/* ** 2010 November 19 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Example code for obtaining an exclusive lock on an SQLite database ** file. This method is complicated, but works for both WAL and rollback ** mode database files. The interface to the example code in this file ** consists of the following two functions: ** ** sqlite3demo_superlock() ** sqlite3demo_superunlock() */ #include "sqlite3.h" #include <string.h> /* memset(), strlen() */ #include <assert.h> /* assert() */ /* ** A structure to collect a busy-handler callback and argument and a count ** of the number of times it has been invoked. */ struct SuperlockBusy { int (*xBusy)(void*,int); /* Pointer to busy-handler function */ void *pBusyArg; /* First arg to pass to xBusy */ int nBusy; /* Number of times xBusy has been invoked */ }; typedef struct SuperlockBusy SuperlockBusy; /* ** An instance of the following structure is allocated for each active ** superlock. The opaque handle returned by sqlite3demo_superlock() is ** actually a pointer to an instance of this structure. */ struct Superlock { sqlite3 *db; /* Database handle used to lock db */ int bWal; /* True if db is a WAL database */ }; typedef struct Superlock Superlock; /* ** The pCtx pointer passed to this function is actually a pointer to a ** SuperlockBusy structure. Invoke the busy-handler function encapsulated ** by the structure and return the result. */ static int superlockBusyHandler(void *pCtx, int UNUSED){ SuperlockBusy *pBusy = (SuperlockBusy *)pCtx; if( pBusy->xBusy==0 ) return 0; return pBusy->xBusy(pBusy->pBusyArg, pBusy->nBusy++); } /* ** This function is used to determine if the main database file for ** connection db is open in WAL mode or not. If no error occurs and the ** database file is in WAL mode, set *pbWal to true and return SQLITE_OK. ** If it is not in WAL mode, set *pbWal to false. ** ** If an error occurs, return an SQLite error code. The value of *pbWal ** is undefined in this case. */ static int superlockIsWal(Superlock *pLock){ int rc; /* Return Code */ sqlite3_stmt *pStmt; /* Compiled PRAGMA journal_mode statement */ rc = sqlite3_prepare(pLock->db, "PRAGMA main.journal_mode", -1, &pStmt, 0); if( rc!=SQLITE_OK ) return rc; pLock->bWal = 0; if( SQLITE_ROW==sqlite3_step(pStmt) ){ const char *zMode = (const char *)sqlite3_column_text(pStmt, 0); if( zMode && strlen(zMode)==3 && sqlite3_strnicmp("wal", zMode, 3)==0 ){ pLock->bWal = 1; } } return sqlite3_finalize(pStmt); } /* ** Obtain an exclusive shm-lock on nByte bytes starting at offset idx ** of the file fd. If the lock cannot be obtained immediately, invoke ** the busy-handler until either it is obtained or the busy-handler ** callback returns 0. */ static int superlockShmLock( sqlite3_file *fd, /* Database file handle */ int idx, /* Offset of shm-lock to obtain */ int nByte, /* Number of consective bytes to lock */ SuperlockBusy *pBusy /* Busy-handler wrapper object */ ){ int rc; int (*xShmLock)(sqlite3_file*, int, int, int) = fd->pMethods->xShmLock; do { rc = xShmLock(fd, idx, nByte, SQLITE_SHM_LOCK|SQLITE_SHM_EXCLUSIVE); }while( rc==SQLITE_BUSY && superlockBusyHandler((void *)pBusy, 0) ); return rc; } /* ** Obtain the extra locks on the database file required for WAL databases. ** Invoke the supplied busy-handler as required. */ static int superlockWalLock( sqlite3 *db, /* Database handle open on WAL database */ SuperlockBusy *pBusy /* Busy handler wrapper object */ ){ int rc; /* Return code */ sqlite3_file *fd = 0; /* Main database file handle */ void volatile *p = 0; /* Pointer to first page of shared memory */ /* Obtain a pointer to the sqlite3_file object open on the main db file. */ rc = sqlite3_file_control(db, "main", SQLITE_FCNTL_FILE_POINTER, (void *)&fd); if( rc!