diff options
Diffstat (limited to 'src/test_func.c')
-rw-r--r-- | src/test_func.c | 955 |
1 files changed, 955 insertions, 0 deletions
diff --git a/src/test_func.c b/src/test_func.c new file mode 100644 index 0000000..80df488 --- /dev/null +++ b/src/test_func.c @@ -0,0 +1,955 @@ +/* +** 2008 March 19 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** Code for testing all sorts of SQLite interfaces. This code +** implements new SQL functions used by the test scripts. +*/ +#include "sqlite3.h" +#if defined(INCLUDE_SQLITE_TCL_H) +# include "sqlite_tcl.h" +#else +# include "tcl.h" +#endif +#include <stdlib.h> +#include <string.h> +#include <assert.h> + +#include "sqliteInt.h" +#include "vdbeInt.h" + +/* +** Allocate nByte bytes of space using sqlite3_malloc(). If the +** allocation fails, call sqlite3_result_error_nomem() to notify +** the database handle that malloc() has failed. +*/ +static void *testContextMalloc(sqlite3_context *context, int nByte){ + char *z = sqlite3_malloc(nByte); + if( !z && nByte>0 ){ + sqlite3_result_error_nomem(context); + } + return z; +} + +/* +** This function generates a string of random characters. Used for +** generating test data. +*/ +static void randStr(sqlite3_context *context, int argc, sqlite3_value **argv){ + static const unsigned char zSrc[] = + "abcdefghijklmnopqrstuvwxyz" + "ABCDEFGHIJKLMNOPQRSTUVWXYZ" + "0123456789" + ".-!,:*^+=_|?/<> "; + int iMin, iMax, n, r, i; + unsigned char zBuf[1000]; + + /* It used to be possible to call randstr() with any number of arguments, + ** but now it is registered with SQLite as requiring exactly 2. + */ + assert(argc==2); + + iMin = sqlite3_value_int(argv[0]); + if( iMin<0 ) iMin = 0; + if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1; + iMax = sqlite3_value_int(argv[1]); + if( iMax<iMin ) iMax = iMin; + if( iMax>=sizeof(zBuf) ) iMax = sizeof(zBuf)-1; + n = iMin; + if( iMax>iMin ){ + sqlite3_randomness(sizeof(r), &r); + r &= 0x7fffffff; + n += r%(iMax + 1 - iMin); + } + assert( n<sizeof(zBuf) ); + sqlite3_randomness(n, zBuf); + for(i=0; i<n; i++){ + zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)]; + } + zBuf[n] = 0; + sqlite3_result_text(context, (char*)zBuf, n, SQLITE_TRANSIENT); +} + +/* +** The following two SQL functions are used to test returning a text +** result with a destructor. Function 'test_destructor' takes one argument +** and returns the same argument interpreted as TEXT. A destructor is +** passed with the sqlite3_result_text() call. +** +** SQL function 'test_destructor_count' returns the number of outstanding +** allocations made by 'test_destructor'; +** +** WARNING: Not threadsafe. +*/ +static int test_destructor_count_var = 0; +static void destructor(void *p){ + char *zVal = (char *)p; + assert(zVal); + zVal--; + sqlite3_free(zVal); + test_destructor_count_var--; +} +static void test_destructor( + sqlite3_context *pCtx, + int nArg, + sqlite3_value **argv +){ + char *zVal; + int len; + + test_destructor_count_var++; + assert( nArg==1 ); + if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; + len = sqlite3_value_bytes(argv[0]); + zVal = testContextMalloc(pCtx, len+3); + if( !zVal ){ + return; + } + zVal[len+1] = 0; + zVal[len+2] = 0; + zVal++; + memcpy(zVal, sqlite3_value_text(argv[0]), len); + sqlite3_result_text(pCtx, zVal, -1, destructor); +} +#ifndef SQLITE_OMIT_UTF16 +static void test_destructor16( + sqlite3_context *pCtx, + int