summaryrefslogtreecommitdiffstats
path: root/src/test_func.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/test_func.c955
1 files changed, 955 insertions, 0 deletions
diff --git a/src/test_func.c b/src/test_func.c
new file mode 100644
index 0000000..80df488
--- /dev/null
+++ b/src/test_func.c
@@ -0,0 +1,955 @@
+/*
+** 2008 March 19
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Code for testing all sorts of SQLite interfaces. This code
+** implements new SQL functions used by the test scripts.
+*/
+#include "sqlite3.h"
+#if defined(INCLUDE_SQLITE_TCL_H)
+# include "sqlite_tcl.h"
+#else
+# include "tcl.h"
+#endif
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+
+#include "sqliteInt.h"
+#include "vdbeInt.h"
+
+/*
+** Allocate nByte bytes of space using sqlite3_malloc(). If the
+** allocation fails, call sqlite3_result_error_nomem() to notify
+** the database handle that malloc() has failed.
+*/
+static void *testContextMalloc(sqlite3_context *context, int nByte){
+ char *z = sqlite3_malloc(nByte);
+ if( !z && nByte>0 ){
+ sqlite3_result_error_nomem(context);
+ }
+ return z;
+}
+
+/*
+** This function generates a string of random characters. Used for
+** generating test data.
+*/
+static void randStr(sqlite3_context *context, int argc, sqlite3_value **argv){
+ static const unsigned char zSrc[] =
+ "abcdefghijklmnopqrstuvwxyz"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "0123456789"
+ ".-!,:*^+=_|?/<> ";
+ int iMin, iMax, n, r, i;
+ unsigned char zBuf[1000];
+
+ /* It used to be possible to call randstr() with any number of arguments,
+ ** but now it is registered with SQLite as requiring exactly 2.
+ */
+ assert(argc==2);
+
+ iMin = sqlite3_value_int(argv[0]);
+ if( iMin<0 ) iMin = 0;
+ if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1;
+ iMax = sqlite3_value_int(argv[1]);
+ if( iMax<iMin ) iMax = iMin;
+ if( iMax>=sizeof(zBuf) ) iMax = sizeof(zBuf)-1;
+ n = iMin;
+ if( iMax>iMin ){
+ sqlite3_randomness(sizeof(r), &r);
+ r &= 0x7fffffff;
+ n += r%(iMax + 1 - iMin);
+ }
+ assert( n<sizeof(zBuf) );
+ sqlite3_randomness(n, zBuf);
+ for(i=0; i<n; i++){
+ zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];
+ }
+ zBuf[n] = 0;
+ sqlite3_result_text(context, (char*)zBuf, n, SQLITE_TRANSIENT);
+}
+
+/*
+** The following two SQL functions are used to test returning a text
+** result with a destructor. Function 'test_destructor' takes one argument
+** and returns the same argument interpreted as TEXT. A destructor is
+** passed with the sqlite3_result_text() call.
+**
+** SQL function 'test_destructor_count' returns the number of outstanding
+** allocations made by 'test_destructor';
+**
+** WARNING: Not threadsafe.
+*/
+static int test_destructor_count_var = 0;
+static void destructor(void *p){
+ char *zVal = (char *)p;
+ assert(zVal);
+ zVal--;
+ sqlite3_free(zVal);
+ test_destructor_count_var--;
+}
+static void test_destructor(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **argv
+){
+ char *zVal;
+ int len;
+
+ test_destructor_count_var++;
+ assert( nArg==1 );
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
+ len = sqlite3_value_bytes(argv[0]);
+ zVal = testContextMalloc(pCtx, len+3);
+ if( !zVal ){
+ return;
+ }
+ zVal[len+1] = 0;
+ zVal[len+2] = 0;
+ zVal++;
+ memcpy(zVal, sqlite3_value_text(argv[0]), len);
+ sqlite3_result_text(pCtx, zVal, -1, destructor);
+}
+#ifndef SQLITE_OMIT_UTF16
+static void test_destructor16(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **argv
+){
+ char *zVal;
+ int len;
+
+ test_destructor_count_var++;
+ assert( nArg==1 );
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
+ len = sqlite3_value_bytes16(argv[0]);
+ zVal = testContextMalloc(pCtx, len+3);
+ if( !zVal ){
+ return;
+ }
+ zVal[len+1] = 0;
+ zVal[len+2] = 0;
+ zVal++;
+ memcpy(zVal, sqlite3_value_text16(argv[0]), len);
+ sqlite3_result_text16(pCtx, zVal, -1, destructor);
+}
+#endif
+static void test_destructor_count(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **argv
+){
+ sqlite3_result_int(pCtx, test_destructor_count_var);
+}
+
+/*
+** The following aggregate function, test_agg_errmsg16(), takes zero
+** arguments. It returns the text value returned by the sqlite3_errmsg16()
+** API function.
