summaryrefslogtreecommitdiffstats
path: root/src/test_rtree.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/test_rtree.c511
1 files changed, 511 insertions, 0 deletions
diff --git a/src/test_rtree.c b/src/test_rtree.c
new file mode 100644
index 0000000..0c6dbf3
--- /dev/null
+++ b/src/test_rtree.c
@@ -0,0 +1,511 @@
+/*
+** 2010 August 28
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Code for testing all sorts of SQLite interfaces. This code
+** is not included in the SQLite library.
+*/
+
+#include "sqlite3.h"
+#if defined(INCLUDE_SQLITE_TCL_H)
+# include "sqlite_tcl.h"
+#else
+# include "tcl.h"
+#endif
+
+/* Solely for the UNUSED_PARAMETER() macro. */
+#include "sqliteInt.h"
+
+#ifdef SQLITE_ENABLE_RTREE
+/*
+** Type used to cache parameter information for the "circle" r-tree geometry
+** callback.
+*/
+typedef struct Circle Circle;
+struct Circle {
+ struct Box {
+ double xmin;
+ double xmax;
+ double ymin;
+ double ymax;
+ } aBox[2];
+ double centerx;
+ double centery;
+ double radius;
+ double mxArea;
+ int eScoreType;
+};
+
+/*
+** Destructor function for Circle objects allocated by circle_geom().
+*/
+static void circle_del(void *p){
+ sqlite3_free(p);
+}
+
+/*
+** Implementation of "circle" r-tree geometry callback.
+*/
+static int circle_geom(
+ sqlite3_rtree_geometry *p,
+ int nCoord,
+ sqlite3_rtree_dbl *aCoord,
+ int *pRes
+){
+ int i; /* Iterator variable */
+ Circle *pCircle; /* Structure defining circular region */
+ double xmin, xmax; /* X dimensions of box being tested */
+ double ymin, ymax; /* X dimensions of box being tested */
+
+ xmin = aCoord[0];
+ xmax = aCoord[1];
+ ymin = aCoord[2];
+ ymax = aCoord[3];
+ pCircle = (Circle *)p->pUser;
+ if( pCircle==0 ){
+ /* If pUser is still 0, then the parameter values have not been tested
+ ** for correctness or stored into a Circle structure yet. Do this now. */
+
+ /* This geometry callback is for use with a 2-dimensional r-tree table.
+ ** Return an error if the table does not have exactly 2 dimensions. */
+ if( nCoord!=4 ) return SQLITE_ERROR;
+
+ /* Test that the correct number of parameters (3) have been supplied,
+ ** and that the parameters are in range (that the radius of the circle
+ ** radius is greater than zero). */
+ if( p->nParam!=3 || p->aParam[2]<0.0 ) return SQLITE_ERROR;
+
+ /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM
+ ** if the allocation fails. */
+ pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle)));
+ if( !pCircle ) return SQLITE_NOMEM;
+ p->xDelUser = circle_del;
+
+ /* Record the center and radius of the circular region. One way that
+ ** tested bounding boxes that intersect the circular region are detected
+ ** is by testing if each corner of the bounding box lies within radius
+ ** units of the center of the circle. */
+ pCircle->centerx = p->aParam[0];
+ pCircle->centery = p->aParam[1];
+ pCircle->radius = p->aParam[2];
+
+ /* Define two bounding box regions. The first, aBox[0], extends to
+ ** infinity in the X dimension. It covers the same range of the Y dimension
+ ** as the circular region. The second, aBox[1], extends to infinity in
+ ** the Y dimension and is constrained to the range of the circle in the
+ ** X dimension.
+ **
+ ** Then imagine each box is split in half along its short axis by a line
+ ** that intersects the center of the circular region. A bounding box
+ ** being tested can be said to intersect the circular region if it contains
+ ** points from each half of either of the two infinite bounding boxes.
+ */
+ pCircle->aBox[0].xmin = pCircle->centerx;
+ pCircle->aBox[0].xmax = pCircle->centerx;
+ pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius;
+ pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius;
+ pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius;
+ pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius;
+ pCircle->aBox[1].ymin = pCircle->centery;
+ pCircle->aBox[1].ymax = pCircle->centery;
+ pCircle->mxArea = (xmax - xmin)*(ymax - ymin) + 1.0;
+ }
+
+ /* Check if any of the 4 corners of the bounding-box being tested lie
+ ** inside the circular region. If they do, then the bounding-box does
+ ** intersect the region of interest. Set the output variable to true and
+ ** return SQLITE_OK in this case. */
+ for(i=0; i<4; i++){
+ double x = (i&0x01) ? xmax : xmin;
+ double y = (i&0x02) ? ymax : ymin;
+ double d2;
+
+ d2 = (x-pCircle->centerx)*(x-pCircle->centerx);
+ d2 += (y-pCircle->centery)*(y-pCircle->centery);
+ if( d2<(pCircle->radius*pCircle->radius) ){
+ *pRes = 1;
+ return SQLITE_OK;
+ }
+ }
+
+ /* Check if the bounding box covers any other part of the circular region.