nArg, + sqlite3_value **argv +){ + char *zVal; + int len; + + test_destructor_count_var++; + assert( nArg==1 ); + if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; + len = sqlite3_value_bytes16(argv[0]); + zVal = testContextMalloc(pCtx, len+3); + if( !zVal ){ + return; + } + zVal[len+1] = 0; + zVal[len+2] = 0; + zVal++; + memcpy(zVal, sqlite3_value_text16(argv[0]), len); + sqlite3_result_text16(pCtx, zVal, -1, destructor); +} +#endif +static void test_destructor_count( + sqlite3_context *pCtx, + int nArg, + sqlite3_value **argv +){ + sqlite3_result_int(pCtx, test_destructor_count_var); +} + +/* +** The following aggregate function, test_agg_errmsg16(), takes zero +** arguments. It returns the text value returned by the sqlite3_errmsg16() +** API function. +*/ +#ifndef SQLITE_UNTESTABLE +void sqlite3BeginBenignMalloc(void); +void sqlite3EndBenignMalloc(void); +#else + #define sqlite3BeginBenignMalloc() + #define sqlite3EndBenignMalloc() +#endif +static void test_agg_errmsg16_step(sqlite3_context *a, int b,sqlite3_value **c){ +} +static void test_agg_errmsg16_final(sqlite3_context *ctx){ +#ifndef SQLITE_OMIT_UTF16 + const void *z; + sqlite3 * db = sqlite3_context_db_handle(ctx); + sqlite3_aggregate_context(ctx, 2048); + z = sqlite3_errmsg16(db); + sqlite3_result_text16(ctx, z, -1, SQLITE_TRANSIENT); +#endif +} + +/* +** Routines for testing the sqlite3_get_auxdata() and sqlite3_set_auxdata() +** interface. +** +** The test_auxdata() SQL function attempts to register each of its arguments +** as auxiliary data. If there are no prior registrations of aux data for +** that argument (meaning the argument is not a constant or this is its first +** call) then the result for that argument is 0. If there is a prior +** registration, the result for that argument is 1. The overall result +** is the individual argument results separated by spaces. +*/ +static void free_test_auxdata(void *p) {sqlite3_free(p);} +static void test_auxdata( + sqlite3_context *pCtx, + int nArg, + sqlite3_value **argv +){ + int i; + char *zRet = testContextMalloc(pCtx, nArg*2); + if( !zRet ) return; + memset(zRet, 0, nArg*2); + for(i=0; i<nArg; i++){ + char const *z = (char*)sqlite3_value_text(argv[i]); + if( z ){ + int n; + char *zAux = sqlite3_get_auxdata(pCtx, i); + if( zAux ){ + zRet[i*2] = '1'; + assert( strcmp(zAux,z)==0 ); + }else { + zRet[i*2] = '0'; + } + n = (int)strlen(z) + 1; + zAux = testContextMalloc(pCtx, n); + if( zAux ){ + memcpy(zAux, z, n); + sqlite3_set_auxdata(pCtx, i, zAux, free_test_auxdata); + } + zRet[i*2+1] = ' '; + } + } + sqlite3_result_text(pCtx, zRet, 2*nArg-1, free_test_auxdata); +} + +/* +** A function to test error reporting from user functions. This function +** returns a copy of its first argument as the error message. If the +** second argument exists, it becomes the error code. +*/ +static void test_error( + sqlite3_context *pCtx, + int nArg, + sqlite3_value **argv +){ + sqlite3_result_error(pCtx, (char*)sqlite3_value_text(argv[0]), -1); + if( nArg==2 ){ + sqlite3_result_error_code(pCtx, sqlite3_value_int(argv[1])); + } +} + +/* +** Implementation of the counter(X) function. If X is an integer +** constant, then the first invocation will return X. The second X+1. +** and so forth. Can be used (for example) to provide a sequence number +** in a result set. +*/ +static void counterFunc( + sqlite3_context *pCtx, /* Function context */ + int nArg, /* Number of