+*/
+#ifndef SQLITE_UNTESTABLE
+void sqlite3BeginBenignMalloc(void);
+void sqlite3EndBenignMalloc(void);
+#else
+ #define sqlite3BeginBenignMalloc()
+ #define sqlite3EndBenignMalloc()
+#endif
+static void test_agg_errmsg16_step(sqlite3_context *a, int b,sqlite3_value **c){
+}
+static void test_agg_errmsg16_final(sqlite3_context *ctx){
+#ifndef SQLITE_OMIT_UTF16
+ const void *z;
+ sqlite3 * db = sqlite3_context_db_handle(ctx);
+ sqlite3_aggregate_context(ctx, 2048);
+ z = sqlite3_errmsg16(db);
+ sqlite3_result_text16(ctx, z, -1, SQLITE_TRANSIENT);
+#endif
+}
+
+/*
+** Routines for testing the sqlite3_get_auxdata() and sqlite3_set_auxdata()
+** interface.
+**
+** The test_auxdata() SQL function attempts to register each of its arguments
+** as auxiliary data. If there are no prior registrations of aux data for
+** that argument (meaning the argument is not a constant or this is its first
+** call) then the result for that argument is 0. If there is a prior
+** registration, the result for that argument is 1. The overall result
+** is the individual argument results separated by spaces.
+*/
+static void free_test_auxdata(void *p) {sqlite3_free(p);}
+static void test_auxdata(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **argv
+){
+ int i;
+ char *zRet = testContextMalloc(pCtx, nArg*2);
+ if( !zRet ) return;
+ memset(zRet, 0, nArg*2);
+ for(i=0; i<nArg; i++){
+ char const *z = (char*)sqlite3_value_text(argv[i]);
+ if( z ){
+ int n;
+ char *zAux = sqlite3_get_auxdata(pCtx, i);
+ if( zAux ){
+ zRet[i*2] = '1';
+ assert( strcmp(zAux,z)==0 );
+ }else {
+ zRet[i*2] = '0';
+ }
+ n = (int)strlen(z) + 1;
+ zAux = testContextMalloc(pCtx, n);
+ if( zAux ){
+ memcpy(zAux, z, n);
+ sqlite3_set_auxdata(pCtx, i, zAux, free_test_auxdata);
+ }
+ zRet[i*2+1] = ' ';
+ }
+ }
+ sqlite3_result_text(pCtx, zRet, 2*nArg-1, free_test_auxdata);
+}
+
+/*
+** A function to test error reporting from user functions. This function
+** returns a copy of its first argument as the error message. If the
+** second argument exists, it becomes the error code.
+*/
+static void test_error(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **argv
+){
+ sqlite3_result_error(pCtx, (char*)sqlite3_value_text(argv[0]), -1);
+ if( nArg==2 ){
+ sqlite3_result_error_code(pCtx, sqlite3_value_int(argv[1]));
+ }
+}
+
+/*
+** Implementation of the counter(X) function. If X is an integer
+** constant, then the first invocation will return X. The second X+1.
+** and so forth. Can be used (for example) to provide a sequence number
+** in a result set.
