/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle SELECT statements in SQLite. */ #include "sqliteInt.h" /* ** An instance of the following object is used to record information about ** how to process the DISTINCT keyword, to simplify passing that information ** into the selectInnerLoop() routine. */ typedef struct DistinctCtx DistinctCtx; struct DistinctCtx { u8 isTnct; /* 0: Not distinct. 1: DISTICT 2: DISTINCT and ORDER BY */ u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ int tabTnct; /* Ephemeral table used for DISTINCT processing */ int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ }; /* ** An instance of the following object is used to record information about ** the ORDER BY (or GROUP BY) clause of query is being coded. ** ** The aDefer[] array is used by the sorter-references optimization. For ** example, assuming there is no index that can be used for the ORDER BY, ** for the query: ** ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; ** ** it may be more efficient to add just the "a" values to the sorter, and ** retrieve the associated "bigblob" values directly from table t1 as the ** 10 smallest "a" values are extracted from the sorter. ** ** When the sorter-reference optimization is used, there is one entry in the ** aDefer[] array for each database table that may be read as values are ** extracted from the sorter. */ typedef struct SortCtx SortCtx; struct SortCtx { ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ int nOBSat; /* Number of ORDER BY terms satisfied by indices */ int iECursor; /* Cursor number for the sorter */ int regReturn; /* Register holding block-output return address */ int labelBkOut; /* Start label for the block-output subroutine */ int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ int labelDone; /* Jump here when done, ex: LIMIT reached */ int labelOBLopt; /* Jump here when sorter is full */ u8 sortFlags; /* Zero or more SORTFLAG_* bits */ #ifdef SQLITE_ENABLE_SORTER_REFERENCES u8 nDefer; /* Number of valid entries in aDefer[] */ struct DeferredCsr { Table *pTab; /* Table definition */ int iCsr; /* Cursor number for table */ int nKey; /* Number of PK columns for table pTab (>=1) */ } aDefer[4]; #endif struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS int addrPush; /* First instruction to push data into sorter */ int addrPushEnd; /* Last instruction that pushes data into sorter */ #endif }; #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ /* ** Delete all the content of a Select structure. Deallocate the structure ** itself depending on the value of bFree ** ** If bFree==1, call sqlite3DbFree() on the p object. ** If bFree==0, Leave the first Select object unfreed */ static void clearSelect(sqlite3 *db, Select *p, int bFree){ assert( db!=0 ); while( p ){ Select *pPrior = p->pPrior; sqlite3ExprListDelete(db, p->pEList); sqlite3SrcListDelete(db, p->pSrc); sqlite3ExprDelete(db, p->pWhere); sqlite3ExprListDelete(db, p->pGroupBy); sqlite3ExprDelete(db, p->pHaving); sqlite3ExprListDelete(db, p->pOrderBy); sqlite3ExprDelete(db, p->pLimit); if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); #ifndef SQLITE_OMIT_WINDOWFUNC if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ sqlite3WindowListDelete(db, p->pWinDefn); } while( p->pWin ){ assert( p->pWin->ppThis==&p->pWin ); sqlite3WindowUnlinkFromSelect(p->pWin); } #endif if( bFree ) sqlite3DbNNFreeNN(db, p); p = pPrior; bFree = 1; } } /* ** Initialize a SelectDest structure. */ void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ pDest->eDest = (u8)eDest; pDest->iSDParm = iParm; pDest->iSDParm2 = 0; pDest->zAffSdst = 0; pDest->iSdst = 0; pDest->nSdst = 0; } /* ** Allocate a new Select structure and return a pointer to that ** structure. */ Select *sqlite3SelectNew( Parse *pParse, /* Parsing context */ ExprList *pEList, /* which columns to include in the result */ SrcList *pSrc, /* the FROM clause -- which tables to scan */ Expr *pWhere, /* the WHERE clause */ ExprList *pGroupBy, /* the GROUP BY clause */ Expr *pHaving, /* the HAVING clause */ ExprList *pOrderBy, /* the ORDER BY clause */ u32 selFlags, /* Flag parameters, such as SF_Distinct */ Expr *pLimit /* LIMIT value. NULL means not used */ ){ Select *pNew, *pAllocated; Select standin; pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); if( pNew==0 ){ assert( pParse->db->mallocFailed ); pNew = &standin; } if( pEList==0 ){ pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(pParse->db,TK_ASTERISK,0)); } pNew->pEList = pEList; pNew->op = TK_SELECT; pNew->selFlags = selFlags; pNew->iLimit = 0; pNew->iOffset = 0; pNew->selId = ++pParse->nSelect; pNew->addrOpenEphm[0] = -1; pNew->addrOpenEphm[1] = -1; pNew->nSelectRow = 0; if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); pNew->pSrc = pSrc; pNew->pWhere = pWhere; pNew->pGroupBy = pGroupBy; pNew->pHaving = pHaving; pNew->pOrderBy = pOrderBy; pNew->pPrior = 0; pNew->pNext = 0; pNew->pLimit = pLimit; pNew->pWith = 0; #ifndef SQLITE_OMIT_WINDOWFUNC pNew->pWin = 0; pNew->pWinDefn = 0; #endif if( pParse->db->mallocFailed ) { clearSelect(pParse->db, pNew, pNew!=&standin); pAllocated = 0; }else{ assert( pNew->pSrc!=0 || pParse->nErr>0 ); } return pAllocated; } /* ** Delete the given Select structure and all of its substructures. */ void sqlite3SelectDelete(sqlite3 *db, Select *p){ if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); } void sqlite3SelectDeleteGeneric(sqlite3 *db, void *p){ if( ALWAYS(p) ) clearSelect(db, (Select*)p, 1); } /* ** Return a pointer to the right-most SELECT statement in a compound. */ static Select *findRightmost(Select *p){ while( p->pNext ) p = p->pNext; return p; } /* ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the ** type of join. Return an integer constant that expresses that type ** in terms of the following bit values: ** ** JT_INNER ** JT_CROSS ** JT_OUTER ** JT_NATURAL ** JT_LEFT ** JT_RIGHT ** ** A full outer join is the combination of JT_LEFT and JT_RIGHT. ** ** If an illegal or unsupported join type is seen, then still return ** a join type, but put an error in the pParse structure. ** ** These are the valid join types: ** ** ** pA pB pC Return Value ** ------- ----- ----- ------------ ** CROSS - - JT_CROSS ** INNER - - JT_INNER ** LEFT - - JT_LEFT|JT_OUTER ** LEFT OUTER - JT_LEFT|JT_OUTER ** RIGHT - - JT_RIGHT|JT_OUTER ** RIGHT OUTER - JT_RIGHT|JT_OUTER ** FULL - - JT_LEFT|JT_RIGHT|JT_OUTER ** FULL OUTER - JT_LEFT|JT_RIGHT|JT_OUTER ** NATURAL INNER - JT_NATURAL|JT_INNER ** NATURAL LEFT - JT_NATURAL|JT_LEFT|JT_OUTER ** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER ** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER ** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER ** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT ** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT ** ** To preserve historical compatibly, SQLite also accepts a variety ** of other non-standard and in many cases nonsensical join types. ** This routine makes as much sense at it can from the nonsense join ** type and returns a result. Examples of accepted nonsense join types ** include but are not limited to: ** ** INNER CROSS JOIN -> same as JOIN ** NATURAL CROSS JOIN -> same as NATURAL JOIN ** OUTER LEFT JOIN -> same as LEFT JOIN ** LEFT NATURAL JOIN -> same as NATURAL LEFT JOIN ** LEFT RIGHT JOIN -> same as FULL JOIN ** RIGHT OUTER FULL JOIN -> same as FULL JOIN ** CROSS CROSS CROSS JOIN -> same as JOIN ** ** The only restrictions on the join type name are: ** ** * "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT", ** or "FULL". ** ** * "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT, ** or "FULL". ** ** * If "OUTER" is present then there must also be one of ** "LEFT", "RIGHT", or "FULL" */ int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ int jointype = 0; Token *apAll[3]; Token *p; /* 0123456789 123456789 123456789 123 */ static const char zKeyText[] = "naturaleftouterightfullinnercross"; static const struct { u8 i; /* Beginning of keyword text in zKeyText[] */ u8 nChar; /* Length of the keyword in characters */ u8 code; /* Join type mask */ } aKeyword[] = { /* (0) natural */ { 0, 7, JT_NATURAL }, /* (1) left */ { 6, 4, JT_LEFT|JT_OUTER }, /* (2) outer */ { 10, 5, JT_OUTER }, /* (3) right */ { 14, 5, JT_RIGHT|JT_OUTER }, /* (4) full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, /* (5) inner */ { 23, 5, JT_INNER }, /* (6) cross */ { 28, 5, JT_INNER|JT_CROSS }, }; int i, j; apAll[0] = pA; apAll[1] = pB; apAll[2] = pC; for(i=0; i<3 && apAll[i]; i++){ p = apAll[i]; for(j=0; jn==aKeyword[j].nChar && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ jointype |= aKeyword[j].code; break; } } testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); if( j>=ArraySize(aKeyword) ){ jointype |= JT_ERROR; break; } } if( (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || (jointype & JT_ERROR)!=0 || (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER ){ const char *zSp1 = " "; const char *zSp2 = " "; if( pB==0 ){ zSp1++; } if( pC==0 ){ zSp2++; } sqlite3ErrorMsg(pParse, "unknown join type: " "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); jointype = JT_INNER; } return jointype; } /* ** Return the index of a column in a table. Return -1 if the column ** is not contained in the table. */ int sqlite3ColumnIndex(Table *pTab, const char *zCol){ int i; u8 h = sqlite3StrIHash(zCol); Column *pCol; for(pCol=pTab->aCol, i=0; inCol; pCol++, i++){ if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i; } return -1; } /* ** Mark a subquery result column as having been used. */ void sqlite3SrcItemColumnUsed(SrcItem *pItem, int iCol){ assert( pItem!=0 ); assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) ); if( pItem->fg.isNestedFrom ){ ExprList *pResults; assert( pItem->pSelect!=0 ); pResults = pItem->pSelect->pEList; assert( pResults!=0 ); assert( iCol>=0 && iColnExpr ); pResults->a[iCol].fg.bUsed = 1; } } /* ** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a ** table that has a column named zCol. The search is left-to-right. ** The first match found is returned. ** ** When found, set *piTab and *piCol to the table index and column index ** of the matching column and return TRUE. ** ** If not found, return FALSE. */ static int tableAndColumnIndex( SrcList *pSrc, /* Array of tables to search */ int iStart, /* First member of pSrc->a[] to check */ int iEnd, /* Last member of pSrc->a[] to check */ const char *zCol, /* Name of the column we are looking for */ int *piTab, /* Write index of pSrc->a[] here */ int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ int bIgnoreHidden /* Ignore hidden columns */ ){ int i; /* For looping over tables in pSrc */ int iCol; /* Index of column matching zCol */ assert( iEndnSrc ); assert( iStart>=0 ); assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ for(i=iStart; i<=iEnd; i++){ iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol); if( iCol>=0 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) ){ if( piTab ){ sqlite3SrcItemColumnUsed(&pSrc->a[i], iCol); *piTab = i; *piCol = iCol; } return 1; } } return 0; } /* ** Set the EP_OuterON property on all terms of the given expression. ** And set the Expr.w.iJoin to iTable for every term in the ** expression. ** ** The EP_OuterON property is used on terms of an expression to tell ** the OUTER JOIN processing logic that this term is part of the ** join restriction specified in the ON or USING clause and not a part ** of the more general WHERE clause. These terms are moved over to the ** WHERE clause during join processing but we need to remember that they ** originated in the ON or USING clause. ** ** The Expr.w.iJoin tells the WHERE clause processing that the ** expression depends on table w.iJoin even if that table is not ** explicitly mentioned in the expression. That information is needed ** for cases like this: ** ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 ** ** The where clause needs to defer the handling of the t1.x=5 ** term until after the t2 loop of the join. In that way, a ** NULL t2 row will be inserted whenever t1.x!=5. If we do not ** defer the handling of t1.x=5, it will be processed immediately ** after the t1 loop and rows with t1.x!=5 will never appear in ** the output, which is incorrect. */ void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){ assert( joinFlag==EP_OuterON || joinFlag==EP_InnerON ); while( p ){ ExprSetProperty(p, joinFlag); assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); ExprSetVVAProperty(p, EP_NoReduce); p->w.iJoin = iTable; if( p->op==TK_FUNCTION ){ assert( ExprUseXList(p) ); if( p->x.pList ){ int i; for(i=0; ix.pList->nExpr; i++){ sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag); } } } sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag); p = p->pRight; } } /* Undo the work of sqlite3SetJoinExpr(). This is used when a LEFT JOIN ** is simplified into an ordinary JOIN, and when an ON expression is ** "pushed down" into the WHERE clause of a subquery. ** ** Convert every term that is marked with EP_OuterON and w.iJoin==iTable into ** an ordinary term that omits the EP_OuterON mark. Or if iTable<0, then ** just clear every EP_OuterON and EP_InnerON mark from the expression tree. ** ** If nullable is true, that means that Expr p might evaluate to NULL even ** if it is a reference to a NOT NULL column. This can happen, for example, ** if the table that p references is on the left side of a RIGHT JOIN. ** If nullable is true, then take care to not remove the EP_CanBeNull bit. ** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c */ static void unsetJoinExpr(Expr *p, int iTable, int nullable){ while( p ){ if( iTable<0 || (ExprHasProperty(p, EP_OuterON) && p->w.iJoin==iTable) ){ ExprClearProperty(p, EP_OuterON|EP_InnerON); if( iTable>=0 ) ExprSetProperty(p, EP_InnerON); } if( p->op==TK_COLUMN && p->iTable==iTable && !nullable ){ ExprClearProperty(p, EP_CanBeNull); } if( p->op==TK_FUNCTION ){ assert( ExprUseXList(p) ); assert( p->pLeft==0 ); if( p->x.pList ){ int i; for(i=0; ix.pList->nExpr; i++){ unsetJoinExpr(p->x.pList->a[i].pExpr, iTable, nullable); } } } unsetJoinExpr(p->pLeft, iTable, nullable); p = p->pRight; } } /* ** This routine processes the join information for a SELECT statement. ** ** * A NATURAL join is converted into a USING join. After that, we ** do not need to be concerned with NATURAL joins and we only have ** think about USING joins. ** ** * ON and USING clauses result in extra terms being added to the ** WHERE clause to enforce the specified constraints. The extra ** WHERE clause terms will be tagged with EP_OuterON or ** EP_InnerON so that we know that they originated in ON/USING. ** ** The terms of a FROM clause are contained in the Select.pSrc structure. ** The left most table is the first entry in Select.pSrc. The right-most ** table is the last entry. The join operator is held in the entry to ** the right. Thus entry 1 contains the join operator for the join between ** entries 0 and 1. Any ON or USING clauses associated with the join are ** also attached to the right entry. ** ** This routine returns the number of errors encountered. */ static int sqlite3ProcessJoin(Parse *pParse, Select *p){ SrcList *pSrc; /* All tables in the FROM clause */ int i, j; /* Loop counters */ SrcItem *pLeft; /* Left table being joined */ SrcItem *pRight; /* Right table being joined */ pSrc = p->pSrc; pLeft = &pSrc->a[0]; pRight = &pLeft[1]; for(i=0; inSrc-1; i++, pRight++, pLeft++){ Table *pRightTab = pRight->pTab; u32 joinType; if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_OuterON : EP_InnerON; /* If this is a NATURAL join, synthesize an appropriate USING clause ** to specify which columns should be joined. */ if( pRight->fg.jointype & JT_NATURAL ){ IdList *pUsing = 0; if( pRight->fg.isUsing || pRight->u3.pOn ){ sqlite3ErrorMsg(pParse, "a NATURAL join may not have " "an ON or USING clause", 0); return 1; } for(j=0; jnCol; j++){ char *zName; /* Name of column in the right table */ if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; zName = pRightTab->aCol[j].zCnName; if( tableAndColumnIndex(pSrc, 0, i, zName, 0, 0, 1) ){ pUsing = sqlite3IdListAppend(pParse, pUsing, 0); if( pUsing ){ assert( pUsing->nId>0 ); assert( pUsing->a[pUsing->nId-1].zName==0 ); pUsing->a[pUsing->nId-1].zName = sqlite3DbStrDup(pParse->db, zName); } } } if( pUsing ){ pRight->fg.isUsing = 1; pRight->fg.isSynthUsing = 1; pRight->u3.pUsing = pUsing; } if( pParse->nErr ) return 1; } /* Create extra terms on the WHERE clause for each column named ** in the USING clause. Example: If the two tables to be joined are ** A and B and the USING clause names X, Y, and Z, then add this ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z ** Report an error if any column mentioned in the USING clause is ** not contained in both tables to be joined. */ if( pRight->fg.isUsing ){ IdList *pList = pRight->u3.pUsing; sqlite3 *db = pParse->db; assert( pList!=0 ); for(j=0; jnId; j++){ char *zName; /* Name of the term in the USING clause */ int iLeft; /* Table on the left with matching column name */ int iLeftCol; /* Column number of matching column on the left */ int iRightCol; /* Column number of matching column on the right */ Expr *pE1; /* Reference to the column on the LEFT of the join */ Expr *pE2; /* Reference to the column on the RIGHT of the join */ Expr *pEq; /* Equality constraint. pE1 == pE2 */ zName = pList->a[j].zName; iRightCol = sqlite3ColumnIndex(pRightTab, zName); if( iRightCol<0 || tableAndColumnIndex(pSrc, 0, i, zName, &iLeft, &iLeftCol, pRight->fg.isSynthUsing)==0 ){ sqlite3ErrorMsg(pParse, "cannot join using column %s - column " "not present in both tables", zName); return 1; } pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol); sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol); if( (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ /* This branch runs if the query contains one or more RIGHT or FULL ** JOINs. If only a single table on the left side of this join ** contains the zName column, then this branch is a no-op. ** But if there are two or more tables on the left side ** of the join, construct a coalesce() function that gathers all ** such tables. Raise an error if more than one of those references ** to zName is not also within a prior USING clause. ** ** We really ought to raise an error if there are two or more ** non-USING references to zName on the left of an INNER or LEFT ** JOIN. But older versions of SQLite do not do that, so we avoid ** adding a new error so as to not break legacy applications. */ ExprList *pFuncArgs = 0; /* Arguments to the coalesce() */ static const Token tkCoalesce = { "coalesce", 8 }; while( tableAndColumnIndex(pSrc, iLeft+1, i, zName, &iLeft, &iLeftCol, pRight->fg.isSynthUsing)!=0 ){ if( pSrc->a[iLeft].fg.isUsing==0 || sqlite3IdListIndex(pSrc->a[iLeft].u3.pUsing, zName)<0 ){ sqlite3ErrorMsg(pParse, "ambiguous reference to %s in USING()", zName); break; } pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1); pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol); sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol); } if( pFuncArgs ){ pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1); pE1 = sqlite3ExprFunction(pParse, pFuncArgs, &tkCoalesce, 0); } } pE2 = sqlite3CreateColumnExpr(db, pSrc, i+1, iRightCol); sqlite3SrcItemColumnUsed(pRight, iRightCol); pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); assert( pE2!=0 || pEq==0 ); if( pEq ){ ExprSetProperty(pEq, joinType); assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); ExprSetVVAProperty(pEq, EP_NoReduce); pEq->w.iJoin = pE2->iTable; } p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pEq); } } /* Add the ON clause to the end of the WHERE clause, connected by ** an AND operator. */ else if( pRight->u3.pOn ){ sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType); p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn); pRight->u3.pOn = 0; pRight->fg.isOn = 1; } } return 0; } /* ** An instance of this object holds information (beyond pParse and pSelect) ** needed to load the next result row that is to be added to the sorter. */ typedef struct RowLoadInfo RowLoadInfo; struct RowLoadInfo { int regResult; /* Store results in array of registers here */ u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ #ifdef SQLITE_ENABLE_SORTER_REFERENCES ExprList *pExtra; /* Extra columns needed by sorter refs */ int regExtraResult; /* Where to load the extra columns */ #endif }; /* ** This routine does the work of loading query data into an array of ** registers so that it can be added to the sorter. */ static void innerLoopLoadRow( Parse *pParse, /* Statement under construction */ Select *pSelect, /* The query being coded */ RowLoadInfo *pInfo /* Info needed to complete the row load */ ){ sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 0, pInfo->ecelFlags); #ifdef SQLITE_ENABLE_SORTER_REFERENCES if( pInfo->pExtra ){ sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); sqlite3ExprListDelete(pParse->db, pInfo->pExtra); } #endif } /* ** Code the OP_MakeRecord instruction that generates the entry to be ** added into the sorter. ** ** Return the register in which the result is stored. */ static int makeSorterRecord( Parse *pParse, SortCtx *pSort, Select *pSelect, int regBase, int nBase ){ int nOBSat = pSort->nOBSat; Vdbe *v = pParse->pVdbe; int regOut = ++pParse->nMem; if( pSort->pDeferredRowLoad ){ innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); return regOut; } /* ** Generate code that will push the record in registers regData ** through regData+nData-1 onto the sorter. */ static void pushOntoSorter( Parse *pParse, /* Parser context */ SortCtx *pSort, /* Information about the ORDER BY clause */ Select *pSelect, /* The whole SELECT statement */ int regData, /* First register holding data to be sorted */ int regOrigData, /* First register holding data before packing */ int nData, /* Number of elements in the regData data array */ int nPrefixReg /* No. of reg prior to regData available for use */ ){ Vdbe *v = pParse->pVdbe; /* Stmt under construction */ int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ int regBase; /* Regs for sorter record */ int regRecord = 0; /* Assembled sorter record */ int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ int op; /* Opcode to add sorter record to sorter */ int iLimit; /* LIMIT counter */ int iSkip = 0; /* End of the sorter insert loop */ assert( bSeq==0 || bSeq==1 ); /* Three cases: ** (1) The data to be sorted has already been packed into a Record ** by a prior OP_MakeRecord. In this case nData==1 and regData ** will be completely unrelated to regOrigData. ** (2) All output columns are included in the sort record. In that ** case regData==regOrigData. ** (3) Some output columns are omitted from the sort record due to ** the SQLITE_ENABLE_SORTER_REFERENCES optimization, or due to the ** SQLITE_ECEL_OMITREF optimization, or due to the ** SortCtx.pDeferredRowLoad optimization. In any of these cases ** regOrigData is 0 to prevent this routine from trying to copy ** values that might not yet exist. */ assert( nData==1 || regData==regOrigData || regOrigData==0 ); #ifdef SQLITE_ENABLE_STMT_SCANSTATUS pSort->addrPush = sqlite3VdbeCurrentAddr(v); #endif if( nPrefixReg ){ assert( nPrefixReg==nExpr+bSeq ); regBase = regData - nPrefixReg; }else{ regBase = pParse->nMem + 1; pParse->nMem += nBase; } assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; pSort->labelDone = sqlite3VdbeMakeLabel(pParse); sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); if( bSeq ){ sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); } if( nPrefixReg==0 && nData>0 ){ sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); } if( nOBSat>0 ){ int regPrevKey; /* The first nOBSat columns of the previous row */ int addrFirst; /* Address of the OP_IfNot opcode */ int addrJmp; /* Address of the OP_Jump opcode */ VdbeOp *pOp; /* Opcode that opens the sorter */ int nKey; /* Number of sorting key columns, including OP_Sequence */ KeyInfo *pKI; /* Original KeyInfo on the sorter table */ regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); regPrevKey = pParse->nMem+1; pParse->nMem += pSort->nOBSat; nKey = nExpr - pSort->nOBSat + bSeq; if( bSeq ){ addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); }else{ addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); } VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); if( pParse->db->mallocFailed ) return; pOp->p2 = nKey + nData; pKI = pOp->p4.pKeyInfo; memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); testcase( pKI->nAllField > pKI->nKeyField+2 ); pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, pKI->nAllField-pKI->nKeyField-1); pOp = 0; /* Ensure pOp not used after sqlite3VdbeAddOp3() */ addrJmp = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); pSort->regReturn = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); if( iLimit ){ sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); VdbeCoverage(v); } sqlite3VdbeJumpHere(v, addrFirst); sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); sqlite3VdbeJumpHere(v, addrJmp); } if( iLimit ){ /* At this point the values for the new sorter entry are stored ** in an array of registers. They need to be composed into a record ** and inserted into the sorter if either (a) there are currently ** less than LIMIT+OFFSET items or (b) the new record is smaller than ** the largest record currently in the sorter. If (b) is true and there ** are already LIMIT+OFFSET items in the sorter, delete the largest ** entry before inserting the new one. This way there are never more ** than LIMIT+OFFSET items in the sorter. ** ** If the new record does not need to be inserted into the sorter, ** jump to the next iteration of the loop. If the pSort->labelOBLopt ** value is not zero, then it is a label of where to jump. Otherwise, ** just bypass the row insert logic. See the header comment on the ** sqlite3WhereOrderByLimitOptLabel() function for additional info. */ int iCsr = pSort->iECursor; sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, 0, regBase+nOBSat, nExpr-nOBSat); VdbeCoverage(v); sqlite3VdbeAddOp1(v, OP_Delete, iCsr); } if( regRecord==0 ){ regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); } if( pSort->sortFlags & SORTFLAG_UseSorter ){ op = OP_SorterInsert; }else{ op = OP_IdxInsert; } sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, regBase+nOBSat, nBase-nOBSat); if( iSkip ){ sqlite3VdbeChangeP2(v, iSkip, pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); } #ifdef SQLITE_ENABLE_STMT_SCANSTATUS pSort->addrPushEnd = sqlite3VdbeCurrentAddr(v)-1; #endif } /* ** Add code to implement the OFFSET */ static void codeOffset( Vdbe *v, /* Generate code into this VM */ int iOffset, /* Register holding the offset counter */ int iContinue /* Jump here to skip the current record */ ){ if( iOffset>0 ){ sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); VdbeComment((v, "OFFSET")); } } /* ** Add code that will check to make sure the array of registers starting at ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and ** distinct aggregates ("SELECT count(DISTINCT ) ..."). Three strategies ** are available. Which is used depends on the value of parameter eTnctType, ** as follows: ** ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP: ** Build an ephemeral table that contains all entries seen before and ** skip entries which have been seen before. ** ** Parameter iTab is the cursor number of an ephemeral table that must ** be opened before the VM code generated by this routine is executed. ** The ephemeral cursor table is queried for a record identical to the ** record formed by the current array of registers. If one is found, ** jump to VM address addrRepeat. Otherwise, insert a new record into ** the ephemeral cursor and proceed. ** ** The returned value in this case is a copy of parameter iTab. ** ** WHERE_DISTINCT_ORDERED: ** In this case rows are being delivered sorted order. The ephemeral ** table is not required. Instead, the current set of values ** is compared against previous row. If they match, the new row ** is not distinct and control jumps to VM address addrRepeat. Otherwise, ** the VM program proceeds with processing the new row. ** ** The returned value in this case is the register number of the first ** in an array of registers used to store the previous result row so that ** it can be compared to the next. The caller must ensure that this ** register is initialized to NULL. (The fixDistinctOpenEph() routine ** will take care of this initialization.) ** ** WHERE_DISTINCT_UNIQUE: ** In this case it has already been determined that the rows are distinct. ** No special action is required. The return value is zero. ** ** Parameter pEList is the list of expressions used to generated the ** contents of each row. It is used by this routine to determine (a) ** how many elements there are in the array of registers and (b) the ** collation sequences that should be used for the comparisons if ** eTnctType is WHERE_DISTINCT_ORDERED. */ static int codeDistinct( Parse *pParse, /* Parsing and code generating context */ int eTnctType, /* WHERE_DISTINCT_* value */ int iTab, /* A sorting index used to test for distinctness */ int addrRepeat, /* Jump to here if not distinct */ ExprList *pEList, /* Expression for each element */ int regElem /* First element */ ){ int iRet = 0; int nResultCol = pEList->nExpr; Vdbe *v = pParse->pVdbe; switch( eTnctType ){ case WHERE_DISTINCT_ORDERED: { int i; int iJump; /* Jump destination */ int regPrev; /* Previous row content */ /* Allocate space for the previous row */ iRet = regPrev = pParse->nMem+1; pParse->nMem += nResultCol; iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; for(i=0; ia[i].pExpr); if( idb->mallocFailed ); sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1); break; } case WHERE_DISTINCT_UNIQUE: { /* nothing to do */ break; } default: { int r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); sqlite3ReleaseTempReg(pParse, r1); iRet = iTab; break; } } return iRet; } /* ** This routine runs after codeDistinct(). It makes necessary ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct() ** routine made use of. This processing must be done separately since ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually ** laid down. ** ** WHERE_DISTINCT_NOOP: ** WHERE_DISTINCT_UNORDERED: ** ** No adjustments necessary. This function is a no-op. ** ** WHERE_DISTINCT_UNIQUE: ** ** The ephemeral table is not needed. So change the ** OP_OpenEphemeral opcode into an OP_Noop. ** ** WHERE_DISTINCT_ORDERED: ** ** The ephemeral table is not needed. But we do need register ** iVal to be initialized to NULL. So change the OP_OpenEphemeral ** into an OP_Null on the iVal register. */ static void fixDistinctOpenEph( Parse *pParse, /* Parsing and code generating context */ int eTnctType, /* WHERE_DISTINCT_* value */ int iVal, /* Value returned by codeDistinct() */ int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */ ){ if( pParse->nErr==0 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED) ){ Vdbe *v = pParse->pVdbe; sqlite3VdbeChangeToNoop(v, iOpenEphAddr); if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){ sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1); } if( eTnctType==WHERE_DISTINCT_ORDERED ){ /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared ** bit on the first register of the previous value. This will cause the ** OP_Ne added in codeDistinct() to always fail on the first iteration of ** the loop even if the first row is all NULLs. */ VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr); pOp->opcode = OP_Null; pOp->p1 = 1; pOp->p2 = iVal; } } } #ifdef SQLITE_ENABLE_SORTER_REFERENCES /* ** This function is called as part of inner-loop generation for a SELECT ** statement with an ORDER BY that is not optimized by an index. It ** determines the expressions, if any, that the sorter-reference ** optimization should be used for. The sorter-reference optimization ** is used for SELECT queries like: ** ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 ** ** If the optimization is used for expression "bigblob", then instead of ** storing values read from that column in the sorter records, the PK of ** the row from table t1 is stored instead. Then, as records are extracted from ** the sorter to return to the user, the required value of bigblob is ** retrieved directly from table t1. If the values are very large, this ** can be more efficient than storing them directly in the sorter records. ** ** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList ** for which the sorter-reference optimization should be enabled. ** Additionally, the pSort->aDefer[] array is populated with entries ** for all cursors required to evaluate all selected expressions. Finally. ** output variable (*ppExtra) is set to an expression list containing ** expressions for all extra PK values that should be stored in the ** sorter records. */ static void selectExprDefer( Parse *pParse, /* Leave any error here */ SortCtx *pSort, /* Sorter context */ ExprList *pEList, /* Expressions destined for sorter */ ExprList **ppExtra /* Expressions to append to sorter record */ ){ int i; int nDefer = 0; ExprList *pExtra = 0; for(i=0; inExpr; i++){ struct ExprList_item *pItem = &pEList->a[i]; if( pItem->u.x.iOrderByCol==0 ){ Expr *pExpr = pItem->pExpr; Table *pTab; if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && ALWAYS( ExprUseYTab(pExpr) ) && (pTab = pExpr->y.pTab)!