diff options
Diffstat (limited to '')
-rw-r--r-- | src/test_rtree.c | 511 |
1 files changed, 511 insertions, 0 deletions
diff --git a/src/test_rtree.c b/src/test_rtree.c new file mode 100644 index 0000000..0c6dbf3 --- /dev/null +++ b/src/test_rtree.c @@ -0,0 +1,511 @@ +/* +** 2010 August 28 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** Code for testing all sorts of SQLite interfaces. This code +** is not included in the SQLite library. +*/ + +#include "sqlite3.h" +#if defined(INCLUDE_SQLITE_TCL_H) +# include "sqlite_tcl.h" +#else +# include "tcl.h" +#endif + +/* Solely for the UNUSED_PARAMETER() macro. */ +#include "sqliteInt.h" + +#ifdef SQLITE_ENABLE_RTREE +/* +** Type used to cache parameter information for the "circle" r-tree geometry +** callback. +*/ +typedef struct Circle Circle; +struct Circle { + struct Box { + double xmin; + double xmax; + double ymin; + double ymax; + } aBox[2]; + double centerx; + double centery; + double radius; + double mxArea; + int eScoreType; +}; + +/* +** Destructor function for Circle objects allocated by circle_geom(). +*/ +static void circle_del(void *p){ + sqlite3_free(p); +} + +/* +** Implementation of "circle" r-tree geometry callback. +*/ +static int circle_geom( + sqlite3_rtree_geometry *p, + int nCoord, + sqlite3_rtree_dbl *aCoord, + int *pRes +){ + int i; /* Iterator variable */ + Circle *pCircle; /* Structure defining circular region */ + double xmin, xmax; /* X dimensions of box being tested */ + double ymin, ymax; /* X dimensions of box being tested */ + + xmin = aCoord[0]; + xmax = aCoord[1]; + ymin = aCoord[2]; + ymax = aCoord[3]; + pCircle = (Circle *)p->pUser; + if( pCircle==0 ){ + /* If pUser is still 0, then the parameter values have not been tested + ** for correctness or stored into a Circle structure yet. Do this now. */ + + /* This geometry callback is for use with a 2-dimensional r-tree table. + ** Return an error if the table does not have exactly 2 dimensions. */ + if( nCoord!=4 ) return SQLITE_ERROR; + + /* Test that the correct number of parameters (3) have been supplied, + ** and that the parameters are in range (that the radius of the circle + ** radius is greater than zero). */ + if( p->nParam!=3 || p->aParam[2]<0.0 ) return SQLITE_ERROR; + + /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM + ** if the allocation fails. */ + pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle))); + if( !pCircle ) return SQLITE_NOMEM; + p->xDelUser = circle_del; + + /* Record the center and radius of the circular region. One way that + ** tested bounding boxes that intersect the circular region are detected + ** is by testing if each corner of the bounding box lies within radius + ** units of the center of the circle. */ + pCircle->centerx = p->aParam[0]; + pCircle->centery = p->aParam[1]; + pCircle->radius = p->aParam[2]; + + /* Define two bounding box regions. The first, aBox[0], extends to + ** infinity in the X dimension. It covers the same range of the Y dimension + ** as the circular region. The second, aBox[1], extends to infinity in + ** the Y dimension and is constrained to the range of the circle in the + ** X dimension. + ** + ** Then imagine each box is split in half along its short axis by a line + ** that intersects the center of the circular region. A bounding box + ** being tested can be said to intersect the circular region if it contains + ** points from each half of either of the two infinite bounding boxes. + */ + pCircle->aBox[0].xmin = pCircle->centerx; + pCircle->aBox[0].xmax = pCircle->centerx; + pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius; + pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius; + pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius; + pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius; + pCircle->aBox[1].ymin = pCircle->centery; + pCircle->aBox[1].ymax = pCircle->centery; + pCircle->mxArea = (xmax - xmin)*(ymax - ymin) + 1.0; + } + + /* Check if any of the 4 corners of the bounding-box being tested lie + ** inside the circular region. If they do, then the bounding-box does + ** intersect the region of interest. Set the output variable to true and + ** return SQLITE_OK in this case. */ + for(i=0; i<4; i++){ + double x = (i&0x01) ? xmax : xmin; + double y = (i&0x02) ? ymax : ymin; + double d2; + + d2 = (x-pCircle->centerx)*(x-pCircle->centerx); + d2 += (y-pCircle->centery)*(y-pCircle->centery); + if( d2<(pCircle->radius*pCircle->radius) ){ + *pRes = 1; + return SQLITE_OK; + } + } + + /* Check if the bounding box covers any other part of the circular region. + ** See comments above for a description of how this test works. If it does + ** cover part of the circular region, set the output variable to true + ** and return SQLITE_OK. */ + for(i=0; i<2; i++){ + if( xmin<=pCircle->aBox[i].xmin + && xmax>=pCircle->aBox[i].xmax + && ymin<=pCircle->aBox[i].ymin + && ymax>=pCircle->aBox[i].ymax + ){ + *pRes = 1; + return SQLITE_OK; + } + } + + /* The specified bounding box does not intersect the circular region. Set + ** the output variable to zero and return SQLITE_OK. */ + *pRes = 0; + return SQLITE_OK; +} + +/* +** Implementation of "circle" r-tree geometry callback using the +** 2nd-generation interface that allows scoring. +** +** Two calling forms: +** +** Qcircle(X,Y,Radius,eType) -- All values are doubles +** Qcircle('x:X y:Y r:R e:ETYPE') -- Single string parameter +*/ +static int circle_query_func(sqlite3_rtree_query_info *p){ + int i; /* Iterator variable */ + Circle *pCircle; /* Structure defining circular region */ + double xmin, xmax; /* X dimensions of box being tested */ + double ymin, ymax; /* X dimensions of box being tested */ + int nWithin = 0; /* Number of corners inside the circle */ + + xmin = p->aCoord[0]; + xmax = p->aCoord[1]; + ymin = p->aCoord[2]; + ymax = p->aCoord[3]; + pCircle = (Circle *)p->pUser; + if( pCircle==0 ){ + /* If pUser is still 0, then the parameter values have not been tested + ** for correctness or stored into a Circle structure yet. Do this now. */ + + /* This geometry callback is for use with a 2-dimensional r-tree table. + ** Return an error if the table does not have exactly 2 dimensions. */ + if( p->nCoord!=4 ) return SQLITE_ERROR; + + /* Test that the correct number of parameters (1 or 4) have been supplied. + */ + if( p->nParam!=4 && p->nParam!=1 ) return SQLITE_ERROR; + + /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM + ** if the allocation fails. */ + pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle))); + if( !pCircle ) return SQLITE_NOMEM; + p->xDelUser = circle_del; + + /* Record the center and radius of the circular region. One way that + ** tested bounding boxes that intersect the circular region are detected + ** is by testing if each corner of the bounding box lies within radius + ** units of the center of the circle. */ + if( p->nParam==4 ){ + pCircle->centerx = p->aParam[0]; + pCircle->centery = p->aParam[1]; + pCircle->radius = p->aParam[2]; + pCircle->eScoreType = (int)p->aParam[3]; + }else{ + const char *z = (const char*)sqlite3_value_text(p->apSqlParam[0]); + pCircle->centerx = 0.0; + pCircle->centery = 0.0; + pCircle->radius = 0.0; + pCircle->eScoreType = 0; + while( z && z[0] ){ + if( z[0]=='r' && z[1]==':' ){ + pCircle->radius = atof(&z[2]); + }else if( z[0]=='x' && z[1]==':' ){ + pCircle->centerx = atof(&z[2]); + }else if( z[0]=='y' && z[1]==':' ){ + pCircle->centery = atof(&z[2]); + }else if( z[0]=='e' && z[1]==':' ){ + pCircle->eScoreType = (int)atof(&z[2]); + }else if( z[0]==' ' ){ + z++; + continue; + } + while( z[0]!=0 && z[0]!