+*/
+static void counterFunc(
+ sqlite3_context *pCtx, /* Function context */
+ int nArg, /* Number of function arguments */
+ sqlite3_value **argv /* Values for all function arguments */
+){
+ int *pCounter = (int*)sqlite3_get_auxdata(pCtx, 0);
+ if( pCounter==0 ){
+ pCounter = sqlite3_malloc( sizeof(*pCounter) );
+ if( pCounter==0 ){
+ sqlite3_result_error_nomem(pCtx);
+ return;
+ }
+ *pCounter = sqlite3_value_int(argv[0]);
+ sqlite3_set_auxdata(pCtx, 0, pCounter, sqlite3_free);
+ }else{
+ ++*pCounter;
+ }
+ sqlite3_result_int(pCtx, *pCounter);
+}
+
+
+/*
+** This function takes two arguments. It performance UTF-8/16 type
+** conversions on the first argument then returns a copy of the second
+** argument.
+**
+** This function is used in cases such as the following:
+**
+** SELECT test_isolation(x,x) FROM t1;
+**
+** We want to verify that the type conversions that occur on the
+** first argument do not invalidate the second argument.
+*/
+static void test_isolation(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **argv
+){
+#ifndef SQLITE_OMIT_UTF16
+ sqlite3_value_text16(argv[0]);
+ sqlite3_value_text(argv[0]);
+ sqlite3_value_text16(argv[0]);
+ sqlite3_value_text(argv[0]);
+#endif
+ sqlite3_result_value(pCtx, argv[1]);
+}
+
+/*
+** Invoke an SQL statement recursively. The function result is the
+** first column of the first row of the result set.
+*/
+static void test_eval(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **argv
+){
+ sqlite3_stmt *pStmt;
+ int rc;
+ sqlite3 *db = sqlite3_context_db_handle(pCtx);
+ const char *zSql;
+
+ zSql = (char*)sqlite3_value_text(argv[0]);
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_step(pStmt);
+ if( rc==SQLITE_ROW ){
+ sqlite3_result_value(pCtx, sqlite3_column_value(pStmt, 0));
+ }
+ rc = sqlite3_finalize(pStmt);
+ }
+ if( rc ){
+ char *zErr;
+ assert( pStmt==0 );
+ zErr = sqlite3_mprintf("sqlite3_prepare_v2() error: %s",sqlite3_errmsg(db));
+ sqlite3_result_text(pCtx, zErr, -1, sqlite3_free);
+ sqlite3_result_error_code(pCtx, rc);
+ }
+}
+
+
+/*
+** convert one character from hex to binary
+*/
+static int testHexChar(char c){
+ if( c>='0' && c<='9' ){
+ return c - '0';
+ }else if( c>='a' && c<='f' ){
+ return c - 'a' + 10;
+ }else if( c>='A' && c<='F' ){
+ return c - 'A' + 10;
+ }
+ return 0;
+}
+
+/*
+** Convert hex to binary.
+*/
+static void testHexToBin(const char *zIn, char *zOut){
+ while( zIn[0] && zIn[1] ){
+ *(zOut++) = (testHexChar(zIn[0])<<4) + testHexChar(zIn[1]);
+ zIn += 2;
+ }
+}
+
+/*
+** hex_to_utf16be(HEX)
+**
+** Convert the input string from HEX into binary. Then return the
+** result using sqlite3_result_text16le().
+*/
+#ifndef SQLITE_OMIT_UTF16
+static void testHexToUtf16be(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **argv
+){
+ int n;
+ const char *zIn;
+ char *zOut;
+ assert( nArg==1 );
+ n = sqlite3_value_bytes(argv[0]);
+ zIn = (const char*)sqlite3_value_text(argv[0]);
+ zOut = sqlite3_malloc( n/2 );
+ if( zOut==0 ){
+ sqlite3_result_error_nomem(pCtx);
+ }else{
+ testHexToBin(zIn, zOut);
+ sqlite3_result_text16be(pCtx, zOut, n/2, sqlite3_free);
+ }
+}
+#endif
+
+/*
+** hex_to_utf8(HEX)
+**
+** Convert the input string from HEX into binary. Then return the
+** result using sqlite3_result_text16le().
+*/
+static void testHexToUtf8(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **argv
+){
+ int n;
+ const char *zIn;
+ char *zOut;
+ assert( nArg==1 );
+ n = sqlite3_value_bytes(argv[0]);
+ zIn = (const char*)sqlite3_value_text(argv[0]);
+ zOut = sqlite3_malloc( n/2 );
+ if( zOut==0 ){
+ sqlite3_result_error_nomem(pCtx);
+ }else{
+ testHexToBin(zIn, zOut);
+ sqlite3_result_text(pCtx, zOut, n/2, sqlite3_free);
+ }
+}
+
+/*
+** hex_to_utf16le(HEX)
+**
+** Convert the input string from HEX into binary. Then return the
+** result using sqlite3_result_text16le().