=0 && IsOrdinaryTable(pTab) && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0 ){ int j; for(j=0; jaDefer[j].iCsr==pExpr->iTable ) break; } if( j==nDefer ){ if( nDefer==ArraySize(pSort->aDefer) ){ continue; }else{ int nKey = 1; int k; Index *pPk = 0; if( !HasRowid(pTab) ){ pPk = sqlite3PrimaryKeyIndex(pTab); nKey = pPk->nKeyCol; } for(k=0; kiTable = pExpr->iTable; assert( ExprUseYTab(pNew) ); pNew->y.pTab = pExpr->y.pTab; pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); } } pSort->aDefer[nDefer].pTab = pExpr->y.pTab; pSort->aDefer[nDefer].iCsr = pExpr->iTable; pSort->aDefer[nDefer].nKey = nKey; nDefer++; } } pItem->fg.bSorterRef = 1; } } } pSort->nDefer = (u8)nDefer; *ppExtra = pExtra; } #endif /* ** This routine generates the code for the inside of the inner loop ** of a SELECT. ** ** If srcTab is negative, then the p->pEList expressions ** are evaluated in order to get the data for this row. If srcTab is ** zero or more, then data is pulled from srcTab and p->pEList is used only ** to get the number of columns and the collation sequence for each column. */ static void selectInnerLoop( Parse *pParse, /* The parser context */ Select *p, /* The complete select statement being coded */ int srcTab, /* Pull data from this table if non-negative */ SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ SelectDest *pDest, /* How to dispose of the results */ int iContinue, /* Jump here to continue with next row */ int iBreak /* Jump here to break out of the inner loop */ ){ Vdbe *v = pParse->pVdbe; int i; int hasDistinct; /* True if the DISTINCT keyword is present */ int eDest = pDest->eDest; /* How to dispose of results */ int iParm = pDest->iSDParm; /* First argument to disposal method */ int nResultCol; /* Number of result columns */ int nPrefixReg = 0; /* Number of extra registers before regResult */ RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ /* Usually, regResult is the first cell in an array of memory cells ** containing the current result row. In this case regOrig is set to the ** same value. However, if the results are being sent to the sorter, the ** values for any expressions that are also part of the sort-key are omitted ** from this array. In this case regOrig is set to zero. */ int regResult; /* Start of memory holding current results */ int regOrig; /* Start of memory holding full result (or 0) */ assert( v ); assert( p->pEList!=0 ); hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; if( pSort && pSort->pOrderBy==0 ) pSort = 0; if( pSort==0 && !hasDistinct ){ assert( iContinue!=0 ); codeOffset(v, p->iOffset, iContinue); } /* Pull the requested columns. */ nResultCol = p->pEList->nExpr; if( pDest->iSdst==0 ){ if( pSort ){ nPrefixReg = pSort->pOrderBy->nExpr; if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; pParse->nMem += nPrefixReg; } pDest->iSdst = pParse->nMem+1; pParse->nMem += nResultCol; }else if( pDest->iSdst+nResultCol > pParse->nMem ){ /* This is an error condition that can result, for example, when a SELECT ** on the right-hand side of an INSERT contains more result columns than ** there are columns in the table on the left. The error will be caught ** and reported later. But we need to make sure enough memory is allocated ** to avoid other spurious errors in the meantime. */ pParse->nMem += nResultCol; } pDest->nSdst = nResultCol; regOrig = regResult = pDest->iSdst; if( srcTab>=0 ){ for(i=0; ipEList->a[i].zEName)); } }else if( eDest!=SRT_Exists ){ #ifdef SQLITE_ENABLE_SORTER_REFERENCES ExprList *pExtra = 0; #endif /* If the destination is an EXISTS(...) expression, the actual ** values returned by the SELECT are not required. */ u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ ExprList *pEList; if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ ecelFlags = SQLITE_ECEL_DUP; }else{ ecelFlags = 0; } if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ /* For each expression in p->pEList that is a copy of an expression in ** the ORDER BY clause (pSort->pOrderBy), set the associated ** iOrderByCol value to one more than the index of the ORDER BY ** expression within the sort-key that pushOntoSorter() will generate. ** This allows the p->pEList field to be omitted from the sorted record, ** saving space and CPU cycles. */ ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); for(i=pSort->nOBSat; ipOrderBy->nExpr; i++){ int j; if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; } } #ifdef SQLITE_ENABLE_SORTER_REFERENCES selectExprDefer(pParse, pSort, p->pEList, &pExtra); if( pExtra && pParse->db->mallocFailed==0 ){ /* If there are any extra PK columns to add to the sorter records, ** allocate extra memory cells and adjust the OpenEphemeral ** instruction to account for the larger records. This is only ** required if there are one or more WITHOUT ROWID tables with ** composite primary keys in the SortCtx.aDefer[] array. */ VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); pOp->p2 += (pExtra->nExpr - pSort->nDefer); pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); pParse->nMem += pExtra->nExpr; } #endif /* Adjust nResultCol to account for columns that are omitted ** from the sorter by the optimizations in this branch */ pEList = p->pEList; for(i=0; inExpr; i++){ if( pEList->a[i].u.x.iOrderByCol>0 #ifdef SQLITE_ENABLE_SORTER_REFERENCES || pEList->a[i].fg.bSorterRef #endif ){ nResultCol--; regOrig = 0; } } testcase( regOrig ); testcase( eDest==SRT_Set ); testcase( eDest==SRT_Mem ); testcase( eDest==SRT_Coroutine ); testcase( eDest==SRT_Output ); assert( eDest==SRT_Set || eDest==SRT_Mem || eDest==SRT_Coroutine || eDest==SRT_Output || eDest==SRT_Upfrom ); } sRowLoadInfo.regResult = regResult; sRowLoadInfo.ecelFlags = ecelFlags; #ifdef SQLITE_ENABLE_SORTER_REFERENCES sRowLoadInfo.pExtra = pExtra; sRowLoadInfo.regExtraResult = regResult + nResultCol; if( pExtra ) nResultCol += pExtra->nExpr; #endif if( p->iLimit && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 && nPrefixReg>0 ){ assert( pSort!=0 ); assert( hasDistinct==0 ); pSort->pDeferredRowLoad = &sRowLoadInfo; regOrig = 0; }else{ innerLoopLoadRow(pParse, p, &sRowLoadInfo); } } /* If the DISTINCT keyword was present on the SELECT statement ** and this row has been seen before, then do not make this row ** part of the result. */ if( hasDistinct ){ int eType = pDistinct->eTnctType; int iTab = pDistinct->tabTnct; assert( nResultCol==p->pEList->nExpr ); iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult); fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct); if( pSort==0 ){ codeOffset(v, p->iOffset, iContinue); } } switch( eDest ){ /* In this mode, write each query result to the key of the temporary ** table iParm. */ #ifndef SQLITE_OMIT_COMPOUND_SELECT case SRT_Union: { int r1; r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); sqlite3ReleaseTempReg(pParse, r1); break; } /* Construct a record from the query result, but instead of ** saving that record, use it as a key to delete elements from ** the temporary table iParm. */ case SRT_Except: { sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); break; } #endif /* SQLITE_OMIT_COMPOUND_SELECT */ /* Store the result as data using a unique key. */ case SRT_Fifo: case SRT_DistFifo: case SRT_Table: case SRT_EphemTab: { int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); testcase( eDest==SRT_Table ); testcase( eDest==SRT_EphemTab ); testcase( eDest==SRT_Fifo ); testcase( eDest==SRT_DistFifo ); sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); #if !defined(SQLITE_ENABLE_NULL_TRIM) && defined(SQLITE_DEBUG) /* A destination of SRT_Table and a non-zero iSDParm2 parameter means ** that this is an "UPDATE ... FROM" on a virtual table or view. In this ** case set the p5 parameter of the OP_MakeRecord to OPFLAG_NOCHNG_MAGIC. ** This does not affect operation in any way - it just allows MakeRecord ** to process OPFLAG_NOCHANGE values without an assert() failing. */ if( eDest==SRT_Table && pDest->iSDParm2 ){ sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG_MAGIC); } #endif #ifndef SQLITE_OMIT_CTE if( eDest==SRT_DistFifo ){ /* If the destination is DistFifo, then cursor (iParm+1) is open ** on an ephemeral index. If the current row is already present ** in the index, do not write it to the output. If not, add the ** current row to the index and proceed with writing it to the ** output table as well. */ int addr = sqlite3VdbeCurrentAddr(v) + 4; sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); assert( pSort==0 ); } #endif if( pSort ){ assert( regResult==regOrig ); pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); }else{ int r2 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sqlite3ReleaseTempReg(pParse, r2); } sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); break; } case SRT_Upfrom: { if( pSort ){ pushOntoSorter( pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); }else{ int i2 = pDest->iSDParm2; int r1 = sqlite3GetTempReg(pParse); /* If the UPDATE FROM join is an aggregate that matches no rows, it ** might still be trying to return one row, because that is what ** aggregates do. Don't record that empty row in the output table. */ sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult+(i2<0), nResultCol-(i2<0), r1); if( i2<0 ){ sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); }else{ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); } } break; } #ifndef SQLITE_OMIT_SUBQUERY /* If we are creating a set for an "expr IN (SELECT ...)" construct, ** then there should be a single item on the stack. Write this ** item into the set table with bogus data. */ case SRT_Set: { if( pSort ){ /* At first glance you would think we could optimize out the ** ORDER BY in this case since the order of entries in the set ** does not matter. But there might be a LIMIT clause, in which ** case the order does matter */ pushOntoSorter( pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); }else{ int r1 = sqlite3GetTempReg(pParse); assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, r1, pDest->zAffSdst, nResultCol); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); sqlite3ReleaseTempReg(pParse, r1); } break; } /* If any row exist in the result set, record that fact and abort. */ case SRT_Exists: { sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); /* The LIMIT clause will terminate the loop for us */ break; } /* If this is a scalar select that is part of an expression, then ** store the results in the appropriate memory cell or array of ** memory cells and break out of the scan loop. */ case SRT_Mem: { if( pSort ){ assert( nResultCol<=pDest->nSdst ); pushOntoSorter( pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); }else{ assert( nResultCol==pDest->nSdst ); assert( regResult==iParm ); /* The LIMIT clause will jump out of the loop for us */ } break; } #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ case SRT_Coroutine: /* Send data to a co-routine */ case SRT_Output: { /* Return the results */ testcase( eDest==SRT_Coroutine ); testcase( eDest==SRT_Output ); if( pSort ){ pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); }else if( eDest==SRT_Coroutine ){ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); }else{ sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); } break; } #ifndef SQLITE_OMIT_CTE /* Write the results into a priority queue that is order according to ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an ** index with pSO->nExpr+2 columns. Build a key using pSO for the first ** pSO->nExpr columns, then make sure all keys are unique by adding a ** final OP_Sequence column. The last column is the record as a blob. */ case SRT_DistQueue: case SRT_Queue: { int nKey; int r1, r2, r3; int addrTest = 0; ExprList *pSO; pSO = pDest->pOrderBy; assert( pSO ); nKey = pSO->nExpr; r1 = sqlite3GetTempReg(pParse); r2 = sqlite3GetTempRange(pParse, nKey+2); r3 = r2+nKey+1; if( eDest==SRT_DistQueue ){ /* If the destination is DistQueue, then cursor (iParm+1) is open ** on a second ephemeral index that holds all values every previously ** added to the queue. */ addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, regResult, nResultCol); VdbeCoverage(v); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); if( eDest==SRT_DistQueue ){ sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); } for(i=0; ia[i].u.x.iOrderByCol - 1, r2+i); } sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); sqlite3ReleaseTempReg(pParse, r1); sqlite3ReleaseTempRange(pParse, r2, nKey+2); break; } #endif /* SQLITE_OMIT_CTE */ #if !defined(SQLITE_OMIT_TRIGGER) /* Discard the results. This is used for SELECT statements inside ** the body of a TRIGGER. The purpose of such selects is to call ** user-defined functions that have side effects. We do not care ** about the actual results of the select. */ default: { assert( eDest==SRT_Discard ); break; } #endif } /* Jump to the end of the loop if the LIMIT is reached. Except, if ** there is a sorter, in which case the sorter has already limited ** the output for us. */ if( pSort==0 && p->iLimit ){ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); } } /* ** Allocate a KeyInfo object sufficient for an index of N key columns and ** X extra columns. */ KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); if( p ){ p->aSortFlags = (u8*)&p->aColl[N+X]; p->nKeyField = (u16)N; p->nAllField = (u16)(N+X); p->enc = ENC(db); p->db = db; p->nRef = 1; memset(&p[1], 0, nExtra); }else{ return (KeyInfo*)sqlite3OomFault(db); } return p; } /* ** Deallocate a KeyInfo object */ void sqlite3KeyInfoUnref(KeyInfo *p){ if( p ){ assert( p->db!=0 ); assert( p->nRef>0 ); p->nRef--; if( p->nRef==0 ) sqlite3DbNNFreeNN(p->db, p); } } /* ** Make a new pointer to a KeyInfo object */ KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ if( p ){ assert( p->nRef>0 ); p->nRef++; } return p; } #ifdef SQLITE_DEBUG /* ** Return TRUE if a KeyInfo object can be change. The KeyInfo object ** can only be changed if this is just a single reference to the object. ** ** This routine is used only inside of assert() statements. */ int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } #endif /* SQLITE_DEBUG */ /* ** Given an expression list, generate a KeyInfo structure that records ** the collating sequence for each expression in that expression list. ** ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting ** KeyInfo structure is appropriate for initializing a virtual index to ** implement that clause. If the ExprList is the result set of a SELECT ** then the KeyInfo structure is appropriate for initializing a virtual ** index to implement a DISTINCT test. ** ** Space to hold the KeyInfo structure is obtained from malloc. The calling ** function is responsible for seeing that this structure is eventually ** freed. */ KeyInfo *sqlite3KeyInfoFromExprList( Parse *pParse, /* Parsing context */ ExprList *pList, /* Form the KeyInfo object from this ExprList */ int iStart, /* Begin with this column of pList */ int nExtra /* Add this many extra columns to the end */ ){ int nExpr; KeyInfo *pInfo; struct ExprList_item *pItem; sqlite3 *db = pParse->db; int i; nExpr = pList->nExpr; pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); if( pInfo ){ assert( sqlite3KeyInfoIsWriteable(pInfo) ); for(i=iStart, pItem=pList->a+iStart; iaColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); pInfo->aSortFlags[i-iStart] = pItem->fg.sortFlags; } } return pInfo; } /* ** Name of the connection operator, used for error messages. */ const char *sqlite3SelectOpName(int id){ char *z; switch( id ){ case TK_ALL: z = "UNION ALL"; break; case TK_INTERSECT: z = "INTERSECT"; break; case TK_EXCEPT: z = "EXCEPT"; break; default: z = "UNION"; break; } return z; } #ifndef SQLITE_OMIT_EXPLAIN /* ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function ** is a no-op. Otherwise, it adds a single row of output to the EQP result, ** where the caption is of the form: ** ** "USE TEMP B-TREE FOR xxx" ** ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which ** is determined by the zUsage argument. */ static void explainTempTable(Parse *pParse, const char *zUsage){ ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); } /* ** Assign expression b to lvalue a. A second, no-op, version of this macro ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code ** in sqlite3Select() to assign values to structure member variables that ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the ** code with #ifndef directives. */ # define explainSetInteger(a, b) a = b #else /* No-op versions of the explainXXX() functions and macros. */ # define explainTempTable(y,z) # define explainSetInteger(y,z) #endif /* ** If the inner loop was generated using a non-null pOrderBy argument, ** then the results were placed in a sorter. After the loop is terminated ** we need to run the sorter and output the results. The following ** routine generates the code needed to do that. */ static void generateSortTail( Parse *pParse, /* Parsing context */ Select *p, /* The SELECT statement */ SortCtx *pSort, /* Information on the ORDER BY clause */ int nColumn, /* Number of columns of data */ SelectDest *pDest /* Write the sorted results here */ ){ Vdbe *v = pParse->pVdbe; /* The prepared statement */ int addrBreak = pSort->labelDone; /* Jump here to exit loop */ int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ int addr; /* Top of output loop. Jump for Next. */ int addrOnce = 0; int iTab; ExprList *pOrderBy = pSort->pOrderBy; int eDest = pDest->eDest; int iParm = pDest->iSDParm; int regRow; int regRowid; int iCol; int nKey; /* Number of key columns in sorter record */ int iSortTab; /* Sorter cursor to read from */ int i; int bSeq; /* True if sorter record includes seq. no. */ int nRefKey = 0; struct ExprList_item *aOutEx = p->pEList->a; #ifdef SQLITE_ENABLE_STMT_SCANSTATUS int addrExplain; /* Address of OP_Explain instruction */ #endif nKey = pOrderBy->nExpr - pSort->nOBSat; if( pSort->nOBSat==0 || nKey==1 ){ ExplainQueryPlan2(addrExplain, (pParse, 0, "USE TEMP B-TREE FOR %sORDER BY", pSort->nOBSat?"LAST TERM OF ":"" )); }else{ ExplainQueryPlan2(addrExplain, (pParse, 0, "USE TEMP B-TREE FOR LAST %d TERMS OF ORDER BY", nKey )); } sqlite3VdbeScanStatusRange(v, addrExplain,pSort->addrPush,pSort->addrPushEnd); sqlite3VdbeScanStatusCounters(v, addrExplain, addrExplain, pSort->addrPush); assert( addrBreak<0 ); if( pSort->labelBkOut ){ sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); sqlite3VdbeGoto(v, addrBreak); sqlite3VdbeResolveLabel(v, pSort->labelBkOut); } #ifdef SQLITE_ENABLE_SORTER_REFERENCES /* Open any cursors needed for sorter-reference expressions */ for(i=0; inDefer; i++){ Table *pTab = pSort->aDefer[i].pTab; int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); } #endif iTab = pSort->iECursor; if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ if( eDest==SRT_Mem && p->iOffset ){ sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst); } regRowid = 0; regRow = pDest->iSdst; }else{ regRowid = sqlite3GetTempReg(pParse); if( eDest==SRT_EphemTab || eDest==SRT_Table ){ regRow = sqlite3GetTempReg(pParse); nColumn = 0; }else{ regRow = sqlite3GetTempRange(pParse, nColumn); } } if( pSort->sortFlags & SORTFLAG_UseSorter ){ int regSortOut = ++pParse->nMem; iSortTab = pParse->nTab++; if( pSort->labelBkOut ){ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); } sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nColumn+nRefKey); if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); VdbeCoverage(v); assert( p->iLimit==0 && p->iOffset==0 ); sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); bSeq = 0; }else{ addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); codeOffset(v, p->iOffset, addrContinue); iSortTab = iTab; bSeq = 1; if( p->iOffset>0 ){ sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); } } for(i=0, iCol=nKey+bSeq-1; inDefer ){ int iKey = iCol+1; int regKey = sqlite3GetTempRange(pParse, nRefKey); for(i=0; inDefer; i++){ int iCsr = pSort->aDefer[i].iCsr; Table *pTab = pSort->aDefer[i].pTab; int nKey = pSort->aDefer[i].nKey; sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); if( HasRowid(pTab) ){ sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, sqlite3VdbeCurrentAddr(v)+1, regKey); }else{ int k; int iJmp; assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); for(k=0; k=0; i--){ #ifdef SQLITE_ENABLE_SORTER_REFERENCES if( aOutEx[i].fg.bSorterRef ){ sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); }else #endif { int iRead; if( aOutEx[i].u.x.iOrderByCol ){ iRead = aOutEx[i].u.x.iOrderByCol-1; }else{ iRead = iCol--; } sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); VdbeComment((v, "%s", aOutEx[i].zEName)); } } sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1); switch( eDest ){ case SRT_Table: case SRT_EphemTab: { sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); break; } #ifndef SQLITE_OMIT_SUBQUERY case SRT_Set: { assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, pDest->zAffSdst, nColumn); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); break; } case SRT_Mem: { /* The LIMIT clause will terminate the loop for us */ break; } #endif case SRT_Upfrom: { int i2 = pDest->iSDParm2; int r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); if( i2<0 ){ sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); }else{ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); } break; } default: { assert( eDest==SRT_Output || eDest==SRT_Coroutine ); testcase( eDest==SRT_Output ); testcase( eDest==SRT_Coroutine ); if( eDest==SRT_Output ){ sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); }else{ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); } break; } } if( regRowid ){ if( eDest==SRT_Set ){ sqlite3ReleaseTempRange(pParse, regRow, nColumn); }else{ sqlite3ReleaseTempReg(pParse, regRow); } sqlite3ReleaseTempReg(pParse, regRowid); } /* The bottom of the loop */ sqlite3VdbeResolveLabel(v, addrContinue); if( pSort->sortFlags & SORTFLAG_UseSorter ){ sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); }else{ sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); } sqlite3VdbeScanStatusRange(v, addrExplain, sqlite3VdbeCurrentAddr(v)-1, -1); if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); sqlite3VdbeResolveLabel(v, addrBreak); } /* ** Return a pointer to a string containing the 'declaration type' of the ** expression pExpr. The string may be treated as static by the caller. ** ** The declaration type is the exact datatype definition extracted from the ** original CREATE TABLE statement if the expression is a column. The ** declaration type for a ROWID field is INTEGER. Exactly when an expression ** is considered a column can be complex in the presence of subqueries. The ** result-set expression in all of the following SELECT statements is ** considered a column by this function. ** ** SELECT col FROM tbl; ** SELECT (SELECT col FROM tbl; ** SELECT (SELECT col FROM tbl); ** SELECT abc FROM (SELECT col AS abc FROM tbl); ** ** The declaration type for any expression other than a column is NULL. ** ** This routine has either 3 or 6 parameters depending on whether or not ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. */ #ifdef SQLITE_ENABLE_COLUMN_METADATA # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ # define columnType(A,B,C,D,E) columnTypeImpl(A,B) #endif static const char *columnTypeImpl( NameContext *pNC, #ifndef SQLITE_ENABLE_COLUMN_METADATA Expr *pExpr #else Expr *pExpr, const char **pzOrigDb, const char **pzOrigTab, const char **pzOrigCol #endif ){ char const *zType = 0; int j; #ifdef SQLITE_ENABLE_COLUMN_METADATA char const *zOrigDb = 0; char const *zOrigTab = 0; char const *zOrigCol = 0; #endif assert( pExpr!=0 ); assert( pNC->pSrcList!=0 ); switch( pExpr->op ){ case TK_COLUMN: { /* The expression is a column. Locate the table the column is being ** extracted from in NameContext.pSrcList. This table may be real ** database table or a subquery. */ Table *pTab = 0; /* Table structure column is extracted from */ Select *pS = 0; /* Select the column is extracted from */ int iCol = pExpr->iColumn; /* Index of column in pTab */ while( pNC && !pTab ){ SrcList *pTabList = pNC->pSrcList; for(j=0;jnSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); if( jnSrc ){ pTab = pTabList->a[j].pTab; pS = pTabList->a[j].pSelect; }else{ pNC = pNC->pNext; } } if( pTab==0 ){ /* At one time, code such as "SELECT new.x" within a trigger would ** cause this condition to run. Since then, we have restructured how ** trigger code is generated and so this condition is no longer ** possible. However, it can still be true for statements like ** the following: ** ** CREATE TABLE t1(col INTEGER); ** SELECT (SELECT t1.col) FROM FROM t1; ** ** when columnType() is called on the expression "t1.col" in the ** sub-select. In this case, set the column type to NULL, even ** though it should really be "INTEGER". ** ** This is not a problem, as the column type of "t1.col" is never ** used. When columnType() is called on the expression ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT ** branch below. */ break; } assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab ); if( pS ){ /* The "table" is actually a sub-select or a view in the FROM clause ** of the SELECT statement. Return the declaration type and origin ** data for the result-set column of the sub-select. */ if( iColpEList->nExpr && (!ViewCanHaveRowid || iCol>=0) ){ /* If iCol is less than zero, then the expression requests the ** rowid of the sub-select or view. This expression is legal (see ** test case misc2.2.2) - it always evaluates to NULL. */ NameContext sNC; Expr *p = pS->pEList->a[iCol].pExpr; sNC.pSrcList = pS->pSrc; sNC.pNext = pNC; sNC.pParse = pNC->pParse; zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); } }else{ /* A real table or a CTE table */ assert( !pS ); #ifdef SQLITE_ENABLE_COLUMN_METADATA if( iCol<0 ) iCol = pTab->iPKey; assert( iCol==XN_ROWID || (iCol>=0 && iColnCol) ); if( iCol<0 ){ zType = "INTEGER"; zOrigCol = "rowid"; }else{ zOrigCol = pTab->aCol[iCol].zCnName; zType = sqlite3ColumnType(&pTab->aCol[iCol],0); } zOrigTab = pTab->zName; if( pNC->pParse && pTab->pSchema ){ int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; } #else assert( iCol==XN_ROWID || (iCol>=0 && iColnCol) ); if( iCol<0 ){ zType = "INTEGER"; }else{ zType = sqlite3ColumnType(&pTab->aCol[iCol],0); } #endif } break; } #ifndef SQLITE_OMIT_SUBQUERY case TK_SELECT: { /* The expression is a sub-select. Return the declaration type and ** origin info for the single column in the result set of the SELECT ** statement. */ NameContext sNC; Select *pS; Expr *p; assert( ExprUseXSelect(pExpr) ); pS = pExpr->x.pSelect; p = pS->pEList->a[0].pExpr; sNC.pSrcList = pS->pSrc; sNC.pNext = pNC; sNC.pParse = pNC->pParse; zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); break; } #endif } #ifdef SQLITE_ENABLE_COLUMN_METADATA if( pzOrigDb ){ assert( pzOrigTab && pzOrigCol ); *pzOrigDb = zOrigDb; *pzOrigTab = zOrigTab; *pzOrigCol = zOrigCol; } #endif return zType; } /* ** Generate code that will tell the VDBE the declaration types of columns ** in the result set. */ static void generateColumnTypes( Parse *pParse, /* Parser context */ SrcList *pTabList, /* List of tables */ ExprList *pEList /* Expressions defining the result set */ ){ #ifndef SQLITE_OMIT_DECLTYPE Vdbe *v = pParse->pVdbe; int i; NameContext sNC; sNC.pSrcList = pTabList; sNC.pParse = pParse; sNC.pNext = 0; for(i=0; inExpr; i++){ Expr *p = pEList->a[i].pExpr; const char *zType; #ifdef SQLITE_ENABLE_COLUMN_METADATA const char *zOrigDb = 0; const char *zOrigTab = 0; const char *zOrigCol = 0; zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); /* The vdbe must make its own copy of the column-type and other ** column specific strings, in case the schema is reset before this ** virtual machine is deleted. */ sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); #else zType = columnType(&sNC, p, 0, 0, 0); #endif sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); } #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ } /* ** Compute the column names for a SELECT statement. ** ** The only guarantee that SQLite makes about column names is that if the ** column has an AS clause assigning it a name, that will be the name used. ** That is the only documented guarantee. However, countless applications ** developed over the years have made baseless assumptions about column names ** and will break if those assumptions changes. Hence, use extreme caution ** when modifying this routine to avoid breaking legacy. ** ** See Also: sqlite3ColumnsFromExprList() ** ** The PRAGMA short_column_names and PRAGMA full_column_names settings are ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all ** applications should operate this way. Nevertheless, we need to support the ** other modes for legacy: ** ** short=OFF, full=OFF: Column name is the text of the expression has it ** originally appears in the SELECT statement. In ** other words, the zSpan of the result expression. ** ** short=ON, full=OFF: (This is the default setting). If the result ** refers directly to a table column, then the ** result column name is just the table column ** name: COLUMN. Otherwise use zSpan. ** ** full=ON, short=ANY: If the result refers directly to a table column, ** then the result column name with the table name ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. */ void sqlite3GenerateColumnNames( Parse *pParse, /* Parser context */ Select *pSelect /* Generate column names for this SELECT statement */ ){ Vdbe *v = pParse->pVdbe; int i; Table *pTab; SrcList *pTabList; ExprList *pEList; sqlite3 *db = pParse->db; int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ if( pParse->colNamesSet ) return; /* Column names are determined by the left-most term of a compound select */ while( pSelect->pPrior ) pSelect = pSelect->pPrior; TREETRACE(0x80,pParse,pSelect,("generating column names\n")); pTabList = pSelect->pSrc; pEList = pSelect->pEList; assert( v!=0 ); assert( pTabList!=0 ); pParse->colNamesSet = 1; fullName = (db->flags & SQLITE_FullColNames)!=0; srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; sqlite3VdbeSetNumCols(v, pEList->nExpr); for(i=0; inExpr; i++){ Expr *p = pEList->a[i].pExpr; assert( p!=0 ); assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ assert( p->op!=TK_COLUMN || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */ if( pEList->a[i].zEName && pEList->a[i].fg.eEName==ENAME_NAME ){ /* An AS clause always takes first priority */ char *zName = pEList->a[i].zEName; sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); }else if( srcName && p->op==TK_COLUMN ){ char *zCol; int iCol = p->iColumn; pTab = p->y.pTab; assert( pTab!=0 ); if( iCol<0 ) iCol = pTab->iPKey; assert( iCol==-1 || (iCol>=0 && iColnCol) ); if( iCol<0 ){ zCol = "rowid"; }else{ zCol = pTab->aCol[iCol].zCnName; } if( fullName ){ char *zName = 0; zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); }else{ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); } }else{ const char *z = pEList->a[i].zEName; z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); } } generateColumnTypes(pParse, pTabList, pEList); } /* ** Given an expression list (which is really the list of expressions ** that form the result set of a SELECT statement) compute appropriate ** column names for a table that would hold the expression list. ** ** All column names will be unique. ** ** Only the column names are computed. Column.zType, Column.zColl, ** and other fields of Column are zeroed. ** ** Return SQLITE_OK on success. If a memory allocation error occurs, ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. ** ** The only guarantee that SQLite makes about column names is that if the ** column has an AS clause assigning it a name, that will be the name used. ** That is the only documented guarantee. However, countless applications ** developed over the years have made baseless assumptions about column names ** and will break if those assumptions changes. Hence, use extreme caution ** when modifying this routine to avoid breaking legacy. ** ** See Also: sqlite3GenerateColumnNames() */ int sqlite3ColumnsFromExprList( Parse *pParse, /* Parsing context */ ExprList *pEList, /* Expr list from which to derive column names */ i16 *pnCol, /* Write the number of columns here */ Column **paCol /* Write the new column list here */ ){ sqlite3 *db = pParse->db; /* Database connection */ int i, j; /* Loop counters */ u32 cnt; /* Index added to make the name unique */ Column *aCol, *pCol; /* For looping over result columns */ int nCol; /* Number of columns in the result set */ char *zName; /* Column name */ int nName; /* Size of name in zName[] */ Hash ht; /* Hash table of column names */ Table *pTab; sqlite3HashInit(&ht); if( pEList ){ nCol = pEList->nExpr; aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); testcase( aCol==0 ); if( NEVER(nCol>32767) ) nCol = 32767; }else{ nCol = 0; aCol = 0; } assert( nCol==(i16)nCol ); *pnCol = nCol; *paCol = aCol; for(i=0, pCol=aCol; inErr; i++, pCol++){ struct ExprList_item *pX = &pEList->a[i]; struct ExprList_item *pCollide; /* Get an appropriate name for the column */ if( (zName = pX->zEName)!