=' ' ) z++; + while( z[0]==' ' ) z++; + } + } + if( pCircle->radius<0.0 ){ + sqlite3_free(pCircle); + return SQLITE_NOMEM; + } + + /* Define two bounding box regions. The first, aBox[0], extends to + ** infinity in the X dimension. It covers the same range of the Y dimension + ** as the circular region. The second, aBox[1], extends to infinity in + ** the Y dimension and is constrained to the range of the circle in the + ** X dimension. + ** + ** Then imagine each box is split in half along its short axis by a line + ** that intersects the center of the circular region. A bounding box + ** being tested can be said to intersect the circular region if it contains + ** points from each half of either of the two infinite bounding boxes. + */ + pCircle->aBox[0].xmin = pCircle->centerx; + pCircle->aBox[0].xmax = pCircle->centerx; + pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius; + pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius; + pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius; + pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius; + pCircle->aBox[1].ymin = pCircle->centery; + pCircle->aBox[1].ymax = pCircle->centery; + pCircle->mxArea = 200.0*200.0; + } + + /* Check if any of the 4 corners of the bounding-box being tested lie + ** inside the circular region. If they do, then the bounding-box does + ** intersect the region of interest. Set the output variable to true and + ** return SQLITE_OK in this case. */ + for(i=0; i<4; i++){ + double x = (i&0x01) ? xmax : xmin; + double y = (i&0x02) ? ymax : ymin; + double d2; + + d2 = (x-pCircle->centerx)*(x-pCircle->centerx); + d2 += (y-pCircle->centery)*(y-pCircle->centery); + if( d2<(pCircle->radius*pCircle->radius) ) nWithin++; + } + + /* Check if the bounding box covers any other part of the circular region. + ** See comments above for a description of how this test works. If it does + ** cover part of the circular region, set the output variable to true + ** and return SQLITE_OK. */ + if( nWithin==0 ){ + for(i=0; i<2; i++){ + if( xmin<=pCircle->aBox[i].xmin + && xmax>=pCircle->aBox[i].xmax + && ymin<=pCircle->aBox[i].ymin + && ymax>=pCircle->aBox[i].ymax + ){ + nWithin = 1; + break; + } + } + } + + if( pCircle->eScoreType==1 ){ + /* Depth first search */ + p->rScore = p->iLevel; + }else if( pCircle->eScoreType==2 ){ + /* Breadth first search */ + p->rScore = 100 - p->iLevel; + }else if( pCircle->eScoreType==3 ){ + /* Depth-first search, except sort the leaf nodes by area with + ** the largest area first */ + if( p->iLevel==1 ){ + p->rScore = 1.0 - (xmax-xmin)*(ymax-ymin)/pCircle->mxArea; + if( p->rScore<0.01 ) p->rScore = 0.01; + }else{ + p->rScore = 0.0; + } + }else if( pCircle->eScoreType==4 ){ + /* Depth-first search, except exclude odd rowids */ + p->rScore = p->iLevel; + if( p->iRowid&1 ) nWithin = 0; + }else{ + /* Breadth-first search, except exclude odd rowids */ + p->rScore = 100 - p->iLevel; + if( p->iRowid&1 ) nWithin = 0; + } + if( nWithin==0 ){ + p->eWithin = NOT_WITHIN; + }else if( nWithin>=4 ){ + p->eWithin = FULLY_WITHIN; + }else{ + p->eWithin = PARTLY_WITHIN; + } + return SQLITE_OK; +} +/* +** Implementation of "breadthfirstsearch" r-tree geometry callback using the +** 2nd-generation interface that allows scoring. +** +** ... WHERE id MATCH breadthfirstsearch($x0,$x1,$y0,$y1) ... +** +** It returns all entries whose bounding boxes overlap with $x0,$x1,$y0,$y1. +*/ +static int bfs_query_func(sqlite3_rtree_query_info *p){ + double x0,x1,y0,y1; /* Dimensions of box being tested */ + double bx0,bx1,by0,by1; /* Boundary of the query function */ + + if( p->nParam!