+*/
+#ifndef SQLITE_OMIT_UTF16
+static void testHexToUtf16le(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **argv
+){
+ int n;
+ const char *zIn;
+ char *zOut;
+ assert( nArg==1 );
+ n = sqlite3_value_bytes(argv[0]);
+ zIn = (const char*)sqlite3_value_text(argv[0]);
+ zOut = sqlite3_malloc( n/2 );
+ if( zOut==0 ){
+ sqlite3_result_error_nomem(pCtx);
+ }else{
+ testHexToBin(zIn, zOut);
+ sqlite3_result_text16le(pCtx, zOut, n/2, sqlite3_free);
+ }
+}
+#endif
+
+/*
+** SQL function: real2hex(X)
+**
+** If argument X is a real number, then convert it into a string which is
+** the big-endian hexadecimal representation of the ieee754 encoding of
+** that number. If X is not a real number, return NULL.
+*/
+static void real2hex(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ union {
+ sqlite3_uint64 i;
+ double r;
+ unsigned char x[8];
+ } v;
+ char zOut[20];
+ int i;
+ int bigEndian;
+ v.i = 1;
+ bigEndian = v.x[0]==0;
+ v.r = sqlite3_value_double(argv[0]);
+ for(i=0; i<8; i++){
+ if( bigEndian ){
+ zOut[i*2] = "0123456789abcdef"[v.x[i]>>4];
+ zOut[i*2+1] = "0123456789abcdef"[v.x[i]&0xf];
+ }else{
+ zOut[14-i*2] = "0123456789abcdef"[v.x[i]>>4];
+ zOut[14-i*2+1] = "0123456789abcdef"[v.x[i]&0xf];
+ }
+ }
+ zOut[16] = 0;
+ sqlite3_result_text(context, zOut, -1, SQLITE_TRANSIENT);
+}
+
+/*
+** test_extract(record, field)
+**
+** This function implements an SQL user-function that accepts a blob
+** containing a formatted database record as the first argument. The
+** second argument is the index of the field within that record to
+** extract and return.
+*/
+static void test_extract(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ u8 *pRec;
+ u8 *pEndHdr; /* Points to one byte past record header */
+ u8 *pHdr; /* Current point in record header */
+ u8 *pBody; /* Current point in record data */
+ u64 nHdr; /* Bytes in record header */
+ int iIdx; /* Required field */
+ int iCurrent = 0; /* Current field */
+
+ assert( argc==2 );
+ pRec = (u8*)sqlite3_value_blob(argv[0]);
+ iIdx = sqlite3_value_int(argv[1]);
+
+ pHdr = pRec + sqlite3GetVarint(pRec, &nHdr);
+ pBody = pEndHdr = &pRec[nHdr];
+
+ for(iCurrent=0; pHdr<pEndHdr && iCurrent<=iIdx; iCurrent++){
+ u64 iSerialType;
+ Mem mem;
+
+ memset(&mem, 0, sizeof(mem));
+ mem.db = db;
+ mem.enc = ENC(db);
+ pHdr += sqlite3GetVarint(pHdr, &iSerialType);
+ sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem);
+ pBody += sqlite3VdbeSerialTypeLen((u32)iSerialType);
+
+ if( iCurrent==iIdx ){
+ sqlite3_result_value(context, &mem);
+ }
+
+ if( mem.szMalloc ) sqlite3DbFree(db, mem.zMalloc);
+ }
+}
+
+/*
+** test_decode(record)
+**
+** This function implements an SQL user-function that accepts a blob
+** containing a formatted database record as its only argument. It returns
+** a tcl list (type SQLITE_TEXT) containing each of the values stored
+** in the record.
