/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle INSERT statements in SQLite. */ #include "sqliteInt.h" /* ** Generate code that will ** ** (1) acquire a lock for table pTab then ** (2) open pTab as cursor iCur. ** ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index ** for that table that is actually opened. */ void sqlite3OpenTable( Parse *pParse, /* Generate code into this VDBE */ int iCur, /* The cursor number of the table */ int iDb, /* The database index in sqlite3.aDb[] */ Table *pTab, /* The table to be opened */ int opcode /* OP_OpenRead or OP_OpenWrite */ ){ Vdbe *v; assert( !IsVirtual(pTab) ); assert( pParse->pVdbe!=0 ); v = pParse->pVdbe; assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); if( !pParse->db->noSharedCache ){ sqlite3TableLock(pParse, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName); } if( HasRowid(pTab) ){ sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); VdbeComment((v, "%s", pTab->zName)); }else{ Index *pPk = sqlite3PrimaryKeyIndex(pTab); assert( pPk!=0 ); assert( pPk->tnum==pTab->tnum || CORRUPT_DB ); sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pPk); VdbeComment((v, "%s", pTab->zName)); } } /* ** Return a pointer to the column affinity string associated with index ** pIdx. A column affinity string has one character for each column in ** the table, according to the affinity of the column: ** ** Character Column affinity ** ------------------------------ ** 'A' BLOB ** 'B' TEXT ** 'C' NUMERIC ** 'D' INTEGER ** 'F' REAL ** ** An extra 'D' is appended to the end of the string to cover the ** rowid that appears as the last column in every index. ** ** Memory for the buffer containing the column index affinity string ** is managed along with the rest of the Index structure. It will be ** released when sqlite3DeleteIndex() is called. */ static SQLITE_NOINLINE const char *computeIndexAffStr(sqlite3 *db, Index *pIdx){ /* The first time a column affinity string for a particular index is ** required, it is allocated and populated here. It is then stored as ** a member of the Index structure for subsequent use. ** ** The column affinity string will eventually be deleted by ** sqliteDeleteIndex() when the Index structure itself is cleaned ** up. */ int n; Table *pTab = pIdx->pTable; pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); if( !pIdx->zColAff ){ sqlite3OomFault(db); return 0; } for(n=0; nnColumn; n++){ i16 x = pIdx->aiColumn[n]; char aff; if( x>=0 ){ aff = pTab->aCol[x].affinity; }else if( x==XN_ROWID ){ aff = SQLITE_AFF_INTEGER; }else{ assert( x==XN_EXPR ); assert( pIdx->bHasExpr ); assert( pIdx->aColExpr!=0 ); aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); } if( affSQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; pIdx->zColAff[n] = aff; } pIdx->zColAff[n] = 0; return pIdx->zColAff; } const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ if( !pIdx->zColAff ) return computeIndexAffStr(db, pIdx); return pIdx->zColAff; } /* ** Compute an affinity string for a table. Space is obtained ** from sqlite3DbMalloc(). The caller is responsible for freeing ** the space when done. */ char *sqlite3TableAffinityStr(sqlite3 *db, const Table *pTab){ char *zColAff; zColAff = (char *)sqlite3DbMallocRaw(db, pTab->nCol+1); if( zColAff ){ int i, j; for(i=j=0; inCol; i++){ if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ zColAff[j++] = pTab->aCol[i].affinity; } } do{ zColAff[j--] = 0; }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); } return zColAff; } /* ** Make changes to the evolving bytecode to do affinity transformations ** of values that are about to be gathered into a row for table pTab. ** ** For ordinary (legacy, non-strict) tables: ** ----------------------------------------- ** ** Compute the affinity string for table pTab, if it has not already been ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. ** ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries ** which were then optimized out) then this routine becomes a no-op. ** ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the ** affinities for register iReg and following. Or if iReg==0, ** then just set the P4 operand of the previous opcode (which should be ** an OP_MakeRecord) to the affinity string. ** ** A column affinity string has one character per column: ** ** Character Column affinity ** --------- --------------- ** 'A' BLOB ** 'B' TEXT ** 'C' NUMERIC ** 'D' INTEGER ** 'E' REAL ** ** For STRICT tables: ** ------------------ ** ** Generate an appropriate OP_TypeCheck opcode that will verify the ** datatypes against the column definitions in pTab. If iReg==0, that ** means an OP_MakeRecord opcode has already been generated and should be ** the last opcode generated. The new OP_TypeCheck needs to be inserted ** before the OP_MakeRecord. The new OP_TypeCheck should use the same ** register set as the OP_MakeRecord. If iReg>0 then register iReg is ** the first of a series of registers that will form the new record. ** Apply the type checking to that array of registers. */ void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ int i; char *zColAff; if( pTab->tabFlags & TF_Strict ){ if( iReg==0 ){ /* Move the previous opcode (which should be OP_MakeRecord) forward ** by one slot and insert a new OP_TypeCheck where the current ** OP_MakeRecord is found */ VdbeOp *pPrev; sqlite3VdbeAppendP4(v, pTab, P4_TABLE); pPrev = sqlite3VdbeGetLastOp(v); assert( pPrev!=0 ); assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed ); pPrev->opcode = OP_TypeCheck; sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3); }else{ /* Insert an isolated OP_Typecheck */ sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol); sqlite3VdbeAppendP4(v, pTab, P4_TABLE); } return; } zColAff = pTab->zColAff; if( zColAff==0 ){ zColAff = sqlite3TableAffinityStr(0, pTab); if( !zColAff ){ sqlite3OomFault(sqlite3VdbeDb(v)); return; } pTab->zColAff = zColAff; } assert( zColAff!=0 ); i = sqlite3Strlen30NN(zColAff); if( i ){ if( iReg ){ sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); }else{ assert( sqlite3VdbeGetLastOp(v)->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed ); sqlite3VdbeChangeP4(v, -1, zColAff, i); } } } /* ** Return non-zero if the table pTab in database iDb or any of its indices ** have been opened at any point in the VDBE program. This is used to see if ** a statement of the form "INSERT INTO SELECT ..." can ** run without using a temporary table for the results of the SELECT. */ static int readsTable(Parse *p, int iDb, Table *pTab){ Vdbe *v = sqlite3GetVdbe(p); int i; int iEnd = sqlite3VdbeCurrentAddr(v); #ifndef SQLITE_OMIT_VIRTUALTABLE VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; #endif for(i=1; iopcode==OP_OpenRead && pOp->p3==iDb ){ Index *pIndex; Pgno tnum = pOp->p2; if( tnum==pTab->tnum ){ return 1; } for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ if( tnum==pIndex->tnum ){ return 1; } } } #ifndef SQLITE_OMIT_VIRTUALTABLE if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ assert( pOp->p4.pVtab!=0 ); assert( pOp->p4type==P4_VTAB ); return 1; } #endif } return 0; } /* This walker callback will compute the union of colFlags flags for all ** referenced columns in a CHECK constraint or generated column expression. */ static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ assert( pExpr->iColumn < pWalker->u.pTab->nCol ); pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; } return WRC_Continue; } #ifndef SQLITE_OMIT_GENERATED_COLUMNS /* ** All regular columns for table pTab have been puts into registers ** starting with iRegStore. The registers that correspond to STORED ** or VIRTUAL columns have not yet been initialized. This routine goes ** back and computes the values for those columns based on the previously ** computed normal columns. */ void sqlite3ComputeGeneratedColumns( Parse *pParse, /* Parsing context */ int iRegStore, /* Register holding the first column */ Table *pTab /* The table */ ){ int i; Walker w; Column *pRedo; int eProgress; VdbeOp *pOp; assert( pTab->tabFlags & TF_HasGenerated ); testcase( pTab->tabFlags & TF_HasVirtual ); testcase( pTab->tabFlags & TF_HasStored ); /* Before computing generated columns, first go through and make sure ** that appropriate affinity has been applied to the regular columns */ sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); if( (pTab->tabFlags & TF_HasStored)!=0 ){ pOp = sqlite3VdbeGetLastOp(pParse->pVdbe); if( pOp->opcode==OP_Affinity ){ /* Change the OP_Affinity argument to '@' (NONE) for all stored ** columns. '@' is the no-op affinity and those columns have not ** yet been computed. */ int ii, jj; char *zP4 = pOp->p4.z; assert( zP4!=0 ); assert( pOp->p4type==P4_DYNAMIC ); for(ii=jj=0; zP4[jj]; ii++){ if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ continue; } if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ zP4[jj] = SQLITE_AFF_NONE; } jj++; } }else if( pOp->opcode==OP_TypeCheck ){ /* If an OP_TypeCheck was generated because the table is STRICT, ** then set the P3 operand to indicate that generated columns should ** not be checked */ pOp->p3 = 1; } } /* Because there can be multiple generated columns that refer to one another, ** this is a two-pass algorithm. On the first pass, mark all generated ** columns as "not available". */ for(i=0; inCol; i++){ if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; } } w.u.pTab = pTab; w.xExprCallback = exprColumnFlagUnion; w.xSelectCallback = 0; w.xSelectCallback2 = 0; /* On the second pass, compute the value of each NOT-AVAILABLE column. ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as ** they are needed. */ pParse->iSelfTab = -iRegStore; do{ eProgress = 0; pRedo = 0; for(i=0; inCol; i++){ Column *pCol = pTab->aCol + i; if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ int x; pCol->colFlags |= COLFLAG_BUSY; w.eCode = 0; sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol)); pCol->colFlags &= ~COLFLAG_BUSY; if( w.eCode & COLFLAG_NOTAVAIL ){ pRedo = pCol; continue; } eProgress = 1; assert( pCol->colFlags & COLFLAG_GENERATED ); x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x); pCol->colFlags &= ~COLFLAG_NOTAVAIL; } } }while( pRedo && eProgress ); if( pRedo ){ sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName); } pParse->iSelfTab = 0; } #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ #ifndef SQLITE_OMIT_AUTOINCREMENT /* ** Locate or create an AutoincInfo structure associated with table pTab ** which is in database iDb. Return the register number for the register ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT ** table. (Also return zero when doing a VACUUM since we do not want to ** update the AUTOINCREMENT counters during a VACUUM.) ** ** There is at most one AutoincInfo structure per table even if the ** same table is autoincremented multiple times due to inserts within ** triggers. A new AutoincInfo structure is created if this is the ** first use of table pTab. On 2nd and subsequent uses, the original ** AutoincInfo structure is used. ** ** Four consecutive registers are allocated: ** ** (1) The name of the pTab table. ** (2) The maximum ROWID of pTab. ** (3) The rowid in sqlite_sequence of pTab ** (4) The original value of the max ROWID in pTab, or NULL if none ** ** The 2nd register is the one that is returned. That is all the ** insert routine needs to know about. */ static int autoIncBegin( Parse *pParse, /* Parsing context */ int iDb, /* Index of the database holding pTab */ Table *pTab /* The table we are writing to */ ){ int memId = 0; /* Register holding maximum rowid */ assert( pParse->db->aDb[iDb].pSchema!=0 ); if( (pTab->tabFlags & TF_Autoincrement)!=0 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 ){ Parse *pToplevel = sqlite3ParseToplevel(pParse); AutoincInfo *pInfo; Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; /* Verify that the sqlite_sequence table exists and is an ordinary ** rowid table with exactly two columns. ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ if( pSeqTab==0 || !HasRowid(pSeqTab) || NEVER(IsVirtual(pSeqTab)) || pSeqTab->nCol!