+ ** See comments above for a description of how this test works. If it does
+ ** cover part of the circular region, set the output variable to true
+ ** and return SQLITE_OK. */
+ for(i=0; i<2; i++){
+ if( xmin<=pCircle->aBox[i].xmin
+ && xmax>=pCircle->aBox[i].xmax
+ && ymin<=pCircle->aBox[i].ymin
+ && ymax>=pCircle->aBox[i].ymax
+ ){
+ *pRes = 1;
+ return SQLITE_OK;
+ }
+ }
+
+ /* The specified bounding box does not intersect the circular region. Set
+ ** the output variable to zero and return SQLITE_OK. */
+ *pRes = 0;
+ return SQLITE_OK;
+}
+
+/*
+** Implementation of "circle" r-tree geometry callback using the
+** 2nd-generation interface that allows scoring.
+**
+** Two calling forms:
+**
+** Qcircle(X,Y,Radius,eType) -- All values are doubles
+** Qcircle('x:X y:Y r:R e:ETYPE') -- Single string parameter
+*/
+static int circle_query_func(sqlite3_rtree_query_info *p){
+ int i; /* Iterator variable */
+ Circle *pCircle; /* Structure defining circular region */
+ double xmin, xmax; /* X dimensions of box being tested */
+ double ymin, ymax; /* X dimensions of box being tested */
+ int nWithin = 0; /* Number of corners inside the circle */
+
+ xmin = p->aCoord[0];
+ xmax = p->aCoord[1];
+ ymin = p->aCoord[2];
+ ymax = p->aCoord[3];
+ pCircle = (Circle *)p->pUser;
+ if( pCircle==0 ){
+ /* If pUser is still 0, then the parameter values have not been tested
+ ** for correctness or stored into a Circle structure yet. Do this now. */
+
+ /* This geometry callback is for use with a 2-dimensional r-tree table.
+ ** Return an error if the table does not have exactly 2 dimensions. */
+ if( p->nCoord!=4 ) return SQLITE_ERROR;
+
+ /* Test that the correct number of parameters (1 or 4) have been supplied.
+ */
+ if( p->nParam!=4 && p->nParam!=1 ) return SQLITE_ERROR;
+
+ /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM
+ ** if the allocation fails. */
+ pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle)));
+ if( !pCircle ) return SQLITE_NOMEM;
+ p->xDelUser = circle_del;
+
+ /* Record the center and radius of the circular region. One way that
+ ** tested bounding boxes that intersect the circular region are detected
+ ** is by testing if each corner of the bounding box lies within radius
+ ** units of the center of the circle. */
+ if( p->nParam==4 ){
+ pCircle->centerx = p->aParam[0];
+ pCircle->centery = p->aParam[1];
+ pCircle->radius = p->aParam[2];
+ pCircle->eScoreType = (int)p->aParam[3];
+ }else{
+ const char *z = (const char*)sqlite3_value_text(p->apSqlParam[0]);
+ pCircle->centerx = 0.0;
+ pCircle->centery = 0.0;
+ pCircle->radius = 0.0;
+ pCircle->eScoreType = 0;
+ while( z && z[0] ){
+ if( z[0]=='r' && z[1]==':' ){
+ pCircle->radius = atof(&z[2]);
+ }else if( z[0]=='x' && z[1]==':' ){
+ pCircle->centerx = atof(&z[2]);
+ }else if( z[0]=='y' && z[1]==':' ){
+ pCircle->centery = atof(&z[2]);
+ }else if( z[0]=='e' && z[1]==':' ){
+ pCircle->eScoreType = (int)atof(&z[2]);
+ }else if( z[0]==' ' ){
+ z++;
+ continue;
+ }
+ while( z[0]!=0 && z[0]!=' ' ) z++;
+ while( z[0]==' ' ) z++;
+ }
+ }
+ if( pCircle->radius<0.0 ){
+ sqlite3_free(pCircle);
+ return SQLITE_NOMEM;
+ }
+
+ /* Define two bounding box regions. The first, aBox[0], extends to
+ ** infinity in the X dimension. It covers the same range of the Y dimension
+ ** as the circular region. The second, aBox[1], extends to infinity in
+ ** the Y dimension and is constrained to the range of the circle in the
+ ** X dimension.
+ **
+ ** Then imagine each box is split in half along its short axis by a line
+ ** that intersects the center of the circular region. A bounding box
+ ** being tested can be said to intersect the circular region if it contains
+ ** points from each half of either of the two infinite bounding boxes.