+*/
+static void test_decode(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ u8 *pRec;
+ u8 *pEndHdr; /* Points to one byte past record header */
+ u8 *pHdr; /* Current point in record header */
+ u8 *pBody; /* Current point in record data */
+ u64 nHdr; /* Bytes in record header */
+ Tcl_Obj *pRet; /* Return value */
+
+ pRet = Tcl_NewObj();
+ Tcl_IncrRefCount(pRet);
+
+ assert( argc==1 );
+ pRec = (u8*)sqlite3_value_blob(argv[0]);
+
+ pHdr = pRec + sqlite3GetVarint(pRec, &nHdr);
+ pBody = pEndHdr = &pRec[nHdr];
+ while( pHdr<pEndHdr ){
+ Tcl_Obj *pVal = 0;
+ u64 iSerialType;
+ Mem mem;
+
+ memset(&mem, 0, sizeof(mem));
+ mem.db = db;
+ mem.enc = ENC(db);
+ pHdr += sqlite3GetVarint(pHdr, &iSerialType);
+ sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem);
+ pBody += sqlite3VdbeSerialTypeLen((u32)iSerialType);
+
+ switch( sqlite3_value_type(&mem) ){
+ case SQLITE_TEXT:
+ pVal = Tcl_NewStringObj((const char*)sqlite3_value_text(&mem), -1);
+ break;
+
+ case SQLITE_BLOB: {
+ char hexdigit[] = {
+ '0', '1', '2', '3', '4', '5', '6', '7',
+ '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
+ };
+ int n = sqlite3_value_bytes(&mem);
+ u8 *z = (u8*)sqlite3_value_blob(&mem);
+ int i;
+ pVal = Tcl_NewStringObj("x'", -1);
+ for(i=0; i<n; i++){
+ char hex[3];
+ hex[0] = hexdigit[((z[i] >> 4) & 0x0F)];
+ hex[1] = hexdigit[(z[i] & 0x0F)];
+ hex[2] = '\0';
+ Tcl_AppendStringsToObj(pVal, hex, 0);
+ }
+ Tcl_AppendStringsToObj(pVal, "'", 0);
+ break;
+ }
+
+ case SQLITE_FLOAT:
+ pVal = Tcl_NewDoubleObj(sqlite3_value_double(&mem));
+ break;
+
+ case SQLITE_INTEGER:
+ pVal = Tcl_NewWideIntObj(sqlite3_value_int64(&mem));
+ break;
+
+ case SQLITE_NULL:
+ pVal = Tcl_NewStringObj("NULL", -1);
+ break;
+
+ default:
+ assert( 0 );
+ }
+
+ Tcl_ListObjAppendElement(0, pRet, pVal);
+
+ if( mem.szMalloc ){
+ sqlite3DbFree(db, mem.zMalloc);
+ }
+ }
+
+ sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
+ Tcl_DecrRefCount(pRet);
+}
+
+/*
+** test_zeroblob(N)
+**
+** The implementation of scalar SQL function "test_zeroblob()". This is
+** similar to the built-in zeroblob() function, except that it does not
+** check that the integer parameter is within range before passing it
+** to sqlite3_result_zeroblob().
+*/
+static void test_zeroblob(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int nZero = sqlite3_value_int(argv[0]);
+ sqlite3_result_zeroblob(context, nZero);
+}
+
+/* test_getsubtype(V)
+**
+** Return the subtype for value V.
+*/
+static void test_getsubtype(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ sqlite3_result_int(context, (int)sqlite3_value_subtype(argv[0]));
+}
+
+/* test_frombind(A,B,C,...)
+**
+** Return an integer bitmask that has a bit set for every argument
+** (up to the first 63 arguments) that originates from a bind a parameter.