=2 ){ pParse->nErr++; pParse->rc = SQLITE_CORRUPT_SEQUENCE; return 0; } pInfo = pToplevel->pAinc; while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } if( pInfo==0 ){ pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo); testcase( pParse->earlyCleanup ); if( pParse->db->mallocFailed ) return 0; pInfo->pNext = pToplevel->pAinc; pToplevel->pAinc = pInfo; pInfo->pTab = pTab; pInfo->iDb = iDb; pToplevel->nMem++; /* Register to hold name of table */ pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ } memId = pInfo->regCtr; } return memId; } /* ** This routine generates code that will initialize all of the ** register used by the autoincrement tracker. */ void sqlite3AutoincrementBegin(Parse *pParse){ AutoincInfo *p; /* Information about an AUTOINCREMENT */ sqlite3 *db = pParse->db; /* The database connection */ Db *pDb; /* Database only autoinc table */ int memId; /* Register holding max rowid */ Vdbe *v = pParse->pVdbe; /* VDBE under construction */ /* This routine is never called during trigger-generation. It is ** only called from the top-level */ assert( pParse->pTriggerTab==0 ); assert( sqlite3IsToplevel(pParse) ); assert( v ); /* We failed long ago if this is not so */ for(p = pParse->pAinc; p; p = p->pNext){ static const int iLn = VDBE_OFFSET_LINENO(2); static const VdbeOpList autoInc[] = { /* 0 */ {OP_Null, 0, 0, 0}, /* 1 */ {OP_Rewind, 0, 10, 0}, /* 2 */ {OP_Column, 0, 0, 0}, /* 3 */ {OP_Ne, 0, 9, 0}, /* 4 */ {OP_Rowid, 0, 0, 0}, /* 5 */ {OP_Column, 0, 1, 0}, /* 6 */ {OP_AddImm, 0, 0, 0}, /* 7 */ {OP_Copy, 0, 0, 0}, /* 8 */ {OP_Goto, 0, 11, 0}, /* 9 */ {OP_Next, 0, 2, 0}, /* 10 */ {OP_Integer, 0, 0, 0}, /* 11 */ {OP_Close, 0, 0, 0} }; VdbeOp *aOp; pDb = &db->aDb[p->iDb]; memId = p->regCtr; assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); if( aOp==0 ) break; aOp[0].p2 = memId; aOp[0].p3 = memId+2; aOp[2].p3 = memId; aOp[3].p1 = memId-1; aOp[3].p3 = memId; aOp[3].p5 = SQLITE_JUMPIFNULL; aOp[4].p2 = memId+1; aOp[5].p3 = memId; aOp[6].p1 = memId; aOp[7].p2 = memId+2; aOp[7].p1 = memId; aOp[10].p2 = memId; if( pParse->nTab==0 ) pParse->nTab = 1; } } /* ** Update the maximum rowid for an autoincrement calculation. ** ** This routine should be called when the regRowid register holds a ** new rowid that is about to be inserted. If that new rowid is ** larger than the maximum rowid in the memId memory cell, then the ** memory cell is updated. */ static void autoIncStep(Parse *pParse, int memId, int regRowid){ if( memId>0 ){ sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); } } /* ** This routine generates the code needed to write autoincrement ** maximum rowid values back into the sqlite_sequence register. ** Every statement that might do an INSERT into an autoincrement ** table (either directly or through triggers) needs to call this ** routine just before the "exit" code. */ static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ AutoincInfo *p; Vdbe *v = pParse->pVdbe; sqlite3 *db = pParse->db; assert( v ); for(p = pParse->pAinc; p; p = p->pNext){ static const int iLn = VDBE_OFFSET_LINENO(2); static const VdbeOpList autoIncEnd[] = { /* 0 */ {OP_NotNull, 0, 2, 0}, /* 1 */ {OP_NewRowid, 0, 0, 0}, /* 2 */ {OP_MakeRecord, 0, 2, 0}, /* 3 */ {OP_Insert, 0, 0, 0}, /* 4 */ {OP_Close, 0, 0, 0} }; VdbeOp *aOp; Db *pDb = &db->aDb[p->iDb]; int iRec; int memId = p->regCtr; iRec = sqlite3GetTempReg(pParse); assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); VdbeCoverage(v); sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); if( aOp==0 ) break; aOp[0].p1 = memId+1; aOp[1].p2 = memId+1; aOp[2].p1 = memId-1; aOp[2].p3 = iRec; aOp[3].p2 = iRec; aOp[3].p3 = memId+1; aOp[3].p5 = OPFLAG_APPEND; sqlite3ReleaseTempReg(pParse, iRec); } } void sqlite3AutoincrementEnd(Parse *pParse){ if( pParse->pAinc ) autoIncrementEnd(pParse); } #else /* ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines ** above are all no-ops */ # define autoIncBegin(A,B,C) (0) # define autoIncStep(A,B,C) #endif /* SQLITE_OMIT_AUTOINCREMENT */ /* Forward declaration */ static int xferOptimization( Parse *pParse, /* Parser context */ Table *pDest, /* The table we are inserting into */ Select *pSelect, /* A SELECT statement to use as the data source */ int onError, /* How to handle constraint errors */ int iDbDest /* The database of pDest */ ); /* ** This routine is called to handle SQL of the following forms: ** ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... ** insert into TABLE (IDLIST) select ** insert into TABLE (IDLIST) default values ** ** The IDLIST following the table name is always optional. If omitted, ** then a list of all (non-hidden) columns for the table is substituted. ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST ** is omitted. ** ** For the pSelect parameter holds the values to be inserted for the ** first two forms shown above. A VALUES clause is really just short-hand ** for a SELECT statement that omits the FROM clause and everything else ** that follows. If the pSelect parameter is NULL, that means that the ** DEFAULT VALUES form of the INSERT statement is intended. ** ** The code generated follows one of four templates. For a simple ** insert with data coming from a single-row VALUES clause, the code executes ** once straight down through. Pseudo-code follows (we call this ** the "1st template"): ** ** open write cursor to and its indices ** put VALUES clause expressions into registers ** write the resulting record into
** cleanup ** ** The three remaining templates assume the statement is of the form ** ** INSERT INTO
SELECT ... ** ** If the SELECT clause is of the restricted form "SELECT * FROM " - ** in other words if the SELECT pulls all columns from a single table ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and ** if and are distinct tables but have identical ** schemas, including all the same indices, then a special optimization ** is invoked that copies raw records from over to . ** See the xferOptimization() function for the implementation of this ** template. This is the 2nd template. ** ** open a write cursor to
** open read cursor on ** transfer all records in over to
** close cursors ** foreach index on
** open a write cursor on the
index ** open a read cursor on the corresponding index ** transfer all records from the read to the write cursors ** close cursors ** end foreach ** ** The 3rd template is for when the second template does not apply ** and the SELECT clause does not read from
at any time. ** The generated code follows this template: ** ** X <- A ** goto B ** A: setup for the SELECT ** loop over the rows in the SELECT ** load values into registers R..R+n ** yield X ** end loop ** cleanup after the SELECT ** end-coroutine X ** B: open write cursor to
and its indices ** C: yield X, at EOF goto D ** insert the select result into
from R..R+n ** goto C ** D: cleanup ** ** The 4th template is used if the insert statement takes its ** values from a SELECT but the data is being inserted into a table ** that is also read as part of the SELECT. In the third form, ** we have to use an intermediate table to store the results of ** the select. The template is like this: ** ** X <- A ** goto B ** A: setup for the SELECT ** loop over the tables in the SELECT ** load value into register R..R+n ** yield X ** end loop ** cleanup after the SELECT ** end co-routine R ** B: open temp table ** L: yield X, at EOF goto M ** insert row from R..R+n into temp table ** goto L ** M: open write cursor to
and its indices ** rewind temp table ** C: loop over rows of intermediate table ** transfer values form intermediate table into
** end loop ** D: cleanup */ void sqlite3Insert( Parse *pParse, /* Parser context */ SrcList *pTabList, /* Name of table into which we are inserting */ Select *pSelect, /* A SELECT statement to use as the data source */ IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ int onError, /* How to handle constraint errors */ Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ ){ sqlite3 *db; /* The main database structure */ Table *pTab; /* The table to insert into. aka TABLE */ int i, j; /* Loop counters */ Vdbe *v; /* Generate code into this virtual machine */ Index *pIdx; /* For looping over indices of the table */ int nColumn; /* Number of columns in the data */ int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ int iDataCur = 0; /* VDBE cursor that is the main data repository */ int iIdxCur = 0; /* First index cursor */ int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ int endOfLoop; /* Label for the end of the insertion loop */ int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ int addrInsTop = 0; /* Jump to label "D" */ int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ SelectDest dest; /* Destination for SELECT on rhs of INSERT */ int iDb; /* Index of database holding TABLE */ u8 useTempTable = 0; /* Store SELECT results in intermediate table */ u8 appendFlag = 0; /* True if the insert is likely to be an append */ u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ u8 bIdListInOrder; /* True if IDLIST is in table order */ ExprList *pList = 0; /* List of VALUES() to be inserted */ int iRegStore; /* Register in which to store next column */ /* Register allocations */ int regFromSelect = 0;/* Base register for data coming from SELECT */ int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ int regRowCount = 0; /* Memory cell used for the row counter */ int regIns; /* Block of regs holding rowid+data being inserted */ int regRowid; /* registers holding insert rowid */ int regData; /* register holding first column to insert */ int *aRegIdx = 0; /* One register allocated to each index */ #ifndef SQLITE_OMIT_TRIGGER int isView; /* True if attempting to insert into a view */ Trigger *pTrigger; /* List of triggers on pTab, if required */ int tmask; /* Mask of trigger times */ #endif db = pParse->db; assert( db->pParse==pParse ); if( pParse->nErr ){ goto insert_cleanup; } assert( db->mallocFailed==0 ); dest.iSDParm = 0; /* Suppress a harmless compiler warning */ /* If the Select object is really just a simple VALUES() list with a ** single row (the common case) then keep that one row of values ** and discard the other (unused) parts of the pSelect object */ if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ pList = pSelect->pEList; pSelect->pEList = 0; sqlite3SelectDelete(db, pSelect); pSelect = 0; } /* Locate the table into which we will be inserting new information. */ assert( pTabList->nSrc==1 ); pTab = sqlite3SrcListLookup(pParse, pTabList); if( pTab==0 ){ goto insert_cleanup; } iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDbnDb ); if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, db->aDb[iDb].zDbSName) ){ goto insert_cleanup; } withoutRowid = !HasRowid(pTab); /* Figure out if we have any triggers and if the table being ** inserted into is a view */ #ifndef SQLITE_OMIT_TRIGGER pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); isView = IsView(pTab); #else # define pTrigger 0 # define tmask 0 # define isView 0 #endif #ifdef SQLITE_OMIT_VIEW # undef isView # define isView 0 #endif assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x10000 ){ sqlite3TreeViewLine(0, "In sqlite3Insert() at %s:%d", __FILE__, __LINE__); sqlite3TreeViewInsert(pParse->pWith, pTabList, pColumn, pSelect, pList, onError, pUpsert, pTrigger); } #endif /* If pTab is really a view, make sure it has been initialized. ** ViewGetColumnNames() is a no-op if pTab is not a view. */ if( sqlite3ViewGetColumnNames(pParse, pTab) ){ goto insert_cleanup; } /* Cannot insert into a read-only table. */ if( sqlite3IsReadOnly(pParse, pTab, pTrigger) ){ goto insert_cleanup; } /* Allocate a VDBE */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto insert_cleanup; if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); #ifndef SQLITE_OMIT_XFER_OPT /* If the statement is of the form ** ** INSERT INTO SELECT * FROM ; ** ** Then special optimizations can be applied that make the transfer ** very fast and which reduce fragmentation of indices. ** ** This is the 2nd template. */ if( pColumn==0 && pSelect!