diff options
Diffstat (limited to 'src/insert.c')
-rw-r--r-- | src/insert.c | 3165 |
1 files changed, 3165 insertions, 0 deletions
diff --git a/src/insert.c b/src/insert.c new file mode 100644 index 0000000..1c31ca2 --- /dev/null +++ b/src/insert.c @@ -0,0 +1,3165 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains C code routines that are called by the parser +** to handle INSERT statements in SQLite. +*/ +#include "sqliteInt.h" + +/* +** Generate code that will +** +** (1) acquire a lock for table pTab then +** (2) open pTab as cursor iCur. +** +** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index +** for that table that is actually opened. +*/ +void sqlite3OpenTable( + Parse *pParse, /* Generate code into this VDBE */ + int iCur, /* The cursor number of the table */ + int iDb, /* The database index in sqlite3.aDb[] */ + Table *pTab, /* The table to be opened */ + int opcode /* OP_OpenRead or OP_OpenWrite */ +){ + Vdbe *v; + assert( !IsVirtual(pTab) ); + assert( pParse->pVdbe!=0 ); + v = pParse->pVdbe; + assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); + if( !pParse->db->noSharedCache ){ + sqlite3TableLock(pParse, iDb, pTab->tnum, + (opcode==OP_OpenWrite)?1:0, pTab->zName); + } + if( HasRowid(pTab) ){ + sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); + VdbeComment((v, "%s", pTab->zName)); + }else{ + Index *pPk = sqlite3PrimaryKeyIndex(pTab); + assert( pPk!=0 ); + assert( pPk->tnum==pTab->tnum || CORRUPT_DB ); + sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); + sqlite3VdbeSetP4KeyInfo(pParse, pPk); + VdbeComment((v, "%s", pTab->zName)); + } +} + +/* +** Return a pointer to the column affinity string associated with index +** pIdx. A column affinity string has one character for each column in +** the table, according to the affinity of the column: +** +** Character Column affinity +** ------------------------------ +** 'A' BLOB +** 'B' TEXT +** 'C' NUMERIC +** 'D' INTEGER +** 'F' REAL +** +** An extra 'D' is appended to the end of the string to cover the +** rowid that appears as the last column in every index. +** +** Memory for the buffer containing the column index affinity string +** is managed along with the rest of the Index structure. It will be +** released when sqlite3DeleteIndex() is called. +*/ +static SQLITE_NOINLINE const char *computeIndexAffStr(sqlite3 *db, Index *pIdx){ + /* The first time a column affinity string for a particular index is + ** required, it is allocated and populated here. It is then stored as + ** a member of the Index structure for subsequent use. + ** + ** The column affinity string will eventually be deleted by + ** sqliteDeleteIndex() when the Index structure itself is cleaned + ** up. + */ + int n; + Table *pTab = pIdx->pTable; + pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); + if( !pIdx->zColAff ){ + sqlite3OomFault(db); + return 0; + } + for(n=0; n<pIdx->nColumn; n++){ + i16 x = pIdx->aiColumn[n]; + char aff; + if( x>=0 ){ + aff = pTab->aCol[x].affinity; + }else if( x==XN_ROWID ){ + aff = SQLITE_AFF_INTEGER; + }else{ + assert( x==XN_EXPR ); + assert( pIdx->bHasExpr ); + assert( pIdx->aColExpr!=0 ); + aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); + } + if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; + if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; + pIdx->zColAff[n] = aff; + } + pIdx->zColAff[n] = 0; + return pIdx->zColAff; +} +const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ + if( !pIdx->zColAff ) return computeIndexAffStr(db, pIdx); + return pIdx->zColAff; +} + + +/* +** Compute an affinity string for a table. Space is obtained +** from sqlite3DbMalloc(). The caller is responsible for freeing +** the space when done. +*/ +char *sqlite3TableAffinityStr(sqlite3 *db, const Table *pTab){ + char *zColAff; + zColAff = (char *)sqlite3DbMallocRaw(db, pTab->nCol+1); + if( zColAff ){ + int i, j; + for(i=j=0; i<pTab->nCol; i++){ + if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ + zColAff[j++] = pTab->aCol[i].affinity; + } + } + do{ + zColAff[j--] = 0; + }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); + } + return zColAff; +} + +/* +** Make changes to the evolving bytecode to do affinity transformations +** of values that are about to be gathered into a row for table pTab. +** +** For ordinary (legacy, non-strict) tables: +** ----------------------------------------- +** +** Compute the affinity string for table pTab, if it has not already been +** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. +** +** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries +** which were then optimized out) then this routine becomes a no-op. +** +** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the +** affinities for register iReg and following. Or if iReg==0, +** then just set the P4 operand of the previous opcode (which should be +** an OP_MakeRecord) to the affinity string. +** +** A column affinity string has one character per column: +** +** Character Column affinity +** --------- --------------- +** 'A' BLOB +** 'B' TEXT +** 'C' NUMERIC +** 'D' INTEGER +** 'E' REAL +** +** For STRICT tables: +** ------------------ +** +** Generate an appropriate OP_TypeCheck opcode that will verify the +** datatypes against the column definitions in pTab. If iReg==0, that +** means an OP_MakeRecord opcode has already been generated and should be +** the last opcode generated. The new OP_TypeCheck needs to be inserted +** before the OP_MakeRecord. The new OP_TypeCheck should use the same +** register set as the OP_MakeRecord. If iReg>0 then register iReg is +** the first of a series of registers that will form the new record. +** Apply the type checking to that array of registers. +*/ +void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ + int i; + char *zColAff; + if( pTab->tabFlags & TF_Strict ){ + if( iReg==0 ){ + /* Move the previous opcode (which should be OP_MakeRecord) forward + ** by one slot and insert a new OP_TypeCheck where the current + ** OP_MakeRecord is found */ + VdbeOp *pPrev; + sqlite3VdbeAppendP4(v, pTab, P4_TABLE); + pPrev = sqlite3VdbeGetLastOp(v); + assert( pPrev!=0 ); + assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed ); + pPrev->opcode = OP_TypeCheck; + sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3); + }else{ + /* Insert an isolated OP_Typecheck */ + sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol); + sqlite3VdbeAppendP4(v, pTab, P4_TABLE); + } + return; + } + zColAff = pTab->zColAff; + if( zColAff==0 ){ + zColAff = sqlite3TableAffinityStr(0, pTab); + if( !zColAff ){ + sqlite3OomFault(sqlite3VdbeDb(v)); + return; + } + pTab->zColAff = zColAff; + } + assert( zColAff!=0 ); + i = sqlite3Strlen30NN(zColAff); + if( i ){ + if( iReg ){ + sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); + }else{ + assert( sqlite3VdbeGetLastOp(v)->opcode==OP_MakeRecord + || sqlite3VdbeDb(v)->mallocFailed ); + sqlite3VdbeChangeP4(v, -1, zColAff, i); + } + } +} + +/* +** Return non-zero if the table pTab in database iDb or any of its indices +** have been opened at any point in the VDBE program. This is used to see if +** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can +** run without using a temporary table for the results of the SELECT. +*/ +static int readsTable(Parse *p, int iDb, Table *pTab){ + Vdbe *v = sqlite3GetVdbe(p); + int i; + int iEnd = sqlite3VdbeCurrentAddr(v); +#ifndef SQLITE_OMIT_VIRTUALTABLE + VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; +#endif + + for(i=1; i<iEnd; i++){ + VdbeOp *pOp = sqlite3VdbeGetOp(v, i); + assert( pOp!=0 ); + if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ + Index *pIndex; + Pgno tnum = pOp->p2; + if( tnum==pTab->tnum ){ + return 1; + } + for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ + if( tnum==pIndex->tnum ){ + return 1; + } + } + } +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ + assert( pOp->p4.pVtab!=0 ); + assert( pOp->p4type==P4_VTAB ); + return 1; + } +#endif + } + return 0; +} + +/* This walker callback will compute the union of colFlags flags for all +** referenced columns in a CHECK constraint or generated column expression. +*/ +static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ + if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ + assert( pExpr->iColumn < pWalker->u.pTab->nCol ); + pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; + } + return WRC_Continue; +} + +#ifndef SQLITE_OMIT_GENERATED_COLUMNS +/* +** All regular columns for table pTab have been puts into registers +** starting with iRegStore. The registers that correspond to STORED +** or VIRTUAL columns have not yet been initialized. This routine goes +** back and computes the values for those columns based on the previously +** computed normal columns. +*/ +void sqlite3ComputeGeneratedColumns( + Parse *pParse, /* Parsing context */ + int iRegStore, /* Register holding the first column */ + Table *pTab /* The table */ +){ + int i; + Walker w; + Column *pRedo; + int eProgress; + VdbeOp *pOp; + + assert( pTab->tabFlags & TF_HasGenerated ); + testcase( pTab->tabFlags & TF_HasVirtual ); + testcase( pTab->tabFlags & TF_HasStored ); + + /* Before computing generated columns, first go through and make sure + ** that appropriate affinity has been applied to the regular columns + */ + sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); + if( (pTab->tabFlags & TF_HasStored)!=0 ){ + pOp = sqlite3VdbeGetLastOp(pParse->pVdbe); + if( pOp->opcode==OP_Affinity ){ + /* Change the OP_Affinity argument to '@' (NONE) for all stored + ** columns. '@' is the no-op affinity and those columns have not + ** yet been computed. */ + int ii, jj; + char *zP4 = pOp->p4.z; + assert( zP4!=0 ); + assert( pOp->p4type==P4_DYNAMIC ); + for(ii=jj=0; zP4[jj]; ii++){ + if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ + continue; + } + if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ + zP4[jj] = SQLITE_AFF_NONE; + } + jj++; + } + }else if( pOp->opcode==OP_TypeCheck ){ + /* If an OP_TypeCheck was generated because the table is STRICT, + ** then set the P3 operand to indicate that generated columns should + ** not be checked */ + pOp->p3 = 1; + } + } + + /* Because there can be multiple generated columns that refer to one another, + ** this is a two-pass algorithm. On the first pass, mark all generated + ** columns as "not available". + */ + for(i=0; i<pTab->nCol; i++){ + if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ + testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); + testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); + pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; + } + } + + w.u.pTab = pTab; + w.xExprCallback = exprColumnFlagUnion; + w.xSelectCallback = 0; + w.xSelectCallback2 = 0; + + /* On the second pass, compute the value of each NOT-AVAILABLE column. + ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will + ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as + ** they are needed. + */ + pParse->iSelfTab = -iRegStore; + do{ + eProgress = 0; + pRedo = 0; + for(i=0; i<pTab->nCol; i++){ + Column *pCol = pTab->aCol + i; + if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ + int x; + pCol->colFlags |= COLFLAG_BUSY; + w.eCode = 0; + sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol)); + pCol->colFlags &= ~COLFLAG_BUSY; + if( w.eCode & COLFLAG_NOTAVAIL ){ + pRedo = pCol; + continue; + } + eProgress = 1; + assert( pCol->colFlags & COLFLAG_GENERATED ); + x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; + sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x); + pCol->colFlags &= ~COLFLAG_NOTAVAIL; + } + } + }while( pRedo && eProgress ); + if( pRedo ){ + sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName); + } + pParse->iSelfTab = 0; +} +#endif /* SQLITE_OMIT_GENERATED_COLUMNS */ + + +#ifndef SQLITE_OMIT_AUTOINCREMENT +/* +** Locate or create an AutoincInfo structure associated with table pTab +** which is in database iDb. Return the register number for the register +** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT +** table. (Also return zero when doing a VACUUM since we do not want to +** update the AUTOINCREMENT counters during a VACUUM.) +** +** There is at most one AutoincInfo structure per table even if the +** same table is autoincremented multiple times due to inserts within +** triggers. A new AutoincInfo structure is created if this is the +** first use of table pTab. On 2nd and subsequent uses, the original +** AutoincInfo structure is used. +** +** Four consecutive registers are allocated: +** +** (1) The name of the pTab table. +** (2) The maximum ROWID of pTab. +** (3) The rowid in sqlite_sequence of pTab +** (4) The original value of the max ROWID in pTab, or NULL if none +** +** The 2nd register is the one that is returned. That is all the +** insert routine needs to know about. +*/ +static int autoIncBegin( + Parse *pParse, /* Parsing context */ + int iDb, /* Index of the database holding pTab */ + Table *pTab /* The table we are writing to */ +){ + int memId = 0; /* Register holding maximum rowid */ + assert( pParse->db->aDb[iDb].pSchema!=0 ); + if( (pTab->tabFlags & TF_Autoincrement)!=0 + && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 + ){ + Parse *pToplevel = sqlite3ParseToplevel(pParse); + AutoincInfo *pInfo; + Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; + + /* Verify that the sqlite_sequence table exists and is an ordinary + ** rowid table with exactly two columns. + ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ + if( pSeqTab==0 + || !HasRowid(pSeqTab) + || NEVER(IsVirtual(pSeqTab)) + || pSeqTab->nCol!