef SQLITE_DEBUG
+ if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
+#endif
+ }
+ }
+
+ /* The "break" point is here, just past the end of the outer loop.
+ ** Set it.
+ */
+ sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
+
+ /* Final cleanup
+ */
+ pParse->nQueryLoop = pWInfo->savedNQueryLoop;
+ whereInfoFree(db, pWInfo);
+ pParse->withinRJSubrtn -= nRJ;
+ return;
+}