function arguments */ + sqlite3_value **argv /* Values for all function arguments */ +){ + int *pCounter = (int*)sqlite3_get_auxdata(pCtx, 0); + if( pCounter==0 ){ + pCounter = sqlite3_malloc( sizeof(*pCounter) ); + if( pCounter==0 ){ + sqlite3_result_error_nomem(pCtx); + return; + } + *pCounter = sqlite3_value_int(argv[0]); + sqlite3_set_auxdata(pCtx, 0, pCounter, sqlite3_free); + }else{ + ++*pCounter; + } + sqlite3_result_int(pCtx, *pCounter); +} + + +/* +** This function takes two arguments. It performance UTF-8/16 type +** conversions on the first argument then returns a copy of the second +** argument. +** +** This function is used in cases such as the following: +** +** SELECT test_isolation(x,x) FROM t1; +** +** We want to verify that the type conversions that occur on the +** first argument do not invalidate the second argument. +*/ +static void test_isolation( + sqlite3_context *pCtx, + int nArg, + sqlite3_value **argv +){ +#ifndef SQLITE_OMIT_UTF16 + sqlite3_value_text16(argv[0]); + sqlite3_value_text(argv[0]); + sqlite3_value_text16(argv[0]); + sqlite3_value_text(argv[0]); +#endif + sqlite3_result_value(pCtx, argv[1]); +} + +/* +** Invoke an SQL statement recursively. The function result is the +** first column of the first row of the result set. +*/ +static void test_eval( + sqlite3_context *pCtx, + int nArg, + sqlite3_value **argv +){ + sqlite3_stmt *pStmt; + int rc; + sqlite3 *db = sqlite3_context_db_handle(pCtx); + const char *zSql; + + zSql = (char*)sqlite3_value_text(argv[0]); + rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); + if( rc==SQLITE_OK ){ + rc = sqlite3_step(pStmt); + if( rc==SQLITE_ROW ){ + sqlite3_result_value(pCtx, sqlite3_column_value(pStmt, 0)); + } + rc = sqlite3_finalize(pStmt); + } + if( rc ){ + char *zErr; + assert( pStmt==0 ); + zErr = sqlite3_mprintf("sqlite3_prepare_v2() error: %s",sqlite3_errmsg(db)); + sqlite3_result_text(pCtx, zErr, -1, sqlite3_free); + sqlite3_result_error_code(pCtx, rc); + } +} + + +/* +** convert one character from hex to binary +*/ +static int testHexChar(char c){ + if( c>='0' && c<='9' ){ + return c - '0'; + }else if( c>='a' && c<='f' ){ + return c - 'a' + 10; + }else if( c>='A' && c<='F' ){ + return c - 'A' + 10; + } + return 0; +} + +/* +** Convert hex to binary. +*/ +static void testHexToBin(const char *zIn, char *zOut){ + while( zIn[0] && zIn[1] ){ + *(zOut++) = (testHexChar(zIn[0])<<4) + testHexChar(zIn[1]); + zIn += 2; + } +} + +/* +** hex_to_utf16be(HEX) +** +** Convert the input string from HEX into binary. Then return the +** result using sqlite3_result_text16le(). +*/ +#ifndef SQLITE_OMIT_UTF16 +static void testHexToUtf16be( + sqlite3_context *pCtx, + int nArg, + sqlite3_value **argv +){ + int n; + const char *zIn; + char *zOut; + assert( nArg==1 ); + n = sqlite3_value_bytes(argv[0]); + zIn = (const char*)sqlite3_value_text(argv[0]); + zOut = sqlite3_malloc( n/2 ); + if( zOut==0 ){ + sqlite3_result_error_nomem(pCtx); + }else{ + testHexToBin(zIn, zOut); + sqlite3_result_text16be(pCtx, zOut, n/2, sqlite3_free); + } +} +#endif + +/* +** hex_to_utf8(HEX) +** +** Convert the input string from HEX into binary. Then return the +** result using sqlite3_result_text16le(). +*/ +static void testHexToUtf8( + sqlite3_context *pCtx, + int nArg, + sqlite3_value **argv +){ + int n; + const char *zIn; + char *zOut; + assert( nArg==1 ); + n = sqlite3_value_bytes(argv[0]); + zIn = (const