diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-13 14:07:11 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-13 14:07:11 +0000 |
commit | 63847496f14c813a5d80efd5b7de0f1294ffe1e3 (patch) | |
tree | 01c7571c7c762ceee70638549a99834fdd7c411b /test/e_fkey.test | |
parent | Initial commit. (diff) | |
download | sqlite3-63847496f14c813a5d80efd5b7de0f1294ffe1e3.tar.xz sqlite3-63847496f14c813a5d80efd5b7de0f1294ffe1e3.zip |
Adding upstream version 3.45.1.upstream/3.45.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'test/e_fkey.test')
-rw-r--r-- | test/e_fkey.test | 3047 |
1 files changed, 3047 insertions, 0 deletions
diff --git a/test/e_fkey.test b/test/e_fkey.test new file mode 100644 index 0000000..3662a39 --- /dev/null +++ b/test/e_fkey.test @@ -0,0 +1,3047 @@ +# 2009 October 7 +# +# The author disclaims copyright to this source code. In place of +# a legal notice, here is a blessing: +# +# May you do good and not evil. +# May you find forgiveness for yourself and forgive others. +# May you share freely, never taking more than you give. +# +#*********************************************************************** +# +# This file implements tests to verify the "testable statements" in the +# foreignkeys.in document. +# +# The tests in this file are arranged to mirror the structure of +# foreignkey.in, with one exception: The statements in section 2, which +# deals with enabling/disabling foreign key support, is tested first, +# before section 1. This is because some statements in section 2 deal +# with builds that do not include complete foreign key support (because +# either SQLITE_OMIT_TRIGGER or SQLITE_OMIT_FOREIGN_KEY was defined +# at build time). +# + +set testdir [file dirname $argv0] +source $testdir/tester.tcl + +proc eqp {sql {db db}} { + uplevel [subst -nocommands { + set eqpres [list] + $db eval "$sql" { + lappend eqpres [set detail] + } + set eqpres + }] +} + +proc do_detail_test {tn sql res} { + set normalres [list {*}$res] + uplevel [subst -nocommands { + do_test $tn { + eqp { $sql } + } {$normalres} + }] +} + +########################################################################### +### SECTION 2: Enabling Foreign Key Support +########################################################################### + +#------------------------------------------------------------------------- +# EVIDENCE-OF: R-37672-59189 In order to use foreign key constraints in +# SQLite, the library must be compiled with neither +# SQLITE_OMIT_FOREIGN_KEY nor SQLITE_OMIT_TRIGGER defined. +# +ifcapable trigger&&foreignkey { + do_test e_fkey-1 { + execsql { + PRAGMA foreign_keys = ON; + CREATE TABLE p(i PRIMARY KEY); + CREATE TABLE c(j REFERENCES p ON UPDATE CASCADE); + INSERT INTO p VALUES('hello'); + INSERT INTO c VALUES('hello'); + UPDATE p SET i = 'world'; + SELECT * FROM c; + } + } {world} +} + +#------------------------------------------------------------------------- +# Test the effects of defining OMIT_TRIGGER but not OMIT_FOREIGN_KEY. +# +# EVIDENCE-OF: R-10109-20452 If SQLITE_OMIT_TRIGGER is defined but +# SQLITE_OMIT_FOREIGN_KEY is not, then SQLite behaves as it did prior to +# version 3.6.19 (2009-10-14) - foreign key definitions are parsed and +# may be queried using PRAGMA foreign_key_list, but foreign key +# constraints are not enforced. +# +# Specifically, test that "PRAGMA foreign_keys" is a no-op in this case. +# When using the pragma to query the current setting, 0 rows are returned. +# +# EVIDENCE-OF: R-22567-44039 The PRAGMA foreign_keys command is a no-op +# in this configuration. +# +# EVIDENCE-OF: R-41784-13339 Tip: If the command "PRAGMA foreign_keys" +# returns no data instead of a single row containing "0" or "1", then +# the version of SQLite you are using does not support foreign keys +# (either because it is older than 3.6.19 or because it was compiled +# with SQLITE_OMIT_FOREIGN_KEY or SQLITE_OMIT_TRIGGER defined). +# +reset_db +ifcapable !trigger&&foreignkey { + do_test e_fkey-2.1 { + execsql { + PRAGMA foreign_keys = ON; + CREATE TABLE p(i PRIMARY KEY); + CREATE TABLE c(j REFERENCES p ON UPDATE CASCADE); + INSERT INTO p VALUES('hello'); + INSERT INTO c VALUES('hello'); + UPDATE p SET i = 'world'; + SELECT * FROM c; + } + } {hello} + do_test e_fkey-2.2 { + execsql { PRAGMA foreign_key_list(c) } + } {0 0 p j {} CASCADE {NO ACTION} NONE} + do_test e_fkey-2.3 { + execsql { PRAGMA foreign_keys } + } {} +} + + +#------------------------------------------------------------------------- +# Test the effects of defining OMIT_FOREIGN_KEY. +# +# EVIDENCE-OF: R-58428-36660 If OMIT_FOREIGN_KEY is defined, then +# foreign key definitions cannot even be parsed (attempting to specify a +# foreign key definition is a syntax error). +# +# Specifically, test that foreign key constraints cannot even be parsed +# in such a build. +# +reset_db +ifcapable !foreignkey { + do_test e_fkey-3.1 { + execsql { CREATE TABLE p(i PRIMARY KEY) } + catchsql { CREATE TABLE c(j REFERENCES p ON UPDATE CASCADE) } + } {1 {near "ON": syntax error}} + do_test e_fkey-3.2 { + # This is allowed, as in this build, "REFERENCES" is not a keyword. + # The declared datatype of column j is "REFERENCES p". + execsql { CREATE TABLE c(j REFERENCES p) } + } {} + do_test e_fkey-3.3 { + execsql { PRAGMA table_info(c) } + } {0 j {REFERENCES p} 0 {} 0} + do_test e_fkey-3.4 { + execsql { PRAGMA foreign_key_list(c) } + } {} + do_test e_fkey-3.5 { + execsql { PRAGMA foreign_keys } + } {} +} + +ifcapable !foreignkey||!trigger { finish_test ; return } +reset_db + + +#------------------------------------------------------------------------- +# EVIDENCE-OF: R-07280-60510 Assuming the library is compiled with +# foreign key constraints enabled, it must still be enabled by the +# application at runtime, using the PRAGMA foreign_keys command. +# +# This also tests that foreign key constraints are disabled by default. +# +# EVIDENCE-OF: R-44261-39702 Foreign key constraints are disabled by +# default (for backwards compatibility), so must be enabled separately +# for each database connection. +# +drop_all_tables +do_test e_fkey-4.1 { + execsql { + CREATE TABLE p(i PRIMARY KEY); + CREATE TABLE c(j REFERENCES p ON UPDATE CASCADE); + INSERT INTO p VALUES('hello'); + INSERT INTO c VALUES('hello'); + UPDATE p SET i = 'world'; + SELECT * FROM c; + } +} {hello} +do_test e_fkey-4.2 { + execsql { + DELETE FROM c; + DELETE FROM p; + PRAGMA foreign_keys = ON; + INSERT INTO p VALUES('hello'); + INSERT INTO c VALUES('hello'); + UPDATE p SET i = 'world'; + SELECT * FROM c; + } +} {world} + +#------------------------------------------------------------------------- +# EVIDENCE-OF: R-08013-37737 The application can also use a PRAGMA +# foreign_keys statement to determine if foreign keys are currently +# enabled. + +# +# This also tests the example code in section 2 of foreignkeys.in. +# +# EVIDENCE-OF: R-11255-19907 +# +reset_db +do_test e_fkey-5.1 { + execsql { PRAGMA foreign_keys } +} {0} +do_test e_fkey-5.2 { + execsql { + PRAGMA foreign_keys = ON; + PRAGMA foreign_keys; + } +} {1} +do_test e_fkey-5.3 { + execsql { + PRAGMA foreign_keys = OFF; + PRAGMA foreign_keys; + } +} {0} + +#------------------------------------------------------------------------- +# Test that it is not possible to enable or disable foreign key support +# while not in auto-commit mode. +# +# EVIDENCE-OF: R-46649-58537 It is not possible to enable or disable +# foreign key constraints in the middle of a multi-statement transaction +# (when SQLite is not in autocommit mode). Attempting to do so does not +# return an error; it simply has no effect. +# +reset_db +do_test e_fkey-6.1 { + execsql { + PRAGMA foreign_keys = ON; + CREATE TABLE t1(a UNIQUE, b); + CREATE TABLE t2(c, d REFERENCES t1(a)); + INSERT INTO t1 VALUES(1, 2); + INSERT INTO t2 VALUES(2, 1); + BEGIN; + PRAGMA foreign_keys = OFF; + } + catchsql { + DELETE FROM t1 + } +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-6.2 { + execsql { PRAGMA foreign_keys } +} {1} +do_test e_fkey-6.3 { + execsql { + COMMIT; + PRAGMA foreign_keys = OFF; + BEGIN; + PRAGMA foreign_keys = ON; + DELETE FROM t1; + PRAGMA foreign_keys; + } +} {0} +do_test e_fkey-6.4 { + execsql COMMIT +} {} + +########################################################################### +### SECTION 1: Introduction to Foreign Key Constraints +########################################################################### +execsql "PRAGMA foreign_keys = ON" + +#------------------------------------------------------------------------- +# Verify that the syntax in the first example in section 1 is valid. +# +# EVIDENCE-OF: R-04042-24825 To do so, a foreign key definition may be +# added by modifying the declaration of the track table to the +# following: CREATE TABLE track( trackid INTEGER, trackname TEXT, +# trackartist INTEGER, FOREIGN KEY(trackartist) REFERENCES +# artist(artistid) ); +# +do_test e_fkey-7.1 { + execsql { + CREATE TABLE artist( + artistid INTEGER PRIMARY KEY, + artistname TEXT + ); + CREATE TABLE track( + trackid INTEGER, + trackname TEXT, + trackartist INTEGER, + FOREIGN KEY(trackartist) REFERENCES artist(artistid) + ); + } +} {} + +#------------------------------------------------------------------------- +# EVIDENCE-OF: R-61362-32087 Attempting to insert a row into the track +# table that does not correspond to any row in the artist table will +# fail, +# +do_test e_fkey-8.1 { + catchsql { INSERT INTO track VALUES(1, 'track 1', 1) } +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-8.2 { + execsql { INSERT INTO artist VALUES(2, 'artist 1') } + catchsql { INSERT INTO track VALUES(1, 'track 1', 1) } +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-8.2 { + execsql { INSERT INTO track VALUES(1, 'track 1', 2) } +} {} + +#------------------------------------------------------------------------- +# Attempting to delete a row from the 'artist' table while there are +# dependent rows in the track table also fails. +# +# EVIDENCE-OF: R-24401-52400 as will attempting to delete a row from the +# artist table when there exist dependent rows in the track table +# +do_test e_fkey-9.1 { + catchsql { DELETE FROM artist WHERE artistid = 2 } +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-9.2 { + execsql { + DELETE FROM track WHERE trackartist = 2; + DELETE FROM artist WHERE artistid = 2; + } +} {} + +#------------------------------------------------------------------------- +# If the foreign key column (trackartist) in table 'track' is set to NULL, +# there is no requirement for a matching row in the 'artist' table. +# +# EVIDENCE-OF: R-23980-48859 There is one exception: if the foreign key +# column in the track table is NULL, then no corresponding entry in the +# artist table is required. +# +do_test e_fkey-10.1 { + execsql { + INSERT INTO track VALUES(1, 'track 1', NULL); + INSERT INTO track VALUES(2, 'track 2', NULL); + } +} {} +do_test e_fkey-10.2 { + execsql { SELECT * FROM artist } +} {} +do_test e_fkey-10.3 { + # Setting the trackid to a non-NULL value fails, of course. + catchsql { UPDATE track SET trackartist = 5 WHERE trackid = 1 } +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-10.4 { + execsql { + INSERT INTO artist VALUES(5, 'artist 5'); + UPDATE track SET trackartist = 5 WHERE trackid = 1; + } + catchsql { DELETE FROM artist WHERE artistid = 5} +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-10.5 { + execsql { + UPDATE track SET trackartist = NULL WHERE trackid = 1; + DELETE FROM artist WHERE artistid = 5; + } +} {} + +#------------------------------------------------------------------------- +# Test that the following is true fo all rows in the track table: +# +# trackartist IS NULL OR +# EXISTS(SELECT 1 FROM artist WHERE artistid=trackartist) +# +# EVIDENCE-OF: R-52486-21352 Expressed in SQL, this means that for every +# row in the track table, the following expression evaluates to true: +# trackartist IS NULL OR EXISTS(SELECT 1 FROM artist WHERE +# artistid=trackartist) + +# This procedure executes a test case to check that statement +# R-52486-21352 is true after executing the SQL statement passed. +# as the second argument. +proc test_r52486_21352 {tn sql} { + set res [catchsql $sql] + set results { + {0 {}} + {1 {UNIQUE constraint failed: artist.artistid}} + {1 {FOREIGN KEY constraint failed}} + } + if {[lsearch $results $res]<0} { + error $res + } + + do_test e_fkey-11.