/* ** 2003 September 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used for creating, destroying, and populating ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) */ #include "sqliteInt.h" #include "vdbeInt.h" /* Forward references */ static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef); static void vdbeFreeOpArray(sqlite3 *, Op *, int); /* ** Create a new virtual database engine. */ Vdbe *sqlite3VdbeCreate(Parse *pParse){ sqlite3 *db = pParse->db; Vdbe *p; p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); if( p==0 ) return 0; memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); p->db = db; if( db->pVdbe ){ db->pVdbe->ppVPrev = &p->pVNext; } p->pVNext = db->pVdbe; p->ppVPrev = &db->pVdbe; db->pVdbe = p; assert( p->eVdbeState==VDBE_INIT_STATE ); p->pParse = pParse; pParse->pVdbe = p; assert( pParse->aLabel==0 ); assert( pParse->nLabel==0 ); assert( p->nOpAlloc==0 ); assert( pParse->szOpAlloc==0 ); sqlite3VdbeAddOp2(p, OP_Init, 0, 1); return p; } /* ** Return the Parse object that owns a Vdbe object. */ Parse *sqlite3VdbeParser(Vdbe *p){ return p->pParse; } /* ** Change the error string stored in Vdbe.zErrMsg */ void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ va_list ap; sqlite3DbFree(p->db, p->zErrMsg); va_start(ap, zFormat); p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); va_end(ap); } /* ** Remember the SQL string for a prepared statement. */ void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ if( p==0 ) return; p->prepFlags = prepFlags; if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ p->expmask = 0; } assert( p->zSql==0 ); p->zSql = sqlite3DbStrNDup(p->db, z, n); } #ifdef SQLITE_ENABLE_NORMALIZE /* ** Add a new element to the Vdbe->pDblStr list. */ void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){ if( p ){ int n = sqlite3Strlen30(z); DblquoteStr *pStr = sqlite3DbMallocRawNN(db, sizeof(*pStr)+n+1-sizeof(pStr->z)); if( pStr ){ pStr->pNextStr = p->pDblStr; p->pDblStr = pStr; memcpy(pStr->z, z, n+1); } } } #endif #ifdef SQLITE_ENABLE_NORMALIZE /* ** zId of length nId is a double-quoted identifier. Check to see if ** that identifier is really used as a string literal. */ int sqlite3VdbeUsesDoubleQuotedString( Vdbe *pVdbe, /* The prepared statement */ const char *zId /* The double-quoted identifier, already dequoted */ ){ DblquoteStr *pStr; assert( zId!=0 ); if( pVdbe->pDblStr==0 ) return 0; for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){ if( strcmp(zId, pStr->z)==0 ) return 1; } return 0; } #endif /* ** Swap byte-code between two VDBE structures. ** ** This happens after pB was previously run and returned ** SQLITE_SCHEMA. The statement was then reprepared in pA. ** This routine transfers the new bytecode in pA over to pB ** so that pB can be run again. The old pB byte code is ** moved back to pA so that it will be cleaned up when pA is ** finalized. */ void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ Vdbe tmp, *pTmp, **ppTmp; char *zTmp; assert( pA->db==pB->db ); tmp = *pA; *pA = *pB; *pB = tmp; pTmp = pA->pVNext; pA->pVNext = pB->pVNext; pB->pVNext = pTmp; ppTmp = pA->ppVPrev; pA->ppVPrev = pB->ppVPrev; pB->ppVPrev = ppTmp; zTmp = pA->zSql; pA->zSql = pB->zSql; pB->zSql = zTmp; #ifdef SQLITE_ENABLE_NORMALIZE zTmp = pA->zNormSql; pA->zNormSql = pB->zNormSql; pB->zNormSql = zTmp; #endif pB->expmask = pA->expmask; pB->prepFlags = pA->prepFlags; memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; } /* ** Resize the Vdbe.aOp array so that it is at least nOp elements larger ** than its current size. nOp is guaranteed to be less than or equal ** to 1024/sizeof(Op). ** ** If an out-of-memory error occurs while resizing the array, return ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain ** unchanged (this is so that any opcodes already allocated can be ** correctly deallocated along with the rest of the Vdbe). */ static int growOpArray(Vdbe *v, int nOp){ VdbeOp *pNew; Parse *p = v->pParse; /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force ** more frequent reallocs and hence provide more opportunities for ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array ** by the minimum* amount required until the size reaches 512. Normal ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current ** size of the op array or add 1KB of space, whichever is smaller. */ #ifdef SQLITE_TEST_REALLOC_STRESS sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc : (sqlite3_int64)v->nOpAlloc+nOp); #else sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc : (sqlite3_int64)(1024/sizeof(Op))); UNUSED_PARAMETER(nOp); #endif /* Ensure that the size of a VDBE does not grow too large */ if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ sqlite3OomFault(p->db); return SQLITE_NOMEM; } assert( nOp<=(int)(1024/sizeof(Op)) ); assert( nNew>=(v->nOpAlloc+nOp) ); pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); if( pNew ){ p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); v->nOpAlloc = p->szOpAlloc/sizeof(Op); v->aOp = pNew; } return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); } #ifdef SQLITE_DEBUG /* This routine is just a convenient place to set a breakpoint that will ** fire after each opcode is inserted and displayed using ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and ** pOp are available to make the breakpoint conditional. ** ** Other useful labels for breakpoints include: ** test_trace_breakpoint(pc,pOp) ** sqlite3CorruptError(lineno) ** sqlite3MisuseError(lineno) ** sqlite3CantopenError(lineno) */ static void test_addop_breakpoint(int pc, Op *pOp){ static u64 n = 0; (void)pc; (void)pOp; n++; if( n==LARGEST_UINT64 ) abort(); /* so that n is used, preventing a warning */ } #endif /* ** Slow paths for sqlite3VdbeAddOp3() and sqlite3VdbeAddOp4Int() for the ** unusual case when we need to increase the size of the Vdbe.aOp[] array ** before adding the new opcode. */ static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ assert( p->nOpAlloc<=p->nOp ); if( growOpArray(p, 1) ) return 1; assert( p->nOpAlloc>p->nOp ); return sqlite3VdbeAddOp3(p, op, p1, p2, p3); } static SQLITE_NOINLINE int addOp4IntSlow( Vdbe *p, /* Add the opcode to this VM */ int op, /* The new opcode */ int p1, /* The P1 operand */ int p2, /* The P2 operand */ int p3, /* The P3 operand */ int p4 /* The P4 operand as an integer */ ){ int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); if( p->db->mallocFailed==0 ){ VdbeOp *pOp = &p->aOp[addr]; pOp->p4type = P4_INT32; pOp->p4.i = p4; } return addr; } /* ** Add a new instruction to the list of instructions current in the ** VDBE. Return the address of the new instruction. ** ** Parameters: ** ** p Pointer to the VDBE ** ** op The opcode for this instruction ** ** p1, p2, p3, p4 Operands */ int sqlite3VdbeAddOp0(Vdbe *p, int op){ return sqlite3VdbeAddOp3(p, op, 0, 0, 0); } int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ return sqlite3VdbeAddOp3(p, op, p1, 0, 0); } int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ return sqlite3VdbeAddOp3(p, op, p1, p2, 0); } int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ int i; VdbeOp *pOp; i = p->nOp; assert( p->eVdbeState==VDBE_INIT_STATE ); assert( op>=0 && op<0xff ); if( p->nOpAlloc<=i ){ return growOp3(p, op, p1, p2, p3); } assert( p->aOp!=0 ); p->nOp++; pOp = &p->aOp[i]; assert( pOp!=0 ); pOp->opcode = (u8)op; pOp->p5 = 0; pOp->p1 = p1; pOp->p2 = p2; pOp->p3 = p3; pOp->p4.p = 0; pOp->p4type = P4_NOTUSED; /* Replicate this logic in sqlite3VdbeAddOp4Int() ** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */ #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS pOp->zComment = 0; #endif #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE) pOp->nExec = 0; pOp->nCycle = 0; #endif #ifdef SQLITE_DEBUG if( p->db->flags & SQLITE_VdbeAddopTrace ){ sqlite3VdbePrintOp(0, i, &p->aOp[i]); test_addop_breakpoint(i, &p->aOp[i]); } #endif #ifdef SQLITE_VDBE_COVERAGE pOp->iSrcLine = 0; #endif /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ** Replicate in sqlite3VdbeAddOp4Int() */ return i; } int sqlite3VdbeAddOp4Int( Vdbe *p, /* Add the opcode to this VM */ int op, /* The new opcode */ int p1, /* The P1 operand */ int p2, /* The P2 operand */ int p3, /* The P3 operand */ int p4 /* The P4 operand as an integer */ ){ int i; VdbeOp *pOp; i = p->nOp; if( p->nOpAlloc<=i ){ return addOp4IntSlow(p, op, p1, p2, p3, p4); } p->nOp++; pOp = &p->aOp[i]; assert( pOp!=0 ); pOp->opcode = (u8)op; pOp->p5 = 0; pOp->p1 = p1; pOp->p2 = p2; pOp->p3 = p3; pOp->p4.i = p4; pOp->p4type = P4_INT32; /* Replicate this logic in sqlite3VdbeAddOp3() ** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */ #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS pOp->zComment = 0; #endif #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE) pOp->nExec = 0; pOp->nCycle = 0; #endif #ifdef SQLITE_DEBUG if( p->db->flags & SQLITE_VdbeAddopTrace ){ sqlite3VdbePrintOp(0, i, &p->aOp[i]); test_addop_breakpoint(i, &p->aOp[i]); } #endif #ifdef SQLITE_VDBE_COVERAGE pOp->iSrcLine = 0; #endif /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ** Replicate in sqlite3VdbeAddOp3() */ return i; } /* Generate code for an unconditional jump to instruction iDest */ int sqlite3VdbeGoto(Vdbe *p, int iDest){ return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); } /* Generate code to cause the string zStr to be loaded into ** register iDest */ int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); } /* ** Generate code that initializes multiple registers to string or integer ** constants. The registers begin with iDest and increase consecutively. ** One register is initialized for each characgter in zTypes[]. For each ** "s" character in zTypes[], the register is a string if the argument is ** not NULL, or OP_Null if the value is a null pointer. For each "i" character ** in zTypes[], the register is initialized to an integer. ** ** If the input string does not end with "X" then an OP_ResultRow instruction ** is generated for the values inserted. */ void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ va_list ap; int i; char c; va_start(ap, zTypes); for(i=0; (c = zTypes[i])!=0; i++){ if( c=='s' ){ const char *z = va_arg(ap, const char*); sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); }else if( c=='i' ){ sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); }else{ goto skip_op_resultrow; } } sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); skip_op_resultrow: va_end(ap); } /* ** Add an opcode that includes the p4 value as a pointer. */ int sqlite3VdbeAddOp4( Vdbe *p, /* Add the opcode to this VM */ int op, /* The new opcode */ int p1, /* The P1 operand */ int p2, /* The P2 operand */ int p3, /* The P3 operand */ const char *zP4, /* The P4 operand */ int p4type /* P4 operand type */ ){ int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); sqlite3VdbeChangeP4(p, addr, zP4, p4type); return addr; } /* ** Add an OP_Function or OP_PureFunc opcode. ** ** The eCallCtx argument is information (typically taken from Expr.op2) ** that describes the calling context of the function. 0 means a general ** function call. NC_IsCheck means called by a check constraint, ** NC_IdxExpr means called as part of an index expression. NC_PartIdx ** means in the WHERE clause of a partial index. NC_GenCol means called ** while computing a generated column value. 0 is the usual case. */ int sqlite3VdbeAddFunctionCall( Parse *pParse, /* Parsing context */ int p1, /* Constant argument mask */ int p2, /* First argument register */ int p3, /* Register into which results are written */ int nArg, /* Number of argument */ const FuncDef *pFunc, /* The function to be invoked */ int eCallCtx /* Calling context */ ){ Vdbe *v = pParse->pVdbe; int nByte; int addr; sqlite3_context *pCtx; assert( v ); nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*); pCtx = sqlite3DbMallocRawNN(pParse->db, nByte); if( pCtx==0 ){ assert( pParse->db->mallocFailed ); freeEphemeralFunction(pParse->db, (FuncDef*)pFunc); return 0; } pCtx->pOut = 0; pCtx->pFunc = (FuncDef*)pFunc; pCtx->pVdbe = 0; pCtx->isError = 0; pCtx->argc = nArg; pCtx->iOp = sqlite3VdbeCurrentAddr(v); addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function, p1, p2, p3, (char*)pCtx, P4_FUNCCTX); sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef); sqlite3MayAbort(pParse); return addr; } /* ** Add an opcode that includes the p4 value with a P4_INT64 or ** P4_REAL type. */ int sqlite3VdbeAddOp4Dup8( Vdbe *p, /* Add the opcode to this VM */ int op, /* The new opcode */ int p1, /* The P1 operand */ int p2, /* The P2 operand */ int p3, /* The P3 operand */ const u8 *zP4, /* The P4 operand */ int p4type /* P4 operand type */ ){ char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); if( p4copy ) memcpy(p4copy, zP4, 8); return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); } #ifndef SQLITE_OMIT_EXPLAIN /* ** Return the address of the current EXPLAIN QUERY PLAN baseline. ** 0 means "none". */ int sqlite3VdbeExplainParent(Parse *pParse){ VdbeOp *pOp; if( pParse->addrExplain==0 ) return 0; pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain); return pOp->p2; } /* ** Set a debugger breakpoint on the following routine in order to ** monitor the EXPLAIN QUERY PLAN code generation. */ #if defined(SQLITE_DEBUG) void sqlite3ExplainBreakpoint(const char *z1, const char *z2){ (void)z1; (void)z2; } #endif /* ** Add a new OP_Explain opcode. ** ** If the bPush flag is true, then make this opcode the parent for ** subsequent Explains until sqlite3VdbeExplainPop() is called. */ int sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){ int addr = 0; #if !defined(SQLITE_DEBUG) /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined. ** But omit them (for