char*)sqlite3_value_text(argv[0]); + zOut = sqlite3_malloc( n/2 ); + if( zOut==0 ){ + sqlite3_result_error_nomem(pCtx); + }else{ + testHexToBin(zIn, zOut); + sqlite3_result_text(pCtx, zOut, n/2, sqlite3_free); + } +} + +/* +** hex_to_utf16le(HEX) +** +** Convert the input string from HEX into binary. Then return the +** result using sqlite3_result_text16le(). +*/ +#ifndef SQLITE_OMIT_UTF16 +static void testHexToUtf16le( + sqlite3_context *pCtx, + int nArg, + sqlite3_value **argv +){ + int n; + const char *zIn; + char *zOut; + assert( nArg==1 ); + n = sqlite3_value_bytes(argv[0]); + zIn = (const char*)sqlite3_value_text(argv[0]); + zOut = sqlite3_malloc( n/2 ); + if( zOut==0 ){ + sqlite3_result_error_nomem(pCtx); + }else{ + testHexToBin(zIn, zOut); + sqlite3_result_text16le(pCtx, zOut, n/2, sqlite3_free); + } +} +#endif + +/* +** SQL function: real2hex(X) +** +** If argument X is a real number, then convert it into a string which is +** the big-endian hexadecimal representation of the ieee754 encoding of +** that number. If X is not a real number, return NULL. +*/ +static void real2hex( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + union { + sqlite3_uint64 i; + double r; + unsigned char x[8]; + } v; + char zOut[20]; + int i; + int bigEndian; + v.i = 1; + bigEndian = v.x[0]==0; + v.r = sqlite3_value_double(argv[0]); + for(i=0; i<8; i++){ + if( bigEndian ){ + zOut[i*2] = "0123456789abcdef"[v.x[i]>>4]; + zOut[i*2+1] = "0123456789abcdef"[v.x[i]&0xf]; + }else{ + zOut[14-i*2] = "0123456789abcdef"[v.x[i]>>4]; + zOut[14-i*2+1] = "0123456789abcdef"[v.x[i]&0xf]; + } + } + zOut[16] = 0; + sqlite3_result_text(context, zOut, -1, SQLITE_TRANSIENT); +} + +/* +** test_extract(record, field) +** +** This function implements an SQL user-function that accepts a blob +** containing a formatted database record as the first argument. The +** second argument is the index of the field within that record to +** extract and return. +*/ +static void test_extract( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + sqlite3 *db = sqlite3_context_db_handle(context); + u8 *pRec; + u8 *pEndHdr; /* Points to one byte past record header */ + u8 *pHdr; /* Current point in record header */ + u8 *pBody; /* Current point in record data */ + u64 nHdr; /* Bytes in record header */ + int iIdx; /* Required field */ + int iCurrent = 0; /* Current field */ + + assert( argc==2 ); + pRec = (u8*)sqlite3_value_blob(argv[0]); + iIdx = sqlite3_value_int(argv[1]); + + pHdr = pRec + sqlite3GetVarint(pRec, &nHdr); + pBody = pEndHdr = &pRec[nHdr]; + + for(iCurrent=0; pHdr<pEndHdr && iCurrent<=iIdx; iCurrent++){ + u64 iSerialType; + Mem mem; + + memset(&mem, 0, sizeof(mem)); + mem.db = db; + mem.enc = ENC(db); + pHdr += sqlite3GetVarint(pHdr, &iSerialType); + sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem); + pBody += sqlite3VdbeSerialTypeLen((u32)iSerialType); + + if( iCurrent==iIdx ){ + sqlite3_result_value(context, &mem); + } + + if( mem.szMalloc ) sqlite3DbFree(db, mem.zMalloc); + } +} + +/* +** test_decode(record) +** +** This function implements an SQL user-function that accepts a blob +** containing a formatted database record as its only argument. It returns +** a tcl list (type SQLITE_TEXT) containing each of the values stored +** in the record. +*/ +static void test_decode( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + sqlite3 *db = sqlite3_context_db_handle(context); + u8 *pRec; + u8 *pEndHdr; /* Points to one byte past record header */ + u8 *pHdr; /* Current point in record header */ + u8 *pBody; /* Current point in record data */ + u64 nHdr; /* Bytes in record header */ + Tcl_Obj *pRet; /* Return value */ + + pRet = Tcl_NewObj(); + Tcl_IncrRefCount(pRet); + + assert( argc==1 ); + pRec = (u8*)sqlite3_value_blob(argv[0]); + + pHdr = pRec + sqlite3GetVarint(pRec, &nHdr); + pBody = pEndHdr = &pRec[nHdr]; + while( pHdr<pEndHdr ){ + Tcl_Obj *pVal = 0; + u64 iSerialType; + Mem mem; + + memset(&mem, 0, sizeof(mem)); + mem.db = db; + mem.enc = ENC(db); + pHdr += sqlite3GetVarint(pHdr, &iSerialType); + sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem); + pBody += sqlite3VdbeSerialTypeLen((u32)iSerialType); + + switch( sqlite3_value_type(&mem) ){ + case SQLITE_TEXT: + pVal = Tcl_NewStringObj((const char*)sqlite3_value_text(&mem), -1); + break; + + case SQLITE_BLOB: { + char hexdigit[] = { + '0', '1', '2', '3', '4', '5', '6', '7', + '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' + }; + int n = sqlite3_value_bytes(&mem); + u8 *z = (u8*)sqlite3_value_blob(&mem); + int i; + pVal = Tcl_NewStringObj("x'", -1); + for(i=0; i<n; i++){ + char hex[3]; + hex[0] = hexdigit[((z[i] >> 4) & 0x0F)]; + hex[1] = hexdigit[(z[i] & 0x0F)]; + hex[2] = '\0'; + Tcl_AppendStringsToObj(pVal, hex, 0); + } + Tcl_AppendStringsToObj(pVal, "'", 0); + break; + } + + case SQLITE_FLOAT: + pVal = Tcl_NewDoubleObj(sqlite3_value_double(&mem)); + break; + + case SQLITE_INTEGER: + pVal = Tcl_NewWideIntObj(sqlite3_value_int64(&mem)); + break; + + case SQLITE_NULL: + pVal = Tcl_NewStringObj("NULL", -1); + break; + + default: + assert( 0 ); + } + + Tcl_ListObjAppendElement(0, pRet, pVal); + + if( mem.szMalloc ){ + sqlite3DbFree(db, mem.zMalloc); + } + } + + sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT); + Tcl_DecrRefCount(pRet); +} + +/* +** test_zeroblob(N) +** +** The implementation of scalar SQL function "test_zeroblob()". This is +** similar to the built-in zeroblob() function, except that it does not +** check that the integer parameter is within range before passing it +** to sqlite3_result_zeroblob(). +*/ +static void test_zeroblob( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int nZero = sqlite3_value_int(argv[0]); + sqlite3_result_zeroblob(context, nZero); +} + +/* test_getsubtype(V) +** +** Return the subtype for value V. +*/ +static void test_getsubtype( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + sqlite3_result_int(context, (int)sqlite3_value_subtype(argv[0])); +} + +/* test_frombind(A,B,C,...) +** +** Return an integer bitmask that has a bit set for every argument +** (up to the first 63 arguments) that originates from a bind a parameter. +*/ +static void test_frombind( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + sqlite3_uint64 m = 0; + int i; + for(i=0; i<argc && i<63; i++){ + if( sqlite3_value_frombind(argv[i]) ) m |= ((sqlite3_uint64)1)<<i; + } + sqlite3_result_int64(context, (sqlite3_int64)m); +} + +/* test_setsubtype(V, T) +** +** Return the value V with its subtype changed to T +*/ +static void test_setsubtype( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + sqlite3_result_value(context, argv[0]); + sqlite3_result_subtype(context, (unsigned int)sqlite3_value_int(argv[1])); +} + +static int registerTestFunctions( + sqlite3 *db, + char **pzErrMsg, + const sqlite3_api_routines *pThunk +){ + static const struct { + char *zName; + signed char nArg; + unsigned int eTextRep; /* 1: UTF-16. 