$tn { + execsql { + SELECT count(*) FROM track WHERE NOT ( + trackartist IS NULL OR + EXISTS(SELECT 1 FROM artist WHERE artistid=trackartist) + ) + } + } {0} +} + +# Execute a series of random INSERT, UPDATE and DELETE operations +# (some of which may fail due to FK or PK constraint violations) on +# the two tables in the example schema. Test that R-52486-21352 +# is true after executing each operation. +# +set Template { + {INSERT INTO track VALUES($t, 'track $t', $a)} + {DELETE FROM track WHERE trackid = $t} + {UPDATE track SET trackartist = $a WHERE trackid = $t} + {INSERT INTO artist VALUES($a, 'artist $a')} + {DELETE FROM artist WHERE artistid = $a} + {UPDATE artist SET artistid = $a2 WHERE artistid = $a} +} +for {set i 0} {$i < 500} {incr i} { + set a [expr int(rand()*10)] + set a2 [expr int(rand()*10)] + set t [expr int(rand()*50)] + set sql [subst [lindex $Template [expr int(rand()*6)]]] + + test_r52486_21352 $i $sql +} + +#------------------------------------------------------------------------- +# Check that a NOT NULL constraint can be added to the example schema +# to prohibit NULL child keys from being inserted. +# +# EVIDENCE-OF: R-42412-59321 Tip: If the application requires a stricter +# relationship between artist and track, where NULL values are not +# permitted in the trackartist column, simply add the appropriate "NOT +# NULL" constraint to the schema. +# +drop_all_tables +do_test e_fkey-12.1 { + execsql { + CREATE TABLE artist( + artistid INTEGER PRIMARY KEY, + artistname TEXT + ); + CREATE TABLE track( + trackid INTEGER, + trackname TEXT, + trackartist INTEGER NOT NULL, + FOREIGN KEY(trackartist) REFERENCES artist(artistid) + ); + } +} {} +do_test e_fkey-12.2 { + catchsql { INSERT INTO track VALUES(14, 'Mr. Bojangles', NULL) } +} {1 {NOT NULL constraint failed: track.trackartist}} + +#------------------------------------------------------------------------- +# EVIDENCE-OF: R-16127-35442 +# +# Test an example from foreignkeys.html. +# +drop_all_tables +do_test e_fkey-13.1 { + execsql { + CREATE TABLE artist( + artistid INTEGER PRIMARY KEY, + artistname TEXT + ); + CREATE TABLE track( + trackid INTEGER, + trackname TEXT, + trackartist INTEGER, + FOREIGN KEY(trackartist) REFERENCES artist(artistid) + ); + INSERT INTO artist VALUES(1, 'Dean Martin'); + INSERT INTO artist VALUES(2, 'Frank Sinatra'); + INSERT INTO track VALUES(11, 'That''s Amore', 1); + INSERT INTO track VALUES(12, 'Christmas Blues', 1); + INSERT INTO track VALUES(13, 'My Way', 2); + } +} {} +do_test e_fkey-13.2 { + catchsql { INSERT INTO track VALUES(14, 'Mr. Bojangles', 3) } +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-13.3 { + execsql { INSERT INTO track VALUES(14, 'Mr. Bojangles', NULL) } +} {} +do_test e_fkey-13.4 { + catchsql { + UPDATE track SET trackartist = 3 WHERE trackname = 'Mr. Bojangles'; + } +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-13.5 { + execsql { + INSERT INTO artist VALUES(3, 'Sammy Davis Jr.'); + UPDATE track SET trackartist = 3 WHERE trackname = 'Mr. Bojangles'; + INSERT INTO track VALUES(15, 'Boogie Woogie', 3); + } +} {} + +#------------------------------------------------------------------------- +# EVIDENCE-OF: R-15958-50233 +# +# Test the second example from the first section of foreignkeys.html. +# +do_test e_fkey-14.1 { + catchsql { + DELETE FROM artist WHERE artistname = 'Frank Sinatra'; + } +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-14.2 { + execsql { + DELETE FROM track WHERE trackname = 'My Way'; + DELETE FROM artist WHERE artistname = 'Frank Sinatra'; + } +} {} +do_test e_fkey-14.3 { + catchsql { + UPDATE artist SET artistid=4 WHERE artistname = 'Dean Martin'; + } +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-14.4 { + execsql { + DELETE FROM track WHERE trackname IN('That''s Amore', 'Christmas Blues'); + UPDATE artist SET artistid=4 WHERE artistname = 'Dean Martin'; + } +} {} + + +#------------------------------------------------------------------------- +# EVIDENCE-OF: R-56032-24923 The foreign key constraint is satisfied if +# for each row in the child table either one or more of the child key +# columns are NULL, or there exists a row in the parent table for which +# each parent key column contains a value equal to the value in its +# associated child key column. +# +# Test also that the usual comparison rules are used when testing if there +# is a matching row in the parent table of a foreign key constraint. +# +# EVIDENCE-OF: R-57765-12380 In the above paragraph, the term "equal" +# means equal when values are compared using the rules specified here. +# +drop_all_tables +do_test e_fkey-15.1 { + execsql { + CREATE TABLE par(p PRIMARY KEY); + CREATE TABLE chi(c REFERENCES par); + + INSERT INTO par VALUES(1); + INSERT INTO par VALUES('1'); + INSERT INTO par VALUES(X'31'); + SELECT typeof(p) FROM par; + } +} {integer text blob} + +proc test_efkey_45 {tn isError sql} { + do_test e_fkey-15.$tn.1 " + catchsql {$sql} + " [lindex {{0 {}} {1 {FOREIGN KEY constraint failed}}} $isError] + + do_test e_fkey-15.$tn.2 { + execsql { + SELECT * FROM chi WHERE c IS NOT NULL AND c NOT IN (SELECT p FROM par) + } + } {} +} + +test_efkey_45 1 0 "INSERT INTO chi VALUES(1)" +test_efkey_45 2 1 "INSERT INTO chi VALUES('1.0')" +test_efkey_45 3 0 "INSERT INTO chi VALUES('1')" +test_efkey_45 4 1 "DELETE FROM par WHERE p = '1'" +test_efkey_45 5 0 "DELETE FROM chi WHERE c = '1'" +test_efkey_45 6 0 "DELETE FROM par WHERE p = '1'" +test_efkey_45 7 1 "INSERT INTO chi VALUES('1')" +test_efkey_45 8 0 "INSERT INTO chi VALUES(X'31')" +test_efkey_45 9 1 "INSERT INTO chi VALUES(X'32')" + +#------------------------------------------------------------------------- +# Specifically, test that when comparing child and parent key values the +# default collation sequence of the parent key column is used. +# +# EVIDENCE-OF: R-15796-47513 When comparing text values, the collating +# sequence associated with the parent key column is always used. +# +drop_all_tables +do_test e_fkey-16.1 { + execsql { + CREATE TABLE t1(a COLLATE nocase PRIMARY KEY); + CREATE TABLE t2(b REFERENCES t1); + } +} {} +do_test e_fkey-16.2 { + execsql { + INSERT INTO t1 VALUES('oNe'); + INSERT INTO t2 VALUES('one'); + INSERT INTO t2 VALUES('ONE'); + UPDATE t2 SET b = 'OnE'; + UPDATE t1 SET a = 'ONE'; + } +} {} +do_test e_fkey-16.3 { + catchsql { UPDATE t2 SET b = 'two' WHERE rowid = 1 } +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-16.4 { + catchsql { DELETE FROM t1 WHERE rowid = 1 } +} {1 {FOREIGN KEY constraint failed}} + +#------------------------------------------------------------------------- +# Specifically, test that when comparing child and parent key values the +# affinity of the parent key column is applied to the child key value +# before the comparison takes place. +# +# EVIDENCE-OF: R-04240-13860 When comparing values, if the parent key +# column has an affinity, then that affinity is applied to the child key +# value before the comparison is performed. +# +drop_all_tables +do_test e_fkey-17.1 { + execsql { + CREATE TABLE t1(a NUMERIC PRIMARY KEY); + CREATE TABLE t2(b TEXT REFERENCES t1); + } +} {} +do_test e_fkey-17.2 { + execsql { + INSERT INTO t1 VALUES(1); + INSERT INTO t1 VALUES(2); + INSERT INTO t1 VALUES('three'); + INSERT INTO t2 VALUES('2.0'); + SELECT b, typeof(b) FROM t2; + } +} {2.0 text} +do_test e_fkey-17.3 { + execsql { SELECT typeof(a) FROM t1 } +} {integer integer text} +do_test e_fkey-17.4 { + catchsql { DELETE FROM t1 WHERE rowid = 2 } +} {1 {FOREIGN KEY constraint failed}} + +########################################################################### +### SECTION 3: Required and Suggested Database Indexes +########################################################################### + +#------------------------------------------------------------------------- +# A parent key must be either a PRIMARY KEY, subject to a UNIQUE +# constraint, or have a UNIQUE index created on it. +# +# EVIDENCE-OF: R-13435-26311 Usually, the parent key of a foreign key +# constraint is the primary key of the parent table. If they are not the +# primary key, then the parent key columns must be collectively subject +# to a UNIQUE constraint or have a UNIQUE index. +# +# Also test that if a parent key is not subject to a PRIMARY KEY or UNIQUE +# constraint, but does have a UNIQUE index created on it, then the UNIQUE index +# must use the default collation sequences associated with the parent key +# columns. +# +# EVIDENCE-OF: R-00376-39212 If the parent key columns have a UNIQUE +# index, then that index must use the collation sequences that are +# specified in the CREATE TABLE statement for the parent table. +# +drop_all_tables +do_test e_fkey-18.1 { + execsql { + CREATE TABLE t2(a REFERENCES t1(x)); + } +} {} +proc test_efkey_57 {tn isError sql} { + catchsql { DROP TABLE t1 } + execsql $sql + do_test e_fkey-18.$tn { + catchsql { INSERT INTO t2 VALUES(NULL) } + } [lindex {{0 {}} {/1 {foreign key mismatch - ".*" referencing ".*"}/}} \ + $isError] +} +test_efkey_57 2 0 { CREATE TABLE t1(x PRIMARY KEY) } +test_efkey_57 3 0 { CREATE TABLE t1(x UNIQUE) } +test_efkey_57 4 0 { CREATE TABLE t1(x); CREATE UNIQUE INDEX t1i ON t1(x) } +test_efkey_57 5 1 { + CREATE TABLE t1(x); + CREATE UNIQUE INDEX t1i ON t1(x COLLATE nocase); +} +test_efkey_57 6 1 { CREATE TABLE t1(x) } +test_efkey_57 7 1 { CREATE TABLE t1(x, y, PRIMARY KEY(x, y)) } +test_efkey_57 8 1 { CREATE TABLE t1(x, y, UNIQUE(x, y)) } +test_efkey_57 9 1 { + CREATE TABLE t1(x, y); + CREATE UNIQUE INDEX t1i ON t1(x, y); +} + + +#------------------------------------------------------------------------- +# This block tests an example in foreignkeys.html. Several testable +# statements refer to this example, as follows +# +# EVIDENCE-OF: R-27484-01467 +# +# FK Constraints on child1, child2 and child3 are Ok. +# +# Problem with FK on child4: +# +# EVIDENCE-OF: R-51039-44840 The foreign key declared as part of table +# child4 is an error because even though the parent key column is +# indexed, the index is not UNIQUE. +# +# Problem with FK on child5: +# +# EVIDENCE-OF: R-01060-48788 The foreign key for table child5 is an +# error because even though the parent key column has a unique index, +# the index uses a different collating sequence. +# +# Problem with FK on child6 and child7: +# +# EVIDENCE-OF: R-63088-37469 Tables child6 and child7 are incorrect +# because while both have UNIQUE indices on their parent keys, the keys +# are not an exact match to the columns of a single UNIQUE index. +# +drop_all_tables +do_test e_fkey-19.1 { + execsql { + CREATE TABLE parent(a PRIMARY KEY, b UNIQUE, c, d, e, f); + CREATE UNIQUE INDEX i1 ON parent(c, d); + CREATE INDEX i2 ON parent(e); + CREATE UNIQUE INDEX i3 ON parent(f COLLATE nocase); + + CREATE TABLE child1(f, g REFERENCES parent(a)); -- Ok + CREATE TABLE child2(h, i REFERENCES parent(b)); -- Ok + CREATE TABLE child3(j, k, FOREIGN KEY(j, k) REFERENCES parent(c, d)); -- Ok + CREATE TABLE child4(l, m REFERENCES parent(e)); -- Err + CREATE TABLE child5(n, o REFERENCES parent(f)); -- Err + CREATE TABLE child6(p, q, FOREIGN KEY(p,q) REFERENCES parent(b, c)); -- Err + CREATE TABLE child7(r REFERENCES parent(c)); -- Err + } +} {} +do_test e_fkey-19.2 { + execsql { + INSERT INTO parent VALUES(1, 2, 3, 4, 5, 6); + INSERT INTO child1 VALUES('xxx', 1); + INSERT INTO child2 VALUES('xxx', 2); + INSERT INTO child3 VALUES(3, 4); + } +} {} +do_test e_fkey-19.2 { + catchsql { INSERT INTO child4 VALUES('xxx', 5) } +} {1 {foreign key mismatch - "child4" referencing "parent"}} +do_test e_fkey-19.3 { + catchsql { INSERT INTO child5 VALUES('xxx', 6) } +} {1 {foreign key mismatch - "child5" referencing "parent"}} +do_test e_fkey-19.4 { + catchsql { INSERT INTO child6 VALUES(2, 3) } +} {1 {foreign key mismatch - "child6" referencing "parent"}} +do_test e_fkey-19.5 { + catchsql { INSERT INTO child7 VALUES(3) } +} {1 {foreign key mismatch - "child7" referencing "parent"}} + +#------------------------------------------------------------------------- +# Test errors in the database schema that are detected while preparing +# DML statements. The error text for these messages always matches +# either "foreign key mismatch" or "no such table*" (using [string match]). +# +# EVIDENCE-OF: R-45488-08504 If the database schema contains foreign key +# errors that require looking at more than one table definition to +# identify, then those errors are not detected when the tables are +# created. +# +# EVIDENCE-OF: R-48391-38472 Instead, such errors prevent the +# application from preparing SQL statements that modify the content of +# the child or parent tables in ways that use the foreign keys. +# +# EVIDENCE-OF: R-03108-63659 The English language error message for +# foreign key DML errors is usually "foreign key mismatch" but can also +# be "no such table" if the parent table does not exist. +# +# EVIDENCE-OF: R-35763-48267 Foreign key DML errors are reported if: The +# parent table does not exist, or The parent key columns named in the +# foreign key constraint do not exist, or The parent key columns named +# in the foreign key constraint are not the primary key of the parent +# table and are not subject to a unique constraint using collating +# sequence specified in the CREATE TABLE, or The child table references +# the primary key of the parent without specifying the primary key +# columns and the number of primary key columns in the parent do not +# match the number of child key columns. +# +do_test e_fkey-20.1 { + execsql { + CREATE TABLE c1(c REFERENCES nosuchtable, d); + + CREATE TABLE p2(a, b, UNIQUE(a, b)); + CREATE TABLE c2(c, d, FOREIGN KEY(c, d) REFERENCES p2(a, x)); + + CREATE TABLE p3(a PRIMARY KEY, b); + CREATE TABLE c3(c REFERENCES p3(b), d); + + CREATE TABLE p4(a PRIMARY KEY, b); + CREATE UNIQUE INDEX p4i ON p4(b COLLATE nocase); + CREATE TABLE c4(c REFERENCES p4(b), d); + + CREATE TABLE p5(a PRIMARY KEY, b COLLATE nocase); + CREATE UNIQUE INDEX p5i ON p5(b COLLATE binary); + CREATE TABLE c5(c REFERENCES p5(b), d); + + CREATE TABLE p6(a PRIMARY KEY, b); + CREATE TABLE c6(c, d, FOREIGN KEY(c, d) REFERENCES p6); + + CREATE TABLE p7(a, b, PRIMARY KEY(a, b)); + CREATE TABLE c7(c, d REFERENCES p7); + } +} {} + +foreach {tn tbl ptbl err} { + 2 c1 {} "no such table: main.nosuchtable" + 3 c2 p2 "foreign key mismatch - \"c2\" referencing \"p2\"" + 4 c3 p3 "foreign key mismatch - \"c3\" referencing \"p3\"" + 5 c4 p4 "foreign key mismatch - \"c4\" referencing \"p4\"" + 6 c5 p5 "foreign key mismatch - \"c5\" referencing \"p5\"" + 7 c6 p6 "foreign key mismatch - \"c6\" referencing \"p6\"" + 8 c7 p7 "foreign key mismatch - \"c7\" referencing \"p7\"" +} { + do_test e_fkey-20.$tn.1 { + catchsql "INSERT INTO $tbl VALUES('a', 'b')" + } [list 1 $err] + do_test e_fkey-20.$tn.2 { + catchsql "UPDATE $tbl SET c = ?, d = ?" + } [list 1 $err] + do_test e_fkey-20.$tn.3 { + catchsql "INSERT INTO $tbl SELECT ?, ?" + } [list 1 $err] + + if {$ptbl ne ""} { + do_test e_fkey-20.$tn.4 { + catchsql "DELETE FROM $ptbl" + } [list 1 $err] + do_test e_fkey-20.$tn.5 { + catchsql "UPDATE $ptbl SET a = ?, b = ?" + } [list 1 $err] + do_test e_fkey-20.$tn.6 { + catchsql "INSERT INTO $ptbl SELECT ?, ?" + } [list 1 $err] + } +} + +#------------------------------------------------------------------------- +# EVIDENCE-OF: R-19353-43643 +# +# Test the example of foreign key mismatch errors caused by implicitly +# mapping a child key to the primary key of the parent table when the +# child key consists of a different number of columns to that primary key. +# +drop_all_tables +do_test e_fkey-21.1 { + execsql { + CREATE TABLE parent2(a, b, PRIMARY KEY(a,b)); + + CREATE TABLE child8(x, y, FOREIGN KEY(x,y) REFERENCES parent2); -- Ok + CREATE TABLE child9(x REFERENCES parent2); -- Err + CREATE TABLE child10(x,y,z, FOREIGN KEY(x,y,z) REFERENCES parent2); -- Err + } +} {} +do_test e_fkey-21.2 { + execsql { + INSERT INTO parent2 VALUES('I', 'II'); + INSERT INTO child8 VALUES('I', 'II'); + } +} {} +do_test e_fkey-21.3 { + catchsql { INSERT INTO child9 VALUES('I') } +} {1 {foreign key mismatch - "child9" referencing "parent2"}} +do_test e_fkey-21.4 { + catchsql { INSERT INTO child9 VALUES('II') } +} {1 {foreign key mismatch - "child9" referencing "parent2"}} +do_test e_fkey-21.5 { + catchsql { INSERT INTO child9 VALUES(NULL) } +} {1 {foreign key mismatch - "child9" referencing "parent2"}} +do_test e_fkey-21.6 { + catchsql { INSERT INTO child10 VALUES('I', 'II', 'III') } +} {1 {foreign key mismatch - "child10" referencing "parent2"}} +do_test e_fkey-21.7 { + catchsql { INSERT INTO child10 VALUES(1, 2, 3) } +} {1 {foreign key mismatch - "child10" referencing "parent2"}} +do_test e_fkey-21.8 { + catchsql { INSERT INTO child10 VALUES(NULL, NULL, NULL) } +} {1 {foreign key mismatch - "child10" referencing "parent2"}} + +#------------------------------------------------------------------------- +# Test errors that are reported when creating the child table. +# Specifically: +# +# * different number of child and parent key columns, and +# * child columns that do not exist. +# +# EVIDENCE-OF: R-23682-59820 By contrast, if foreign key errors can be +# recognized simply by looking at the definition of the child table and +# without having to consult the parent table definition, then the CREATE +# TABLE statement for the child table fails. +# +# These errors are reported whether or not FK support is enabled. +# +# EVIDENCE-OF: R-33883-28833 Foreign key DDL errors are reported +# regardless of whether or not foreign key constraints are enabled when +# the table is created. +# +drop_all_tables +foreach fk [list OFF ON] { + execsql "PRAGMA foreign_keys = $fk" + set i 0 + foreach {sql error} { + "CREATE TABLE child1(a, b, FOREIGN KEY(a, b) REFERENCES p(c))" + {number of columns in foreign key does not match the number of columns in the referenced table} + "CREATE TABLE child2(a, b, FOREIGN KEY(a, b) REFERENCES p(c, d, e))" + {number of columns in foreign key does not match the number of columns in the referenced table} + "CREATE TABLE child2(a, b, FOREIGN KEY(a, c) REFERENCES p(c, d))" + {unknown column "c" in foreign key definition} + "CREATE TABLE child2(a, b, FOREIGN KEY(c, b) REFERENCES p(c, d))" + {unknown column "c" in foreign key definition} + } { + do_test e_fkey-22.$fk.[incr i] { + catchsql $sql + } [list 1 $error] + } +} + +#------------------------------------------------------------------------- +# Test that a REFERENCING clause that does not specify parent key columns +# implicitly maps to the primary key of the parent table. +# +# EVIDENCE-OF: R-43879-08025 Attaching a "REFERENCES <parent-table>" +# clause to a column definition creates a foreign +# key constraint that maps the column to the primary key of +# <parent-table>. +# +do_test e_fkey-23.1 { + execsql { + CREATE TABLE p1(a, b, PRIMARY KEY(a, b)); + CREATE TABLE p2(a, b PRIMARY KEY); + CREATE TABLE c1(c, d, FOREIGN KEY(c, d) REFERENCES p1); + CREATE TABLE c2(a, b REFERENCES p2); + } +} {} +proc test_efkey_60 {tn isError sql} { + do_test e_fkey-23.$tn " + catchsql {$sql} + " [lindex {{0 {}} {1 {FOREIGN KEY constraint failed}}} $isError] +} + +test_efkey_60 2 1 "INSERT INTO c1 VALUES(239, 231)" +test_efkey_60 3 0 "INSERT INTO p1 VALUES(239, 231)" +test_efkey_60 4 0 "INSERT INTO c1 VALUES(239, 231)" +test_efkey_60 5 1 "INSERT INTO c2 VALUES(239, 231)" +test_efkey_60 6 0 "INSERT INTO p2 VALUES(239, 231)" +test_efkey_60 7 0 "INSERT INTO c2 VALUES(239, 231)" + +#------------------------------------------------------------------------- +# Test that an index on on the child key columns of an FK constraint +# is optional. +# +# EVIDENCE-OF: R-15417-28014 Indices are not required for child key +# columns +# +# Also test that if an index is created on the child key columns, it does +# not make a difference whether or not it is a UNIQUE index. +# +# EVIDENCE-OF: R-15741-50893 The child key index does not have to be +# (and usually will not be) a UNIQUE index. +# +drop_all_tables +do_test e_fkey-24.1 { + execsql { + CREATE TABLE parent(x, y, UNIQUE(y, x)); + CREATE TABLE c1(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y)); + CREATE TABLE c2(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y)); + CREATE TABLE c3(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y)); + CREATE INDEX c2i ON c2(a, b); + CREATE UNIQUE INDEX c3i ON c2(b, a); + } +} {} +proc test_efkey_61 {tn isError sql} { + do_test e_fkey-24.$tn " + catchsql {$sql} + " [lindex {{0 {}} {1 {FOREIGN KEY constraint failed}}} $isError] +} +foreach {tn c} [list 2 c1 3 c2 4 c3] { + test_efkey_61 $tn.1 1 "INSERT INTO $c VALUES(1, 2)" + test_efkey_61 $tn.2 0 "INSERT INTO parent VALUES(1, 2)" + test_efkey_61 $tn.3 0 "INSERT INTO $c VALUES(1, 2)" + + execsql "DELETE FROM $c ; DELETE FROM parent" +} + +#------------------------------------------------------------------------- +# EVIDENCE-OF: R-00279-52283 +# +# Test an example showing that when a row is deleted from the parent +# table, the child table is queried for orphaned rows as follows: +# +# SELECT rowid FROM track WHERE trackartist = ? +# +# EVIDENCE-OF: R-23302-30956 If this SELECT returns any rows at all, +# then SQLite concludes that deleting the row from the parent table +# would violate the foreign key constraint and returns an error. +# +do_test e_fkey-25.1 { + execsql { + CREATE TABLE artist( + artistid INTEGER PRIMARY KEY, + artistname TEXT + ); + CREATE TABLE track( + trackid INTEGER, + trackname TEXT, + trackartist INTEGER, + FOREIGN KEY(trackartist) REFERENCES artist(artistid) + ); + } +} {} +do_detail_test e_fkey-25.2 { + PRAGMA foreign_keys = OFF; + EXPLAIN QUERY PLAN DELETE FROM artist WHERE 1; + EXPLAIN QUERY PLAN SELECT rowid FROM track WHERE trackartist = ?; +} { + {SCAN artist} + {SCAN track} +} +do_detail_test e_fkey-25.3 { + PRAGMA foreign_keys = ON; + EXPLAIN QUERY PLAN DELETE FROM artist WHERE 1; +} { + {SCAN artist} + {SCAN track} +} +do_test e_fkey-25.4 { + execsql { + INSERT INTO artist VALUES(5, 'artist 5'); + INSERT INTO artist VALUES(6, 'artist 6'); + INSERT INTO artist VALUES(7, 'artist 7'); + INSERT INTO track VALUES(1, 'track 1', 5); + INSERT INTO track VALUES(2, 'track 2', 6); + } +} {} + +do_test e_fkey-25.5 { + concat \ + [execsql { SELECT rowid FROM track WHERE trackartist = 5 }] \ + [catchsql { DELETE FROM artist WHERE artistid = 5 }] +} {1 1 {FOREIGN KEY constraint failed}} + +do_test e_fkey-25.6 { + concat \ + [execsql { SELECT rowid FROM track WHERE trackartist = 7 }] \ + [catchsql { DELETE FROM artist WHERE artistid = 7 }] +} {0 {}} + +do_test e_fkey-25.7 { + concat \ + [execsql { SELECT rowid FROM track WHERE trackartist = 6 }] \ + [catchsql { DELETE FROM artist WHERE artistid = 6 }] +} {2 1 {FOREIGN KEY constraint failed}} + +#------------------------------------------------------------------------- +# EVIDENCE-OF: R-47936-10044 Or, more generally: +# SELECT rowid FROM <child-table> WHERE <child-key> = :parent_key_value +# +# Test that when a row is deleted from the parent table of an FK +# constraint, the child table is queried for orphaned rows. The +# query is equivalent to: +# +# SELECT rowid FROM <child-table> WHERE <child-key> = :parent_key_value +# +# Also test that when a row is inserted into the parent table, or when the +# parent key values of an existing row are modified, a query equivalent +# to the following is planned. In some cases it is not executed, but it +# is always planned. +# +# SELECT rowid FROM <child-table> WHERE <child-key> = :parent_key_value +# +# EVIDENCE-OF: R-61616-46700 Similar queries may be run if the content +# of the parent key is modified or a new row is inserted into the parent +# table. +# +# +drop_all_tables +do_test e_fkey-26.1 { + execsql { CREATE TABLE parent(x, y, UNIQUE(y, x)) } +} {} +foreach {tn sql} { + 2 { + CREATE TABLE child(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y)) + } + 3 { + CREATE TABLE child(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y)); + CREATE INDEX childi ON child(a, b); + } + 4 { + CREATE TABLE child(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y)); + CREATE UNIQUE INDEX childi ON child(b, a); + } +} { + execsql $sql + + execsql {PRAGMA foreign_keys = OFF} + set delete [concat \ + [eqp "DELETE FROM parent WHERE 1"] \ + [eqp "SELECT rowid FROM child WHERE a = ? AND b = ?"] + ] + set update [concat \ + [eqp "UPDATE parent SET x=?, y=?"] \ + [eqp "SELECT rowid FROM child WHERE a = ? AND b = ?"] \ + [eqp "SELECT rowid FROM child WHERE a = ? AND b = ?"] + ] + execsql {PRAGMA foreign_keys = ON} + + do_test e_fkey-26.