performance) during production builds */ if( pParse->explain==2 || IS_STMT_SCANSTATUS(pParse->db) ) #endif { char *zMsg; Vdbe *v; va_list ap; int iThis; va_start(ap, zFmt); zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap); va_end(ap); v = pParse->pVdbe; iThis = v->nOp; addr = sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, zMsg, P4_DYNAMIC); sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetLastOp(v)->p4.z); if( bPush){ pParse->addrExplain = iThis; } sqlite3VdbeScanStatus(v, iThis, -1, -1, 0, 0); } return addr; } /* ** Pop the EXPLAIN QUERY PLAN stack one level. */ void sqlite3VdbeExplainPop(Parse *pParse){ sqlite3ExplainBreakpoint("POP", 0); pParse->addrExplain = sqlite3VdbeExplainParent(pParse); } #endif /* SQLITE_OMIT_EXPLAIN */ /* ** Add an OP_ParseSchema opcode. This routine is broken out from ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees ** as having been used. ** ** The zWhere string must have been obtained from sqlite3_malloc(). ** This routine will take ownership of the allocated memory. */ void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){ int j; sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); sqlite3VdbeChangeP5(p, p5); for(j=0; jdb->nDb; j++) sqlite3VdbeUsesBtree(p, j); sqlite3MayAbort(p->pParse); } /* Insert the end of a co-routine */ void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); /* Clear the temporary register cache, thereby ensuring that each ** co-routine has its own independent set of registers, because co-routines ** might expect their registers to be preserved across an OP_Yield, and ** that could cause problems if two or more co-routines are using the same ** temporary register. */ v->pParse->nTempReg = 0; v->pParse->nRangeReg = 0; } /* ** Create a new symbolic label for an instruction that has yet to be ** coded. The symbolic label is really just a negative number. The ** label can be used as the P2 value of an operation. Later, when ** the label is resolved to a specific address, the VDBE will scan ** through its operation list and change all values of P2 which match ** the label into the resolved address. ** ** The VDBE knows that a P2 value is a label because labels are ** always negative and P2 values are suppose to be non-negative. ** Hence, a negative P2 value is a label that has yet to be resolved. ** (Later:) This is only true for opcodes that have the OPFLG_JUMP ** property. ** ** Variable usage notes: ** ** Parse.aLabel[x] Stores the address that the x-th label resolves ** into. For testing (SQLITE_DEBUG), unresolved ** labels stores -1, but that is not required. ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[] ** Parse.nLabel The *negative* of the number of labels that have ** been issued. The negative is stored because ** that gives a performance improvement over storing ** the equivalent positive value. */ int sqlite3VdbeMakeLabel(Parse *pParse){ return --pParse->nLabel; } /* ** Resolve label "x" to be the address of the next instruction to ** be inserted. The parameter "x" must have been obtained from ** a prior call to sqlite3VdbeMakeLabel(). */ static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){ int nNewSize = 10 - p->nLabel; p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, nNewSize*sizeof(p->aLabel[0])); if( p->aLabel==0 ){ p->nLabelAlloc = 0; }else{ #ifdef SQLITE_DEBUG int i; for(i=p->nLabelAlloc; iaLabel[i] = -1; #endif if( nNewSize>=100 && (nNewSize/100)>(p->nLabelAlloc/100) ){ sqlite3ProgressCheck(p); } p->nLabelAlloc = nNewSize; p->aLabel[j] = v->nOp; } } void sqlite3VdbeResolveLabel(Vdbe *v, int x){ Parse *p = v->pParse; int j = ADDR(x); assert( v->eVdbeState==VDBE_INIT_STATE ); assert( j<-p->nLabel ); assert( j>=0 ); #ifdef SQLITE_DEBUG if( p->db->flags & SQLITE_VdbeAddopTrace ){ printf("RESOLVE LABEL %d to %d\n", x, v->nOp); } #endif if( p->nLabelAlloc + p->nLabel < 0 ){ resizeResolveLabel(p,v,j); }else{ assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ p->aLabel[j] = v->nOp; } } /* ** Mark the VDBE as one that can only be run one time. */ void sqlite3VdbeRunOnlyOnce(Vdbe *p){ sqlite3VdbeAddOp2(p, OP_Expire, 1, 1); } /* ** Mark the VDBE as one that can be run multiple times. */ void sqlite3VdbeReusable(Vdbe *p){ int i; for(i=1; ALWAYS(inOp); i++){ if( ALWAYS(p->aOp[i].opcode==OP_Expire) ){ p->aOp[1].opcode = OP_Noop; break; } } } #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ /* ** The following type and function are used to iterate through all opcodes ** in a Vdbe main program and each of the sub-programs (triggers) it may ** invoke directly or indirectly. It should be used as follows: ** ** Op *pOp; ** VdbeOpIter sIter; ** ** memset(&sIter, 0, sizeof(sIter)); ** sIter.v = v; // v is of type Vdbe* ** while( (pOp = opIterNext(&sIter)) ){ ** // Do something with pOp ** } ** sqlite3DbFree(v->db, sIter.apSub); ** */ typedef struct VdbeOpIter VdbeOpIter; struct VdbeOpIter { Vdbe *v; /* Vdbe to iterate through the opcodes of */ SubProgram **apSub; /* Array of subprograms */ int nSub; /* Number of entries in apSub */ int iAddr; /* Address of next instruction to return */ int iSub; /* 0 = main program, 1 = first sub-program etc. */ }; static Op *opIterNext(VdbeOpIter *p){ Vdbe *v = p->v; Op *pRet = 0; Op *aOp; int nOp; if( p->iSub<=p->nSub ){ if( p->iSub==0 ){ aOp = v->aOp; nOp = v->nOp; }else{ aOp = p->apSub[p->iSub-1]->aOp; nOp = p->apSub[p->iSub-1]->nOp; } assert( p->iAddriAddr]; p->iAddr++; if( p->iAddr==nOp ){ p->iSub++; p->iAddr = 0; } if( pRet->p4type==P4_SUBPROGRAM ){ int nByte = (p->nSub+1)*sizeof(SubProgram*); int j; for(j=0; jnSub; j++){ if( p->apSub[j]==pRet->p4.pProgram ) break; } if( j==p->nSub ){ p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); if( !p->apSub ){ pRet = 0; }else{ p->apSub[p->nSub++] = pRet->p4.pProgram; } } } } return pRet; } /* ** Check if the program stored in the VM associated with pParse may ** throw an ABORT exception (causing the statement, but not entire transaction ** to be rolled back). This condition is true if the main program or any ** sub-programs contains any of the following: ** ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. ** * OP_Destroy ** * OP_VUpdate ** * OP_VCreate ** * OP_VRename ** * OP_FkCounter with P2==0 (immediate foreign key constraint) ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine ** (for CREATE TABLE AS SELECT ...) ** ** Then check that the value of Parse.mayAbort is true if an ** ABORT may be thrown, or false otherwise. Return true if it does ** match, or false otherwise. This function is intended to be used as ** part of an assert statement in the compiler. Similar to: ** ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); */ int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ int hasAbort = 0; int hasFkCounter = 0; int hasCreateTable = 0; int hasCreateIndex = 0; int hasInitCoroutine = 0; Op *pOp; VdbeOpIter sIter; if( v==0 ) return 0; memset(&sIter, 0, sizeof(sIter)); sIter.v = v; while( (pOp = opIterNext(&sIter))!=0 ){ int opcode = pOp->opcode; if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename || opcode==OP_VDestroy || opcode==OP_VCreate || opcode==OP_ParseSchema || opcode==OP_Function || opcode==OP_PureFunc || ((opcode==OP_Halt || opcode==OP_HaltIfNull) && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort)) ){ hasAbort = 1; break; } if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; if( mayAbort ){ /* hasCreateIndex may also be set for some DELETE statements that use ** OP_Clear. So this routine may end up returning true in the case ** where a "DELETE FROM tbl" has a statement-journal but does not ** require one. This is not so bad - it is an inefficiency, not a bug. */ if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1; if( opcode==OP_Clear ) hasCreateIndex = 1; } if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; #ifndef SQLITE_OMIT_FOREIGN_KEY if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ hasFkCounter = 1; } #endif } sqlite3DbFree(v->db, sIter.apSub); /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. ** If malloc failed, then the while() loop above may not have iterated ** through all opcodes and hasAbort may be set incorrectly. Return ** true for this case to prevent the assert() in the callers frame ** from failing. */ return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter || (hasCreateTable && hasInitCoroutine) || hasCreateIndex ); } #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ #ifdef SQLITE_DEBUG /* ** Increment the nWrite counter in the VDBE if the cursor is not an ** ephemeral cursor, or if the cursor argument is NULL. */ void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){ if( pC==0 || (pC->eCurType!=CURTYPE_SORTER && pC->eCurType!=CURTYPE_PSEUDO && !pC->isEphemeral) ){ p->nWrite++; } } #endif #ifdef SQLITE_DEBUG /* ** Assert if an Abort at this point in time might result in a corrupt ** database. */ void sqlite3VdbeAssertAbortable(Vdbe *p){ assert( p->nWrite==0 || p->usesStmtJournal ); } #endif /* ** This routine is called after all opcodes have been inserted. It loops ** through all the opcodes and fixes up some details. ** ** (1) For each jump instruction with a negative P2 value (a label) ** resolve the P2 value to an actual address. ** ** (2) Compute the maximum number of arguments used by any SQL function ** and store that value in *pMaxFuncArgs. ** ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately ** indicate what the prepared statement actually does. ** ** (4) (discontinued) ** ** (5) Reclaim the memory allocated for storing labels. ** ** This routine will only function correctly if the mkopcodeh.tcl generator ** script numbers the opcodes correctly. Changes to this routine must be ** coordinated with changes to mkopcodeh.tcl. */ static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ int nMaxArgs = *pMaxFuncArgs; Op *pOp; Parse *pParse = p->pParse; int *aLabel = pParse->aLabel; assert( pParse->db->mallocFailed==0 ); /* tag-20230419-1 */ p->readOnly = 1; p->bIsReader = 0; pOp = &p->aOp[p->nOp-1]; assert( p->aOp[0].opcode==OP_Init ); while( 1 /* Loop terminates when it reaches the OP_Init opcode */ ){ /* Only JUMP opcodes and the short list of special opcodes in the switch ** below need to be considered. The mkopcodeh.tcl generator script groups ** all these opcodes together near the front of the opcode list. Skip ** any opcode that does not need processing by virtual of the fact that ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. */ if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing ** cases from this switch! */ switch( pOp->opcode ){ case OP_Transaction: { if( pOp->p2!=0 ) p->readOnly = 0; /* no break */ deliberate_fall_through } case OP_AutoCommit: case OP_Savepoint: { p->bIsReader = 1; break; } #ifndef SQLITE_OMIT_WAL case OP_Checkpoint: #endif case OP_Vacuum: case OP_JournalMode: { p->readOnly = 0; p->bIsReader = 1; break; } case OP_Init: { assert( pOp->p2>=0 ); goto resolve_p2_values_loop_exit; } #ifndef SQLITE_OMIT_VIRTUALTABLE case OP_VUpdate: { if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; break; } case OP_VFilter: { int n; assert( (pOp - p->aOp) >= 3 ); assert( pOp[-1].opcode==OP_Integer ); n = pOp[-1].p1; if( n>nMaxArgs ) nMaxArgs = n; /* Fall through into the default case */ /* no break */ deliberate_fall_through } #endif default: { if( pOp->p2<0 ){ /* The mkopcodeh.tcl script has so arranged things that the only ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to ** have non-negative values for P2. */ assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); assert( ADDR(pOp->p2)<-pParse->nLabel ); assert( aLabel!=0 ); /* True because of tag-20230419-1 */ pOp->p2 = aLabel[ADDR(pOp->p2)]; } /* OPFLG_JUMP opcodes never have P2==0, though OPFLG_JUMP0 opcodes ** might */ assert( pOp->p2>0 || (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP0)!=0 ); /* Jumps never go off the end of the bytecode array */ assert( pOp->p2nOp || (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)==0 ); break; } } /* The mkopcodeh.tcl script has so arranged things that the only ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to ** have non-negative values for P2. */ assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); } assert( pOp>p->aOp ); pOp--; } resolve_p2_values_loop_exit: if( aLabel ){ sqlite3DbNNFreeNN(p->db, pParse->aLabel); pParse->aLabel = 0; } pParse->nLabel = 0; *pMaxFuncArgs = nMaxArgs; assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); } #ifdef SQLITE_DEBUG /* ** Check to see if a subroutine contains a jump to a location outside of ** the subroutine. If a jump outside the subroutine is detected, add code ** that will cause the program to halt with an error message. ** ** The subroutine consists of opcodes between iFirst and iLast. Jumps to ** locations within the subroutine are acceptable. iRetReg is a register ** that contains the return address. Jumps to outside the range of iFirst ** through iLast are also acceptable as long as the jump destination is ** an OP_Return to iReturnAddr. ** ** A jump to an unresolved label means that the jump destination will be ** beyond the current address. That is normally a jump to an early ** termination and is consider acceptable. ** ** This routine only runs during debug builds. The purpose is (of course) ** to detect invalid escapes out of a subroutine. The OP_Halt opcode ** is generated rather than an assert() or other error, so that ".eqp full" ** will still work to show the original bytecode, to aid in debugging. */ void sqlite3VdbeNoJumpsOutsideSubrtn( Vdbe *v, /* The byte-code program under construction */ int iFirst, /* First opcode of the subroutine */ int iLast, /* Last opcode of the subroutine */ int iRetReg /* Subroutine return address register */ ){ VdbeOp *pOp; Parse *pParse; int i; sqlite3_str *pErr = 0; assert( v!