=2 + ){ + pParse->nErr++; + pParse->rc = SQLITE_CORRUPT_SEQUENCE; + return 0; + } + + pInfo = pToplevel->pAinc; + while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } + if( pInfo==0 ){ + pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); + sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo); + testcase( pParse->earlyCleanup ); + if( pParse->db->mallocFailed ) return 0; + pInfo->pNext = pToplevel->pAinc; + pToplevel->pAinc = pInfo; + pInfo->pTab = pTab; + pInfo->iDb = iDb; + pToplevel->nMem++; /* Register to hold name of table */ + pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ + pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ + } + memId = pInfo->regCtr; + } + return memId; +} + +/* +** This routine generates code that will initialize all of the +** register used by the autoincrement tracker. +*/ +void sqlite3AutoincrementBegin(Parse *pParse){ + AutoincInfo *p; /* Information about an AUTOINCREMENT */ + sqlite3 *db = pParse->db; /* The database connection */ + Db *pDb; /* Database only autoinc table */ + int memId; /* Register holding max rowid */ + Vdbe *v = pParse->pVdbe; /* VDBE under construction */ + + /* This routine is never called during trigger-generation. It is + ** only called from the top-level */ + assert( pParse->pTriggerTab==0 ); + assert( sqlite3IsToplevel(pParse) ); + + assert( v ); /* We failed long ago if this is not so */ + for(p = pParse->pAinc; p; p = p->pNext){ + static const int iLn = VDBE_OFFSET_LINENO(2); + static const VdbeOpList autoInc[] = { + /* 0 */ {OP_Null, 0, 0, 0}, + /* 1 */ {OP_Rewind, 0, 10, 0}, + /* 2 */ {OP_Column, 0, 0, 0}, + /* 3 */ {OP_Ne, 0, 9, 0}, + /* 4 */ {OP_Rowid, 0, 0, 0}, + /* 5 */ {OP_Column, 0, 1, 0}, + /* 6 */ {OP_AddImm, 0, 0, 0}, + /* 7 */ {OP_Copy, 0, 0, 0}, + /* 8 */ {OP_Goto, 0, 11, 0}, + /* 9 */ {OP_Next, 0, 2, 0}, + /* 10 */ {OP_Integer, 0, 0, 0}, + /* 11 */ {OP_Close, 0, 0, 0} + }; + VdbeOp *aOp; + pDb = &db->aDb[p->iDb]; + memId = p->regCtr; + assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); + sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); + sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); + aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); + if( aOp==0 ) break; + aOp[0].p2 = memId; + aOp[0].p3 = memId+2; + aOp[2].p3 = memId; + aOp[3].p1 = memId-1; + aOp[3].p3 = memId; + aOp[3].p5 = SQLITE_JUMPIFNULL; + aOp[4].p2 = memId+1; + aOp[5].p3 = memId; + aOp[6].p1 = memId; + aOp[7].p2 = memId+2; + aOp[7].p1 = memId; + aOp[10].p2 = memId; + if( pParse->nTab==0 ) pParse->nTab = 1; + } +} + +/* +** Update the maximum rowid for an autoincrement calculation. +** +** This routine should be called when the regRowid register holds a +** new rowid that is about to be inserted. If that new rowid is +** larger than the maximum rowid in the memId memory cell, then the +** memory cell is updated. +*/ +static void autoIncStep(Parse *pParse, int memId, int regRowid){ + if( memId>0 ){ + sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); + } +} + +/* +** This routine generates the code needed to write autoincrement +** maximum rowid values back into the sqlite_sequence register. +** Every statement that might do an INSERT into an autoincrement +** table (either directly or through triggers) needs to call this +** routine just before the "exit" code. +*/ +static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ + AutoincInfo *p; + Vdbe *v = pParse->pVdbe; + sqlite3 *db = pParse->db; + + assert( v ); + for(p = pParse->pAinc; p; p = p->pNext){ + static const int iLn = VDBE_OFFSET_LINENO(2); + static const VdbeOpList autoIncEnd[] = { + /* 0 */ {OP_NotNull, 0, 2, 0}, + /* 1 */ {OP_NewRowid, 0, 0, 0}, + /* 2 */ {OP_MakeRecord, 0, 2, 0}, + /* 3 */ {OP_Insert, 0, 0, 0}, + /* 4 */ {OP_Close, 0, 0, 0} + }; + VdbeOp *aOp; + Db *pDb = &db->aDb[p->iDb]; + int iRec; + int memId = p->regCtr; + + iRec = sqlite3GetTempReg(pParse); + assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); + sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); + VdbeCoverage(v); + sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); + aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); + if( aOp==0 ) break; + aOp[0].p1 = memId+1; + aOp[1].p2 = memId+1; + aOp[2].p1 = memId-1; + aOp[2].p3 = iRec; + aOp[3].p2 = iRec; + aOp[3].p3 = memId+1; + aOp[3].p5 = OPFLAG_APPEND; + sqlite3ReleaseTempReg(pParse, iRec); + } +} +void sqlite3AutoincrementEnd(Parse *pParse){ + if( pParse->pAinc ) autoIncrementEnd(pParse); +} +#else +/* +** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines +** above are all no-ops +*/ +# define autoIncBegin(A,B,C) (0) +# define autoIncStep(A,B,C) +#endif /* SQLITE_OMIT_AUTOINCREMENT */ + + +/* Forward declaration */ +static int xferOptimization( + Parse *pParse, /* Parser context */ + Table *pDest, /* The table we are inserting into */ + Select *pSelect, /* A SELECT statement to use as the data source */ + int onError, /* How to handle constraint errors */ + int iDbDest /* The database of pDest */ +); + +/* +** This routine is called to handle SQL of the following forms: +** +** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... +** insert into TABLE (IDLIST) select +** insert into TABLE (IDLIST) default values +** +** The IDLIST following the table name is always optional. If omitted, +** then a list of all (non-hidden) columns for the table is substituted. +** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST +** is omitted. +** +** For the pSelect parameter holds the values to be inserted for the +** first two forms shown above. A VALUES clause is really just short-hand +** for a SELECT statement that omits the FROM clause and everything else +** that follows. If the pSelect parameter is NULL, that means that the +** DEFAULT VALUES form of the INSERT statement is intended. +** +** The code generated follows one of four templates. For a simple +** insert with data coming from a single-row VALUES clause, the code executes +** once straight down through. Pseudo-code follows (we call this +** the "1st template"): +** +** open write cursor to <table> and its indices +** put VALUES clause expressions into registers +** write the resulting record into <table> +** cleanup +** +** The three remaining templates assume the statement is of the form +** +** INSERT INTO <table> SELECT ... +** +** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - +** in other words if the SELECT pulls all columns from a single table +** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and +** if <table2> and <table1> are distinct tables but have identical +** schemas, including all the same indices, then a special optimization +** is invoked that copies raw records from <table2> over to <table1>. +** See the xferOptimization() function for the implementation of this +** template. This is the 2nd template. +** +** open a write cursor to <table> +** open read cursor on <table2> +** transfer all records in <table2> over to <table> +** close cursors +** foreach index on <table> +** open a write cursor on the <table> index +** open a read cursor on the corresponding <table2> index +** transfer all records from the read to the write cursors +** close cursors +** end foreach +** +** The 3rd template is for when the second template does not apply +** and the SELECT clause does not read from <table> at any time. +** The generated code follows this template: +** +** X <- A +** goto B +** A: setup for the SELECT +** loop over the rows in the SELECT +** load values into registers R..R+n +** yield X +** end loop +** cleanup after the SELECT +** end-coroutine X +** B: open write cursor to <table> and its indices +** C: yield X, at EOF goto D +** insert the select result into <table> from R..R+n +** goto C +** D: cleanup +** +** The 4th template is used if the insert statement takes its +** values from a SELECT but the data is being inserted into a table +** that is also read as part of the SELECT. In the third form, +** we have to use an intermediate table to store the results of +** the select. The template is like this: +** +** X <- A +** goto B +** A: setup for the SELECT +** loop over the tables in the SELECT +** load value into register R..R+n +** yield X +** end loop +** cleanup after the SELECT +** end co-routine R +** B: open temp table +** L: yield X, at EOF goto M +** insert row from R..R+n into temp table +** goto L +** M: open write cursor to <table> and its indices +** rewind temp table +** C: loop over rows of intermediate table +** transfer values form intermediate table into <table> +** end loop +** D: cleanup +*/ +void sqlite3Insert( + Parse *pParse, /* Parser context */ + SrcList *pTabList, /* Name of table into which we are inserting */ + Select *pSelect, /* A SELECT statement to use as the data source */ + IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ + int onError, /* How to handle constraint errors */ + Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ +){ + sqlite3 *db; /* The main database structure */ + Table *pTab; /* The table to insert into. aka TABLE */ + int i, j; /* Loop counters */ + Vdbe *v; /* Generate code into this virtual machine */ + Index *pIdx; /* For looping over indices of the table */ + int nColumn; /* Number of columns in the data */ + int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ + int iDataCur = 0; /* VDBE cursor that is the main data repository */ + int iIdxCur = 0; /* First index cursor */ + int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ + int endOfLoop; /* Label for the end of the insertion loop */ + int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ + int addrInsTop = 0; /* Jump to label "D" */ + int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ + SelectDest dest; /* Destination for SELECT on rhs of INSERT */ + int iDb; /* Index of database holding TABLE */ + u8 useTempTable = 0; /* Store SELECT results in intermediate table */ + u8 appendFlag = 0; /* True if the insert is likely to be an append */ + u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ + u8 bIdListInOrder; /* True if IDLIST is in table order */ + ExprList *pList = 0; /* List of VALUES() to be inserted */ + int iRegStore; /* Register in which to store next column */ + + /* Register allocations */ + int regFromSelect = 0;/* Base register for data coming from SELECT */ + int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ + int regRowCount = 0; /* Memory cell used for the row counter */ + int regIns; /* Block of regs holding rowid+data being inserted */ + int regRowid; /* registers holding insert rowid */ + int regData; /* register holding first column to insert */ + int *aRegIdx = 0; /* One register allocated to each index */ + +#ifndef SQLITE_OMIT_TRIGGER + int isView; /* True if attempting to insert into a view */ + Trigger *pTrigger; /* List of triggers on pTab, if required */ + int tmask; /* Mask of trigger times */ +#endif + + db = pParse->db; + assert( db->pParse==pParse ); + if( pParse->nErr ){ + goto insert_cleanup; + } + assert( db->mallocFailed==0 ); + dest.iSDParm = 0; /* Suppress a harmless compiler warning */ + + /* If the Select object is really just a simple VALUES() list with a + ** single row (the common case) then keep that one row of values + ** and discard the other (unused) parts of the pSelect object + */ + if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ + pList = pSelect->pEList; + pSelect->pEList = 0; + sqlite3SelectDelete(db, pSelect); + pSelect = 0; + } + + /* Locate the table into which we will be inserting new information. + */ + assert( pTabList->nSrc==1 ); + pTab = sqlite3SrcListLookup(pParse, pTabList); + if( pTab==0 ){ + goto insert_cleanup; + } + iDb = sqlite3SchemaToIndex(db, pTab->pSchema); + assert( iDb<db->nDb ); + if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, + db->aDb[iDb].zDbSName) ){ + goto insert_cleanup; + } + withoutRowid = !HasRowid(pTab); + + /* Figure out if we have any triggers and if the table being + ** inserted into is a view + */ +#ifndef SQLITE_OMIT_TRIGGER + pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); + isView = IsView(pTab); +#else +# define pTrigger 0 +# define tmask 0 +# define isView 0 +#endif +#ifdef SQLITE_OMIT_VIEW +# undef isView +# define isView 0 +#endif + assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); + +#if TREETRACE_ENABLED + if( sqlite3TreeTrace & 0x10000 ){ + sqlite3TreeViewLine(0, "In sqlite3Insert() at %s:%d", __FILE__, __LINE__); + sqlite3TreeViewInsert(pParse->pWith, pTabList, pColumn, pSelect, pList, + onError, pUpsert, pTrigger); + } +#endif + + /* If pTab is really a view, make sure it has been initialized. + ** ViewGetColumnNames() is a no-op if pTab is not a view. + */ + if( sqlite3ViewGetColumnNames(pParse, pTab) ){ + goto insert_cleanup; + } + + /* Cannot insert into a read-only table. + */ + if( sqlite3IsReadOnly(pParse, pTab, pTrigger) ){ + goto insert_cleanup; + } + + /* Allocate a VDBE + */ + v = sqlite3GetVdbe(pParse); + if( v==0 ) goto insert_cleanup; + if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); + sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); + +#ifndef SQLITE_OMIT_XFER_OPT + /* If the statement is of the form + ** + ** INSERT INTO <table1> SELECT * FROM <table2>; + ** + ** Then special optimizations can be applied that make the transfer + ** very fast and which reduce fragmentation of indices. + ** + ** This is the 2nd template. + */ + if( pColumn==0 + && pSelect!