$tn.1 { eqp "DELETE FROM parent WHERE 1" } $delete + do_test e_fkey-26.$tn.2 { eqp "UPDATE parent set x=?, y=?" } $update + + execsql {DROP TABLE child} +} + +#------------------------------------------------------------------------- +# EVIDENCE-OF: R-14553-34013 +# +# Test the example schema at the end of section 3. Also test that is +# is "efficient". In this case "efficient" means that foreign key +# related operations on the parent table do not provoke linear scans. +# +drop_all_tables +do_test e_fkey-27.1 { + execsql { + CREATE TABLE artist( + artistid INTEGER PRIMARY KEY, + artistname TEXT + ); + CREATE TABLE track( + trackid INTEGER, + trackname TEXT, + trackartist INTEGER REFERENCES artist + ); + CREATE INDEX trackindex ON track(trackartist); + } +} {} +do_test e_fkey-27.2 { + eqp { INSERT INTO artist VALUES(?, ?) } +} {} +do_detail_test e_fkey-27.3 { + EXPLAIN QUERY PLAN UPDATE artist SET artistid = ?, artistname = ? +} { + {SCAN artist} + {SEARCH track USING COVERING INDEX trackindex (trackartist=?)} + {SEARCH track USING COVERING INDEX trackindex (trackartist=?)} +} +do_detail_test e_fkey-27.4 { + EXPLAIN QUERY PLAN DELETE FROM artist +} { + {SCAN artist} + {SEARCH track USING COVERING INDEX trackindex (trackartist=?)} +} + +########################################################################### +### SECTION 4.1: Composite Foreign Key Constraints +########################################################################### + +#------------------------------------------------------------------------- +# Check that parent and child keys must have the same number of columns. +# +# EVIDENCE-OF: R-41062-34431 Parent and child keys must have the same +# cardinality. +# +foreach {tn sql err} { + 1 "CREATE TABLE c(jj REFERENCES p(x, y))" + {foreign key on jj should reference only one column of table p} + + 2 "CREATE TABLE c(jj REFERENCES p())" {near ")": syntax error} + + 3 "CREATE TABLE c(jj, FOREIGN KEY(jj) REFERENCES p(x, y))" + {number of columns in foreign key does not match the number of columns in the referenced table} + + 4 "CREATE TABLE c(jj, FOREIGN KEY(jj) REFERENCES p())" + {near ")": syntax error} + + 5 "CREATE TABLE c(ii, jj, FOREIGN KEY(jj, ii) REFERENCES p())" + {near ")": syntax error} + + 6 "CREATE TABLE c(ii, jj, FOREIGN KEY(jj, ii) REFERENCES p(x))" + {number of columns in foreign key does not match the number of columns in the referenced table} + + 7 "CREATE TABLE c(ii, jj, FOREIGN KEY(jj, ii) REFERENCES p(x,y,z))" + {number of columns in foreign key does not match the number of columns in the referenced table} +} { + drop_all_tables + do_test e_fkey-28.$tn [list catchsql $sql] [list 1 $err] +} +do_test e_fkey-28.8 { + drop_all_tables + execsql { + CREATE TABLE p(x PRIMARY KEY); + CREATE TABLE c(a, b, FOREIGN KEY(a,b) REFERENCES p); + } + catchsql {DELETE FROM p} +} {1 {foreign key mismatch - "c" referencing "p"}} +do_test e_fkey-28.9 { + drop_all_tables + execsql { + CREATE TABLE p(x, y, PRIMARY KEY(x,y)); + CREATE TABLE c(a REFERENCES p); + } + catchsql {DELETE FROM p} +} {1 {foreign key mismatch - "c" referencing "p"}} + + +#------------------------------------------------------------------------- +# EVIDENCE-OF: R-24676-09859 +# +# Test the example schema in the "Composite Foreign Key Constraints" +# section. +# +do_test e_fkey-29.1 { + execsql { + CREATE TABLE album( + albumartist TEXT, + albumname TEXT, + albumcover BINARY, + PRIMARY KEY(albumartist, albumname) + ); + CREATE TABLE song( + songid INTEGER, + songartist TEXT, + songalbum TEXT, + songname TEXT, + FOREIGN KEY(songartist, songalbum) REFERENCES album(albumartist,albumname) + ); + } +} {} + +do_test e_fkey-29.2 { + execsql { + INSERT INTO album VALUES('Elvis Presley', 'Elvis'' Christmas Album', NULL); + INSERT INTO song VALUES( + 1, 'Elvis Presley', 'Elvis'' Christmas Album', 'Here Comes Santa Clause' + ); + } +} {} +do_test e_fkey-29.3 { + catchsql { + INSERT INTO song VALUES(2, 'Elvis Presley', 'Elvis Is Back!', 'Fever'); + } +} {1 {FOREIGN KEY constraint failed}} + + +#------------------------------------------------------------------------- +# EVIDENCE-OF: R-33626-48418 In SQLite, if any of the child key columns +# (in this case songartist and songalbum) are NULL, then there is no +# requirement for a corresponding row in the parent table. +# +do_test e_fkey-30.1 { + execsql { + INSERT INTO song VALUES(2, 'Elvis Presley', NULL, 'Fever'); + INSERT INTO song VALUES(3, NULL, 'Elvis Is Back', 'Soldier Boy'); + } +} {} + +########################################################################### +### SECTION 4.2: Deferred Foreign Key Constraints +########################################################################### + +#------------------------------------------------------------------------- +# Test that if a statement violates an immediate FK constraint, and the +# database does not satisfy the FK constraint once all effects of the +# statement have been applied, an error is reported and the effects of +# the statement rolled back. +# +# EVIDENCE-OF: R-09323-30470 If a statement modifies the contents of the +# database so that an immediate foreign key constraint is in violation +# at the conclusion the statement, an exception is thrown and the +# effects of the statement are reverted. +# +drop_all_tables +do_test e_fkey-31.1 { + execsql { + CREATE TABLE king(a, b, PRIMARY KEY(a)); + CREATE TABLE prince(c REFERENCES king, d); + } +} {} + +do_test e_fkey-31.2 { + # Execute a statement that violates the immediate FK constraint. + catchsql { INSERT INTO prince VALUES(1, 2) } +} {1 {FOREIGN KEY constraint failed}} + +do_test e_fkey-31.3 { + # This time, use a trigger to fix the constraint violation before the + # statement has finished executing. Then execute the same statement as + # in the previous test case. This time, no error. + execsql { + CREATE TRIGGER kt AFTER INSERT ON prince WHEN + NOT EXISTS (SELECT a FROM king WHERE a = new.c) + BEGIN + INSERT INTO king VALUES(new.c, NULL); + END + } + execsql { INSERT INTO prince VALUES(1, 2) } +} {} + +# Test that operating inside a transaction makes no difference to +# immediate constraint violation handling. +do_test e_fkey-31.4 { + execsql { + BEGIN; + INSERT INTO prince VALUES(2, 3); + DROP TRIGGER kt; + } + catchsql { INSERT INTO prince VALUES(3, 4) } +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-31.5 { + execsql { + COMMIT; + SELECT * FROM king; + } +} {1 {} 2 {}} + +#------------------------------------------------------------------------- +# Test that if a deferred constraint is violated within a transaction, +# nothing happens immediately and the database is allowed to persist +# in a state that does not satisfy the FK constraint. However attempts +# to COMMIT the transaction fail until the FK constraint is satisfied. +# +# EVIDENCE-OF: R-49178-21358 By contrast, if a statement modifies the +# contents of the database such that a deferred foreign key constraint +# is violated, the violation is not reported immediately. +# +# EVIDENCE-OF: R-39692-12488 Deferred foreign key constraints are not +# checked until the transaction tries to COMMIT. +# +# EVIDENCE-OF: R-55147-47664 For as long as the user has an open +# transaction, the database is allowed to exist in a state that violates +# any number of deferred foreign key constraints. +# +# EVIDENCE-OF: R-29604-30395 However, COMMIT will fail as long as +# foreign key constraints remain in violation. +# +proc test_efkey_34 {tn isError sql} { + do_test e_fkey-32.$tn " + catchsql {$sql} + " [lindex {{0 {}} {1 {FOREIGN KEY constraint failed}}} $isError] +} +drop_all_tables + +test_efkey_34 1 0 { + CREATE TABLE ll(k PRIMARY KEY); + CREATE TABLE kk(c REFERENCES ll DEFERRABLE INITIALLY DEFERRED); +} +test_efkey_34 2 0 "BEGIN" +test_efkey_34 3 0 "INSERT INTO kk VALUES(5)" +test_efkey_34 4 0 "INSERT INTO kk VALUES(10)" +test_efkey_34 5 1 "COMMIT" +test_efkey_34 6 0 "INSERT INTO ll VALUES(10)" +test_efkey_34 7 1 "COMMIT" +test_efkey_34 8 0 "INSERT INTO ll VALUES(5)" +test_efkey_34 9 0 "COMMIT" + +#------------------------------------------------------------------------- +# When not running inside a transaction, a deferred constraint is similar +# to an immediate constraint (violations are reported immediately). +# +# EVIDENCE-OF: R-56844-61705 If the current statement is not inside an +# explicit transaction (a BEGIN/COMMIT/ROLLBACK block), then an implicit +# transaction is committed as soon as the statement has finished +# executing. In this case deferred constraints behave the same as +# immediate constraints. +# +drop_all_tables +proc test_efkey_35 {tn isError sql} { + do_test e_fkey-33.$tn " + catchsql {$sql} + " [lindex {{0 {}} {1 {FOREIGN KEY constraint failed}}} $isError] +} +do_test e_fkey-33.1 { + execsql { + CREATE TABLE parent(x, y); + CREATE UNIQUE INDEX pi ON parent(x, y); + CREATE TABLE child(a, b, + FOREIGN KEY(a, b) REFERENCES parent(x, y) DEFERRABLE INITIALLY DEFERRED + ); + } +} {} +test_efkey_35 2 1 "INSERT INTO child VALUES('x', 'y')" +test_efkey_35 3 0 "INSERT INTO parent VALUES('x', 'y')" +test_efkey_35 4 0 "INSERT INTO child VALUES('x', 'y')" + + +#------------------------------------------------------------------------- +# EVIDENCE-OF: R-12782-61841 +# +# Test that an FK constraint is made deferred by adding the following +# to the definition: +# +# DEFERRABLE INITIALLY DEFERRED +# +# EVIDENCE-OF: R-09005-28791 +# +# Also test that adding any of the following to a foreign key definition +# makes the constraint IMMEDIATE: +# +# NOT DEFERRABLE INITIALLY DEFERRED +# NOT DEFERRABLE INITIALLY IMMEDIATE +# NOT DEFERRABLE +# DEFERRABLE INITIALLY IMMEDIATE +# DEFERRABLE +# +# Foreign keys are IMMEDIATE by default (if there is no DEFERRABLE or NOT +# DEFERRABLE clause). +# +# EVIDENCE-OF: R-35290-16460 Foreign key constraints are immediate by +# default. +# +# EVIDENCE-OF: R-30323-21917 Each foreign key constraint in SQLite is +# classified as either immediate or deferred. +# +drop_all_tables +do_test e_fkey-34.1 { + execsql { + CREATE TABLE parent(x, y, z, PRIMARY KEY(x,y,z)); + CREATE TABLE c1(a, b, c, + FOREIGN KEY(a, b, c) REFERENCES parent NOT DEFERRABLE INITIALLY DEFERRED + ); + CREATE TABLE c2(a, b, c, + FOREIGN KEY(a, b, c) REFERENCES parent NOT DEFERRABLE INITIALLY IMMEDIATE + ); + CREATE TABLE c3(a, b, c, + FOREIGN KEY(a, b, c) REFERENCES parent NOT DEFERRABLE + ); + CREATE TABLE c4(a, b, c, + FOREIGN KEY(a, b, c) REFERENCES parent DEFERRABLE INITIALLY IMMEDIATE + ); + CREATE TABLE c5(a, b, c, + FOREIGN KEY(a, b, c) REFERENCES parent DEFERRABLE + ); + CREATE TABLE c6(a, b, c, FOREIGN KEY(a, b, c) REFERENCES parent); + + -- This FK constraint is the only deferrable one. + CREATE TABLE c7(a, b, c, + FOREIGN KEY(a, b, c) REFERENCES parent DEFERRABLE INITIALLY DEFERRED + ); + + INSERT INTO parent VALUES('a', 'b', 'c'); + INSERT INTO parent VALUES('d', 'e', 'f'); + INSERT INTO parent VALUES('g', 'h', 'i'); + INSERT INTO parent VALUES('j', 'k', 'l'); + INSERT INTO parent VALUES('m', 'n', 'o'); + INSERT INTO parent VALUES('p', 'q', 'r'); + INSERT INTO parent VALUES('s', 't', 'u'); + + INSERT INTO c1 VALUES('a', 'b', 'c'); + INSERT INTO c2 VALUES('d', 'e', 'f'); + INSERT INTO c3 VALUES('g', 'h', 'i'); + INSERT INTO c4 VALUES('j', 'k', 'l'); + INSERT INTO c5 VALUES('m', 'n', 'o'); + INSERT INTO c6 VALUES('p', 'q', 'r'); + INSERT INTO c7 VALUES('s', 't', 'u'); + } +} {} + +proc test_efkey_29 {tn sql isError} { + do_test e_fkey-34.