+*/
+static void test_frombind(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ sqlite3_uint64 m = 0;
+ int i;
+ for(i=0; i<argc && i<63; i++){
+ if( sqlite3_value_frombind(argv[i]) ) m |= ((sqlite3_uint64)1)<<i;
+ }
+ sqlite3_result_int64(context, (sqlite3_int64)m);
+}
+
+/* test_setsubtype(V, T)
+**
+** Return the value V with its subtype changed to T
+*/
+static void test_setsubtype(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ sqlite3_result_value(context, argv[0]);
+ sqlite3_result_subtype(context, (unsigned int)sqlite3_value_int(argv[1]));
+}
+
+static int registerTestFunctions(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pThunk
+){
+ static const struct {
+ char *zName;
+ signed char nArg;
+ unsigned int eTextRep; /* 1: UTF-16. 0: UTF-8 */
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
+ } aFuncs[] = {
+ { "randstr", 2, SQLITE_UTF8, randStr },
+ { "test_destructor", 1, SQLITE_UTF8, test_destructor},
+#ifndef SQLITE_OMIT_UTF16
+ { "test_destructor16", 1, SQLITE_UTF8, test_destructor16},
+ { "hex_to_utf16be", 1, SQLITE_UTF8, testHexToUtf16be},
+ { "hex_to_utf16le", 1, SQLITE_UTF8, testHexToUtf16le},
+#endif
+ { "hex_to_utf8", 1, SQLITE_UTF8, testHexToUtf8},
+ { "test_destructor_count", 0, SQLITE_UTF8, test_destructor_count},
+ { "test_auxdata", -1, SQLITE_UTF8, test_auxdata},
+ { "test_error", 1, SQLITE_UTF8, test_error},
+ { "test_error", 2, SQLITE_UTF8, test_error},
+ { "test_eval", 1, SQLITE_UTF8, test_eval},
+ { "test_isolation", 2, SQLITE_UTF8, test_isolation},
+ { "test_counter", 1, SQLITE_UTF8, counterFunc},
+ { "real2hex", 1, SQLITE_UTF8, real2hex},
+ { "test_decode", 1, SQLITE_UTF8, test_decode},
+ { "test_extract", 2, SQLITE_UTF8, test_extract},
+ { "test_zeroblob", 1, SQLITE_UTF8|SQLITE_DETERMINISTIC, test_zeroblob},
+ { "test_getsubtype", 1, SQLITE_UTF8, test_getsubtype},
+ { "test_setsubtype", 2, SQLITE_UTF8|SQLITE_RESULT_SUBTYPE,
+ test_setsubtype},
+ { "test_frombind", -1, SQLITE_UTF8, test_frombind},
+ };
+ int i;
+
+ for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
+ sqlite3_create_function(db, aFuncs[i].zName, aFuncs[i].nArg,
+ aFuncs[i].eTextRep, 0, aFuncs[i].xFunc, 0, 0);
+ }
+
+ sqlite3_create_function(db, "test_agg_errmsg16", 0, SQLITE_ANY, 0, 0,
+ test_agg_errmsg16_step, test_agg_errmsg16_final);
+
+ return SQLITE_OK;
+}
+
+/*
+** TCLCMD: autoinstall_test_functions
+**
+** Invoke this TCL command to use sqlite3_auto_extension() to cause
+** the standard set of test functions to be loaded into each new
+** database connection.
+*/
+static int SQLITE_TCLAPI autoinstall_test_funcs(
+ void * clientData,
+ Tcl_Interp *interp,
+ int objc,
+ Tcl_Obj *CONST objv[]
+){
+ extern int Md5_Register(sqlite3 *, char **, const sqlite3_api_routines *);
+ int rc = sqlite3_auto_extension((void(*)(void))registerTestFunctions);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_auto_extension((void(*)(void))Md5_Register);
+ }
+ Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
+ return TCL_OK;
+}
+
+/*
+** A bogus step function and finalizer function.
+*/
+static void tStep(sqlite3_context *a, int b, sqlite3_value **c){}
+static void tFinal(sqlite3_context *a){}
+
+
+/*
+** tclcmd: abuse_create_function
+**
+** Make various calls to sqlite3_create_function that do not have valid
+** parameters. Verify that the error condition is detected and reported.