=0 && pX->fg.eEName==ENAME_NAME ){ /* If the column contains an "AS " phrase, use as the name */ }else{ Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pX->pExpr); while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){ pColExpr = pColExpr->pRight; assert( pColExpr!=0 ); } if( pColExpr->op==TK_COLUMN && ALWAYS( ExprUseYTab(pColExpr) ) && ALWAYS( pColExpr->y.pTab!=0 ) ){ /* For columns use the column name name */ int iCol = pColExpr->iColumn; pTab = pColExpr->y.pTab; if( iCol<0 ) iCol = pTab->iPKey; zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid"; }else if( pColExpr->op==TK_ID ){ assert( !ExprHasProperty(pColExpr, EP_IntValue) ); zName = pColExpr->u.zToken; }else{ /* Use the original text of the column expression as its name */ assert( zName==pX->zEName ); /* pointer comparison intended */ } } if( zName && !sqlite3IsTrueOrFalse(zName) ){ zName = sqlite3DbStrDup(db, zName); }else{ zName = sqlite3MPrintf(db,"column%d",i+1); } /* Make sure the column name is unique. If the name is not unique, ** append an integer to the name so that it becomes unique. */ cnt = 0; while( zName && (pCollide = sqlite3HashFind(&ht, zName))!=0 ){ if( pCollide->fg.bUsingTerm ){ pCol->colFlags |= COLFLAG_NOEXPAND; } nName = sqlite3Strlen30(zName); if( nName>0 ){ for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} if( zName[j]==':' ) nName = j; } zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); sqlite3ProgressCheck(pParse); if( cnt>3 ){ sqlite3_randomness(sizeof(cnt), &cnt); } } pCol->zCnName = zName; pCol->hName = sqlite3StrIHash(zName); if( pX->fg.bNoExpand ){ pCol->colFlags |= COLFLAG_NOEXPAND; } sqlite3ColumnPropertiesFromName(0, pCol); if( zName && sqlite3HashInsert(&ht, zName, pX)==pX ){ sqlite3OomFault(db); } } sqlite3HashClear(&ht); if( pParse->nErr ){ for(j=0; jrc; } return SQLITE_OK; } /* ** pTab is a transient Table object that represents a subquery of some ** kind (maybe a parenthesized subquery in the FROM clause of a larger ** query, or a VIEW, or a CTE). This routine computes type information ** for that Table object based on the Select object that implements the ** subquery. For the purposes of this routine, "type information" means: ** ** * The datatype name, as it might appear in a CREATE TABLE statement ** * Which collating sequence to use for the column ** * The affinity of the column */ void sqlite3SubqueryColumnTypes( Parse *pParse, /* Parsing contexts */ Table *pTab, /* Add column type information to this table */ Select *pSelect, /* SELECT used to determine types and collations */ char aff /* Default affinity. */ ){ sqlite3 *db = pParse->db; Column *pCol; CollSeq *pColl; int i,j; Expr *p; struct ExprList_item *a; NameContext sNC; assert( pSelect!=0 ); assert( (pSelect->selFlags & SF_Resolved)!=0 ); assert( pTab->nCol==pSelect->pEList->nExpr || pParse->nErr>0 ); assert( aff==SQLITE_AFF_NONE || aff==SQLITE_AFF_BLOB ); if( db->mallocFailed || IN_RENAME_OBJECT ) return; while( pSelect->pPrior ) pSelect = pSelect->pPrior; a = pSelect->pEList->a; memset(&sNC, 0, sizeof(sNC)); sNC.pSrcList = pSelect->pSrc; for(i=0, pCol=pTab->aCol; inCol; i++, pCol++){ const char *zType; i64 n; int m = 0; Select *pS2 = pSelect; pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT); p = a[i].pExpr; /* pCol->szEst = ... // Column size est for SELECT tables never used */ pCol->affinity = sqlite3ExprAffinity(p); while( pCol->affinity<=SQLITE_AFF_NONE && pS2->pNext!=0 ){ m |= sqlite3ExprDataType(pS2->pEList->a[i].pExpr); pS2 = pS2->pNext; pCol->affinity = sqlite3ExprAffinity(pS2->pEList->a[i].pExpr); } if( pCol->affinity<=SQLITE_AFF_NONE ){ pCol->affinity = aff; } if( pCol->affinity>=SQLITE_AFF_TEXT && (pS2->pNext || pS2!=pSelect) ){ for(pS2=pS2->pNext; pS2; pS2=pS2->pNext){ m |= sqlite3ExprDataType(pS2->pEList->a[i].pExpr); } if( pCol->affinity==SQLITE_AFF_TEXT && (m&0x01)!=0 ){ pCol->affinity = SQLITE_AFF_BLOB; }else if( pCol->affinity>=SQLITE_AFF_NUMERIC && (m&0x02)!=0 ){ pCol->affinity = SQLITE_AFF_BLOB; } if( pCol->affinity>=SQLITE_AFF_NUMERIC && p->op==TK_CAST ){ pCol->affinity = SQLITE_AFF_FLEXNUM; } } zType = columnType(&sNC, p, 0, 0, 0); if( zType==0 || pCol->affinity!=sqlite3AffinityType(zType, 0) ){ if( pCol->affinity==SQLITE_AFF_NUMERIC || pCol->affinity==SQLITE_AFF_FLEXNUM ){ zType = "NUM"; }else{ zType = 0; for(j=1; jaffinity ){ zType = sqlite3StdType[j]; break; } } } } if( zType ){ const i64 k = sqlite3Strlen30(zType); n = sqlite3Strlen30(pCol->zCnName); pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+k+2); pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL); if( pCol->zCnName ){ memcpy(&pCol->zCnName[n+1], zType, k+1); pCol->colFlags |= COLFLAG_HASTYPE; } } pColl = sqlite3ExprCollSeq(pParse, p); if( pColl ){ assert( pTab->pIndex==0 ); sqlite3ColumnSetColl(db, pCol, pColl->zName); } } pTab->szTabRow = 1; /* Any non-zero value works */ } /* ** Given a SELECT statement, generate a Table structure that describes ** the result set of that SELECT. */ Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ Table *pTab; sqlite3 *db = pParse->db; u64 savedFlags; savedFlags = db->flags; db->flags &= ~(u64)SQLITE_FullColNames; db->flags |= SQLITE_ShortColNames; sqlite3SelectPrep(pParse, pSelect, 0); db->flags = savedFlags; if( pParse->nErr ) return 0; while( pSelect->pPrior ) pSelect = pSelect->pPrior; pTab = sqlite3DbMallocZero(db, sizeof(Table) ); if( pTab==0 ){ return 0; } pTab->nTabRef = 1; pTab->zName = 0; pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); sqlite3SubqueryColumnTypes(pParse, pTab, pSelect, aff); pTab->iPKey = -1; if( db->mallocFailed ){ sqlite3DeleteTable(db, pTab); return 0; } return pTab; } /* ** Get a VDBE for the given parser context. Create a new one if necessary. ** If an error occurs, return NULL and leave a message in pParse. */ Vdbe *sqlite3GetVdbe(Parse *pParse){ if( pParse->pVdbe ){ return pParse->pVdbe; } if( pParse->pToplevel==0 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) ){ pParse->okConstFactor = 1; } return sqlite3VdbeCreate(pParse); } /* ** Compute the iLimit and iOffset fields of the SELECT based on the ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions ** that appear in the original SQL statement after the LIMIT and OFFSET ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset ** are the integer memory register numbers for counters used to compute ** the limit and offset. If there is no limit and/or offset, then ** iLimit and iOffset are negative. ** ** This routine changes the values of iLimit and iOffset only if ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit ** and iOffset should have been preset to appropriate default values (zero) ** prior to calling this routine. ** ** The iOffset register (if it exists) is initialized to the value ** of the OFFSET. The iLimit register is initialized to LIMIT. Register ** iOffset+1 is initialized to LIMIT+OFFSET. ** ** Only if pLimit->pLeft!=0 do the limit registers get ** redefined. The UNION ALL operator uses this property to force ** the reuse of the same limit and offset registers across multiple ** SELECT statements. */ static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ Vdbe *v = 0; int iLimit = 0; int iOffset; int n; Expr *pLimit = p->pLimit; if( p->iLimit ) return; /* ** "LIMIT -1" always shows all rows. There is some ** controversy about what the correct behavior should be. ** The current implementation interprets "LIMIT 0" to mean ** no rows. */ if( pLimit ){ assert( pLimit->op==TK_LIMIT ); assert( pLimit->pLeft!=0 ); p->iLimit = iLimit = ++pParse->nMem; v = sqlite3GetVdbe(pParse); assert( v!=0 ); if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); VdbeComment((v, "LIMIT counter")); if( n==0 ){ sqlite3VdbeGoto(v, iBreak); }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ p->nSelectRow = sqlite3LogEst((u64)n); p->selFlags |= SF_FixedLimit; } }else{ sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); VdbeComment((v, "LIMIT counter")); sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); } if( pLimit->pRight ){ p->iOffset = iOffset = ++pParse->nMem; pParse->nMem++; /* Allocate an extra register for limit+offset */ sqlite3ExprCode(pParse, pLimit->pRight, iOffset); sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); VdbeComment((v, "OFFSET counter")); sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); VdbeComment((v, "LIMIT+OFFSET")); } } } #ifndef SQLITE_OMIT_COMPOUND_SELECT /* ** Return the appropriate collating sequence for the iCol-th column of ** the result set for the compound-select statement "p". Return NULL if ** the column has no default collating sequence. ** ** The collating sequence for the compound select is taken from the ** left-most term of the select that has a collating sequence. */ static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ CollSeq *pRet; if( p->pPrior ){ pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); }else{ pRet = 0; } assert( iCol>=0 ); /* iCol must be less than p->pEList->nExpr. Otherwise an error would ** have been thrown during name resolution and we would not have gotten ** this far */ if( pRet==0 && ALWAYS(iColpEList->nExpr) ){ pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); } return pRet; } /* ** The select statement passed as the second parameter is a compound SELECT ** with an ORDER BY clause. This function allocates and returns a KeyInfo ** structure suitable for implementing the ORDER BY. ** ** Space to hold the KeyInfo structure is obtained from malloc. The calling ** function is responsible for ensuring that this structure is eventually ** freed. */ static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ ExprList *pOrderBy = p->pOrderBy; int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0; sqlite3 *db = pParse->db; KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); if( pRet ){ int i; for(i=0; ia[i]; Expr *pTerm = pItem->pExpr; CollSeq *pColl; if( pTerm->flags & EP_Collate ){ pColl = sqlite3ExprCollSeq(pParse, pTerm); }else{ pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); if( pColl==0 ) pColl = db->pDfltColl; pOrderBy->a[i].pExpr = sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); } assert( sqlite3KeyInfoIsWriteable(pRet) ); pRet->aColl[i] = pColl; pRet->aSortFlags[i] = pOrderBy->a[i].fg.sortFlags; } } return pRet; } #ifndef SQLITE_OMIT_CTE /* ** This routine generates VDBE code to compute the content of a WITH RECURSIVE ** query of the form: ** ** AS ( UNION [ALL] ) ** \___________/ \_______________/ ** p->pPrior p ** ** ** There is exactly one reference to the recursive-table in the FROM clause ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. ** ** The setup-query runs once to generate an initial set of rows that go ** into a Queue table. Rows are extracted from the Queue table one by ** one. Each row extracted from Queue is output to pDest. Then the single ** extracted row (now in the iCurrent table) becomes the content of the ** recursive-table for a recursive-query run. The output of the recursive-query ** is added back into the Queue table. Then another row is extracted from Queue ** and the iteration continues until the Queue table is empty. ** ** If the compound query operator is UNION then no duplicate rows are ever ** inserted into the Queue table. The iDistinct table keeps a copy of all rows ** that have ever been inserted into Queue and causes duplicates to be ** discarded. If the operator is UNION ALL, then duplicates are allowed. ** ** If the query has an ORDER BY, then entries in the Queue table are kept in ** ORDER BY order and the first entry is extracted for each cycle. Without ** an ORDER BY, the Queue table is just a FIFO. ** ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows ** have been output to pDest. A LIMIT of zero means to output no rows and a ** negative LIMIT means to output all rows. If there is also an OFFSET clause ** with a positive value, then the first OFFSET outputs are discarded rather ** than being sent to pDest. The LIMIT count does not begin until after OFFSET ** rows have been skipped. */ static void generateWithRecursiveQuery( Parse *pParse, /* Parsing context */ Select *p, /* The recursive SELECT to be coded */ SelectDest *pDest /* What to do with query results */ ){ SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ Select *pSetup; /* The setup query */ Select *pFirstRec; /* Left-most recursive term */ int addrTop; /* Top of the loop */ int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ int iCurrent = 0; /* The Current table */ int regCurrent; /* Register holding Current table */ int iQueue; /* The Queue table */ int iDistinct = 0; /* To ensure unique results if UNION */ int eDest = SRT_Fifo; /* How to write to Queue */ SelectDest destQueue; /* SelectDest targeting the Queue table */ int i; /* Loop counter */ int rc; /* Result code */ ExprList *pOrderBy; /* The ORDER BY clause */ Expr *pLimit; /* Saved LIMIT and OFFSET */ int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ #ifndef SQLITE_OMIT_WINDOWFUNC if( p->pWin ){ sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); return; } #endif /* Obtain authorization to do a recursive query */ if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; /* Process the LIMIT and OFFSET clauses, if they exist */ addrBreak = sqlite3VdbeMakeLabel(pParse); p->nSelectRow = 320; /* 4 billion rows */ computeLimitRegisters(pParse, p, addrBreak); pLimit = p->pLimit; regLimit = p->iLimit; regOffset = p->iOffset; p->pLimit = 0; p->iLimit = p->iOffset = 0; pOrderBy = p->pOrderBy; /* Locate the cursor number of the Current table */ for(i=0; ALWAYS(inSrc); i++){ if( pSrc->a[i].fg.isRecursive ){ iCurrent = pSrc->a[i].iCursor; break; } } /* Allocate cursors numbers for Queue and Distinct. The cursor number for ** the Distinct table must be exactly one greater than Queue in order ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ iQueue = pParse->nTab++; if( p->op==TK_UNION ){ eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; iDistinct = pParse->nTab++; }else{ eDest = pOrderBy ? SRT_Queue : SRT_Fifo; } sqlite3SelectDestInit(&destQueue, eDest, iQueue); /* Allocate cursors for Current, Queue, and Distinct. */ regCurrent = ++pParse->nMem; sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); if( pOrderBy ){ KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, (char*)pKeyInfo, P4_KEYINFO); destQueue.pOrderBy = pOrderBy; }else{ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); } VdbeComment((v, "Queue table")); if( iDistinct ){ p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); p->selFlags |= SF_UsesEphemeral; } /* Detach the ORDER BY clause from the compound SELECT */ p->pOrderBy = 0; /* Figure out how many elements of the compound SELECT are part of the ** recursive query. Make sure no recursive elements use aggregate ** functions. Mark the recursive elements as UNION ALL even if they ** are really UNION because the distinctness will be enforced by the ** iDistinct table. pFirstRec is left pointing to the left-most ** recursive term of the CTE. */ for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ if( pFirstRec->selFlags & SF_Aggregate ){ sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); goto end_of_recursive_query; } pFirstRec->op = TK_ALL; if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; } /* Store the results of the setup-query in Queue. */ pSetup = pFirstRec->pPrior; pSetup->pNext = 0; ExplainQueryPlan((pParse, 1, "SETUP")); rc = sqlite3Select(pParse, pSetup, &destQueue); pSetup->pNext = p; if( rc ) goto end_of_recursive_query; /* Find the next row in the Queue and output that row */ addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); /* Transfer the next row in Queue over to Current */ sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ if( pOrderBy ){ sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); }else{ sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); } sqlite3VdbeAddOp1(v, OP_Delete, iQueue); /* Output the single row in Current */ addrCont = sqlite3VdbeMakeLabel(pParse); codeOffset(v, regOffset, addrCont); selectInnerLoop(pParse, p, iCurrent, 0, 0, pDest, addrCont, addrBreak); if( regLimit ){ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); VdbeCoverage(v); } sqlite3VdbeResolveLabel(v, addrCont); /* Execute the recursive SELECT taking the single row in Current as ** the value for the recursive-table. Store the results in the Queue. */ pFirstRec->pPrior = 0; ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); sqlite3Select(pParse, p, &destQueue); assert( pFirstRec->pPrior==0 ); pFirstRec->pPrior = pSetup; /* Keep running the loop until the Queue is empty */ sqlite3VdbeGoto(v, addrTop); sqlite3VdbeResolveLabel(v, addrBreak); end_of_recursive_query: sqlite3ExprListDelete(pParse->db, p->pOrderBy); p->pOrderBy = pOrderBy; p->pLimit = pLimit; return; } #endif /* SQLITE_OMIT_CTE */ /* Forward references */ static int multiSelectOrderBy( Parse *pParse, /* Parsing context */ Select *p, /* The right-most of SELECTs to be coded */ SelectDest *pDest /* What to do with query results */ ); /* ** Handle the special case of a compound-select that originates from a ** VALUES clause. By handling this as a special case, we avoid deep ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT ** on a VALUES clause. ** ** Because the Select object originates from a VALUES clause: ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 ** (2) All terms are UNION ALL ** (3) There is no ORDER BY clause ** ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES. */ static int multiSelectValues( Parse *pParse, /* Parsing context */ Select *p, /* The right-most of SELECTs to be coded */ SelectDest *pDest /* What to do with query results */ ){ int nRow = 1; int rc = 0; int bShowAll = p->pLimit==0; assert( p->selFlags & SF_MultiValue ); do{ assert( p->selFlags & SF_Values ); assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); #ifndef SQLITE_OMIT_WINDOWFUNC if( p->pWin ) return -1; #endif if( p->pPrior==0 ) break; assert( p->pPrior->pNext==p ); p = p->pPrior; nRow += bShowAll; }while(1); ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, nRow==1 ? "" : "S")); while( p ){ selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); if( !bShowAll ) break; p->nSelectRow = nRow; p = p->pNext; } return rc; } /* ** Return true if the SELECT statement which is known to be the recursive ** part of a recursive CTE still has its anchor terms attached. If the ** anchor terms have already been removed, then return false. */ static int hasAnchor(Select *p){ while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } return p!=0; } /* ** This routine is called to process a compound query form from ** two or more separate queries using UNION, UNION ALL, EXCEPT, or ** INTERSECT ** ** "p" points to the right-most of the two queries. the query on the ** left is p->pPrior. The left query could also be a compound query ** in which case this routine will be called recursively. ** ** The results of the total query are to be written into a destination ** of type eDest with parameter iParm. ** ** Example 1: Consider a three-way compound SQL statement. ** ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 ** ** This statement is parsed up as follows: ** ** SELECT c FROM t3 ** | ** `-----> SELECT b FROM t2 ** | ** `------> SELECT a FROM t1 ** ** The arrows in the diagram above represent the Select.pPrior pointer. ** So if this routine is called with p equal to the t3 query, then ** pPrior will be the t2 query. p->op will be TK_UNION in this case. ** ** Notice that because of the way SQLite parses compound SELECTs, the ** individual selects always group from left to right. */ static int multiSelect( Parse *pParse, /* Parsing context */ Select *p, /* The right-most of SELECTs to be coded */ SelectDest *pDest /* What to do with query results */ ){ int rc = SQLITE_OK; /* Success code from a subroutine */ Select *pPrior; /* Another SELECT immediately to our left */ Vdbe *v; /* Generate code to this VDBE */ SelectDest dest; /* Alternative data destination */ Select *pDelete = 0; /* Chain of simple selects to delete */ sqlite3 *db; /* Database connection */ /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. */ assert( p && p->pPrior ); /* Calling function guarantees this much */ assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); assert( p->selFlags & SF_Compound ); db = pParse->db; pPrior = p->pPrior; dest = *pDest; assert( pPrior->pOrderBy==0 ); assert( pPrior->pLimit==0 ); v = sqlite3GetVdbe(pParse); assert( v!=0 ); /* The VDBE already created by calling function */ /* Create the destination temporary table if necessary */ if( dest.eDest==SRT_EphemTab ){ assert( p->pEList ); sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); dest.eDest = SRT_Table; } /* Special handling for a compound-select that originates as a VALUES clause. */ if( p->selFlags & SF_MultiValue ){ rc = multiSelectValues(pParse, p, &dest); if( rc>=0 ) goto multi_select_end; rc = SQLITE_OK; } /* Make sure all SELECTs in the statement have the same number of elements ** in their result sets. */ assert( p->pEList && pPrior->pEList ); assert( p->pEList->nExpr==pPrior->pEList->nExpr ); #ifndef SQLITE_OMIT_CTE if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ generateWithRecursiveQuery(pParse, p, &dest); }else #endif /* Compound SELECTs that have an ORDER BY clause are handled separately. */ if( p->pOrderBy ){ return multiSelectOrderBy(pParse, p, pDest); }else{ #ifndef SQLITE_OMIT_EXPLAIN if( pPrior->pPrior==0 ){ ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); } #endif /* Generate code for the left and right SELECT statements. */ switch( p->op ){ case TK_ALL: { int addr = 0; int nLimit = 0; /* Initialize to suppress harmless compiler warning */ assert( !pPrior->pLimit ); pPrior->iLimit = p->iLimit; pPrior->iOffset = p->iOffset; pPrior->pLimit = p->pLimit; TREETRACE(0x200, pParse, p, ("multiSelect UNION ALL left...\n")); rc = sqlite3Select(pParse, pPrior, &dest); pPrior->pLimit = 0; if( rc ){ goto multi_select_end; } p->pPrior = 0; p->iLimit = pPrior->iLimit; p->iOffset = pPrior->iOffset; if( p->iLimit ){ addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); VdbeComment((v, "Jump ahead if LIMIT reached")); if( p->iOffset ){ sqlite3VdbeAddOp3(v, OP_OffsetLimit, p->iLimit, p->iOffset+1, p->iOffset); } } ExplainQueryPlan((pParse, 1, "UNION ALL")); TREETRACE(0x200, pParse, p, ("multiSelect UNION ALL right...\n")); rc = sqlite3Select(pParse, p, &dest); testcase( rc!=SQLITE_OK ); pDelete = p->pPrior; p->pPrior = pPrior; p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); if( p->pLimit && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit) && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) ){ p->nSelectRow = sqlite3LogEst((u64)nLimit); } if( addr ){ sqlite3VdbeJumpHere(v, addr); } break; } case TK_EXCEPT: case TK_UNION: { int unionTab; /* Cursor number of the temp table holding result */ u8 op = 0; /* One of the SRT_ operations to apply to self */ int priorOp; /* The SRT_ operation to apply to prior selects */ Expr *pLimit; /* Saved values of p->nLimit */ int addr; SelectDest uniondest; testcase( p->op==TK_EXCEPT ); testcase( p->op==TK_UNION ); priorOp = SRT_Union; if( dest.eDest==priorOp ){ /* We can reuse a temporary table generated by a SELECT to our ** right. */ assert( p->pLimit==0 ); /* Not allowed on leftward elements */ unionTab = dest.iSDParm; }else{ /* We will need to create our own temporary table to hold the ** intermediate results. */ unionTab = pParse->nTab++; assert( p->pOrderBy==0 ); addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); assert( p->addrOpenEphm[0] == -1 ); p->addrOpenEphm[0] = addr; findRightmost(p)->selFlags |= SF_UsesEphemeral; assert( p->pEList ); } /* Code the SELECT statements to our left */ assert( !pPrior->pOrderBy ); sqlite3SelectDestInit(&uniondest, priorOp, unionTab); TREETRACE(0x200, pParse, p, ("multiSelect EXCEPT/UNION left...\n")); rc = sqlite3Select(pParse, pPrior, &uniondest); if( rc ){ goto multi_select_end; } /* Code the current SELECT statement */ if( p->op==TK_EXCEPT ){ op = SRT_Except; }else{ assert( p->op==TK_UNION ); op = SRT_Union; } p->pPrior = 0; pLimit = p->pLimit; p->pLimit = 0; uniondest.eDest = op; ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", sqlite3SelectOpName(p->op))); TREETRACE(0x200, pParse, p, ("multiSelect EXCEPT/UNION right...\n")); rc = sqlite3Select(pParse, p, &uniondest); testcase( rc!=SQLITE_OK ); assert( p->pOrderBy==0 ); pDelete = p->pPrior; p->pPrior = pPrior; p->pOrderBy = 0; if( p->op==TK_UNION ){ p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); } sqlite3ExprDelete(db, p->pLimit); p->pLimit = pLimit; p->iLimit = 0; p->iOffset = 0; /* Convert the data in the temporary table into whatever form ** it is that we currently need. */ assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); assert( p->pEList || db->mallocFailed ); if( dest.eDest!=priorOp && db->mallocFailed==0 ){ int iCont, iBreak, iStart; iBreak = sqlite3VdbeMakeLabel(pParse); iCont = sqlite3VdbeMakeLabel(pParse); computeLimitRegisters(pParse, p, iBreak); sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); iStart = sqlite3VdbeCurrentAddr(v); selectInnerLoop(pParse, p, unionTab, 0, 0, &dest, iCont, iBreak); sqlite3VdbeResolveLabel(v, iCont); sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); sqlite3VdbeResolveLabel(v, iBreak); sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); } break; } default: assert( p->op==TK_INTERSECT ); { int tab1, tab2; int iCont, iBreak, iStart; Expr *pLimit; int addr; SelectDest intersectdest; int r1; /* INTERSECT is different from the others since it requires ** two temporary tables. Hence it has its own case. Begin ** by allocating the tables we will need. */ tab1 = pParse->nTab++; tab2 = pParse->nTab++; assert( p->pOrderBy==0 ); addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); assert( p->addrOpenEphm[0] == -1 ); p->addrOpenEphm[0] = addr; findRightmost(p)->selFlags |= SF_UsesEphemeral; assert( p->pEList ); /* Code the SELECTs to our left into temporary table "tab1". */ sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); TREETRACE(0x400, pParse, p, ("multiSelect INTERSECT left...\n")); rc = sqlite3Select(pParse, pPrior, &intersectdest); if( rc ){ goto multi_select_end; } /* Code the current SELECT into temporary table "tab2" */ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); assert( p->addrOpenEphm[1] == -1 ); p->addrOpenEphm[1] = addr; p->pPrior = 0; pLimit = p->pLimit; p->pLimit = 0; intersectdest.iSDParm = tab2; ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", sqlite3SelectOpName(p->op))); TREETRACE(0x400, pParse, p, ("multiSelect INTERSECT right...\n")); rc = sqlite3Select(pParse, p, &intersectdest); testcase( rc!=SQLITE_OK ); pDelete = p->pPrior; p->pPrior = pPrior; if( p->nSelectRow>pPrior->nSelectRow ){ p->nSelectRow = pPrior->nSelectRow; } sqlite3ExprDelete(db, p->pLimit); p->pLimit = pLimit; /* Generate code to take the intersection of the two temporary ** tables. */ if( rc ) break; assert( p->pEList ); iBreak = sqlite3VdbeMakeLabel(pParse); iCont = sqlite3VdbeMakeLabel(pParse); computeLimitRegisters(pParse, p, iBreak); sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); r1 = sqlite3GetTempReg(pParse); iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); sqlite3ReleaseTempReg(pParse, r1); selectInnerLoop(pParse, p, tab1, 0, 0, &dest, iCont, iBreak); sqlite3VdbeResolveLabel(v, iCont); sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); sqlite3VdbeResolveLabel(v, iBreak); sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); break; } } #ifndef SQLITE_OMIT_EXPLAIN if( p->pNext==0 ){ ExplainQueryPlanPop(pParse); } #endif } if( pParse->nErr ) goto multi_select_end; /* Compute collating sequences used by ** temporary tables needed to implement the compound select. ** Attach the KeyInfo structure to all temporary tables. ** ** This section is run by the right-most SELECT statement only. ** SELECT statements to the left always skip this part. The right-most ** SELECT might also skip this part if it has no ORDER BY clause and ** no temp tables are required. */ if( p->selFlags & SF_UsesEphemeral ){ int i; /* Loop counter */ KeyInfo *pKeyInfo; /* Collating sequence for the result set */ Select *pLoop; /* For looping through SELECT statements */ CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ int nCol; /* Number of columns in result set */ assert( p->pNext==0 ); assert( p->pEList!=0 ); nCol = p->pEList->nExpr; pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); if( !pKeyInfo ){ rc = SQLITE_NOMEM_BKPT; goto multi_select_end; } for(i=0, apColl=pKeyInfo->aColl; ipDfltColl; } } for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ for(i=0; i<2; i++){ int addr = pLoop->addrOpenEphm[i]; if( addr<0 ){ /* If [0] is unused then [1] is also unused. So we can ** always safely abort as soon as the first unused slot is found */ assert( pLoop->addrOpenEphm[1]<0 ); break; } sqlite3VdbeChangeP2(v, addr, nCol); sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); pLoop->addrOpenEphm[i] = -1; } } sqlite3KeyInfoUnref(pKeyInfo); } multi_select_end: pDest->iSdst = dest.iSdst; pDest->nSdst = dest.nSdst; if( pDelete ){ sqlite3ParserAddCleanup(pParse, sqlite3SelectDeleteGeneric, pDelete); } return rc; } #endif /* SQLITE_OMIT_COMPOUND_SELECT */ /* ** Error message for when two or more terms of a compound select have different ** size result sets. */ void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ if( p->selFlags & SF_Values ){ sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); }else{ sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" " do not have the same number of result columns", sqlite3SelectOpName(p->op)); } } /* ** Code an output subroutine for a coroutine implementation of a ** SELECT statement. ** ** The data to be output is contained in pIn->iSdst. There are ** pIn->nSdst columns to be output. pDest is where the output should ** be sent. ** ** regReturn is the number of the register holding the subroutine ** return address. ** ** If regPrev>0 then it is the first register in a vector that ** records the previous output. mem[regPrev] is a flag that is false ** if there has been no previous output. If regPrev>0 then code is ** generated to suppress duplicates. pKeyInfo is used for comparing ** keys. ** ** If the LIMIT found in p->iLimit is reached, jump immediately to ** iBreak. */ static int generateOutputSubroutine( Parse *pParse, /* Parsing context */ Select *p, /* The SELECT statement */ SelectDest *pIn, /* Coroutine supplying data */ SelectDest *pDest, /* Where to send the data */ int regReturn, /* The return address register */ int regPrev, /* Previous result register. No uniqueness if 0 */ KeyInfo *pKeyInfo, /* For comparing with previous entry */ int iBreak /* Jump here if we hit the LIMIT */ ){ Vdbe *v = pParse->pVdbe; int iContinue; int addr; addr = sqlite3VdbeCurrentAddr(v); iContinue = sqlite3VdbeMakeLabel(pParse); /* Suppress duplicates for UNION, EXCEPT, and INTERSECT */ if( regPrev ){ int addr1, addr2; addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); } if( pParse->db->mallocFailed ) return 0; /* Suppress the first OFFSET entries if there is an OFFSET clause */ codeOffset(v, p->iOffset, iContinue); assert( pDest->eDest!=SRT_Exists ); assert( pDest->eDest!