$tn "catchsql {$sql}" [ + lindex {{0 {}} {1 {FOREIGN KEY constraint failed}}} $isError + ] +} +test_efkey_29 2 "BEGIN" 0 +test_efkey_29 3 "DELETE FROM parent WHERE x = 'a'" 1 +test_efkey_29 4 "DELETE FROM parent WHERE x = 'd'" 1 +test_efkey_29 5 "DELETE FROM parent WHERE x = 'g'" 1 +test_efkey_29 6 "DELETE FROM parent WHERE x = 'j'" 1 +test_efkey_29 7 "DELETE FROM parent WHERE x = 'm'" 1 +test_efkey_29 8 "DELETE FROM parent WHERE x = 'p'" 1 +test_efkey_29 9 "DELETE FROM parent WHERE x = 's'" 0 +test_efkey_29 10 "COMMIT" 1 +test_efkey_29 11 "ROLLBACK" 0 + +test_efkey_29 9 "BEGIN" 0 +test_efkey_29 10 "UPDATE parent SET z = 'z' WHERE z = 'c'" 1 +test_efkey_29 11 "UPDATE parent SET z = 'z' WHERE z = 'f'" 1 +test_efkey_29 12 "UPDATE parent SET z = 'z' WHERE z = 'i'" 1 +test_efkey_29 13 "UPDATE parent SET z = 'z' WHERE z = 'l'" 1 +test_efkey_29 14 "UPDATE parent SET z = 'z' WHERE z = 'o'" 1 +test_efkey_29 15 "UPDATE parent SET z = 'z' WHERE z = 'r'" 1 +test_efkey_29 16 "UPDATE parent SET z = 'z' WHERE z = 'u'" 0 +test_efkey_29 17 "COMMIT" 1 +test_efkey_29 18 "ROLLBACK" 0 + +test_efkey_29 17 "BEGIN" 0 +test_efkey_29 18 "INSERT INTO c1 VALUES(1, 2, 3)" 1 +test_efkey_29 19 "INSERT INTO c2 VALUES(1, 2, 3)" 1 +test_efkey_29 20 "INSERT INTO c3 VALUES(1, 2, 3)" 1 +test_efkey_29 21 "INSERT INTO c4 VALUES(1, 2, 3)" 1 +test_efkey_29 22 "INSERT INTO c5 VALUES(1, 2, 3)" 1 +test_efkey_29 22 "INSERT INTO c6 VALUES(1, 2, 3)" 1 +test_efkey_29 22 "INSERT INTO c7 VALUES(1, 2, 3)" 0 +test_efkey_29 23 "COMMIT" 1 +test_efkey_29 24 "INSERT INTO parent VALUES(1, 2, 3)" 0 +test_efkey_29 25 "COMMIT" 0 + +test_efkey_29 26 "BEGIN" 0 +test_efkey_29 27 "UPDATE c1 SET a = 10" 1 +test_efkey_29 28 "UPDATE c2 SET a = 10" 1 +test_efkey_29 29 "UPDATE c3 SET a = 10" 1 +test_efkey_29 30 "UPDATE c4 SET a = 10" 1 +test_efkey_29 31 "UPDATE c5 SET a = 10" 1 +test_efkey_29 31 "UPDATE c6 SET a = 10" 1 +test_efkey_29 31 "UPDATE c7 SET a = 10" 0 +test_efkey_29 32 "COMMIT" 1 +test_efkey_29 33 "ROLLBACK" 0 + +#------------------------------------------------------------------------- +# EVIDENCE-OF: R-24499-57071 +# +# Test an example from foreignkeys.html dealing with a deferred foreign +# key constraint. +# +do_test e_fkey-35.1 { + drop_all_tables + execsql { + CREATE TABLE artist( + artistid INTEGER PRIMARY KEY, + artistname TEXT + ); + CREATE TABLE track( + trackid INTEGER, + trackname TEXT, + trackartist INTEGER REFERENCES artist(artistid) DEFERRABLE INITIALLY DEFERRED + ); + } +} {} +do_test e_fkey-35.2 { + execsql { + BEGIN; + INSERT INTO track VALUES(1, 'White Christmas', 5); + } + catchsql COMMIT +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-35.3 { + execsql { + INSERT INTO artist VALUES(5, 'Bing Crosby'); + COMMIT; + } +} {} + +#------------------------------------------------------------------------- +# Verify that a nested savepoint may be released without satisfying +# deferred foreign key constraints. +# +# EVIDENCE-OF: R-07223-48323 A nested savepoint transaction may be +# RELEASEd while the database is in a state that does not satisfy a +# deferred foreign key constraint. +# +drop_all_tables +do_test e_fkey-36.1 { + execsql { + CREATE TABLE t1(a PRIMARY KEY, + b REFERENCES t1 DEFERRABLE INITIALLY DEFERRED + ); + INSERT INTO t1 VALUES(1, 1); + INSERT INTO t1 VALUES(2, 2); + INSERT INTO t1 VALUES(3, 3); + } +} {} +do_test e_fkey-36.2 { + execsql { + BEGIN; + SAVEPOINT one; + INSERT INTO t1 VALUES(4, 5); + RELEASE one; + } +} {} +do_test e_fkey-36.3 { + catchsql COMMIT +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-36.4 { + execsql { + UPDATE t1 SET a = 5 WHERE a = 4; + COMMIT; + } +} {} + + +#------------------------------------------------------------------------- +# Check that a transaction savepoint (an outermost savepoint opened when +# the database was in auto-commit mode) cannot be released without +# satisfying deferred foreign key constraints. It may be rolled back. +# +# EVIDENCE-OF: R-44295-13823 A transaction savepoint (a non-nested +# savepoint that was opened while there was not currently an open +# transaction), on the other hand, is subject to the same restrictions +# as a COMMIT - attempting to RELEASE it while the database is in such a +# state will fail. +# +do_test e_fkey-37.1 { + execsql { + SAVEPOINT one; + SAVEPOINT two; + INSERT INTO t1 VALUES(6, 7); + RELEASE two; + } +} {} +do_test e_fkey-37.2 { + catchsql {RELEASE one} +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-37.3 { + execsql { + UPDATE t1 SET a = 7 WHERE a = 6; + RELEASE one; + } +} {} +do_test e_fkey-37.4 { + execsql { + SAVEPOINT one; + SAVEPOINT two; + INSERT INTO t1 VALUES(9, 10); + RELEASE two; + } +} {} +do_test e_fkey-37.5 { + catchsql {RELEASE one} +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-37.6 { + execsql {ROLLBACK TO one ; RELEASE one} +} {} + +#------------------------------------------------------------------------- +# Test that if a COMMIT operation fails due to deferred foreign key +# constraints, any nested savepoints remain open. +# +# EVIDENCE-OF: R-37736-42616 If a COMMIT statement (or the RELEASE of a +# transaction SAVEPOINT) fails because the database is currently in a +# state that violates a deferred foreign key constraint and there are +# currently nested savepoints, the nested savepoints remain open. +# +do_test e_fkey-38.1 { + execsql { + DELETE FROM t1 WHERE a>3; + SELECT * FROM t1; + } +} {1 1 2 2 3 3} +do_test e_fkey-38.2 { + execsql { + BEGIN; + INSERT INTO t1 VALUES(4, 4); + SAVEPOINT one; + INSERT INTO t1 VALUES(5, 6); + SELECT * FROM t1; + } +} {1 1 2 2 3 3 4 4 5 6} +do_test e_fkey-38.3 { + catchsql COMMIT +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-38.4 { + execsql { + ROLLBACK TO one; + COMMIT; + SELECT * FROM t1; + } +} {1 1 2 2 3 3 4 4} + +do_test e_fkey-38.5 { + execsql { + SAVEPOINT a; + INSERT INTO t1 VALUES(5, 5); + SAVEPOINT b; + INSERT INTO t1 VALUES(6, 7); + SAVEPOINT c; + INSERT INTO t1 VALUES(7, 8); + } +} {} +do_test e_fkey-38.6 { + catchsql {RELEASE a} +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-38.7 { + execsql {ROLLBACK TO c} + catchsql {RELEASE a} +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-38.8 { + execsql { + ROLLBACK TO b; + RELEASE a; + SELECT * FROM t1; + } +} {1 1 2 2 3 3 4 4 5 5} + +########################################################################### +### SECTION 4.3: ON DELETE and ON UPDATE Actions +########################################################################### + +#------------------------------------------------------------------------- +# Test that configured ON DELETE and ON UPDATE actions take place when +# deleting or modifying rows of the parent table, respectively. +# +# EVIDENCE-OF: R-48270-44282 Foreign key ON DELETE and ON UPDATE clauses +# are used to configure actions that take place when deleting rows from +# the parent table (ON DELETE), or modifying the parent key values of +# existing rows (ON UPDATE). +# +# Test that a single FK constraint may have different actions configured +# for ON DELETE and ON UPDATE. +# +# EVIDENCE-OF: R-48124-63225 A single foreign key constraint may have +# different actions configured for ON DELETE and ON UPDATE. +# +do_test e_fkey-39.1 { + execsql { + CREATE TABLE p(a, b PRIMARY KEY, c); + CREATE TABLE c1(d, e, f DEFAULT 'k0' REFERENCES p + ON UPDATE SET DEFAULT + ON DELETE SET NULL + ); + + INSERT INTO p VALUES(0, 'k0', ''); + INSERT INTO p VALUES(1, 'k1', 'I'); + INSERT INTO p VALUES(2, 'k2', 'II'); + INSERT INTO p VALUES(3, 'k3', 'III'); + + INSERT INTO c1 VALUES(1, 'xx', 'k1'); + INSERT INTO c1 VALUES(2, 'xx', 'k2'); + INSERT INTO c1 VALUES(3, 'xx', 'k3'); + } +} {} +do_test e_fkey-39.2 { + execsql { + UPDATE p SET b = 'k4' WHERE a = 1; + SELECT * FROM c1; + } +} {1 xx k0 2 xx k2 3 xx k3} +do_test e_fkey-39.3 { + execsql { + DELETE FROM p WHERE a = 2; + SELECT * FROM c1; + } +} {1 xx k0 2 xx {} 3 xx k3} +do_test e_fkey-39.4 { + execsql { + CREATE UNIQUE INDEX pi ON p(c); + REPLACE INTO p VALUES(5, 'k5', 'III'); + SELECT * FROM c1; + } +} {1 xx k0 2 xx {} 3 xx {}} + +#------------------------------------------------------------------------- +# Each foreign key in the system has an ON UPDATE and ON DELETE action, +# either "NO ACTION", "RESTRICT", "SET NULL", "SET DEFAULT" or "CASCADE". +# +# EVIDENCE-OF: R-33326-45252 The ON DELETE and ON UPDATE action +# associated with each foreign key in an SQLite database is one of "NO +# ACTION", "RESTRICT", "SET NULL", "SET DEFAULT" or "CASCADE". +# +# If none is specified explicitly, "NO ACTION" is the default. +# +# EVIDENCE-OF: R-19803-45884 If an action is not explicitly specified, +# it defaults to "NO ACTION". +# +drop_all_tables +do_test e_fkey-40.1 { + execsql { + CREATE TABLE parent(x PRIMARY KEY, y); + CREATE TABLE child1(a, + b REFERENCES parent ON UPDATE NO ACTION ON DELETE RESTRICT + ); + CREATE TABLE child2(a, + b REFERENCES parent ON UPDATE RESTRICT ON DELETE SET NULL + ); + CREATE TABLE child3(a, + b REFERENCES parent ON UPDATE SET NULL ON DELETE SET DEFAULT + ); + CREATE TABLE child4(a, + b REFERENCES parent ON UPDATE SET DEFAULT ON DELETE CASCADE + ); + + -- Create some foreign keys that use the default action - "NO ACTION" + CREATE TABLE child5(a, b REFERENCES parent ON UPDATE CASCADE); + CREATE TABLE child6(a, b REFERENCES parent ON DELETE RESTRICT); + CREATE TABLE child7(a, b REFERENCES parent ON DELETE NO ACTION); + CREATE TABLE child8(a, b REFERENCES parent ON UPDATE NO ACTION); + } +} {} + +foreach {tn zTab lRes} { + 2 child1 {0 0 parent b {} {NO ACTION} RESTRICT NONE} + 3 child2 {0 0 parent b {} RESTRICT {SET NULL} NONE} + 4 child3 {0 0 parent b {} {SET NULL} {SET DEFAULT} NONE} + 5 child4 {0 0 parent b {} {SET DEFAULT} CASCADE NONE} + 6 child5 {0 0 parent b {} CASCADE {NO ACTION} NONE} + 7 child6 {0 0 parent b {} {NO ACTION} RESTRICT NONE} + 8 child7 {0 0 parent b {} {NO ACTION} {NO ACTION} NONE} + 9 child8 {0 0 parent b {} {NO ACTION} {NO ACTION} NONE} +} { + do_test e_fkey-40.$tn { execsql "PRAGMA foreign_key_list($zTab)" } $lRes +} + +#------------------------------------------------------------------------- +# Test that "NO ACTION" means that nothing happens to a child row when +# it's parent row is updated or deleted. +# +# EVIDENCE-OF: R-19971-54976 Configuring "NO ACTION" means just that: +# when a parent key is modified or deleted from the database, no special +# action is taken. +# +drop_all_tables +do_test e_fkey-41.1 { + execsql { + CREATE TABLE parent(p1, p2, PRIMARY KEY(p1, p2)); + CREATE TABLE child(c1, c2, + FOREIGN KEY(c1, c2) REFERENCES parent + ON UPDATE NO ACTION + ON DELETE NO ACTION + DEFERRABLE INITIALLY DEFERRED + ); + INSERT INTO parent VALUES('j', 'k'); + INSERT INTO parent VALUES('l', 'm'); + INSERT INTO child VALUES('j', 'k'); + INSERT INTO child VALUES('l', 'm'); + } +} {} +do_test e_fkey-41.2 { + execsql { + BEGIN; + UPDATE parent SET p1='k' WHERE p1='j'; + DELETE FROM parent WHERE p1='l'; + SELECT * FROM child; + } +} {j k l m} +do_test e_fkey-41.3 { + catchsql COMMIT +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-41.4 { + execsql ROLLBACK +} {} + +#------------------------------------------------------------------------- +# Test that "RESTRICT" means the application is prohibited from deleting +# or updating a parent table row when there exists one or more child keys +# mapped to it. +# +# EVIDENCE-OF: R-04272-38653 The "RESTRICT" action means that the +# application is prohibited from deleting (for ON DELETE RESTRICT) or +# modifying (for ON UPDATE RESTRICT) a parent key when there exists one +# or more child keys mapped to it. +# +drop_all_tables +do_test e_fkey-41.1 { + execsql { + CREATE TABLE parent(p1, p2); + CREATE UNIQUE INDEX parent_i ON parent(p1, p2); + CREATE TABLE child1(c1, c2, + FOREIGN KEY(c2, c1) REFERENCES parent(p1, p2) ON DELETE RESTRICT + ); + CREATE TABLE child2(c1, c2, + FOREIGN KEY(c2, c1) REFERENCES parent(p1, p2) ON UPDATE RESTRICT + ); + } +} {} +do_test e_fkey-41.2 { + execsql { + INSERT INTO parent VALUES('a', 'b'); + INSERT INTO parent VALUES('c', 'd'); + INSERT INTO child1 VALUES('b', 'a'); + INSERT INTO child2 VALUES('d', 'c'); + } +} {} +do_test e_fkey-41.3 { + catchsql { DELETE FROM parent WHERE p1 = 'a' } +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-41.4 { + catchsql { UPDATE parent SET p2 = 'e' WHERE p1 = 'c' } +} {1 {FOREIGN KEY constraint