=0 ); pParse = v->pParse; assert( pParse!=0 ); if( pParse->nErr ) return; assert( iLast>=iFirst ); assert( iLastnOp ); pOp = &v->aOp[iFirst]; for(i=iFirst; i<=iLast; i++, pOp++){ if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ){ int iDest = pOp->p2; /* Jump destination */ if( iDest==0 ) continue; if( pOp->opcode==OP_Gosub ) continue; if( pOp->p3==20230325 && pOp->opcode==OP_NotNull ){ /* This is a deliberately taken illegal branch. tag-20230325-2 */ continue; } if( iDest<0 ){ int j = ADDR(iDest); assert( j>=0 ); if( j>=-pParse->nLabel || pParse->aLabel[j]<0 ){ continue; } iDest = pParse->aLabel[j]; } if( iDestiLast ){ int j = iDest; for(; jnOp; j++){ VdbeOp *pX = &v->aOp[j]; if( pX->opcode==OP_Return ){ if( pX->p1==iRetReg ) break; continue; } if( pX->opcode==OP_Noop ) continue; if( pX->opcode==OP_Explain ) continue; if( pErr==0 ){ pErr = sqlite3_str_new(0); }else{ sqlite3_str_appendchar(pErr, 1, '\n'); } sqlite3_str_appendf(pErr, "Opcode at %d jumps to %d which is outside the " "subroutine at %d..%d", i, iDest, iFirst, iLast); break; } } } } if( pErr ){ char *zErr = sqlite3_str_finish(pErr); sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_INTERNAL, OE_Abort, 0, zErr, 0); sqlite3_free(zErr); sqlite3MayAbort(pParse); } } #endif /* SQLITE_DEBUG */ /* ** Return the address of the next instruction to be inserted. */ int sqlite3VdbeCurrentAddr(Vdbe *p){ assert( p->eVdbeState==VDBE_INIT_STATE ); return p->nOp; } /* ** Verify that at least N opcode slots are available in p without ** having to malloc for more space (except when compiled using ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing ** to verify that certain calls to sqlite3VdbeAddOpList() can never ** fail due to a OOM fault and hence that the return value from ** sqlite3VdbeAddOpList() will always be non-NULL. */ #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ assert( p->nOp + N <= p->nOpAlloc ); } #endif /* ** Verify that the VM passed as the only argument does not contain ** an OP_ResultRow opcode. Fail an assert() if it does. This is used ** by code in pragma.c to ensure that the implementation of certain ** pragmas comports with the flags specified in the mkpragmatab.tcl ** script. */ #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ int i; for(i=0; inOp; i++){ assert( p->aOp[i].opcode!=OP_ResultRow ); } } #endif /* ** Generate code (a single OP_Abortable opcode) that will ** verify that the VDBE program can safely call Abort in the current ** context. */ #if defined(SQLITE_DEBUG) void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){ if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable); } #endif /* ** This function returns a pointer to the array of opcodes associated with ** the Vdbe passed as the first argument. It is the callers responsibility ** to arrange for the returned array to be eventually freed using the ** vdbeFreeOpArray() function. ** ** Before returning, *pnOp is set to the number of entries in the returned ** array. Also, *pnMaxArg is set to the larger of its current value and ** the number of entries in the Vdbe.apArg[] array required to execute the ** returned program. */ VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ VdbeOp *aOp = p->aOp; assert( aOp && !p->db->mallocFailed ); /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ assert( DbMaskAllZero(p->btreeMask) ); resolveP2Values(p, pnMaxArg); *pnOp = p->nOp; p->aOp = 0; return aOp; } /* ** Add a whole list of operations to the operation stack. Return a ** pointer to the first operation inserted. ** ** Non-zero P2 arguments to jump instructions are automatically adjusted ** so that the jump target is relative to the first operation inserted. */ VdbeOp *sqlite3VdbeAddOpList( Vdbe *p, /* Add opcodes to the prepared statement */ int nOp, /* Number of opcodes to add */ VdbeOpList const *aOp, /* The opcodes to be added */ int iLineno /* Source-file line number of first opcode */ ){ int i; VdbeOp *pOut, *pFirst; assert( nOp>0 ); assert( p->eVdbeState==VDBE_INIT_STATE ); if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){ return 0; } pFirst = pOut = &p->aOp[p->nOp]; for(i=0; iopcode = aOp->opcode; pOut->p1 = aOp->p1; pOut->p2 = aOp->p2; assert( aOp->p2>=0 ); if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ pOut->p2 += p->nOp; } pOut->p3 = aOp->p3; pOut->p4type = P4_NOTUSED; pOut->p4.p = 0; pOut->p5 = 0; #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS pOut->zComment = 0; #endif #ifdef SQLITE_VDBE_COVERAGE pOut->iSrcLine = iLineno+i; #else (void)iLineno; #endif #ifdef SQLITE_DEBUG if( p->db->flags & SQLITE_VdbeAddopTrace ){ sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); } #endif } p->nOp += nOp; return pFirst; } #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) /* ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). */ void sqlite3VdbeScanStatus( Vdbe *p, /* VM to add scanstatus() to */ int addrExplain, /* Address of OP_Explain (or 0) */ int addrLoop, /* Address of loop counter */ int addrVisit, /* Address of rows visited counter */ LogEst nEst, /* Estimated number of output rows */ const char *zName /* Name of table or index being scanned */ ){ if( IS_STMT_SCANSTATUS(p->db) ){ sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus); ScanStatus *aNew; aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); if( aNew ){ ScanStatus *pNew = &aNew[p->nScan++]; memset(pNew, 0, sizeof(ScanStatus)); pNew->addrExplain = addrExplain; pNew->addrLoop = addrLoop; pNew->addrVisit = addrVisit; pNew->nEst = nEst; pNew->zName = sqlite3DbStrDup(p->db, zName); p->aScan = aNew; } } } /* ** Add the range of instructions from addrStart to addrEnd (inclusive) to ** the set of those corresponding to the sqlite3_stmt_scanstatus() counters ** associated with the OP_Explain instruction at addrExplain. The ** sum of the sqlite3Hwtime() values for each of these instructions ** will be returned for SQLITE_SCANSTAT_NCYCLE requests. */ void sqlite3VdbeScanStatusRange( Vdbe *p, int addrExplain, int addrStart, int addrEnd ){ if( IS_STMT_SCANSTATUS(p->db) ){ ScanStatus *pScan = 0; int ii; for(ii=p->nScan-1; ii>=0; ii--){ pScan = &p->aScan[ii]; if( pScan->addrExplain==addrExplain ) break; pScan = 0; } if( pScan ){ if( addrEnd<0 ) addrEnd = sqlite3VdbeCurrentAddr(p)-1; for(ii=0; iiaAddrRange); ii+=2){ if( pScan->aAddrRange[ii]==0 ){ pScan->aAddrRange[ii] = addrStart; pScan->aAddrRange[ii+1] = addrEnd; break; } } } } } /* ** Set the addresses for the SQLITE_SCANSTAT_NLOOP and SQLITE_SCANSTAT_NROW ** counters for the query element associated with the OP_Explain at ** addrExplain. */ void sqlite3VdbeScanStatusCounters( Vdbe *p, int addrExplain, int addrLoop, int addrVisit ){ if( IS_STMT_SCANSTATUS(p->db) ){ ScanStatus *pScan = 0; int ii; for(ii=p->nScan-1; ii>=0; ii--){ pScan = &p->aScan[ii]; if( pScan->addrExplain==addrExplain ) break; pScan = 0; } if( pScan ){ if( addrLoop>0 ) pScan->addrLoop = addrLoop; if( addrVisit>0 ) pScan->addrVisit = addrVisit; } } } #endif /* defined(SQLITE_ENABLE_STMT_SCANSTATUS) */ /* ** Change the value of the opcode, or P1, P2, P3, or P5 operands ** for a specific instruction. */ void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){ assert( addr>=0 ); sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; } void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ assert( addr>=0 ); sqlite3VdbeGetOp(p,addr)->p1 = val; } void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ assert( addr>=0 || p->db->mallocFailed ); sqlite3VdbeGetOp(p,addr)->p2 = val; } void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ assert( addr>=0 ); sqlite3VdbeGetOp(p,addr)->p3 = val; } void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ assert( p->nOp>0 || p->db->mallocFailed ); if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; } /* ** If the previous opcode is an OP_Column that delivers results ** into register iDest, then add the OPFLAG_TYPEOFARG flag to that ** opcode. */ void sqlite3VdbeTypeofColumn(Vdbe *p, int iDest){ VdbeOp *pOp = sqlite3VdbeGetLastOp(p); if( pOp->p3==iDest && pOp->opcode==OP_Column ){ pOp->p5 |= OPFLAG_TYPEOFARG; } } /* ** Change the P2 operand of instruction addr so that it points to ** the address of the next instruction to be coded. */ void sqlite3VdbeJumpHere(Vdbe *p, int addr){ sqlite3VdbeChangeP2(p, addr, p->nOp); } /* ** Change the P2 operand of the jump instruction at addr so that ** the jump lands on the next opcode. Or if the jump instruction was ** the previous opcode (and is thus a no-op) then simply back up ** the next instruction counter by one slot so that the jump is ** overwritten by the next inserted opcode. ** ** This routine is an optimization of sqlite3VdbeJumpHere() that ** strives to omit useless byte-code like this: ** ** 7 Once 0 8 0 ** 8 ... */ void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){ if( addr==p->nOp-1 ){ assert( p->aOp[addr].opcode==OP_Once || p->aOp[addr].opcode==OP_If || p->aOp[addr].opcode==OP_FkIfZero ); assert( p->aOp[addr].p4type==0 ); #ifdef SQLITE_VDBE_COVERAGE sqlite3VdbeGetLastOp(p)->iSrcLine = 0; /* Erase VdbeCoverage() macros */ #endif p->nOp--; }else{ sqlite3VdbeChangeP2(p, addr, p->nOp); } } /* ** If the input FuncDef structure is ephemeral, then free it. If ** the FuncDef is not ephemeral, then do nothing. */ static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ assert( db!=0 ); if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ sqlite3DbNNFreeNN(db, pDef); } } /* ** Delete a P4 value if necessary. */ static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); sqlite3DbNNFreeNN(db, p); } static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ assert( db!=0 ); freeEphemeralFunction(db, p->pFunc); sqlite3DbNNFreeNN(db, p); } static void freeP4(sqlite3 *db, int p4type, void *p4){ assert( db ); switch( p4type ){ case P4_FUNCCTX: { freeP4FuncCtx(db, (sqlite3_context*)p4); break; } case P4_REAL: case P4_INT64: case P4_DYNAMIC: case P4_INTARRAY: { if( p4 ) sqlite3DbNNFreeNN(db, p4); break; } case P4_KEYINFO: { if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); break; } #ifdef SQLITE_ENABLE_CURSOR_HINTS case P4_EXPR: { sqlite3ExprDelete(db, (Expr*)p4); break; } #endif case P4_FUNCDEF: { freeEphemeralFunction(db, (FuncDef*)p4); break; } case P4_MEM: { if( db->pnBytesFreed==0 ){ sqlite3ValueFree((sqlite3_value*)p4); }else{ freeP4Mem(db, (Mem*)p4); } break; } case P4_VTAB : { if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); break; } case P4_TABLEREF: { if( db->pnBytesFreed==0 ) sqlite3DeleteTable(db, (Table*)p4); break; } } } /* ** Free the space allocated for aOp and any p4 values allocated for the ** opcodes contained within. If aOp is not NULL it is assumed to contain ** nOp entries. */ static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ assert( nOp>=0 ); assert( db!=0 ); if( aOp ){ Op *pOp = &aOp[nOp-1]; while(1){ /* Exit via break */ if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS sqlite3DbFree(db, pOp->zComment); #endif if( pOp==aOp ) break; pOp--; } sqlite3DbNNFreeNN(db, aOp); } } /* ** Link the SubProgram object passed as the second argument into the linked ** list at Vdbe.pSubProgram. This list is used to delete all sub-program ** objects when the VM is no longer required. */ void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ p->pNext = pVdbe->pProgram; pVdbe->pProgram = p; } /* ** Return true if the given Vdbe has any SubPrograms. */ int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){ return pVdbe->pProgram!=0; } /* ** Change the opcode at addr into OP_Noop */ int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ VdbeOp *pOp; if( p->db->mallocFailed ) return 0; assert( addr>=0 && addrnOp ); pOp = &p->aOp[addr]; freeP4(p->db, pOp->p4type, pOp->p4.p); pOp->p4type = P4_NOTUSED; pOp->p4.z = 0; pOp->opcode = OP_Noop; return 1; } /* ** If the last opcode is "op" and it is not a jump destination, ** then remove it. Return true if and only if an opcode was removed. */ int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ return sqlite3VdbeChangeToNoop(p, p->nOp-1); }else{ return 0; } } #ifdef SQLITE_DEBUG /* ** Generate an OP_ReleaseReg opcode to indicate that a range of ** registers, except any identified by mask, are no longer in use. */ void sqlite3VdbeReleaseRegisters( Parse *pParse, /* Parsing context */ int iFirst, /* Index of first register to be released */ int N, /* Number of registers to release */ u32 mask, /* Mask of registers to NOT release */ int bUndefine /* If true, mark registers as undefined */ ){ if( N==0 || OptimizationDisabled(pParse->db, SQLITE_ReleaseReg) ) return; assert( pParse->pVdbe ); assert( iFirst>=1 ); assert( iFirst+N-1<=pParse->nMem ); if( N<=31 && mask!=0 ){ while( N>0 && (mask&1)!=0 ){ mask >>= 1; iFirst++; N--; } while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){ mask &= ~MASKBIT32(N-1); N--; } } if( N>0 ){ sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask); if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1); } } #endif /* SQLITE_DEBUG */ /* ** Change the value of the P4 operand for a specific instruction. ** This routine is useful when a large program is loaded from a ** static array using sqlite3VdbeAddOpList but we want to make a ** few minor changes to the program. ** ** If n>=0 then the P4 operand is dynamic, meaning that a copy of ** the string is made into memory obtained from sqlite3_malloc(). ** A value of n==0 means copy bytes of zP4 up to and including the ** first null byte. If n>0 then copy n+1 bytes of zP4. ** ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points ** to a string or structure that is guaranteed to exist for the lifetime of ** the Vdbe. In these cases we can just copy the pointer. ** ** If addr<0 then change P4 on the most recently inserted instruction. */ static void SQLITE_NOINLINE vdbeChangeP4Full( Vdbe *p, Op *pOp, const char *zP4, int n ){ if( pOp->p4type ){ assert( pOp->p4type > P4_FREE_IF_LE ); pOp->p4type = 0; pOp->p4.p = 0; } if( n<0 ){ sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); }else{ if( n==0 ) n = sqlite3Strlen30(zP4); pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); pOp->p4type = P4_DYNAMIC; } } void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ Op *pOp; sqlite3 *db; assert( p!