=SRT_Table ); switch( pDest->eDest ){ /* Store the result as data using a unique key. */ case SRT_EphemTab: { int r1 = sqlite3GetTempReg(pParse); int r2 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sqlite3ReleaseTempReg(pParse, r2); sqlite3ReleaseTempReg(pParse, r1); break; } #ifndef SQLITE_OMIT_SUBQUERY /* If we are creating a set for an "expr IN (SELECT ...)". */ case SRT_Set: { int r1; testcase( pIn->nSdst>1 ); r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1, pDest->zAffSdst, pIn->nSdst); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, pIn->iSdst, pIn->nSdst); sqlite3ReleaseTempReg(pParse, r1); break; } /* If this is a scalar select that is part of an expression, then ** store the results in the appropriate memory cell and break out ** of the scan loop. Note that the select might return multiple columns ** if it is the RHS of a row-value IN operator. */ case SRT_Mem: { testcase( pIn->nSdst>1 ); sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); /* The LIMIT clause will jump out of the loop for us */ break; } #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ /* The results are stored in a sequence of registers ** starting at pDest->iSdst. Then the co-routine yields. */ case SRT_Coroutine: { if( pDest->iSdst==0 ){ pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); pDest->nSdst = pIn->nSdst; } sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); break; } /* If none of the above, then the result destination must be ** SRT_Output. This routine is never called with any other ** destination other than the ones handled above or SRT_Output. ** ** For SRT_Output, results are stored in a sequence of registers. ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to ** return the next row of result. */ default: { assert( pDest->eDest==SRT_Output ); sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); break; } } /* Jump to the end of the loop if the LIMIT is reached. */ if( p->iLimit ){ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); } /* Generate the subroutine return */ sqlite3VdbeResolveLabel(v, iContinue); sqlite3VdbeAddOp1(v, OP_Return, regReturn); return addr; } /* ** Alternative compound select code generator for cases when there ** is an ORDER BY clause. ** ** We assume a query of the following form: ** ** ORDER BY ** ** is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea ** is to code both and with the ORDER BY clause as ** co-routines. Then run the co-routines in parallel and merge the results ** into the output. In addition to the two coroutines (called selectA and ** selectB) there are 7 subroutines: ** ** outA: Move the output of the selectA coroutine into the output ** of the compound query. ** ** outB: Move the output of the selectB coroutine into the output ** of the compound query. (Only generated for UNION and ** UNION ALL. EXCEPT and INSERTSECT never output a row that ** appears only in B.) ** ** AltB: Called when there is data from both coroutines and AB. ** ** EofA: Called when data is exhausted from selectA. ** ** EofB: Called when data is exhausted from selectB. ** ** The implementation of the latter five subroutines depend on which ** is used: ** ** ** UNION ALL UNION EXCEPT INTERSECT ** ------------- ----------------- -------------- ----------------- ** AltB: outA, nextA outA, nextA outA, nextA nextA ** ** AeqB: outA, nextA nextA nextA outA, nextA ** ** AgtB: outB, nextB outB, nextB nextB nextB ** ** EofA: outB, nextB outB, nextB halt halt ** ** EofB: outA, nextA outA, nextA outA, nextA halt ** ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA ** causes an immediate jump to EofA and an EOF on B following nextB causes ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or ** following nextX causes a jump to the end of the select processing. ** ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled ** within the output subroutine. The regPrev register set holds the previously ** output value. A comparison is made against this value and the output ** is skipped if the next results would be the same as the previous. ** ** The implementation plan is to implement the two coroutines and seven ** subroutines first, then put the control logic at the bottom. Like this: ** ** goto Init ** coA: coroutine for left query (A) ** coB: coroutine for right query (B) ** outA: output one row of A ** outB: output one row of B (UNION and UNION ALL only) ** EofA: ... ** EofB: ... ** AltB: ... ** AeqB: ... ** AgtB: ... ** Init: initialize coroutine registers ** yield coA ** if eof(A) goto EofA ** yield coB ** if eof(B) goto EofB ** Cmpr: Compare A, B ** Jump AltB, AeqB, AgtB ** End: ... ** ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not ** actually called using Gosub and they do not Return. EofA and EofB loop ** until all data is exhausted then jump to the "end" label. AltB, AeqB, ** and AgtB jump to either L2 or to one of EofA or EofB. */ #ifndef SQLITE_OMIT_COMPOUND_SELECT static int multiSelectOrderBy( Parse *pParse, /* Parsing context */ Select *p, /* The right-most of SELECTs to be coded */ SelectDest *pDest /* What to do with query results */ ){ int i, j; /* Loop counters */ Select *pPrior; /* Another SELECT immediately to our left */ Select *pSplit; /* Left-most SELECT in the right-hand group */ int nSelect; /* Number of SELECT statements in the compound */ Vdbe *v; /* Generate code to this VDBE */ SelectDest destA; /* Destination for coroutine A */ SelectDest destB; /* Destination for coroutine B */ int regAddrA; /* Address register for select-A coroutine */ int regAddrB; /* Address register for select-B coroutine */ int addrSelectA; /* Address of the select-A coroutine */ int addrSelectB; /* Address of the select-B coroutine */ int regOutA; /* Address register for the output-A subroutine */ int regOutB; /* Address register for the output-B subroutine */ int addrOutA; /* Address of the output-A subroutine */ int addrOutB = 0; /* Address of the output-B subroutine */ int addrEofA; /* Address of the select-A-exhausted subroutine */ int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ int addrEofB; /* Address of the select-B-exhausted subroutine */ int addrAltB; /* Address of the AB subroutine */ int regLimitA; /* Limit register for select-A */ int regLimitB; /* Limit register for select-A */ int regPrev; /* A range of registers to hold previous output */ int savedLimit; /* Saved value of p->iLimit */ int savedOffset; /* Saved value of p->iOffset */ int labelCmpr; /* Label for the start of the merge algorithm */ int labelEnd; /* Label for the end of the overall SELECT stmt */ int addr1; /* Jump instructions that get retargeted */ int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ KeyInfo *pKeyMerge; /* Comparison information for merging rows */ sqlite3 *db; /* Database connection */ ExprList *pOrderBy; /* The ORDER BY clause */ int nOrderBy; /* Number of terms in the ORDER BY clause */ u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ assert( p->pOrderBy!=0 ); assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ db = pParse->db; v = pParse->pVdbe; assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ labelEnd = sqlite3VdbeMakeLabel(pParse); labelCmpr = sqlite3VdbeMakeLabel(pParse); /* Patch up the ORDER BY clause */ op = p->op; assert( p->pPrior->pOrderBy==0 ); pOrderBy = p->pOrderBy; assert( pOrderBy ); nOrderBy = pOrderBy->nExpr; /* For operators other than UNION ALL we have to make sure that ** the ORDER BY clause covers every term of the result set. Add ** terms to the ORDER BY clause as necessary. */ if( op!=TK_ALL ){ for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ struct ExprList_item *pItem; for(j=0, pItem=pOrderBy->a; ju.x.iOrderByCol>0 ); if( pItem->u.x.iOrderByCol==i ) break; } if( j==nOrderBy ){ Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); if( pNew==0 ) return SQLITE_NOMEM_BKPT; pNew->flags |= EP_IntValue; pNew->u.iValue = i; p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; } } } /* Compute the comparison permutation and keyinfo that is used with ** the permutation used to determine if the next ** row of results comes from selectA or selectB. Also add explicit ** collations to the ORDER BY clause terms so that when the subqueries ** to the right and the left are evaluated, they use the correct ** collation. */ aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); if( aPermute ){ struct ExprList_item *pItem; aPermute[0] = nOrderBy; for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ assert( pItem!=0 ); assert( pItem->u.x.iOrderByCol>0 ); assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); aPermute[i] = pItem->u.x.iOrderByCol - 1; } pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); }else{ pKeyMerge = 0; } /* Allocate a range of temporary registers and the KeyInfo needed ** for the logic that removes duplicate result rows when the ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). */ if( op==TK_ALL ){ regPrev = 0; }else{ int nExpr = p->pEList->nExpr; assert( nOrderBy>=nExpr || db->mallocFailed ); regPrev = pParse->nMem+1; pParse->nMem += nExpr+1; sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); if( pKeyDup ){ assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); for(i=0; iaColl[i] = multiSelectCollSeq(pParse, p, i); pKeyDup->aSortFlags[i] = 0; } } } /* Separate the left and the right query from one another */ nSelect = 1; if( (op==TK_ALL || op==TK_UNION) && OptimizationEnabled(db, SQLITE_BalancedMerge) ){ for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){ nSelect++; assert( pSplit->pPrior->pNext==pSplit ); } } if( nSelect<=3 ){ pSplit = p; }else{ pSplit = p; for(i=2; ipPrior; } } pPrior = pSplit->pPrior; assert( pPrior!=0 ); pSplit->pPrior = 0; pPrior->pNext = 0; assert( p->pOrderBy == pOrderBy ); assert( pOrderBy!=0 || db->mallocFailed ); pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); /* Compute the limit registers */ computeLimitRegisters(pParse, p, labelEnd); if( p->iLimit && op==TK_ALL ){ regLimitA = ++pParse->nMem; regLimitB = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, regLimitA); sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); }else{ regLimitA = regLimitB = 0; } sqlite3ExprDelete(db, p->pLimit); p->pLimit = 0; regAddrA = ++pParse->nMem; regAddrB = ++pParse->nMem; regOutA = ++pParse->nMem; regOutB = ++pParse->nMem; sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op))); /* Generate a coroutine to evaluate the SELECT statement to the ** left of the compound operator - the "A" select. */ addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); VdbeComment((v, "left SELECT")); pPrior->iLimit = regLimitA; ExplainQueryPlan((pParse, 1, "LEFT")); sqlite3Select(pParse, pPrior, &destA); sqlite3VdbeEndCoroutine(v, regAddrA); sqlite3VdbeJumpHere(v, addr1); /* Generate a coroutine to evaluate the SELECT statement on ** the right - the "B" select */ addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); VdbeComment((v, "right SELECT")); savedLimit = p->iLimit; savedOffset = p->iOffset; p->iLimit = regLimitB; p->iOffset = 0; ExplainQueryPlan((pParse, 1, "RIGHT")); sqlite3Select(pParse, p, &destB); p->iLimit = savedLimit; p->iOffset = savedOffset; sqlite3VdbeEndCoroutine(v, regAddrB); /* Generate a subroutine that outputs the current row of the A ** select as the next output row of the compound select. */ VdbeNoopComment((v, "Output routine for A")); addrOutA = generateOutputSubroutine(pParse, p, &destA, pDest, regOutA, regPrev, pKeyDup, labelEnd); /* Generate a subroutine that outputs the current row of the B ** select as the next output row of the compound select. */ if( op==TK_ALL || op==TK_UNION ){ VdbeNoopComment((v, "Output routine for B")); addrOutB = generateOutputSubroutine(pParse, p, &destB, pDest, regOutB, regPrev, pKeyDup, labelEnd); } sqlite3KeyInfoUnref(pKeyDup); /* Generate a subroutine to run when the results from select A ** are exhausted and only data in select B remains. */ if( op==TK_EXCEPT || op==TK_INTERSECT ){ addrEofA_noB = addrEofA = labelEnd; }else{ VdbeNoopComment((v, "eof-A subroutine")); addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); VdbeCoverage(v); sqlite3VdbeGoto(v, addrEofA); p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); } /* Generate a subroutine to run when the results from select B ** are exhausted and only data in select A remains. */ if( op==TK_INTERSECT ){ addrEofB = addrEofA; if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; }else{ VdbeNoopComment((v, "eof-B subroutine")); addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); sqlite3VdbeGoto(v, addrEofB); } /* Generate code to handle the case of AB */ VdbeNoopComment((v, "A-gt-B subroutine")); addrAgtB = sqlite3VdbeCurrentAddr(v); if( op==TK_ALL || op==TK_UNION ){ sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); } sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); sqlite3VdbeGoto(v, labelCmpr); /* This code runs once to initialize everything. */ sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); /* Implement the main merge loop */ sqlite3VdbeResolveLabel(v, labelCmpr); sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, (char*)pKeyMerge, P4_KEYINFO); sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); /* Jump to the this point in order to terminate the query. */ sqlite3VdbeResolveLabel(v, labelEnd); /* Make arrangements to free the 2nd and subsequent arms of the compound ** after the parse has finished */ if( pSplit->pPrior ){ sqlite3ParserAddCleanup(pParse, sqlite3SelectDeleteGeneric, pSplit->pPrior); } pSplit->pPrior = pPrior; pPrior->pNext = pSplit; sqlite3ExprListDelete(db, pPrior->pOrderBy); pPrior->pOrderBy = 0; /*** TBD: Insert subroutine calls to close cursors on incomplete **** subqueries ****/ ExplainQueryPlanPop(pParse); return pParse->nErr!=0; } #endif #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* An instance of the SubstContext object describes an substitution edit ** to be performed on a parse tree. ** ** All references to columns in table iTable are to be replaced by corresponding ** expressions in pEList. ** ** ## About "isOuterJoin": ** ** The isOuterJoin column indicates that the replacement will occur into a ** position in the parent that NULL-able due to an OUTER JOIN. Either the ** target slot in the parent is the right operand of a LEFT JOIN, or one of ** the left operands of a RIGHT JOIN. In either case, we need to potentially ** bypass the substituted expression with OP_IfNullRow. ** ** Suppose the original expression is an integer constant. Even though the table ** has the nullRow flag set, because the expression is an integer constant, ** it will not be NULLed out. So instead, we insert an OP_IfNullRow opcode ** that checks to see if the nullRow flag is set on the table. If the nullRow ** flag is set, then the value in the register is set to NULL and the original ** expression is bypassed. If the nullRow flag is not set, then the original ** expression runs to populate the register. ** ** Example where this is needed: ** ** CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT); ** CREATE TABLE t2(x INT UNIQUE); ** ** SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x; ** ** When the subquery on the right side of the LEFT JOIN is flattened, we ** have to add OP_IfNullRow in front of the OP_Integer that implements the ** "m" value of the subquery so that a NULL will be loaded instead of 59 ** when processing a non-matched row of the left. */ typedef struct SubstContext { Parse *pParse; /* The parsing context */ int iTable; /* Replace references to this table */ int iNewTable; /* New table number */ int isOuterJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ ExprList *pEList; /* Replacement expressions */ ExprList *pCList; /* Collation sequences for replacement expr */ } SubstContext; /* Forward Declarations */ static void substExprList(SubstContext*, ExprList*); static void substSelect(SubstContext*, Select*, int); /* ** Scan through the expression pExpr. Replace every reference to ** a column in table number iTable with a copy of the iColumn-th ** entry in pEList. (But leave references to the ROWID column ** unchanged.) ** ** This routine is part of the flattening procedure. A subquery ** whose result set is defined by pEList appears as entry in the ** FROM clause of a SELECT such that the VDBE cursor assigned to that ** FORM clause entry is iTable. This routine makes the necessary ** changes to pExpr so that it refers directly to the source table ** of the subquery rather the result set of the subquery. */ static Expr *substExpr( SubstContext *pSubst, /* Description of the substitution */ Expr *pExpr /* Expr in which substitution occurs */ ){ if( pExpr==0 ) return 0; if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON) && pExpr->w.iJoin==pSubst->iTable ){ testcase( ExprHasProperty(pExpr, EP_InnerON) ); pExpr->w.iJoin = pSubst->iNewTable; } if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable && !ExprHasProperty(pExpr, EP_FixedCol) ){ #ifdef SQLITE_ALLOW_ROWID_IN_VIEW if( pExpr->iColumn<0 ){ pExpr->op = TK_NULL; }else #endif { Expr *pNew; int iColumn; Expr *pCopy; Expr ifNullRow; iColumn = pExpr->iColumn; assert( iColumn>=0 ); assert( pSubst->pEList!=0 && iColumnpEList->nExpr ); assert( pExpr->pRight==0 ); pCopy = pSubst->pEList->a[iColumn].pExpr; if( sqlite3ExprIsVector(pCopy) ){ sqlite3VectorErrorMsg(pSubst->pParse, pCopy); }else{ sqlite3 *db = pSubst->pParse->db; if( pSubst->isOuterJoin && (pCopy->op!=TK_COLUMN || pCopy->iTable!=pSubst->iNewTable) ){ memset(&ifNullRow, 0, sizeof(ifNullRow)); ifNullRow.op = TK_IF_NULL_ROW; ifNullRow.pLeft = pCopy; ifNullRow.iTable = pSubst->iNewTable; ifNullRow.iColumn = -99; ifNullRow.flags = EP_IfNullRow; pCopy = &ifNullRow; } testcase( ExprHasProperty(pCopy, EP_Subquery) ); pNew = sqlite3ExprDup(db, pCopy, 0); if( db->mallocFailed ){ sqlite3ExprDelete(db, pNew); return pExpr; } if( pSubst->isOuterJoin ){ ExprSetProperty(pNew, EP_CanBeNull); } if( ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) ){ sqlite3SetJoinExpr(pNew, pExpr->w.iJoin, pExpr->flags & (EP_OuterON|EP_InnerON)); } sqlite3ExprDelete(db, pExpr); pExpr = pNew; if( pExpr->op==TK_TRUEFALSE ){ pExpr->u.iValue = sqlite3ExprTruthValue(pExpr); pExpr->op = TK_INTEGER; ExprSetProperty(pExpr, EP_IntValue); } /* Ensure that the expression now has an implicit collation sequence, ** just as it did when it was a column of a view or sub-query. */ { CollSeq *pNat = sqlite3ExprCollSeq(pSubst->pParse, pExpr); CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pSubst->pCList->a[iColumn].pExpr ); if( pNat!=pColl || (pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE) ){ pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, (pColl ? pColl->zName : "BINARY") ); } } ExprClearProperty(pExpr, EP_Collate); } } }else{ if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ pExpr->iTable = pSubst->iNewTable; } pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); pExpr->pRight = substExpr(pSubst, pExpr->pRight); if( ExprUseXSelect(pExpr) ){ substSelect(pSubst, pExpr->x.pSelect, 1); }else{ substExprList(pSubst, pExpr->x.pList); } #ifndef SQLITE_OMIT_WINDOWFUNC if( ExprHasProperty(pExpr, EP_WinFunc) ){ Window *pWin = pExpr->y.pWin; pWin->pFilter = substExpr(pSubst, pWin->pFilter); substExprList(pSubst, pWin->pPartition); substExprList(pSubst, pWin->pOrderBy); } #endif } return pExpr; } static void substExprList( SubstContext *pSubst, /* Description of the substitution */ ExprList *pList /* List to scan and in which to make substitutes */ ){ int i; if( pList==0 ) return; for(i=0; inExpr; i++){ pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); } } static void substSelect( SubstContext *pSubst, /* Description of the substitution */ Select *p, /* SELECT statement in which to make substitutions */ int doPrior /* Do substitutes on p->pPrior too */ ){ SrcList *pSrc; SrcItem *pItem; int i; if( !p ) return; do{ substExprList(pSubst, p->pEList); substExprList(pSubst, p->pGroupBy); substExprList(pSubst, p->pOrderBy); p->pHaving = substExpr(pSubst, p->pHaving); p->pWhere = substExpr(pSubst, p->pWhere); pSrc = p->pSrc; assert( pSrc!=0 ); for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ substSelect(pSubst, pItem->pSelect, 1); if( pItem->fg.isTabFunc ){ substExprList(pSubst, pItem->u1.pFuncArg); } } }while( doPrior && (p = p->pPrior)!=0 ); } #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* ** pSelect is a SELECT statement and pSrcItem is one item in the FROM ** clause of that SELECT. ** ** This routine scans the entire SELECT statement and recomputes the ** pSrcItem->colUsed mask. */ static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ SrcItem *pItem; if( pExpr->op!=TK_COLUMN ) return WRC_Continue; pItem = pWalker->u.pSrcItem; if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; if( pExpr->iColumn<0 ) return WRC_Continue; pItem->colUsed |= sqlite3ExprColUsed(pExpr); return WRC_Continue; } static void recomputeColumnsUsed( Select *pSelect, /* The complete SELECT statement */ SrcItem *pSrcItem /* Which FROM clause item to recompute */ ){ Walker w; if( NEVER(pSrcItem->pTab==0) ) return; memset(&w, 0, sizeof(w)); w.xExprCallback = recomputeColumnsUsedExpr; w.xSelectCallback = sqlite3SelectWalkNoop; w.u.pSrcItem = pSrcItem; pSrcItem->colUsed = 0; sqlite3WalkSelect(&w, pSelect); } #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* ** Assign new cursor numbers to each of the items in pSrc. For each ** new cursor number assigned, set an entry in the aCsrMap[] array ** to map the old cursor number to the new: ** ** aCsrMap[iOld+1] = iNew; ** ** The array is guaranteed by the caller to be large enough for all ** existing cursor numbers in pSrc. aCsrMap[0] is the array size. ** ** If pSrc contains any sub-selects, call this routine recursively ** on the FROM clause of each such sub-select, with iExcept set to -1. */ static void srclistRenumberCursors( Parse *pParse, /* Parse context */ int *aCsrMap, /* Array to store cursor mappings in */ SrcList *pSrc, /* FROM clause to renumber */ int iExcept /* FROM clause item to skip */ ){ int i; SrcItem *pItem; for(i=0, pItem=pSrc->a; inSrc; i++, pItem++){ if( i!=iExcept ){ Select *p; assert( pItem->iCursor < aCsrMap[0] ); if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){ aCsrMap[pItem->iCursor+1] = pParse->nTab++; } pItem->iCursor = aCsrMap[pItem->iCursor+1]; for(p=pItem->pSelect; p; p=p->pPrior){ srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1); } } } } /* ** *piCursor is a cursor number. Change it if it needs to be mapped. */ static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){ int *aCsrMap = pWalker->u.aiCol; int iCsr = *piCursor; if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){ *piCursor = aCsrMap[iCsr+1]; } } /* ** Expression walker callback used by renumberCursors() to update ** Expr objects to match newly assigned cursor numbers. */ static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){ int op = pExpr->op; if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){ renumberCursorDoMapping(pWalker, &pExpr->iTable); } if( ExprHasProperty(pExpr, EP_OuterON) ){ renumberCursorDoMapping(pWalker, &pExpr->w.iJoin); } return WRC_Continue; } /* ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc) ** of the SELECT statement passed as the second argument, and to each ** cursor in the FROM clause of any FROM clause sub-selects, recursively. ** Except, do not assign a new cursor number to the iExcept'th element in ** the FROM clause of (*p). Update all expressions and other references ** to refer to the new cursor numbers. ** ** Argument aCsrMap is an array that may be used for temporary working ** space. Two guarantees are made by the caller: ** ** * the array is larger than the largest cursor number used within the ** select statement passed as an argument, and ** ** * the array entries for all cursor numbers that do *not* appear in ** FROM clauses of the select statement as described above are ** initialized to zero. */ static void renumberCursors( Parse *pParse, /* Parse context */ Select *p, /* Select to renumber cursors within */ int iExcept, /* FROM clause item to skip */ int *aCsrMap /* Working space */ ){ Walker w; srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept); memset(&w, 0, sizeof(w)); w.u.aiCol = aCsrMap; w.xExprCallback = renumberCursorsCb; w.xSelectCallback = sqlite3SelectWalkNoop; sqlite3WalkSelect(&w, p); } #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ /* ** If pSel is not part of a compound SELECT, return a pointer to its ** expression list. Otherwise, return a pointer to the expression list ** of the leftmost SELECT in the compound. */ static ExprList *findLeftmostExprlist(Select *pSel){ while( pSel->pPrior ){ pSel = pSel->pPrior; } return pSel->pEList; } /* ** Return true if any of the result-set columns in the compound query ** have incompatible affinities on one or more arms of the compound. */ static int compoundHasDifferentAffinities(Select *p){ int ii; ExprList *pList; assert( p!=0 ); assert( p->pEList!=0 ); assert( p->pPrior!=0 ); pList = p->pEList; for(ii=0; iinExpr; ii++){ char aff; Select *pSub1; assert( pList->a[ii].pExpr!=0 ); aff = sqlite3ExprAffinity(pList->a[ii].pExpr); for(pSub1=p->pPrior; pSub1; pSub1=pSub1->pPrior){ assert( pSub1->pEList!=0 ); assert( pSub1->pEList->nExpr>ii ); assert( pSub1->pEList->a[ii].pExpr!=0 ); if( sqlite3ExprAffinity(pSub1->pEList->a[ii].pExpr)!=aff ){ return 1; } } } return 0; } #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* ** This routine attempts to flatten subqueries as a performance optimization. ** This routine returns 1 if it makes changes and 0 if no flattening occurs. ** ** To understand the concept of flattening, consider the following ** query: ** ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 ** ** The default way of implementing this query is to execute the ** subquery first and store the results in a temporary table, then ** run the outer query on that temporary table. This requires two ** passes over the data. Furthermore, because the temporary table ** has no indices, the WHERE clause on the outer query cannot be ** optimized. ** ** This routine attempts to rewrite queries such as the above into ** a single flat select, like this: ** ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 ** ** The code generated for this simplification gives the same result ** but only has to scan the data once. And because indices might ** exist on the table t1, a complete scan of the data might be ** avoided. ** ** Flattening is subject to the following constraints: ** ** (**) We no longer attempt to flatten aggregate subqueries. Was: ** The subquery and the outer query cannot both be aggregates. ** ** (**) We no longer attempt to flatten aggregate subqueries. Was: ** (2) If the subquery is an aggregate then ** (2a) the outer query must not be a join and ** (2b) the outer query must not use subqueries ** other than the one FROM-clause subquery that is a candidate ** for flattening. (This is due to ticket [2f7170d73bf9abf80] ** from 2015-02-09.) ** ** (3) If the subquery is the right operand of a LEFT JOIN then ** (3a) the subquery may not be a join and ** (3b) the FROM clause of the subquery may not contain a virtual ** table and ** (**) Was: "The outer query may not have a GROUP BY." This case ** is now managed correctly ** (3d) the outer query may not be DISTINCT. ** See also (26) for restrictions on RIGHT JOIN. ** ** (4) The subquery can not be DISTINCT. ** ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT ** sub-queries that were excluded from this optimization. Restriction ** (4) has since been expanded to exclude all DISTINCT subqueries. ** ** (**) We no longer attempt to flatten aggregate subqueries. Was: ** If the subquery is aggregate, the outer query may not be DISTINCT. ** ** (7) The subquery must have a FROM clause. TODO: For subqueries without ** A FROM clause, consider adding a FROM clause with the special ** table sqlite_once that consists of a single row containing a ** single NULL. ** ** (8) If the subquery uses LIMIT then the outer query may not be a join. ** ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. ** ** (**) Restriction (10) was removed from the code on 2005-02-05 but we ** accidentally carried the comment forward until 2014-09-15. Original ** constraint: "If the subquery is aggregate then the outer query ** may not use LIMIT." ** ** (11) The subquery and the outer query may not both have ORDER BY clauses. ** ** (**) Not implemented. Subsumed into restriction (3). Was previously ** a separate restriction deriving from ticket #350. ** ** (13) The subquery and outer query may not both use LIMIT. ** ** (14) The subquery may not use OFFSET. ** ** (15) If the outer query is part of a compound select, then the ** subquery may not use LIMIT. ** (See ticket #2339 and ticket [02a8e81d44]). ** ** (16) If the outer query is aggregate, then the subquery may not ** use ORDER BY. (Ticket #2942) This used to not matter ** until we introduced the group_concat() function. ** ** (17) If the subquery is a compound select, then ** (17a) all compound operators must be a UNION ALL, and ** (17b) no terms within the subquery compound may be aggregate ** or DISTINCT, and ** (17c) every term within the subquery compound must have a FROM clause ** (17d) the outer query may not be ** (17d1) aggregate, or ** (17d2) DISTINCT ** (17e) the subquery may not contain window functions, and ** (17f) the subquery must not be the RHS of a LEFT JOIN. ** (17g) either the subquery is the first element of the outer ** query or there are no RIGHT or FULL JOINs in any arm ** of the subquery. (This is a duplicate of condition (27b).) ** (17h) The corresponding result set expressions in all arms of the ** compound must have the same affinity. ** ** The parent and sub-query may contain WHERE clauses. Subject to ** rules (11), (13) and (14), they may also contain ORDER BY, ** LIMIT and OFFSET clauses. The subquery cannot use any compound ** operator other than UNION ALL because all the other compound ** operators have an implied DISTINCT which is disallowed by ** restriction (4). ** ** Also, each component of the sub-query must return the same number ** of result columns. This is actually a requirement for any compound ** SELECT statement, but all the code here does is make sure that no ** such (illegal) sub-query is flattened. The caller will detect the ** syntax error and return a detailed message. ** ** (18) If the sub-query is a compound select, then all terms of the ** ORDER BY clause of the parent must be copies of a term returned ** by the parent query. ** ** (19) If the subquery uses LIMIT then the outer query may not ** have a WHERE clause. ** ** (20) If the sub-query is a compound select, then it must not use ** an ORDER BY clause. Ticket #3773. We could relax this constraint ** somewhat by saying that the terms of the ORDER BY clause must ** appear as unmodified result columns in the outer query. But we ** have other optimizations in mind to deal with that case. ** ** (21) If the subquery uses LIMIT then the outer query may not be ** DISTINCT. (See ticket [752e1646fc]). ** ** (22) The subquery may not be a recursive CTE. ** ** (23) If the outer query is a recursive CTE, then the sub-query may not be ** a compound query. This restriction is because transforming the ** parent to a compound query confuses the code that handles ** recursive queries in multiSelect(). ** ** (**) We no longer attempt to flatten aggregate subqueries. Was: ** The subquery may not be an aggregate that uses the built-in min() or ** or max() functions. (Without this restriction, a query like: ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily ** return the value X for which Y was maximal.) ** ** (25) If either the subquery or the parent query contains a window ** function in the select list or ORDER BY clause, flattening ** is not attempted. ** ** (26) The subquery may not be the right operand of a RIGHT JOIN. ** See also (3) for restrictions on LEFT JOIN. ** ** (27) The subquery may not contain a FULL or RIGHT JOIN unless it ** is the first element of the parent query. Two subcases: ** (27a) the subquery is not a compound query. ** (27b) the subquery is a compound query and the RIGHT JOIN occurs ** in any arm of the compound query. (See also (17g).) ** ** (28) The subquery is not a MATERIALIZED CTE. (This is handled ** in the caller before ever reaching this routine.) ** ** ** In this routine, the "p" parameter is a pointer to the outer query. ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query ** uses aggregates. ** ** If flattening is not attempted, this routine is a no-op and returns 0. ** If flattening is attempted this routine returns 1. ** ** All of the expression analysis must occur on both the outer query and ** the subquery before this routine runs. */ static int flattenSubquery( Parse *pParse, /* Parsing context */ Select *p, /* The parent or outer SELECT statement */ int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ int isAgg /* True if outer SELECT uses aggregate functions */ ){ const char *zSavedAuthContext = pParse->zAuthContext; Select *pParent; /* Current UNION ALL term of the other query */ Select *pSub; /* The inner query or "subquery" */ Select *pSub1; /* Pointer to the rightmost select in sub-query */ SrcList *pSrc; /* The FROM clause of the outer query */ SrcList *pSubSrc; /* The FROM clause of the subquery */ int iParent; /* VDBE cursor number of the pSub result set temp table */ int iNewParent = -1;/* Replacement table for iParent */ int isOuterJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ int i; /* Loop counter */ Expr *pWhere; /* The WHERE clause */ SrcItem *pSubitem; /* The subquery */ sqlite3 *db = pParse->db; Walker w; /* Walker to persist agginfo data */ int *aCsrMap = 0; /* Check to see if flattening is permitted. Return 0 if not. */ assert( p!