=0 && pTrigger==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ assert( !pTrigger ); assert( pList==0 ); goto insert_end; } #endif /* SQLITE_OMIT_XFER_OPT */ /* If this is an AUTOINCREMENT table, look up the sequence number in the ** sqlite_sequence table and store it in memory cell regAutoinc. */ regAutoinc = autoIncBegin(pParse, iDb, pTab); /* Allocate a block registers to hold the rowid and the values ** for all columns of the new row. */ regRowid = regIns = pParse->nMem+1; pParse->nMem += pTab->nCol + 1; if( IsVirtual(pTab) ){ regRowid++; pParse->nMem++; } regData = regRowid+1; /* If the INSERT statement included an IDLIST term, then make sure ** all elements of the IDLIST really are columns of the table and ** remember the column indices. ** ** If the table has an INTEGER PRIMARY KEY column and that column ** is named in the IDLIST, then record in the ipkColumn variable ** the index into IDLIST of the primary key column. ipkColumn is ** the index of the primary key as it appears in IDLIST, not as ** is appears in the original table. (The index of the INTEGER ** PRIMARY KEY in the original table is pTab->iPKey.) After this ** loop, if ipkColumn==(-1), that means that integer primary key ** is unspecified, and hence the table is either WITHOUT ROWID or ** it will automatically generated an integer primary key. ** ** bIdListInOrder is true if the columns in IDLIST are in storage ** order. This enables an optimization that avoids shuffling the ** columns into storage order. False negatives are harmless, ** but false positives will cause database corruption. */ bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; if( pColumn ){ assert( pColumn->eU4!=EU4_EXPR ); pColumn->eU4 = EU4_IDX; for(i=0; inId; i++){ pColumn->a[i].u4.idx = -1; } for(i=0; inId; i++){ for(j=0; jnCol; j++){ if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){ pColumn->a[i].u4.idx = j; if( i!=j ) bIdListInOrder = 0; if( j==pTab->iPKey ){ ipkColumn = i; assert( !withoutRowid ); } #ifndef SQLITE_OMIT_GENERATED_COLUMNS if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ sqlite3ErrorMsg(pParse, "cannot INSERT into generated column \"%s\"", pTab->aCol[j].zCnName); goto insert_cleanup; } #endif break; } } if( j>=pTab->nCol ){ if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ ipkColumn = i; bIdListInOrder = 0; }else{ sqlite3ErrorMsg(pParse, "table %S has no column named %s", pTabList->a, pColumn->a[i].zName); pParse->checkSchema = 1; goto insert_cleanup; } } } } /* Figure out how many columns of data are supplied. If the data ** is coming from a SELECT statement, then generate a co-routine that ** produces a single row of the SELECT on each invocation. The ** co-routine is the common header to the 3rd and 4th templates. */ if( pSelect ){ /* Data is coming from a SELECT or from a multi-row VALUES clause. ** Generate a co-routine to run the SELECT. */ int regYield; /* Register holding co-routine entry-point */ int addrTop; /* Top of the co-routine */ int rc; /* Result code */ regYield = ++pParse->nMem; addrTop = sqlite3VdbeCurrentAddr(v) + 1; sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); dest.iSdst = bIdListInOrder ? regData : 0; dest.nSdst = pTab->nCol; rc = sqlite3Select(pParse, pSelect, &dest); regFromSelect = dest.iSdst; assert( db->pParse==pParse ); if( rc || pParse->nErr ) goto insert_cleanup; assert( db->mallocFailed==0 ); sqlite3VdbeEndCoroutine(v, regYield); sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ assert( pSelect->pEList ); nColumn = pSelect->pEList->nExpr; /* Set useTempTable to TRUE if the result of the SELECT statement ** should be written into a temporary table (template 4). Set to ** FALSE if each output row of the SELECT can be written directly into ** the destination table (template 3). ** ** A temp table must be used if the table being updated is also one ** of the tables being read by the SELECT statement. Also use a ** temp table in the case of row triggers. */ if( pTrigger || readsTable(pParse, iDb, pTab) ){ useTempTable = 1; } if( useTempTable ){ /* Invoke the coroutine to extract information from the SELECT ** and add it to a transient table srcTab. The code generated ** here is from the 4th template: ** ** B: open temp table ** L: yield X, goto M at EOF ** insert row from R..R+n into temp table ** goto L ** M: ... */ int regRec; /* Register to hold packed record */ int regTempRowid; /* Register to hold temp table ROWID */ int addrL; /* Label "L" */ srcTab = pParse->nTab++; regRec = sqlite3GetTempReg(pParse); regTempRowid = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); sqlite3VdbeGoto(v, addrL); sqlite3VdbeJumpHere(v, addrL); sqlite3ReleaseTempReg(pParse, regRec); sqlite3ReleaseTempReg(pParse, regTempRowid); } }else{ /* This is the case if the data for the INSERT is coming from a ** single-row VALUES clause */ NameContext sNC; memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; srcTab = -1; assert( useTempTable==0 ); if( pList ){ nColumn = pList->nExpr; if( sqlite3ResolveExprListNames(&sNC, pList) ){ goto insert_cleanup; } }else{ nColumn = 0; } } /* If there is no IDLIST term but the table has an integer primary ** key, the set the ipkColumn variable to the integer primary key ** column index in the original table definition. */ if( pColumn==0 && nColumn>0 ){ ipkColumn = pTab->iPKey; #ifndef SQLITE_OMIT_GENERATED_COLUMNS if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ testcase( pTab->tabFlags & TF_HasVirtual ); testcase( pTab->tabFlags & TF_HasStored ); for(i=ipkColumn-1; i>=0; i--){ if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); ipkColumn--; } } } #endif /* Make sure the number of columns in the source data matches the number ** of columns to be inserted into the table. */ assert( TF_HasHidden==COLFLAG_HIDDEN ); assert( TF_HasGenerated==COLFLAG_GENERATED ); assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) ); if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){ for(i=0; inCol; i++){ if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; } } if( nColumn!=(pTab->nCol-nHidden) ){ sqlite3ErrorMsg(pParse, "table %S has %d columns but %d values were supplied", pTabList->a, pTab->nCol-nHidden, nColumn); goto insert_cleanup; } } if( pColumn!=0 && nColumn!=pColumn->nId ){ sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); goto insert_cleanup; } /* Initialize the count of rows to be inserted */ if( (db->flags & SQLITE_CountRows)!=0 && !pParse->nested && !pParse->pTriggerTab && !pParse->bReturning ){ regRowCount = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); } /* If this is not a view, open the table and and all indices */ if( !isView ){ int nIdx; nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, &iDataCur, &iIdxCur); aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); if( aRegIdx==0 ){ goto insert_cleanup; } for(i=0, pIdx=pTab->pIndex; ipNext, i++){ assert( pIdx ); aRegIdx[i] = ++pParse->nMem; pParse->nMem += pIdx->nColumn; } aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ } #ifndef SQLITE_OMIT_UPSERT if( pUpsert ){ Upsert *pNx; if( IsVirtual(pTab) ){ sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", pTab->zName); goto insert_cleanup; } if( IsView(pTab) ){ sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); goto insert_cleanup; } if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ goto insert_cleanup; } pTabList->a[0].iCursor = iDataCur; pNx = pUpsert; do{ pNx->pUpsertSrc = pTabList; pNx->regData = regData; pNx->iDataCur = iDataCur; pNx->iIdxCur = iIdxCur; if( pNx->pUpsertTarget ){ if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){ goto insert_cleanup; } } pNx = pNx->pNextUpsert; }while( pNx!=0 ); } #endif /* This is the top of the main insertion loop */ if( useTempTable ){ /* This block codes the top of loop only. The complete loop is the ** following pseudocode (template 4): ** ** rewind temp table, if empty goto D ** C: loop over rows of intermediate table ** transfer values form intermediate table into
** end loop ** D: ... */ addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); addrCont = sqlite3VdbeCurrentAddr(v); }else if( pSelect ){ /* This block codes the top of loop only. The complete loop is the ** following pseudocode (template 3): ** ** C: yield X, at EOF goto D ** insert the select result into
from R..R+n ** goto C ** D: ... */ sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0); addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); if( ipkColumn>=0 ){ /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the ** SELECT, go ahead and copy the value into the rowid slot now, so that ** the value does not get overwritten by a NULL at tag-20191021-002. */ sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); } } /* Compute data for ordinary columns of the new entry. Values ** are written in storage order into registers starting with regData. ** Only ordinary columns are computed in this loop. The rowid ** (if there is one) is computed later and generated columns are ** computed after the rowid since they might depend on the value ** of the rowid. */ nHidden = 0; iRegStore = regData; assert( regData==regRowid+1 ); for(i=0; inCol; i++, iRegStore++){ int k; u32 colFlags; assert( i>=nHidden ); if( i==pTab->iPKey ){ /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled ** using the rowid. So put a NULL in the IPK slot of the record to avoid ** using excess space. The file format definition requires this extra ** NULL - we cannot optimize further by skipping the column completely */ sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); continue; } if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ nHidden++; if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ /* Virtual columns do not participate in OP_MakeRecord. So back up ** iRegStore by one slot to compensate for the iRegStore++ in the ** outer for() loop */ iRegStore--; continue; }else if( (colFlags & COLFLAG_STORED)!=0 ){ /* Stored columns are computed later. But if there are BEFORE ** triggers, the slots used for stored columns will be OP_Copy-ed ** to a second block of registers, so the register needs to be ** initialized to NULL to avoid an uninitialized register read */ if( tmask & TRIGGER_BEFORE ){ sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); } continue; }else if( pColumn==0 ){ /* Hidden columns that are not explicitly named in the INSERT ** get there default value */ sqlite3ExprCodeFactorable(pParse, sqlite3ColumnExpr(pTab, &pTab->aCol[i]), iRegStore); continue; } } if( pColumn ){ assert( pColumn->eU4==EU4_IDX ); for(j=0; jnId && pColumn->a[j].u4.idx!=i; j++){} if( j>=pColumn->nId ){ /* A column not named in the insert column list gets its ** default value */ sqlite3ExprCodeFactorable(pParse, sqlite3ColumnExpr(pTab, &pTab->aCol[i]), iRegStore); continue; } k = j; }else if( nColumn==0 ){ /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ sqlite3ExprCodeFactorable(pParse, sqlite3ColumnExpr(pTab, &pTab->aCol[i]), iRegStore); continue; }else{ k = i - nHidden; } if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); }else if( pSelect ){ if( regFromSelect!=regData ){ sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); } }else{ Expr *pX = pList->a[k].pExpr; int y = sqlite3ExprCodeTarget(pParse, pX, iRegStore); if( y!=iRegStore ){ sqlite3VdbeAddOp2(v, ExprHasProperty(pX, EP_Subquery) ? OP_Copy : OP_SCopy, y, iRegStore); } } } /* Run the BEFORE and INSTEAD OF triggers, if there are any */ endOfLoop = sqlite3VdbeMakeLabel(pParse); if( tmask & TRIGGER_BEFORE ){ int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); /* build the NEW.