0: UTF-8 */ + void (*xFunc)(sqlite3_context*,int,sqlite3_value **); + } aFuncs[] = { + { "randstr", 2, SQLITE_UTF8, randStr }, + { "test_destructor", 1, SQLITE_UTF8, test_destructor}, +#ifndef SQLITE_OMIT_UTF16 + { "test_destructor16", 1, SQLITE_UTF8, test_destructor16}, + { "hex_to_utf16be", 1, SQLITE_UTF8, testHexToUtf16be}, + { "hex_to_utf16le", 1, SQLITE_UTF8, testHexToUtf16le}, +#endif + { "hex_to_utf8", 1, SQLITE_UTF8, testHexToUtf8}, + { "test_destructor_count", 0, SQLITE_UTF8, test_destructor_count}, + { "test_auxdata", -1, SQLITE_UTF8, test_auxdata}, + { "test_error", 1, SQLITE_UTF8, test_error}, + { "test_error", 2, SQLITE_UTF8, test_error}, + { "test_eval", 1, SQLITE_UTF8, test_eval}, + { "test_isolation", 2, SQLITE_UTF8, test_isolation}, + { "test_counter", 1, SQLITE_UTF8, counterFunc}, + { "real2hex", 1, SQLITE_UTF8, real2hex}, + { "test_decode", 1, SQLITE_UTF8, test_decode}, + { "test_extract", 2, SQLITE_UTF8, test_extract}, + { "test_zeroblob", 1, SQLITE_UTF8|SQLITE_DETERMINISTIC, test_zeroblob}, + { "test_getsubtype", 1, SQLITE_UTF8, test_getsubtype}, + { "test_setsubtype", 2, SQLITE_UTF8|SQLITE_RESULT_SUBTYPE, + test_setsubtype}, + { "test_frombind", -1, SQLITE_UTF8, test_frombind}, + }; + int i; + + for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){ + sqlite3_create_function(db, aFuncs[i].zName, aFuncs[i].nArg, + aFuncs[i].eTextRep, 0, aFuncs[i].xFunc, 0, 0); + } + + sqlite3_create_function(db, "test_agg_errmsg16", 0, SQLITE_ANY, 0, 0, + test_agg_errmsg16_step, test_agg_errmsg16_final); + + return SQLITE_OK; +} + +/* +** TCLCMD: autoinstall_test_functions +** +** Invoke this TCL command to use sqlite3_auto_extension() to cause +** the standard set of test functions to be loaded into each new +** database connection. +*/ +static int SQLITE_TCLAPI autoinstall_test_funcs( + void * clientData, + Tcl_Interp *interp, + int objc, + Tcl_Obj *CONST objv[] +){ + extern int Md5_Register(sqlite3 *, char **, const sqlite3_api_routines *); + int rc = sqlite3_auto_extension((void(*)(void))registerTestFunctions); + if( rc==SQLITE_OK ){ + rc = sqlite3_auto_extension((void(*)(void))Md5_Register); + } + Tcl_SetObjResult(interp, Tcl_NewIntObj(rc)); + return TCL_OK; +} + +/* +** A bogus step function and finalizer function. +*/ +static void tStep(sqlite3_context *a, int b, sqlite3_value **c){} +static void tFinal(sqlite3_context *a){} + + +/* +** tclcmd: abuse_create_function +** +** Make various calls to sqlite3_create_function that do not have valid +** parameters. Verify that the error condition is detected and reported. +*/ +static int SQLITE_TCLAPI abuse_create_function( + void * clientData, + Tcl_Interp *interp, + int objc, + Tcl_Obj *CONST objv[] +){ + extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); + sqlite3 *db; + int rc; + int mxArg; + + if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; + + rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, tStep,tStep,tFinal); + if( rc!=SQLITE_MISUSE ) goto abuse_err; + + rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, tStep, tStep, 0); + if( rc!=SQLITE_MISUSE ) goto abuse_err; + + rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, tStep, 0, tFinal); + if( rc!=SQLITE_MISUSE) goto abuse_err; + + rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, 0, 0, tFinal); + if( rc!