=0 ); assert( p->pPrior==0 ); if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; pSrc = p->pSrc; assert( pSrc && iFrom>=0 && iFromnSrc ); pSubitem = &pSrc->a[iFrom]; iParent = pSubitem->iCursor; pSub = pSubitem->pSelect; assert( pSub!=0 ); #ifndef SQLITE_OMIT_WINDOWFUNC if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ #endif pSubSrc = pSub->pSrc; assert( pSubSrc ); /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET ** because they could be computed at compile-time. But when LIMIT and OFFSET ** became arbitrary expressions, we were forced to add restrictions (13) ** and (14). */ if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ return 0; /* Restriction (15) */ } if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ return 0; /* Restrictions (8)(9) */ } if( p->pOrderBy && pSub->pOrderBy ){ return 0; /* Restriction (11) */ } if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ return 0; /* Restriction (21) */ } if( pSub->selFlags & (SF_Recursive) ){ return 0; /* Restrictions (22) */ } /* ** If the subquery is the right operand of a LEFT JOIN, then the ** subquery may not be a join itself (3a). Example of why this is not ** allowed: ** ** t1 LEFT OUTER JOIN (t2 JOIN t3) ** ** If we flatten the above, we would get ** ** (t1 LEFT OUTER JOIN t2) JOIN t3 ** ** which is not at all the same thing. ** ** See also tickets #306, #350, and #3300. */ if( (pSubitem->fg.jointype & (JT_OUTER|JT_LTORJ))!=0 ){ if( pSubSrc->nSrc>1 /* (3a) */ || IsVirtual(pSubSrc->a[0].pTab) /* (3b) */ || (p->selFlags & SF_Distinct)!=0 /* (3d) */ || (pSubitem->fg.jointype & JT_RIGHT)!=0 /* (26) */ ){ return 0; } isOuterJoin = 1; } assert( pSubSrc->nSrc>0 ); /* True by restriction (7) */ if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ return 0; /* Restriction (27a) */ } /* Condition (28) is blocked by the caller */ assert( !pSubitem->fg.isCte || pSubitem->u2.pCteUse->eM10d!=M10d_Yes ); /* Restriction (17): If the sub-query is a compound SELECT, then it must ** use only the UNION ALL operator. And none of the simple select queries ** that make up the compound SELECT are allowed to be aggregate or distinct ** queries. */ if( pSub->pPrior ){ int ii; if( pSub->pOrderBy ){ return 0; /* Restriction (20) */ } if( isAgg || (p->selFlags & SF_Distinct)!=0 || isOuterJoin>0 ){ return 0; /* (17d1), (17d2), or (17f) */ } for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); assert( pSub->pSrc!=0 ); assert( (pSub->selFlags & SF_Recursive)==0 ); assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ || pSub1->pSrc->nSrc<1 /* (17c) */ #ifndef SQLITE_OMIT_WINDOWFUNC || pSub1->pWin /* (17e) */ #endif ){ return 0; } if( iFrom>0 && (pSub1->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ /* Without this restriction, the JT_LTORJ flag would end up being ** omitted on left-hand tables of the right join that is being ** flattened. */ return 0; /* Restrictions (17g), (27b) */ } testcase( pSub1->pSrc->nSrc>1 ); } /* Restriction (18). */ if( p->pOrderBy ){ for(ii=0; iipOrderBy->nExpr; ii++){ if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; } } /* Restriction (23) */ if( (p->selFlags & SF_Recursive) ) return 0; /* Restriction (17h) */ if( compoundHasDifferentAffinities(pSub) ) return 0; if( pSrc->nSrc>1 ){ if( pParse->nSelect>500 ) return 0; if( OptimizationDisabled(db, SQLITE_FlttnUnionAll) ) return 0; aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int)); if( aCsrMap ) aCsrMap[0] = pParse->nTab; } } /***** If we reach this point, flattening is permitted. *****/ TREETRACE(0x4,pParse,p,("flatten %u.%p from term %d\n", pSub->selId, pSub, iFrom)); /* Authorize the subquery */ pParse->zAuthContext = pSubitem->zName; TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); testcase( i==SQLITE_DENY ); pParse->zAuthContext = zSavedAuthContext; /* Delete the transient structures associated with the subquery */ pSub1 = pSubitem->pSelect; sqlite3DbFree(db, pSubitem->zDatabase); sqlite3DbFree(db, pSubitem->zName); sqlite3DbFree(db, pSubitem->zAlias); pSubitem->zDatabase = 0; pSubitem->zName = 0; pSubitem->zAlias = 0; pSubitem->pSelect = 0; assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 ); /* If the sub-query is a compound SELECT statement, then (by restrictions ** 17 and 18 above) it must be a UNION ALL and the parent query must ** be of the form: ** ** SELECT FROM () ** ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or ** OFFSET clauses and joins them to the left-hand-side of the original ** using UNION ALL operators. In this case N is the number of simple ** select statements in the compound sub-query. ** ** Example: ** ** SELECT a+1 FROM ( ** SELECT x FROM tab ** UNION ALL ** SELECT y FROM tab ** UNION ALL ** SELECT abs(z*2) FROM tab2 ** ) WHERE a!=5 ORDER BY 1 ** ** Transformed into: ** ** SELECT x+1 FROM tab WHERE x+1!=5 ** UNION ALL ** SELECT y+1 FROM tab WHERE y+1!=5 ** UNION ALL ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 ** ORDER BY 1 ** ** We call this the "compound-subquery flattening". */ for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ Select *pNew; ExprList *pOrderBy = p->pOrderBy; Expr *pLimit = p->pLimit; Select *pPrior = p->pPrior; Table *pItemTab = pSubitem->pTab; pSubitem->pTab = 0; p->pOrderBy = 0; p->pPrior = 0; p->pLimit = 0; pNew = sqlite3SelectDup(db, p, 0); p->pLimit = pLimit; p->pOrderBy = pOrderBy; p->op = TK_ALL; pSubitem->pTab = pItemTab; if( pNew==0 ){ p->pPrior = pPrior; }else{ pNew->selId = ++pParse->nSelect; if( aCsrMap && ALWAYS(db->mallocFailed==0) ){ renumberCursors(pParse, pNew, iFrom, aCsrMap); } pNew->pPrior = pPrior; if( pPrior ) pPrior->pNext = pNew; pNew->pNext = p; p->pPrior = pNew; TREETRACE(0x4,pParse,p,("compound-subquery flattener" " creates %u as peer\n",pNew->selId)); } assert( pSubitem->pSelect==0 ); } sqlite3DbFree(db, aCsrMap); if( db->mallocFailed ){ pSubitem->pSelect = pSub1; return 1; } /* Defer deleting the Table object associated with the ** subquery until code generation is ** complete, since there may still exist Expr.pTab entries that ** refer to the subquery even after flattening. Ticket #3346. ** ** pSubitem->pTab is always non-NULL by test restrictions and tests above. */ if( ALWAYS(pSubitem->pTab!=0) ){ Table *pTabToDel = pSubitem->pTab; if( pTabToDel->nTabRef==1 ){ Parse *pToplevel = sqlite3ParseToplevel(pParse); sqlite3ParserAddCleanup(pToplevel, sqlite3DeleteTableGeneric, pTabToDel); testcase( pToplevel->earlyCleanup ); }else{ pTabToDel->nTabRef--; } pSubitem->pTab = 0; } /* The following loop runs once for each term in a compound-subquery ** flattening (as described above). If we are doing a different kind ** of flattening - a flattening other than a compound-subquery flattening - ** then this loop only runs once. ** ** This loop moves all of the FROM elements of the subquery into the ** the FROM clause of the outer query. Before doing this, remember ** the cursor number for the original outer query FROM element in ** iParent. The iParent cursor will never be used. Subsequent code ** will scan expressions looking for iParent references and replace ** those references with expressions that resolve to the subquery FROM ** elements we are now copying in. */ pSub = pSub1; for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ int nSubSrc; u8 jointype = 0; u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ; assert( pSub!=0 ); pSubSrc = pSub->pSrc; /* FROM clause of subquery */ nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ pSrc = pParent->pSrc; /* FROM clause of the outer query */ if( pParent==p ){ jointype = pSubitem->fg.jointype; /* First time through the loop */ } /* The subquery uses a single slot of the FROM clause of the outer ** query. If the subquery has more than one element in its FROM clause, ** then expand the outer query to make space for it to hold all elements ** of the subquery. ** ** Example: ** ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; ** ** The outer query has 3 slots in its FROM clause. One slot of the ** outer query (the middle slot) is used by the subquery. The next ** block of code will expand the outer query FROM clause to 4 slots. ** The middle slot is expanded to two slots in order to make space ** for the two elements in the FROM clause of the subquery. */ if( nSubSrc>1 ){ pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); if( pSrc==0 ) break; pParent->pSrc = pSrc; } /* Transfer the FROM clause terms from the subquery into the ** outer query. */ for(i=0; ia[i+iFrom]; if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing); assert( pItem->fg.isTabFunc==0 ); *pItem = pSubSrc->a[i]; pItem->fg.jointype |= ltorj; iNewParent = pSubSrc->a[i].iCursor; memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); } pSrc->a[iFrom].fg.jointype &= JT_LTORJ; pSrc->a[iFrom].fg.jointype |= jointype | ltorj; /* Now begin substituting subquery result set expressions for ** references to the iParent in the outer query. ** ** Example: ** ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; ** \ \_____________ subquery __________/ / ** \_____________________ outer query ______________________________/ ** ** We look at every expression in the outer query and every place we see ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". */ if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ /* At this point, any non-zero iOrderByCol values indicate that the ** ORDER BY column expression is identical to the iOrderByCol'th ** expression returned by SELECT statement pSub. Since these values ** do not necessarily correspond to columns in SELECT statement pParent, ** zero them before transferring the ORDER BY clause. ** ** Not doing this may cause an error if a subsequent call to this ** function attempts to flatten a compound sub-query into pParent ** (the only way this can happen is if the compound sub-query is ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ ExprList *pOrderBy = pSub->pOrderBy; for(i=0; inExpr; i++){ pOrderBy->a[i].u.x.iOrderByCol = 0; } assert( pParent->pOrderBy==0 ); pParent->pOrderBy = pOrderBy; pSub->pOrderBy = 0; } pWhere = pSub->pWhere; pSub->pWhere = 0; if( isOuterJoin>0 ){ sqlite3SetJoinExpr(pWhere, iNewParent, EP_OuterON); } if( pWhere ){ if( pParent->pWhere ){ pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); }else{ pParent->pWhere = pWhere; } } if( db->mallocFailed==0 ){ SubstContext x; x.pParse = pParse; x.iTable = iParent; x.iNewTable = iNewParent; x.isOuterJoin = isOuterJoin; x.pEList = pSub->pEList; x.pCList = findLeftmostExprlist(pSub); substSelect(&x, pParent, 0); } /* The flattened query is a compound if either the inner or the ** outer query is a compound. */ pParent->selFlags |= pSub->selFlags & SF_Compound; assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ /* ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; ** ** One is tempted to try to add a and b to combine the limits. But this ** does not work if either limit is negative. */ if( pSub->pLimit ){ pParent->pLimit = pSub->pLimit; pSub->pLimit = 0; } /* Recompute the SrcItem.colUsed masks for the flattened ** tables. */ for(i=0; ia[i+iFrom]); } } /* Finally, delete what is left of the subquery and return success. */ sqlite3AggInfoPersistWalkerInit(&w, pParse); sqlite3WalkSelect(&w,pSub1); sqlite3SelectDelete(db, pSub1); #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x4 ){ TREETRACE(0x4,pParse,p,("After flattening:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif return 1; } #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ /* ** A structure to keep track of all of the column values that are fixed to ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. */ typedef struct WhereConst WhereConst; struct WhereConst { Parse *pParse; /* Parsing context */ u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */ int nConst; /* Number for COLUMN=CONSTANT terms */ int nChng; /* Number of times a constant is propagated */ int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */ u32 mExcludeOn; /* Which ON expressions to exclude from considertion. ** Either EP_OuterON or EP_InnerON|EP_OuterON */ Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ }; /* ** Add a new entry to the pConst object. Except, do not add duplicate ** pColumn entries. Also, do not add if doing so would not be appropriate. ** ** The caller guarantees the pColumn is a column and pValue is a constant. ** This routine has to do some additional checks before completing the ** insert. */ static void constInsert( WhereConst *pConst, /* The WhereConst into which we are inserting */ Expr *pColumn, /* The COLUMN part of the constraint */ Expr *pValue, /* The VALUE part of the constraint */ Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ ){ int i; assert( pColumn->op==TK_COLUMN ); assert( sqlite3ExprIsConstant(pConst->pParse, pValue) ); if( ExprHasProperty(pColumn, EP_FixedCol) ) return; if( sqlite3ExprAffinity(pValue)!=0 ) return; if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ return; } /* 2018-10-25 ticket [cf5ed20f] ** Make sure the same pColumn is not inserted more than once */ for(i=0; inConst; i++){ const Expr *pE2 = pConst->apExpr[i*2]; assert( pE2->op==TK_COLUMN ); if( pE2->iTable==pColumn->iTable && pE2->iColumn==pColumn->iColumn ){ return; /* Already present. Return without doing anything. */ } } if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ pConst->bHasAffBlob = 1; } pConst->nConst++; pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, pConst->nConst*2*sizeof(Expr*)); if( pConst->apExpr==0 ){ pConst->nConst = 0; }else{ pConst->apExpr[pConst->nConst*2-2] = pColumn; pConst->apExpr[pConst->nConst*2-1] = pValue; } } /* ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE ** is a constant expression and where the term must be true because it ** is part of the AND-connected terms of the expression. For each term ** found, add it to the pConst structure. */ static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ Expr *pRight, *pLeft; if( NEVER(pExpr==0) ) return; if( ExprHasProperty(pExpr, pConst->mExcludeOn) ){ testcase( ExprHasProperty(pExpr, EP_OuterON) ); testcase( ExprHasProperty(pExpr, EP_InnerON) ); return; } if( pExpr->op==TK_AND ){ findConstInWhere(pConst, pExpr->pRight); findConstInWhere(pConst, pExpr->pLeft); return; } if( pExpr->op!=TK_EQ ) return; pRight = pExpr->pRight; pLeft = pExpr->pLeft; assert( pRight!=0 ); assert( pLeft!=0 ); if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pConst->pParse, pLeft) ){ constInsert(pConst,pRight,pLeft,pExpr); } if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pConst->pParse, pRight) ){ constInsert(pConst,pLeft,pRight,pExpr); } } /* ** This is a helper function for Walker callback propagateConstantExprRewrite(). ** ** Argument pExpr is a candidate expression to be replaced by a value. If ** pExpr is equivalent to one of the columns named in pWalker->u.pConst, ** then overwrite it with the corresponding value. Except, do not do so ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr ** is SQLITE_AFF_BLOB. */ static int propagateConstantExprRewriteOne( WhereConst *pConst, Expr *pExpr, int bIgnoreAffBlob ){ int i; if( pConst->pOomFault[0] ) return WRC_Prune; if( pExpr->op!=TK_COLUMN ) return WRC_Continue; if( ExprHasProperty(pExpr, EP_FixedCol|pConst->mExcludeOn) ){ testcase( ExprHasProperty(pExpr, EP_FixedCol) ); testcase( ExprHasProperty(pExpr, EP_OuterON) ); testcase( ExprHasProperty(pExpr, EP_InnerON) ); return WRC_Continue; } for(i=0; inConst; i++){ Expr *pColumn = pConst->apExpr[i*2]; if( pColumn==pExpr ) continue; if( pColumn->iTable!=pExpr->iTable ) continue; if( pColumn->iColumn!=pExpr->iColumn ) continue; if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ break; } /* A match is found. Add the EP_FixedCol property */ pConst->nChng++; ExprClearProperty(pExpr, EP_Leaf); ExprSetProperty(pExpr, EP_FixedCol); assert( pExpr->pLeft==0 ); pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); if( pConst->pParse->db->mallocFailed ) return WRC_Prune; break; } return WRC_Prune; } /* ** This is a Walker expression callback. pExpr is a node from the WHERE ** clause of a SELECT statement. This function examines pExpr to see if ** any substitutions based on the contents of pWalker->u.pConst should ** be made to pExpr or its immediate children. ** ** A substitution is made if: ** ** + pExpr is a column with an affinity other than BLOB that matches ** one of the columns in pWalker->u.pConst, or ** ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that ** uses an affinity other than TEXT and one of its immediate ** children is a column that matches one of the columns in ** pWalker->u.pConst. */ static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ WhereConst *pConst = pWalker->u.pConst; assert( TK_GT==TK_EQ+1 ); assert( TK_LE==TK_EQ+2 ); assert( TK_LT==TK_EQ+3 ); assert( TK_GE==TK_EQ+4 ); if( pConst->bHasAffBlob ){ if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE) || pExpr->op==TK_IS ){ propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0); if( pConst->pOomFault[0] ) return WRC_Prune; if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){ propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0); } } } return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob); } /* ** The WHERE-clause constant propagation optimization. ** ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or ** CONSTANT=COLUMN that are top-level AND-connected terms that are not ** part of a ON clause from a LEFT JOIN, then throughout the query ** replace all other occurrences of COLUMN with CONSTANT. ** ** For example, the query: ** ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b ** ** Is transformed into ** ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 ** ** Return true if any transformations where made and false if not. ** ** Implementation note: Constant propagation is tricky due to affinity ** and collating sequence interactions. Consider this example: ** ** CREATE TABLE t1(a INT,b TEXT); ** INSERT INTO t1 VALUES(123,'0123'); ** SELECT * FROM t1 WHERE a=123 AND b=a; ** SELECT * FROM t1 WHERE a=123 AND b=123; ** ** The two SELECT statements above should return different answers. b=a ** is always true because the comparison uses numeric affinity, but b=123 ** is false because it uses text affinity and '0123' is not the same as '123'. ** To work around this, the expression tree is not actually changed from ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol ** and the "123" value is hung off of the pLeft pointer. Code generator ** routines know to generate the constant "123" instead of looking up the ** column value. Also, to avoid collation problems, this optimization is ** only attempted if the "a=123" term uses the default BINARY collation. ** ** 2021-05-25 forum post 6a06202608: Another troublesome case is... ** ** CREATE TABLE t1(x); ** INSERT INTO t1 VALUES(10.0); ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10; ** ** The query should return no rows, because the t1.x value is '10.0' not '10' ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE ** term "x=10" will cause the second WHERE term to become "10 LIKE 10", ** resulting in a false positive. To avoid this, constant propagation for ** columns with BLOB affinity is only allowed if the constant is used with ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct ** type conversions to occur. See logic associated with the bHasAffBlob flag ** for details. */ static int propagateConstants( Parse *pParse, /* The parsing context */ Select *p /* The query in which to propagate constants */ ){ WhereConst x; Walker w; int nChng = 0; x.pParse = pParse; x.pOomFault = &pParse->db->mallocFailed; do{ x.nConst = 0; x.nChng = 0; x.apExpr = 0; x.bHasAffBlob = 0; if( ALWAYS(p->pSrc!=0) && p->pSrc->nSrc>0 && (p->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ /* Do not propagate constants on any ON clause if there is a ** RIGHT JOIN anywhere in the query */ x.mExcludeOn = EP_InnerON | EP_OuterON; }else{ /* Do not propagate constants through the ON clause of a LEFT JOIN */ x.mExcludeOn = EP_OuterON; } findConstInWhere(&x, p->pWhere); if( x.nConst ){ memset(&w, 0, sizeof(w)); w.pParse = pParse; w.xExprCallback = propagateConstantExprRewrite; w.xSelectCallback = sqlite3SelectWalkNoop; w.xSelectCallback2 = 0; w.walkerDepth = 0; w.u.pConst = &x; sqlite3WalkExpr(&w, p->pWhere); sqlite3DbFree(x.pParse->db, x.apExpr); nChng += x.nChng; } }while( x.nChng ); return nChng; } #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) # if !defined(SQLITE_OMIT_WINDOWFUNC) /* ** This function is called to determine whether or not it is safe to ** push WHERE clause expression pExpr down to FROM clause sub-query ** pSubq, which contains at least one window function. Return 1 ** if it is safe and the expression should be pushed down, or 0 ** otherwise. ** ** It is only safe to push the expression down if it consists only ** of constants and copies of expressions that appear in the PARTITION ** BY clause of all window function used by the sub-query. It is safe ** to filter out entire partitions, but not rows within partitions, as ** this may change the results of the window functions. ** ** At the time this function is called it is guaranteed that ** ** * the sub-query uses only one distinct window frame, and ** * that the window frame has a PARTITION BY clause. */ static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ assert( pSubq->pWin->pPartition ); assert( (pSubq->selFlags & SF_MultiPart)==0 ); assert( pSubq->pPrior==0 ); return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); } # endif /* SQLITE_OMIT_WINDOWFUNC */ #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* ** Make copies of relevant WHERE clause terms of the outer query into ** the WHERE clause of subquery. Example: ** ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; ** ** Transformed into: ** ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) ** WHERE x=5 AND y=10; ** ** The hope is that the terms added to the inner query will make it more ** efficient. ** ** NAME AMBIGUITY ** ** This optimization is called the "WHERE-clause push-down optimization". ** ** Do not confuse this optimization with another unrelated optimization ** with a similar name: The "MySQL push-down optimization" causes WHERE ** clause terms that can be evaluated using only the index and without ** reference to the table are run first, so that if they are false, ** unnecessary table seeks are avoided. ** ** RULES ** ** Do not attempt this optimization if: ** ** (1) (** This restriction was removed on 2017-09-29. We used to ** disallow this optimization for aggregate subqueries, but now ** it is allowed by putting the extra terms on the HAVING clause. ** The added HAVING clause is pointless if the subquery lacks ** a GROUP BY clause. But such a HAVING clause is also harmless ** so there does not appear to be any reason to add extra logic ** to suppress it. **) ** ** (2) The inner query is the recursive part of a common table expression. ** ** (3) The inner query has a LIMIT clause (since the changes to the WHERE ** clause would change the meaning of the LIMIT). ** ** (4) The inner query is the right operand of a LEFT JOIN and the ** expression to be pushed down does not come from the ON clause ** on that LEFT JOIN. ** ** (5) The WHERE clause expression originates in the ON or USING clause ** of a LEFT JOIN where iCursor is not the right-hand table of that ** left join. An example: ** ** SELECT * ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); ** ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). ** But if the (b2=2) term were to be pushed down into the bb subquery, ** then the (1,1,NULL) row would be suppressed. ** ** (6) Window functions make things tricky as changes to the WHERE clause ** of the inner query could change the window over which window ** functions are calculated. Therefore, do not attempt the optimization ** if: ** ** (6a) The inner query uses multiple incompatible window partitions. ** ** (6b) The inner query is a compound and uses window-functions. ** ** (6c) The WHERE clause does not consist entirely of constants and ** copies of expressions found in the PARTITION BY clause of ** all window-functions used by the sub-query. It is safe to ** filter out entire partitions, as this does not change the ** window over which any window-function is calculated. ** ** (7) The inner query is a Common Table Expression (CTE) that should ** be materialized. (This restriction is implemented in the calling ** routine.) ** ** (8) If the subquery is a compound that uses UNION, INTERSECT, ** or EXCEPT, then all of the result set columns for all arms of ** the compound must use the BINARY collating sequence. ** ** (9) All three of the following are true: ** ** (9a) The WHERE clause expression originates in the ON or USING clause ** of a join (either an INNER or an OUTER join), and ** ** (9b) The subquery is to the right of the ON/USING clause ** ** (9c) There is a RIGHT JOIN (or FULL JOIN) in between the ON/USING ** clause and the subquery. ** ** Without this restriction, the WHERE-clause push-down optimization ** might move the ON/USING filter expression from the left side of a ** RIGHT JOIN over to the right side, which leads to incorrect answers. ** See also restriction (6) in sqlite3ExprIsSingleTableConstraint(). ** ** (10) The inner query is not the right-hand table of a RIGHT JOIN. ** ** (11) The subquery is not a VALUES clause ** ** (12) The WHERE clause is not "rowid ISNULL" or the equivalent. This ** case only comes up if SQLite is compiled using ** SQLITE_ALLOW_ROWID_IN_VIEW. ** ** Return 0 if no changes are made and non-zero if one or more WHERE clause ** terms are duplicated into the subquery. */ static int pushDownWhereTerms( Parse *pParse, /* Parse context (for malloc() and error reporting) */ Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ Expr *pWhere, /* The WHERE clause of the outer query */ SrcList *pSrcList, /* The complete from clause of the outer query */ int iSrc /* Which FROM clause term to try to push into */ ){ Expr *pNew; SrcItem *pSrc; /* The subquery FROM term into which WHERE is pushed */ int nChng = 0; pSrc = &pSrcList->a[iSrc]; if( pWhere==0 ) return 0; if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ){ return 0; /* restrictions (2) and (11) */ } if( pSrc->fg.jointype & (JT_LTORJ|JT_RIGHT) ){ return 0; /* restrictions (10) */ } if( pSubq->pPrior ){ Select *pSel; int notUnionAll = 0; for(pSel=pSubq; pSel; pSel=pSel->pPrior){ u8 op = pSel->op; assert( op==TK_ALL || op==TK_SELECT || op==TK_UNION || op==TK_INTERSECT || op==TK_EXCEPT ); if( op!=TK_ALL && op!=TK_SELECT ){ notUnionAll = 1; } #ifndef SQLITE_OMIT_WINDOWFUNC if( pSel->pWin ) return 0; /* restriction (6b) */ #endif } if( notUnionAll ){ /* If any of the compound arms are connected using UNION, INTERSECT, ** or EXCEPT, then we must ensure that none of the columns use a ** non-BINARY collating sequence. */ for(pSel=pSubq; pSel; pSel=pSel->pPrior){ int ii; const ExprList *pList = pSel->pEList; assert( pList!=0 ); for(ii=0; iinExpr; ii++){ CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[ii].pExpr); if( !sqlite3IsBinary(pColl) ){ return 0; /* Restriction (8) */ } } } } }else{ #ifndef SQLITE_OMIT_WINDOWFUNC if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0; #endif } #ifdef SQLITE_DEBUG /* Only the first term of a compound can have a WITH clause. But make ** sure no other terms are marked SF_Recursive in case something changes ** in the future. */ { Select *pX; for(pX=pSubq; pX; pX=pX->pPrior){ assert( (pX->selFlags & (SF_Recursive))==0 ); } } #endif if( pSubq->pLimit!=0 ){ return 0; /* restriction (3) */ } while( pWhere->op==TK_AND ){ nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, pSrcList, iSrc); pWhere = pWhere->pLeft; } #if 0 /* These checks now done by sqlite3ExprIsSingleTableConstraint() */ if( ExprHasProperty(pWhere, EP_OuterON|EP_InnerON) /* (9a) */ && (pSrcList->a[0].fg.jointype & JT_LTORJ)!=0 /* Fast pre-test of (9c) */ ){ int jj; for(jj=0; jjw.iJoin==pSrcList->a[jj].iCursor ){ /* If we reach this point, both (9a) and (9b) are satisfied. ** The following loop checks (9c): */ for(jj++; jja[jj].fg.jointype & JT_RIGHT)!=0 ){ return 0; /* restriction (9) */ } } } } } if( isLeftJoin && (ExprHasProperty(pWhere,EP_OuterON)==0 || pWhere->w.iJoin!=iCursor) ){ return 0; /* restriction (4) */ } if( ExprHasProperty(pWhere,EP_OuterON) && pWhere->w.iJoin!=iCursor ){ return 0; /* restriction (5) */ } #endif #ifdef SQLITE_ALLOW_ROWID_IN_VIEW if( ViewCanHaveRowid && (pWhere->op==TK_ISNULL || pWhere->op==TK_NOTNULL) ){ Expr *pLeft = pWhere->pLeft; if( ALWAYS(pLeft) && pLeft->op==TK_COLUMN && pLeft->iColumn < 0 ){ return 0; /* Restriction (12) */ } } #endif if( sqlite3ExprIsSingleTableConstraint(pWhere, pSrcList, iSrc, 1) ){ nChng++; pSubq->selFlags |= SF_PushDown; while( pSubq ){ SubstContext x; pNew = sqlite3ExprDup(pParse->db, pWhere, 0); unsetJoinExpr(pNew, -1, 1); x.pParse = pParse; x.iTable = pSrc->iCursor; x.iNewTable = pSrc->iCursor; x.isOuterJoin = 0; x.pEList = pSubq->pEList; x.pCList = findLeftmostExprlist(pSubq); pNew = substExpr(&x, pNew); #ifndef SQLITE_OMIT_WINDOWFUNC if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){ /* Restriction 6c has prevented push-down in this case */ sqlite3ExprDelete(pParse->db, pNew); nChng--; break; } #endif if( pSubq->selFlags & SF_Aggregate ){ pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); }else{ pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); } pSubq = pSubq->pPrior; } } return nChng; } #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ /* ** Check to see if a subquery contains result-set columns that are ** never used. If it does, change the value of those result-set columns ** to NULL so that they do not cause unnecessary work to compute. ** ** Return the number of column that were changed to NULL. */ static int disableUnusedSubqueryResultColumns(SrcItem *pItem){ int nCol; Select *pSub; /* The subquery to be simplified */ Select *pX; /* For looping over compound elements of pSub */ Table *pTab; /* The table that describes the subquery */ int j; /* Column number */ int nChng = 0; /* Number of columns converted to NULL */ Bitmask colUsed; /* Columns that may not be NULLed out */ assert( pItem!=0 ); if( pItem->fg.isCorrelated || pItem->fg.isCte ){ return 0; } assert( pItem->pTab!=0 ); pTab = pItem->pTab; assert( pItem->pSelect!=0 ); pSub = pItem->pSelect; assert( pSub->pEList->nExpr==pTab->nCol ); for(pX=pSub; pX; pX=pX->pPrior){ if( (pX->selFlags & (SF_Distinct|SF_Aggregate))!=0 ){ testcase( pX->selFlags & SF_Distinct ); testcase( pX->selFlags & SF_Aggregate ); return 0; } if( pX->pPrior && pX->op!=TK_ALL ){ /* This optimization does not work for compound subqueries that ** use UNION, INTERSECT, or EXCEPT. Only UNION ALL is allowed. */ return 0; } #ifndef SQLITE_OMIT_WINDOWFUNC if( pX->pWin ){ /* This optimization does not work for subqueries that use window ** functions. */ return 0; } #endif } colUsed = pItem->colUsed; if( pSub->pOrderBy ){ ExprList *pList = pSub->pOrderBy; for(j=0; jnExpr; j++){ u16 iCol = pList->a[j].u.x.iOrderByCol; if( iCol>0 ){ iCol--; colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol); } } } nCol = pTab->nCol; for(j=0; jpPrior) { Expr *pY = pX->pEList->a[j].pExpr; if( pY->op==TK_NULL ) continue; pY->op = TK_NULL; ExprClearProperty(pY, EP_Skip|EP_Unlikely); pX->selFlags |= SF_PushDown; nChng++; } } return nChng; } /* ** The pFunc is the only aggregate function in the query. Check to see ** if the query is a candidate for the min/max optimization. ** ** If the query is a candidate for the min/max optimization, then set ** *ppMinMax to be an ORDER BY clause to be used for the optimization ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on ** whether pFunc is a min() or max() function. ** ** If the query is not a candidate for the min/max optimization, return ** WHERE_ORDERBY_NORMAL (which must be zero). ** ** This routine must be called after aggregate functions have been ** located but before their arguments have been subjected to aggregate ** analysis. */ static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ ExprList *pEList; /* Arguments to agg function */ const char *zFunc; /* Name of aggregate function pFunc */ ExprList *pOrderBy; u8 sortFlags = 0; assert( *ppMinMax==0 ); assert( pFunc->op==TK_AGG_FUNCTION ); assert( !IsWindowFunc(pFunc) ); assert( ExprUseXList(pFunc) ); pEList = pFunc->x.pList; if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) || OptimizationDisabled(db, SQLITE_MinMaxOpt) ){ return eRet; } assert( !ExprHasProperty(pFunc, EP_IntValue) ); zFunc = pFunc->u.zToken; if( sqlite3StrICmp(zFunc, "min")==0 ){ eRet = WHERE_ORDERBY_MIN; if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ sortFlags = KEYINFO_ORDER_BIGNULL; } }else if( sqlite3StrICmp(zFunc, "max")==0 ){ eRet = WHERE_ORDERBY_MAX; sortFlags = KEYINFO_ORDER_DESC; }else{ return eRet; } *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); assert( pOrderBy!