failed}} + +#------------------------------------------------------------------------- +# Test that RESTRICT is slightly different from NO ACTION for IMMEDIATE +# constraints, in that it is enforced immediately, not at the end of the +# statement. +# +# EVIDENCE-OF: R-37997-42187 The difference between the effect of a +# RESTRICT action and normal foreign key constraint enforcement is that +# the RESTRICT action processing happens as soon as the field is updated +# - not at the end of the current statement as it would with an +# immediate constraint, or at the end of the current transaction as it +# would with a deferred constraint. +# +drop_all_tables +do_test e_fkey-42.1 { + execsql { + CREATE TABLE parent(x PRIMARY KEY); + CREATE TABLE child1(c REFERENCES parent ON UPDATE RESTRICT); + CREATE TABLE child2(c REFERENCES parent ON UPDATE NO ACTION); + + INSERT INTO parent VALUES('key1'); + INSERT INTO parent VALUES('key2'); + INSERT INTO child1 VALUES('key1'); + INSERT INTO child2 VALUES('key2'); + + CREATE TRIGGER parent_t AFTER UPDATE ON parent BEGIN + UPDATE child1 set c = new.x WHERE c = old.x; + UPDATE child2 set c = new.x WHERE c = old.x; + END; + } +} {} +do_test e_fkey-42.2 { + catchsql { UPDATE parent SET x = 'key one' WHERE x = 'key1' } +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-42.3 { + execsql { + UPDATE parent SET x = 'key two' WHERE x = 'key2'; + SELECT * FROM child2; + } +} {{key two}} + +drop_all_tables +do_test e_fkey-42.4 { + execsql { + CREATE TABLE parent(x PRIMARY KEY); + CREATE TABLE child1(c REFERENCES parent ON DELETE RESTRICT); + CREATE TABLE child2(c REFERENCES parent ON DELETE NO ACTION); + + INSERT INTO parent VALUES('key1'); + INSERT INTO parent VALUES('key2'); + INSERT INTO child1 VALUES('key1'); + INSERT INTO child2 VALUES('key2'); + + CREATE TRIGGER parent_t AFTER DELETE ON parent BEGIN + UPDATE child1 SET c = NULL WHERE c = old.x; + UPDATE child2 SET c = NULL WHERE c = old.x; + END; + } +} {} +do_test e_fkey-42.5 { + catchsql { DELETE FROM parent WHERE x = 'key1' } +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-42.6 { + execsql { + DELETE FROM parent WHERE x = 'key2'; + SELECT * FROM child2; + } +} {{}} + +drop_all_tables +do_test e_fkey-42.7 { + execsql { + CREATE TABLE parent(x PRIMARY KEY); + CREATE TABLE child1(c REFERENCES parent ON DELETE RESTRICT); + CREATE TABLE child2(c REFERENCES parent ON DELETE NO ACTION); + + INSERT INTO parent VALUES('key1'); + INSERT INTO parent VALUES('key2'); + INSERT INTO child1 VALUES('key1'); + INSERT INTO child2 VALUES('key2'); + } +} {} +do_test e_fkey-42.8 { + catchsql { REPLACE INTO parent VALUES('key1') } +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-42.9 { + execsql { + REPLACE INTO parent VALUES('key2'); + SELECT * FROM child2; + } +} {key2} + +#------------------------------------------------------------------------- +# Test that RESTRICT is enforced immediately, even for a DEFERRED constraint. +# +# EVIDENCE-OF: R-24179-60523 Even if the foreign key constraint it is +# attached to is deferred, configuring a RESTRICT action causes SQLite +# to return an error immediately if a parent key with dependent child +# keys is deleted or modified. +# +drop_all_tables +do_test e_fkey-43.1 { + execsql { + CREATE TABLE parent(x PRIMARY KEY); + CREATE TABLE child1(c REFERENCES parent ON UPDATE RESTRICT + DEFERRABLE INITIALLY DEFERRED + ); + CREATE TABLE child2(c REFERENCES parent ON UPDATE NO ACTION + DEFERRABLE INITIALLY DEFERRED + ); + + INSERT INTO parent VALUES('key1'); + INSERT INTO parent VALUES('key2'); + INSERT INTO child1 VALUES('key1'); + INSERT INTO child2 VALUES('key2'); + BEGIN; + } +} {} +do_test e_fkey-43.2 { + catchsql { UPDATE parent SET x = 'key one' WHERE x = 'key1' } +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-43.3 { + execsql { UPDATE parent SET x = 'key two' WHERE x = 'key2' } +} {} +do_test e_fkey-43.4 { + catchsql COMMIT +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-43.5 { + execsql { + UPDATE child2 SET c = 'key two'; + COMMIT; + } +} {} + +drop_all_tables +do_test e_fkey-43.6 { + execsql { + CREATE TABLE parent(x PRIMARY KEY); + CREATE TABLE child1(c REFERENCES parent ON DELETE RESTRICT + DEFERRABLE INITIALLY DEFERRED + ); + CREATE TABLE child2(c REFERENCES parent ON DELETE NO ACTION + DEFERRABLE INITIALLY DEFERRED + ); + + INSERT INTO parent VALUES('key1'); + INSERT INTO parent VALUES('key2'); + INSERT INTO child1 VALUES('key1'); + INSERT INTO child2 VALUES('key2'); + BEGIN; + } +} {} +do_test e_fkey-43.7 { + catchsql { DELETE FROM parent WHERE x = 'key1' } +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-43.8 { + execsql { DELETE FROM parent WHERE x = 'key2' } +} {} +do_test e_fkey-43.9 { + catchsql COMMIT +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-43.10 { + execsql { + UPDATE child2 SET c = NULL; + COMMIT; + } +} {} + +#------------------------------------------------------------------------- +# Test SET NULL actions. +# +# EVIDENCE-OF: R-03353-05327 If the configured action is "SET NULL", +# then when a parent key is deleted (for ON DELETE SET NULL) or modified +# (for ON UPDATE SET NULL), the child key columns of all rows in the +# child table that mapped to the parent key are set to contain SQL NULL +# values. +# +drop_all_tables +do_test e_fkey-44.1 { + execsql { + CREATE TABLE pA(x PRIMARY KEY); + CREATE TABLE cA(c REFERENCES pA ON DELETE SET NULL); + CREATE TABLE cB(c REFERENCES pA ON UPDATE SET NULL); + + INSERT INTO pA VALUES(X'ABCD'); + INSERT INTO pA VALUES(X'1234'); + INSERT INTO cA VALUES(X'ABCD'); + INSERT INTO cB VALUES(X'1234'); + } +} {} +do_test e_fkey-44.2 { + execsql { + DELETE FROM pA WHERE rowid = 1; + SELECT quote(x) FROM pA; + } +} {X'1234'} +do_test e_fkey-44.3 { + execsql { + SELECT quote(c) FROM cA; + } +} {NULL} +do_test e_fkey-44.4 { + execsql { + UPDATE pA SET x = X'8765' WHERE rowid = 2; + SELECT quote(x) FROM pA; + } +} {X'8765'} +do_test e_fkey-44.5 { + execsql { SELECT quote(c) FROM cB } +} {NULL} + +#------------------------------------------------------------------------- +# Test SET DEFAULT actions. +# +# EVIDENCE-OF: R-55814-22637 The "SET DEFAULT" actions are similar to +# "SET NULL", except that each of the child key columns is set to +# contain the column's default value instead of NULL. +# +drop_all_tables +do_test e_fkey-45.1 { + execsql { + CREATE TABLE pA(x PRIMARY KEY); + CREATE TABLE cA(c DEFAULT X'0000' REFERENCES pA ON DELETE SET DEFAULT); + CREATE TABLE cB(c DEFAULT X'9999' REFERENCES pA ON UPDATE SET DEFAULT); + + INSERT INTO pA(rowid, x) VALUES(1, X'0000'); + INSERT INTO pA(rowid, x) VALUES(2, X'9999'); + INSERT INTO pA(rowid, x) VALUES(3, X'ABCD'); + INSERT INTO pA(rowid, x) VALUES(4, X'1234'); + + INSERT INTO cA VALUES(X'ABCD'); + INSERT INTO cB VALUES(X'1234'); + } +} {} +do_test e_fkey-45.2 { + execsql { + DELETE FROM pA WHERE rowid = 3; + SELECT quote(x) FROM pA ORDER BY rowid; + } +} {X'0000' X'9999' X'1234'} +do_test e_fkey-45.3 { + execsql { SELECT quote(c) FROM cA } +} {X'0000'} +do_test e_fkey-45.4 { + execsql { + UPDATE pA SET x = X'8765' WHERE rowid = 4; + SELECT quote(x) FROM pA ORDER BY rowid; + } +} {X'0000' X'9999' X'8765'} +do_test e_fkey-45.5 { + execsql { SELECT quote(c) FROM cB } +} {X'9999'} + +#------------------------------------------------------------------------- +# Test ON DELETE CASCADE actions. +# +# EVIDENCE-OF: R-61376-57267 A "CASCADE" action propagates the delete or +# update operation on the parent key to each dependent child key. +# +# EVIDENCE-OF: R-61809-62207 For an "ON DELETE CASCADE" action, this +# means that each row in the child table that was associated with the +# deleted parent row is also deleted. +# +drop_all_tables +do_test e_fkey-46.1 { + execsql { + CREATE TABLE p1(a, b UNIQUE); + CREATE TABLE c1(c REFERENCES p1(b) ON DELETE CASCADE, d); + INSERT INTO p1 VALUES(NULL, NULL); + INSERT INTO p1 VALUES(4, 4); + INSERT INTO p1 VALUES(5, 5); + INSERT INTO c1 VALUES(NULL, NULL); + INSERT INTO c1 VALUES(4, 4); + INSERT INTO c1 VALUES(5, 5); + SELECT count(*) FROM c1; + } +} {3} +do_test e_fkey-46.2 { + execsql { + DELETE FROM p1 WHERE a = 4; + SELECT d, c FROM c1; + } +} {{} {} 5 5} +do_test e_fkey-46.3 { + execsql { + DELETE FROM p1; + SELECT d, c FROM c1; + } +} {{} {}} +do_test e_fkey-46.4 { + execsql { SELECT * FROM p1 } +} {} + + +#------------------------------------------------------------------------- +# Test ON UPDATE CASCADE actions. +# +# EVIDENCE-OF: R-13877-64542 For an "ON UPDATE CASCADE" action, it means +# that the values stored in each dependent child key are modified to +# match the new parent key values. +# +# EVIDENCE-OF: R-61376-57267 A "CASCADE" action propagates the delete or +# update operation on the parent key to each dependent child key. +# +drop_all_tables +do_test e_fkey-47.1 { + execsql { + CREATE TABLE p1(a, b UNIQUE); + CREATE TABLE c1(c REFERENCES p1(b) ON UPDATE CASCADE, d); + INSERT INTO p1 VALUES(NULL, NULL); + INSERT INTO p1 VALUES(4, 4); + INSERT INTO p1 VALUES(5, 5); + INSERT INTO c1 VALUES(NULL, NULL); + INSERT INTO c1 VALUES(4, 4); + INSERT INTO c1 VALUES(5, 5); + SELECT count(*) FROM c1; + } +} {3} +do_test e_fkey-47.2 { + execsql { + UPDATE p1 SET b = 10 WHERE b = 5; + SELECT d, c FROM c1; + } +} {{} {} 4 4 5 10} +do_test e_fkey-47.3 { + execsql { + UPDATE p1 SET b = 11 WHERE b = 4; + SELECT d, c FROM c1; + } +} {{} {} 4 11 5 10} +do_test e_fkey-47.4 { + execsql { + UPDATE p1 SET b = 6 WHERE b IS NULL; + SELECT d, c FROM c1; + } +} {{} {} 4 11 5 10} +do_test e_fkey-46.5 { + execsql { SELECT * FROM p1 } +} {{} 6 4 11 5 10} + +#------------------------------------------------------------------------- +# EVIDENCE-OF: R-65058-57158 +# +# Test an example from the "ON DELETE and ON UPDATE Actions" section +# of foreignkeys.html. +# +drop_all_tables +do_test e_fkey-48.1 { + execsql { + CREATE TABLE artist( + artistid INTEGER PRIMARY KEY, + artistname TEXT + ); + CREATE TABLE track( + trackid INTEGER, + trackname TEXT, + trackartist INTEGER REFERENCES artist(artistid) ON UPDATE CASCADE + ); + + INSERT INTO artist VALUES(1, 'Dean Martin'); + INSERT INTO artist VALUES(2, 'Frank Sinatra'); + INSERT INTO track VALUES(11, 'That''s Amore', 1); + INSERT INTO track VALUES(12, 'Christmas Blues', 1); + INSERT INTO track VALUES(13, 'My Way', 2); + } +} {} +do_test e_fkey-48.2 { + execsql { + UPDATE artist SET artistid = 100 WHERE artistname = 'Dean Martin'; + } +} {} +do_test e_fkey-48.3 { + execsql { SELECT * FROM artist } +} {2 {Frank Sinatra} 100 {Dean Martin}} +do_test e_fkey-48.4 { + execsql { SELECT * FROM track } +} {11 {That's Amore} 100 12 {Christmas Blues} 100 13 {My Way} 2} + + +#------------------------------------------------------------------------- +# Verify that adding an FK action does not absolve the user of the +# requirement not to violate the foreign key constraint. +# +# EVIDENCE-OF: R-53968-51642 Configuring an ON UPDATE or ON DELETE +# action does not mean that the foreign key constraint does not need to +# be satisfied. +# +drop_all_tables +do_test e_fkey-49.1 { + execsql { + CREATE TABLE parent(a COLLATE nocase, b, c, PRIMARY KEY(c, a)); + CREATE TABLE child(d DEFAULT 'a', e, f DEFAULT 'c', + FOREIGN KEY(f, d) REFERENCES parent ON UPDATE SET DEFAULT + ); + + INSERT INTO parent VALUES('A', 'b', 'c'); + INSERT INTO parent VALUES('ONE', 'two', 'three'); + INSERT INTO child VALUES('one', 'two', 'three'); + } +} {} +do_test e_fkey-49.2 { + execsql { + BEGIN; + UPDATE parent SET a = '' WHERE a = 'oNe'; + SELECT * FROM child; + } +} {a two c} +do_test e_fkey-49.3 { + execsql { + ROLLBACK; + DELETE FROM parent WHERE a = 'A'; + SELECT * FROM parent; + } +} {ONE two three} +do_test e_fkey-49.4 { + catchsql { UPDATE parent SET a = '' WHERE a = 'oNe' } +} {1 {FOREIGN KEY constraint failed}} + + +#------------------------------------------------------------------------- +# EVIDENCE-OF: R-11856-19836 +# +# Test an example from the "ON DELETE and ON UPDATE Actions" section +# of foreignkeys.html. This example shows that adding an "ON DELETE DEFAULT" +# clause does not abrogate the need to satisfy the foreign key constraint +# (R-28220-46694). +# +# EVIDENCE-OF: R-28220-46694 For