+*/
+static int SQLITE_TCLAPI abuse_create_function(
+ void * clientData,
+ Tcl_Interp *interp,
+ int objc,
+ Tcl_Obj *CONST objv[]
+){
+ extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**);
+ sqlite3 *db;
+ int rc;
+ int mxArg;
+
+ if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
+
+ rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, tStep,tStep,tFinal);
+ if( rc!=SQLITE_MISUSE ) goto abuse_err;
+
+ rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, tStep, tStep, 0);
+ if( rc!=SQLITE_MISUSE ) goto abuse_err;
+
+ rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, tStep, 0, tFinal);
+ if( rc!=SQLITE_MISUSE) goto abuse_err;
+
+ rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, 0, 0, tFinal);
+ if( rc!=SQLITE_MISUSE ) goto abuse_err;
+
+ rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, 0, tStep, 0);
+ if( rc!=SQLITE_MISUSE ) goto abuse_err;
+
+ rc = sqlite3_create_function(db, "tx", -2, SQLITE_UTF8, 0, tStep, 0, 0);
+ if( rc!=SQLITE_MISUSE ) goto abuse_err;
+
+ rc = sqlite3_create_function(db, "tx", 128, SQLITE_UTF8, 0, tStep, 0, 0);
+ if( rc!=SQLITE_MISUSE ) goto abuse_err;
+
+ rc = sqlite3_create_function(db, "funcxx"
+ "_123456789_123456789_123456789_123456789_123456789"
+ "_123456789_123456789_123456789_123456789_123456789"
+ "_123456789_123456789_123456789_123456789_123456789"
+ "_123456789_123456789_123456789_123456789_123456789"
+ "_123456789_123456789_123456789_123456789_123456789",
+ 1, SQLITE_UTF8, 0, tStep, 0, 0);
+ if( rc!=SQLITE_MISUSE ) goto abuse_err;
+
+ /* This last function registration should actually work. Generate
+ ** a no-op function (that always returns NULL) and which has the
+ ** maximum-length function name and the maximum number of parameters.
+ */
+ sqlite3_limit(db, SQLITE_LIMIT_FUNCTION_ARG, 10000);
+ mxArg = sqlite3_limit(db, SQLITE_LIMIT_FUNCTION_ARG, -1);
+ rc = sqlite3_create_function(db, "nullx"
+ "_123456789_123456789_123456789_123456789_123456789"
+ "_123456789_123456789_123456789_123456789_123456789"
+ "_123456789_123456789_123456789_123456789_123456789"
+ "_123456789_123456789_123456789_123456789_123456789"
+ "_123456789_123456789_123456789_123456789_123456789",
+ mxArg, SQLITE_UTF8, 0, tStep, 0, 0);
+ if( rc!=SQLITE_OK ) goto abuse_err;
+
+ return TCL_OK;
+
+abuse_err:
+ Tcl_AppendResult(interp, "sqlite3_create_function abused test failed",
+ (char*)0);
+ return TCL_ERROR;
+}
+
+
+/*
+** SQLite user defined function to use with matchinfo() to calculate the
+** relevancy of an FTS match. The value returned is the relevancy score
+** (a real value greater than or equal to zero). A larger value indicates
+** a more relevant document.
+**
+** The overall relevancy returned is the sum of the relevancies of each
+** column value in the FTS table. The relevancy of a column value is the
+** sum of the following for each reportable phrase in the FTS query:
+**
+** (<hit count> / <global hit count>) * <column weight>
+**
+** where <hit count> is the number of instances of the phrase in the
+** column value of the current row and <global hit count> is the number
+** of instances of the phrase in the same column of all rows in the FTS
+** table. The <column weight> is a weighting factor assigned to each
+** column by the caller (see below).
+**
+** The first argument to this function must be the return value of the FTS
+** matchinfo() function. Following this must be one argument for each column
+** of the FTS table containing a numeric weight factor for the corresponding
+** column. Example:
+**
+** CREATE VIRTUAL TABLE documents USING fts3(title, content)
+**
+** The following query returns the docids of documents that match the full-text
+** query <query> sorted from most to least relevant. When calculating
+** relevance, query term instances in the 'title' column are given twice the
+** weighting of those in the 'content' column.
+**
+** SELECT docid FROM documents
+** WHERE documents MATCH <query>
+** ORDER BY rank(matchinfo(documents), 1.0, 0.5) DESC
+*/
+static void rankfunc(sqlite3_context *pCtx, int nVal, sqlite3_value **apVal){
+ int *aMatchinfo; /* Return value of matchinfo() */
+ int nMatchinfo; /* Number of elements in aMatchinfo[] */
+ int nCol = 0; /* Number of columns in the table */
+ int nPhrase = 0; /* Number of phrases in the query */
+ int iPhrase; /* Current phrase */
+ double score = 0.0; /* Value to return */
+
+ assert( sizeof(int)==4 );
+
+ /* Check that the number of arguments passed to this function is correct.