=0 || db->mallocFailed ); if( pOrderBy ) pOrderBy->a[0].fg.sortFlags = sortFlags; return eRet; } /* ** The select statement passed as the first argument is an aggregate query. ** The second argument is the associated aggregate-info object. This ** function tests if the SELECT is of the form: ** ** SELECT count(*) FROM ** ** where table is a database table, not a sub-select or view. If the query ** does match this pattern, then a pointer to the Table object representing ** is returned. Otherwise, NULL is returned. ** ** This routine checks to see if it is safe to use the count optimization. ** A correct answer is still obtained (though perhaps more slowly) if ** this routine returns NULL when it could have returned a table pointer. ** But returning the pointer when NULL should have been returned can ** result in incorrect answers and/or crashes. So, when in doubt, return NULL. */ static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ Table *pTab; Expr *pExpr; assert( !p->pGroupBy ); if( p->pWhere || p->pEList->nExpr!=1 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect || pAggInfo->nFunc!=1 || p->pHaving ){ return 0; } pTab = p->pSrc->a[0].pTab; assert( pTab!=0 ); assert( !IsView(pTab) ); if( !IsOrdinaryTable(pTab) ) return 0; pExpr = p->pEList->a[0].pExpr; assert( pExpr!=0 ); if( pExpr->op!=TK_AGG_FUNCTION ) return 0; if( pExpr->pAggInfo!=pAggInfo ) return 0; if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; assert( pAggInfo->aFunc[0].pFExpr==pExpr ); testcase( ExprHasProperty(pExpr, EP_Distinct) ); testcase( ExprHasProperty(pExpr, EP_WinFunc) ); if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; return pTab; } /* ** If the source-list item passed as an argument was augmented with an ** INDEXED BY clause, then try to locate the specified index. If there ** was such a clause and the named index cannot be found, return ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate ** pFrom->pIndex and return SQLITE_OK. */ int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){ Table *pTab = pFrom->pTab; char *zIndexedBy = pFrom->u1.zIndexedBy; Index *pIdx; assert( pTab!=0 ); assert( pFrom->fg.isIndexedBy!=0 ); for(pIdx=pTab->pIndex; pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); pIdx=pIdx->pNext ); if( !pIdx ){ sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); pParse->checkSchema = 1; return SQLITE_ERROR; } assert( pFrom->fg.isCte==0 ); pFrom->u2.pIBIndex = pIdx; return SQLITE_OK; } /* ** Detect compound SELECT statements that use an ORDER BY clause with ** an alternative collating sequence. ** ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... ** ** These are rewritten as a subquery: ** ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) ** ORDER BY ... COLLATE ... ** ** This transformation is necessary because the multiSelectOrderBy() routine ** above that generates the code for a compound SELECT with an ORDER BY clause ** uses a merge algorithm that requires the same collating sequence on the ** result columns as on the ORDER BY clause. See ticket ** http://www.sqlite.org/src/info/6709574d2a ** ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. ** The UNION ALL operator works fine with multiSelectOrderBy() even when ** there are COLLATE terms in the ORDER BY. */ static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ int i; Select *pNew; Select *pX; sqlite3 *db; struct ExprList_item *a; SrcList *pNewSrc; Parse *pParse; Token dummy; if( p->pPrior==0 ) return WRC_Continue; if( p->pOrderBy==0 ) return WRC_Continue; for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} if( pX==0 ) return WRC_Continue; a = p->pOrderBy->a; #ifndef SQLITE_OMIT_WINDOWFUNC /* If iOrderByCol is already non-zero, then it has already been matched ** to a result column of the SELECT statement. This occurs when the ** SELECT is rewritten for window-functions processing and then passed ** to sqlite3SelectPrep() and similar a second time. The rewriting done ** by this function is not required in this case. */ if( a[0].u.x.iOrderByCol ) return WRC_Continue; #endif for(i=p->pOrderBy->nExpr-1; i>=0; i--){ if( a[i].pExpr->flags & EP_Collate ) break; } if( i<0 ) return WRC_Continue; /* If we reach this point, that means the transformation is required. */ pParse = pWalker->pParse; db = pParse->db; pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); if( pNew==0 ) return WRC_Abort; memset(&dummy, 0, sizeof(dummy)); pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0); if( pNewSrc==0 ) return WRC_Abort; *pNew = *p; p->pSrc = pNewSrc; p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); p->op = TK_SELECT; p->pWhere = 0; pNew->pGroupBy = 0; pNew->pHaving = 0; pNew->pOrderBy = 0; p->pPrior = 0; p->pNext = 0; p->pWith = 0; #ifndef SQLITE_OMIT_WINDOWFUNC p->pWinDefn = 0; #endif p->selFlags &= ~SF_Compound; assert( (p->selFlags & SF_Converted)==0 ); p->selFlags |= SF_Converted; assert( pNew->pPrior!=0 ); pNew->pPrior->pNext = pNew; pNew->pLimit = 0; return WRC_Continue; } /* ** Check to see if the FROM clause term pFrom has table-valued function ** arguments. If it does, leave an error message in pParse and return ** non-zero, since pFrom is not allowed to be a table-valued function. */ static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){ if( pFrom->fg.isTabFunc ){ sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); return 1; } return 0; } #ifndef SQLITE_OMIT_CTE /* ** Argument pWith (which may be NULL) points to a linked list of nested ** WITH contexts, from inner to outermost. If the table identified by ** FROM clause element pItem is really a common-table-expression (CTE) ** then return a pointer to the CTE definition for that table. Otherwise ** return NULL. ** ** If a non-NULL value is returned, set *ppContext to point to the With ** object that the returned CTE belongs to. */ static struct Cte *searchWith( With *pWith, /* Current innermost WITH clause */ SrcItem *pItem, /* FROM clause element to resolve */ With **ppContext /* OUT: WITH clause return value belongs to */ ){ const char *zName = pItem->zName; With *p; assert( pItem->zDatabase==0 ); assert( zName!=0 ); for(p=pWith; p; p=p->pOuter){ int i; for(i=0; inCte; i++){ if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ *ppContext = p; return &p->a[i]; } } if( p->bView ) break; } return 0; } /* The code generator maintains a stack of active WITH clauses ** with the inner-most WITH clause being at the top of the stack. ** ** This routine pushes the WITH clause passed as the second argument ** onto the top of the stack. If argument bFree is true, then this ** WITH clause will never be popped from the stack but should instead ** be freed along with the Parse object. In other cases, when ** bFree==0, the With object will be freed along with the SELECT ** statement with which it is associated. ** ** This routine returns a copy of pWith. Or, if bFree is true and ** the pWith object is destroyed immediately due to an OOM condition, ** then this routine return NULL. ** ** If bFree is true, do not continue to use the pWith pointer after ** calling this routine, Instead, use only the return value. */ With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ if( pWith ){ if( bFree ){ pWith = (With*)sqlite3ParserAddCleanup(pParse, sqlite3WithDeleteGeneric, pWith); if( pWith==0 ) return 0; } if( pParse->nErr==0 ){ assert( pParse->pWith!=pWith ); pWith->pOuter = pParse->pWith; pParse->pWith = pWith; } } return pWith; } /* ** This function checks if argument pFrom refers to a CTE declared by ** a WITH clause on the stack currently maintained by the parser (on the ** pParse->pWith linked list). And if currently processing a CTE ** CTE expression, through routine checks to see if the reference is ** a recursive reference to the CTE. ** ** If pFrom matches a CTE according to either of these two above, pFrom->pTab ** and other fields are populated accordingly. ** ** Return 0 if no match is found. ** Return 1 if a match is found. ** Return 2 if an error condition is detected. */ static int resolveFromTermToCte( Parse *pParse, /* The parsing context */ Walker *pWalker, /* Current tree walker */ SrcItem *pFrom /* The FROM clause term to check */ ){ Cte *pCte; /* Matched CTE (or NULL if no match) */ With *pWith; /* The matching WITH */ assert( pFrom->pTab==0 ); if( pParse->pWith==0 ){ /* There are no WITH clauses in the stack. No match is possible */ return 0; } if( pParse->nErr ){ /* Prior errors might have left pParse->pWith in a goofy state, so ** go no further. */ return 0; } if( pFrom->zDatabase!=0 ){ /* The FROM term contains a schema qualifier (ex: main.t1) and so ** it cannot possibly be a CTE reference. */ return 0; } if( pFrom->fg.notCte ){ /* The FROM term is specifically excluded from matching a CTE. ** (1) It is part of a trigger that used to have zDatabase but had ** zDatabase removed by sqlite3FixTriggerStep(). ** (2) This is the first term in the FROM clause of an UPDATE. */ return 0; } pCte = searchWith(pParse->pWith, pFrom, &pWith); if( pCte ){ sqlite3 *db = pParse->db; Table *pTab; ExprList *pEList; Select *pSel; Select *pLeft; /* Left-most SELECT statement */ Select *pRecTerm; /* Left-most recursive term */ int bMayRecursive; /* True if compound joined by UNION [ALL] */ With *pSavedWith; /* Initial value of pParse->pWith */ int iRecTab = -1; /* Cursor for recursive table */ CteUse *pCteUse; /* If pCte->zCteErr is non-NULL at this point, then this is an illegal ** recursive reference to CTE pCte. Leave an error in pParse and return ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. ** In this case, proceed. */ if( pCte->zCteErr ){ sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); return 2; } if( cannotBeFunction(pParse, pFrom) ) return 2; assert( pFrom->pTab==0 ); pTab = sqlite3DbMallocZero(db, sizeof(Table)); if( pTab==0 ) return 2; pCteUse = pCte->pUse; if( pCteUse==0 ){ pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0])); if( pCteUse==0 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0 ){ sqlite3DbFree(db, pTab); return 2; } pCteUse->eM10d = pCte->eM10d; } pFrom->pTab = pTab; pTab->nTabRef = 1; pTab->zName = sqlite3DbStrDup(db, pCte->zName); pTab->iPKey = -1; pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); if( db->mallocFailed ) return 2; pFrom->pSelect->selFlags |= SF_CopyCte; assert( pFrom->pSelect ); if( pFrom->fg.isIndexedBy ){ sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy); return 2; } pFrom->fg.isCte = 1; pFrom->u2.pCteUse = pCteUse; pCteUse->nUse++; /* Check if this is a recursive CTE. */ pRecTerm = pSel = pFrom->pSelect; bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); while( bMayRecursive && pRecTerm->op==pSel->op ){ int i; SrcList *pSrc = pRecTerm->pSrc; assert( pRecTerm->pPrior!=0 ); for(i=0; inSrc; i++){ SrcItem *pItem = &pSrc->a[i]; if( pItem->zDatabase==0 && pItem->zName!=0 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) ){ pItem->pTab = pTab; pTab->nTabRef++; pItem->fg.isRecursive = 1; if( pRecTerm->selFlags & SF_Recursive ){ sqlite3ErrorMsg(pParse, "multiple references to recursive table: %s", pCte->zName ); return 2; } pRecTerm->selFlags |= SF_Recursive; if( iRecTab<0 ) iRecTab = pParse->nTab++; pItem->iCursor = iRecTab; } } if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; pRecTerm = pRecTerm->pPrior; } pCte->zCteErr = "circular reference: %s"; pSavedWith = pParse->pWith; pParse->pWith = pWith; if( pSel->selFlags & SF_Recursive ){ int rc; assert( pRecTerm!=0 ); assert( (pRecTerm->selFlags & SF_Recursive)==0 ); assert( pRecTerm->pNext!=0 ); assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); assert( pRecTerm->pWith==0 ); pRecTerm->pWith = pSel->pWith; rc = sqlite3WalkSelect(pWalker, pRecTerm); pRecTerm->pWith = 0; if( rc ){ pParse->pWith = pSavedWith; return 2; } }else{ if( sqlite3WalkSelect(pWalker, pSel) ){ pParse->pWith = pSavedWith; return 2; } } pParse->pWith = pWith; for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); pEList = pLeft->pEList; if( pCte->pCols ){ if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", pCte->zName, pEList->nExpr, pCte->pCols->nExpr ); pParse->pWith = pSavedWith; return 2; } pEList = pCte->pCols; } sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); if( bMayRecursive ){ if( pSel->selFlags & SF_Recursive ){ pCte->zCteErr = "multiple recursive references: %s"; }else{ pCte->zCteErr = "recursive reference in a subquery: %s"; } sqlite3WalkSelect(pWalker, pSel); } pCte->zCteErr = 0; pParse->pWith = pSavedWith; return 1; /* Success */ } return 0; /* No match */ } #endif #ifndef SQLITE_OMIT_CTE /* ** If the SELECT passed as the second argument has an associated WITH ** clause, pop it from the stack stored as part of the Parse object. ** ** This function is used as the xSelectCallback2() callback by ** sqlite3SelectExpand() when walking a SELECT tree to resolve table ** names and other FROM clause elements. */ void sqlite3SelectPopWith(Walker *pWalker, Select *p){ Parse *pParse = pWalker->pParse; if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ With *pWith = findRightmost(p)->pWith; if( pWith!=0 ){ assert( pParse->pWith==pWith || pParse->nErr ); pParse->pWith = pWith->pOuter; } } } #endif /* ** The SrcItem structure passed as the second argument represents a ** sub-query in the FROM clause of a SELECT statement. This function ** allocates and populates the SrcItem.pTab object. If successful, ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, ** SQLITE_NOMEM. */ int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){ Select *pSel = pFrom->pSelect; Table *pTab; assert( pSel ); pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); if( pTab==0 ) return SQLITE_NOMEM; pTab->nTabRef = 1; if( pFrom->zAlias ){ pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); }else{ pTab->zName = sqlite3MPrintf(pParse->db, "%!S", pFrom); } while( pSel->pPrior ){ pSel = pSel->pPrior; } sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); pTab->iPKey = -1; pTab->eTabType = TABTYP_VIEW; pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); #ifndef SQLITE_ALLOW_ROWID_IN_VIEW /* The usual case - do not allow ROWID on a subquery */ pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; #else /* Legacy compatibility mode */ pTab->tabFlags |= TF_Ephemeral | sqlite3Config.mNoVisibleRowid; #endif return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; } /* ** Check the N SrcItem objects to the right of pBase. (N might be zero!) ** If any of those SrcItem objects have a USING clause containing zName ** then return true. ** ** If N is zero, or none of the N SrcItem objects to the right of pBase ** contains a USING clause, or if none of the USING clauses contain zName, ** then return false. */ static int inAnyUsingClause( const char *zName, /* Name we are looking for */ SrcItem *pBase, /* The base SrcItem. Looking at pBase[1] and following */ int N /* How many SrcItems to check */ ){ while( N>0 ){ N--; pBase++; if( pBase->fg.isUsing==0 ) continue; if( NEVER(pBase->u3.pUsing==0) ) continue; if( sqlite3IdListIndex(pBase->u3.pUsing, zName)>=0 ) return 1; } return 0; } /* ** This routine is a Walker callback for "expanding" a SELECT statement. ** "Expanding" means to do the following: ** ** (1) Make sure VDBE cursor numbers have been assigned to every ** element of the FROM clause. ** ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that ** defines FROM clause. When views appear in the FROM clause, ** fill pTabList->a[].pSelect with a copy of the SELECT statement ** that implements the view. A copy is made of the view's SELECT ** statement so that we can freely modify or delete that statement ** without worrying about messing up the persistent representation ** of the view. ** ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword ** on joins and the ON and USING clause of joins. ** ** (4) Scan the list of columns in the result set (pEList) looking ** for instances of the "*" operator or the TABLE.* operator. ** If found, expand each "*" to be every column in every table ** and TABLE.* to be every column in TABLE. ** */ static int selectExpander(Walker *pWalker, Select *p){ Parse *pParse = pWalker->pParse; int i, j, k, rc; SrcList *pTabList; ExprList *pEList; SrcItem *pFrom; sqlite3 *db = pParse->db; Expr *pE, *pRight, *pExpr; u16 selFlags = p->selFlags; u32 elistFlags = 0; p->selFlags |= SF_Expanded; if( db->mallocFailed ){ return WRC_Abort; } assert( p->pSrc!=0 ); if( (selFlags & SF_Expanded)!=0 ){ return WRC_Prune; } if( pWalker->eCode ){ /* Renumber selId because it has been copied from a view */ p->selId = ++pParse->nSelect; } pTabList = p->pSrc; pEList = p->pEList; if( pParse->pWith && (p->selFlags & SF_View) ){ if( p->pWith==0 ){ p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With)); if( p->pWith==0 ){ return WRC_Abort; } } p->pWith->bView = 1; } sqlite3WithPush(pParse, p->pWith, 0); /* Make sure cursor numbers have been assigned to all entries in ** the FROM clause of the SELECT statement. */ sqlite3SrcListAssignCursors(pParse, pTabList); /* Look up every table named in the FROM clause of the select. If ** an entry of the FROM clause is a subquery instead of a table or view, ** then create a transient table structure to describe the subquery. */ for(i=0, pFrom=pTabList->a; inSrc; i++, pFrom++){ Table *pTab; assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); if( pFrom->pTab ) continue; assert( pFrom->fg.isRecursive==0 ); if( pFrom->zName==0 ){ #ifndef SQLITE_OMIT_SUBQUERY Select *pSel = pFrom->pSelect; /* A sub-query in the FROM clause of a SELECT */ assert( pSel!=0 ); assert( pFrom->pTab==0 ); if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; #endif #ifndef SQLITE_OMIT_CTE }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){ if( rc>1 ) return WRC_Abort; pTab = pFrom->pTab; assert( pTab!=0 ); #endif }else{ /* An ordinary table or view name in the FROM clause */ assert( pFrom->pTab==0 ); pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); if( pTab==0 ) return WRC_Abort; if( pTab->nTabRef>=0xffff ){ sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", pTab->zName); pFrom->pTab = 0; return WRC_Abort; } pTab->nTabRef++; if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ return WRC_Abort; } #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) if( !IsOrdinaryTable(pTab) ){ i16 nCol; u8 eCodeOrig = pWalker->eCode; if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; assert( pFrom->pSelect==0 ); if( IsView(pTab) ){ if( (db->flags & SQLITE_EnableView)==0 && pTab->pSchema!=db->aDb[1].pSchema ){ sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", pTab->zName); } pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0); } #ifndef SQLITE_OMIT_VIRTUALTABLE else if( ALWAYS(IsVirtual(pTab)) && pFrom->fg.fromDDL && ALWAYS(pTab->u.vtab.p!=0) && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) ){ sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", pTab->zName); } assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 ); #endif nCol = pTab->nCol; pTab->nCol = -1; pWalker->eCode = 1; /* Turn on Select.selId renumbering */ sqlite3WalkSelect(pWalker, pFrom->pSelect); pWalker->eCode = eCodeOrig; pTab->nCol = nCol; } #endif } /* Locate the index named by the INDEXED BY clause, if any. */ if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){ return WRC_Abort; } } /* Process NATURAL keywords, and ON and USING clauses of joins. */ assert( db->mallocFailed==0 || pParse->nErr!=0 ); if( pParse->nErr || sqlite3ProcessJoin(pParse, p) ){ return WRC_Abort; } /* For every "*" that occurs in the column list, insert the names of ** all columns in all tables. And for every TABLE.* insert the names ** of all columns in TABLE. The parser inserted a special expression ** with the TK_ASTERISK operator for each "*" that it found in the column ** list. The following code just has to locate the TK_ASTERISK ** expressions and expand each one to the list of all columns in ** all tables. ** ** The first loop just checks to see if there are any "*" operators ** that need expanding. */ for(k=0; knExpr; k++){ pE = pEList->a[k].pExpr; if( pE->op==TK_ASTERISK ) break; assert( pE->op!=TK_DOT || pE->pRight!=0 ); assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; elistFlags |= pE->flags; } if( knExpr ){ /* ** If we get here it means the result set contains one or more "*" ** operators that need to be expanded. Loop through each expression ** in the result set and expand them one by one. */ struct ExprList_item *a = pEList->a; ExprList *pNew = 0; int flags = pParse->db->flags; int longNames = (flags & SQLITE_FullColNames)!=0 && (flags & SQLITE_ShortColNames)==0; for(k=0; knExpr; k++){ pE = a[k].pExpr; elistFlags |= pE->flags; pRight = pE->pRight; assert( pE->op!=TK_DOT || pRight!=0 ); if( pE->op!=TK_ASTERISK && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) ){ /* This particular expression does not need to be expanded. */ pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); if( pNew ){ pNew->a[pNew->nExpr-1].zEName = a[k].zEName; pNew->a[pNew->nExpr-1].fg.eEName = a[k].fg.eEName; a[k].zEName = 0; } a[k].pExpr = 0; }else{ /* This expression is a "*" or a "TABLE.*" and needs to be ** expanded. */ int tableSeen = 0; /* Set to 1 when TABLE matches */ char *zTName = 0; /* text of name of TABLE */ int iErrOfst; if( pE->op==TK_DOT ){ assert( (selFlags & SF_NestedFrom)==0 ); assert( pE->pLeft!=0 ); assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); zTName = pE->pLeft->u.zToken; assert( ExprUseWOfst(pE->pLeft) ); iErrOfst = pE->pRight->w.iOfst; }else{ assert( ExprUseWOfst(pE) ); iErrOfst = pE->w.iOfst; } for(i=0, pFrom=pTabList->a; inSrc; i++, pFrom++){ int nAdd; /* Number of cols including rowid */ Table *pTab = pFrom->pTab; /* Table for this data source */ ExprList *pNestedFrom; /* Result-set of a nested FROM clause */ char *zTabName; /* AS name for this data source */ const char *zSchemaName = 0; /* Schema name for this data source */ int iDb; /* Schema index for this data src */ IdList *pUsing; /* USING clause for pFrom[1] */ if( (zTabName = pFrom->zAlias)==0 ){ zTabName = pTab->zName; } if( db->mallocFailed ) break; assert( (int)pFrom->fg.isNestedFrom == IsNestedFrom(pFrom->pSelect) ); if( pFrom->fg.isNestedFrom ){ assert( pFrom->pSelect!=0 ); pNestedFrom = pFrom->pSelect->pEList; assert( pNestedFrom!=0 ); assert( pNestedFrom->nExpr==pTab->nCol ); assert( VisibleRowid(pTab)==0 || ViewCanHaveRowid ); }else{ if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ continue; } pNestedFrom = 0; iDb = sqlite3SchemaToIndex(db, pTab->pSchema); zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; } if( i+1nSrc && pFrom[1].fg.isUsing && (selFlags & SF_NestedFrom)!=0 ){ int ii; pUsing = pFrom[1].u3.pUsing; for(ii=0; iinId; ii++){ const char *zUName = pUsing->a[ii].zName; pRight = sqlite3Expr(db, TK_ID, zUName); sqlite3ExprSetErrorOffset(pRight, iErrOfst); pNew = sqlite3ExprListAppend(pParse, pNew, pRight); if( pNew ){ struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; assert( pX->zEName==0 ); pX->zEName = sqlite3MPrintf(db,"..%s", zUName); pX->fg.eEName = ENAME_TAB; pX->fg.bUsingTerm = 1; } } }else{ pUsing = 0; } nAdd = pTab->nCol; if( VisibleRowid(pTab) && (selFlags & SF_NestedFrom)!=0 ) nAdd++; for(j=0; jnCol ){ zName = sqlite3RowidAlias(pTab); if( zName==0 ) continue; }else{ zName = pTab->aCol[j].zCnName; /* If pTab is actually an SF_NestedFrom sub-select, do not ** expand any ENAME_ROWID columns. */ if( pNestedFrom && pNestedFrom->a[j].fg.eEName==ENAME_ROWID ){ continue; } if( zTName && pNestedFrom && sqlite3MatchEName(&pNestedFrom->a[j], 0, zTName, 0, 0)==0 ){ continue; } /* If a column is marked as 'hidden', omit it from the expanded ** result-set list unless the SELECT has the SF_IncludeHidden ** bit set. */ if( (p->selFlags & SF_IncludeHidden)==0 && IsHiddenColumn(&pTab->aCol[j]) ){ continue; } if( (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0 && zTName==0 && (selFlags & (SF_NestedFrom))==0 ){ continue; } } assert( zName ); tableSeen = 1; if( i>0 && zTName==0 && (selFlags & SF_NestedFrom)==0 ){ if( pFrom->fg.isUsing && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0 ){ /* In a join with a USING clause, omit columns in the ** using clause from the table on the right. */ continue; } } pRight = sqlite3Expr(db, TK_ID, zName); if( (pTabList->nSrc>1 && ( (pFrom->fg.jointype & JT_LTORJ)==0 || (selFlags & SF_NestedFrom)!=0 || !inAnyUsingClause(zName,pFrom,pTabList->nSrc-i-1) ) ) || IN_RENAME_OBJECT ){ Expr *pLeft; pLeft = sqlite3Expr(db, TK_ID, zTabName); pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); if( IN_RENAME_OBJECT && pE->pLeft ){ sqlite3RenameTokenRemap(pParse, pLeft, pE->pLeft); } if( zSchemaName ){ pLeft = sqlite3Expr(db, TK_ID, zSchemaName); pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); } }else{ pExpr = pRight; } sqlite3ExprSetErrorOffset(pExpr, iErrOfst); pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); if( pNew==0 ){ break; /* OOM */ } pX = &pNew->a[pNew->nExpr-1]; assert( pX->zEName==0 ); if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ if( pNestedFrom && (!ViewCanHaveRowid || jnExpr) ){ assert( jnExpr ); pX->zEName = sqlite3DbStrDup(db, pNestedFrom->a[j].zEName); testcase( pX->zEName==0 ); }else{ pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", zSchemaName, zTabName, zName); testcase( pX->zEName==0 ); } pX->fg.eEName = (j==pTab->nCol ? ENAME_ROWID : ENAME_TAB); if( (pFrom->fg.isUsing && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0) || (pUsing && sqlite3IdListIndex(pUsing, zName)>=0) || (jnCol && (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)) ){ pX->fg.bNoExpand = 1; } }else if( longNames ){ pX->zEName = sqlite3MPrintf(db, "%s.%s", zTabName, zName); pX->fg.eEName = ENAME_NAME; }else{ pX->zEName = sqlite3DbStrDup(db, zName); pX->fg.eEName = ENAME_NAME; } } } if( !tableSeen ){ if( zTName ){ sqlite3ErrorMsg(pParse, "no such table: %s", zTName); }else{ sqlite3ErrorMsg(pParse, "no tables specified"); } } } } sqlite3ExprListDelete(db, pEList); p->pEList = pNew; } if( p->pEList ){ if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ sqlite3ErrorMsg(pParse, "too many columns in result set"); return WRC_Abort; } if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ p->selFlags |= SF_ComplexResult; } } #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x8 ){ TREETRACE(0x8,pParse,p,("After result-set wildcard expansion:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif return WRC_Continue; } #if SQLITE_DEBUG /* ** Always assert. This xSelectCallback2 implementation proves that the ** xSelectCallback2 is never invoked. */ void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ UNUSED_PARAMETER2(NotUsed, NotUsed2); assert( 0 ); } #endif /* ** This routine "expands" a SELECT statement and all of its subqueries. ** For additional information on what it means to "expand" a SELECT ** statement, see the comment on the selectExpand worker callback above. ** ** Expanding a SELECT statement is the first step in processing a ** SELECT statement. The SELECT statement must be expanded before ** name resolution is performed. ** ** If anything goes wrong, an error message is written into pParse. ** The calling function can detect the problem by looking at pParse->nErr ** and/or pParse->db->mallocFailed. */ static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ Walker w; w.xExprCallback = sqlite3ExprWalkNoop; w.pParse = pParse; if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ w.xSelectCallback = convertCompoundSelectToSubquery; w.xSelectCallback2 = 0; sqlite3WalkSelect(&w, pSelect); } w.xSelectCallback = selectExpander; w.xSelectCallback2 = sqlite3SelectPopWith; w.eCode = 0; sqlite3WalkSelect(&w, pSelect); } #ifndef SQLITE_OMIT_SUBQUERY /* ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() ** interface. ** ** For each FROM-clause subquery, add Column.zType, Column.zColl, and ** Column.affinity information to the Table structure that represents ** the result set of that subquery. ** ** The Table structure that represents the result set was constructed ** by selectExpander() but the type and collation and affinity information ** was omitted at that point because identifiers had not yet been resolved. ** This routine is called after identifier resolution. */ static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ Parse *pParse; int i; SrcList *pTabList; SrcItem *pFrom; if( p->selFlags & SF_HasTypeInfo ) return; p->selFlags |= SF_HasTypeInfo; pParse = pWalker->pParse; assert( (p->selFlags & SF_Resolved) ); pTabList = p->pSrc; for(i=0, pFrom=pTabList->a; inSrc; i++, pFrom++){ Table *pTab = pFrom->pTab; assert( pTab!=0 ); if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ /* A sub-query in the FROM clause of a SELECT */ Select *pSel = pFrom->pSelect; if( pSel ){ sqlite3SubqueryColumnTypes(pParse, pTab, pSel, SQLITE_AFF_NONE); } } } } #endif /* ** This routine adds datatype and collating sequence information to ** the Table structures of all FROM-clause subqueries in a ** SELECT statement. ** ** Use this routine after name resolution. */ static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ #ifndef SQLITE_OMIT_SUBQUERY Walker w; w.xSelectCallback = sqlite3SelectWalkNoop; w.xSelectCallback2 = selectAddSubqueryTypeInfo; w.xExprCallback = sqlite3ExprWalkNoop; w.pParse = pParse; sqlite3WalkSelect(&w, pSelect); #endif } /* ** This routine sets up a SELECT statement for processing. The ** following is accomplished: ** ** * VDBE Cursor numbers are assigned to all FROM-clause terms. ** * Ephemeral Table objects are created for all FROM-clause subqueries. ** * ON and USING clauses are shifted into WHERE statements ** * Wildcards "*" and "TABLE.*" in result sets are expanded. ** * Identifiers in expression are matched to tables. ** ** This routine acts recursively on all subqueries within the SELECT. */ void sqlite3SelectPrep( Parse *pParse, /* The parser context */ Select *p, /* The SELECT statement being coded. */ NameContext *pOuterNC /* Name context for container */ ){ assert( p!=0 || pParse->db->mallocFailed ); assert( pParse->db->pParse==pParse ); if( pParse->db->mallocFailed ) return; if( p->selFlags & SF_HasTypeInfo ) return; sqlite3SelectExpand(pParse, p); if( pParse->nErr ) return; sqlite3ResolveSelectNames(pParse, p, pOuterNC); if( pParse->nErr ) return; sqlite3SelectAddTypeInfo(pParse, p); } #if TREETRACE_ENABLED /* ** Display all information about an AggInfo object */ static void printAggInfo(AggInfo *pAggInfo){ int ii; sqlite3DebugPrintf("AggInfo %d/%p:\n", pAggInfo->selId, pAggInfo); for(ii=0; iinColumn; ii++){ struct AggInfo_col *pCol = &pAggInfo->aCol[ii]; sqlite3DebugPrintf( "agg-column[%d] pTab=%s iTable=%d iColumn=%d iMem=%d" " iSorterColumn=%d %s\n", ii, pCol->pTab ? pCol->pTab->zName : "NULL", pCol->iTable, pCol->iColumn, pAggInfo->iFirstReg+ii, pCol->iSorterColumn, ii>=pAggInfo->nAccumulator ? "" : " Accumulator"); sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); } for(ii=0; iinFunc; ii++){ sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", ii, pAggInfo->iFirstReg+pAggInfo->nColumn+ii); sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); } } #endif /* TREETRACE_ENABLED */ /* ** Analyze the arguments to aggregate functions. Create new pAggInfo->aCol[] ** entries for columns that are arguments to aggregate functions but which ** are not otherwise used. ** ** The aCol[] entries in AggInfo prior to nAccumulator are columns that ** are referenced outside of aggregate functions. These might be columns ** that are part of the GROUP by clause, for example. Other database engines ** would throw an error if there is a column reference that is not in the ** GROUP BY clause and that is not part of an aggregate function argument. ** But SQLite allows this. ** ** The aCol[] entries beginning with the aCol[nAccumulator] and following ** are column references that are used exclusively as arguments to ** aggregate functions. This routine is responsible for computing ** (or recomputing) those aCol[] entries. */ static void analyzeAggFuncArgs( AggInfo *pAggInfo, NameContext *pNC ){ int i; assert( pAggInfo!