=SQLITE_MISUSE ) goto abuse_err; + + rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, 0, tStep, 0); + if( rc!=SQLITE_MISUSE ) goto abuse_err; + + rc = sqlite3_create_function(db, "tx", -2, SQLITE_UTF8, 0, tStep, 0, 0); + if( rc!=SQLITE_MISUSE ) goto abuse_err; + + rc = sqlite3_create_function(db, "tx", 128, SQLITE_UTF8, 0, tStep, 0, 0); + if( rc!=SQLITE_MISUSE ) goto abuse_err; + + rc = sqlite3_create_function(db, "funcxx" + "_123456789_123456789_123456789_123456789_123456789" + "_123456789_123456789_123456789_123456789_123456789" + "_123456789_123456789_123456789_123456789_123456789" + "_123456789_123456789_123456789_123456789_123456789" + "_123456789_123456789_123456789_123456789_123456789", + 1, SQLITE_UTF8, 0, tStep, 0, 0); + if( rc!=SQLITE_MISUSE ) goto abuse_err; + + /* This last function registration should actually work. Generate + ** a no-op function (that always returns NULL) and which has the + ** maximum-length function name and the maximum number of parameters. + */ + sqlite3_limit(db, SQLITE_LIMIT_FUNCTION_ARG, 10000); + mxArg = sqlite3_limit(db, SQLITE_LIMIT_FUNCTION_ARG, -1); + rc = sqlite3_create_function(db, "nullx" + "_123456789_123456789_123456789_123456789_123456789" + "_123456789_123456789_123456789_123456789_123456789" + "_123456789_123456789_123456789_123456789_123456789" + "_123456789_123456789_123456789_123456789_123456789" + "_123456789_123456789_123456789_123456789_123456789", + mxArg, SQLITE_UTF8, 0, tStep, 0, 0); + if( rc!=SQLITE_OK ) goto abuse_err; + + return TCL_OK; + +abuse_err: + Tcl_AppendResult(interp, "sqlite3_create_function abused test failed", + (char*)0); + return TCL_ERROR; +} + + +/* +** SQLite user defined function to use with matchinfo() to calculate the +** relevancy of an FTS match. The value returned is the relevancy score +** (a real value greater than or equal to zero). A larger value indicates +** a more relevant document. +** +** The overall relevancy returned is the sum of the relevancies of each +** column value in the FTS table. The relevancy of a column value is the +** sum of the following for each reportable phrase in the FTS query: +** +** (<hit count> / <global hit count>) * <column weight> +** +** where <hit count> is the number of instances of the phrase in the +** column value of the current row and <global hit count> is the number +** of instances of the phrase in the same column of all rows in the FTS +** table. The <column weight> is a weighting factor assigned to each +** column by the caller (see below). +** +** The first argument to this function must be the return value of the FTS +** matchinfo() function. Following this must be one argument for each column +** of the FTS table containing a numeric weight factor for the corresponding +** column. Example: +** +** CREATE VIRTUAL TABLE documents USING fts3(title, content) +** +** The following query returns the docids of documents that match the full-text +** query <query> sorted from most to least relevant. When calculating +** relevance, query term instances in the 'title' column are given twice the +** weighting of those in the 'content' column. +** +** SELECT docid FROM documents +** WHERE documents MATCH <query> +** ORDER BY rank(matchinfo(documents), 1.0, 0.5) DESC +*/ +static void rankfunc(sqlite3_context *pCtx, int nVal, sqlite3_value **apVal){ + int *aMatchinfo; /* Return value of matchinfo() */ + int nMatchinfo; /* Number of elements in aMatchinfo[] */ + int nCol = 0; /* Number of columns in the table */ + int nPhrase = 0; /* Number of phrases in the query */ + int iPhrase; /* Current phrase */ + double score = 0.0; /* Value to return */ + + assert( sizeof(int)==4 ); + + /* Check that the number of arguments passed to this function is correct. + ** If not, jump to wrong_number_args. Set aMatchinfo to point to the array + ** of unsigned integer values returned by FTS function matchinfo. Set + ** nPhrase to contain the number of reportable phrases in the users full-text + ** query, and nCol to the number of columns in the table. Then check that the + ** size of the matchinfo blob is as expected. Return an error if it is not. + */ + if( nVal<1 ) goto wrong_number_args; + aMatchinfo = (int*)sqlite3_value_blob(apVal[0]); + nMatchinfo = sqlite3_value_bytes(apVal[0]) / sizeof(int); + if( nMatchinfo>=2 ){ + nPhrase = aMatchinfo[0]; + nCol = aMatchinfo[1]; + } + if( nMatchinfo!=(2+3*nCol*nPhrase) ){ + sqlite3_result_error(pCtx, + "invalid matchinfo blob passed to function rank()", -1); + return; + } + if( nVal!=(1+nCol) ) goto wrong_number_args; + + /* Iterate through each phrase in the users query. */ + for(iPhrase=0; iPhrase<nPhrase; iPhrase++){ + int iCol; /* Current column */ + + /* Now iterate through each column in the users query. For each column, + ** increment the relevancy score by: + ** + ** (<hit count> / <global hit count>) * <column weight> + ** + ** aPhraseinfo[] points to the start of the data for phrase iPhrase. So + ** the hit count and global hit counts for each column are found in + ** aPhraseinfo[iCol*3] and aPhraseinfo[iCol*3+1], respectively. + */ + int *aPhraseinfo = &aMatchinfo[2 + iPhrase*nCol*3]; + for(iCol=0; iCol<nCol; iCol++){ + int nHitCount = aPhraseinfo[3*iCol]; + int nGlobalHitCount = aPhraseinfo[3*iCol+1]; + double weight = sqlite3_value_double(apVal[iCol+1]); + if( nHitCount>0 ){ + score += ((double)nHitCount / (double)nGlobalHitCount) * weight; + } + } + } + + sqlite3_result_double(pCtx, score); + return; + + /* Jump here if the wrong number of arguments are passed to this function */ +wrong_number_args: + sqlite3_result_error(pCtx, "wrong number of arguments to function rank()", -1); +} + +static int SQLITE_TCLAPI install_fts3_rank_function( + void * clientData, + Tcl_Interp *interp, + int objc, + Tcl_Obj *CONST objv[] +){ + extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); + sqlite3 *db; + + if( objc!=2 ){ + Tcl_WrongNumArgs(interp, 1, objv, "DB"); + return TCL_ERROR; + } + + if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; + sqlite3_create_function(db, "rank", -1, SQLITE_UTF8, 0, rankfunc, 0, 0); + return TCL_OK; +} + + +/* +** Register commands with the TCL interpreter. +*/ +int Sqlitetest_func_Init(Tcl_Interp *interp){ + static struct { + char *zName; + Tcl_ObjCmdProc *xProc; + } aObjCmd[] = { + { "autoinstall_test_functions", autoinstall_test_funcs }, + { "abuse_create_function", abuse_create_function }, + { "install_fts3_rank_function", install_fts3_rank_function }, + }; + int i; + extern int Md5_Register(sqlite3 *, char **, const sqlite3_api_routines *); + + for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){ + Tcl_CreateObjCommand(interp, aObjCmd[i].zName, aObjCmd[i].xProc, 0, 0); + } + sqlite3_initialize(); + sqlite3_auto_extension((void(*)(void))registerTestFunctions); + sqlite3_auto_extension((void(*)(void))Md5_Register); + return TCL_OK; +} |