=4 ) return SQLITE_ERROR; + x0 = p->aCoord[0]; + x1 = p->aCoord[1]; + y0 = p->aCoord[2]; + y1 = p->aCoord[3]; + bx0 = p->aParam[0]; + bx1 = p->aParam[1]; + by0 = p->aParam[2]; + by1 = p->aParam[3]; + p->rScore = 100 - p->iLevel; + if( p->eParentWithin==FULLY_WITHIN ){ + p->eWithin = FULLY_WITHIN; + }else if( x0>=bx0 && x1<=bx1 && y0>=by0 && y1<=by1 ){ + p->eWithin = FULLY_WITHIN; + }else if( x1>=bx0 && x0<=bx1 && y1>=by0 && y0<=by1 ){ + p->eWithin = PARTLY_WITHIN; + }else{ + p->eWithin = NOT_WITHIN; + } + return SQLITE_OK; +} + +/* END of implementation of "circle" geometry callback. +************************************************************************** +*************************************************************************/ + +#include <assert.h> +#if defined(INCLUDE_SQLITE_TCL_H) +# include "sqlite_tcl.h" +#else +# include "tcl.h" +#endif + +typedef struct Cube Cube; +struct Cube { + double x; + double y; + double z; + double width; + double height; + double depth; +}; + +static void cube_context_free(void *p){ + sqlite3_free(p); +} + +/* +** The context pointer registered along with the 'cube' callback is +** always ((void *)&gHere). This is just to facilitate testing, it is not +** actually used for anything. +*/ +static int gHere = 42; + +/* +** Implementation of a simple r-tree geom callback to test for intersection +** of r-tree rows with a "cube" shape. Cubes are defined by six scalar +** coordinates as follows: +** +** cube(x, y, z, width, height, depth) +** +** The width, height and depth parameters must all be greater than zero. +*/ +static int cube_geom( + sqlite3_rtree_geometry *p, + int nCoord, + sqlite3_rtree_dbl *aCoord, + int *piRes +){ + Cube *pCube = (Cube *)p->pUser; + + assert( p->pContext==(void *)&gHere ); + + if( pCube==0 ){ + if( p->nParam!=6 || nCoord!=6 + || p->aParam[3]<=0.0 || p->aParam[4]<=0.0 || p->aParam[5]<=0.0 + ){ + return SQLITE_ERROR; + } + pCube = (Cube *)sqlite3_malloc(sizeof(Cube)); + if( !pCube ){ + return SQLITE_NOMEM; + } + pCube->x = p->aParam[0]; + pCube->y = p->aParam[1]; + pCube->z = p->aParam[2]; + pCube->width = p->aParam[3]; + pCube->height = p->aParam[4]; + pCube->depth = p->aParam[5]; + + p->pUser = (void *)pCube; + p->xDelUser = cube_context_free; + } + + assert( nCoord==6 ); + *piRes = 0; + if( aCoord[0]<=(pCube->x+pCube->width) + && aCoord[1]>=pCube->x + && aCoord[2]<=(pCube->y+pCube->height) + && aCoord[3]>=pCube->y + && aCoord[4]<=(pCube->z+pCube->depth) + && aCoord[5]>=pCube->z + ){ + *piRes = 1; + } + + return SQLITE_OK; +} +#endif /* SQLITE_ENABLE_RTREE */ + +static int SQLITE_TCLAPI register_cube_geom( + void * clientData, + Tcl_Interp *interp, + int objc, + Tcl_Obj *CONST objv[] +){ +#ifndef SQLITE_ENABLE_RTREE + UNUSED_PARAMETER(clientData); + UNUSED_PARAMETER(interp); + UNUSED_PARAMETER(objc); + UNUSED_PARAMETER(objv); +#else + extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); + extern const char *sqlite3ErrName(int); + sqlite3 *db; + int rc; + + if( objc!=2 ){ + Tcl_WrongNumArgs(interp, 1, objv, "DB"); + return TCL_ERROR; + } + if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; + rc = sqlite3_rtree_geometry_callback(db, "cube", cube_geom, (void *)&gHere); + Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); +#endif + return TCL_OK; +} + +static int SQLITE_TCLAPI register_circle_geom( + void * clientData, + Tcl_Interp *interp, + int objc, + Tcl_Obj *CONST objv[] +){ +#ifndef SQLITE_ENABLE_RTREE + UNUSED_PARAMETER(clientData); + UNUSED_PARAMETER(interp); + UNUSED_PARAMETER(objc); + UNUSED_PARAMETER(objv); +#else + extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); + extern const char *sqlite3ErrName(int); + sqlite3 *db; + int rc; + + if( objc!=2 ){ + Tcl_WrongNumArgs(interp, 1, objv, "DB"); + return TCL_ERROR; + } + if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; + rc = sqlite3_rtree_geometry_callback(db, "circle", circle_geom, 0); + if( rc==SQLITE_OK ){ + rc = sqlite3_rtree_query_callback(db, "Qcircle", + circle_query_func, 0, 0); + } + if( rc==SQLITE_OK ){ + rc = sqlite3_rtree_query_callback(db, "breadthfirstsearch", + bfs_query_func, 0, 0); + } + Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); +#endif + return TCL_OK; +} + +int Sqlitetestrtree_Init(Tcl_Interp *interp){ + Tcl_CreateObjCommand(interp, "register_cube_geom", register_cube_geom, 0, 0); + Tcl_CreateObjCommand(interp, "register_circle_geom",register_circle_geom,0,0); + return TCL_OK; +} |