=0 ); assert( pAggInfo->iFirstReg==0 ); pNC->ncFlags |= NC_InAggFunc; for(i=0; inFunc; i++){ Expr *pExpr = pAggInfo->aFunc[i].pFExpr; assert( pExpr->op==TK_FUNCTION || pExpr->op==TK_AGG_FUNCTION ); assert( ExprUseXList(pExpr) ); sqlite3ExprAnalyzeAggList(pNC, pExpr->x.pList); if( pExpr->pLeft ){ assert( pExpr->pLeft->op==TK_ORDER ); assert( ExprUseXList(pExpr->pLeft) ); sqlite3ExprAnalyzeAggList(pNC, pExpr->pLeft->x.pList); } #ifndef SQLITE_OMIT_WINDOWFUNC assert( !IsWindowFunc(pExpr) ); if( ExprHasProperty(pExpr, EP_WinFunc) ){ sqlite3ExprAnalyzeAggregates(pNC, pExpr->y.pWin->pFilter); } #endif } pNC->ncFlags &= ~NC_InAggFunc; } /* ** An index on expressions is being used in the inner loop of an ** aggregate query with a GROUP BY clause. This routine attempts ** to adjust the AggInfo object to take advantage of index and to ** perhaps use the index as a covering index. ** */ static void optimizeAggregateUseOfIndexedExpr( Parse *pParse, /* Parsing context */ Select *pSelect, /* The SELECT statement being processed */ AggInfo *pAggInfo, /* The aggregate info */ NameContext *pNC /* Name context used to resolve agg-func args */ ){ assert( pAggInfo->iFirstReg==0 ); assert( pSelect!=0 ); assert( pSelect->pGroupBy!=0 ); pAggInfo->nColumn = pAggInfo->nAccumulator; if( ALWAYS(pAggInfo->nSortingColumn>0) ){ int mx = pSelect->pGroupBy->nExpr - 1; int j, k; for(j=0; jnColumn; j++){ k = pAggInfo->aCol[j].iSorterColumn; if( k>mx ) mx = k; } pAggInfo->nSortingColumn = mx+1; } analyzeAggFuncArgs(pAggInfo, pNC); #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x20 ){ IndexedExpr *pIEpr; TREETRACE(0x20, pParse, pSelect, ("AggInfo (possibly) adjusted for Indexed Exprs\n")); sqlite3TreeViewSelect(0, pSelect, 0); for(pIEpr=pParse->pIdxEpr; pIEpr; pIEpr=pIEpr->pIENext){ printf("data-cursor=%d index={%d,%d}\n", pIEpr->iDataCur, pIEpr->iIdxCur, pIEpr->iIdxCol); sqlite3TreeViewExpr(0, pIEpr->pExpr, 0); } printAggInfo(pAggInfo); } #else UNUSED_PARAMETER(pSelect); UNUSED_PARAMETER(pParse); #endif } /* ** Walker callback for aggregateConvertIndexedExprRefToColumn(). */ static int aggregateIdxEprRefToColCallback(Walker *pWalker, Expr *pExpr){ AggInfo *pAggInfo; struct AggInfo_col *pCol; UNUSED_PARAMETER(pWalker); if( pExpr->pAggInfo==0 ) return WRC_Continue; if( pExpr->op==TK_AGG_COLUMN ) return WRC_Continue; if( pExpr->op==TK_AGG_FUNCTION ) return WRC_Continue; if( pExpr->op==TK_IF_NULL_ROW ) return WRC_Continue; pAggInfo = pExpr->pAggInfo; if( NEVER(pExpr->iAgg>=pAggInfo->nColumn) ) return WRC_Continue; assert( pExpr->iAgg>=0 ); pCol = &pAggInfo->aCol[pExpr->iAgg]; pExpr->op = TK_AGG_COLUMN; pExpr->iTable = pCol->iTable; pExpr->iColumn = pCol->iColumn; ExprClearProperty(pExpr, EP_Skip|EP_Collate|EP_Unlikely); return WRC_Prune; } /* ** Convert every pAggInfo->aFunc[].pExpr such that any node within ** those expressions that has pAppInfo set is changed into a TK_AGG_COLUMN ** opcode. */ static void aggregateConvertIndexedExprRefToColumn(AggInfo *pAggInfo){ int i; Walker w; memset(&w, 0, sizeof(w)); w.xExprCallback = aggregateIdxEprRefToColCallback; for(i=0; inFunc; i++){ sqlite3WalkExpr(&w, pAggInfo->aFunc[i].pFExpr); } } /* ** Allocate a block of registers so that there is one register for each ** pAggInfo->aCol[] and pAggInfo->aFunc[] entry in pAggInfo. The first ** register in this block is stored in pAggInfo->iFirstReg. ** ** This routine may only be called once for each AggInfo object. Prior ** to calling this routine: ** ** * The aCol[] and aFunc[] arrays may be modified ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may not be used ** ** After calling this routine: ** ** * The aCol[] and aFunc[] arrays are fixed ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may be used ** */ static void assignAggregateRegisters(Parse *pParse, AggInfo *pAggInfo){ assert( pAggInfo!=0 ); assert( pAggInfo->iFirstReg==0 ); pAggInfo->iFirstReg = pParse->nMem + 1; pParse->nMem += pAggInfo->nColumn + pAggInfo->nFunc; } /* ** Reset the aggregate accumulator. ** ** The aggregate accumulator is a set of memory cells that hold ** intermediate results while calculating an aggregate. This ** routine generates code that stores NULLs in all of those memory ** cells. */ static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ Vdbe *v = pParse->pVdbe; int i; struct AggInfo_func *pFunc; int nReg = pAggInfo->nFunc + pAggInfo->nColumn; assert( pAggInfo->iFirstReg>0 ); assert( pParse->db->pParse==pParse ); assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 ); if( nReg==0 ) return; if( pParse->nErr ) return; sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->iFirstReg, pAggInfo->iFirstReg+nReg-1); for(pFunc=pAggInfo->aFunc, i=0; inFunc; i++, pFunc++){ if( pFunc->iDistinct>=0 ){ Expr *pE = pFunc->pFExpr; assert( ExprUseXList(pE) ); if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " "argument"); pFunc->iDistinct = -1; }else{ KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO); ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)", pFunc->pFunc->zName)); } } if( pFunc->iOBTab>=0 ){ ExprList *pOBList; KeyInfo *pKeyInfo; int nExtra = 0; assert( pFunc->pFExpr->pLeft!=0 ); assert( pFunc->pFExpr->pLeft->op==TK_ORDER ); assert( ExprUseXList(pFunc->pFExpr->pLeft) ); assert( pFunc->pFunc!=0 ); pOBList = pFunc->pFExpr->pLeft->x.pList; if( !pFunc->bOBUnique ){ nExtra++; /* One extra column for the OP_Sequence */ } if( pFunc->bOBPayload ){ /* extra columns for the function arguments */ assert( ExprUseXList(pFunc->pFExpr) ); nExtra += pFunc->pFExpr->x.pList->nExpr; } if( pFunc->bUseSubtype ){ nExtra += pFunc->pFExpr->x.pList->nExpr; } pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOBList, 0, nExtra); if( !pFunc->bOBUnique && pParse->nErr==0 ){ pKeyInfo->nKeyField++; } sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iOBTab, pOBList->nExpr+nExtra, 0, (char*)pKeyInfo, P4_KEYINFO); ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(ORDER BY)", pFunc->pFunc->zName)); } } } /* ** Invoke the OP_AggFinalize opcode for every aggregate function ** in the AggInfo structure. */ static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ Vdbe *v = pParse->pVdbe; int i; struct AggInfo_func *pF; for(i=0, pF=pAggInfo->aFunc; inFunc; i++, pF++){ ExprList *pList; assert( ExprUseXList(pF->pFExpr) ); pList = pF->pFExpr->x.pList; if( pF->iOBTab>=0 ){ /* For an ORDER BY aggregate, calls to OP_AggStep were deferred. Inputs ** were stored in emphermal table pF->iOBTab. Here, we extract those ** inputs (in ORDER BY order) and make all calls to OP_AggStep ** before doing the OP_AggFinal call. */ int iTop; /* Start of loop for extracting columns */ int nArg; /* Number of columns to extract */ int nKey; /* Key columns to be skipped */ int regAgg; /* Extract into this array */ int j; /* Loop counter */ assert( pF->pFunc!=0 ); nArg = pList->nExpr; regAgg = sqlite3GetTempRange(pParse, nArg); if( pF->bOBPayload==0 ){ nKey = 0; }else{ assert( pF->pFExpr->pLeft!=0 ); assert( ExprUseXList(pF->pFExpr->pLeft) ); assert( pF->pFExpr->pLeft->x.pList!=0 ); nKey = pF->pFExpr->pLeft->x.pList->nExpr; if( ALWAYS(!pF->bOBUnique) ) nKey++; } iTop = sqlite3VdbeAddOp1(v, OP_Rewind, pF->iOBTab); VdbeCoverage(v); for(j=nArg-1; j>=0; j--){ sqlite3VdbeAddOp3(v, OP_Column, pF->iOBTab, nKey+j, regAgg+j); } if( pF->bUseSubtype ){ int regSubtype = sqlite3GetTempReg(pParse); int iBaseCol = nKey + nArg + (pF->bOBPayload==0 && pF->bOBUnique==0); for(j=nArg-1; j>=0; j--){ sqlite3VdbeAddOp3(v, OP_Column, pF->iOBTab, iBaseCol+j, regSubtype); sqlite3VdbeAddOp2(v, OP_SetSubtype, regSubtype, regAgg+j); } sqlite3ReleaseTempReg(pParse, regSubtype); } sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, AggInfoFuncReg(pAggInfo,i)); sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); sqlite3VdbeChangeP5(v, (u8)nArg); sqlite3VdbeAddOp2(v, OP_Next, pF->iOBTab, iTop+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, iTop); sqlite3ReleaseTempRange(pParse, regAgg, nArg); } sqlite3VdbeAddOp2(v, OP_AggFinal, AggInfoFuncReg(pAggInfo,i), pList ? pList->nExpr : 0); sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); } } /* ** Generate code that will update the accumulator memory cells for an ** aggregate based on the current cursor position. ** ** If regAcc is non-zero and there are no min() or max() aggregates ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator ** registers if register regAcc contains 0. The caller will take care ** of setting and clearing regAcc. ** ** For an ORDER BY aggregate, the actual accumulator memory cell update ** is deferred until after all input rows have been received, so that they ** can be run in the requested order. In that case, instead of invoking ** OP_AggStep to update the accumulator, just add the arguments that would ** have been passed into OP_AggStep into the sorting ephemeral table ** (along with the appropriate sort key). */ static void updateAccumulator( Parse *pParse, int regAcc, AggInfo *pAggInfo, int eDistinctType ){ Vdbe *v = pParse->pVdbe; int i; int regHit = 0; int addrHitTest = 0; struct AggInfo_func *pF; struct AggInfo_col *pC; assert( pAggInfo->iFirstReg>0 ); if( pParse->nErr ) return; pAggInfo->directMode = 1; for(i=0, pF=pAggInfo->aFunc; inFunc; i++, pF++){ int nArg; int addrNext = 0; int regAgg; int regAggSz = 0; int regDistinct = 0; ExprList *pList; assert( ExprUseXList(pF->pFExpr) ); assert( !IsWindowFunc(pF->pFExpr) ); assert( pF->pFunc!=0 ); pList = pF->pFExpr->x.pList; if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ Expr *pFilter = pF->pFExpr->y.pWin->pFilter; if( pAggInfo->nAccumulator && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) && regAcc ){ /* If regAcc==0, there there exists some min() or max() function ** without a FILTER clause that will ensure the magnet registers ** are populated. */ if( regHit==0 ) regHit = ++pParse->nMem; /* If this is the first row of the group (regAcc contains 0), clear the ** "magnet" register regHit so that the accumulator registers ** are populated if the FILTER clause jumps over the the ** invocation of min() or max() altogether. Or, if this is not ** the first row (regAcc contains 1), set the magnet register so that ** the accumulators are not populated unless the min()/max() is invoked ** and indicates that they should be. */ sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); } addrNext = sqlite3VdbeMakeLabel(pParse); sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); } if( pF->iOBTab>=0 ){ /* Instead of invoking AggStep, we must push the arguments that would ** have been passed to AggStep onto the sorting table. */ int jj; /* Registered used so far in building the record */ ExprList *pOBList; /* The ORDER BY clause */ assert( pList!=0 ); nArg = pList->nExpr; assert( nArg>0 ); assert( pF->pFExpr->pLeft!=0 ); assert( pF->pFExpr->pLeft->op==TK_ORDER ); assert( ExprUseXList(pF->pFExpr->pLeft) ); pOBList = pF->pFExpr->pLeft->x.pList; assert( pOBList!=0 ); assert( pOBList->nExpr>0 ); regAggSz = pOBList->nExpr; if( !pF->bOBUnique ){ regAggSz++; /* One register for OP_Sequence */ } if( pF->bOBPayload ){ regAggSz += nArg; } if( pF->bUseSubtype ){ regAggSz += nArg; } regAggSz++; /* One extra register to hold result of MakeRecord */ regAgg = sqlite3GetTempRange(pParse, regAggSz); regDistinct = regAgg; sqlite3ExprCodeExprList(pParse, pOBList, regAgg, 0, SQLITE_ECEL_DUP); jj = pOBList->nExpr; if( !pF->bOBUnique ){ sqlite3VdbeAddOp2(v, OP_Sequence, pF->iOBTab, regAgg+jj); jj++; } if( pF->bOBPayload ){ regDistinct = regAgg+jj; sqlite3ExprCodeExprList(pParse, pList, regDistinct, 0, SQLITE_ECEL_DUP); jj += nArg; } if( pF->bUseSubtype ){ int kk; int regBase = pF->bOBPayload ? regDistinct : regAgg; for(kk=0; kknExpr; regAgg = sqlite3GetTempRange(pParse, nArg); regDistinct = regAgg; sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); }else{ nArg = 0; regAgg = 0; } if( pF->iDistinct>=0 && pList ){ if( addrNext==0 ){ addrNext = sqlite3VdbeMakeLabel(pParse); } pF->iDistinct = codeDistinct(pParse, eDistinctType, pF->iDistinct, addrNext, pList, regDistinct); } if( pF->iOBTab>=0 ){ /* Insert a new record into the ORDER BY table */ sqlite3VdbeAddOp3(v, OP_MakeRecord, regAgg, regAggSz-1, regAgg+regAggSz-1); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pF->iOBTab, regAgg+regAggSz-1, regAgg, regAggSz-1); sqlite3ReleaseTempRange(pParse, regAgg, regAggSz); }else{ /* Invoke the AggStep function */ if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ CollSeq *pColl = 0; struct ExprList_item *pItem; int j; assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ for(j=0, pItem=pList->a; !pColl && jpExpr); } if( !pColl ){ pColl = pParse->db->pDfltColl; } if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); } sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, AggInfoFuncReg(pAggInfo,i)); sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); sqlite3VdbeChangeP5(v, (u8)nArg); sqlite3ReleaseTempRange(pParse, regAgg, nArg); } if( addrNext ){ sqlite3VdbeResolveLabel(v, addrNext); } } if( regHit==0 && pAggInfo->nAccumulator ){ regHit = regAcc; } if( regHit ){ addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); } for(i=0, pC=pAggInfo->aCol; inAccumulator; i++, pC++){ sqlite3ExprCode(pParse, pC->pCExpr, AggInfoColumnReg(pAggInfo,i)); } pAggInfo->directMode = 0; if( addrHitTest ){ sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); } } /* ** Add a single OP_Explain instruction to the VDBE to explain a simple ** count(*) query ("SELECT count(*) FROM pTab"). */ #ifndef SQLITE_OMIT_EXPLAIN static void explainSimpleCount( Parse *pParse, /* Parse context */ Table *pTab, /* Table being queried */ Index *pIdx /* Index used to optimize scan, or NULL */ ){ if( pParse->explain==2 ){ int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s", pTab->zName, bCover ? " USING COVERING INDEX " : "", bCover ? pIdx->zName : "" ); } } #else # define explainSimpleCount(a,b,c) #endif /* ** sqlite3WalkExpr() callback used by havingToWhere(). ** ** If the node passed to the callback is a TK_AND node, return ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. ** ** Otherwise, return WRC_Prune. In this case, also check if the ** sub-expression matches the criteria for being moved to the WHERE ** clause. If so, add it to the WHERE clause and replace the sub-expression ** within the HAVING expression with a constant "1". */ static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ if( pExpr->op!=TK_AND ){ Select *pS = pWalker->u.pSelect; /* This routine is called before the HAVING clause of the current ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set ** here, it indicates that the expression is a correlated reference to a ** column from an outer aggregate query, or an aggregate function that ** belongs to an outer query. Do not move the expression to the WHERE ** clause in this obscure case, as doing so may corrupt the outer Select ** statements AggInfo structure. */ if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) && ExprAlwaysFalse(pExpr)==0 && pExpr->pAggInfo==0 ){ sqlite3 *db = pWalker->pParse->db; Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); if( pNew ){ Expr *pWhere = pS->pWhere; SWAP(Expr, *pNew, *pExpr); pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); pS->pWhere = pNew; pWalker->eCode = 1; } } return WRC_Prune; } return WRC_Continue; } /* ** Transfer eligible terms from the HAVING clause of a query, which is ** processed after grouping, to the WHERE clause, which is processed before ** grouping. For example, the query: ** ** SELECT * FROM WHERE a=? GROUP BY b HAVING b=? AND c=? ** ** can be rewritten as: ** ** SELECT * FROM WHERE a=? AND b=? GROUP BY b HAVING c=? ** ** A term of the HAVING expression is eligible for transfer if it consists ** entirely of constants and expressions that are also GROUP BY terms that ** use the "BINARY" collation sequence. */ static void havingToWhere(Parse *pParse, Select *p){ Walker sWalker; memset(&sWalker, 0, sizeof(sWalker)); sWalker.pParse = pParse; sWalker.xExprCallback = havingToWhereExprCb; sWalker.u.pSelect = p; sqlite3WalkExpr(&sWalker, p->pHaving); #if TREETRACE_ENABLED if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){ TREETRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif } /* ** Check to see if the pThis entry of pTabList is a self-join of another view. ** Search FROM-clause entries in the range of iFirst..iEnd, including iFirst ** but stopping before iEnd. ** ** If pThis is a self-join, then return the SrcItem for the first other ** instance of that view found. If pThis is not a self-join then return 0. */ static SrcItem *isSelfJoinView( SrcList *pTabList, /* Search for self-joins in this FROM clause */ SrcItem *pThis, /* Search for prior reference to this subquery */ int iFirst, int iEnd /* Range of FROM-clause entries to search. */ ){ SrcItem *pItem; assert( pThis->pSelect!=0 ); if( pThis->pSelect->selFlags & SF_PushDown ) return 0; while( iFirsta[iFirst++]; if( pItem->pSelect==0 ) continue; if( pItem->fg.viaCoroutine ) continue; if( pItem->zName==0 ) continue; assert( pItem->pTab!=0 ); assert( pThis->pTab!=0 ); if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; pS1 = pItem->pSelect; if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ /* The query flattener left two different CTE tables with identical ** names in the same FROM clause. */ continue; } if( pItem->pSelect->selFlags & SF_PushDown ){ /* The view was modified by some other optimization such as ** pushDownWhereTerms() */ continue; } return pItem; } return 0; } /* ** Deallocate a single AggInfo object */ static void agginfoFree(sqlite3 *db, void *pArg){ AggInfo *p = (AggInfo*)pArg; sqlite3DbFree(db, p->aCol); sqlite3DbFree(db, p->aFunc); sqlite3DbFreeNN(db, p); } /* ** Attempt to transform a query of the form ** ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) ** ** Into this: ** ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) ** ** The transformation only works if all of the following are true: ** ** * The subquery is a UNION ALL of two or more terms ** * The subquery does not have a LIMIT clause ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries ** * The outer query is a simple count(*) with no WHERE clause or other ** extraneous syntax. ** ** Return TRUE if the optimization is undertaken. */ static int countOfViewOptimization(Parse *pParse, Select *p){ Select *pSub, *pPrior; Expr *pExpr; Expr *pCount; sqlite3 *db; if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ if( p->pWhere ) return 0; if( p->pHaving ) return 0; if( p->pGroupBy ) return 0; if( p->pOrderBy ) return 0; pExpr = p->pEList->a[0].pExpr; if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ assert( ExprUseUToken(pExpr) ); if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ assert( ExprUseXList(pExpr) ); if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ if( ExprHasProperty(pExpr, EP_WinFunc) ) return 0;/* Not a window function */ pSub = p->pSrc->a[0].pSelect; if( pSub==0 ) return 0; /* The FROM is a subquery */ if( pSub->pPrior==0 ) return 0; /* Must be a compound */ if( pSub->selFlags & SF_CopyCte ) return 0; /* Not a CTE */ do{ if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ if( pSub->pWhere ) return 0; /* No WHERE clause */ if( pSub->pLimit ) return 0; /* No LIMIT clause */ if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ assert( pSub->pHaving==0 ); /* Due to the previous */ pSub = pSub->pPrior; /* Repeat over compound */ }while( pSub ); /* If we reach this point then it is OK to perform the transformation */ db = pParse->db; pCount = pExpr; pExpr = 0; pSub = p->pSrc->a[0].pSelect; p->pSrc->a[0].pSelect = 0; sqlite3SrcListDelete(db, p->pSrc); p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); while( pSub ){ Expr *pTerm; pPrior = pSub->pPrior; pSub->pPrior = 0; pSub->pNext = 0; pSub->selFlags |= SF_Aggregate; pSub->selFlags &= ~SF_Compound; pSub->nSelectRow = 0; sqlite3ParserAddCleanup(pParse, sqlite3ExprListDeleteGeneric, pSub->pEList); pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); sqlite3PExprAddSelect(pParse, pTerm, pSub); if( pExpr==0 ){ pExpr = pTerm; }else{ pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); } pSub = pPrior; } p->pEList->a[0].pExpr = pExpr; p->selFlags &= ~SF_Aggregate; #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x200 ){ TREETRACE(0x200,pParse,p,("After count-of-view optimization:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif return 1; } /* ** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same ** as pSrcItem but has the same alias as p0, then return true. ** Otherwise return false. */ static int sameSrcAlias(SrcItem *p0, SrcList *pSrc){ int i; for(i=0; inSrc; i++){ SrcItem *p1 = &pSrc->a[i]; if( p1==p0 ) continue; if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ return 1; } if( p1->pSelect && (p1->pSelect->selFlags & SF_NestedFrom)!=0 && sameSrcAlias(p0, p1->pSelect->pSrc) ){ return 1; } } return 0; } /* ** Return TRUE (non-zero) if the i-th entry in the pTabList SrcList can ** be implemented as a co-routine. The i-th entry is guaranteed to be ** a subquery. ** ** The subquery is implemented as a co-routine if all of the following are ** true: ** ** (1) The subquery will likely be implemented in the outer loop of ** the query. This will be the case if any one of the following ** conditions hold: ** (a) The subquery is the only term in the FROM clause ** (b) The subquery is the left-most term and a CROSS JOIN or similar ** requires it to be the outer loop ** (c) All of the following are true: ** (i) The subquery is the left-most subquery in the FROM clause ** (ii) There is nothing that would prevent the subquery from ** being used as the outer loop if the sqlite3WhereBegin() ** routine nominates it to that position. ** (iii) The query is not a UPDATE ... FROM ** (2) The subquery is not a CTE that should be materialized because ** (a) the AS MATERIALIZED keyword is used, or ** (b) the CTE is used multiple times and does not have the ** NOT MATERIALIZED keyword ** (3) The subquery is not part of a left operand for a RIGHT JOIN ** (4) The SQLITE_Coroutine optimization disable flag is not set ** (5) The subquery is not self-joined */ static int fromClauseTermCanBeCoroutine( Parse *pParse, /* Parsing context */ SrcList *pTabList, /* FROM clause */ int i, /* Which term of the FROM clause holds the subquery */ int selFlags /* Flags on the SELECT statement */ ){ SrcItem *pItem = &pTabList->a[i]; if( pItem->fg.isCte ){ const CteUse *pCteUse = pItem->u2.pCteUse; if( pCteUse->eM10d==M10d_Yes ) return 0; /* (2a) */ if( pCteUse->nUse>=2 && pCteUse->eM10d!=M10d_No ) return 0; /* (2b) */ } if( pTabList->a[0].fg.jointype & JT_LTORJ ) return 0; /* (3) */ if( OptimizationDisabled(pParse->db, SQLITE_Coroutines) ) return 0; /* (4) */ if( isSelfJoinView(pTabList, pItem, i+1, pTabList->nSrc)!=0 ){ return 0; /* (5) */ } if( i==0 ){ if( pTabList->nSrc==1 ) return 1; /* (1a) */ if( pTabList->a[1].fg.jointype & JT_CROSS ) return 1; /* (1b) */ if( selFlags & SF_UpdateFrom ) return 0; /* (1c-iii) */ return 1; } if( selFlags & SF_UpdateFrom ) return 0; /* (1c-iii) */ while( 1 /*exit-by-break*/ ){ if( pItem->fg.jointype & (JT_OUTER|JT_CROSS) ) return 0; /* (1c-ii) */ if( i==0 ) break; i--; pItem--; if( pItem->pSelect!=0 ) return 0; /* (1c-i) */ } return 1; } /* ** Generate code for the SELECT statement given in the p argument. ** ** The results are returned according to the SelectDest structure. ** See comments in sqliteInt.h for further information. ** ** This routine returns the number of errors. If any errors are ** encountered, then an appropriate error message is left in ** pParse->zErrMsg. ** ** This routine does NOT free the Select structure passed in. The ** calling function needs to do that. */ int sqlite3Select( Parse *pParse, /* The parser context */ Select *p, /* The SELECT statement being coded. */ SelectDest *pDest /* What to do with the query results */ ){ int i, j; /* Loop counters */ WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ Vdbe *v; /* The virtual machine under construction */ int isAgg; /* True for select lists like "count(*)" */ ExprList *pEList = 0; /* List of columns to extract. */ SrcList *pTabList; /* List of tables to select from */ Expr *pWhere; /* The WHERE clause. May be NULL */ ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ Expr *pHaving; /* The HAVING clause. May be NULL */ AggInfo *pAggInfo = 0; /* Aggregate information */ int rc = 1; /* Value to return from this function */ DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ SortCtx sSort; /* Info on how to code the ORDER BY clause */ int iEnd; /* Address of the end of the query */ sqlite3 *db; /* The database connection */ ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ u8 minMaxFlag; /* Flag for min/max queries */ db = pParse->db; assert( pParse==db->pParse ); v = sqlite3GetVdbe(pParse); if( p==0 || pParse->nErr ){ return 1; } assert( db->mallocFailed==0 ); if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; #if TREETRACE_ENABLED TREETRACE(0x1,pParse,p, ("begin processing:\n", pParse->addrExplain)); if( sqlite3TreeTrace & 0x10000 ){ if( (sqlite3TreeTrace & 0x10001)==0x10000 ){ sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d", __FILE__, __LINE__); } sqlite3ShowSelect(p); } #endif assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); if( IgnorableDistinct(pDest) ){ assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); /* All of these destinations are also able to ignore the ORDER BY clause */ if( p->pOrderBy ){ #if TREETRACE_ENABLED TREETRACE(0x800,pParse,p, ("dropping superfluous ORDER BY:\n")); if( sqlite3TreeTrace & 0x800 ){ sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY"); } #endif sqlite3ParserAddCleanup(pParse, sqlite3ExprListDeleteGeneric, p->pOrderBy); testcase( pParse->earlyCleanup ); p->pOrderBy = 0; } p->selFlags &= ~SF_Distinct; p->selFlags |= SF_NoopOrderBy; } sqlite3SelectPrep(pParse, p, 0); if( pParse->nErr ){ goto select_end; } assert( db->mallocFailed==0 ); assert( p->pEList!=0 ); #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x10 ){ TREETRACE(0x10,pParse,p, ("after name resolution:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif /* If the SF_UFSrcCheck flag is set, then this function is being called ** as part of populating the temp table for an UPDATE...FROM statement. ** In this case, it is an error if the target object (pSrc->a[0]) name ** or alias is duplicated within FROM clause (pSrc->a[1..n]). ** ** Postgres disallows this case too. The reason is that some other ** systems handle this case differently, and not all the same way, ** which is just confusing. To avoid this, we follow PG's lead and ** disallow it altogether. */ if( p->selFlags & SF_UFSrcCheck ){ SrcItem *p0 = &p->pSrc->a[0]; if( sameSrcAlias(p0, p->pSrc) ){ sqlite3ErrorMsg(pParse, "target object/alias may not appear in FROM clause: %s", p0->zAlias ? p0->zAlias : p0->pTab->zName ); goto select_end; } /* Clear the SF_UFSrcCheck flag. The check has already been performed, ** and leaving this flag set can cause errors if a compound sub-query ** in p->pSrc is flattened into this query and this function called ** again as part of compound SELECT processing. */ p->selFlags &= ~SF_UFSrcCheck; } if( pDest->eDest==SRT_Output ){ sqlite3GenerateColumnNames(pParse, p); } #ifndef SQLITE_OMIT_WINDOWFUNC if( sqlite3WindowRewrite(pParse, p) ){ assert( pParse->nErr ); goto select_end; } #if TREETRACE_ENABLED if( p->pWin && (sqlite3TreeTrace & 0x40)!=0 ){ TREETRACE(0x40,pParse,p, ("after window rewrite:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif #endif /* SQLITE_OMIT_WINDOWFUNC */ pTabList = p->pSrc; isAgg = (p->selFlags & SF_Aggregate)!=0; memset(&sSort, 0, sizeof(sSort)); sSort.pOrderBy = p->pOrderBy; /* Try to do various optimizations (flattening subqueries, and strength ** reduction of join operators) in the FROM clause up into the main query */ #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) for(i=0; !p->pPrior && inSrc; i++){ SrcItem *pItem = &pTabList->a[i]; Select *pSub = pItem->pSelect; Table *pTab = pItem->pTab; /* The expander should have already created transient Table objects ** even for FROM clause elements such as subqueries that do not correspond ** to a real table */ assert( pTab!=0 ); /* Try to simplify joins: ** ** LEFT JOIN -> JOIN ** RIGHT JOIN -> JOIN ** FULL JOIN -> RIGHT JOIN ** ** If terms of the i-th table are used in the WHERE clause in such a ** way that the i-th table cannot be the NULL row of a join, then ** perform the appropriate simplification. This is called ** "OUTER JOIN strength reduction" in the SQLite documentation. */ if( (pItem->fg.jointype & (JT_LEFT|JT_LTORJ))!=0 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor, pItem->fg.jointype & JT_LTORJ) && OptimizationEnabled(db, SQLITE_SimplifyJoin) ){ if( pItem->fg.jointype & JT_LEFT ){ if( pItem->fg.jointype & JT_RIGHT ){ TREETRACE(0x1000,pParse,p, ("FULL-JOIN simplifies to RIGHT-JOIN on term %d\n",i)); pItem->fg.jointype &= ~JT_LEFT; }else{ TREETRACE(0x1000,pParse,p, ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); unsetJoinExpr(p->pWhere, pItem->iCursor, 0); } } if( pItem->fg.jointype & JT_LTORJ ){ for(j=i+1; jnSrc; j++){ SrcItem *pI2 = &pTabList->a[j]; if( pI2->fg.jointype & JT_RIGHT ){ if( pI2->fg.jointype & JT_LEFT ){ TREETRACE(0x1000,pParse,p, ("FULL-JOIN simplifies to LEFT-JOIN on term %d\n",j)); pI2->fg.jointype &= ~JT_RIGHT; }else{ TREETRACE(0x1000,pParse,p, ("RIGHT-JOIN simplifies to JOIN on term %d\n",j)); pI2->fg.jointype &= ~(JT_RIGHT|JT_OUTER); unsetJoinExpr(p->pWhere, pI2->iCursor, 1); } } } for(j=pTabList->nSrc-1; j>=0; j--){ pTabList->a[j].fg.jointype &= ~JT_LTORJ; if( pTabList->a[j].fg.jointype & JT_RIGHT ) break; } } } /* No further action if this term of the FROM clause is not a subquery */ if( pSub==0 ) continue; /* Catch mismatch in the declared columns of a view and the number of ** columns in the SELECT on the RHS */ if( pTab->nCol!=pSub->pEList->nExpr ){ sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", pTab->nCol, pTab->zName, pSub->pEList->nExpr); goto select_end; } /* Do not attempt the usual optimizations (flattening and ORDER BY ** elimination) on a MATERIALIZED common table expression because ** a MATERIALIZED common table expression is an optimization fence. */ if( pItem->fg.isCte && pItem->u2.pCteUse->eM10d==M10d_Yes ){ continue; } /* Do not try to flatten an aggregate subquery. ** ** Flattening an aggregate subquery is only possible if the outer query ** is not a join. But if the outer query is not a join, then the subquery ** will be implemented as a co-routine and there is no advantage to ** flattening in that case. */ if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; assert( pSub->pGroupBy==0 ); /* If a FROM-clause subquery has an ORDER BY clause that is not ** really doing anything, then delete it now so that it does not ** interfere with query flattening. See the discussion at ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a ** ** Beware of these cases where the ORDER BY clause may not be safely ** omitted: ** ** (1) There is also a LIMIT clause ** (2) The subquery was added to help with window-function ** processing ** (3) The subquery is in the FROM clause of an UPDATE ** (4) The outer query uses an aggregate function other than ** the built-in count(), min(), or max(). ** (5) The ORDER BY isn't going to accomplish anything because ** one of: ** (a) The outer query has a different ORDER BY clause ** (b) The subquery is part of a join ** See forum post 062d576715d277c8 ** ** Also retain the ORDER BY if the OmitOrderBy optimization is disabled. */ if( pSub->pOrderBy!=0 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */ && pSub->pLimit==0 /* Condition (1) */ && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */ && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */ && OptimizationEnabled(db, SQLITE_OmitOrderBy) ){ TREETRACE(0x800,pParse,p, ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1)); sqlite3ParserAddCleanup(pParse, sqlite3ExprListDeleteGeneric, pSub->pOrderBy); pSub->pOrderBy = 0; } /* If the outer query contains a "complex" result set (that is, ** if the result set of the outer query uses functions or subqueries) ** and if the subquery contains an ORDER BY clause and if ** it will be implemented as a co-routine, then do not flatten. This ** restriction allows SQL constructs like this: ** ** SELECT expensive_function(x) ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); ** ** The expensive_function() is only computed on the 10 rows that ** are output, rather than every row of the table. ** ** The requirement that the outer query have a complex result set ** means that flattening does occur on simpler SQL constraints without ** the expensive_function() like: ** ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); */ if( pSub->pOrderBy!=0 && i==0 && (p->selFlags & SF_ComplexResult)!=0 && (pTabList->nSrc==1 || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0) ){ continue; } if( flattenSubquery(pParse, p, i, isAgg) ){ if( pParse->nErr ) goto select_end; /* This subquery can be absorbed into its parent. */ i = -1; } pTabList = p->pSrc; if( db->mallocFailed ) goto select_end; if( !IgnorableOrderby(pDest) ){ sSort.pOrderBy = p->pOrderBy; } } #endif #ifndef SQLITE_OMIT_COMPOUND_SELECT /* Handle compound SELECT statements using the separate multiSelect() ** procedure. */ if( p->pPrior ){ rc = multiSelect(pParse, p, pDest); #if TREETRACE_ENABLED TREETRACE(0x400,pParse,p,("end compound-select processing\n")); if( (sqlite3TreeTrace & 0x400)!