example, if an "ON DELETE SET DEFAULT" +# action is configured, but there is no row in the parent table that +# corresponds to the default values of the child key columns, deleting a +# parent key while dependent child keys exist still causes a foreign key +# violation. +# +drop_all_tables +do_test e_fkey-50.1 { + execsql { + CREATE TABLE artist( + artistid INTEGER PRIMARY KEY, + artistname TEXT + ); + CREATE TABLE track( + trackid INTEGER, + trackname TEXT, + trackartist INTEGER DEFAULT 0 REFERENCES artist(artistid) ON DELETE SET DEFAULT + ); + INSERT INTO artist VALUES(3, 'Sammy Davis Jr.'); + INSERT INTO track VALUES(14, 'Mr. Bojangles', 3); + } +} {} +do_test e_fkey-50.2 { + catchsql { DELETE FROM artist WHERE artistname = 'Sammy Davis Jr.' } +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-50.3 { + execsql { + INSERT INTO artist VALUES(0, 'Unknown Artist'); + DELETE FROM artist WHERE artistname = 'Sammy Davis Jr.'; + } +} {} +do_test e_fkey-50.4 { + execsql { SELECT * FROM artist } +} {0 {Unknown Artist}} +do_test e_fkey-50.5 { + execsql { SELECT * FROM track } +} {14 {Mr. Bojangles} 0} + +#------------------------------------------------------------------------- +# EVIDENCE-OF: R-09564-22170 +# +# Check that the order of steps in an UPDATE or DELETE on a parent +# table is as follows: +# +# 1. Execute applicable BEFORE trigger programs, +# 2. Check local (non foreign key) constraints, +# 3. Update or delete the row in the parent table, +# 4. Perform any required foreign key actions, +# 5. Execute applicable AFTER trigger programs. +# +drop_all_tables +do_test e_fkey-51.1 { + proc maxparent {args} { db one {SELECT max(x) FROM parent} } + db func maxparent maxparent + + execsql { + CREATE TABLE parent(x PRIMARY KEY); + + CREATE TRIGGER bu BEFORE UPDATE ON parent BEGIN + INSERT INTO parent VALUES(new.x-old.x); + END; + CREATE TABLE child( + a DEFAULT (maxparent()) REFERENCES parent ON UPDATE SET DEFAULT + ); + CREATE TRIGGER au AFTER UPDATE ON parent BEGIN + INSERT INTO parent VALUES(new.x+old.x); + END; + + INSERT INTO parent VALUES(1); + INSERT INTO child VALUES(1); + } +} {} +do_test e_fkey-51.2 { + execsql { + UPDATE parent SET x = 22; + SELECT * FROM parent ORDER BY rowid; SELECT 'xxx' ; SELECT a FROM child; + } +} {22 21 23 xxx 22} +do_test e_fkey-51.3 { + execsql { + DELETE FROM child; + DELETE FROM parent; + INSERT INTO parent VALUES(-1); + INSERT INTO child VALUES(-1); + UPDATE parent SET x = 22; + SELECT * FROM parent ORDER BY rowid; SELECT 'xxx' ; SELECT a FROM child; + } +} {22 23 21 xxx 23} + + +#------------------------------------------------------------------------- +# Verify that ON UPDATE actions only actually take place if the parent key +# is set to a new value that is distinct from the old value. The default +# collation sequence and affinity are used to determine if the new value +# is 'distinct' from the old or not. +# +# EVIDENCE-OF: R-27383-10246 An ON UPDATE action is only taken if the +# values of the parent key are modified so that the new parent key +# values are not equal to the old. +# +drop_all_tables +do_test e_fkey-52.1 { + execsql { + CREATE TABLE zeus(a INTEGER COLLATE NOCASE, b, PRIMARY KEY(a, b)); + CREATE TABLE apollo(c, d, + FOREIGN KEY(c, d) REFERENCES zeus ON UPDATE CASCADE + ); + INSERT INTO zeus VALUES('abc', 'xyz'); + INSERT INTO apollo VALUES('ABC', 'xyz'); + } + execsql { + UPDATE zeus SET a = 'aBc'; + SELECT * FROM apollo; + } +} {ABC xyz} +do_test e_fkey-52.2 { + execsql { + UPDATE zeus SET a = 1, b = 1; + SELECT * FROM apollo; + } +} {1 1} +do_test e_fkey-52.3 { + execsql { + UPDATE zeus SET a = 1, b = 1; + SELECT typeof(c), c, typeof(d), d FROM apollo; + } +} {integer 1 integer 1} +do_test e_fkey-52.4 { + execsql { + UPDATE zeus SET a = '1'; + SELECT typeof(c), c, typeof(d), d FROM apollo; + } +} {integer 1 integer 1} +do_test e_fkey-52.5 { + execsql { + UPDATE zeus SET b = '1'; + SELECT typeof(c), c, typeof(d), d FROM apollo; + } +} {integer 1 text 1} +do_test e_fkey-52.6 { + execsql { + UPDATE zeus SET b = NULL; + SELECT typeof(c), c, typeof(d), d FROM apollo; + } +} {integer 1 null {}} + +#------------------------------------------------------------------------- +# EVIDENCE-OF: R-35129-58141 +# +# Test an example from the "ON DELETE and ON UPDATE Actions" section +# of foreignkeys.html. This example demonstrates that ON UPDATE actions +# only take place if at least one parent key column is set to a value +# that is distinct from its previous value. +# +drop_all_tables +do_test e_fkey-53.1 { + execsql { + CREATE TABLE parent(x PRIMARY KEY); + CREATE TABLE child(y REFERENCES parent ON UPDATE SET NULL); + INSERT INTO parent VALUES('key'); + INSERT INTO child VALUES('key'); + } +} {} +do_test e_fkey-53.2 { + execsql { + UPDATE parent SET x = 'key'; + SELECT IFNULL(y, 'null') FROM child; + } +} {key} +do_test e_fkey-53.3 { + execsql { + UPDATE parent SET x = 'key2'; + SELECT IFNULL(y, 'null') FROM child; + } +} {null} + +########################################################################### +### SECTION 5: CREATE, ALTER and DROP TABLE commands +########################################################################### + +#------------------------------------------------------------------------- +# Test that parent keys are not checked when tables are created. +# +# EVIDENCE-OF: R-36018-21755 The parent key definitions of foreign key +# constraints are not checked when a table is created. +# +# EVIDENCE-OF: R-25384-39337 There is nothing stopping the user from +# creating a foreign key definition that refers to a parent table that +# does not exist, or to parent key columns that do not exist or are not +# collectively bound by a PRIMARY KEY or UNIQUE constraint. +# +# Child keys are checked to ensure all component columns exist. If parent +# key columns are explicitly specified, SQLite checks to make sure there +# are the same number of columns in the child and parent keys. (TODO: This +# is tested but does not correspond to any testable statement.) +# +# Also test that the above statements are true regardless of whether or not +# foreign keys are enabled: "A CREATE TABLE command operates the same whether +# or not foreign key constraints are enabled." +# +# EVIDENCE-OF: R-08908-23439 A CREATE TABLE command operates the same +# whether or not foreign key constraints are enabled. +# +foreach {tn zCreateTbl lRes} { + 1 "CREATE TABLE t1(a, b REFERENCES t1)" {0 {}} + 2 "CREATE TABLE t1(a, b REFERENCES t2)" {0 {}} + 3 "CREATE TABLE t1(a, b, FOREIGN KEY(a,b) REFERENCES t1)" {0 {}} + 4 "CREATE TABLE t1(a, b, FOREIGN KEY(a,b) REFERENCES t2)" {0 {}} + 5 "CREATE TABLE t1(a, b, FOREIGN KEY(a,b) REFERENCES t2)" {0 {}} + 6 "CREATE TABLE t1(a, b, FOREIGN KEY(a,b) REFERENCES t2(n,d))" {0 {}} + 7 "CREATE TABLE t1(a, b, FOREIGN KEY(a,b) REFERENCES t1(a,b))" {0 {}} + + A "CREATE TABLE t1(a, b, FOREIGN KEY(c,b) REFERENCES t2)" + {1 {unknown column "c" in foreign key definition}} + B "CREATE TABLE t1(a, b, FOREIGN KEY(c,b) REFERENCES t2(d))" + {1 {number of columns in foreign key does not match the number of columns in the referenced table}} +} { + do_test e_fkey-54.$tn.off { + drop_all_tables + execsql {PRAGMA foreign_keys = OFF} + catchsql $zCreateTbl + } $lRes + do_test e_fkey-54.$tn.on { + drop_all_tables + execsql {PRAGMA foreign_keys = ON} + catchsql $zCreateTbl + } $lRes +} + +#------------------------------------------------------------------------- +# EVIDENCE-OF: R-47952-62498 It is not possible to use the "ALTER TABLE +# ... ADD COLUMN" syntax to add a column that includes a REFERENCES +# clause, unless the default value of the new column is NULL. Attempting +# to do so returns an error. +# +proc test_efkey_6 {tn zAlter isError} { + drop_all_tables + + do_test e_fkey-56.$tn.1 " + execsql { CREATE TABLE tbl(a, b); INSERT INTO tbl VALUES(1, 2); } + [list catchsql $zAlter] + " [lindex {{0 {}} {1 {Cannot add a REFERENCES column with non-NULL default value}}} $isError] + +} + +ifcapable altertable { + test_efkey_6 1 "ALTER TABLE tbl ADD COLUMN c REFERENCES xx" 0 + test_efkey_6 2 "ALTER TABLE tbl ADD COLUMN c DEFAULT NULL REFERENCES xx" 0 + test_efkey_6 3 "ALTER TABLE tbl ADD COLUMN c DEFAULT 0 REFERENCES xx" 1 +} + +#------------------------------------------------------------------------- +# Test that ALTER TABLE adjusts REFERENCES clauses when the parent table +# is RENAMED. +# +# EVIDENCE-OF: R-47080-02069 If an "ALTER TABLE ... RENAME TO" command +# is used to rename a table that is the parent table of one or more +# foreign key constraints, the definitions of the foreign key +# constraints are modified to refer to the parent table by its new name +# +# Test that these adjustments are visible in the sqlite_master table. +# +# EVIDENCE-OF: R-43040-62530 The text of the child CREATE TABLE +# statement or statements stored in the sqlite_schema table are modified +# to reflect the new parent table name. +# +ifcapable altertable { +do_test e_fkey-56.1 { + drop_all_tables + execsql { + CREATE TABLE 'p 1 "parent one"'(a REFERENCES 'p 1 "parent one"', b, PRIMARY KEY(b)); + + CREATE TABLE c1(c, d REFERENCES 'p 1 "parent one"' ON UPDATE CASCADE); + CREATE TABLE c2(e, f, FOREIGN KEY(f) REFERENCES 'p 1 "parent one"' ON UPDATE CASCADE); + CREATE TABLE c3(e, 'f col 2', FOREIGN KEY('f col 2') REFERENCES 'p 1 "parent one"' ON UPDATE CASCADE); + + INSERT INTO 'p 1 "parent one"' VALUES(1, 1); + INSERT INTO c1 VALUES(1, 1); + INSERT INTO c2 VALUES(1, 1); + INSERT INTO c3 VALUES(1, 1); + + -- CREATE TABLE q(a, b, PRIMARY KEY(b)); + } +} {} +do_test e_fkey-56.2 { + execsql { ALTER TABLE 'p 1 "parent one"' RENAME TO p } +} {} +do_test e_fkey-56.3 { + execsql { + UPDATE p SET a = 'xxx', b = 'xxx'; + SELECT * FROM p; + SELECT * FROM c1; + SELECT * FROM c2; + SELECT * FROM c3; + } +} {xxx xxx 1 xxx 1 xxx 1 xxx} +do_test e_fkey-56.4 { + execsql { SELECT sql FROM sqlite_master WHERE type = 'table'} +} [list \ + {CREATE TABLE "p"(a REFERENCES "p", b, PRIMARY KEY(b))} \ + {CREATE TABLE c1(c, d REFERENCES "p" ON UPDATE CASCADE)} \ + {CREATE TABLE c2(e, f, FOREIGN KEY(f) REFERENCES "p" ON UPDATE CASCADE)} \ + {CREATE TABLE c3(e, 'f col 2', FOREIGN KEY('f col 2') REFERENCES "p" ON UPDATE CASCADE)} \ +] +} + +#------------------------------------------------------------------------- +# Check that a DROP TABLE does an implicit DELETE FROM. Which does not +# cause any triggers to fire, but does fire foreign key actions. +# +# EVIDENCE-OF: R-14208-23986 If foreign key constraints are enabled when +# it is prepared, the DROP TABLE command performs an implicit DELETE to +# remove all rows from the table before dropping it. +# +# EVIDENCE-OF: R-11078-03945 The implicit DELETE does not cause any SQL +# triggers to fire, but may invoke foreign key actions or constraint +# violations. +# +do_test e_fkey-57.1 { + drop_all_tables + execsql { + CREATE TABLE p(a, b, PRIMARY KEY(a, b)); + + CREATE TABLE c1(c, d, FOREIGN KEY(c, d) REFERENCES p ON DELETE SET NULL); + CREATE TABLE c2(c, d, FOREIGN KEY(c, d) REFERENCES p ON DELETE SET DEFAULT); + CREATE TABLE c3(c, d, FOREIGN KEY(c, d) REFERENCES p ON DELETE CASCADE); + CREATE TABLE c4(c, d, FOREIGN KEY(c, d) REFERENCES p ON DELETE RESTRICT); + CREATE TABLE c5(c, d, FOREIGN KEY(c, d) REFERENCES p ON DELETE NO ACTION); + + CREATE TABLE c6(c, d, + FOREIGN KEY(c, d) REFERENCES p ON DELETE RESTRICT + DEFERRABLE INITIALLY DEFERRED + ); + CREATE TABLE c7(c, d, + FOREIGN KEY(c, d) REFERENCES p ON DELETE NO ACTION + DEFERRABLE INITIALLY DEFERRED + ); + + CREATE TABLE log(msg); + CREATE TRIGGER tt AFTER DELETE ON p BEGIN + INSERT INTO log VALUES('delete ' || old.rowid); + END; + } +} {} + +do_test e_fkey-57.2 { + execsql { + INSERT INTO p VALUES('a', 'b'); + INSERT INTO c1 VALUES('a', 'b'); + INSERT INTO c2 VALUES('a', 'b'); + INSERT INTO c3 VALUES('a', 'b'); + BEGIN; + DROP TABLE p; + SELECT * FROM c1; + } +} {{} {}} +do_test e_fkey-57.3 { + execsql { SELECT * FROM c2 } +} {{} {}} +do_test e_fkey-57.4 { + execsql { SELECT * FROM c3 } +} {} +do_test e_fkey-57.5 { + execsql { SELECT * FROM log } +} {} +do_test e_fkey-57.6 { + execsql ROLLBACK +} {} +do_test e_fkey-57.7 { + execsql { + BEGIN; + DELETE