=SQLITE_OK ) return rc; /* Obtain the "recovery" lock. Normally, this lock is only obtained by ** clients running database recovery. */ rc = superlockShmLock(fd, 2, 1, pBusy); if( rc!=SQLITE_OK ) return rc; /* Zero the start of the first shared-memory page. This means that any ** clients that open read or write transactions from this point on will ** have to run recovery before proceeding. Since they need the "recovery" ** lock that this process is holding to do that, no new read or write ** transactions may now be opened. Nor can a checkpoint be run, for the ** same reason. */ rc = fd->pMethods->xShmMap(fd, 0, 32*1024, 1, &p); if( rc!=SQLITE_OK ) return rc; memset((void *)p, 0, 32); /* Obtain exclusive locks on all the "read-lock" slots. Once these locks ** are held, it is guaranteed that there are no active reader, writer or ** checkpointer clients. */ rc = superlockShmLock(fd, 3, SQLITE_SHM_NLOCK-3, pBusy); return rc; } /* ** Release a superlock held on a database file. The argument passed to ** this function must have been obtained from a successful call to ** sqlite3demo_superlock(). */ void sqlite3demo_superunlock(void *pLock){ Superlock *p = (Superlock *)pLock; if( p->bWal ){ int rc; /* Return code */ int flags = SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE; sqlite3_file *fd = 0; rc = sqlite3_file_control(p->db, "main", SQLITE_FCNTL_FILE_POINTER, (void *)&fd); if( rc==SQLITE_OK ){ fd->pMethods->xShmLock(fd, 2, 1, flags); fd->pMethods->xShmLock(fd, 3, SQLITE_SHM_NLOCK-3, flags); } } sqlite3_close(p->db); sqlite3_free(p); } /* ** Obtain a superlock on the database file identified by zPath, using the ** locking primitives provided by VFS zVfs. If successful, SQLITE_OK is ** returned and output variable *ppLock is populated with an opaque handle ** that may be used with sqlite3demo_superunlock() to release the lock. ** ** If an error occurs, *ppLock is set to 0 and an SQLite error code ** (e.g. SQLITE_BUSY) is returned. ** ** If a required lock cannot be obtained immediately and the xBusy parameter ** to this function is not NULL, then xBusy is invoked in the same way ** as a busy-handler registered with SQLite (using sqlite3_busy_handler()) ** until either the lock can be obtained or the busy-handler function returns ** 0 (indicating "give up"). */ int sqlite3demo_superlock( const char *zPath, /* Path to database file to lock */ const char *zVfs, /* VFS to use to access database file */ int (*xBusy)(void*,int), /* Busy handler callback */ void *pBusyArg, /* Context arg for busy handler */ void **ppLock /* OUT: Context to pass to superunlock() */ ){ SuperlockBusy busy = {0, 0, 0}; /* Busy handler wrapper object */ int rc; /* Return code */ Superlock *pLock; pLock = sqlite3_malloc(sizeof(Superlock)); if( !pLock ) return SQLITE_NOMEM; memset(pLock, 0, sizeof(Superlock)); /* Open a database handle on the file to superlock. */ rc = sqlite3_open_v2( zPath, &pLock->db, SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE, zVfs ); /* Install a busy-handler and execute a BEGIN EXCLUSIVE. If this is not ** a WAL database, this is all we need to do. ** ** A wrapper function is used to invoke the busy-handler instead of ** registering the busy-handler function supplied by the user directly ** with SQLite. This is because the same busy-handler function may be ** invoked directly later on when attempting to obtain the extra locks ** required in WAL mode. By using the wrapper, we are able to guarantee ** that the "nBusy" integer parameter passed to the users busy-handler ** represents the total number of busy-handler invocations made within ** this call to