* reference row. Note that if there is an INTEGER ** PRIMARY KEY into which a NULL is being inserted, that NULL will be ** translated into a unique ID for the row. But on a BEFORE trigger, ** we do not know what the unique ID will be (because the insert has ** not happened yet) so we substitute a rowid of -1 */ if( ipkColumn<0 ){ sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); }else{ int addr1; assert( !withoutRowid ); if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); }else{ assert( pSelect==0 ); /* Otherwise useTempTable is true */ sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); } addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); } /* Copy the new data already generated. */ assert( pTab->nNVCol>0 || pParse->nErr>0 ); sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); #ifndef SQLITE_OMIT_GENERATED_COLUMNS /* Compute the new value for generated columns after all other ** columns have already been computed. This must be done after ** computing the ROWID in case one of the generated columns ** refers to the ROWID. */ if( pTab->tabFlags & TF_HasGenerated ){ testcase( pTab->tabFlags & TF_HasVirtual ); testcase( pTab->tabFlags & TF_HasStored ); sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); } #endif /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, ** do not attempt any conversions before assembling the record. ** If this is a real table, attempt conversions as required by the ** table column affinities. */ if( !isView ){ sqlite3TableAffinity(v, pTab, regCols+1); } /* Fire BEFORE or INSTEAD OF triggers */ sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, pTab, regCols-pTab->nCol-1, onError, endOfLoop); sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); } if( !isView ){ if( IsVirtual(pTab) ){ /* The row that the VUpdate opcode will delete: none */ sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); } if( ipkColumn>=0 ){ /* Compute the new rowid */ if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); }else if( pSelect ){ /* Rowid already initialized at tag-20191021-001 */ }else{ Expr *pIpk = pList->a[ipkColumn].pExpr; if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); appendFlag = 1; }else{ sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); } } /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid ** to generate a unique primary key value. */ if( !appendFlag ){ int addr1; if( !IsVirtual(pTab) ){ addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); sqlite3VdbeJumpHere(v, addr1); }else{ addr1 = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); } sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); } }else if( IsVirtual(pTab) || withoutRowid ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); }else{ sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); appendFlag = 1; } autoIncStep(pParse, regAutoinc, regRowid); #ifndef SQLITE_OMIT_GENERATED_COLUMNS /* Compute the new value for generated columns after all other ** columns have already been computed. This must be done after ** computing the ROWID in case one of the generated columns ** is derived from the INTEGER PRIMARY KEY. */ if( pTab->tabFlags & TF_HasGenerated ){ sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); } #endif /* Generate code to check constraints and generate index keys and ** do the insertion. */ #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); sqlite3VtabMakeWritable(pParse, pTab); sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); sqlite3MayAbort(pParse); }else #endif { int isReplace = 0;/* Set to true if constraints may cause a replace */ int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert ); if( db->flags & SQLITE_ForeignKeys ){ sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); } /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE ** constraints or (b) there are no triggers and this table is not a ** parent table in a foreign key constraint. It is safe to set the ** flag in the second case as if any REPLACE constraint is hit, an ** OP_Delete or OP_IdxDelete instruction will be executed on each ** cursor that is disturbed. And these instructions both clear the ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT ** functionality. */ bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, regIns, aRegIdx, 0, appendFlag, bUseSeek ); } #ifdef SQLITE_ALLOW_ROWID_IN_VIEW }else if( pParse->bReturning ){ /* If there is a RETURNING clause, populate the rowid register with ** constant value -1, in case one or more of the returned expressions ** refer to the "rowid" of the view. */ sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); #endif } /* Update the count of rows that are inserted */ if( regRowCount ){ sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); } if( pTrigger ){ /* Code AFTER triggers */ sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, pTab, regData-2-pTab->nCol, onError, endOfLoop); } /* The bottom of the main insertion loop, if the data source ** is a SELECT statement. */ sqlite3VdbeResolveLabel(v, endOfLoop); if( useTempTable ){ sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addrInsTop); sqlite3VdbeAddOp1(v, OP_Close, srcTab); }else if( pSelect ){ sqlite3VdbeGoto(v, addrCont); #ifdef SQLITE_DEBUG /* If we are jumping back to an OP_Yield that is preceded by an ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the ** OP_ReleaseReg will be included in the loop. */ if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){ assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield ); sqlite3VdbeChangeP5(v, 1); } #endif sqlite3VdbeJumpHere(v, addrInsTop); } #ifndef SQLITE_OMIT_XFER_OPT insert_end: #endif /* SQLITE_OMIT_XFER_OPT */ /* Update the sqlite_sequence table by storing the content of the ** maximum rowid counter values recorded while inserting into ** autoincrement tables. */ if( pParse->nested==0 && pParse->pTriggerTab==0 ){ sqlite3AutoincrementEnd(pParse); } /* ** Return the number of rows inserted. If this routine is ** generating code because of a call to sqlite3NestedParse(), do not ** invoke the callback function. */ if( regRowCount ){ sqlite3CodeChangeCount(v, regRowCount, "rows inserted"); } insert_cleanup: sqlite3SrcListDelete(db, pTabList); sqlite3ExprListDelete(db, pList); sqlite3UpsertDelete(db, pUpsert); sqlite3SelectDelete(db, pSelect); sqlite3IdListDelete(db, pColumn); if( aRegIdx ) sqlite3DbNNFreeNN(db, aRegIdx); } /* Make sure "isView" and other macros defined above are undefined. Otherwise ** they may interfere with compilation of other functions in this file ** (or in another file, if this file becomes part of the amalgamation). */ #ifdef isView #undef isView #endif #ifdef pTrigger #undef pTrigger #endif #ifdef tmask #undef tmask #endif /* ** Meanings of bits in of pWalker->eCode for ** sqlite3ExprReferencesUpdatedColumn() */ #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this ** expression node references any of the ** columns that are being modified by an UPDATE statement. */ static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_COLUMN ){ assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); if( pExpr->iColumn>=0 ){ if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ pWalker->eCode |= CKCNSTRNT_COLUMN; } }else{ pWalker->eCode |= CKCNSTRNT_ROWID; } } return WRC_Continue; } /* ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The ** only columns that are modified by the UPDATE are those for which ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. ** ** Return true if CHECK constraint pExpr uses any of the ** changing columns (or the rowid if it is changing). In other words, ** return true if this CHECK constraint must be validated for ** the new row in the UPDATE statement. ** ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. ** The operation of this routine is the same - return true if an only if ** the expression uses one or more of columns identified by the second and ** third arguments. */ int sqlite3ExprReferencesUpdatedColumn( Expr *pExpr, /* The expression to be checked */ int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ int chngRowid /* True if UPDATE changes the rowid */ ){ Walker w; memset(&w, 0, sizeof(w)); w.eCode = 0; w.xExprCallback = checkConstraintExprNode; w.u.aiCol = aiChng; sqlite3WalkExpr(&w, pExpr); if( !chngRowid ){ testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); w.eCode &= ~CKCNSTRNT_ROWID; } testcase( w.eCode==0 ); testcase( w.eCode==CKCNSTRNT_COLUMN ); testcase( w.eCode==CKCNSTRNT_ROWID ); testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); return w.eCode!=0; } /* ** The sqlite3GenerateConstraintChecks() routine usually wants to visit ** the indexes of a table in the order provided in the Table->pIndex list. ** However, sometimes (rarely - when there is an upsert) it wants to visit ** the indexes in a different order. The following data structures accomplish ** this. ** ** The IndexIterator object is used to walk through all of the indexes ** of a table in either Index.pNext order, or in some other order established ** by an array of IndexListTerm objects. */ typedef struct IndexListTerm IndexListTerm; typedef struct IndexIterator IndexIterator; struct IndexIterator { int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */ int i; /* Index of the current item from the list */ union { struct { /* Use this object for eType==0: A Index.pNext list */ Index *pIdx; /* The current Index */ } lx; struct { /* Use this object for eType==1; Array of IndexListTerm */ int nIdx; /* Size of the array */ IndexListTerm *aIdx; /* Array of IndexListTerms */ } ax; } u; }; /* When IndexIterator.eType==1, then each index is an array of instances ** of the following object */ struct IndexListTerm { Index *p; /* The index */ int ix; /* Which entry in the original Table.pIndex list is this index*/ }; /* Return the first index on the list */ static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){ assert( pIter->i==0 ); if( pIter->eType ){ *pIx = pIter->u.ax.aIdx[0].ix; return pIter->u.ax.aIdx[0].p; }else{ *pIx = 0; return pIter->u.lx.pIdx; } } /* Return the next index from the list. Return NULL when out of indexes */ static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){ if( pIter->eType ){ int i = ++pIter->i; if( i>=pIter->u.ax.nIdx ){ *pIx = i; return 0; } *pIx = pIter->u.ax.aIdx[i].ix; return pIter->u.ax.aIdx[i].p; }else{ ++(*pIx); pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext; return pIter->u.lx.pIdx; } } /* ** Generate code to do constraint checks prior to an INSERT or an UPDATE ** on table pTab. ** ** The regNewData parameter is the first register in a range that contains ** the data to be inserted or the data after the update. There will be ** pTab->nCol+1 registers in this range. The first register (the one ** that regNewData points to) will contain the new rowid, or NULL in the ** case of a WITHOUT ROWID table. The second register in the range will ** contain the content of the first table column. The third register will ** contain the content of the second table column. And so forth. ** ** The regOldData parameter is similar to regNewData except that it contains ** the data prior to an UPDATE rather than afterwards. regOldData is zero ** for an INSERT. This routine can distinguish between UPDATE and INSERT by ** checking regOldData for zero. ** ** For an UPDATE, the pkChng boolean is true if the true primary key (the ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) ** might be modified by the UPDATE. If pkChng is false, then the key of ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. ** ** For an INSERT, the pkChng boolean indicates whether or not the rowid ** was explicitly specified as part of the INSERT statement. If pkChng ** is zero, it means that the either rowid is computed automatically or ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, ** pkChng will only be true if the INSERT statement provides an integer ** value for either the rowid column or its INTEGER PRIMARY KEY alias. ** ** The code generated by this routine will store new index entries into ** registers identified by aRegIdx[]. No index entry is created for ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is ** the same as the order of indices on the linked list of indices ** at pTab->pIndex. ** ** (2019-05-07) The generated code also creates a new record for the ** main table, if pTab is a rowid table, and stores that record in the ** register identified by aRegIdx[nIdx] - in other words in the first ** entry of aRegIdx[] past the last index. It is important that the ** record be generated during constraint checks to avoid affinity changes ** to the register content that occur after constraint checks but before ** the new record is inserted. ** ** The caller must have already opened writeable cursors on the main ** table and all applicable indices (that is to say, all indices for which ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor ** for the first index in the pTab->pIndex list. Cursors for other indices ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. ** ** This routine also generates code to check constraints. NOT NULL, ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, ** then the appropriate action is performed. There are five possible ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. ** ** Constraint type Action What Happens ** --------------- ---------- ---------------------------------------- ** any ROLLBACK The current transaction is rolled back and ** sqlite3_step() returns immediately with a ** return code of SQLITE_CONSTRAINT. ** ** any ABORT Back out changes from the current command ** only (do not do a complete rollback) then ** cause sqlite3_step() to return immediately ** with SQLITE_CONSTRAINT. ** ** any FAIL Sqlite3_step() returns immediately with a ** return code of SQLITE_CONSTRAINT. The ** transaction is not rolled back and any ** changes to prior rows are retained. ** ** any IGNORE The attempt in insert or update the current ** row is skipped, without throwing an error. ** Processing continues with the next row. ** (There is an immediate jump to ignoreDest.) ** ** NOT NULL REPLACE The NULL value is replace by the default ** value for that column. If the default value ** is NULL, the action is the same as ABORT. ** ** UNIQUE REPLACE The other row that conflicts with the row ** being inserted is removed. ** ** CHECK REPLACE Illegal. The results in an exception. ** ** Which action to take is determined by the overrideError parameter. ** Or if overrideError==OE_Default, then the pParse->onError parameter ** is used. Or if pParse->onError==OE_Default then the onError value ** for the constraint is used. */ void sqlite3GenerateConstraintChecks( Parse *pParse, /* The parser context */ Table *pTab, /* The table being inserted or updated */ int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ int iDataCur, /* Canonical data cursor (main table or PK index) */ int iIdxCur, /* First index cursor */ int regNewData, /* First register in a range holding values to insert */ int regOldData, /* Previous content. 