=0 + && pTrigger==0 + && xferOptimization(pParse, pTab, pSelect, onError, iDb) + ){ + assert( !pTrigger ); + assert( pList==0 ); + goto insert_end; + } +#endif /* SQLITE_OMIT_XFER_OPT */ + + /* If this is an AUTOINCREMENT table, look up the sequence number in the + ** sqlite_sequence table and store it in memory cell regAutoinc. + */ + regAutoinc = autoIncBegin(pParse, iDb, pTab); + + /* Allocate a block registers to hold the rowid and the values + ** for all columns of the new row. + */ + regRowid = regIns = pParse->nMem+1; + pParse->nMem += pTab->nCol + 1; + if( IsVirtual(pTab) ){ + regRowid++; + pParse->nMem++; + } + regData = regRowid+1; + + /* If the INSERT statement included an IDLIST term, then make sure + ** all elements of the IDLIST really are columns of the table and + ** remember the column indices. + ** + ** If the table has an INTEGER PRIMARY KEY column and that column + ** is named in the IDLIST, then record in the ipkColumn variable + ** the index into IDLIST of the primary key column. ipkColumn is + ** the index of the primary key as it appears in IDLIST, not as + ** is appears in the original table. (The index of the INTEGER + ** PRIMARY KEY in the original table is pTab->iPKey.) After this + ** loop, if ipkColumn==(-1), that means that integer primary key + ** is unspecified, and hence the table is either WITHOUT ROWID or + ** it will automatically generated an integer primary key. + ** + ** bIdListInOrder is true if the columns in IDLIST are in storage + ** order. This enables an optimization that avoids shuffling the + ** columns into storage order. False negatives are harmless, + ** but false positives will cause database corruption. + */ + bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; + if( pColumn ){ + assert( pColumn->eU4!=EU4_EXPR ); + pColumn->eU4 = EU4_IDX; + for(i=0; i<pColumn->nId; i++){ + pColumn->a[i].u4.idx = -1; + } + for(i=0; i<pColumn->nId; i++){ + for(j=0; j<pTab->nCol; j++){ + if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){ + pColumn->a[i].u4.idx = j; + if( i!=j ) bIdListInOrder = 0; + if( j==pTab->iPKey ){ + ipkColumn = i; assert( !withoutRowid ); + } +#ifndef SQLITE_OMIT_GENERATED_COLUMNS + if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ + sqlite3ErrorMsg(pParse, + "cannot INSERT into generated column \"%s\"", + pTab->aCol[j].zCnName); + goto insert_cleanup; + } +#endif + break; + } + } + if( j>=pTab->nCol ){ + if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ + ipkColumn = i; + bIdListInOrder = 0; + }else{ + sqlite3ErrorMsg(pParse, "table %S has no column named %s", + pTabList->a, pColumn->a[i].zName); + pParse->checkSchema = 1; + goto insert_cleanup; + } + } + } + } + + /* Figure out how many columns of data are supplied. If the data + ** is coming from a SELECT statement, then generate a co-routine that + ** produces a single row of the SELECT on each invocation. The + ** co-routine is the common header to the 3rd and 4th templates. + */ + if( pSelect ){ + /* Data is coming from a SELECT or from a multi-row VALUES clause. + ** Generate a co-routine to run the SELECT. */ + int regYield; /* Register holding co-routine entry-point */ + int addrTop; /* Top of the co-routine */ + int rc; /* Result code */ + + regYield = ++pParse->nMem; + addrTop = sqlite3VdbeCurrentAddr(v) + 1; + sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); + sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); + dest.iSdst = bIdListInOrder ? regData : 0; + dest.nSdst = pTab->nCol; + rc = sqlite3Select(pParse, pSelect, &dest); + regFromSelect = dest.iSdst; + assert( db->pParse==pParse ); + if( rc || pParse->nErr ) goto insert_cleanup; + assert( db->mallocFailed==0 ); + sqlite3VdbeEndCoroutine(v, regYield); + sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ + assert( pSelect->pEList ); + nColumn = pSelect->pEList->nExpr; + + /* Set useTempTable to TRUE if the result of the SELECT statement + ** should be written into a temporary table (template 4). Set to + ** FALSE if each output row of the SELECT can be written directly into + ** the destination table (template 3). + ** + ** A temp table must be used if the table being updated is also one + ** of the tables being read by the SELECT statement. Also use a + ** temp table in the case of row triggers. + */ + if( pTrigger || readsTable(pParse, iDb, pTab) ){ + useTempTable = 1; + } + + if( useTempTable ){ + /* Invoke the coroutine to extract information from the SELECT + ** and add it to a transient table srcTab. The code generated + ** here is from the 4th template: + ** + ** B: open temp table + ** L: yield X, goto M at EOF + ** insert row from R..R+n into temp table + ** goto L + ** M: ... + */ + int regRec; /* Register to hold packed record */ + int regTempRowid; /* Register to hold temp table ROWID */ + int addrL; /* Label "L" */ + + srcTab = pParse->nTab++; + regRec = sqlite3GetTempReg(pParse); + regTempRowid = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); + addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); + sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); + sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); + sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); + sqlite3VdbeGoto(v, addrL); + sqlite3VdbeJumpHere(v, addrL); + sqlite3ReleaseTempReg(pParse, regRec); + sqlite3ReleaseTempReg(pParse, regTempRowid); + } + }else{ + /* This is the case if the data for the INSERT is coming from a + ** single-row VALUES clause + */ + NameContext sNC; + memset(&sNC, 0, sizeof(sNC)); + sNC.pParse = pParse; + srcTab = -1; + assert( useTempTable==0 ); + if( pList ){ + nColumn = pList->nExpr; + if( sqlite3ResolveExprListNames(&sNC, pList) ){ + goto insert_cleanup; + } + }else{ + nColumn = 0; + } + } + + /* If there is no IDLIST term but the table has an integer primary + ** key, the set the ipkColumn variable to the integer primary key + ** column index in the original table definition. + */ + if( pColumn==0 && nColumn>0 ){ + ipkColumn = pTab->iPKey; +#ifndef SQLITE_OMIT_GENERATED_COLUMNS + if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ + testcase( pTab->tabFlags & TF_HasVirtual ); + testcase( pTab->tabFlags & TF_HasStored ); + for(i=ipkColumn-1; i>=0; i--){ + if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ + testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); + testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); + ipkColumn--; + } + } + } +#endif + + /* Make sure the number of columns in the source data matches the number + ** of columns to be inserted into the table. + */ + assert( TF_HasHidden==COLFLAG_HIDDEN ); + assert( TF_HasGenerated==COLFLAG_GENERATED ); + assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) ); + if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){ + for(i=0; i<pTab->nCol; i++){ + if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; + } + } + if( nColumn!=(pTab->nCol-nHidden) ){ + sqlite3ErrorMsg(pParse, + "table %S has %d columns but %d values were supplied", + pTabList->a, pTab->nCol-nHidden, nColumn); + goto insert_cleanup; + } + } + if( pColumn!=0 && nColumn!=pColumn->nId ){ + sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); + goto insert_cleanup; + } + + /* Initialize the count of rows to be inserted + */ + if( (db->flags & SQLITE_CountRows)!=0 + && !pParse->nested + && !pParse->pTriggerTab + && !pParse->bReturning + ){ + regRowCount = ++pParse->nMem; + sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); + } + + /* If this is not a view, open the table and and all indices */ + if( !isView ){ + int nIdx; + nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, + &iDataCur, &iIdxCur); + aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); + if( aRegIdx==0 ){ + goto insert_cleanup; + } + for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ + assert( pIdx ); + aRegIdx[i] = ++pParse->nMem; + pParse->nMem += pIdx->nColumn; + } + aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ + } +#ifndef SQLITE_OMIT_UPSERT + if( pUpsert ){ + Upsert *pNx; + if( IsVirtual(pTab) ){ + sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", + pTab->zName); + goto insert_cleanup; + } + if( IsView(pTab) ){ + sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); + goto insert_cleanup; + } + if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ + goto insert_cleanup; + } + pTabList->a[0].iCursor = iDataCur; + pNx = pUpsert; + do{ + pNx->pUpsertSrc = pTabList; + pNx->regData = regData; + pNx->iDataCur = iDataCur; + pNx->iIdxCur = iIdxCur; + if( pNx->pUpsertTarget ){ + if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){ + goto insert_cleanup; + } + } + pNx = pNx->pNextUpsert; + }while( pNx!=0 ); + } +#endif + + + /* This is the top of the main insertion loop */ + if( useTempTable ){ + /* This block codes the top of loop only. The complete loop is the + ** following pseudocode (template 4): + ** + ** rewind temp table, if empty goto D + ** C: loop over rows of intermediate table + ** transfer values form intermediate table into <table> + ** end loop + ** D: ... + */ + addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); + addrCont = sqlite3VdbeCurrentAddr(v); + }else if( pSelect ){ + /* This block codes the top of loop only. The complete loop is the + ** following pseudocode (template 3): + ** + ** C: yield X, at EOF goto D + ** insert the select result into <table> from R..R+n + ** goto C + ** D: ... + */ + sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0); + addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); + VdbeCoverage(v); + if( ipkColumn>=0 ){ + /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the + ** SELECT, go ahead and copy the value into the rowid slot now, so that + ** the value does not get overwritten by a NULL at tag-20191021-002. */ + sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); + } + } + + /* Compute data for ordinary columns of the new entry. Values + ** are written in storage order into registers starting with regData. + ** Only ordinary columns are computed in this loop. The rowid + ** (if there is one) is computed later and generated columns are + ** computed after the rowid since they might depend on the value + ** of the rowid. + */ + nHidden = 0; + iRegStore = regData; assert( regData==regRowid+1 ); + for(i=0; i<pTab->nCol; i++, iRegStore++){ + int k; + u32 colFlags; + assert( i>=nHidden ); + if( i==pTab->iPKey ){ + /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled + ** using the rowid. So put a NULL in the IPK slot of the record to avoid + ** using excess space. The file format definition requires this extra + ** NULL - we cannot optimize further by skipping the column completely */ + sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); + continue; + } + if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ + nHidden++; + if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ + /* Virtual columns do not participate in OP_MakeRecord. So back up + ** iRegStore by one slot to compensate for the iRegStore++ in the + ** outer for() loop */ + iRegStore--; + continue; + }else if( (colFlags & COLFLAG_STORED)!=0 ){ + /* Stored columns are computed later. But if there are BEFORE + ** triggers, the slots used for stored columns will be OP_Copy-ed + ** to a second block of registers, so the register needs to be + ** initialized to NULL to avoid an uninitialized register read */ + if( tmask & TRIGGER_BEFORE ){ + sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); + } + continue; + }else if( pColumn==0 ){ + /* Hidden columns that are not explicitly named in the INSERT + ** get there default value */ + sqlite3ExprCodeFactorable(pParse, + sqlite3ColumnExpr(pTab, &pTab->aCol[i]), + iRegStore); + continue; + } + } + if( pColumn ){ + assert( pColumn->eU4==EU4_IDX ); + for(j=0; j<pColumn->nId && pColumn->a[j].u4.idx!=i; j++){} + if( j>=pColumn->nId ){ + /* A column not named in the insert column list gets its + ** default value */ + sqlite3ExprCodeFactorable(pParse, + sqlite3ColumnExpr(pTab, &pTab->aCol[i]), + iRegStore); + continue; + } + k = j; + }else if( nColumn==0 ){ + /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ + sqlite3ExprCodeFactorable(pParse, + sqlite3ColumnExpr(pTab, &pTab->aCol[i]), + iRegStore); + continue; + }else{ + k = i - nHidden; + } + + if( useTempTable ){ + sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); + }else if( pSelect ){ + if( regFromSelect!=regData ){ + sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); + } + }else{ + Expr *pX = pList->a[k].pExpr; + int y = sqlite3ExprCodeTarget(pParse, pX, iRegStore); + if( y!=iRegStore ){ + sqlite3VdbeAddOp2(v, + ExprHasProperty(pX, EP_Subquery) ? OP_Copy : OP_SCopy, y, iRegStore); + } + } + } + + + /* Run the BEFORE and INSTEAD OF triggers, if there are any + */ + endOfLoop = sqlite3VdbeMakeLabel(pParse); + if( tmask & TRIGGER_BEFORE ){ + int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); + + /* build the NEW.