+ */
+ pCircle->aBox[0].xmin = pCircle->centerx;
+ pCircle->aBox[0].xmax = pCircle->centerx;
+ pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius;
+ pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius;
+ pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius;
+ pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius;
+ pCircle->aBox[1].ymin = pCircle->centery;
+ pCircle->aBox[1].ymax = pCircle->centery;
+ pCircle->mxArea = 200.0*200.0;
+ }
+
+ /* Check if any of the 4 corners of the bounding-box being tested lie
+ ** inside the circular region. If they do, then the bounding-box does
+ ** intersect the region of interest. Set the output variable to true and
+ ** return SQLITE_OK in this case. */
+ for(i=0; i<4; i++){
+ double x = (i&0x01) ? xmax : xmin;
+ double y = (i&0x02) ? ymax : ymin;
+ double d2;
+
+ d2 = (x-pCircle->centerx)*(x-pCircle->centerx);
+ d2 += (y-pCircle->centery)*(y-pCircle->centery);
+ if( d2<(pCircle->radius*pCircle->radius) ) nWithin++;
+ }
+
+ /* Check if the bounding box covers any other part of the circular region.
+ ** See comments above for a description of how this test works. If it does
+ ** cover part of the circular region, set the output variable to true
+ ** and return SQLITE_OK. */
+ if( nWithin==0 ){
+ for(i=0; i<2; i++){
+ if( xmin<=pCircle->aBox[i].xmin
+ && xmax>=pCircle->aBox[i].xmax
+ && ymin<=pCircle->aBox[i].ymin
+ && ymax>=pCircle->aBox[i].ymax
+ ){
+ nWithin = 1;
+ break;
+ }
+ }
+ }
+
+ if( pCircle->eScoreType==1 ){
+ /* Depth first search */
+ p->rScore = p->iLevel;
+ }else if( pCircle->eScoreType==2 ){
+ /* Breadth first search */
+ p->rScore = 100 - p->iLevel;
+ }else if( pCircle->eScoreType==3 ){
+ /* Depth-first search, except sort the leaf nodes by area with
+ ** the largest area first */
+ if( p->iLevel==1 ){
+ p->rScore = 1.0 - (xmax-xmin)*(ymax-ymin)/pCircle->mxArea;
+ if( p->rScore<0.01 ) p->rScore = 0.01;
+ }else{
+ p->rScore = 0.0;
+ }
+ }else if( pCircle->eScoreType==4 ){
+ /* Depth-first search, except exclude odd rowids */
+ p->rScore = p->iLevel;
+ if( p->iRowid&1 ) nWithin = 0;
+ }else{
+ /* Breadth-first search, except exclude odd rowids */
+ p->rScore = 100 - p->iLevel;
+ if( p->iRowid&1 ) nWithin = 0;
+ }
+ if( nWithin==0 ){
+ p->eWithin = NOT_WITHIN;
+ }else if( nWithin>=4 ){
+ p->eWithin = FULLY_WITHIN;
+ }else{
+ p->eWithin = PARTLY_WITHIN;
+ }
+ return SQLITE_OK;
+}
+/*
+** Implementation of "breadthfirstsearch" r-tree geometry callback using the
+** 2nd-generation interface that allows scoring.
+**
+** ... WHERE id MATCH breadthfirstsearch($x0,$x1,$y0,$y1) ...
+**
+** It returns all entries whose bounding boxes overlap with $x0,$x1,$y0,$y1.
+*/
+static int bfs_query_func(sqlite3_rtree_query_info *p){
+ double x0,x1,y0,y1; /* Dimensions of box being tested */
+ double bx0,bx1,by0,by1; /* Boundary of the query function */
+
+ if( p->nParam!=4 ) return SQLITE_ERROR;
+ x0 = p->aCoord[0];
+ x1 = p->aCoord[1];
+ y0 = p->aCoord[2];
+ y1 = p->aCoord[3];
+ bx0 = p->aParam[0];
+ bx1 = p->aParam[1];
+ by0 = p->aParam[2];
+ by1 = p->aParam[3];
+ p->rScore = 100 - p->iLevel;
+ if( p->eParentWithin==FULLY_WITHIN ){
+ p->eWithin = FULLY_WITHIN;
+ }else if( x0>=bx0 && x1<=bx1 && y0>=by0 && y1<=by1 ){
+ p->eWithin = FULLY_WITHIN;
+ }else if( x1>=bx0 && x0<=bx1 && y1>=by0 && y0<=by1 ){
+ p->eWithin = PARTLY_WITHIN;
+ }else{
+ p->eWithin = NOT_WITHIN;
+ }
+ return SQLITE_OK;
+}
+
+/* END of implementation of "circle" geometry callback.