=0 ); db = p->db; assert( p->eVdbeState==VDBE_INIT_STATE ); assert( p->aOp!=0 || db->mallocFailed ); if( db->mallocFailed ){ if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); return; } assert( p->nOp>0 ); assert( addrnOp ); if( addr<0 ){ addr = p->nOp - 1; } pOp = &p->aOp[addr]; if( n>=0 || pOp->p4type ){ vdbeChangeP4Full(p, pOp, zP4, n); return; } if( n==P4_INT32 ){ /* Note: this cast is safe, because the origin data point was an int ** that was cast to a (const char *). */ pOp->p4.i = SQLITE_PTR_TO_INT(zP4); pOp->p4type = P4_INT32; }else if( zP4!=0 ){ assert( n<0 ); pOp->p4.p = (void*)zP4; pOp->p4type = (signed char)n; if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); } } /* ** Change the P4 operand of the most recently coded instruction ** to the value defined by the arguments. This is a high-speed ** version of sqlite3VdbeChangeP4(). ** ** The P4 operand must not have been previously defined. And the new ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of ** those cases. */ void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ VdbeOp *pOp; assert( n!=P4_INT32 && n!=P4_VTAB ); assert( n<=0 ); if( p->db->mallocFailed ){ freeP4(p->db, n, pP4); }else{ assert( pP4!=0 || n==P4_DYNAMIC ); assert( p->nOp>0 ); pOp = &p->aOp[p->nOp-1]; assert( pOp->p4type==P4_NOTUSED ); pOp->p4type = n; pOp->p4.p = pP4; } } /* ** Set the P4 on the most recently added opcode to the KeyInfo for the ** index given. */ void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ Vdbe *v = pParse->pVdbe; KeyInfo *pKeyInfo; assert( v!=0 ); assert( pIdx!=0 ); pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); } #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS /* ** Change the comment on the most recently coded instruction. Or ** insert a No-op and add the comment to that new instruction. This ** makes the code easier to read during debugging. None of this happens ** in a production build. */ static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ assert( p->nOp>0 || p->aOp==0 ); assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 ); if( p->nOp ){ assert( p->aOp ); sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); } } void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ va_list ap; if( p ){ va_start(ap, zFormat); vdbeVComment(p, zFormat, ap); va_end(ap); } } void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ va_list ap; if( p ){ sqlite3VdbeAddOp0(p, OP_Noop); va_start(ap, zFormat); vdbeVComment(p, zFormat, ap); va_end(ap); } } #endif /* NDEBUG */ #ifdef SQLITE_VDBE_COVERAGE /* ** Set the value if the iSrcLine field for the previously coded instruction. */ void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ sqlite3VdbeGetLastOp(v)->iSrcLine = iLine; } #endif /* SQLITE_VDBE_COVERAGE */ /* ** Return the opcode for a given address. The address must be non-negative. ** See sqlite3VdbeGetLastOp() to get the most recently added opcode. ** ** If a memory allocation error has occurred prior to the calling of this ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode ** is readable but not writable, though it is cast to a writable value. ** The return of a dummy opcode allows the call to continue functioning ** after an OOM fault without having to check to see if the return from ** this routine is a valid pointer. But because the dummy.opcode is 0, ** dummy will never be written to. This is verified by code inspection and ** by running with Valgrind. */ VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ /* C89 specifies that the constant "dummy" will be initialized to all ** zeros, which is correct. MSVC generates a warning, nevertheless. */ static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ assert( p->eVdbeState==VDBE_INIT_STATE ); assert( (addr>=0 && addrnOp) || p->db->mallocFailed ); if( p->db->mallocFailed ){ return (VdbeOp*)&dummy; }else{ return &p->aOp[addr]; } } /* Return the most recently added opcode */ VdbeOp *sqlite3VdbeGetLastOp(Vdbe *p){ return sqlite3VdbeGetOp(p, p->nOp - 1); } #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) /* ** Return an integer value for one of the parameters to the opcode pOp ** determined by character c. */ static int translateP(char c, const Op *pOp){ if( c=='1' ) return pOp->p1; if( c=='2' ) return pOp->p2; if( c=='3' ) return pOp->p3; if( c=='4' ) return pOp->p4.i; return pOp->p5; } /* ** Compute a string for the "comment" field of a VDBE opcode listing. ** ** The Synopsis: field in comments in the vdbe.c source file gets converted ** to an extra string that is appended to the sqlite3OpcodeName(). In the ** absence of other comments, this synopsis becomes the comment on the opcode. ** Some translation occurs: ** ** "PX" -> "r[X]" ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x */ char *sqlite3VdbeDisplayComment( sqlite3 *db, /* Optional - Oom error reporting only */ const Op *pOp, /* The opcode to be commented */ const char *zP4 /* Previously obtained value for P4 */ ){ const char *zOpName; const char *zSynopsis; int nOpName; int ii; char zAlt[50]; StrAccum x; sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); zOpName = sqlite3OpcodeName(pOp->opcode); nOpName = sqlite3Strlen30(zOpName); if( zOpName[nOpName+1] ){ int seenCom = 0; char c; zSynopsis = zOpName + nOpName + 1; if( strncmp(zSynopsis,"IF ",3)==0 ){ sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); zSynopsis = zAlt; } for(ii=0; (c = zSynopsis[ii])!=0; ii++){ if( c=='P' ){ c = zSynopsis[++ii]; if( c=='4' ){ sqlite3_str_appendall(&x, zP4); }else if( c=='X' ){ if( pOp->zComment && pOp->zComment[0] ){ sqlite3_str_appendall(&x, pOp->zComment); seenCom = 1; break; } }else{ int v1 = translateP(c, pOp); int v2; if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ ii += 3; v2 = translateP(zSynopsis[ii], pOp); if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ ii += 2; v2++; } if( v2<2 ){ sqlite3_str_appendf(&x, "%d", v1); }else{ sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1); } }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){ sqlite3_context *pCtx = pOp->p4.pCtx; if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){ sqlite3_str_appendf(&x, "%d", v1); }else if( pCtx->argc>1 ){ sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1); }else if( x.accError==0 ){ assert( x.nChar>2 ); x.nChar -= 2; ii++; } ii += 3; }else{ sqlite3_str_appendf(&x, "%d", v1); if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ ii += 4; } } } }else{ sqlite3_str_appendchar(&x, 1, c); } } if( !seenCom && pOp->zComment ){ sqlite3_str_appendf(&x, "; %s", pOp->zComment); } }else if( pOp->zComment ){ sqlite3_str_appendall(&x, pOp->zComment); } if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){ sqlite3OomFault(db); } return sqlite3StrAccumFinish(&x); } #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */ #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) /* ** Translate the P4.pExpr value for an OP_CursorHint opcode into text ** that can be displayed in the P4 column of EXPLAIN output. */ static void displayP4Expr(StrAccum *p, Expr *pExpr){ const char *zOp = 0; switch( pExpr->op ){ case TK_STRING: assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3_str_appendf(p, "%Q", pExpr->u.zToken); break; case TK_INTEGER: sqlite3_str_appendf(p, "%d", pExpr->u.iValue); break; case TK_NULL: sqlite3_str_appendf(p, "NULL"); break; case TK_REGISTER: { sqlite3_str_appendf(p, "r[%d]", pExpr->iTable); break; } case TK_COLUMN: { if( pExpr->iColumn<0 ){ sqlite3_str_appendf(p, "rowid"); }else{ sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn); } break; } case TK_LT: zOp = "LT"; break; case TK_LE: zOp = "LE"; break; case TK_GT: zOp = "GT"; break; case TK_GE: zOp = "GE"; break; case TK_NE: zOp = "NE"; break; case TK_EQ: zOp = "EQ"; break; case TK_IS: zOp = "IS"; break; case TK_ISNOT: zOp = "ISNOT"; break; case TK_AND: zOp = "AND"; break; case TK_OR: zOp = "OR"; break; case TK_PLUS: zOp = "ADD"; break; case TK_STAR: zOp = "MUL"; break; case TK_MINUS: zOp = "SUB"; break; case TK_REM: zOp = "REM"; break; case TK_BITAND: zOp = "BITAND"; break; case TK_BITOR: zOp = "BITOR"; break; case TK_SLASH: zOp = "DIV"; break; case TK_LSHIFT: zOp = "LSHIFT"; break; case TK_RSHIFT: zOp = "RSHIFT"; break; case TK_CONCAT: zOp = "CONCAT"; break; case TK_UMINUS: zOp = "MINUS"; break; case TK_UPLUS: zOp = "PLUS"; break; case TK_BITNOT: zOp = "BITNOT"; break; case TK_NOT: zOp = "NOT"; break; case TK_ISNULL: zOp = "ISNULL"; break; case TK_NOTNULL: zOp = "NOTNULL"; break; default: sqlite3_str_appendf(p, "%s", "expr"); break; } if( zOp ){ sqlite3_str_appendf(p, "%s(", zOp); displayP4Expr(p, pExpr->pLeft); if( pExpr->pRight ){ sqlite3_str_append(p, ",", 1); displayP4Expr(p, pExpr->pRight); } sqlite3_str_append(p, ")", 1); } } #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ #if VDBE_DISPLAY_P4 /* ** Compute a string that describes the P4 parameter for an opcode. ** Use zTemp for any required temporary buffer space. */ char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){ char *zP4 = 0; StrAccum x; sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); switch( pOp->p4type ){ case P4_KEYINFO: { int j; KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; assert( pKeyInfo->aSortFlags!=0 ); sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField); for(j=0; jnKeyField; j++){ CollSeq *pColl = pKeyInfo->aColl[j]; const char *zColl = pColl ? pColl->zName : ""; if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; sqlite3_str_appendf(&x, ",%s%s%s", (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "", (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "", zColl); } sqlite3_str_append(&x, ")", 1); break; } #ifdef SQLITE_ENABLE_CURSOR_HINTS case P4_EXPR: { displayP4Expr(&x, pOp->p4.pExpr); break; } #endif case P4_COLLSEQ: { static const char *const encnames[] = {"?", "8", "16LE", "16BE"}; CollSeq *pColl = pOp->p4.pColl; assert( pColl->enc<4 ); sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName, encnames[pColl->enc]); break; } case P4_FUNCDEF: { FuncDef *pDef = pOp->p4.pFunc; sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); break; } case P4_FUNCCTX: { FuncDef *pDef = pOp->p4.pCtx->pFunc; sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); break; } case P4_INT64: { sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64); break; } case P4_INT32: { sqlite3_str_appendf(&x, "%d", pOp->p4.i); break; } case P4_REAL: { sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); break; } case P4_MEM: { Mem *pMem = pOp->p4.pMem; if( pMem->flags & MEM_Str ){ zP4 = pMem->z; }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ sqlite3_str_appendf(&x, "%lld", pMem->u.i); }else if( pMem->flags & MEM_Real ){ sqlite3_str_appendf(&x, "%.16g", pMem->u.r); }else if( pMem->flags & MEM_Null ){ zP4 = "NULL"; }else{ assert( pMem->flags & MEM_Blob ); zP4 = "(blob)"; } break; } #ifndef SQLITE_OMIT_VIRTUALTABLE case P4_VTAB: { sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; sqlite3_str_appendf(&x, "vtab:%p", pVtab); break; } #endif case P4_INTARRAY: { u32 i; u32 *ai = pOp->p4.ai; u32 n = ai[0]; /* The first element of an INTARRAY is always the ** count of the number of elements to follow */ for(i=1; i<=n; i++){ sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]); } sqlite3_str_append(&x, "]", 1); break; } case P4_SUBPROGRAM: { zP4 = "program"; break; } case P4_TABLE: { zP4 = pOp->p4.pTab->zName; break; } default: { zP4 = pOp->p4.z; } } if( zP4 ) sqlite3_str_appendall(&x, zP4); if( (x.accError & SQLITE_NOMEM)!