+ ** If not, jump to wrong_number_args. Set aMatchinfo to point to the array
+ ** of unsigned integer values returned by FTS function matchinfo. Set
+ ** nPhrase to contain the number of reportable phrases in the users full-text
+ ** query, and nCol to the number of columns in the table. Then check that the
+ ** size of the matchinfo blob is as expected. Return an error if it is not.
+ */
+ if( nVal<1 ) goto wrong_number_args;
+ aMatchinfo = (int*)sqlite3_value_blob(apVal[0]);
+ nMatchinfo = sqlite3_value_bytes(apVal[0]) / sizeof(int);
+ if( nMatchinfo>=2 ){
+ nPhrase = aMatchinfo[0];
+ nCol = aMatchinfo[1];
+ }
+ if( nMatchinfo!=(2+3*nCol*nPhrase) ){
+ sqlite3_result_error(pCtx,
+ "invalid matchinfo blob passed to function rank()", -1);
+ return;
+ }
+ if( nVal!=(1+nCol) ) goto wrong_number_args;
+
+ /* Iterate through each phrase in the users query. */
+ for(iPhrase=0; iPhrase<nPhrase; iPhrase++){
+ int iCol; /* Current column */
+
+ /* Now iterate through each column in the users query. For each column,
+ ** increment the relevancy score by:
+ **
+ ** (<hit count> / <global hit count>) * <column weight>
+ **
+ ** aPhraseinfo[] points to the start of the data for phrase iPhrase. So
+ ** the hit count and global hit counts for each column are found in
+ ** aPhraseinfo[iCol*3] and aPhraseinfo[iCol*3+1], respectively.
+ */
+ int *aPhraseinfo = &aMatchinfo[2 + iPhrase*nCol*3];
+ for(iCol=0; iCol<nCol; iCol++){
+ int nHitCount = aPhraseinfo[3*iCol];
+ int nGlobalHitCount = aPhraseinfo[3*iCol+1];
+ double weight = sqlite3_value_double(apVal[iCol+1]);
+ if( nHitCount>0 ){
+ score += ((double)nHitCount / (double)nGlobalHitCount) * weight;
+ }
+ }
+ }
+
+ sqlite3_result_double(pCtx, score);
+ return;
+
+ /* Jump here if the wrong number of arguments are passed to this function */
+wrong_number_args:
+ sqlite3_result_error(pCtx, "wrong number of arguments to function rank()", -1);
+}
+
+static int SQLITE_TCLAPI install_fts3_rank_function(
+ void * clientData,
+ Tcl_Interp *interp,
+ int objc,
+ Tcl_Obj *CONST objv[]
+){
+ extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**);
+ sqlite3 *db;
+
+ if( objc!=2 ){
+ Tcl_WrongNumArgs(interp, 1, objv, "DB");
+ return TCL_ERROR;
+ }
+
+ if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
+ sqlite3_create_function(db, "rank", -1, SQLITE_UTF8, 0, rankfunc, 0, 0);
+ return TCL_OK;
+}
+
+
+/*
+** Register commands with the TCL interpreter.
+*/
+int Sqlitetest_func_Init(Tcl_Interp *interp){
+ static struct {
+ char *zName;
+ Tcl_ObjCmdProc *xProc;
+ } aObjCmd[] = {
+ { "autoinstall_test_functions", autoinstall_test_funcs },
+ { "abuse_create_function", abuse_create_function },
+ { "install_fts3_rank_function", install_fts3_rank_function },
+ };
+ int i;
+ extern int Md5_Register(sqlite3 *, char **, const sqlite3_api_routines *);
+
+ for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){
+ Tcl_CreateObjCommand(interp, aObjCmd[i].zName, aObjCmd[i].xProc, 0, 0);
+ }
+ sqlite3_initialize();
+ sqlite3_auto_extension((void(*)(void))registerTestFunctions);
+ sqlite3_auto_extension((void(*)(void))Md5_Register);
+ return TCL_OK;
+}