=0 && ExplainQueryPlanParent(pParse)==0 ){ sqlite3TreeViewSelect(0, p, 0); } #endif if( p->pNext==0 ) ExplainQueryPlanPop(pParse); return rc; } #endif /* Do the WHERE-clause constant propagation optimization if this is ** a join. No need to speed time on this operation for non-join queries ** as the equivalent optimization will be handled by query planner in ** sqlite3WhereBegin(). */ if( p->pWhere!=0 && p->pWhere->op==TK_AND && OptimizationEnabled(db, SQLITE_PropagateConst) && propagateConstants(pParse, p) ){ #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x2000 ){ TREETRACE(0x2000,pParse,p,("After constant propagation:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif }else{ TREETRACE(0x2000,pParse,p,("Constant propagation not helpful\n")); } if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) && countOfViewOptimization(pParse, p) ){ if( db->mallocFailed ) goto select_end; pTabList = p->pSrc; } /* For each term in the FROM clause, do two things: ** (1) Authorized unreferenced tables ** (2) Generate code for all sub-queries */ for(i=0; inSrc; i++){ SrcItem *pItem = &pTabList->a[i]; SrcItem *pPrior; SelectDest dest; Select *pSub; #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) const char *zSavedAuthContext; #endif /* Issue SQLITE_READ authorizations with a fake column name for any ** tables that are referenced but from which no values are extracted. ** Examples of where these kinds of null SQLITE_READ authorizations ** would occur: ** ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" ** ** The fake column name is an empty string. It is possible for a table to ** have a column named by the empty string, in which case there is no way to ** distinguish between an unreferenced table and an actual reference to the ** "" column. The original design was for the fake column name to be a NULL, ** which would be unambiguous. But legacy authorization callbacks might ** assume the column name is non-NULL and segfault. The use of an empty ** string for the fake column name seems safer. */ if( pItem->colUsed==0 && pItem->zName!=0 ){ sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); } #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* Generate code for all sub-queries in the FROM clause */ pSub = pItem->pSelect; if( pSub==0 || pItem->addrFillSub!=0 ) continue; /* The code for a subquery should only be generated once. */ assert( pItem->addrFillSub==0 ); /* Increment Parse.nHeight by the height of the largest expression ** tree referred to by this, the parent select. The child select ** may contain expression trees of at most ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit ** more conservative than necessary, but much easier than enforcing ** an exact limit. */ pParse->nHeight += sqlite3SelectExprHeight(p); /* Make copies of constant WHERE-clause terms in the outer query down ** inside the subquery. This can help the subquery to run more efficiently. */ if( OptimizationEnabled(db, SQLITE_PushDown) && (pItem->fg.isCte==0 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2)) && pushDownWhereTerms(pParse, pSub, p->pWhere, pTabList, i) ){ #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x4000 ){ TREETRACE(0x4000,pParse,p, ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); sqlite3TreeViewSelect(0, p, 0); } #endif assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 ); }else{ TREETRACE(0x4000,pParse,p,("WHERE-lcause push-down not possible\n")); } /* Convert unused result columns of the subquery into simple NULL ** expressions, to avoid unneeded searching and computation. */ if( OptimizationEnabled(db, SQLITE_NullUnusedCols) && disableUnusedSubqueryResultColumns(pItem) ){ #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x4000 ){ TREETRACE(0x4000,pParse,p, ("Change unused result columns to NULL for subquery %d:\n", pSub->selId)); sqlite3TreeViewSelect(0, p, 0); } #endif } zSavedAuthContext = pParse->zAuthContext; pParse->zAuthContext = pItem->zName; /* Generate code to implement the subquery */ if( fromClauseTermCanBeCoroutine(pParse, pTabList, i, p->selFlags) ){ /* Implement a co-routine that will return a single row of the result ** set on each invocation. */ int addrTop = sqlite3VdbeCurrentAddr(v)+1; pItem->regReturn = ++pParse->nMem; sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); VdbeComment((v, "%!S", pItem)); pItem->addrFillSub = addrTop; sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem)); sqlite3Select(pParse, pSub, &dest); pItem->pTab->nRowLogEst = pSub->nSelectRow; pItem->fg.viaCoroutine = 1; pItem->regResult = dest.iSdst; sqlite3VdbeEndCoroutine(v, pItem->regReturn); sqlite3VdbeJumpHere(v, addrTop-1); sqlite3ClearTempRegCache(pParse); }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ /* This is a CTE for which materialization code has already been ** generated. Invoke the subroutine to compute the materialization, ** the make the pItem->iCursor be a copy of the ephemeral table that ** holds the result of the materialization. */ CteUse *pCteUse = pItem->u2.pCteUse; sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); if( pItem->iCursor!=pCteUse->iCur ){ sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); VdbeComment((v, "%!S", pItem)); } pSub->nSelectRow = pCteUse->nRowEst; }else if( (pPrior = isSelfJoinView(pTabList, pItem, 0, i))!=0 ){ /* This view has already been materialized by a prior entry in ** this same FROM clause. Reuse it. */ if( pPrior->addrFillSub ){ sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub); } sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); pSub->nSelectRow = pPrior->pSelect->nSelectRow; }else{ /* Materialize the view. If the view is not correlated, generate a ** subroutine to do the materialization so that subsequent uses of ** the same view can reuse the materialization. */ int topAddr; int onceAddr = 0; #ifdef SQLITE_ENABLE_STMT_SCANSTATUS int addrExplain; #endif pItem->regReturn = ++pParse->nMem; topAddr = sqlite3VdbeAddOp0(v, OP_Goto); pItem->addrFillSub = topAddr+1; pItem->fg.isMaterialized = 1; if( pItem->fg.isCorrelated==0 ){ /* If the subquery is not correlated and if we are not inside of ** a trigger, then we only need to compute the value of the subquery ** once. */ onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); VdbeComment((v, "materialize %!S", pItem)); }else{ VdbeNoopComment((v, "materialize %!S", pItem)); } sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); ExplainQueryPlan2(addrExplain, (pParse, 1, "MATERIALIZE %!S", pItem)); sqlite3Select(pParse, pSub, &dest); pItem->pTab->nRowLogEst = pSub->nSelectRow; if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); sqlite3VdbeAddOp2(v, OP_Return, pItem->regReturn, topAddr+1); VdbeComment((v, "end %!S", pItem)); sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1); sqlite3VdbeJumpHere(v, topAddr); sqlite3ClearTempRegCache(pParse); if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){ CteUse *pCteUse = pItem->u2.pCteUse; pCteUse->addrM9e = pItem->addrFillSub; pCteUse->regRtn = pItem->regReturn; pCteUse->iCur = pItem->iCursor; pCteUse->nRowEst = pSub->nSelectRow; } } if( db->mallocFailed ) goto select_end; pParse->nHeight -= sqlite3SelectExprHeight(p); pParse->zAuthContext = zSavedAuthContext; #endif } /* Various elements of the SELECT copied into local variables for ** convenience */ pEList = p->pEList; pWhere = p->pWhere; pGroupBy = p->pGroupBy; pHaving = p->pHaving; sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x8000 ){ TREETRACE(0x8000,pParse,p,("After all FROM-clause analysis:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and ** if the select-list is the same as the ORDER BY list, then this query ** can be rewritten as a GROUP BY. In other words, this: ** ** SELECT DISTINCT xyz FROM ... ORDER BY xyz ** ** is transformed to: ** ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz ** ** The second form is preferred as a single index (or temp-table) may be ** used for both the ORDER BY and DISTINCT processing. As originally ** written the query must use a temp-table for at least one of the ORDER ** BY and DISTINCT, and an index or separate temp-table for the other. */ if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 #ifndef SQLITE_OMIT_WINDOWFUNC && p->pWin==0 #endif ){ p->selFlags &= ~SF_Distinct; pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); p->selFlags |= SF_Aggregate; /* Notice that even thought SF_Distinct has been cleared from p->selFlags, ** the sDistinct.isTnct is still set. Hence, isTnct represents the ** original setting of the SF_Distinct flag, not the current setting */ assert( sDistinct.isTnct ); sDistinct.isTnct = 2; #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x20000 ){ TREETRACE(0x20000,pParse,p,("Transform DISTINCT into GROUP BY:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif } /* If there is an ORDER BY clause, then create an ephemeral index to ** do the sorting. But this sorting ephemeral index might end up ** being unused if the data can be extracted in pre-sorted order. ** If that is the case, then the OP_OpenEphemeral instruction will be ** changed to an OP_Noop once we figure out that the sorting index is ** not needed. The sSort.addrSortIndex variable is used to facilitate ** that change. */ if( sSort.pOrderBy ){ KeyInfo *pKeyInfo; pKeyInfo = sqlite3KeyInfoFromExprList( pParse, sSort.pOrderBy, 0, pEList->nExpr); sSort.iECursor = pParse->nTab++; sSort.addrSortIndex = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, (char*)pKeyInfo, P4_KEYINFO ); }else{ sSort.addrSortIndex = -1; } /* If the output is destined for a temporary table, open that table. */ if( pDest->eDest==SRT_EphemTab ){ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); if( p->selFlags & SF_NestedFrom ){ /* Delete or NULL-out result columns that will never be used */ int ii; for(ii=pEList->nExpr-1; ii>0 && pEList->a[ii].fg.bUsed==0; ii--){ sqlite3ExprDelete(db, pEList->a[ii].pExpr); sqlite3DbFree(db, pEList->a[ii].zEName); pEList->nExpr--; } for(ii=0; iinExpr; ii++){ if( pEList->a[ii].fg.bUsed==0 ) pEList->a[ii].pExpr->op = TK_NULL; } } } /* Set the limiter. */ iEnd = sqlite3VdbeMakeLabel(pParse); if( (p->selFlags & SF_FixedLimit)==0 ){ p->nSelectRow = 320; /* 4 billion rows */ } if( p->pLimit ) computeLimitRegisters(pParse, p, iEnd); if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); sSort.sortFlags |= SORTFLAG_UseSorter; } /* Open an ephemeral index to use for the distinct set. */ if( p->selFlags & SF_Distinct ){ sDistinct.tabTnct = pParse->nTab++; sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, sDistinct.tabTnct, 0, 0, (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), P4_KEYINFO); sqlite3VdbeChangeP5(v, BTREE_UNORDERED); sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; }else{ sDistinct.eTnctType = WHERE_DISTINCT_NOOP; } if( !isAgg && pGroupBy==0 ){ /* No aggregate functions and no GROUP BY clause */ u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) | (p->selFlags & SF_FixedLimit); #ifndef SQLITE_OMIT_WINDOWFUNC Window *pWin = p->pWin; /* Main window object (or NULL) */ if( pWin ){ sqlite3WindowCodeInit(pParse, p); } #endif assert( WHERE_USE_LIMIT==SF_FixedLimit ); /* Begin the database scan. */ TREETRACE(0x2,pParse,p,("WhereBegin\n")); pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, p->pEList, p, wctrlFlags, p->nSelectRow); if( pWInfo==0 ) goto select_end; if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); } if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); } if( sSort.pOrderBy ){ sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ sSort.pOrderBy = 0; } } TREETRACE(0x2,pParse,p,("WhereBegin returns\n")); /* If sorting index that was created by a prior OP_OpenEphemeral ** instruction ended up not being needed, then change the OP_OpenEphemeral ** into an OP_Noop. */ if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); } assert( p->pEList==pEList ); #ifndef SQLITE_OMIT_WINDOWFUNC if( pWin ){ int addrGosub = sqlite3VdbeMakeLabel(pParse); int iCont = sqlite3VdbeMakeLabel(pParse); int iBreak = sqlite3VdbeMakeLabel(pParse); int regGosub = ++pParse->nMem; sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); sqlite3VdbeResolveLabel(v, addrGosub); VdbeNoopComment((v, "inner-loop subroutine")); sSort.labelOBLopt = 0; selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); sqlite3VdbeResolveLabel(v, iCont); sqlite3VdbeAddOp1(v, OP_Return, regGosub); VdbeComment((v, "end inner-loop subroutine")); sqlite3VdbeResolveLabel(v, iBreak); }else #endif /* SQLITE_OMIT_WINDOWFUNC */ { /* Use the standard inner loop. */ selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, sqlite3WhereContinueLabel(pWInfo), sqlite3WhereBreakLabel(pWInfo)); /* End the database scan loop. */ TREETRACE(0x2,pParse,p,("WhereEnd\n")); sqlite3WhereEnd(pWInfo); } }else{ /* This case when there exist aggregate functions or a GROUP BY clause ** or both */ NameContext sNC; /* Name context for processing aggregate information */ int iAMem; /* First Mem address for storing current GROUP BY */ int iBMem; /* First Mem address for previous GROUP BY */ int iUseFlag; /* Mem address holding flag indicating that at least ** one row of the input to the aggregator has been ** processed */ int iAbortFlag; /* Mem address which causes query abort if positive */ int groupBySort; /* Rows come from source in GROUP BY order */ int addrEnd; /* End of processing for this SELECT */ int sortPTab = 0; /* Pseudotable used to decode sorting results */ int sortOut = 0; /* Output register from the sorter */ int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ /* Remove any and all aliases between the result set and the ** GROUP BY clause. */ if( pGroupBy ){ int k; /* Loop counter */ struct ExprList_item *pItem; /* For looping over expression in a list */ for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ pItem->u.x.iAlias = 0; } for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ pItem->u.x.iAlias = 0; } assert( 66==sqlite3LogEst(100) ); if( p->nSelectRow>66 ) p->nSelectRow = 66; /* If there is both a GROUP BY and an ORDER BY clause and they are ** identical, then it may be possible to disable the ORDER BY clause ** on the grounds that the GROUP BY will cause elements to come out ** in the correct order. It also may not - the GROUP BY might use a ** database index that causes rows to be grouped together as required ** but not actually sorted. Either way, record the fact that the ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp ** variable. */ if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ int ii; /* The GROUP BY processing doesn't care whether rows are delivered in ** ASC or DESC order - only that each group is returned contiguously. ** So set the ASC/DESC flags in the GROUP BY to match those in the ** ORDER BY to maximize the chances of rows being delivered in an ** order that makes the ORDER BY redundant. */ for(ii=0; iinExpr; ii++){ u8 sortFlags; sortFlags = sSort.pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_DESC; pGroupBy->a[ii].fg.sortFlags = sortFlags; } if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ orderByGrp = 1; } } }else{ assert( 0==sqlite3LogEst(1) ); p->nSelectRow = 0; } /* Create a label to jump to when we want to abort the query */ addrEnd = sqlite3VdbeMakeLabel(pParse); /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the ** SELECT statement. */ pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); if( pAggInfo ){ sqlite3ParserAddCleanup(pParse, agginfoFree, pAggInfo); testcase( pParse->earlyCleanup ); } if( db->mallocFailed ){ goto select_end; } pAggInfo->selId = p->selId; #ifdef SQLITE_DEBUG pAggInfo->pSelect = p; #endif memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; sNC.pSrcList = pTabList; sNC.uNC.pAggInfo = pAggInfo; VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; pAggInfo->pGroupBy = pGroupBy; sqlite3ExprAnalyzeAggList(&sNC, pEList); sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); if( pHaving ){ if( pGroupBy ){ assert( pWhere==p->pWhere ); assert( pHaving==p->pHaving ); assert( pGroupBy==p->pGroupBy ); havingToWhere(pParse, p); pWhere = p->pWhere; } sqlite3ExprAnalyzeAggregates(&sNC, pHaving); } pAggInfo->nAccumulator = pAggInfo->nColumn; if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); }else{ minMaxFlag = WHERE_ORDERBY_NORMAL; } analyzeAggFuncArgs(pAggInfo, &sNC); if( db->mallocFailed ) goto select_end; #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x20 ){ TREETRACE(0x20,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); sqlite3TreeViewSelect(0, p, 0); if( minMaxFlag ){ sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag); sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY"); } printAggInfo(pAggInfo); } #endif /* Processing for aggregates with GROUP BY is very different and ** much more complex than aggregates without a GROUP BY. */ if( pGroupBy ){ KeyInfo *pKeyInfo; /* Keying information for the group by clause */ int addr1; /* A-vs-B comparison jump */ int addrOutputRow; /* Start of subroutine that outputs a result row */ int regOutputRow; /* Return address register for output subroutine */ int addrSetAbort; /* Set the abort flag and return */ int addrTopOfLoop; /* Top of the input loop */ int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ int addrReset; /* Subroutine for resetting the accumulator */ int regReset; /* Return address register for reset subroutine */ ExprList *pDistinct = 0; u16 distFlag = 0; int eDist = WHERE_DISTINCT_NOOP; if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0) && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr)) && pAggInfo->aFunc[0].pFExpr->x.pList!=0 ){ Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr; pExpr = sqlite3ExprDup(db, pExpr, 0); pDistinct = sqlite3ExprListDup(db, pGroupBy, 0); pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr); distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; } /* If there is a GROUP BY clause we might need a sorting index to ** implement it. Allocate that sorting index now. If it turns out ** that we do not need it after all, the OP_SorterOpen instruction ** will be converted into a Noop. */ pAggInfo->sortingIdx = pParse->nTab++; pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 0, pAggInfo->nColumn); addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 0, (char*)pKeyInfo, P4_KEYINFO); /* Initialize memory locations used by GROUP BY aggregate processing */ iUseFlag = ++pParse->nMem; iAbortFlag = ++pParse->nMem; regOutputRow = ++pParse->nMem; addrOutputRow = sqlite3VdbeMakeLabel(pParse); regReset = ++pParse->nMem; addrReset = sqlite3VdbeMakeLabel(pParse); iAMem = pParse->nMem + 1; pParse->nMem += pGroupBy->nExpr; iBMem = pParse->nMem + 1; pParse->nMem += pGroupBy->nExpr; sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); VdbeComment((v, "clear abort flag")); sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); /* Begin a loop that will extract all source rows in GROUP BY order. ** This might involve two separate loops with an OP_Sort in between, or ** it might be a single loop that uses an index to extract information ** in the right order to begin with. */ sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); TREETRACE(0x2,pParse,p,("WhereBegin\n")); pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct, p, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY) | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0 ); if( pWInfo==0 ){ sqlite3ExprListDelete(db, pDistinct); goto select_end; } if( pParse->pIdxEpr ){ optimizeAggregateUseOfIndexedExpr(pParse, p, pAggInfo, &sNC); } assignAggregateRegisters(pParse, pAggInfo); eDist = sqlite3WhereIsDistinct(pWInfo); TREETRACE(0x2,pParse,p,("WhereBegin returns\n")); if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ /* The optimizer is able to deliver rows in group by order so ** we do not have to sort. The OP_OpenEphemeral table will be ** cancelled later because we still need to use the pKeyInfo */ groupBySort = 0; }else{ /* Rows are coming out in undetermined order. We have to push ** each row into a sorting index, terminate the first loop, ** then loop over the sorting index in order to get the output ** in sorted order */ int regBase; int regRecord; int nCol; int nGroupBy; #ifdef SQLITE_ENABLE_STMT_SCANSTATUS int addrExp; /* Address of OP_Explain instruction */ #endif ExplainQueryPlan2(addrExp, (pParse, 0, "USE TEMP B-TREE FOR %s", (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? "DISTINCT" : "GROUP BY" )); groupBySort = 1; nGroupBy = pGroupBy->nExpr; nCol = nGroupBy; j = nGroupBy; for(i=0; inColumn; i++){ if( pAggInfo->aCol[i].iSorterColumn>=j ){ nCol++; j++; } } regBase = sqlite3GetTempRange(pParse, nCol); sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); j = nGroupBy; pAggInfo->directMode = 1; for(i=0; inColumn; i++){ struct AggInfo_col *pCol = &pAggInfo->aCol[i]; if( pCol->iSorterColumn>=j ){ sqlite3ExprCode(pParse, pCol->pCExpr, j + regBase); j++; } } pAggInfo->directMode = 0; regRecord = sqlite3GetTempReg(pParse); sqlite3VdbeScanStatusCounters(v, addrExp, 0, sqlite3VdbeCurrentAddr(v)); sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); sqlite3VdbeScanStatusRange(v, addrExp, sqlite3VdbeCurrentAddr(v)-2, -1); sqlite3ReleaseTempReg(pParse, regRecord); sqlite3ReleaseTempRange(pParse, regBase, nCol); TREETRACE(0x2,pParse,p,("WhereEnd\n")); sqlite3WhereEnd(pWInfo); pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; sortOut = sqlite3GetTempReg(pParse); sqlite3VdbeScanStatusCounters(v, addrExp, sqlite3VdbeCurrentAddr(v), 0); sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); pAggInfo->useSortingIdx = 1; sqlite3VdbeScanStatusRange(v, addrExp, -1, sortPTab); sqlite3VdbeScanStatusRange(v, addrExp, -1, pAggInfo->sortingIdx); } /* If there are entries in pAgggInfo->aFunc[] that contain subexpressions ** that are indexed (and that were previously identified and tagged ** in optimizeAggregateUseOfIndexedExpr()) then those subexpressions ** must now be converted into a TK_AGG_COLUMN node so that the value ** is correctly pulled from the index rather than being recomputed. */ if( pParse->pIdxEpr ){ aggregateConvertIndexedExprRefToColumn(pAggInfo); #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x20 ){ TREETRACE(0x20, pParse, p, ("AggInfo function expressions converted to reference index\n")); sqlite3TreeViewSelect(0, p, 0); printAggInfo(pAggInfo); } #endif } /* If the index or temporary table used by the GROUP BY sort ** will naturally deliver rows in the order required by the ORDER BY ** clause, cancel the ephemeral table open coded earlier. ** ** This is an optimization - the correct answer should result regardless. ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to ** disable this optimization for testing purposes. */ if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) && (groupBySort || sqlite3WhereIsSorted(pWInfo)) ){ sSort.pOrderBy = 0; sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); } /* Evaluate the current GROUP BY terms and store in b0, b1, b2... ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) ** Then compare the current GROUP BY terms against the GROUP BY terms ** from the previous row currently stored in a0, a1, a2... */ addrTopOfLoop = sqlite3VdbeCurrentAddr(v); if( groupBySort ){ sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, sortOut, sortPTab); } for(j=0; jnExpr; j++){ if( groupBySort ){ sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); }else{ pAggInfo->directMode = 1; sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); } } sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); addr1 = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); /* Generate code that runs whenever the GROUP BY changes. ** Changes in the GROUP BY are detected by the previous code ** block. If there were no changes, this block is skipped. ** ** This code copies current group by terms in b0,b1,b2,... ** over to a0,a1,a2. It then calls the output subroutine ** and resets the aggregate accumulator registers in preparation ** for the next GROUP BY batch. */ sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); VdbeComment((v, "output one row")); sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); VdbeComment((v, "check abort flag")); sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); VdbeComment((v, "reset accumulator")); /* Update the aggregate accumulators based on the content of ** the current row */ sqlite3VdbeJumpHere(v, addr1); updateAccumulator(pParse, iUseFlag, pAggInfo, eDist); sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); VdbeComment((v, "indicate data in accumulator")); /* End of the loop */ if( groupBySort ){ sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop); VdbeCoverage(v); }else{ TREETRACE(0x2,pParse,p,("WhereEnd\n")); sqlite3WhereEnd(pWInfo); sqlite3VdbeChangeToNoop(v, addrSortingIdx); } sqlite3ExprListDelete(db, pDistinct); /* Output the final row of result */ sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); VdbeComment((v, "output final row")); /* Jump over the subroutines */ sqlite3VdbeGoto(v, addrEnd); /* Generate a subroutine that outputs a single row of the result ** set. This subroutine first looks at the iUseFlag. If iUseFlag ** is less than or equal to zero, the subroutine is a no-op. If ** the processing calls for the query to abort, this subroutine ** increments the iAbortFlag memory location before returning in ** order to signal the caller to abort. */ addrSetAbort = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); VdbeComment((v, "set abort flag")); sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); sqlite3VdbeResolveLabel(v, addrOutputRow); addrOutputRow = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v); VdbeComment((v, "Groupby result generator entry point")); sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); finalizeAggFunctions(pParse, pAggInfo); sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, addrOutputRow+1, addrSetAbort); sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); VdbeComment((v, "end groupby result generator")); /* Generate a subroutine that will reset the group-by accumulator */ sqlite3VdbeResolveLabel(v, addrReset); resetAccumulator(pParse, pAggInfo); sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); VdbeComment((v, "indicate accumulator empty")); sqlite3VdbeAddOp1(v, OP_Return, regReset); if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){ struct AggInfo_func *pF = &pAggInfo->aFunc[0]; fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); } } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ else { Table *pTab; if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ /* If isSimpleCount() returns a pointer to a Table structure, then ** the SQL statement is of the form: ** ** SELECT count(*) FROM ** ** where the Table structure returned represents table . ** ** This statement is so common that it is optimized specially. The ** OP_Count instruction is executed either on the intkey table that ** contains the data for table or on one of its indexes. It ** is better to execute the op on an index, as indexes are almost ** always spread across less pages than their corresponding tables. */ const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ Index *pIdx; /* Iterator variable */ KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ Index *pBest = 0; /* Best index found so far */ Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ sqlite3CodeVerifySchema(pParse, iDb); sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); /* Search for the index that has the lowest scan cost. ** ** (2011-04-15) Do not do a full scan of an unordered index. ** ** (2013-10-03) Do not count the entries in a partial index. ** ** In practice the KeyInfo structure will not be used. It is only ** passed to keep OP_OpenRead happy. */ if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); if( !p->pSrc->a[0].fg.notIndexed ){ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( pIdx->bUnordered==0 && pIdx->szIdxRowszTabRow && pIdx->pPartIdxWhere==0 && (!pBest || pIdx->szIdxRowszIdxRow) ){ pBest = pIdx; } } } if( pBest ){ iRoot = pBest->tnum; pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); } /* Open a read-only cursor, execute the OP_Count, close the cursor. */ sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); if( pKeyInfo ){ sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); } assignAggregateRegisters(pParse, pAggInfo); sqlite3VdbeAddOp2(v, OP_Count, iCsr, AggInfoFuncReg(pAggInfo,0)); sqlite3VdbeAddOp1(v, OP_Close, iCsr); explainSimpleCount(pParse, pTab, pBest); }else{ int regAcc = 0; /* "populate accumulators" flag */ ExprList *pDistinct = 0; u16 distFlag = 0; int eDist; /* If there are accumulator registers but no min() or max() functions ** without FILTER clauses, allocate register regAcc. Register regAcc ** will contain 0 the first time the inner loop runs, and 1 thereafter. ** The code generated by updateAccumulator() uses this to ensure ** that the accumulator registers are (a) updated only once if ** there are no min() or max functions or (b) always updated for the ** first row visited by the aggregate, so that they are updated at ** least once even if the FILTER clause means the min() or max() ** function visits zero rows. */ if( pAggInfo->nAccumulator ){ for(i=0; inFunc; i++){ if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ continue; } if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ break; } } if( i==pAggInfo->nFunc ){ regAcc = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); } }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){ assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) ); pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList; distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; } assignAggregateRegisters(pParse, pAggInfo); /* This case runs if the aggregate has no GROUP BY clause. The ** processing is much simpler since there is only a single row ** of output. */ assert( p->pGroupBy==0 ); resetAccumulator(pParse, pAggInfo); /* If this query is a candidate for the min/max optimization, then ** minMaxFlag will have been previously set to either ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will ** be an appropriate ORDER BY expression for the optimization. */ assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); TREETRACE(0x2,pParse,p,("WhereBegin\n")); pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, pDistinct, p, minMaxFlag|distFlag, 0); if( pWInfo==0 ){ goto select_end; } TREETRACE(0x2,pParse,p,("WhereBegin returns\n")); eDist = sqlite3WhereIsDistinct(pWInfo); updateAccumulator(pParse, regAcc, pAggInfo, eDist); if( eDist!=WHERE_DISTINCT_NOOP ){ struct AggInfo_func *pF = pAggInfo->aFunc; if( pF ){ fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); } } if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); if( minMaxFlag ){ sqlite3WhereMinMaxOptEarlyOut(v, pWInfo); } TREETRACE(0x2,pParse,p,("WhereEnd\n")); sqlite3WhereEnd(pWInfo); finalizeAggFunctions(pParse, pAggInfo); } sSort.pOrderBy = 0; sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); selectInnerLoop(pParse, p, -1, 0, 0, pDest, addrEnd, addrEnd); } sqlite3VdbeResolveLabel(v, addrEnd); } /* endif aggregate query */ if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ explainTempTable(pParse, "DISTINCT"); } /* If there is an ORDER BY clause, then we need to sort the results ** and send them to the callback one by one. */ if( sSort.pOrderBy ){ assert( p->pEList==pEList ); generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); } /* Jump here to skip this query */ sqlite3VdbeResolveLabel(v, iEnd); /* The SELECT has been coded. If there is an error in the Parse structure, ** set the return code to 1. Otherwise 0. */ rc = (pParse->nErr>0); /* Control jumps to here if an error is encountered above, or upon ** successful coding of the SELECT. */ select_end: assert( db->mallocFailed==0 || db->mallocFailed==1 ); assert( db->mallocFailed==0 || pParse->nErr!=0 ); sqlite3ExprListDelete(db, pMinMaxOrderBy); #ifdef SQLITE_DEBUG if( pAggInfo && !db->mallocFailed ){ #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x20 ){ TREETRACE(0x20,pParse,p,("Finished with AggInfo\n")); printAggInfo(pAggInfo); } #endif for(i=0; inColumn; i++){ Expr *pExpr = pAggInfo->aCol[i].pCExpr; if( pExpr==0 ) continue; assert( pExpr->pAggInfo==pAggInfo ); assert( pExpr->iAgg==i ); } for(i=0; inFunc; i++){ Expr *pExpr = pAggInfo->aFunc[i].pFExpr; assert( pExpr!=0 ); assert( pExpr->pAggInfo==pAggInfo ); assert( pExpr->iAgg==i ); } } #endif #if TREETRACE_ENABLED TREETRACE(0x1,pParse,p,("end processing\n")); if( (sqlite3TreeTrace & 0x40000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ sqlite3TreeViewSelect(0, p, 0); } #endif ExplainQueryPlanPop(pParse); return rc; }