=0 ){ sqlite3OomFault(db); } return sqlite3StrAccumFinish(&x); } #endif /* VDBE_DISPLAY_P4 */ /* ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. ** ** The prepared statements need to know in advance the complete set of ** attached databases that will be use. A mask of these databases ** is maintained in p->btreeMask. The p->lockMask value is the subset of ** p->btreeMask of databases that will require a lock. */ void sqlite3VdbeUsesBtree(Vdbe *p, int i){ assert( i>=0 && idb->nDb && i<(int)sizeof(yDbMask)*8 ); assert( i<(int)sizeof(p->btreeMask)*8 ); DbMaskSet(p->btreeMask, i); if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ DbMaskSet(p->lockMask, i); } } #if !defined(SQLITE_OMIT_SHARED_CACHE) /* ** If SQLite is compiled to support shared-cache mode and to be threadsafe, ** this routine obtains the mutex associated with each BtShared structure ** that may be accessed by the VM passed as an argument. In doing so it also ** sets the BtShared.db member of each of the BtShared structures, ensuring ** that the correct busy-handler callback is invoked if required. ** ** If SQLite is not threadsafe but does support shared-cache mode, then ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables ** of all of BtShared structures accessible via the database handle ** associated with the VM. ** ** If SQLite is not threadsafe and does not support shared-cache mode, this ** function is a no-op. ** ** The p->btreeMask field is a bitmask of all btrees that the prepared ** statement p will ever use. Let N be the number of bits in p->btreeMask ** corresponding to btrees that use shared cache. Then the runtime of ** this routine is N*N. But as N is rarely more than 1, this should not ** be a problem. */ void sqlite3VdbeEnter(Vdbe *p){ int i; sqlite3 *db; Db *aDb; int nDb; if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ db = p->db; aDb = db->aDb; nDb = db->nDb; for(i=0; ilockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ sqlite3BtreeEnter(aDb[i].pBt); } } } #endif #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 /* ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). */ static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ int i; sqlite3 *db; Db *aDb; int nDb; db = p->db; aDb = db->aDb; nDb = db->nDb; for(i=0; ilockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ sqlite3BtreeLeave(aDb[i].pBt); } } } void sqlite3VdbeLeave(Vdbe *p){ if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ vdbeLeave(p); } #endif #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) /* ** Print a single opcode. This routine is used for debugging only. */ void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){ char *zP4; char *zCom; sqlite3 dummyDb; static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; if( pOut==0 ) pOut = stdout; sqlite3BeginBenignMalloc(); dummyDb.mallocFailed = 1; zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp); #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS zCom = sqlite3VdbeDisplayComment(0, pOp, zP4); #else zCom = 0; #endif /* NB: The sqlite3OpcodeName() function is implemented by code created ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the ** information from the vdbe.c source text */ fprintf(pOut, zFormat1, pc, sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4 ? zP4 : "", pOp->p5, zCom ? zCom : "" ); fflush(pOut); sqlite3_free(zP4); sqlite3_free(zCom); sqlite3EndBenignMalloc(); } #endif /* ** Initialize an array of N Mem element. ** ** This is a high-runner, so only those fields that really do need to ** be initialized are set. The Mem structure is organized so that ** the fields that get initialized are nearby and hopefully on the same ** cache line. ** ** Mem.flags = flags ** Mem.db = db ** Mem.szMalloc = 0 ** ** All other fields of Mem can safely remain uninitialized for now. They ** will be initialized before use. */ static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ if( N>0 ){ do{ p->flags = flags; p->db = db; p->szMalloc = 0; #ifdef SQLITE_DEBUG p->pScopyFrom = 0; #endif p++; }while( (--N)>0 ); } } /* ** Release auxiliary memory held in an array of N Mem elements. ** ** After this routine returns, all Mem elements in the array will still ** be valid. Those Mem elements that were not holding auxiliary resources ** will be unchanged. Mem elements which had something freed will be ** set to MEM_Undefined. */ static void releaseMemArray(Mem *p, int N){ if( p && N ){ Mem *pEnd = &p[N]; sqlite3 *db = p->db; if( db->pnBytesFreed ){ do{ if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); }while( (++p)flags & MEM_Agg ); testcase( p->flags & MEM_Dyn ); if( p->flags&(MEM_Agg|MEM_Dyn) ){ testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel ); sqlite3VdbeMemRelease(p); p->flags = MEM_Undefined; }else if( p->szMalloc ){ sqlite3DbNNFreeNN(db, p->zMalloc); p->szMalloc = 0; p->flags = MEM_Undefined; } #ifdef SQLITE_DEBUG else{ p->flags = MEM_Undefined; } #endif }while( (++p)iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0; return 1; } #endif /* ** This is a destructor on a Mem object (which is really an sqlite3_value) ** that deletes the Frame object that is attached to it as a blob. ** ** This routine does not delete the Frame right away. It merely adds the ** frame to a list of frames to be deleted when the Vdbe halts. */ void sqlite3VdbeFrameMemDel(void *pArg){ VdbeFrame *pFrame = (VdbeFrame*)pArg; assert( sqlite3VdbeFrameIsValid(pFrame) ); pFrame->pParent = pFrame->v->pDelFrame; pFrame->v->pDelFrame = pFrame; } #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN) /* ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN ** QUERY PLAN output. ** ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no ** more opcodes to be displayed. */ int sqlite3VdbeNextOpcode( Vdbe *p, /* The statement being explained */ Mem *pSub, /* Storage for keeping track of subprogram nesting */ int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */ int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */ int *piAddr, /* OUT: Write index into (*paOp)[] here */ Op **paOp /* OUT: Write the opcode array here */ ){ int nRow; /* Stop when row count reaches this */ int nSub = 0; /* Number of sub-vdbes seen so far */ SubProgram **apSub = 0; /* Array of sub-vdbes */ int i; /* Next instruction address */ int rc = SQLITE_OK; /* Result code */ Op *aOp = 0; /* Opcode array */ int iPc; /* Rowid. Copy of value in *piPc */ /* When the number of output rows reaches nRow, that means the ** listing has finished and sqlite3_step() should return SQLITE_DONE. ** nRow is the sum of the number of rows in the main program, plus ** the sum of the number of rows in all trigger subprograms encountered ** so far. The nRow value will increase as new trigger subprograms are ** encountered, but p->pc will eventually catch up to nRow. */ nRow = p->nOp; if( pSub!=0 ){ if( pSub->flags&MEM_Blob ){ /* pSub is initiallly NULL. It is initialized to a BLOB by ** the P4_SUBPROGRAM processing logic below */ nSub = pSub->n/sizeof(Vdbe*); apSub = (SubProgram **)pSub->z; } for(i=0; inOp; } } iPc = *piPc; while(1){ /* Loop exits via break */ i = iPc++; if( i>=nRow ){ p->rc = SQLITE_OK; rc = SQLITE_DONE; break; } if( inOp ){ /* The rowid is small enough that we are still in the ** main program. */ aOp = p->aOp; }else{ /* We are currently listing subprograms. Figure out which one and ** pick up the appropriate opcode. */ int j; i -= p->nOp; assert( apSub!=0 ); assert( nSub>0 ); for(j=0; i>=apSub[j]->nOp; j++){ i -= apSub[j]->nOp; assert( inOp || j+1aOp; } /* When an OP_Program opcode is encounter (the only opcode that has ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms ** kept in p->aMem[9].z to hold the new program - assuming this subprogram ** has not already been seen. */ if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){ int nByte = (nSub+1)*sizeof(SubProgram*); int j; for(j=0; jrc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0); if( p->rc!=SQLITE_OK ){ rc = SQLITE_ERROR; break; } apSub = (SubProgram **)pSub->z; apSub[nSub++] = aOp[i].p4.pProgram; MemSetTypeFlag(pSub, MEM_Blob); pSub->n = nSub*sizeof(SubProgram*); nRow += aOp[i].p4.pProgram->nOp; } } if( eMode==0 ) break; #ifdef SQLITE_ENABLE_BYTECODE_VTAB if( eMode==2 ){ Op *pOp = aOp + i; if( pOp->opcode==OP_OpenRead ) break; if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break; if( pOp->opcode==OP_ReopenIdx ) break; }else #endif { assert( eMode==1 ); if( aOp[i].opcode==OP_Explain ) break; if( aOp[i].opcode==OP_Init && iPc>1 ) break; } } *piPc = iPc; *piAddr = i; *paOp = aOp; return rc; } #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */ /* ** Delete a VdbeFrame object and its contents. VdbeFrame objects are ** allocated by the OP_Program opcode in sqlite3VdbeExec(). */ void sqlite3VdbeFrameDelete(VdbeFrame *p){ int i; Mem *aMem = VdbeFrameMem(p); VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; assert( sqlite3VdbeFrameIsValid(p) ); for(i=0; inChildCsr; i++){ if( apCsr[i] ) sqlite3VdbeFreeCursorNN(p->v, apCsr[i]); } releaseMemArray(aMem, p->nChildMem); sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); sqlite3DbFree(p->v->db, p); } #ifndef SQLITE_OMIT_EXPLAIN /* ** Give a listing of the program in the virtual machine. ** ** The interface is the same as sqlite3VdbeExec(). But instead of ** running the code, it invokes the callback once for each instruction. ** This feature is used to implement "EXPLAIN". ** ** When p->explain==1, each instruction is listed. When ** p->explain==2, only OP_Explain instructions are listed and these ** are shown in a different format. p->explain==2 is used to implement ** EXPLAIN QUERY PLAN. ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers ** are also shown, so that the boundaries between the main program and ** each trigger are clear. ** ** When p->explain==1, first the main program is listed, then each of ** the trigger subprograms are listed one by one. */ int sqlite3VdbeList( Vdbe *p /* The VDBE */ ){ Mem *pSub = 0; /* Memory cell hold array of subprogs */ sqlite3 *db = p->db; /* The database connection */ int i; /* Loop counter */ int rc = SQLITE_OK; /* Return code */ Mem *pMem = &p->aMem[1]; /* First Mem of result set */ int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0); Op *aOp; /* Array of opcodes */ Op *pOp; /* Current opcode */ assert( p->explain ); assert( p->eVdbeState==VDBE_RUN_STATE ); assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); /* Even though this opcode does not use dynamic strings for ** the result, result columns may become dynamic if the user calls ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. */ releaseMemArray(pMem, 8); if( p->rc==SQLITE_NOMEM ){ /* This happens if a malloc() inside a call to sqlite3_column_text() or ** sqlite3_column_text16() failed. */ sqlite3OomFault(db); return SQLITE_ERROR; } if( bListSubprogs ){ /* The first 8 memory cells are used for the result set. So we will ** commandeer the 9th cell to use as storage for an array of pointers ** to trigger subprograms. The VDBE is guaranteed to have at least 9 ** cells. */ assert( p->nMem>9 ); pSub = &p->aMem[9]; }else{ pSub = 0; } /* Figure out which opcode is next to display */ rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp); if( rc==SQLITE_OK ){ pOp = aOp + i; if( AtomicLoad(&db->u1.isInterrupted) ){ p->rc = SQLITE_INTERRUPT; rc = SQLITE_ERROR; sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); }else{ char *zP4 = sqlite3VdbeDisplayP4(db, pOp); if( p->explain==2 ){ sqlite3VdbeMemSetInt64(pMem, pOp->p1); sqlite3VdbeMemSetInt64(pMem+1, pOp->p2); sqlite3VdbeMemSetInt64(pMem+2, pOp->p3); sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free); assert( p->nResColumn==4 ); }else{ sqlite3VdbeMemSetInt64(pMem+0, i); sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode), -1, SQLITE_UTF8, SQLITE_STATIC); sqlite3VdbeMemSetInt64(pMem+2, pOp->p1); sqlite3VdbeMemSetInt64(pMem+3, pOp->p2); sqlite3VdbeMemSetInt64(pMem+4, pOp->p3); /* pMem+5 for p4 is done last */ sqlite3VdbeMemSetInt64(pMem+6, pOp->p5); #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS { char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4); sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free); } #else sqlite3VdbeMemSetNull(pMem+7); #endif sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free); assert( p->nResColumn==8 ); } p->pResultRow = pMem; if( db->mallocFailed ){ p->rc = SQLITE_NOMEM; rc = SQLITE_ERROR; }else{ p->rc = SQLITE_OK; rc = SQLITE_ROW; } } } return rc; } #endif /* SQLITE_OMIT_EXPLAIN */ #ifdef SQLITE_DEBUG /* ** Print the SQL that was used to generate a VDBE program. */ void sqlite3VdbePrintSql(Vdbe *p){ const char *z = 0; if( p->zSql ){ z = p->zSql; }else if( p->nOp>=1 ){ const VdbeOp *pOp = &p->aOp[0]; if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ z = pOp->p4.z; while( sqlite3Isspace(*z) ) z++; } } if( z ) printf("SQL: [%s]\n", z); } #endif #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) /* ** Print an IOTRACE message showing SQL content. */ void sqlite3VdbeIOTraceSql(Vdbe *p){ int nOp = p->nOp; VdbeOp *pOp; if( sqlite3IoTrace==0 ) return; if( nOp<1 ) return; pOp = &p->aOp[0]; if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ int i, j; char z[1000]; sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); for(i=0; sqlite3Isspace(z[i]); i++){} for(j=0; z[i]; i++){ if( sqlite3Isspace(z[i]) ){ if( z[i-1]!=' ' ){ z[j++] = ' '; } }else{ z[j++] = z[i]; } } z[j] = 0; sqlite3IoTrace("SQL %s\n", z); } } #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ /* An instance of this object describes bulk memory available for use ** by subcomponents of a prepared statement. Space is allocated out ** of a ReusableSpace object by the allocSpace() routine below. */ struct ReusableSpace { u8 *pSpace; /* Available memory */ sqlite3_int64 nFree; /* Bytes of available memory */ sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */ }; /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf ** from the ReusableSpace object. Return a pointer to the allocated ** memory on success. If insufficient memory is available in the ** ReusableSpace object, increase the ReusableSpace.nNeeded ** value by the amount needed and return NULL. ** ** If pBuf is not initially NULL, that means that the memory has already ** been allocated by a prior call to this routine, so just return a copy ** of pBuf and leave ReusableSpace unchanged. ** ** This allocator is employed to repurpose unused slots at the end of the ** opcode array of prepared state for other memory needs of the prepared ** statement. */ static void *allocSpace( struct ReusableSpace *p, /* Bulk memory available for allocation */ void *pBuf, /* Pointer to a prior allocation */ sqlite3_int64 nByte /* Bytes of memory needed. */ ){ assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); if( pBuf==0 ){ nByte = ROUND8P(nByte); if( nByte <= p->nFree ){ p->nFree -= nByte; pBuf = &p->pSpace[p->nFree]; }else{ p->nNeeded += nByte; } } assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); return pBuf; } /* ** Rewind the VDBE back to the beginning in preparation for ** running it. */ void sqlite3VdbeRewind(Vdbe *p){ #if defined(SQLITE_DEBUG) int i; #endif assert( p!