* reference row. Note that if there is an INTEGER + ** PRIMARY KEY into which a NULL is being inserted, that NULL will be + ** translated into a unique ID for the row. But on a BEFORE trigger, + ** we do not know what the unique ID will be (because the insert has + ** not happened yet) so we substitute a rowid of -1 + */ + if( ipkColumn<0 ){ + sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); + }else{ + int addr1; + assert( !withoutRowid ); + if( useTempTable ){ + sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); + }else{ + assert( pSelect==0 ); /* Otherwise useTempTable is true */ + sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); + } + addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); + sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); + sqlite3VdbeJumpHere(v, addr1); + sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); + } + + /* Copy the new data already generated. */ + assert( pTab->nNVCol>0 || pParse->nErr>0 ); + sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); + +#ifndef SQLITE_OMIT_GENERATED_COLUMNS + /* Compute the new value for generated columns after all other + ** columns have already been computed. This must be done after + ** computing the ROWID in case one of the generated columns + ** refers to the ROWID. */ + if( pTab->tabFlags & TF_HasGenerated ){ + testcase( pTab->tabFlags & TF_HasVirtual ); + testcase( pTab->tabFlags & TF_HasStored ); + sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); + } +#endif + + /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, + ** do not attempt any conversions before assembling the record. + ** If this is a real table, attempt conversions as required by the + ** table column affinities. + */ + if( !isView ){ + sqlite3TableAffinity(v, pTab, regCols+1); + } + + /* Fire BEFORE or INSTEAD OF triggers */ + sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, + pTab, regCols-pTab->nCol-1, onError, endOfLoop); + + sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); + } + + if( !isView ){ + if( IsVirtual(pTab) ){ + /* The row that the VUpdate opcode will delete: none */ + sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); + } + if( ipkColumn>=0 ){ + /* Compute the new rowid */ + if( useTempTable ){ + sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); + }else if( pSelect ){ + /* Rowid already initialized at tag-20191021-001 */ + }else{ + Expr *pIpk = pList->a[ipkColumn].pExpr; + if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ + sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); + appendFlag = 1; + }else{ + sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); + } + } + /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid + ** to generate a unique primary key value. + */ + if( !appendFlag ){ + int addr1; + if( !IsVirtual(pTab) ){ + addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); + sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); + sqlite3VdbeJumpHere(v, addr1); + }else{ + addr1 = sqlite3VdbeCurrentAddr(v); + sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); + } + sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); + } + }else if( IsVirtual(pTab) || withoutRowid ){ + sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); + }else{ + sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); + appendFlag = 1; + } + autoIncStep(pParse, regAutoinc, regRowid); + +#ifndef SQLITE_OMIT_GENERATED_COLUMNS + /* Compute the new value for generated columns after all other + ** columns have already been computed. This must be done after + ** computing the ROWID in case one of the generated columns + ** is derived from the INTEGER PRIMARY KEY. */ + if( pTab->tabFlags & TF_HasGenerated ){ + sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); + } +#endif + + /* Generate code to check constraints and generate index keys and + ** do the insertion. + */ +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( IsVirtual(pTab) ){ + const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); + sqlite3VtabMakeWritable(pParse, pTab); + sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); + sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); + sqlite3MayAbort(pParse); + }else +#endif + { + int isReplace = 0;/* Set to true if constraints may cause a replace */ + int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ + sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, + regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert + ); + if( db->flags & SQLITE_ForeignKeys ){ + sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); + } + + /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE + ** constraints or (b) there are no triggers and this table is not a + ** parent table in a foreign key constraint. It is safe to set the + ** flag in the second case as if any REPLACE constraint is hit, an + ** OP_Delete or OP_IdxDelete instruction will be executed on each + ** cursor that is disturbed. And these instructions both clear the + ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT + ** functionality. */ + bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); + sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, + regIns, aRegIdx, 0, appendFlag, bUseSeek + ); + } +#ifdef SQLITE_ALLOW_ROWID_IN_VIEW + }else if( pParse->bReturning ){ + /* If there is a RETURNING clause, populate the rowid register with + ** constant value -1, in case one or more of the returned expressions + ** refer to the "rowid" of the view. */ + sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); +#endif + } + + /* Update the count of rows that are inserted + */ + if( regRowCount ){ + sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); + } + + if( pTrigger ){ + /* Code AFTER triggers */ + sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, + pTab, regData-2-pTab->nCol, onError, endOfLoop); + } + + /* The bottom of the main insertion loop, if the data source + ** is a SELECT statement. + */ + sqlite3VdbeResolveLabel(v, endOfLoop); + if( useTempTable ){ + sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); + sqlite3VdbeJumpHere(v, addrInsTop); + sqlite3VdbeAddOp1(v, OP_Close, srcTab); + }else if( pSelect ){ + sqlite3VdbeGoto(v, addrCont); +#ifdef SQLITE_DEBUG + /* If we are jumping back to an OP_Yield that is preceded by an + ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the + ** OP_ReleaseReg will be included in the loop. */ + if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){ + assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield ); + sqlite3VdbeChangeP5(v, 1); + } +#endif + sqlite3VdbeJumpHere(v, addrInsTop); + } + +#ifndef SQLITE_OMIT_XFER_OPT +insert_end: +#endif /* SQLITE_OMIT_XFER_OPT */ + /* Update the sqlite_sequence table by storing the content of the + ** maximum rowid counter values recorded while inserting into + ** autoincrement tables. + */ + if( pParse->nested==0 && pParse->pTriggerTab==0 ){ + sqlite3AutoincrementEnd(pParse); + } + + /* + ** Return the number of rows inserted. If this routine is + ** generating code because of a call to sqlite3NestedParse(), do not + ** invoke the callback function. + */ + if( regRowCount ){ + sqlite3CodeChangeCount(v, regRowCount, "rows inserted"); + } + +insert_cleanup: + sqlite3SrcListDelete(db, pTabList); + sqlite3ExprListDelete(db, pList); + sqlite3UpsertDelete(db, pUpsert); + sqlite3SelectDelete(db, pSelect); + sqlite3IdListDelete(db, pColumn); + if( aRegIdx ) sqlite3DbNNFreeNN(db, aRegIdx); +} + +/* Make sure "isView" and other macros defined above are undefined. Otherwise +** they may interfere with compilation of other functions in this file +** (or in another file, if this file becomes part of the amalgamation). */ +#ifdef isView + #undef isView +#endif +#ifdef pTrigger + #undef pTrigger +#endif +#ifdef tmask + #undef tmask +#endif + +/* +** Meanings of bits in of pWalker->eCode for +** sqlite3ExprReferencesUpdatedColumn() +*/ +#define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ +#define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ + +/* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). +* Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this +** expression node references any of the +** columns that are being modified by an UPDATE statement. +*/ +static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ + if( pExpr->op==TK_COLUMN ){ + assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); + if( pExpr->iColumn>=0 ){ + if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ + pWalker->eCode |= CKCNSTRNT_COLUMN; + } + }else{ + pWalker->eCode |= CKCNSTRNT_ROWID; + } + } + return WRC_Continue; +} + +/* +** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The +** only columns that are modified by the UPDATE are those for which +** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. +** +** Return true if CHECK constraint pExpr uses any of the +** changing columns (or the rowid if it is changing). In other words, +** return true if this CHECK constraint must be validated for +** the new row in the UPDATE statement. +** +** 2018-09-15: pExpr might also be an expression for an index-on-expressions. +** The operation of this routine is the same - return true if an only if +** the expression uses one or more of columns identified by the second and +** third arguments. +*/ +int sqlite3ExprReferencesUpdatedColumn( + Expr *pExpr, /* The expression to be checked */ + int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ + int chngRowid /* True if UPDATE changes the rowid */ +){ + Walker w; + memset(&w, 0, sizeof(w)); + w.eCode = 0; + w.xExprCallback = checkConstraintExprNode; + w.u.aiCol = aiChng; + sqlite3WalkExpr(&w, pExpr); + if( !chngRowid ){ + testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); + w.eCode &= ~CKCNSTRNT_ROWID; + } + testcase( w.eCode==0 ); + testcase( w.eCode==CKCNSTRNT_COLUMN ); + testcase( w.eCode==CKCNSTRNT_ROWID ); + testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); + return w.eCode!=0; +} + +/* +** The sqlite3GenerateConstraintChecks() routine usually wants to visit +** the indexes of a table in the order provided in the Table->pIndex list. +** However, sometimes (rarely - when there is an upsert) it wants to visit +** the indexes in a different order. The following data structures accomplish +** this. +** +** The IndexIterator object is used to walk through all of the indexes +** of a table in either Index.pNext order, or in some other order established +** by an array of IndexListTerm objects. +*/ +typedef struct IndexListTerm IndexListTerm; +typedef struct IndexIterator IndexIterator; +struct IndexIterator { + int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */ + int i; /* Index of the current item from the list */ + union { + struct { /* Use this object for eType==0: A Index.pNext list */ + Index *pIdx; /* The current Index */ + } lx; + struct { /* Use this object for eType==1; Array of IndexListTerm */ + int nIdx; /* Size of the array */ + IndexListTerm *aIdx; /* Array of IndexListTerms */ + } ax; + } u; +}; + +/* When IndexIterator.eType==1, then each index is an array of instances +** of the following object +*/ +struct IndexListTerm { + Index *p; /* The index */ + int ix; /* Which entry in the original Table.pIndex list is this index*/ +}; + +/* Return the first index on the list */ +static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){ + assert( pIter->i==0 ); + if( pIter->eType ){ + *pIx = pIter->u.ax.aIdx[0].ix; + return pIter->u.ax.aIdx[0].p; + }else{ + *pIx = 0; + return pIter->u.lx.pIdx; + } +} + +/* Return the next index from the list. Return NULL when out of indexes */ +static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){ + if( pIter->eType ){ + int i = ++pIter->i; + if( i>=pIter->u.ax.nIdx ){ + *pIx = i; + return 0; + } + *pIx = pIter->u.ax.aIdx[i].ix; + return pIter->u.ax.aIdx[i].p; + }else{ + ++(*pIx); + pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext; + return pIter->u.lx.pIdx; + } +} + +/* +** Generate code to do constraint checks prior to an INSERT or an UPDATE +** on table pTab. +** +** The regNewData parameter is the first register in a range that contains +** the data to be inserted or the data after the update. There will be +** pTab->nCol+1 registers in this range. The first register (the one +** that regNewData points to) will contain the new rowid, or NULL in the +** case of a WITHOUT ROWID table. The second register in the range will +** contain the content of the first table column. The third register will +** contain the content of the second table column. And so forth. +** +** The regOldData parameter is similar to regNewData except that it contains +** the data prior to an UPDATE rather than afterwards. regOldData is zero +** for an INSERT. This routine can distinguish between UPDATE and INSERT by +** checking regOldData for zero. +** +** For an UPDATE, the pkChng boolean is true if the true primary key (the +** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) +** might be modified by the UPDATE. If pkChng is false, then the key of +** the iDataCur content table is guaranteed to be unchanged by the UPDATE. +** +** For an INSERT, the pkChng boolean indicates whether or not the rowid +** was explicitly specified as part of the INSERT statement. If pkChng +** is zero, it means that the either rowid is computed automatically or +** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, +** pkChng will only be true if the INSERT statement provides an integer +** value for either the rowid column or its INTEGER PRIMARY KEY alias. +** +** The code generated by this routine will store new index entries into +** registers identified by aRegIdx[]. No index entry is created for +** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is +** the same as the order of indices on the linked list of indices +** at pTab->pIndex. +** +** (2019-05-07) The generated code also creates a new record for the +** main table, if pTab is a rowid table, and stores that record in the +** register identified by aRegIdx[nIdx] - in other words in the first +** entry of aRegIdx[] past the last index. It is important that the +** record be generated during constraint checks to avoid affinity changes +** to the register content that occur after constraint checks but before +** the new record is inserted. +** +** The caller must have already opened writeable cursors on the main +** table and all applicable indices (that is to say, all indices for which +** aRegIdx[] is not zero). iDataCur is the cursor for the main table when +** inserting or updating a rowid table, or the cursor for the PRIMARY KEY +** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor +** for the first index in the pTab->pIndex list. Cursors for other indices +** are at iIdxCur+N for the N-th element of the pTab->pIndex list. +** +** This routine also generates code to check constraints. NOT NULL, +** CHECK, and UNIQUE constraints are all checked. If a constraint fails, +** then the appropriate action is performed. There are five possible +** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. +** +** Constraint type Action What Happens +** --------------- ---------- ---------------------------------------- +** any ROLLBACK The current transaction is rolled back and +** sqlite3_step() returns immediately with a +** return code of SQLITE_CONSTRAINT. +** +** any ABORT Back out changes from the current command +** only (do not do a complete rollback) then +** cause sqlite3_step() to return immediately +** with SQLITE_CONSTRAINT. +** +** any FAIL Sqlite3_step() returns immediately with a +** return code of SQLITE_CONSTRAINT. The +** transaction is not rolled back and any +** changes to prior rows are retained. +** +** any IGNORE The attempt in insert or update the current +** row is skipped, without throwing an error. +** Processing continues with the next row. +** (There is an immediate jump to ignoreDest.) +** +** NOT NULL REPLACE The NULL value is replace by the default +** value for that column. If the default value +** is NULL, the action is the same as ABORT. +** +** UNIQUE REPLACE The other row that conflicts with the row +** being inserted is removed. +** +** CHECK REPLACE Illegal. The results in an exception. +** +** Which action to take is determined by the overrideError parameter. +** Or if overrideError==OE_Default, then the pParse->onError parameter +** is used. Or if pParse->onError==OE_Default then the onError value +** for the constraint is used. +*/ +void sqlite3GenerateConstraintChecks( + Parse *pParse, /* The parser context */ + Table *pTab, /* The table being inserted or updated */ + int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ + int iDataCur, /* Canonical data cursor (main table or PK index) */ + int iIdxCur, /* First index cursor */ + int regNewData, /* First register in a range holding values to insert */ + int regOldData, /* Previous content. 