0 for INSERTs */ u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ u8 overrideError, /* Override onError to this if not OE_Default */ int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ int *aiChng, /* column i is unchanged if aiChng[i]<0 */ Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ ){ Vdbe *v; /* VDBE under construction */ Index *pIdx; /* Pointer to one of the indices */ Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */ sqlite3 *db; /* Database connection */ int i; /* loop counter */ int ix; /* Index loop counter */ int nCol; /* Number of columns */ int onError; /* Conflict resolution strategy */ int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */ u8 isUpdate; /* True if this is an UPDATE operation */ u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */ int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */ int ipkTop = 0; /* Top of the IPK uniqueness check */ int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ /* Variables associated with retesting uniqueness constraints after ** replace triggers fire have run */ int regTrigCnt; /* Register used to count replace trigger invocations */ int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ int nReplaceTrig = 0; /* Number of replace triggers coded */ IndexIterator sIdxIter; /* Index iterator */ isUpdate = regOldData!=0; db = pParse->db; v = pParse->pVdbe; assert( v!=0 ); assert( !IsView(pTab) ); /* This table is not a VIEW */ nCol = pTab->nCol; /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for ** normal rowid tables. nPkField is the number of key fields in the ** pPk index or 1 for a rowid table. In other words, nPkField is the ** number of fields in the true primary key of the table. */ if( HasRowid(pTab) ){ pPk = 0; nPkField = 1; }else{ pPk = sqlite3PrimaryKeyIndex(pTab); nPkField = pPk->nKeyCol; } /* Record that this module has started */ VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", iDataCur, iIdxCur, regNewData, regOldData, pkChng)); /* Test all NOT NULL constraints. */ if( pTab->tabFlags & TF_HasNotNull ){ int b2ndPass = 0; /* True if currently running 2nd pass */ int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */ int nGenerated = 0; /* Number of generated columns with NOT NULL */ while(1){ /* Make 2 passes over columns. Exit loop via "break" */ for(i=0; iaCol[i]; /* The column to check for NOT NULL */ int isGenerated; /* non-zero if column is generated */ onError = pCol->notNull; if( onError==OE_None ) continue; /* No NOT NULL on this column */ if( i==pTab->iPKey ){ continue; /* ROWID is never NULL */ } isGenerated = pCol->colFlags & COLFLAG_GENERATED; if( isGenerated && !b2ndPass ){ nGenerated++; continue; /* Generated columns processed on 2nd pass */ } if( aiChng && aiChng[i]<0 && !isGenerated ){ /* Do not check NOT NULL on columns that do not change */ continue; } if( overrideError!=OE_Default ){ onError = overrideError; }else if( onError==OE_Default ){ onError = OE_Abort; } if( onError==OE_Replace ){ if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */ || pCol->iDflt==0 /* REPLACE is ABORT if no DEFAULT value */ ){ testcase( pCol->colFlags & COLFLAG_VIRTUAL ); testcase( pCol->colFlags & COLFLAG_STORED ); testcase( pCol->colFlags & COLFLAG_GENERATED ); onError = OE_Abort; }else{ assert( !isGenerated ); } }else if( b2ndPass && !isGenerated ){ continue; } assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail || onError==OE_Ignore || onError==OE_Replace ); testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; switch( onError ){ case OE_Replace: { int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg); VdbeCoverage(v); assert( (pCol->colFlags & COLFLAG_GENERATED)==0 ); nSeenReplace++; sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab, pCol), iReg); sqlite3VdbeJumpHere(v, addr1); break; } case OE_Abort: sqlite3MayAbort(pParse); /* no break */ deliberate_fall_through case OE_Rollback: case OE_Fail: { char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, pCol->zCnName); testcase( zMsg==0 && db->mallocFailed==0 ); sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, iReg); sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); VdbeCoverage(v); break; } default: { assert( onError==OE_Ignore ); sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); VdbeCoverage(v); break; } } /* end switch(onError) */ } /* end loop i over columns */ if( nGenerated==0 && nSeenReplace==0 ){ /* If there are no generated columns with NOT NULL constraints ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single ** pass is sufficient */ break; } if( b2ndPass ) break; /* Never need more than 2 passes */ b2ndPass = 1; #ifndef SQLITE_OMIT_GENERATED_COLUMNS if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the ** first pass, recomputed values for all generated columns, as ** those values might depend on columns affected by the REPLACE. */ sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab); } #endif } /* end of 2-pass loop */ } /* end if( has-not-null-constraints ) */ /* Test all CHECK constraints */ #ifndef SQLITE_OMIT_CHECK if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ ExprList *pCheck = pTab->pCheck; pParse->iSelfTab = -(regNewData+1); onError = overrideError!=OE_Default ? overrideError : OE_Abort; for(i=0; inExpr; i++){ int allOk; Expr *pCopy; Expr *pExpr = pCheck->a[i].pExpr; if( aiChng && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) ){ /* The check constraints do not reference any of the columns being ** updated so there is no point it verifying the check constraint */ continue; } if( bAffinityDone==0 ){ sqlite3TableAffinity(v, pTab, regNewData+1); bAffinityDone = 1; } allOk = sqlite3VdbeMakeLabel(pParse); sqlite3VdbeVerifyAbortable(v, onError); pCopy = sqlite3ExprDup(db, pExpr, 0); if( !db->mallocFailed ){ sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL); } sqlite3ExprDelete(db, pCopy); if( onError==OE_Ignore ){ sqlite3VdbeGoto(v, ignoreDest); }else{ char *zName = pCheck->a[i].zEName; assert( zName!=0 || pParse->db->mallocFailed ); if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, onError, zName, P4_TRANSIENT, P5_ConstraintCheck); } sqlite3VdbeResolveLabel(v, allOk); } pParse->iSelfTab = 0; } #endif /* !defined(SQLITE_OMIT_CHECK) */ /* UNIQUE and PRIMARY KEY constraints should be handled in the following ** order: ** ** (1) OE_Update ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore ** (3) OE_Replace ** ** OE_Fail and OE_Ignore must happen before any changes are made. ** OE_Update guarantees that only a single row will change, so it ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback ** could happen in any order, but they are grouped up front for ** convenience. ** ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 ** The order of constraints used to have OE_Update as (2) and OE_Abort ** and so forth as (1). But apparently PostgreSQL checks the OE_Update ** constraint before any others, so it had to be moved. ** ** Constraint checking code is generated in this order: ** (A) The rowid constraint ** (B) Unique index constraints that do not have OE_Replace as their ** default conflict resolution strategy ** (C) Unique index that do use OE_Replace by default. ** ** The ordering of (2) and (3) is accomplished by making sure the linked ** list of indexes attached to a table puts all OE_Replace indexes last ** in the list. See sqlite3CreateIndex() for where that happens. */ sIdxIter.eType = 0; sIdxIter.i = 0; sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */ sIdxIter.u.lx.pIdx = pTab->pIndex; if( pUpsert ){ if( pUpsert->pUpsertTarget==0 ){ /* There is just on ON CONFLICT clause and it has no constraint-target */ assert( pUpsert->pNextUpsert==0 ); if( pUpsert->isDoUpdate==0 ){ /* A single ON CONFLICT DO NOTHING clause, without a constraint-target. ** Make all unique constraint resolution be OE_Ignore */ overrideError = OE_Ignore; pUpsert = 0; }else{ /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */ overrideError = OE_Update; } }else if( pTab->pIndex!=0 ){ /* Otherwise, we'll need to run the IndexListTerm array version of the ** iterator to ensure that all of the ON CONFLICT conditions are ** checked first and in order. */ int nIdx, jj; u64 nByte; Upsert *pTerm; u8 *bUsed; for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ assert( aRegIdx[nIdx]>0 ); } sIdxIter.eType = 1; sIdxIter.u.ax.nIdx = nIdx; nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx; sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte); if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */ bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx]; pUpsert->pToFree = sIdxIter.u.ax.aIdx; for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){ if( pTerm->pUpsertTarget==0 ) break; if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */ jj = 0; pIdx = pTab->pIndex; while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){ pIdx = pIdx->pNext; jj++; } if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */ bUsed[jj] = 1; sIdxIter.u.ax.aIdx[i].p = pIdx; sIdxIter.u.ax.aIdx[i].ix = jj; i++; } for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){ if( bUsed[jj] ) continue; sIdxIter.u.ax.aIdx[i].p = pIdx; sIdxIter.u.ax.aIdx[i].ix = jj; i++; } assert( i==nIdx ); } } /* Determine if it is possible that triggers (either explicitly coded ** triggers or FK resolution actions) might run as a result of deletes ** that happen when OE_Replace conflict resolution occurs. (Call these ** "replace triggers".) If any replace triggers run, we will need to ** recheck all of the uniqueness constraints after they have all run. ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. ** ** If replace triggers are a possibility, then ** ** (1) Allocate register regTrigCnt and initialize it to zero. ** That register will count the number of replace triggers that ** fire. Constraint recheck only occurs if the number is positive. ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. ** (3) Initialize addrRecheck and lblRecheckOk ** ** The uniqueness rechecking code will create a series of tests to run ** in a second pass. The addrRecheck and lblRecheckOk variables are ** used to link together these tests which are separated from each other ** in the generate bytecode. */ if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ /* There are not DELETE triggers nor FK constraints. No constraint ** rechecks are needed. */ pTrigger = 0; regTrigCnt = 0; }else{ if( db->flags&SQLITE_RecTriggers ){ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); }else{ pTrigger = 0; regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); } if( regTrigCnt ){ /* Replace triggers might exist. Allocate the counter and ** initialize it to zero. */ regTrigCnt = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); VdbeComment((v, "trigger count")); lblRecheckOk = sqlite3VdbeMakeLabel(pParse); addrRecheck = lblRecheckOk; } } /* If rowid is changing, make sure the new rowid does not previously ** exist in the table. */ if( pkChng && pPk==0 ){ int addrRowidOk = sqlite3VdbeMakeLabel(pParse); /* Figure out what action to take in case of a rowid collision */ onError = pTab->keyConf; if( overrideError!