=0 ); assert( p->eVdbeState==VDBE_INIT_STATE || p->eVdbeState==VDBE_READY_STATE || p->eVdbeState==VDBE_HALT_STATE ); /* There should be at least one opcode. */ assert( p->nOp>0 ); p->eVdbeState = VDBE_READY_STATE; #ifdef SQLITE_DEBUG for(i=0; inMem; i++){ assert( p->aMem[i].db==p->db ); } #endif p->pc = -1; p->rc = SQLITE_OK; p->errorAction = OE_Abort; p->nChange = 0; p->cacheCtr = 1; p->minWriteFileFormat = 255; p->iStatement = 0; p->nFkConstraint = 0; #ifdef VDBE_PROFILE for(i=0; inOp; i++){ p->aOp[i].nExec = 0; p->aOp[i].nCycle = 0; } #endif } /* ** Prepare a virtual machine for execution for the first time after ** creating the virtual machine. This involves things such ** as allocating registers and initializing the program counter. ** After the VDBE has be prepped, it can be executed by one or more ** calls to sqlite3VdbeExec(). ** ** This function may be called exactly once on each virtual machine. ** After this routine is called the VM has been "packaged" and is ready ** to run. After this routine is called, further calls to ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects ** the Vdbe from the Parse object that helped generate it so that the ** the Vdbe becomes an independent entity and the Parse object can be ** destroyed. ** ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back ** to its initial state after it has been run. */ void sqlite3VdbeMakeReady( Vdbe *p, /* The VDBE */ Parse *pParse /* Parsing context */ ){ sqlite3 *db; /* The database connection */ int nVar; /* Number of parameters */ int nMem; /* Number of VM memory registers */ int nCursor; /* Number of cursors required */ int nArg; /* Number of arguments in subprograms */ int n; /* Loop counter */ struct ReusableSpace x; /* Reusable bulk memory */ assert( p!=0 ); assert( p->nOp>0 ); assert( pParse!=0 ); assert( p->eVdbeState==VDBE_INIT_STATE ); assert( pParse==p->pParse ); p->pVList = pParse->pVList; pParse->pVList = 0; db = p->db; assert( db->mallocFailed==0 ); nVar = pParse->nVar; nMem = pParse->nMem; nCursor = pParse->nTab; nArg = pParse->nMaxArg; /* Each cursor uses a memory cell. The first cursor (cursor 0) can ** use aMem[0] which is not otherwise used by the VDBE program. Allocate ** space at the end of aMem[] for cursors 1 and greater. ** See also: allocateCursor(). */ nMem += nCursor; if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ /* Figure out how much reusable memory is available at the end of the ** opcode array. This extra memory will be reallocated for other elements ** of the prepared statement. */ n = ROUND8P(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ assert( x.nFree>=0 ); assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); resolveP2Values(p, &nArg); p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); if( pParse->explain ){ if( nMem<10 ) nMem = 10; p->explain = pParse->explain; p->nResColumn = 12 - 4*p->explain; } p->expired = 0; /* Memory for registers, parameters, cursor, etc, is allocated in one or two ** passes. On the first pass, we try to reuse unused memory at the ** end of the opcode array. If we are unable to satisfy all memory ** requirements by reusing the opcode array tail, then the second ** pass will fill in the remainder using a fresh memory allocation. ** ** This two-pass approach that reuses as much memory as possible from ** the leftover memory at the end of the opcode array. This can significantly ** reduce the amount of memory held by a prepared statement. */ x.nNeeded = 0; p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem)); p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem)); p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*)); p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*)); if( x.nNeeded ){ x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); x.nFree = x.nNeeded; if( !db->mallocFailed ){ p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); } } if( db->mallocFailed ){ p->nVar = 0; p->nCursor = 0; p->nMem = 0; }else{ p->nCursor = nCursor; p->nVar = (ynVar)nVar; initMemArray(p->aVar, nVar, db, MEM_Null); p->nMem = nMem; initMemArray(p->aMem, nMem, db, MEM_Undefined); memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); } sqlite3VdbeRewind(p); } /* ** Close a VDBE cursor and release all the resources that cursor ** happens to hold. */ void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx); } static SQLITE_NOINLINE void freeCursorWithCache(Vdbe *p, VdbeCursor *pCx){ VdbeTxtBlbCache *pCache = pCx->pCache; assert( pCx->colCache ); pCx->colCache = 0; pCx->pCache = 0; if( pCache->pCValue ){ sqlite3RCStrUnref(pCache->pCValue); pCache->pCValue = 0; } sqlite3DbFree(p->db, pCache); sqlite3VdbeFreeCursorNN(p, pCx); } void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){ if( pCx->colCache ){ freeCursorWithCache(p, pCx); return; } switch( pCx->eCurType ){ case CURTYPE_SORTER: { sqlite3VdbeSorterClose(p->db, pCx); break; } case CURTYPE_BTREE: { assert( pCx->uc.pCursor!=0 ); sqlite3BtreeCloseCursor(pCx->uc.pCursor); break; } #ifndef SQLITE_OMIT_VIRTUALTABLE case CURTYPE_VTAB: { sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; const sqlite3_module *pModule = pVCur->pVtab->pModule; assert( pVCur->pVtab->nRef>0 ); pVCur->pVtab->nRef--; pModule->xClose(pVCur); break; } #endif } } /* ** Close all cursors in the current frame. */ static void closeCursorsInFrame(Vdbe *p){ int i; for(i=0; inCursor; i++){ VdbeCursor *pC = p->apCsr[i]; if( pC ){ sqlite3VdbeFreeCursorNN(p, pC); p->apCsr[i] = 0; } } } /* ** Copy the values stored in the VdbeFrame structure to its Vdbe. This ** is used, for example, when a trigger sub-program is halted to restore ** control to the main program. */ int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ Vdbe *v = pFrame->v; closeCursorsInFrame(v); v->aOp = pFrame->aOp; v->nOp = pFrame->nOp; v->aMem = pFrame->aMem; v->nMem = pFrame->nMem; v->apCsr = pFrame->apCsr; v->nCursor = pFrame->nCursor; v->db->lastRowid = pFrame->lastRowid; v->nChange = pFrame->nChange; v->db->nChange = pFrame->nDbChange; sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); v->pAuxData = pFrame->pAuxData; pFrame->pAuxData = 0; return pFrame->pc; } /* ** Close all cursors. ** ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory ** cell array. This is necessary as the memory cell array may contain ** pointers to VdbeFrame objects, which may in turn contain pointers to ** open cursors. */ static void closeAllCursors(Vdbe *p){ if( p->pFrame ){ VdbeFrame *pFrame; for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); sqlite3VdbeFrameRestore(pFrame); p->pFrame = 0; p->nFrame = 0; } assert( p->nFrame==0 ); closeCursorsInFrame(p); releaseMemArray(p->aMem, p->nMem); while( p->pDelFrame ){ VdbeFrame *pDel = p->pDelFrame; p->pDelFrame = pDel->pParent; sqlite3VdbeFrameDelete(pDel); } /* Delete any auxdata allocations made by the VM */ if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); assert( p->pAuxData==0 ); } /* ** Set the number of result columns that will be returned by this SQL ** statement. This is now set at compile time, rather than during ** execution of the vdbe program so that sqlite3_column_count() can ** be called on an SQL statement before sqlite3_step(). */ void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ int n; sqlite3 *db = p->db; if( p->nResAlloc ){ releaseMemArray(p->aColName, p->nResAlloc*COLNAME_N); sqlite3DbFree(db, p->aColName); } n = nResColumn*COLNAME_N; p->nResColumn = p->nResAlloc = (u16)nResColumn; p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); if( p->aColName==0 ) return; initMemArray(p->aColName, n, db, MEM_Null); } /* ** Set the name of the idx'th column to be returned by the SQL statement. ** zName must be a pointer to a nul terminated string. ** ** This call must be made after a call to sqlite3VdbeSetNumCols(). ** ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. */ int sqlite3VdbeSetColName( Vdbe *p, /* Vdbe being configured */ int idx, /* Index of column zName applies to */ int var, /* One of the COLNAME_* constants */ const char *zName, /* Pointer to buffer containing name */ void (*xDel)(void*) /* Memory management strategy for zName */ ){ int rc; Mem *pColName; assert( idxnResAlloc ); assert( vardb->mallocFailed ){ assert( !zName || xDel!=SQLITE_DYNAMIC ); return SQLITE_NOMEM_BKPT; } assert( p->aColName!=0 ); pColName = &(p->aColName[idx+var*p->nResAlloc]); rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); return rc; } /* ** A read or write transaction may or may not be active on database handle ** db. If a transaction is active, commit it. If there is a ** write-transaction spanning more than one database file, this routine ** takes care of the super-journal trickery. */ static int vdbeCommit(sqlite3 *db, Vdbe *p){ int i; int nTrans = 0; /* Number of databases with an active write-transaction ** that are candidates for a two-phase commit using a ** super-journal */ int rc = SQLITE_OK; int needXcommit = 0; #ifdef SQLITE_OMIT_VIRTUALTABLE /* With this option, sqlite3VtabSync() is defined to be simply ** SQLITE_OK so p is not used. */ UNUSED_PARAMETER(p); #endif /* Before doing anything else, call the xSync() callback for any ** virtual module tables written in this transaction. This has to ** be done before determining whether a super-journal file is ** required, as an xSync() callback may add an attached database ** to the transaction. */ rc = sqlite3VtabSync(db, p); /* This loop determines (a) if the commit hook should be invoked and ** (b) how many database files have open write transactions, not ** including the temp database. (b) is important because if more than ** one database file has an open write transaction, a super-journal ** file is required for an atomic commit. */ for(i=0; rc==SQLITE_OK && inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ /* Whether or not a database might need a super-journal depends upon ** its journal mode (among other things). This matrix determines which ** journal modes use a super-journal and which do not */ static const u8 aMJNeeded[] = { /* DELETE */ 1, /* PERSIST */ 1, /* OFF */ 0, /* TRUNCATE */ 1, /* MEMORY */ 0, /* WAL */ 0 }; Pager *pPager; /* Pager associated with pBt */ needXcommit = 1; sqlite3BtreeEnter(pBt); pPager = sqlite3BtreePager(pBt); if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] && sqlite3PagerIsMemdb(pPager)==0 ){ assert( i!=1 ); nTrans++; } rc = sqlite3PagerExclusiveLock(pPager); sqlite3BtreeLeave(pBt); } } if( rc!=SQLITE_OK ){ return rc; } /* If there are any write-transactions at all, invoke the commit hook */ if( needXcommit && db->xCommitCallback ){ rc = db->xCommitCallback(db->pCommitArg); if( rc ){ return SQLITE_CONSTRAINT_COMMITHOOK; } } /* The simple case - no more than one database file (not counting the ** TEMP database) has a transaction active. There is no need for the ** super-journal. ** ** If the return value of sqlite3BtreeGetFilename() is a zero length ** string, it means the main database is :memory: or a temp file. In ** that case we do not support atomic multi-file commits, so use the ** simple case then too. */ if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){ for(i=0; rc==SQLITE_OK && inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ rc = sqlite3BtreeCommitPhaseOne(pBt, 0); } } /* Do the commit only if all databases successfully complete phase 1. ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an ** IO error while deleting or truncating a journal file. It is unlikely, ** but could happen. In this case abandon processing and return the error. */ for(i=0; rc==SQLITE_OK && inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); } } if( rc==SQLITE_OK ){ sqlite3VtabCommit(db); } } /* The complex case - There is a multi-file write-transaction active. ** This requires a super-journal file to ensure the transaction is ** committed atomically. */ #ifndef SQLITE_OMIT_DISKIO else{ sqlite3_vfs *pVfs = db->pVfs; char *zSuper = 0; /* File-name for the super-journal */ char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); sqlite3_file *pSuperJrnl = 0; i64 offset = 0; int res; int retryCount = 0; int nMainFile; /* Select a super-journal file name */ nMainFile = sqlite3Strlen30(zMainFile); zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0); if( zSuper==0 ) return SQLITE_NOMEM_BKPT; zSuper += 4; do { u32 iRandom; if( retryCount ){ if( retryCount>100 ){ sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper); sqlite3OsDelete(pVfs, zSuper, 0); break; }else if( retryCount==1 ){ sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper); } } retryCount++; sqlite3_randomness(sizeof(iRandom), &iRandom); sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X", (iRandom>>8)&0xffffff, iRandom&0xff); /* The antipenultimate character of the super-journal name must ** be "9" to avoid name collisions when using 8+3 filenames. */ assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' ); sqlite3FileSuffix3(zMainFile, zSuper); rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res); }while( rc==SQLITE_OK && res ); if( rc==SQLITE_OK ){ /* Open the super-journal. */ rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl, SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0 ); } if( rc!=SQLITE_OK ){ sqlite3DbFree(db, zSuper-4); return rc; } /* Write the name of each database file in the transaction into the new ** super-journal file. If an error occurs at this point close ** and delete the super-journal file. All the individual journal files ** still have 'null' as the super-journal pointer, so they will roll ** back independently if a failure occurs. */ for(i=0; inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ char const *zFile = sqlite3BtreeGetJournalname(pBt); if( zFile==0 ){ continue; /* Ignore TEMP and :memory: databases */ } assert( zFile[0]!=0 ); rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset); offset += sqlite3Strlen30(zFile)+1; if( rc!