0 for INSERTs */ + u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ + u8 overrideError, /* Override onError to this if not OE_Default */ + int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ + int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ + int *aiChng, /* column i is unchanged if aiChng[i]<0 */ + Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ +){ + Vdbe *v; /* VDBE under construction */ + Index *pIdx; /* Pointer to one of the indices */ + Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */ + sqlite3 *db; /* Database connection */ + int i; /* loop counter */ + int ix; /* Index loop counter */ + int nCol; /* Number of columns */ + int onError; /* Conflict resolution strategy */ + int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ + int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ + Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */ + u8 isUpdate; /* True if this is an UPDATE operation */ + u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ + int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */ + int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */ + int ipkTop = 0; /* Top of the IPK uniqueness check */ + int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ + /* Variables associated with retesting uniqueness constraints after + ** replace triggers fire have run */ + int regTrigCnt; /* Register used to count replace trigger invocations */ + int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ + int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ + Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ + int nReplaceTrig = 0; /* Number of replace triggers coded */ + IndexIterator sIdxIter; /* Index iterator */ + + isUpdate = regOldData!=0; + db = pParse->db; + v = pParse->pVdbe; + assert( v!=0 ); + assert( !IsView(pTab) ); /* This table is not a VIEW */ + nCol = pTab->nCol; + + /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for + ** normal rowid tables. nPkField is the number of key fields in the + ** pPk index or 1 for a rowid table. In other words, nPkField is the + ** number of fields in the true primary key of the table. */ + if( HasRowid(pTab) ){ + pPk = 0; + nPkField = 1; + }else{ + pPk = sqlite3PrimaryKeyIndex(pTab); + nPkField = pPk->nKeyCol; + } + + /* Record that this module has started */ + VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", + iDataCur, iIdxCur, regNewData, regOldData, pkChng)); + + /* Test all NOT NULL constraints. + */ + if( pTab->tabFlags & TF_HasNotNull ){ + int b2ndPass = 0; /* True if currently running 2nd pass */ + int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */ + int nGenerated = 0; /* Number of generated columns with NOT NULL */ + while(1){ /* Make 2 passes over columns. Exit loop via "break" */ + for(i=0; i<nCol; i++){ + int iReg; /* Register holding column value */ + Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */ + int isGenerated; /* non-zero if column is generated */ + onError = pCol->notNull; + if( onError==OE_None ) continue; /* No NOT NULL on this column */ + if( i==pTab->iPKey ){ + continue; /* ROWID is never NULL */ + } + isGenerated = pCol->colFlags & COLFLAG_GENERATED; + if( isGenerated && !b2ndPass ){ + nGenerated++; + continue; /* Generated columns processed on 2nd pass */ + } + if( aiChng && aiChng[i]<0 && !isGenerated ){ + /* Do not check NOT NULL on columns that do not change */ + continue; + } + if( overrideError!=OE_Default ){ + onError = overrideError; + }else if( onError==OE_Default ){ + onError = OE_Abort; + } + if( onError==OE_Replace ){ + if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */ + || pCol->iDflt==0 /* REPLACE is ABORT if no DEFAULT value */ + ){ + testcase( pCol->colFlags & COLFLAG_VIRTUAL ); + testcase( pCol->colFlags & COLFLAG_STORED ); + testcase( pCol->colFlags & COLFLAG_GENERATED ); + onError = OE_Abort; + }else{ + assert( !isGenerated ); + } + }else if( b2ndPass && !isGenerated ){ + continue; + } + assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail + || onError==OE_Ignore || onError==OE_Replace ); + testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); + iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; + switch( onError ){ + case OE_Replace: { + int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg); + VdbeCoverage(v); + assert( (pCol->colFlags & COLFLAG_GENERATED)==0 ); + nSeenReplace++; + sqlite3ExprCodeCopy(pParse, + sqlite3ColumnExpr(pTab, pCol), iReg); + sqlite3VdbeJumpHere(v, addr1); + break; + } + case OE_Abort: + sqlite3MayAbort(pParse); + /* no break */ deliberate_fall_through + case OE_Rollback: + case OE_Fail: { + char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, + pCol->zCnName); + testcase( zMsg==0 && db->mallocFailed==0 ); + sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, + onError, iReg); + sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); + sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); + VdbeCoverage(v); + break; + } + default: { + assert( onError==OE_Ignore ); + sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); + VdbeCoverage(v); + break; + } + } /* end switch(onError) */ + } /* end loop i over columns */ + if( nGenerated==0 && nSeenReplace==0 ){ + /* If there are no generated columns with NOT NULL constraints + ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single + ** pass is sufficient */ + break; + } + if( b2ndPass ) break; /* Never need more than 2 passes */ + b2ndPass = 1; +#ifndef SQLITE_OMIT_GENERATED_COLUMNS + if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ + /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the + ** first pass, recomputed values for all generated columns, as + ** those values might depend on columns affected by the REPLACE. + */ + sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab); + } +#endif + } /* end of 2-pass loop */ + } /* end if( has-not-null-constraints ) */ + + /* Test all CHECK constraints + */ +#ifndef SQLITE_OMIT_CHECK + if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ + ExprList *pCheck = pTab->pCheck; + pParse->iSelfTab = -(regNewData+1); + onError = overrideError!=OE_Default ? overrideError : OE_Abort; + for(i=0; i<pCheck->nExpr; i++){ + int allOk; + Expr *pCopy; + Expr *pExpr = pCheck->a[i].pExpr; + if( aiChng + && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) + ){ + /* The check constraints do not reference any of the columns being + ** updated so there is no point it verifying the check constraint */ + continue; + } + if( bAffinityDone==0 ){ + sqlite3TableAffinity(v, pTab, regNewData+1); + bAffinityDone = 1; + } + allOk = sqlite3VdbeMakeLabel(pParse); + sqlite3VdbeVerifyAbortable(v, onError); + pCopy = sqlite3ExprDup(db, pExpr, 0); + if( !db->mallocFailed ){ + sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL); + } + sqlite3ExprDelete(db, pCopy); + if( onError==OE_Ignore ){ + sqlite3VdbeGoto(v, ignoreDest); + }else{ + char *zName = pCheck->a[i].zEName; + assert( zName!=0 || pParse->db->mallocFailed ); + if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ + sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, + onError, zName, P4_TRANSIENT, + P5_ConstraintCheck); + } + sqlite3VdbeResolveLabel(v, allOk); + } + pParse->iSelfTab = 0; + } +#endif /* !defined(SQLITE_OMIT_CHECK) */ + + /* UNIQUE and PRIMARY KEY constraints should be handled in the following + ** order: + ** + ** (1) OE_Update + ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore + ** (3) OE_Replace + ** + ** OE_Fail and OE_Ignore must happen before any changes are made. + ** OE_Update guarantees that only a single row will change, so it + ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback + ** could happen in any order, but they are grouped up front for + ** convenience. + ** + ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 + ** The order of constraints used to have OE_Update as (2) and OE_Abort + ** and so forth as (1). But apparently PostgreSQL checks the OE_Update + ** constraint before any others, so it had to be moved. + ** + ** Constraint checking code is generated in this order: + ** (A) The rowid constraint + ** (B) Unique index constraints that do not have OE_Replace as their + ** default conflict resolution strategy + ** (C) Unique index that do use OE_Replace by default. + ** + ** The ordering of (2) and (3) is accomplished by making sure the linked + ** list of indexes attached to a table puts all OE_Replace indexes last + ** in the list. See sqlite3CreateIndex() for where that happens. + */ + sIdxIter.eType = 0; + sIdxIter.i = 0; + sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */ + sIdxIter.u.lx.pIdx = pTab->pIndex; + if( pUpsert ){ + if( pUpsert->pUpsertTarget==0 ){ + /* There is just on ON CONFLICT clause and it has no constraint-target */ + assert( pUpsert->pNextUpsert==0 ); + if( pUpsert->isDoUpdate==0 ){ + /* A single ON CONFLICT DO NOTHING clause, without a constraint-target. + ** Make all unique constraint resolution be OE_Ignore */ + overrideError = OE_Ignore; + pUpsert = 0; + }else{ + /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */ + overrideError = OE_Update; + } + }else if( pTab->pIndex!=0 ){ + /* Otherwise, we'll need to run the IndexListTerm array version of the + ** iterator to ensure that all of the ON CONFLICT conditions are + ** checked first and in order. */ + int nIdx, jj; + u64 nByte; + Upsert *pTerm; + u8 *bUsed; + for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ + assert( aRegIdx[nIdx]>0 ); + } + sIdxIter.eType = 1; + sIdxIter.u.ax.nIdx = nIdx; + nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx; + sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte); + if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */ + bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx]; + pUpsert->pToFree = sIdxIter.u.ax.aIdx; + for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){ + if( pTerm->pUpsertTarget==0 ) break; + if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */ + jj = 0; + pIdx = pTab->pIndex; + while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){ + pIdx = pIdx->pNext; + jj++; + } + if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */ + bUsed[jj] = 1; + sIdxIter.u.ax.aIdx[i].p = pIdx; + sIdxIter.u.ax.aIdx[i].ix = jj; + i++; + } + for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){ + if( bUsed[jj] ) continue; + sIdxIter.u.ax.aIdx[i].p = pIdx; + sIdxIter.u.ax.aIdx[i].ix = jj; + i++; + } + assert( i==nIdx ); + } + } + + /* Determine if it is possible that triggers (either explicitly coded + ** triggers or FK resolution actions) might run as a result of deletes + ** that happen when OE_Replace conflict resolution occurs. (Call these + ** "replace triggers".) If any replace triggers run, we will need to + ** recheck all of the uniqueness constraints after they have all run. + ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. + ** + ** If replace triggers are a possibility, then + ** + ** (1) Allocate register regTrigCnt and initialize it to zero. + ** That register will count the number of replace triggers that + ** fire. Constraint recheck only occurs if the number is positive. + ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. + ** (3) Initialize addrRecheck and lblRecheckOk + ** + ** The uniqueness rechecking code will create a series of tests to run + ** in a second pass. The addrRecheck and lblRecheckOk variables are + ** used to link together these tests which are separated from each other + ** in the generate bytecode. + */ + if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ + /* There are not DELETE triggers nor FK constraints. No constraint + ** rechecks are needed. */ + pTrigger = 0; + regTrigCnt = 0; + }else{ + if( db->flags&SQLITE_RecTriggers ){ + pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); + regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); + }else{ + pTrigger = 0; + regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); + } + if( regTrigCnt ){ + /* Replace triggers might exist. Allocate the counter and + ** initialize it to zero. */ + regTrigCnt = ++pParse->nMem; + sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); + VdbeComment((v, "trigger count")); + lblRecheckOk = sqlite3VdbeMakeLabel(pParse); + addrRecheck = lblRecheckOk; + } + } + + /* If rowid is changing, make sure the new rowid does not previously + ** exist in the table. + */ + if( pkChng && pPk==0 ){ + int addrRowidOk = sqlite3VdbeMakeLabel(pParse); + + /* Figure out what action to take in case of a rowid collision */ + onError = pTab->keyConf; + if( overrideError!