=OE_Default ){ onError = overrideError; }else if( onError==OE_Default ){ onError = OE_Abort; } /* figure out whether or not upsert applies in this case */ if( pUpsert ){ pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0); if( pUpsertClause!=0 ){ if( pUpsertClause->isDoUpdate==0 ){ onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ }else{ onError = OE_Update; /* DO UPDATE */ } } if( pUpsertClause!=pUpsert ){ /* The first ON CONFLICT clause has a conflict target other than ** the IPK. We have to jump ahead to that first ON CONFLICT clause ** and then come back here and deal with the IPK afterwards */ upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto); } } /* If the response to a rowid conflict is REPLACE but the response ** to some other UNIQUE constraint is FAIL or IGNORE, then we need ** to defer the running of the rowid conflict checking until after ** the UNIQUE constraints have run. */ if( onError==OE_Replace /* IPK rule is REPLACE */ && onError!=overrideError /* Rules for other constraints are different */ && pTab->pIndex /* There exist other constraints */ && !upsertIpkDelay /* IPK check already deferred by UPSERT */ ){ ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; VdbeComment((v, "defer IPK REPLACE until last")); } if( isUpdate ){ /* pkChng!=0 does not mean that the rowid has changed, only that ** it might have changed. Skip the conflict logic below if the rowid ** is unchanged. */ sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverage(v); } /* Check to see if the new rowid already exists in the table. Skip ** the following conflict logic if it does not. */ VdbeNoopComment((v, "uniqueness check for ROWID")); sqlite3VdbeVerifyAbortable(v, onError); sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); VdbeCoverage(v); switch( onError ){ default: { onError = OE_Abort; /* no break */ deliberate_fall_through } case OE_Rollback: case OE_Abort: case OE_Fail: { testcase( onError==OE_Rollback ); testcase( onError==OE_Abort ); testcase( onError==OE_Fail ); sqlite3RowidConstraint(pParse, onError, pTab); break; } case OE_Replace: { /* If there are DELETE triggers on this table and the ** recursive-triggers flag is set, call GenerateRowDelete() to ** remove the conflicting row from the table. This will fire ** the triggers and remove both the table and index b-tree entries. ** ** Otherwise, if there are no triggers or the recursive-triggers ** flag is not set, but the table has one or more indexes, call ** GenerateRowIndexDelete(). This removes the index b-tree entries ** only. The table b-tree entry will be replaced by the new entry ** when it is inserted. ** ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, ** also invoke MultiWrite() to indicate that this VDBE may require ** statement rollback (if the statement is aborted after the delete ** takes place). Earlier versions called sqlite3MultiWrite() regardless, ** but being more selective here allows statements like: ** ** REPLACE INTO t(rowid) VALUES($newrowid) ** ** to run without a statement journal if there are no indexes on the ** table. */ if( regTrigCnt ){ sqlite3MultiWrite(pParse); sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, regNewData, 1, 0, OE_Replace, 1, -1); sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ nReplaceTrig++; }else{ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK assert( HasRowid(pTab) ); /* This OP_Delete opcode fires the pre-update-hook only. It does ** not modify the b-tree. It is more efficient to let the coming ** OP_Insert replace the existing entry than it is to delete the ** existing entry and then insert a new one. */ sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); sqlite3VdbeAppendP4(v, pTab, P4_TABLE); #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ if( pTab->pIndex ){ sqlite3MultiWrite(pParse); sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); } } seenReplace = 1; break; } #ifndef SQLITE_OMIT_UPSERT case OE_Update: { sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); /* no break */ deliberate_fall_through } #endif case OE_Ignore: { testcase( onError==OE_Ignore ); sqlite3VdbeGoto(v, ignoreDest); break; } } sqlite3VdbeResolveLabel(v, addrRowidOk); if( pUpsert && pUpsertClause!=pUpsert ){ upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto); }else if( ipkTop ){ ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); sqlite3VdbeJumpHere(v, ipkTop-1); } } /* Test all UNIQUE constraints by creating entries for each UNIQUE ** index and making sure that duplicate entries do not already exist. ** Compute the revised record entries for indices as we go. ** ** This loop also handles the case of the PRIMARY KEY index for a ** WITHOUT ROWID table. */ for(pIdx = indexIteratorFirst(&sIdxIter, &ix); pIdx; pIdx = indexIteratorNext(&sIdxIter, &ix) ){ int regIdx; /* Range of registers holding content for pIdx */ int regR; /* Range of registers holding conflicting PK */ int iThisCur; /* Cursor for this UNIQUE index */ int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ int addrConflictCk; /* First opcode in the conflict check logic */ if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ if( pUpsert ){ pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx); if( upsertIpkDelay && pUpsertClause==pUpsert ){ sqlite3VdbeJumpHere(v, upsertIpkDelay); } } addrUniqueOk = sqlite3VdbeMakeLabel(pParse); if( bAffinityDone==0 ){ sqlite3TableAffinity(v, pTab, regNewData+1); bAffinityDone = 1; } VdbeNoopComment((v, "prep index %s", pIdx->zName)); iThisCur = iIdxCur+ix; /* Skip partial indices for which the WHERE clause is not true */ if( pIdx->pPartIdxWhere ){ sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); pParse->iSelfTab = -(regNewData+1); sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, SQLITE_JUMPIFNULL); pParse->iSelfTab = 0; } /* Create a record for this index entry as it should appear after ** the insert or update. Store that record in the aRegIdx[ix] register */ regIdx = aRegIdx[ix]+1; for(i=0; inColumn; i++){ int iField = pIdx->aiColumn[i]; int x; if( iField==XN_EXPR ){ pParse->iSelfTab = -(regNewData+1); sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); pParse->iSelfTab = 0; VdbeComment((v, "%s column %d", pIdx->zName, i)); }else if( iField==XN_ROWID || iField==pTab->iPKey ){ x = regNewData; sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); VdbeComment((v, "rowid")); }else{ testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); VdbeComment((v, "%s", pTab->aCol[iField].zCnName)); } } sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); VdbeComment((v, "for %s", pIdx->zName)); #ifdef SQLITE_ENABLE_NULL_TRIM if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ sqlite3SetMakeRecordP5(v, pIdx->pTable); } #endif sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0); /* In an UPDATE operation, if this index is the PRIMARY KEY index ** of a WITHOUT ROWID table and there has been no change the ** primary key, then no collision is possible. The collision detection ** logic below can all be skipped. */ if( isUpdate && pPk==pIdx && pkChng==0 ){ sqlite3VdbeResolveLabel(v, addrUniqueOk); continue; } /* Find out what action to take in case there is a uniqueness conflict */ onError = pIdx->onError; if( onError==OE_None ){ sqlite3VdbeResolveLabel(v, addrUniqueOk); continue; /* pIdx is not a UNIQUE index */ } if( overrideError!=OE_Default ){ onError = overrideError; }else if( onError==OE_Default ){ onError = OE_Abort; } /* Figure out if the upsert clause applies to this index */ if( pUpsertClause ){ if( pUpsertClause->isDoUpdate==0 ){ onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ }else{ onError = OE_Update; /* DO UPDATE */ } } /* Collision detection may be omitted if all of the following are true: ** (1) The conflict resolution algorithm is REPLACE ** (2) The table is a WITHOUT ROWID table ** (3) There are no secondary indexes on the table ** (4) No delete triggers need to be fired if there is a conflict ** (5) No FK constraint counters need to be updated if a conflict occurs. ** ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row ** must be explicitly deleted in order to ensure any pre-update hook ** is invoked. */ assert( IsOrdinaryTable(pTab) ); #ifndef SQLITE_ENABLE_PREUPDATE_HOOK if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ && pPk==pIdx /* Condition 2 */ && onError==OE_Replace /* Condition 1 */ && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab))) ){ sqlite3VdbeResolveLabel(v, addrUniqueOk); continue; } #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ /* Check to see if the new index entry will be unique */ sqlite3VdbeVerifyAbortable(v, onError); addrConflictCk = sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, regIdx, pIdx->nKeyCol); VdbeCoverage(v); /* Generate code to handle collisions */ regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField); if( isUpdate || onError==OE_Replace ){ if( HasRowid(pTab) ){ sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); /* Conflict only if the rowid of the existing index entry ** is different from old-rowid */ if( isUpdate ){ sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverage(v); } }else{ int x; /* Extract the PRIMARY KEY from the end of the index entry and ** store it in registers regR..regR+nPk-1 */ if( pIdx!=pPk ){ for(i=0; inKeyCol; i++){ assert( pPk->aiColumn[i]>=0 ); x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); VdbeComment((v, "%s.%s", pTab->zName, pTab->aCol[pPk->aiColumn[i]].zCnName)); } } if( isUpdate ){ /* If currently processing the PRIMARY KEY of a WITHOUT ROWID ** table, only conflict if the new PRIMARY KEY values are actually ** different from the old. See TH3 withoutrowid04.test. ** ** For a UNIQUE index, only conflict if the PRIMARY KEY values ** of the matched index row are different from the original PRIMARY ** KEY values of this row before the update. */ int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; int op = OP_Ne; int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); for(i=0; inKeyCol; i++){ char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); x = pPk->aiColumn[i]; assert( x>=0 ); if( i==(pPk->nKeyCol-1) ){ addrJump = addrUniqueOk; op = OP_Eq; } x = sqlite3TableColumnToStorage(pTab, x); sqlite3VdbeAddOp4(v, op, regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ ); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverageIf(v, op==OP_Eq); VdbeCoverageIf(v, op==OP_Ne); } } } } /* Generate code that executes if the new index entry is not unique */ assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); switch( onError ){ case OE_Rollback: case OE_Abort: case OE_Fail: { testcase( onError==OE_Rollback ); testcase( onError==OE_Abort ); testcase( onError==OE_Fail ); sqlite3UniqueConstraint(pParse, onError, pIdx); break; } #ifndef SQLITE_OMIT_UPSERT case OE_Update: { sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); /* no break */ deliberate_fall_through } #endif case OE_Ignore: { testcase( onError==OE_Ignore ); sqlite3VdbeGoto(v, ignoreDest); break; } default: { int nConflictCk; /* Number of opcodes in conflict check logic */ assert( onError==OE_Replace ); nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; assert( nConflictCk>0 || db->mallocFailed ); testcase( nConflictCk<=0 ); testcase( nConflictCk>1 ); if( regTrigCnt ){ sqlite3MultiWrite(pParse); nReplaceTrig++; } if( pTrigger && isUpdate ){ sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur); } sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, regR, nPkField, 0, OE_Replace, (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); if( pTrigger && isUpdate ){ sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur); } if( regTrigCnt ){ int addrBypass; /* Jump destination to bypass recheck logic */ sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ VdbeComment((v, "bypass recheck")); /* Here we insert code that will be invoked after all constraint ** checks have run, if and only if one or more replace triggers ** fired. */ sqlite3VdbeResolveLabel(v, lblRecheckOk); lblRecheckOk = sqlite3VdbeMakeLabel(pParse); if( pIdx->pPartIdxWhere ){ /* Bypass the recheck if this partial index is not defined ** for the current row */ sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); VdbeCoverage(v); } /* Copy the constraint check code from above, except change ** the constraint-ok jump destination to be the address of ** the next retest block */ while( nConflictCk>0 ){ VdbeOp x; /* Conflict check opcode to copy */ /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. ** Hence, make a complete copy of the opcode, rather than using ** a pointer to the opcode. */ x = *sqlite3VdbeGetOp(v, addrConflictCk); if( x.opcode!