=SQLITE_OK ){ sqlite3OsCloseFree(pSuperJrnl); sqlite3OsDelete(pVfs, zSuper, 0); sqlite3DbFree(db, zSuper-4); return rc; } } } /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device ** flag is set this is not required. */ if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL) && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL)) ){ sqlite3OsCloseFree(pSuperJrnl); sqlite3OsDelete(pVfs, zSuper, 0); sqlite3DbFree(db, zSuper-4); return rc; } /* Sync all the db files involved in the transaction. The same call ** sets the super-journal pointer in each individual journal. If ** an error occurs here, do not delete the super-journal file. ** ** If the error occurs during the first call to ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the ** super-journal file will be orphaned. But we cannot delete it, ** in case the super-journal file name was written into the journal ** file before the failure occurred. */ for(i=0; rc==SQLITE_OK && inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper); } } sqlite3OsCloseFree(pSuperJrnl); assert( rc!=SQLITE_BUSY ); if( rc!=SQLITE_OK ){ sqlite3DbFree(db, zSuper-4); return rc; } /* Delete the super-journal file. This commits the transaction. After ** doing this the directory is synced again before any individual ** transaction files are deleted. */ rc = sqlite3OsDelete(pVfs, zSuper, 1); sqlite3DbFree(db, zSuper-4); zSuper = 0; if( rc ){ return rc; } /* All files and directories have already been synced, so the following ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and ** deleting or truncating journals. If something goes wrong while ** this is happening we don't really care. The integrity of the ** transaction is already guaranteed, but some stray 'cold' journals ** may be lying around. Returning an error code won't help matters. */ disable_simulated_io_errors(); sqlite3BeginBenignMalloc(); for(i=0; inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ sqlite3BtreeCommitPhaseTwo(pBt, 1); } } sqlite3EndBenignMalloc(); enable_simulated_io_errors(); sqlite3VtabCommit(db); } #endif return rc; } /* ** This routine checks that the sqlite3.nVdbeActive count variable ** matches the number of vdbe's in the list sqlite3.pVdbe that are ** currently active. An assertion fails if the two counts do not match. ** This is an internal self-check only - it is not an essential processing ** step. ** ** This is a no-op if NDEBUG is defined. */ #ifndef NDEBUG static void checkActiveVdbeCnt(sqlite3 *db){ Vdbe *p; int cnt = 0; int nWrite = 0; int nRead = 0; p = db->pVdbe; while( p ){ if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ cnt++; if( p->readOnly==0 ) nWrite++; if( p->bIsReader ) nRead++; } p = p->pVNext; } assert( cnt==db->nVdbeActive ); assert( nWrite==db->nVdbeWrite ); assert( nRead==db->nVdbeRead ); } #else #define checkActiveVdbeCnt(x) #endif /* ** If the Vdbe passed as the first argument opened a statement-transaction, ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the ** statement transaction is committed. ** ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. ** Otherwise SQLITE_OK. */ static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ sqlite3 *const db = p->db; int rc = SQLITE_OK; int i; const int iSavepoint = p->iStatement-1; assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); assert( db->nStatement>0 ); assert( p->iStatement==(db->nStatement+db->nSavepoint) ); for(i=0; inDb; i++){ int rc2 = SQLITE_OK; Btree *pBt = db->aDb[i].pBt; if( pBt ){ if( eOp==SAVEPOINT_ROLLBACK ){ rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); } if( rc2==SQLITE_OK ){ rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); } if( rc==SQLITE_OK ){ rc = rc2; } } } db->nStatement--; p->iStatement = 0; if( rc==SQLITE_OK ){ if( eOp==SAVEPOINT_ROLLBACK ){ rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); } if( rc==SQLITE_OK ){ rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); } } /* If the statement transaction is being rolled back, also restore the ** database handles deferred constraint counter to the value it had when ** the statement transaction was opened. */ if( eOp==SAVEPOINT_ROLLBACK ){ db->nDeferredCons = p->nStmtDefCons; db->nDeferredImmCons = p->nStmtDefImmCons; } return rc; } int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ if( p->db->nStatement && p->iStatement ){ return vdbeCloseStatement(p, eOp); } return SQLITE_OK; } /* ** This function is called when a transaction opened by the database ** handle associated with the VM passed as an argument is about to be ** committed. If there are outstanding deferred foreign key constraint ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. ** ** If there are outstanding FK violations and this function returns ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY ** and write an error message to it. Then return SQLITE_ERROR. */ #ifndef SQLITE_OMIT_FOREIGN_KEY int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ sqlite3 *db = p->db; if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) || (!deferred && p->nFkConstraint>0) ){ p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; p->errorAction = OE_Abort; sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ) return SQLITE_ERROR; return SQLITE_CONSTRAINT_FOREIGNKEY; } return SQLITE_OK; } #endif /* ** This routine is called the when a VDBE tries to halt. If the VDBE ** has made changes and is in autocommit mode, then commit those ** changes. If a rollback is needed, then do the rollback. ** ** This routine is the only way to move the sqlite3eOpenState of a VM from ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to ** call this on a VM that is in the SQLITE_STATE_HALT state. ** ** Return an error code. If the commit could not complete because of ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it ** means the close did not happen and needs to be repeated. */ int sqlite3VdbeHalt(Vdbe *p){ int rc; /* Used to store transient return codes */ sqlite3 *db = p->db; /* This function contains the logic that determines if a statement or ** transaction will be committed or rolled back as a result of the ** execution of this virtual machine. ** ** If any of the following errors occur: ** ** SQLITE_NOMEM ** SQLITE_IOERR ** SQLITE_FULL ** SQLITE_INTERRUPT ** ** Then the internal cache might have been left in an inconsistent ** state. We need to rollback the statement transaction, if there is ** one, or the complete transaction if there is no statement transaction. */ assert( p->eVdbeState==VDBE_RUN_STATE ); if( db->mallocFailed ){ p->rc = SQLITE_NOMEM_BKPT; } closeAllCursors(p); checkActiveVdbeCnt(db); /* No commit or rollback needed if the program never started or if the ** SQL statement does not read or write a database file. */ if( p->bIsReader ){ int mrc; /* Primary error code from p->rc */ int eStatementOp = 0; int isSpecialError; /* Set to true if a 'special' error */ /* Lock all btrees used by the statement */ sqlite3VdbeEnter(p); /* Check for one of the special errors */ if( p->rc ){ mrc = p->rc & 0xff; isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; }else{ mrc = isSpecialError = 0; } if( isSpecialError ){ /* If the query was read-only and the error code is SQLITE_INTERRUPT, ** no rollback is necessary. Otherwise, at least a savepoint ** transaction must be rolled back to restore the database to a ** consistent state. ** ** Even if the statement is read-only, it is important to perform ** a statement or transaction rollback operation. If the error ** occurred while writing to the journal, sub-journal or database ** file as part of an effort to free up cache space (see function ** pagerStress() in pager.c), the rollback is required to restore ** the pager to a consistent state. */ if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ eStatementOp = SAVEPOINT_ROLLBACK; }else{ /* We are forced to roll back the active transaction. Before doing ** so, abort any other statements this handle currently has active. */ sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); sqlite3CloseSavepoints(db); db->autoCommit = 1; p->nChange = 0; } } } /* Check for immediate foreign key violations. */ if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ (void)sqlite3VdbeCheckFk(p, 0); } /* If the auto-commit flag is set and this is the only active writer ** VM, then we do either a commit or rollback of the current transaction. ** ** Note: This block also runs if one of the special errors handled ** above has occurred. */ if( !sqlite3VtabInSync(db) && db->autoCommit && db->nVdbeWrite==(p->readOnly==0) ){ if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ rc = sqlite3VdbeCheckFk(p, 1); if( rc!=SQLITE_OK ){ if( NEVER(p->readOnly) ){ sqlite3VdbeLeave(p); return SQLITE_ERROR; } rc = SQLITE_CONSTRAINT_FOREIGNKEY; }else if( db->flags & SQLITE_CorruptRdOnly ){ rc = SQLITE_CORRUPT; db->flags &= ~SQLITE_CorruptRdOnly; }else{ /* The auto-commit flag is true, the vdbe program was successful ** or hit an 'OR FAIL' constraint and there are no deferred foreign ** key constraints to hold up the transaction. This means a commit ** is required. */ rc = vdbeCommit(db, p); } if( rc==SQLITE_BUSY && p->readOnly ){ sqlite3VdbeLeave(p); return SQLITE_BUSY; }else if( rc!=SQLITE_OK ){ sqlite3SystemError(db, rc); p->rc = rc; sqlite3RollbackAll(db, SQLITE_OK); p->nChange = 0; }else{ db->nDeferredCons = 0; db->nDeferredImmCons = 0; db->flags &= ~(u64)SQLITE_DeferFKs; sqlite3CommitInternalChanges(db); } }else if( p->rc==SQLITE_SCHEMA && db->nVdbeActive>1 ){ p->nChange = 0; }else{ sqlite3RollbackAll(db, SQLITE_OK); p->nChange = 0; } db->nStatement = 0; }else if( eStatementOp==0 ){ if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ eStatementOp = SAVEPOINT_RELEASE; }else if( p->errorAction==OE_Abort ){ eStatementOp = SAVEPOINT_ROLLBACK; }else{ sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); sqlite3CloseSavepoints(db); db->autoCommit = 1; p->nChange = 0; } } /* If eStatementOp is non-zero, then a statement transaction needs to ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to ** do so. If this operation returns an error, and the current statement ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the ** current statement error code. */ if( eStatementOp ){ rc = sqlite3VdbeCloseStatement(p, eStatementOp); if( rc ){ if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ p->rc = rc; sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = 0; } sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); sqlite3CloseSavepoints(db); db->autoCommit = 1; p->nChange = 0; } } /* If this was an INSERT, UPDATE or DELETE and no statement transaction ** has been rolled back, update the database connection change-counter. */ if( p->changeCntOn ){ if( eStatementOp!=SAVEPOINT_ROLLBACK ){ sqlite3VdbeSetChanges(db, p->nChange); }else{ sqlite3VdbeSetChanges(db, 0); } p->nChange = 0; } /* Release the locks */ sqlite3VdbeLeave(p); } /* We have successfully halted and closed the VM. Record this fact. */ db->nVdbeActive--; if( !p->readOnly ) db->nVdbeWrite--; if( p->bIsReader ) db->nVdbeRead--; assert( db->nVdbeActive>=db->nVdbeRead ); assert( db->nVdbeRead>=db->nVdbeWrite ); assert( db->nVdbeWrite>=0 ); p->eVdbeState = VDBE_HALT_STATE; checkActiveVdbeCnt(db); if( db->mallocFailed ){ p->rc = SQLITE_NOMEM_BKPT; } /* If the auto-commit flag is set to true, then any locks that were held ** by connection db have now been released. Call sqlite3ConnectionUnlocked() ** to invoke any required unlock-notify callbacks. */ if( db->autoCommit ){ sqlite3ConnectionUnlocked(db); } assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); } /* ** Each VDBE holds the result of the most recent sqlite3_step() call ** in p->rc. This routine sets that result back to SQLITE_OK. */ void sqlite3VdbeResetStepResult(Vdbe *p){ p->rc = SQLITE_OK; } /* ** Copy the error code and error message belonging to the VDBE passed ** as the first argument to its database handle (so that they will be ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). ** ** This function does not clear the VDBE error code or message, just ** copies them to the database handle. */ int sqlite3VdbeTransferError(Vdbe *p){ sqlite3 *db = p->db; int rc = p->rc; if( p->zErrMsg ){ db->bBenignMalloc++; sqlite3BeginBenignMalloc(); if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); sqlite3EndBenignMalloc(); db->bBenignMalloc--; }else if( db->pErr ){ sqlite3ValueSetNull(db->pErr); } db->errCode = rc; db->errByteOffset = -1; return rc; } #ifdef SQLITE_ENABLE_SQLLOG /* ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, ** invoke it. */ static void vdbeInvokeSqllog(Vdbe *v){ if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); assert( v->db->init.busy==0 ); if( zExpanded ){ sqlite3GlobalConfig.xSqllog( sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 ); sqlite3DbFree(v->db, zExpanded); } } } #else # define vdbeInvokeSqllog(x) #endif /* ** Clean up a VDBE after execution but do not delete the VDBE just yet. ** Write any error messages into *pzErrMsg. Return the result code. ** ** After this routine is run, the VDBE should be ready to be executed ** again. ** ** To look at it another way, this routine resets the state of the ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to ** VDBE_READY_STATE. */ int sqlite3VdbeReset(Vdbe *p){ #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) int i; #endif sqlite3 *db; db = p->db; /* If the VM did not run to completion or if it encountered an ** error, then it might not have been halted properly. So halt ** it now. */ if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p); /* If the VDBE has been run even partially, then transfer the error code ** and error message from the VDBE into the main database structure. But ** if the VDBE has just been set to run but has not actually executed any ** instructions yet, leave the main database error information unchanged. */ if( p->pc>=0 ){ vdbeInvokeSqllog(p); if( db->pErr || p->zErrMsg ){ sqlite3VdbeTransferError(p); }else{ db->errCode = p->rc; } } /* Reset register contents and reclaim error message memory. */ #ifdef SQLITE_DEBUG /* Execute assert() statements to ensure that the Vdbe.apCsr[] and ** Vdbe.aMem[] arrays have already been cleaned up. */ if( p->apCsr ) for(i=0; inCursor; i++) assert( p->apCsr[i]==0 ); if( p->aMem ){ for(i=0; inMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); } #endif if( p->zErrMsg ){ sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = 0; } p->pResultRow = 0; #ifdef SQLITE_DEBUG p->nWrite = 0; #endif /* Save profiling information from this VDBE run. */ #ifdef VDBE_PROFILE { FILE *out = fopen("vdbe_profile.out", "a"); if( out ){ fprintf(out, "---- "); for(i=0; inOp; i++){ fprintf(out, "%02x", p->aOp[i].opcode); } fprintf(out, "\n"); if( p->zSql ){ char c, pc = 0; fprintf(out, "-- "); for(i=0; (c = p->zSql[i])!