=OE_Default ){ + onError = overrideError; + }else if( onError==OE_Default ){ + onError = OE_Abort; + } + + /* figure out whether or not upsert applies in this case */ + if( pUpsert ){ + pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0); + if( pUpsertClause!=0 ){ + if( pUpsertClause->isDoUpdate==0 ){ + onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ + }else{ + onError = OE_Update; /* DO UPDATE */ + } + } + if( pUpsertClause!=pUpsert ){ + /* The first ON CONFLICT clause has a conflict target other than + ** the IPK. We have to jump ahead to that first ON CONFLICT clause + ** and then come back here and deal with the IPK afterwards */ + upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto); + } + } + + /* If the response to a rowid conflict is REPLACE but the response + ** to some other UNIQUE constraint is FAIL or IGNORE, then we need + ** to defer the running of the rowid conflict checking until after + ** the UNIQUE constraints have run. + */ + if( onError==OE_Replace /* IPK rule is REPLACE */ + && onError!=overrideError /* Rules for other constraints are different */ + && pTab->pIndex /* There exist other constraints */ + && !upsertIpkDelay /* IPK check already deferred by UPSERT */ + ){ + ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; + VdbeComment((v, "defer IPK REPLACE until last")); + } + + if( isUpdate ){ + /* pkChng!=0 does not mean that the rowid has changed, only that + ** it might have changed. Skip the conflict logic below if the rowid + ** is unchanged. */ + sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); + sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); + VdbeCoverage(v); + } + + /* Check to see if the new rowid already exists in the table. Skip + ** the following conflict logic if it does not. */ + VdbeNoopComment((v, "uniqueness check for ROWID")); + sqlite3VdbeVerifyAbortable(v, onError); + sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); + VdbeCoverage(v); + + switch( onError ){ + default: { + onError = OE_Abort; + /* no break */ deliberate_fall_through + } + case OE_Rollback: + case OE_Abort: + case OE_Fail: { + testcase( onError==OE_Rollback ); + testcase( onError==OE_Abort ); + testcase( onError==OE_Fail ); + sqlite3RowidConstraint(pParse, onError, pTab); + break; + } + case OE_Replace: { + /* If there are DELETE triggers on this table and the + ** recursive-triggers flag is set, call GenerateRowDelete() to + ** remove the conflicting row from the table. This will fire + ** the triggers and remove both the table and index b-tree entries. + ** + ** Otherwise, if there are no triggers or the recursive-triggers + ** flag is not set, but the table has one or more indexes, call + ** GenerateRowIndexDelete(). This removes the index b-tree entries + ** only. The table b-tree entry will be replaced by the new entry + ** when it is inserted. + ** + ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, + ** also invoke MultiWrite() to indicate that this VDBE may require + ** statement rollback (if the statement is aborted after the delete + ** takes place). Earlier versions called sqlite3MultiWrite() regardless, + ** but being more selective here allows statements like: + ** + ** REPLACE INTO t(rowid) VALUES($newrowid) + ** + ** to run without a statement journal if there are no indexes on the + ** table. + */ + if( regTrigCnt ){ + sqlite3MultiWrite(pParse); + sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, + regNewData, 1, 0, OE_Replace, 1, -1); + sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ + nReplaceTrig++; + }else{ +#ifdef SQLITE_ENABLE_PREUPDATE_HOOK + assert( HasRowid(pTab) ); + /* This OP_Delete opcode fires the pre-update-hook only. It does + ** not modify the b-tree. It is more efficient to let the coming + ** OP_Insert replace the existing entry than it is to delete the + ** existing entry and then insert a new one. */ + sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); + sqlite3VdbeAppendP4(v, pTab, P4_TABLE); +#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ + if( pTab->pIndex ){ + sqlite3MultiWrite(pParse); + sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); + } + } + seenReplace = 1; + break; + } +#ifndef SQLITE_OMIT_UPSERT + case OE_Update: { + sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); + /* no break */ deliberate_fall_through + } +#endif + case OE_Ignore: { + testcase( onError==OE_Ignore ); + sqlite3VdbeGoto(v, ignoreDest); + break; + } + } + sqlite3VdbeResolveLabel(v, addrRowidOk); + if( pUpsert && pUpsertClause!=pUpsert ){ + upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto); + }else if( ipkTop ){ + ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); + sqlite3VdbeJumpHere(v, ipkTop-1); + } + } + + /* Test all UNIQUE constraints by creating entries for each UNIQUE + ** index and making sure that duplicate entries do not already exist. + ** Compute the revised record entries for indices as we go. + ** + ** This loop also handles the case of the PRIMARY KEY index for a + ** WITHOUT ROWID table. + */ + for(pIdx = indexIteratorFirst(&sIdxIter, &ix); + pIdx; + pIdx = indexIteratorNext(&sIdxIter, &ix) + ){ + int regIdx; /* Range of registers holding content for pIdx */ + int regR; /* Range of registers holding conflicting PK */ + int iThisCur; /* Cursor for this UNIQUE index */ + int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ + int addrConflictCk; /* First opcode in the conflict check logic */ + + if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ + if( pUpsert ){ + pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx); + if( upsertIpkDelay && pUpsertClause==pUpsert ){ + sqlite3VdbeJumpHere(v, upsertIpkDelay); + } + } + addrUniqueOk = sqlite3VdbeMakeLabel(pParse); + if( bAffinityDone==0 ){ + sqlite3TableAffinity(v, pTab, regNewData+1); + bAffinityDone = 1; + } + VdbeNoopComment((v, "prep index %s", pIdx->zName)); + iThisCur = iIdxCur+ix; + + + /* Skip partial indices for which the WHERE clause is not true */ + if( pIdx->pPartIdxWhere ){ + sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); + pParse->iSelfTab = -(regNewData+1); + sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, + SQLITE_JUMPIFNULL); + pParse->iSelfTab = 0; + } + + /* Create a record for this index entry as it should appear after + ** the insert or update. Store that record in the aRegIdx[ix] register + */ + regIdx = aRegIdx[ix]+1; + for(i=0; i<pIdx->nColumn; i++){ + int iField = pIdx->aiColumn[i]; + int x; + if( iField==XN_EXPR ){ + pParse->iSelfTab = -(regNewData+1); + sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); + pParse->iSelfTab = 0; + VdbeComment((v, "%s column %d", pIdx->zName, i)); + }else if( iField==XN_ROWID || iField==pTab->iPKey ){ + x = regNewData; + sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); + VdbeComment((v, "rowid")); + }else{ + testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); + x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; + sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); + VdbeComment((v, "%s", pTab->aCol[iField].zCnName)); + } + } + sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); + VdbeComment((v, "for %s", pIdx->zName)); +#ifdef SQLITE_ENABLE_NULL_TRIM + if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ + sqlite3SetMakeRecordP5(v, pIdx->pTable); + } +#endif + sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0); + + /* In an UPDATE operation, if this index is the PRIMARY KEY index + ** of a WITHOUT ROWID table and there has been no change the + ** primary key, then no collision is possible. The collision detection + ** logic below can all be skipped. */ + if( isUpdate && pPk==pIdx && pkChng==0 ){ + sqlite3VdbeResolveLabel(v, addrUniqueOk); + continue; + } + + /* Find out what action to take in case there is a uniqueness conflict */ + onError = pIdx->onError; + if( onError==OE_None ){ + sqlite3VdbeResolveLabel(v, addrUniqueOk); + continue; /* pIdx is not a UNIQUE index */ + } + if( overrideError!=OE_Default ){ + onError = overrideError; + }else if( onError==OE_Default ){ + onError = OE_Abort; + } + + /* Figure out if the upsert clause applies to this index */ + if( pUpsertClause ){ + if( pUpsertClause->isDoUpdate==0 ){ + onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ + }else{ + onError = OE_Update; /* DO UPDATE */ + } + } + + /* Collision detection may be omitted if all of the following are true: + ** (1) The conflict resolution algorithm is REPLACE + ** (2) The table is a WITHOUT ROWID table + ** (3) There are no secondary indexes on the table + ** (4) No delete triggers need to be fired if there is a conflict + ** (5) No FK constraint counters need to be updated if a conflict occurs. + ** + ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row + ** must be explicitly deleted in order to ensure any pre-update hook + ** is invoked. */ + assert( IsOrdinaryTable(pTab) ); +#ifndef SQLITE_ENABLE_PREUPDATE_HOOK + if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ + && pPk==pIdx /* Condition 2 */ + && onError==OE_Replace /* Condition 1 */ + && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ + 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) + && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ + (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab))) + ){ + sqlite3VdbeResolveLabel(v, addrUniqueOk); + continue; + } +#endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ + + /* Check to see if the new index entry will be unique */ + sqlite3VdbeVerifyAbortable(v, onError); + addrConflictCk = + sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, + regIdx, pIdx->nKeyCol); VdbeCoverage(v); + + /* Generate code to handle collisions */ + regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField); + if( isUpdate || onError==OE_Replace ){ + if( HasRowid(pTab) ){ + sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); + /* Conflict only if the rowid of the existing index entry + ** is different from old-rowid */ + if( isUpdate ){ + sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); + sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); + VdbeCoverage(v); + } + }else{ + int x; + /* Extract the PRIMARY KEY from the end of the index entry and + ** store it in registers regR..regR+nPk-1 */ + if( pIdx!=pPk ){ + for(i=0; i<pPk->nKeyCol; i++){ + assert( pPk->aiColumn[i]>=0 ); + x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); + sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); + VdbeComment((v, "%s.%s", pTab->zName, + pTab->aCol[pPk->aiColumn[i]].zCnName)); + } + } + if( isUpdate ){ + /* If currently processing the PRIMARY KEY of a WITHOUT ROWID + ** table, only conflict if the new PRIMARY KEY values are actually + ** different from the old. See TH3 withoutrowid04.test. + ** + ** For a UNIQUE index, only conflict if the PRIMARY KEY values + ** of the matched index row are different from the original PRIMARY + ** KEY values of this row before the update. */ + int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; + int op = OP_Ne; + int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); + + for(i=0; i<pPk->nKeyCol; i++){ + char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); + x = pPk->aiColumn[i]; + assert( x>=0 ); + if( i==(pPk->nKeyCol-1) ){ + addrJump = addrUniqueOk; + op = OP_Eq; + } + x = sqlite3TableColumnToStorage(pTab, x); + sqlite3VdbeAddOp4(v, op, + regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ + ); + sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); + VdbeCoverageIf(v, op==OP_Eq); + VdbeCoverageIf(v, op==OP_Ne); + } + } + } + } + + /* Generate code that executes if the new index entry is not unique */ + assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail + || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); + switch( onError ){ + case OE_Rollback: + case OE_Abort: + case OE_Fail: { + testcase( onError==OE_Rollback ); + testcase( onError==OE_Abort ); + testcase( onError==OE_Fail ); + sqlite3UniqueConstraint(pParse, onError, pIdx); + break; + } +#ifndef SQLITE_OMIT_UPSERT + case OE_Update: { + sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); + /* no break */ deliberate_fall_through + } +#endif + case OE_Ignore: { + testcase( onError==OE_Ignore ); + sqlite3VdbeGoto(v, ignoreDest); + break; + } + default: { + int nConflictCk; /* Number of opcodes in conflict check logic */ + + assert( onError==OE_Replace ); + nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; + assert( nConflictCk>0 || db->mallocFailed ); + testcase( nConflictCk<=0 ); + testcase( nConflictCk>1 ); + if( regTrigCnt ){ + sqlite3MultiWrite(pParse); + nReplaceTrig++; + } + if( pTrigger && isUpdate ){ + sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur); + } + sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, + regR, nPkField, 0, OE_Replace, + (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); + if( pTrigger && isUpdate ){ + sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur); + } + if( regTrigCnt ){ + int addrBypass; /* Jump destination to bypass recheck logic */ + + sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ + addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ + VdbeComment((v, "bypass recheck")); + + /* Here we insert code that will be invoked after all constraint + ** checks have run, if and only if one or more replace triggers + ** fired. */ + sqlite3VdbeResolveLabel(v, lblRecheckOk); + lblRecheckOk = sqlite3VdbeMakeLabel(pParse); + if( pIdx->pPartIdxWhere ){ + /* Bypass the recheck if this partial index is not defined + ** for the current row */ + sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); + VdbeCoverage(v); + } + /* Copy the constraint check code from above, except change + ** the constraint-ok jump destination to be the address of + ** the next retest block */ + while( nConflictCk>0 ){ + VdbeOp x; /* Conflict check opcode to copy */ + /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. + ** Hence, make a complete copy of the opcode, rather than using + ** a pointer to the opcode. */ + x = *sqlite3VdbeGetOp(v, addrConflictCk); + if( x.opcode!