+**************************************************************************
+*************************************************************************/
+
+#include <assert.h>
+#if defined(INCLUDE_SQLITE_TCL_H)
+# include "sqlite_tcl.h"
+#else
+# include "tcl.h"
+#endif
+
+typedef struct Cube Cube;
+struct Cube {
+ double x;
+ double y;
+ double z;
+ double width;
+ double height;
+ double depth;
+};
+
+static void cube_context_free(void *p){
+ sqlite3_free(p);
+}
+
+/*
+** The context pointer registered along with the 'cube' callback is
+** always ((void *)&gHere). This is just to facilitate testing, it is not
+** actually used for anything.
+*/
+static int gHere = 42;
+
+/*
+** Implementation of a simple r-tree geom callback to test for intersection
+** of r-tree rows with a "cube" shape. Cubes are defined by six scalar
+** coordinates as follows:
+**
+** cube(x, y, z, width, height, depth)
+**
+** The width, height and depth parameters must all be greater than zero.
+*/
+static int cube_geom(
+ sqlite3_rtree_geometry *p,
+ int nCoord,
+ sqlite3_rtree_dbl *aCoord,
+ int *piRes
+){
+ Cube *pCube = (Cube *)p->pUser;
+
+ assert( p->pContext==(void *)&gHere );
+
+ if( pCube==0 ){
+ if( p->nParam!=6 || nCoord!=6
+ || p->aParam[3]<=0.0 || p->aParam[4]<=0.0 || p->aParam[5]<=0.0
+ ){
+ return SQLITE_ERROR;
+ }
+ pCube = (Cube *)sqlite3_malloc(sizeof(Cube));
+ if( !pCube ){
+ return SQLITE_NOMEM;
+ }
+ pCube->x = p->aParam[0];
+ pCube->y = p->aParam[1];
+ pCube->z = p->aParam[2];
+ pCube->width = p->aParam[3];
+ pCube->height = p->aParam[4];
+ pCube->depth = p->aParam[5];
+
+ p->pUser = (void *)pCube;
+ p->xDelUser = cube_context_free;
+ }
+
+ assert( nCoord==6 );
+ *piRes = 0;
+ if( aCoord[0]<=(pCube->x+pCube->width)
+ && aCoord[1]>=pCube->x
+ && aCoord[2]<=(pCube->y+pCube->height)
+ && aCoord[3]>=pCube->y
+ && aCoord[4]<=(pCube->z+pCube->depth)
+ && aCoord[5]>=pCube->z
+ ){
+ *piRes = 1;
+ }
+
+ return SQLITE_OK;
+}
+#endif /* SQLITE_ENABLE_RTREE */
+
+static int SQLITE_TCLAPI register_cube_geom(
+ void * clientData,
+ Tcl_Interp *interp,
+ int objc,
+ Tcl_Obj *CONST objv[]
+){
+#ifndef SQLITE_ENABLE_RTREE
+ UNUSED_PARAMETER(clientData);
+ UNUSED_PARAMETER(interp);
+ UNUSED_PARAMETER(objc);
+ UNUSED_PARAMETER(objv);
+#else
+ extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**);
+ extern const char *sqlite3ErrName(int);
+ sqlite3 *db;
+ int rc;
+
+ if( objc!=2 ){
+ Tcl_WrongNumArgs(interp, 1, objv, "DB");
+ return TCL_ERROR;
+ }
+ if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
+ rc = sqlite3_rtree_geometry_callback(db, "cube", cube_geom, (void *)&gHere);
+ Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC);
+#endif
+ return TCL_OK;
+}
+
+static int SQLITE_TCLAPI register_circle_geom(
+ void * clientData,
+ Tcl_Interp *interp,
+ int objc,
+ Tcl_Obj *CONST objv[]
+){
+#ifndef SQLITE_ENABLE_RTREE
+ UNUSED_PARAMETER(clientData);
+ UNUSED_PARAMETER(interp);
+ UNUSED_PARAMETER(objc);
+ UNUSED_PARAMETER(objv);
+#else
+ extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**);
+ extern const char *sqlite3ErrName(int);
+ sqlite3 *db;
+ int rc;
+
+ if( objc!=2 ){
+ Tcl_WrongNumArgs(interp, 1, objv, "DB");
+ return TCL_ERROR;
+ }
+ if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
+ rc = sqlite3_rtree_geometry_callback(db, "circle", circle_geom, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_rtree_query_callback(db, "Qcircle",
+ circle_query_func, 0, 0);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_rtree_query_callback(db, "breadthfirstsearch",
+ bfs_query_func, 0, 0);
+ }
+ Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC);
+#endif
+ return TCL_OK;
+}
+
+int Sqlitetestrtree_Init(Tcl_Interp *interp){
+ Tcl_CreateObjCommand(interp, "register_cube_geom", register_cube_geom, 0, 0);
+ Tcl_CreateObjCommand(interp, "register_circle_geom",register_circle_geom,0,0);
+ return TCL_OK;
+}