=OP_IdxRowid ){ int p2; /* New P2 value for copied conflict check opcode */ const char *zP4; if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ p2 = lblRecheckOk; }else{ p2 = x.p2; } zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z; sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type); sqlite3VdbeChangeP5(v, x.p5); VdbeCoverageIf(v, p2!=x.p2); } nConflictCk--; addrConflictCk++; } /* If the retest fails, issue an abort */ sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ } seenReplace = 1; break; } } sqlite3VdbeResolveLabel(v, addrUniqueOk); if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); if( pUpsertClause && upsertIpkReturn && sqlite3UpsertNextIsIPK(pUpsertClause) ){ sqlite3VdbeGoto(v, upsertIpkDelay+1); sqlite3VdbeJumpHere(v, upsertIpkReturn); upsertIpkReturn = 0; } } /* If the IPK constraint is a REPLACE, run it last */ if( ipkTop ){ sqlite3VdbeGoto(v, ipkTop); VdbeComment((v, "Do IPK REPLACE")); assert( ipkBottom>0 ); sqlite3VdbeJumpHere(v, ipkBottom); } /* Recheck all uniqueness constraints after replace triggers have run */ testcase( regTrigCnt!=0 && nReplaceTrig==0 ); assert( regTrigCnt!=0 || nReplaceTrig==0 ); if( nReplaceTrig ){ sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); if( !pPk ){ if( isUpdate ){ sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverage(v); } sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); VdbeCoverage(v); sqlite3RowidConstraint(pParse, OE_Abort, pTab); }else{ sqlite3VdbeGoto(v, addrRecheck); } sqlite3VdbeResolveLabel(v, lblRecheckOk); } /* Generate the table record */ if( HasRowid(pTab) ){ int regRec = aRegIdx[ix]; sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); sqlite3SetMakeRecordP5(v, pTab); if( !bAffinityDone ){ sqlite3TableAffinity(v, pTab, 0); } } *pbMayReplace = seenReplace; VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); } #ifdef SQLITE_ENABLE_NULL_TRIM /* ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) ** to be the number of columns in table pTab that must not be NULL-trimmed. ** ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. */ void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ u16 i; /* Records with omitted columns are only allowed for schema format ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ if( pTab->pSchema->file_format<2 ) return; for(i=pTab->nCol-1; i>0; i--){ if( pTab->aCol[i].iDflt!=0 ) break; if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; } sqlite3VdbeChangeP5(v, i+1); } #endif /* ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor ** number is iCur, and register regData contains the new record for the ** PK index. This function adds code to invoke the pre-update hook, ** if one is registered. */ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK static void codeWithoutRowidPreupdate( Parse *pParse, /* Parse context */ Table *pTab, /* Table being updated */ int iCur, /* Cursor number for table */ int regData /* Data containing new record */ ){ Vdbe *v = pParse->pVdbe; int r = sqlite3GetTempReg(pParse); assert( !HasRowid(pTab) ); assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB ); sqlite3VdbeAddOp2(v, OP_Integer, 0, r); sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE); sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); sqlite3ReleaseTempReg(pParse, r); } #else # define codeWithoutRowidPreupdate(a,b,c,d) #endif /* ** This routine generates code to finish the INSERT or UPDATE operation ** that was started by a prior call to sqlite3GenerateConstraintChecks. ** A consecutive range of registers starting at regNewData contains the ** rowid and the content to be inserted. ** ** The arguments to this routine should be the same as the first six ** arguments to sqlite3GenerateConstraintChecks. */ void sqlite3CompleteInsertion( Parse *pParse, /* The parser context */ Table *pTab, /* the table into which we are inserting */ int iDataCur, /* Cursor of the canonical data source */ int iIdxCur, /* First index cursor */ int regNewData, /* Range of content */ int *aRegIdx, /* Register used by each index. 0 for unused indices */ int update_flags, /* True for UPDATE, False for INSERT */ int appendBias, /* True if this is likely to be an append */ int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ ){ Vdbe *v; /* Prepared statements under construction */ Index *pIdx; /* An index being inserted or updated */ u8 pik_flags; /* flag values passed to the btree insert */ int i; /* Loop counter */ assert( update_flags==0 || update_flags==OPFLAG_ISUPDATE || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) ); v = pParse->pVdbe; assert( v!=0 ); assert( !IsView(pTab) ); /* This table is not a VIEW */ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ /* All REPLACE indexes are at the end of the list */ assert( pIdx->onError!=OE_Replace || pIdx->pNext==0 || pIdx->pNext->onError==OE_Replace ); if( aRegIdx[i]==0 ) continue; if( pIdx->pPartIdxWhere ){ sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); } pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ pik_flags |= OPFLAG_NCHANGE; pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); if( update_flags==0 ){ codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]); } } sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], aRegIdx[i]+1, pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); sqlite3VdbeChangeP5(v, pik_flags); } if( !HasRowid(pTab) ) return; if( pParse->nested ){ pik_flags = 0; }else{ pik_flags = OPFLAG_NCHANGE; pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); } if( appendBias ){ pik_flags |= OPFLAG_APPEND; } if( useSeekResult ){ pik_flags |= OPFLAG_USESEEKRESULT; } sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); if( !pParse->nested ){ sqlite3VdbeAppendP4(v, pTab, P4_TABLE); } sqlite3VdbeChangeP5(v, pik_flags); } /* ** Allocate cursors for the pTab table and all its indices and generate ** code to open and initialized those cursors. ** ** The cursor for the object that contains the complete data (normally ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT ** ROWID table) is returned in *piDataCur. The first index cursor is ** returned in *piIdxCur. The number of indices is returned. ** ** Use iBase as the first cursor (either the *piDataCur for rowid tables ** or the first index for WITHOUT ROWID tables) if it is non-negative. ** If iBase is negative, then allocate the next available cursor. ** ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the ** pTab->pIndex list. ** ** If pTab is a virtual table, then this routine is a no-op and the ** *piDataCur and *piIdxCur values are left uninitialized. */ int sqlite3OpenTableAndIndices( Parse *pParse, /* Parsing context */ Table *pTab, /* Table to be opened */ int op, /* OP_OpenRead or OP_OpenWrite */ u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ int iBase, /* Use this for the table cursor, if there is one */ u8 *aToOpen, /* If not NULL: boolean for each table and index */ int *piDataCur, /* Write the database source cursor number here */ int *piIdxCur /* Write the first index cursor number here */ ){ int i; int iDb; int iDataCur; Index *pIdx; Vdbe *v; assert( op==OP_OpenRead || op==OP_OpenWrite ); assert( op==OP_OpenWrite || p5==0 ); assert( piDataCur!=0 ); assert( piIdxCur!=0 ); if( IsVirtual(pTab) ){ /* This routine is a no-op for virtual tables. Leave the output ** variables *piDataCur and *piIdxCur set to illegal cursor numbers ** for improved error detection. */ *piDataCur = *piIdxCur = -999; return 0; } iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); v = pParse->pVdbe; assert( v!=0 ); if( iBase<0 ) iBase = pParse->nTab; iDataCur = iBase++; *piDataCur = iDataCur; if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); }else if( pParse->db->noSharedCache==0 ){ sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); } *piIdxCur = iBase; for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ int iIdxCur = iBase++; assert( pIdx->pSchema==pTab->pSchema ); if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ *piDataCur = iIdxCur; p5 = 0; } if( aToOpen==0 || aToOpen[i+1] ){ sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); sqlite3VdbeChangeP5(v, p5); VdbeComment((v, "%s", pIdx->zName)); } } if( iBase>pParse->nTab ) pParse->nTab = iBase; return i; } #ifdef SQLITE_TEST /* ** The following global variable is incremented whenever the ** transfer optimization is used. This is used for testing ** purposes only - to make sure the transfer optimization really ** is happening when it is supposed to. */ int sqlite3_xferopt_count; #endif /* SQLITE_TEST */ #ifndef SQLITE_OMIT_XFER_OPT /* ** Check to see if index pSrc is compatible as a source of data ** for index pDest in an insert transfer optimization. The rules ** for a compatible index: ** ** * The index is over the same set of columns ** * The same DESC and ASC markings occurs on all columns ** * The same onError processing (OE_Abort, OE_Ignore, etc) ** * The same collating sequence on each column ** * The index has the exact same WHERE clause */ static int xferCompatibleIndex(Index *pDest, Index *pSrc){ int i; assert( pDest && pSrc ); assert( pDest->pTable!=pSrc->pTable ); if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ return 0; /* Different number of columns */ } if( pDest->onError!=pSrc->onError ){ return 0; /* Different conflict resolution strategies */ } for(i=0; inKeyCol; i++){ if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ return 0; /* Different columns indexed */ } if( pSrc->aiColumn[i]==XN_EXPR ){ assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, pDest->aColExpr->a[i].pExpr, -1)!=0 ){ return 0; /* Different expressions in the index */ } } if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ return 0; /* Different sort orders */ } if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ return 0; /* Different collating sequences */ } } if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ return 0; /* Different WHERE clauses */ } /* If no test above fails then the indices must be compatible */ return 1; } /* ** Attempt the transfer optimization on INSERTs of the form ** ** INSERT INTO tab1 SELECT * FROM tab2; ** ** The xfer optimization transfers raw records from tab2 over to tab1. ** Columns are not decoded and reassembled, which greatly improves ** performance. Raw index records are transferred in the same way. ** ** The xfer optimization is only attempted if tab1 and tab2 are compatible. ** There are lots of rules for determining compatibility - see comments ** embedded in the code for details. ** ** This routine returns TRUE if the optimization is guaranteed to be used. ** Sometimes the xfer optimization will only work if the destination table ** is empty - a factor that can only be determined at run-time. In that ** case, this routine generates code for the xfer optimization but also ** does a test to see if the destination table is empty and jumps over the ** xfer optimization code if the test fails. In that case, this routine ** returns FALSE so that the caller will know to go ahead and generate ** an unoptimized transfer. This routine also returns FALSE if there ** is no chance that the xfer optimization can be applied. ** ** This optimization is particularly useful at making VACUUM run faster. */ static int xferOptimization( Parse *pParse, /* Parser context */ Table *pDest, /* The table we are inserting into */ Select *pSelect, /* A SELECT statement to use as the data source */ int onError, /* How to handle constraint errors */ int iDbDest /* The database of pDest */ ){ sqlite3 *db = pParse->db; ExprList *pEList; /* The result set of the SELECT */ Table *pSrc; /* The table in the FROM clause of SELECT */ Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ SrcItem *pItem; /* An element of pSelect->pSrc */ int i; /* Loop counter */ int iDbSrc; /* The database of pSrc */ int iSrc, iDest; /* Cursors from source and destination */ int addr1, addr2; /* Loop addresses */ int emptyDestTest = 0; /* Address of test for empty pDest */ int emptySrcTest = 0; /* Address of test for empty pSrc */ Vdbe *v; /* The VDBE we are building */ int regAutoinc; /* Memory register used by AUTOINC */ int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ int regData, regRowid; /* Registers holding data and rowid */ assert( pSelect!