FROM p; + SELECT * FROM log; + ROLLBACK; + } +} {{delete 1}} + +#------------------------------------------------------------------------- +# If an IMMEDIATE foreign key fails as a result of a DROP TABLE, the +# DROP TABLE command fails. +# +# EVIDENCE-OF: R-32768-47925 If an immediate foreign key constraint is +# violated, the DROP TABLE statement fails and the table is not dropped. +# +do_test e_fkey-58.1 { + execsql { + DELETE FROM c1; + DELETE FROM c2; + DELETE FROM c3; + } + execsql { INSERT INTO c5 VALUES('a', 'b') } + catchsql { DROP TABLE p } +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-58.2 { + execsql { SELECT * FROM p } +} {a b} +do_test e_fkey-58.3 { + catchsql { + BEGIN; + DROP TABLE p; + } +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-58.4 { + execsql { + SELECT * FROM p; + SELECT * FROM c5; + ROLLBACK; + } +} {a b a b} + +#------------------------------------------------------------------------- +# If a DEFERRED foreign key fails as a result of a DROP TABLE, attempting +# to commit the transaction fails unless the violation is fixed. +# +# EVIDENCE-OF: R-05903-08460 If a deferred foreign key constraint is +# violated, then an error is reported when the user attempts to commit +# the transaction if the foreign key constraint violations still exist +# at that point. +# +do_test e_fkey-59.1 { + execsql { + DELETE FROM c1 ; DELETE FROM c2 ; DELETE FROM c3 ; + DELETE FROM c4 ; DELETE FROM c5 ; DELETE FROM c6 ; + DELETE FROM c7 + } +} {} +do_test e_fkey-59.2 { + execsql { INSERT INTO c7 VALUES('a', 'b') } + execsql { + BEGIN; + DROP TABLE p; + } +} {} +do_test e_fkey-59.3 { + catchsql COMMIT +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-59.4 { + execsql { CREATE TABLE p(a, b, PRIMARY KEY(a, b)) } + catchsql COMMIT +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-59.5 { + execsql { INSERT INTO p VALUES('a', 'b') } + execsql COMMIT +} {} + +#------------------------------------------------------------------------- +# Any "foreign key mismatch" errors encountered while running an implicit +# "DELETE FROM tbl" are ignored. +# +# EVIDENCE-OF: R-57242-37005 Any "foreign key mismatch" errors +# encountered as part of an implicit DELETE are ignored. +# +drop_all_tables +do_test e_fkey-60.1 { + execsql { + PRAGMA foreign_keys = OFF; + + CREATE TABLE p(a PRIMARY KEY, b REFERENCES nosuchtable); + CREATE TABLE c1(c, d, FOREIGN KEY(c, d) REFERENCES a); + CREATE TABLE c2(c REFERENCES p(b), d); + CREATE TABLE c3(c REFERENCES p ON DELETE SET NULL, d); + + INSERT INTO p VALUES(1, 2); + INSERT INTO c1 VALUES(1, 2); + INSERT INTO c2 VALUES(1, 2); + INSERT INTO c3 VALUES(1, 2); + } +} {} +do_test e_fkey-60.2 { + execsql { PRAGMA foreign_keys = ON } + catchsql { DELETE FROM p } +} {1 {no such table: main.nosuchtable}} +do_test e_fkey-60.3 { + execsql { + BEGIN; + DROP TABLE p; + SELECT * FROM c3; + ROLLBACK; + } +} {{} 2} +do_test e_fkey-60.4 { + execsql { CREATE TABLE nosuchtable(x PRIMARY KEY) } + catchsql { DELETE FROM p } +} {1 {foreign key mismatch - "c2" referencing "p"}} +do_test e_fkey-60.5 { + execsql { DROP TABLE c1 } + catchsql { DELETE FROM p } +} {1 {foreign key mismatch - "c2" referencing "p"}} +do_test e_fkey-60.6 { + execsql { DROP TABLE c2 } + execsql { DELETE FROM p } +} {} + +#------------------------------------------------------------------------- +# Test that the special behaviors of ALTER and DROP TABLE are only +# activated when foreign keys are enabled. Special behaviors are: +# +# 1. ADD COLUMN not allowing a REFERENCES clause with a non-NULL +# default value. +# 2. Modifying foreign key definitions when a parent table is RENAMEd. +# 3. Running an implicit DELETE FROM command as part of DROP TABLE. +# +# EVIDENCE-OF: R-54142-41346 The properties of the DROP TABLE and ALTER +# TABLE commands described above only apply if foreign keys are enabled. +# +ifcapable altertable { +do_test e_fkey-61.1.1 { + drop_all_tables + execsql { CREATE TABLE t1(a, b) ; INSERT INTO t1 VALUES(1, 2) } + catchsql { ALTER TABLE t1 ADD COLUMN c DEFAULT 'xxx' REFERENCES t2 } +} {1 {Cannot add a REFERENCES column with non-NULL default value}} +do_test e_fkey-61.1.2 { + execsql { PRAGMA foreign_keys = OFF } + execsql { ALTER TABLE t1 ADD COLUMN c DEFAULT 'xxx' REFERENCES t2 } + execsql { SELECT sql FROM sqlite_master WHERE name = 't1' } +} {{CREATE TABLE t1(a, b, c DEFAULT 'xxx' REFERENCES t2)}} +do_test e_fkey-61.1.3 { + execsql { PRAGMA foreign_keys = ON } +} {} + +do_test e_fkey-61.2.1 { + drop_all_tables + execsql { + CREATE TABLE p(a UNIQUE); + CREATE TABLE c(b REFERENCES p(a)); + BEGIN; + ALTER TABLE p RENAME TO parent; + SELECT sql FROM sqlite_master WHERE name = 'c'; + ROLLBACK; + } +} {{CREATE TABLE c(b REFERENCES "parent"(a))}} +do_test e_fkey-61.2.2 { + execsql { + PRAGMA foreign_keys = OFF; + PRAGMA legacy_alter_table = ON; + ALTER TABLE p RENAME TO parent; + SELECT sql FROM sqlite_master WHERE name = 'c'; + } +} {{CREATE TABLE c(b REFERENCES p(a))}} +do_test e_fkey-61.2.3 { + execsql { PRAGMA foreign_keys = ON } + execsql { PRAGMA legacy_alter_table = OFF } +} {} + +do_test e_fkey-61.3.1 { + drop_all_tables + execsql { + CREATE TABLE p(a UNIQUE); + CREATE TABLE c(b REFERENCES p(a) ON DELETE SET NULL); + INSERT INTO p VALUES('x'); + INSERT INTO c VALUES('x'); + BEGIN; + DROP TABLE p; + SELECT * FROM c; + ROLLBACK; + } +} {{}} +do_test e_fkey-61.3.2 { + execsql { + PRAGMA foreign_keys = OFF; + DROP TABLE p; + SELECT * FROM c; + } +} {x} +do_test e_fkey-61.3.3 { + execsql { PRAGMA foreign_keys = ON } +} {} +} + +########################################################################### +### SECTION 6: Limits and Unsupported Features +########################################################################### + +#------------------------------------------------------------------------- +# Test that MATCH clauses are parsed, but SQLite treats every foreign key +# constraint as if it were "MATCH SIMPLE". +# +# EVIDENCE-OF: R-24728-13230 SQLite parses MATCH clauses (i.e. does not +# report a syntax error if you specify one), but does not enforce them. +# +# EVIDENCE-OF: R-24450-46174 All foreign key constraints in SQLite are +# handled as if MATCH SIMPLE were specified. +# +foreach zMatch [list SIMPLE PARTIAL FULL Simple parTIAL FuLL ] { + drop_all_tables + do_test e_fkey-62.$zMatch.1 { + execsql " + CREATE TABLE p(a, b, c, PRIMARY KEY(b, c)); + CREATE TABLE c(d, e, f, FOREIGN KEY(e, f) REFERENCES p MATCH $zMatch); + " + } {} + do_test e_fkey-62.$zMatch.2 { + execsql { INSERT INTO p VALUES(1, 2, 3) } + + # MATCH SIMPLE behavior: Allow any child key that contains one or more + # NULL value to be inserted. Non-NULL values do not have to map to any + # parent key values, so long as at least one field of the child key is + # NULL. + execsql { INSERT INTO c VALUES('w', 2, 3) } + execsql { INSERT INTO c VALUES('x', 'x', NULL) } + execsql { INSERT INTO c VALUES('y', NULL, 'x') } + execsql { INSERT INTO c VALUES('z', NULL, NULL) } + + # Check that the FK is enforced properly if there are no NULL values + # in the child key columns. + catchsql { INSERT INTO c VALUES('a', 2, 4) } + } {1 {FOREIGN KEY constraint failed}} +} + +#------------------------------------------------------------------------- +# Test that SQLite does not support the SET CONSTRAINT statement. And +# that it is possible to create both immediate and deferred constraints. +# +# EVIDENCE-OF: R-21599-16038 In SQLite, a foreign key constraint is +# permanently marked as deferred or immediate when it is created. +# +drop_all_tables +do_test e_fkey-62.1 { + catchsql { SET CONSTRAINTS ALL IMMEDIATE } +} {1 {near "SET": syntax error}} +do_test e_fkey-62.2 { + catchsql { SET CONSTRAINTS ALL DEFERRED } +} {1 {near "SET": syntax error}} + +do_test e_fkey-62.3 { + execsql { + CREATE TABLE p(a, b, PRIMARY KEY(a, b)); + CREATE TABLE cd(c, d, + FOREIGN KEY(c, d) REFERENCES p DEFERRABLE INITIALLY DEFERRED); + CREATE TABLE ci(c, d, + FOREIGN KEY(c, d) REFERENCES p DEFERRABLE INITIALLY IMMEDIATE); + BEGIN; + } +} {} +do_test e_fkey-62.4 { + catchsql { INSERT INTO ci VALUES('x', 'y') } +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-62.5 { + catchsql { INSERT INTO cd VALUES('x', 'y') } +} {0 {}} +do_test e_fkey-62.6 { + catchsql { COMMIT } +} {1 {FOREIGN KEY constraint failed}} +do_test e_fkey-62.7 { + execsql { + DELETE FROM cd; + COMMIT; + } +} {} + +#------------------------------------------------------------------------- +# Test that the maximum recursion depth of foreign key action programs is +# governed by the SQLITE_MAX_TRIGGER_DEPTH and SQLITE_LIMIT_TRIGGER_DEPTH +# settings. +# +# EVIDENCE-OF: R-42264-30503 The SQLITE_MAX_TRIGGER_DEPTH and +# SQLITE_LIMIT_TRIGGER_DEPTH settings determine the maximum allowable +# depth of trigger program recursion. For the purposes of these limits, +# foreign key actions are considered trigger programs. +# +proc test_on_delete_recursion {limit} { + drop_all_tables + execsql { + BEGIN; + CREATE TABLE t0(a PRIMARY KEY, b); + INSERT INTO t0 VALUES('x0', NULL); + } + for {set i 1} {$i <= $limit} {incr i} { + execsql " + CREATE TABLE t$i ( + a PRIMARY KEY, b REFERENCES t[expr $i-1] ON DELETE CASCADE + ); + INSERT INTO t$i VALUES('x$i', 'x[expr $i-1]'); + " + } + execsql COMMIT + catchsql " + DELETE FROM t0; + SELECT count(*) FROM t$limit; + " +} +proc test_on_update_recursion {limit} { + drop_all_tables + execsql { + BEGIN; + CREATE TABLE t0(a PRIMARY KEY); + INSERT INTO t0 VALUES('xxx'); + } + for {set i 1} {$i <= $limit} {incr i} { + set j [expr $i-1] + + execsql " + CREATE TABLE t$i (a PRIMARY KEY REFERENCES t$j ON UPDATE CASCADE); + INSERT INTO t$i VALUES('xxx'); + " + } + execsql COMMIT + catchsql " + UPDATE t0 SET a = 'yyy'; + SELECT NOT (a='yyy') FROM t$limit; + " +} + +# If the current build was created using clang with the -fsanitize=address +# switch, then the library uses considerably more stack space than usual. +# So much more, that some of the following tests cause stack overflows +# if they are run under this configuration. +# +if {[clang_sanitize_address]==0} { + do_test e_fkey-63.1.1 { + test_on_delete_recursion $SQLITE_MAX_TRIGGER_DEPTH + } {0 0} + do_test e_fkey-63.1.2 { + test_on_delete_recursion [expr $SQLITE_MAX_TRIGGER_DEPTH+1] + } {1 {too many levels of trigger recursion}} + do_test e_fkey-63.1.3 { + sqlite3_limit db SQLITE_LIMIT_TRIGGER_DEPTH 5 + test_on_delete_recursion 5 + } {0 0} + do_test e_fkey-63.1.4 { + test_on_delete_recursion 6 + } {1 {too many levels of trigger recursion}} + do_test e_fkey-63.1.5 { + sqlite3_limit db SQLITE_LIMIT_TRIGGER_DEPTH 1000000 + } {5} + do_test e_fkey-63.2.1 { + test_on_update_recursion $SQLITE_MAX_TRIGGER_DEPTH + } {0 0} + do_test e_fkey-63.2.2 { + test_on_update_recursion [expr $SQLITE_MAX_TRIGGER_DEPTH+1] + } {1 {too many levels of trigger recursion}} + do_test e_fkey-63.2.3 { + sqlite3_limit db SQLITE_LIMIT_TRIGGER_DEPTH 5 + test_on_update_recursion 5 + } {0 0} + do_test e_fkey-63.2.4 { + test_on_update_recursion 6 + } {1 {too many levels of trigger recursion}} + do_test e_fkey-63.2.5 { + sqlite3_limit db SQLITE_LIMIT_TRIGGER_DEPTH 1000000 + } {5} +} + +#------------------------------------------------------------------------- +# The setting of the recursive_triggers pragma does not affect foreign +# key actions. +# +# EVIDENCE-OF: R-44355-00270 The PRAGMA recursive_triggers setting does +# not affect the operation of foreign key actions. +# +foreach recursive_triggers_setting [list 0 1 ON OFF] { + drop_all_tables + execsql "PRAGMA recursive_triggers = $recursive_triggers_setting" + + do_test e_fkey-64.$recursive_triggers_setting.1 { + execsql { + CREATE TABLE t1(a PRIMARY KEY, b REFERENCES t1 ON DELETE CASCADE); + INSERT INTO t1 VALUES(1, NULL); + INSERT INTO t1 VALUES(2, 1); + INSERT INTO t1 VALUES(3, 2); + INSERT INTO t1 VALUES(4, 3); + INSERT INTO t1 VALUES(5, 4); + SELECT count(*) FROM t1; + } + } {5} + do_test e_fkey-64.$recursive_triggers_setting.2 { + execsql { SELECT count(*) FROM t1 WHERE a = 1 } + } {1} + do_test e_fkey-64.$recursive_triggers_setting.3 { + execsql { + DELETE FROM t1 WHERE a = 1; + SELECT count(*) FROM t1; + } + } {0} +} + +finish_test |