sqlite3demo_superlock(), including any made during the ** "BEGIN EXCLUSIVE". */ if( rc==SQLITE_OK ){ busy.xBusy = xBusy; busy.pBusyArg = pBusyArg; sqlite3_busy_handler(pLock->db, superlockBusyHandler, (void *)&busy); rc = sqlite3_exec(pLock->db, "BEGIN EXCLUSIVE", 0, 0, 0); } /* If the BEGIN EXCLUSIVE was executed successfully and this is a WAL ** database, call superlockWalLock() to obtain the extra locks required ** to prevent readers, writers and/or checkpointers from accessing the ** db while this process is holding the superlock. ** ** Before attempting any WAL locks, commit the transaction started above ** to drop the WAL read and write locks currently held. Otherwise, the ** new WAL locks may conflict with the old. */ if( rc==SQLITE_OK ){ if( SQLITE_OK==(rc = superlockIsWal(pLock)) && pLock->bWal ){ rc = sqlite3_exec(pLock->db, "COMMIT", 0, 0, 0); if( rc==SQLITE_OK ){ rc = superlockWalLock(pLock->db, &busy); } } } if( rc!=SQLITE_OK ){ sqlite3demo_superunlock(pLock); *ppLock = 0; }else{ *ppLock = pLock; } return rc; } /* ** End of example code. Everything below here is the test harness. ************************************************************************** ************************************************************************** *************************************************************************/ #ifdef SQLITE_TEST #if defined(INCLUDE_SQLITE_TCL_H) # include "sqlite_tcl.h" #else # include "tcl.h" # ifndef SQLITE_TCLAPI # define SQLITE_TCLAPI # endif #endif struct InterpAndScript { Tcl_Interp *interp; Tcl_Obj *pScript; }; typedef struct InterpAndScript InterpAndScript; static void SQLITE_TCLAPI superunlock_del(ClientData cd){ sqlite3demo_superunlock((void *)cd); } static int SQLITE_TCLAPI superunlock_cmd( ClientData cd, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ if( objc!=1 ){ Tcl_WrongNumArgs(interp, 1, objv, ""); return TCL_ERROR; } Tcl_DeleteCommand(interp, Tcl_GetString(objv[0])); return TCL_OK; } static int superlock_busy(void *pCtx, int nBusy){ InterpAndScript *p = (InterpAndScript *)pCtx; Tcl_Obj *pEval; /* Script to evaluate */ int iVal = 0; /* Value to return */ pEval = Tcl_DuplicateObj(p->pScript); Tcl_IncrRefCount(pEval); Tcl_ListObjAppendElement(p->interp, pEval, Tcl_NewIntObj(nBusy)); Tcl_EvalObjEx(p->interp, pEval, TCL_EVAL_GLOBAL); Tcl_GetIntFromObj(p->interp, Tcl_GetObjResult(p->interp), &iVal); Tcl_DecrRefCount(pEval); return iVal; } /* ** Tclcmd: sqlite3demo_superlock CMDNAME PATH VFS BUSY-HANDLER-SCRIPT */ static int SQLITE_TCLAPI superlock_cmd( ClientData cd, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ void *pLock; /* Lock context */ char *zPath; char *zVfs = 0; InterpAndScript busy = {0, 0}; int (*xBusy)(void*,int) = 0; /* Busy handler callback */ int rc; /* Return code from sqlite3demo_superlock() */ if( objc<3 || objc>5 ){ Tcl_WrongNumArgs( interp, 1, objv, "CMDNAME PATH ?VFS? ?BUSY-HANDLER-SCRIPT?"); return TCL_ERROR; } zPath = Tcl_GetString(objv[2]); if( objc>3 ){ zVfs = Tcl_GetString(objv[3]); if( strlen(zVfs)==0 ) zVfs = 0; } if( objc>4 ){ busy.interp = interp; busy.pScript = objv[4]; xBusy = superlock_busy; } rc = sqlite3demo_superlock(zPath, zVfs, xBusy, &busy, &pLock); assert( rc==SQLITE_OK || pLock==0 ); assert( rc!=SQLITE_OK || pLock!=0 ); if( rc!=SQLITE_OK ){ extern const char *sqlite3ErrStr(int); Tcl_ResetResult(interp); Tcl_AppendResult(interp, sqlite3ErrStr(rc), 0); return TCL_ERROR; } Tcl_CreateObjCommand( interp, Tcl_GetString(objv[1]), superunlock_cmd, pLock, superunlock_del ); Tcl_SetObjResult(interp, objv[1]); return TCL_OK; } int SqliteSuperlock_Init(Tcl_Interp *interp){ Tcl_CreateObjCommand(interp, "sqlite3demo_superlock", superlock_cmd, 0, 0); return TCL_OK; } #endif