=0 ); if( pParse->pWith || pSelect->pWith ){ /* Do not attempt to process this query if there are an WITH clauses ** attached to it. Proceeding may generate a false "no such table: xxx" ** error if pSelect reads from a CTE named "xxx". */ return 0; } #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pDest) ){ return 0; /* tab1 must not be a virtual table */ } #endif if( onError==OE_Default ){ if( pDest->iPKey>=0 ) onError = pDest->keyConf; if( onError==OE_Default ) onError = OE_Abort; } assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ if( pSelect->pSrc->nSrc!=1 ){ return 0; /* FROM clause must have exactly one term */ } if( pSelect->pSrc->a[0].pSelect ){ return 0; /* FROM clause cannot contain a subquery */ } if( pSelect->pWhere ){ return 0; /* SELECT may not have a WHERE clause */ } if( pSelect->pOrderBy ){ return 0; /* SELECT may not have an ORDER BY clause */ } /* Do not need to test for a HAVING clause. If HAVING is present but ** there is no ORDER BY, we will get an error. */ if( pSelect->pGroupBy ){ return 0; /* SELECT may not have a GROUP BY clause */ } if( pSelect->pLimit ){ return 0; /* SELECT may not have a LIMIT clause */ } if( pSelect->pPrior ){ return 0; /* SELECT may not be a compound query */ } if( pSelect->selFlags & SF_Distinct ){ return 0; /* SELECT may not be DISTINCT */ } pEList = pSelect->pEList; assert( pEList!=0 ); if( pEList->nExpr!=1 ){ return 0; /* The result set must have exactly one column */ } assert( pEList->a[0].pExpr ); if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ return 0; /* The result set must be the special operator "*" */ } /* At this point we have established that the statement is of the ** correct syntactic form to participate in this optimization. Now ** we have to check the semantics. */ pItem = pSelect->pSrc->a; pSrc = sqlite3LocateTableItem(pParse, 0, pItem); if( pSrc==0 ){ return 0; /* FROM clause does not contain a real table */ } if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */ return 0; /* tab1 and tab2 may not be the same table */ } if( HasRowid(pDest)!=HasRowid(pSrc) ){ return 0; /* source and destination must both be WITHOUT ROWID or not */ } if( !IsOrdinaryTable(pSrc) ){ return 0; /* tab2 may not be a view or virtual table */ } if( pDest->nCol!=pSrc->nCol ){ return 0; /* Number of columns must be the same in tab1 and tab2 */ } if( pDest->iPKey!=pSrc->iPKey ){ return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ } if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){ return 0; /* Cannot feed from a non-strict into a strict table */ } for(i=0; inCol; i++){ Column *pDestCol = &pDest->aCol[i]; Column *pSrcCol = &pSrc->aCol[i]; #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS if( (db->mDbFlags & DBFLAG_Vacuum)==0 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN ){ return 0; /* Neither table may have __hidden__ columns */ } #endif #ifndef SQLITE_OMIT_GENERATED_COLUMNS /* Even if tables t1 and t2 have identical schemas, if they contain ** generated columns, then this statement is semantically incorrect: ** ** INSERT INTO t2 SELECT * FROM t1; ** ** The reason is that generated column values are returned by the ** the SELECT statement on the right but the INSERT statement on the ** left wants them to be omitted. ** ** Nevertheless, this is a useful notational shorthand to tell SQLite ** to do a bulk transfer all of the content from t1 over to t2. ** ** We could, in theory, disable this (except for internal use by the ** VACUUM command where it is actually needed). But why do that? It ** seems harmless enough, and provides a useful service. */ if( (pDestCol->colFlags & COLFLAG_GENERATED) != (pSrcCol->colFlags & COLFLAG_GENERATED) ){ return 0; /* Both columns have the same generated-column type */ } /* But the transfer is only allowed if both the source and destination ** tables have the exact same expressions for generated columns. ** This requirement could be relaxed for VIRTUAL columns, I suppose. */ if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ if( sqlite3ExprCompare(0, sqlite3ColumnExpr(pSrc, pSrcCol), sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){ testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); testcase( pDestCol->colFlags & COLFLAG_STORED ); return 0; /* Different generator expressions */ } } #endif if( pDestCol->affinity!=pSrcCol->affinity ){ return 0; /* Affinity must be the same on all columns */ } if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol), sqlite3ColumnColl(pSrcCol))!=0 ){ return 0; /* Collating sequence must be the same on all columns */ } if( pDestCol->notNull && !pSrcCol->notNull ){ return 0; /* tab2 must be NOT NULL if tab1 is */ } /* Default values for second and subsequent columns need to match. */ if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol); Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol); assert( pDestExpr==0 || pDestExpr->op==TK_SPAN ); assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) ); assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN ); assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) ); if( (pDestExpr==0)!=(pSrcExpr==0) || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken, pSrcExpr->u.zToken)!=0) ){ return 0; /* Default values must be the same for all columns */ } } } for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ if( IsUniqueIndex(pDestIdx) ){ destHasUniqueIdx = 1; } for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; } if( pSrcIdx==0 ){ return 0; /* pDestIdx has no corresponding index in pSrc */ } if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema && sqlite3FaultSim(411)==SQLITE_OK ){ /* The sqlite3FaultSim() call allows this corruption test to be ** bypassed during testing, in order to exercise other corruption tests ** further downstream. */ return 0; /* Corrupt schema - two indexes on the same btree */ } } #ifndef SQLITE_OMIT_CHECK if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ return 0; /* Tables have different CHECK constraints. Ticket #2252 */ } #endif #ifndef SQLITE_OMIT_FOREIGN_KEY /* Disallow the transfer optimization if the destination table contains ** any foreign key constraints. This is more restrictive than necessary. ** But the main beneficiary of the transfer optimization is the VACUUM ** command, and the VACUUM command disables foreign key constraints. So ** the extra complication to make this rule less restrictive is probably ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] */ assert( IsOrdinaryTable(pDest) ); if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){ return 0; } #endif if( (db->flags & SQLITE_CountRows)!=0 ){ return 0; /* xfer opt does not play well with PRAGMA count_changes */ } /* If we get this far, it means that the xfer optimization is at ** least a possibility, though it might only work if the destination ** table (tab1) is initially empty. */ #ifdef SQLITE_TEST sqlite3_xferopt_count++; #endif iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); v = sqlite3GetVdbe(pParse); sqlite3CodeVerifySchema(pParse, iDbSrc); iSrc = pParse->nTab++; iDest = pParse->nTab++; regAutoinc = autoIncBegin(pParse, iDbDest, pDest); regData = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_Null, 0, regData); regRowid = sqlite3GetTempReg(pParse); sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); assert( HasRowid(pDest) || destHasUniqueIdx ); if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ || destHasUniqueIdx /* (2) */ || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ )){ /* In some circumstances, we are able to run the xfer optimization ** only if the destination table is initially empty. Unless the ** DBFLAG_Vacuum flag is set, this block generates code to make ** that determination. If DBFLAG_Vacuum is set, then the destination ** table is always empty. ** ** Conditions under which the destination must be empty: ** ** (1) There is no INTEGER PRIMARY KEY but there are indices. ** (If the destination is not initially empty, the rowid fields ** of index entries might need to change.) ** ** (2) The destination has a unique index. (The xfer optimization ** is unable to test uniqueness.) ** ** (3) onError is something other than OE_Abort and OE_Rollback. */ addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); sqlite3VdbeJumpHere(v, addr1); } if( HasRowid(pSrc) ){ u8 insFlags; sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); if( pDest->iPKey>=0 ){ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ sqlite3VdbeVerifyAbortable(v, onError); addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); VdbeCoverage(v); sqlite3RowidConstraint(pParse, onError, pDest); sqlite3VdbeJumpHere(v, addr2); } autoIncStep(pParse, regAutoinc, regRowid); }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); }else{ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); assert( (pDest->tabFlags & TF_Autoincrement)==0 ); } if( db->mDbFlags & DBFLAG_Vacuum ){ sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; }else{ insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT; } #ifdef SQLITE_ENABLE_PREUPDATE_HOOK if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); insFlags &= ~OPFLAG_PREFORMAT; }else #endif { sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid); } sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE); } sqlite3VdbeChangeP5(v, insFlags); sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); }else{ sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); } for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ u8 idxInsFlags = 0; for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; } assert( pSrcIdx ); sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); VdbeComment((v, "%s", pSrcIdx->zName)); sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); VdbeComment((v, "%s", pDestIdx->zName)); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); if( db->mDbFlags & DBFLAG_Vacuum ){ /* This INSERT command is part of a VACUUM operation, which guarantees ** that the destination table is empty. If all indexed columns use ** collation sequence BINARY, then it can also be assumed that the ** index will be populated by inserting keys in strictly sorted ** order. In this case, instead of seeking within the b-tree as part ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the ** OP_IdxInsert to seek to the point within the b-tree where each key ** should be inserted. This is faster. ** ** If any of the indexed columns use a collation sequence other than ** BINARY, this optimization is disabled. This is because the user ** might change the definition of a collation sequence and then run ** a VACUUM command. In that case keys may not be written in strictly ** sorted order. */ for(i=0; inColumn; i++){ const char *zColl = pSrcIdx->azColl[i]; if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; } if( i==pSrcIdx->nColumn ){ idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc); } }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ idxInsFlags |= OPFLAG_NCHANGE; } if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){ sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); if( (db->mDbFlags & DBFLAG_Vacuum)==0 && !HasRowid(pDest) && IsPrimaryKeyIndex(pDestIdx) ){ codeWithoutRowidPreupdate(pParse, pDest, iDest, regData); } } sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); } if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); sqlite3ReleaseTempReg(pParse, regRowid); sqlite3ReleaseTempReg(pParse, regData); if( emptyDestTest ){ sqlite3AutoincrementEnd(pParse); sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); sqlite3VdbeJumpHere(v, emptyDestTest); sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); return 0; }else{ return 1; } } #endif /* SQLITE_OMIT_XFER_OPT */