=OP_IdxRowid ){ + int p2; /* New P2 value for copied conflict check opcode */ + const char *zP4; + if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ + p2 = lblRecheckOk; + }else{ + p2 = x.p2; + } + zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z; + sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type); + sqlite3VdbeChangeP5(v, x.p5); + VdbeCoverageIf(v, p2!=x.p2); + } + nConflictCk--; + addrConflictCk++; + } + /* If the retest fails, issue an abort */ + sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); + + sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ + } + seenReplace = 1; + break; + } + } + sqlite3VdbeResolveLabel(v, addrUniqueOk); + if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); + if( pUpsertClause + && upsertIpkReturn + && sqlite3UpsertNextIsIPK(pUpsertClause) + ){ + sqlite3VdbeGoto(v, upsertIpkDelay+1); + sqlite3VdbeJumpHere(v, upsertIpkReturn); + upsertIpkReturn = 0; + } + } + + /* If the IPK constraint is a REPLACE, run it last */ + if( ipkTop ){ + sqlite3VdbeGoto(v, ipkTop); + VdbeComment((v, "Do IPK REPLACE")); + assert( ipkBottom>0 ); + sqlite3VdbeJumpHere(v, ipkBottom); + } + + /* Recheck all uniqueness constraints after replace triggers have run */ + testcase( regTrigCnt!=0 && nReplaceTrig==0 ); + assert( regTrigCnt!=0 || nReplaceTrig==0 ); + if( nReplaceTrig ){ + sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); + if( !pPk ){ + if( isUpdate ){ + sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); + sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); + VdbeCoverage(v); + } + sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); + VdbeCoverage(v); + sqlite3RowidConstraint(pParse, OE_Abort, pTab); + }else{ + sqlite3VdbeGoto(v, addrRecheck); + } + sqlite3VdbeResolveLabel(v, lblRecheckOk); + } + + /* Generate the table record */ + if( HasRowid(pTab) ){ + int regRec = aRegIdx[ix]; + sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); + sqlite3SetMakeRecordP5(v, pTab); + if( !bAffinityDone ){ + sqlite3TableAffinity(v, pTab, 0); + } + } + + *pbMayReplace = seenReplace; + VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); +} + +#ifdef SQLITE_ENABLE_NULL_TRIM +/* +** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) +** to be the number of columns in table pTab that must not be NULL-trimmed. +** +** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. +*/ +void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ + u16 i; + + /* Records with omitted columns are only allowed for schema format + ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ + if( pTab->pSchema->file_format<2 ) return; + + for(i=pTab->nCol-1; i>0; i--){ + if( pTab->aCol[i].iDflt!=0 ) break; + if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; + } + sqlite3VdbeChangeP5(v, i+1); +} +#endif + +/* +** Table pTab is a WITHOUT ROWID table that is being written to. The cursor +** number is iCur, and register regData contains the new record for the +** PK index. This function adds code to invoke the pre-update hook, +** if one is registered. +*/ +#ifdef SQLITE_ENABLE_PREUPDATE_HOOK +static void codeWithoutRowidPreupdate( + Parse *pParse, /* Parse context */ + Table *pTab, /* Table being updated */ + int iCur, /* Cursor number for table */ + int regData /* Data containing new record */ +){ + Vdbe *v = pParse->pVdbe; + int r = sqlite3GetTempReg(pParse); + assert( !HasRowid(pTab) ); + assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB ); + sqlite3VdbeAddOp2(v, OP_Integer, 0, r); + sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE); + sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); + sqlite3ReleaseTempReg(pParse, r); +} +#else +# define codeWithoutRowidPreupdate(a,b,c,d) +#endif + +/* +** This routine generates code to finish the INSERT or UPDATE operation +** that was started by a prior call to sqlite3GenerateConstraintChecks. +** A consecutive range of registers starting at regNewData contains the +** rowid and the content to be inserted. +** +** The arguments to this routine should be the same as the first six +** arguments to sqlite3GenerateConstraintChecks. +*/ +void sqlite3CompleteInsertion( + Parse *pParse, /* The parser context */ + Table *pTab, /* the table into which we are inserting */ + int iDataCur, /* Cursor of the canonical data source */ + int iIdxCur, /* First index cursor */ + int regNewData, /* Range of content */ + int *aRegIdx, /* Register used by each index. 0 for unused indices */ + int update_flags, /* True for UPDATE, False for INSERT */ + int appendBias, /* True if this is likely to be an append */ + int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ +){ + Vdbe *v; /* Prepared statements under construction */ + Index *pIdx; /* An index being inserted or updated */ + u8 pik_flags; /* flag values passed to the btree insert */ + int i; /* Loop counter */ + + assert( update_flags==0 + || update_flags==OPFLAG_ISUPDATE + || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) + ); + + v = pParse->pVdbe; + assert( v!=0 ); + assert( !IsView(pTab) ); /* This table is not a VIEW */ + for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ + /* All REPLACE indexes are at the end of the list */ + assert( pIdx->onError!=OE_Replace + || pIdx->pNext==0 + || pIdx->pNext->onError==OE_Replace ); + if( aRegIdx[i]==0 ) continue; + if( pIdx->pPartIdxWhere ){ + sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); + VdbeCoverage(v); + } + pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); + if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ + pik_flags |= OPFLAG_NCHANGE; + pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); + if( update_flags==0 ){ + codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]); + } + } + sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], + aRegIdx[i]+1, + pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); + sqlite3VdbeChangeP5(v, pik_flags); + } + if( !HasRowid(pTab) ) return; + if( pParse->nested ){ + pik_flags = 0; + }else{ + pik_flags = OPFLAG_NCHANGE; + pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); + } + if( appendBias ){ + pik_flags |= OPFLAG_APPEND; + } + if( useSeekResult ){ + pik_flags |= OPFLAG_USESEEKRESULT; + } + sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); + if( !pParse->nested ){ + sqlite3VdbeAppendP4(v, pTab, P4_TABLE); + } + sqlite3VdbeChangeP5(v, pik_flags); +} + +/* +** Allocate cursors for the pTab table and all its indices and generate +** code to open and initialized those cursors. +** +** The cursor for the object that contains the complete data (normally +** the table itself, but the PRIMARY KEY index in the case of a WITHOUT +** ROWID table) is returned in *piDataCur. The first index cursor is +** returned in *piIdxCur. The number of indices is returned. +** +** Use iBase as the first cursor (either the *piDataCur for rowid tables +** or the first index for WITHOUT ROWID tables) if it is non-negative. +** If iBase is negative, then allocate the next available cursor. +** +** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. +** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range +** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the +** pTab->pIndex list. +** +** If pTab is a virtual table, then this routine is a no-op and the +** *piDataCur and *piIdxCur values are left uninitialized. +*/ +int sqlite3OpenTableAndIndices( + Parse *pParse, /* Parsing context */ + Table *pTab, /* Table to be opened */ + int op, /* OP_OpenRead or OP_OpenWrite */ + u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ + int iBase, /* Use this for the table cursor, if there is one */ + u8 *aToOpen, /* If not NULL: boolean for each table and index */ + int *piDataCur, /* Write the database source cursor number here */ + int *piIdxCur /* Write the first index cursor number here */ +){ + int i; + int iDb; + int iDataCur; + Index *pIdx; + Vdbe *v; + + assert( op==OP_OpenRead || op==OP_OpenWrite ); + assert( op==OP_OpenWrite || p5==0 ); + assert( piDataCur!=0 ); + assert( piIdxCur!=0 ); + if( IsVirtual(pTab) ){ + /* This routine is a no-op for virtual tables. Leave the output + ** variables *piDataCur and *piIdxCur set to illegal cursor numbers + ** for improved error detection. */ + *piDataCur = *piIdxCur = -999; + return 0; + } + iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); + v = pParse->pVdbe; + assert( v!=0 ); + if( iBase<0 ) iBase = pParse->nTab; + iDataCur = iBase++; + *piDataCur = iDataCur; + if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ + sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); + }else if( pParse->db->noSharedCache==0 ){ + sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); + } + *piIdxCur = iBase; + for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ + int iIdxCur = iBase++; + assert( pIdx->pSchema==pTab->pSchema ); + if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ + *piDataCur = iIdxCur; + p5 = 0; + } + if( aToOpen==0 || aToOpen[i+1] ){ + sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); + sqlite3VdbeSetP4KeyInfo(pParse, pIdx); + sqlite3VdbeChangeP5(v, p5); + VdbeComment((v, "%s", pIdx->zName)); + } + } + if( iBase>pParse->nTab ) pParse->nTab = iBase; + return i; +} + + +#ifdef SQLITE_TEST +/* +** The following global variable is incremented whenever the +** transfer optimization is used. This is used for testing +** purposes only - to make sure the transfer optimization really +** is happening when it is supposed to. +*/ +int sqlite3_xferopt_count; +#endif /* SQLITE_TEST */ + + +#ifndef SQLITE_OMIT_XFER_OPT +/* +** Check to see if index pSrc is compatible as a source of data +** for index pDest in an insert transfer optimization. The rules +** for a compatible index: +** +** * The index is over the same set of columns +** * The same DESC and ASC markings occurs on all columns +** * The same onError processing (OE_Abort, OE_Ignore, etc) +** * The same collating sequence on each column +** * The index has the exact same WHERE clause +*/ +static int xferCompatibleIndex(Index *pDest, Index *pSrc){ + int i; + assert( pDest && pSrc ); + assert( pDest->pTable!=pSrc->pTable ); + if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ + return 0; /* Different number of columns */ + } + if( pDest->onError!=pSrc->onError ){ + return 0; /* Different conflict resolution strategies */ + } + for(i=0; i<pSrc->nKeyCol; i++){ + if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ + return 0; /* Different columns indexed */ + } + if( pSrc->aiColumn[i]==XN_EXPR ){ + assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); + if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, + pDest->aColExpr->a[i].pExpr, -1)!=0 ){ + return 0; /* Different expressions in the index */ + } + } + if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ + return 0; /* Different sort orders */ + } + if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ + return 0; /* Different collating sequences */ + } + } + if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ + return 0; /* Different WHERE clauses */ + } + + /* If no test above fails then the indices must be compatible */ + return 1; +} + +/* +** Attempt the transfer optimization on INSERTs of the form +** +** INSERT INTO tab1 SELECT * FROM tab2; +** +** The xfer optimization transfers raw records from tab2 over to tab1. +** Columns are not decoded and reassembled, which greatly improves +** performance. Raw index records are transferred in the same way. +** +** The xfer optimization is only attempted if tab1 and tab2 are compatible. +** There are lots of rules for determining compatibility - see comments +** embedded in the code for details. +** +** This routine returns TRUE if the optimization is guaranteed to be used. +** Sometimes the xfer optimization will only work if the destination table +** is empty - a factor that can only be determined at run-time. In that +** case, this routine generates code for the xfer optimization but also +** does a test to see if the destination table is empty and jumps over the +** xfer optimization code if the test fails. In that case, this routine +** returns FALSE so that the caller will know to go ahead and generate +** an unoptimized transfer. This routine also returns FALSE if there +** is no chance that the xfer optimization can be applied. +** +** This optimization is particularly useful at making VACUUM run faster. +*/ +static int xferOptimization( + Parse *pParse, /* Parser context */ + Table *pDest, /* The table we are inserting into */ + Select *pSelect, /* A SELECT statement to use as the data source */ + int onError, /* How to handle constraint errors */ + int iDbDest /* The database of pDest */ +){ + sqlite3 *db = pParse->db; + ExprList *pEList; /* The result set of the SELECT */ + Table *pSrc; /* The table in the FROM clause of SELECT */ + Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ + SrcItem *pItem; /* An element of pSelect->pSrc */ + int i; /* Loop counter */ + int iDbSrc; /* The database of pSrc */ + int iSrc, iDest; /* Cursors from source and destination */ + int addr1, addr2; /* Loop addresses */ + int emptyDestTest = 0; /* Address of test for empty pDest */ + int emptySrcTest = 0; /* Address of test for empty pSrc */ + Vdbe *v; /* The VDBE we are building */ + int regAutoinc; /* Memory register used by AUTOINC */ + int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ + int regData, regRowid; /* Registers holding data and rowid */ + + assert( pSelect!=0 ); + if( pParse->pWith || pSelect->pWith ){ + /* Do not attempt to process this query if there are an WITH clauses + ** attached to it. Proceeding may generate a false "no such table: xxx" + ** error if pSelect reads from a CTE named "xxx". */ + return 0; + } +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( IsVirtual(pDest) ){ + return 0; /* tab1 must not be a virtual table */ + } +#endif + if( onError==OE_Default ){ + if( pDest->iPKey>=0 ) onError = pDest->keyConf; + if( onError==OE_Default ) onError = OE_Abort; + } + assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ + if( pSelect->pSrc->nSrc!=1 ){ + return 0; /* FROM clause must have exactly one term */ + } + if( pSelect->pSrc->a[0].pSelect ){ + return 0; /* FROM clause cannot contain a subquery */ + } + if( pSelect->pWhere ){ + return 0; /* SELECT may not have a WHERE clause */ + } + if( pSelect->pOrderBy ){ + return 0; /* SELECT may not have an ORDER BY clause */ + } + /* Do not need to test for a HAVING clause. If HAVING is present but + ** there is no ORDER BY, we will get an error. */ + if( pSelect->pGroupBy ){ + return 0; /* SELECT may not have a GROUP BY clause */ + } + if( pSelect->pLimit ){ + return 0; /* SELECT may not have a LIMIT clause */ + } + if( pSelect->pPrior ){ + return 0; /* SELECT may not be a compound query */ + } + if( pSelect->selFlags & SF_Distinct ){ + return 0; /* SELECT may not be DISTINCT */ + } + pEList = pSelect->pEList; + assert( pEList!=0 ); + if( pEList->nExpr!=1 ){ + return 0; /* The result set must have exactly one column */ + } + assert( pEList->a[0].pExpr ); + if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ + return 0; /* The result set must be the special operator "*" */ + } + + /* At this point we have established that the statement is of the + ** correct syntactic form to participate in this optimization. Now + ** we have to check the semantics. + */ + pItem = pSelect->pSrc->a; + pSrc = sqlite3LocateTableItem(pParse, 0, pItem); + if( pSrc==0 ){ + return 0; /* FROM clause does not contain a real table */ + } + if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ + testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */ + return 0; /* tab1 and tab2 may not be the same table */ + } + if( HasRowid(pDest)!=HasRowid(pSrc) ){ + return 0; /* source and destination must both be WITHOUT ROWID or not */ + } + if( !IsOrdinaryTable(pSrc) ){ + return 0; /* tab2 may not be a view or virtual table */ + } + if( pDest->nCol!=pSrc->nCol ){ + return 0; /* Number of columns must be the same in tab1 and tab2 */ + } + if( pDest->iPKey!=pSrc->iPKey ){ + return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ + } + if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){ + return 0; /* Cannot feed from a non-strict into a strict table */ + } + for(i=0; i<pDest->nCol; i++){ + Column *pDestCol = &pDest->aCol[i]; + Column *pSrcCol = &pSrc->aCol[i]; +#ifdef SQLITE_ENABLE_HIDDEN_COLUMNS + if( (db->mDbFlags & DBFLAG_Vacuum)==0 + && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN + ){ + return 0; /* Neither table may have __hidden__ columns */ + } +#endif +#ifndef SQLITE_OMIT_GENERATED_COLUMNS + /* Even if tables t1 and t2 have identical schemas, if they contain + ** generated columns, then this statement is semantically incorrect: + ** + ** INSERT INTO t2 SELECT * FROM t1; + ** + ** The reason is that generated column values are returned by the + ** the SELECT statement on the right but the INSERT statement on the + ** left wants them to be omitted. + ** + ** Nevertheless, this is a useful notational shorthand to tell SQLite + ** to do a bulk transfer all of the content from t1 over to t2. + ** + ** We could, in theory, disable this (except for internal use by the + ** VACUUM command where it is actually needed). But why do that? It + ** seems harmless enough, and provides a useful service. + */ + if( (pDestCol->colFlags & COLFLAG_GENERATED) != + (pSrcCol->colFlags & COLFLAG_GENERATED) ){ + return 0; /* Both columns have the same generated-column type */ + } + /* But the transfer is only allowed if both the source and destination + ** tables have the exact same expressions for generated columns. + ** This requirement could be relaxed for VIRTUAL columns, I suppose. + */ + if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ + if( sqlite3ExprCompare(0, + sqlite3ColumnExpr(pSrc, pSrcCol), + sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){ + testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); + testcase( pDestCol->colFlags & COLFLAG_STORED ); + return 0; /* Different generator expressions */ + } + } +#endif + if( pDestCol->affinity!=pSrcCol->affinity ){ + return 0; /* Affinity must be the same on all columns */ + } + if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol), + sqlite3ColumnColl(pSrcCol))!=0 ){ + return 0; /* Collating sequence must be the same on all columns */ + } + if( pDestCol->notNull && !pSrcCol->notNull ){ + return 0; /* tab2 must be NOT NULL if tab1 is */ + } + /* Default values for second and subsequent columns need to match. */ + if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ + Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol); + Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol); + assert( pDestExpr==0 || pDestExpr->op==TK_SPAN ); + assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) ); + assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN ); + assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) ); + if( (pDestExpr==0)!=(pSrcExpr==0) + || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken, + pSrcExpr->u.zToken)!=0) + ){ + return 0; /* Default values must be the same for all columns */ + } + } + } + for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ + if( IsUniqueIndex(pDestIdx) ){ + destHasUniqueIdx = 1; + } + for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ + if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; + } + if( pSrcIdx==0 ){ + return 0; /* pDestIdx has no corresponding index in pSrc */ + } + if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema + && sqlite3FaultSim(411)==SQLITE_OK ){ + /* The sqlite3FaultSim() call allows this corruption test to be + ** bypassed during testing, in order to exercise other corruption tests + ** further downstream. */ + return 0; /* Corrupt schema - two indexes on the same btree */ + } + } +#ifndef SQLITE_OMIT_CHECK + if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ + return 0; /* Tables have different CHECK constraints. Ticket #2252 */ + } +#endif +#ifndef SQLITE_OMIT_FOREIGN_KEY + /* Disallow the transfer optimization if the destination table contains + ** any foreign key constraints. This is more restrictive than necessary. + ** But the main beneficiary of the transfer optimization is the VACUUM + ** command, and the VACUUM command disables foreign key constraints. So + ** the extra complication to make this rule less restrictive is probably + ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] + */ + assert( IsOrdinaryTable(pDest) ); + if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){ + return 0; + } +#endif + if( (db->flags & SQLITE_CountRows)!=0 ){ + return 0; /* xfer opt does not play well with PRAGMA count_changes */ + } + + /* If we get this far, it means that the xfer optimization is at + ** least a possibility, though it might only work if the destination + ** table (tab1) is initially empty. + */ +#ifdef SQLITE_TEST + sqlite3_xferopt_count++; +#endif + iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); + v = sqlite3GetVdbe(pParse); + sqlite3CodeVerifySchema(pParse, iDbSrc); + iSrc = pParse->nTab++; + iDest = pParse->nTab++; + regAutoinc = autoIncBegin(pParse, iDbDest, pDest); + regData = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp2(v, OP_Null, 0, regData); + regRowid = sqlite3GetTempReg(pParse); + sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); + assert( HasRowid(pDest) || destHasUniqueIdx ); + if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( + (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ + || destHasUniqueIdx /* (2) */ + || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ + )){ + /* In some circumstances, we are able to run the xfer optimization + ** only if the destination table is initially empty. Unless the + ** DBFLAG_Vacuum flag is set, this block generates code to make + ** that determination. If DBFLAG_Vacuum is set, then the destination + ** table is always empty. + ** + ** Conditions under which the destination must be empty: + ** + ** (1) There is no INTEGER PRIMARY KEY but there are indices. + ** (If the destination is not initially empty, the rowid fields + ** of index entries might need to change.) + ** + ** (2) The destination has a unique index. (The xfer optimization + ** is unable to test uniqueness.) + ** + ** (3) onError is something other than OE_Abort and OE_Rollback. + */ + addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); + emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); + sqlite3VdbeJumpHere(v, addr1); + } + if( HasRowid(pSrc) ){ + u8 insFlags; + sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); + emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); + if( pDest->iPKey>=0 ){ + addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); + if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ + sqlite3VdbeVerifyAbortable(v, onError); + addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); + VdbeCoverage(v); + sqlite3RowidConstraint(pParse, onError, pDest); + sqlite3VdbeJumpHere(v, addr2); + } + autoIncStep(pParse, regAutoinc, regRowid); + }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ + addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); + }else{ + addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); + assert( (pDest->tabFlags & TF_Autoincrement)==0 ); + } + + if( db->mDbFlags & DBFLAG_Vacuum ){ + sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); + insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; + }else{ + insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT; + } +#ifdef SQLITE_ENABLE_PREUPDATE_HOOK + if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ + sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); + insFlags &= ~OPFLAG_PREFORMAT; + }else +#endif + { + sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid); + } + sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); + if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ + sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE); + } + sqlite3VdbeChangeP5(v, insFlags); + + sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); + sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); + sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); + }else{ + sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); + sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); + } + for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ + u8 idxInsFlags = 0; + for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ + if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; + } + assert( pSrcIdx ); + sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); + sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); + VdbeComment((v, "%s", pSrcIdx->zName)); + sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); + sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); + sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); + VdbeComment((v, "%s", pDestIdx->zName)); + addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); + if( db->mDbFlags & DBFLAG_Vacuum ){ + /* This INSERT command is part of a VACUUM operation, which guarantees + ** that the destination table is empty. If all indexed columns use + ** collation sequence BINARY, then it can also be assumed that the + ** index will be populated by inserting keys in strictly sorted + ** order. In this case, instead of seeking within the b-tree as part + ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the + ** OP_IdxInsert to seek to the point within the b-tree where each key + ** should be inserted. This is faster. + ** + ** If any of the indexed columns use a collation sequence other than + ** BINARY, this optimization is disabled. This is because the user + ** might change the definition of a collation sequence and then run + ** a VACUUM command. In that case keys may not be written in strictly + ** sorted order. */ + for(i=0; i<pSrcIdx->nColumn; i++){ + const char *zColl = pSrcIdx->azColl[i]; + if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; + } + if( i==pSrcIdx->nColumn ){ + idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; + sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); + sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc); + } + }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ + idxInsFlags |= OPFLAG_NCHANGE; + } + if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){ + sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); + if( (db->mDbFlags & DBFLAG_Vacuum)==0 + && !HasRowid(pDest) + && IsPrimaryKeyIndex(pDestIdx) + ){ + codeWithoutRowidPreupdate(pParse, pDest, iDest, regData); + } + } + sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); + sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); + sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); + sqlite3VdbeJumpHere(v, addr1); + sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); + sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); + } + if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); + sqlite3ReleaseTempReg(pParse, regRowid); + sqlite3ReleaseTempReg(pParse, regData); + if( emptyDestTest ){ + sqlite3AutoincrementEnd(pParse); + sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); + sqlite3VdbeJumpHere(v, emptyDestTest); + sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); + return 0; + }else{ + return 1; + } +} +#endif /* SQLITE_OMIT_XFER_OPT */ |