=0; i++){ if( pc=='\n' ) fprintf(out, "-- "); putc(c, out); pc = c; } if( pc!='\n' ) fprintf(out, "\n"); } for(i=0; inOp; i++){ char zHdr[100]; i64 cnt = p->aOp[i].nExec; i64 cycles = p->aOp[i].nCycle; sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", cnt, cycles, cnt>0 ? cycles/cnt : 0 ); fprintf(out, "%s", zHdr); sqlite3VdbePrintOp(out, i, &p->aOp[i]); } fclose(out); } } #endif return p->rc & db->errMask; } /* ** Clean up and delete a VDBE after execution. Return an integer which is ** the result code. Write any error message text into *pzErrMsg. */ int sqlite3VdbeFinalize(Vdbe *p){ int rc = SQLITE_OK; assert( VDBE_RUN_STATE>VDBE_READY_STATE ); assert( VDBE_HALT_STATE>VDBE_READY_STATE ); assert( VDBE_INIT_STATEeVdbeState>=VDBE_READY_STATE ){ rc = sqlite3VdbeReset(p); assert( (rc & p->db->errMask)==rc ); } sqlite3VdbeDelete(p); return rc; } /* ** If parameter iOp is less than zero, then invoke the destructor for ** all auxiliary data pointers currently cached by the VM passed as ** the first argument. ** ** Or, if iOp is greater than or equal to zero, then the destructor is ** only invoked for those auxiliary data pointers created by the user ** function invoked by the OP_Function opcode at instruction iOp of ** VM pVdbe, and only then if: ** ** * the associated function parameter is the 32nd or later (counting ** from left to right), or ** ** * the corresponding bit in argument mask is clear (where the first ** function parameter corresponds to bit 0 etc.). */ void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ while( *pp ){ AuxData *pAux = *pp; if( (iOp<0) || (pAux->iAuxOp==iOp && pAux->iAuxArg>=0 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) ){ testcase( pAux->iAuxArg==31 ); if( pAux->xDeleteAux ){ pAux->xDeleteAux(pAux->pAux); } *pp = pAux->pNextAux; sqlite3DbFree(db, pAux); }else{ pp= &pAux->pNextAux; } } } /* ** Free all memory associated with the Vdbe passed as the second argument, ** except for object itself, which is preserved. ** ** The difference between this function and sqlite3VdbeDelete() is that ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with ** the database connection and frees the object itself. */ static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ SubProgram *pSub, *pNext; assert( db!=0 ); assert( p->db==0 || p->db==db ); if( p->aColName ){ releaseMemArray(p->aColName, p->nResAlloc*COLNAME_N); sqlite3DbNNFreeNN(db, p->aColName); } for(pSub=p->pProgram; pSub; pSub=pNext){ pNext = pSub->pNext; vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); sqlite3DbFree(db, pSub); } if( p->eVdbeState!=VDBE_INIT_STATE ){ releaseMemArray(p->aVar, p->nVar); if( p->pVList ) sqlite3DbNNFreeNN(db, p->pVList); if( p->pFree ) sqlite3DbNNFreeNN(db, p->pFree); } vdbeFreeOpArray(db, p->aOp, p->nOp); if( p->zSql ) sqlite3DbNNFreeNN(db, p->zSql); #ifdef SQLITE_ENABLE_NORMALIZE sqlite3DbFree(db, p->zNormSql); { DblquoteStr *pThis, *pNxt; for(pThis=p->pDblStr; pThis; pThis=pNxt){ pNxt = pThis->pNextStr; sqlite3DbFree(db, pThis); } } #endif #ifdef SQLITE_ENABLE_STMT_SCANSTATUS { int i; for(i=0; inScan; i++){ sqlite3DbFree(db, p->aScan[i].zName); } sqlite3DbFree(db, p->aScan); } #endif } /* ** Delete an entire VDBE. */ void sqlite3VdbeDelete(Vdbe *p){ sqlite3 *db; assert( p!=0 ); db = p->db; assert( db!=0 ); assert( sqlite3_mutex_held(db->mutex) ); sqlite3VdbeClearObject(db, p); if( db->pnBytesFreed==0 ){ assert( p->ppVPrev!=0 ); *p->ppVPrev = p->pVNext; if( p->pVNext ){ p->pVNext->ppVPrev = p->ppVPrev; } } sqlite3DbNNFreeNN(db, p); } /* ** The cursor "p" has a pending seek operation that has not yet been ** carried out. Seek the cursor now. If an error occurs, return ** the appropriate error code. */ int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){ int res, rc; #ifdef SQLITE_TEST extern int sqlite3_search_count; #endif assert( p->deferredMoveto ); assert( p->isTable ); assert( p->eCurType==CURTYPE_BTREE ); rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res); if( rc ) return rc; if( res!=0 ) return SQLITE_CORRUPT_BKPT; #ifdef SQLITE_TEST sqlite3_search_count++; #endif p->deferredMoveto = 0; p->cacheStatus = CACHE_STALE; return SQLITE_OK; } /* ** Something has moved cursor "p" out of place. Maybe the row it was ** pointed to was deleted out from under it. Or maybe the btree was ** rebalanced. Whatever the cause, try to restore "p" to the place it ** is supposed to be pointing. If the row was deleted out from under the ** cursor, set the cursor to point to a NULL row. */ int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){ int isDifferentRow, rc; assert( p->eCurType==CURTYPE_BTREE ); assert( p->uc.pCursor!=0 ); assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); p->cacheStatus = CACHE_STALE; if( isDifferentRow ) p->nullRow = 1; return rc; } /* ** Check to ensure that the cursor is valid. Restore the cursor ** if need be. Return any I/O error from the restore operation. */ int sqlite3VdbeCursorRestore(VdbeCursor *p){ assert( p->eCurType==CURTYPE_BTREE || IsNullCursor(p) ); if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ return sqlite3VdbeHandleMovedCursor(p); } return SQLITE_OK; } /* ** The following functions: ** ** sqlite3VdbeSerialType() ** sqlite3VdbeSerialTypeLen() ** sqlite3VdbeSerialLen() ** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02 ** sqlite3VdbeSerialGet() ** ** encapsulate the code that serializes values for storage in SQLite ** data and index records. Each serialized value consists of a ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned ** integer, stored as a varint. ** ** In an SQLite index record, the serial type is stored directly before ** the blob of data that it corresponds to. In a table record, all serial ** types are stored at the start of the record, and the blobs of data at ** the end. Hence these functions allow the caller to handle the ** serial-type and data blob separately. ** ** The following table describes the various storage classes for data: ** ** serial type bytes of data type ** -------------- --------------- --------------- ** 0 0 NULL ** 1 1 signed integer ** 2 2 signed integer ** 3 3 signed integer ** 4 4 signed integer ** 5 6 signed integer ** 6 8 signed integer ** 7 8 IEEE float ** 8 0 Integer constant 0 ** 9 0 Integer constant 1 ** 10,11 reserved for expansion ** N>=12 and even (N-12)/2 BLOB ** N>=13 and odd (N-13)/2 text ** ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions ** of SQLite will not understand those serial types. */ #if 0 /* Inlined into the OP_MakeRecord opcode */ /* ** Return the serial-type for the value stored in pMem. ** ** This routine might convert a large MEM_IntReal value into MEM_Real. ** ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord ** opcode in the byte-code engine. But by moving this routine in-line, we ** can omit some redundant tests and make that opcode a lot faster. So ** this routine is now only used by the STAT3 logic and STAT3 support has ** ended. The code is kept here for historical reference only. */ u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ int flags = pMem->flags; u32 n; assert( pLen!=0 ); if( flags&MEM_Null ){ *pLen = 0; return 0; } if( flags&(MEM_Int|MEM_IntReal) ){ /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) i64 i = pMem->u.i; u64 u; testcase( flags & MEM_Int ); testcase( flags & MEM_IntReal ); if( i<0 ){ u = ~i; }else{ u = i; } if( u<=127 ){ if( (i&1)==i && file_format>=4 ){ *pLen = 0; return 8+(u32)u; }else{ *pLen = 1; return 1; } } if( u<=32767 ){ *pLen = 2; return 2; } if( u<=8388607 ){ *pLen = 3; return 3; } if( u<=2147483647 ){ *pLen = 4; return 4; } if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } *pLen = 8; if( flags&MEM_IntReal ){ /* If the value is IntReal and is going to take up 8 bytes to store ** as an integer, then we might as well make it an 8-byte floating ** point value */ pMem->u.r = (double)pMem->u.i; pMem->flags &= ~MEM_IntReal; pMem->flags |= MEM_Real; return 7; } return 6; } if( flags&MEM_Real ){ *pLen = 8; return 7; } assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); assert( pMem->n>=0 ); n = (u32)pMem->n; if( flags & MEM_Zero ){ n += pMem->u.nZero; } *pLen = n; return ((n*2) + 12 + ((flags&MEM_Str)!=0)); } #endif /* inlined into OP_MakeRecord */ /* ** The sizes for serial types less than 128 */ const u8 sqlite3SmallTypeSizes[128] = { /* 0 1 2 3 4 5 6 7 8 9 */ /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 }; /* ** Return the length of the data corresponding to the supplied serial-type. */ u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ if( serial_type>=128 ){ return (serial_type-12)/2; }else{ assert( serial_type<12 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); return sqlite3SmallTypeSizes[serial_type]; } } u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ assert( serial_type<128 ); return sqlite3SmallTypeSizes[serial_type]; } /* ** If we are on an architecture with mixed-endian floating ** points (ex: ARM7) then swap the lower 4 bytes with the ** upper 4 bytes. Return the result. ** ** For most architectures, this is a no-op. ** ** (later): It is reported to me that the mixed-endian problem ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems ** that early versions of GCC stored the two words of a 64-bit ** float in the wrong order. And that error has been propagated ** ever since. The blame is not necessarily with GCC, though. ** GCC might have just copying the problem from a prior compiler. ** I am also told that newer versions of GCC that follow a different ** ABI get the byte order right. ** ** Developers using SQLite on an ARM7 should compile and run their ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG ** enabled, some asserts below will ensure that the byte order of ** floating point values is correct. ** ** (2007-08-30) Frank van Vugt has studied this problem closely ** and has send his findings to the SQLite developers. Frank ** writes that some Linux kernels offer floating point hardware ** emulation that uses only 32-bit mantissas instead of a full ** 48-bits as required by the IEEE standard. (This is the ** CONFIG_FPE_FASTFPE option.) On such systems, floating point ** byte swapping becomes very complicated. To avoid problems, ** the necessary byte swapping is carried out using a 64-bit integer ** rather than a 64-bit float. Frank assures us that the code here ** works for him. We, the developers, have no way to independently ** verify this, but Frank seems to know what he is talking about ** so we trust him. */ #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT u64 sqlite3FloatSwap(u64 in){ union { u64 r; u32 i[2]; } u; u32 t; u.r = in; t = u.i[0]; u.i[0] = u.i[1]; u.i[1] = t; return u.r; } #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */ /* Input "x" is a sequence of unsigned characters that represent a ** big-endian integer. Return the equivalent native integer */ #define ONE_BYTE_INT(x) ((i8)(x)[0]) #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) /* ** Deserialize the data blob pointed to by buf as serial type serial_type ** and store the result in pMem. ** ** This function is implemented as two separate routines for performance. ** The few cases that require local variables are broken out into a separate ** routine so that in most cases the overhead of moving the stack pointer ** is avoided. */ static void serialGet( const unsigned char *buf, /* Buffer to deserialize from */ u32 serial_type, /* Serial type to deserialize */ Mem *pMem /* Memory cell to write value into */ ){ u64 x = FOUR_BYTE_UINT(buf); u32 y = FOUR_BYTE_UINT(buf+4); x = (x<<32) + y; if( serial_type==6 ){ /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit ** twos-complement integer. */ pMem->u.i = *(i64*)&x; pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); }else{ /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit ** floating point number. */ #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) /* Verify that integers and floating point values use the same ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is ** defined that 64-bit floating point values really are mixed ** endian. */ static const u64 t1 = ((u64)0x3ff00000)<<32; static const double r1 = 1.0; u64 t2 = t1; swapMixedEndianFloat(t2); assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); #endif assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); swapMixedEndianFloat(x); memcpy(&pMem->u.r, &x, sizeof(x)); pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real; } } static int serialGet7( const unsigned char *buf, /* Buffer to deserialize from */ Mem *pMem /* Memory cell to write value into */ ){ u64 x = FOUR_BYTE_UINT(buf); u32 y = FOUR_BYTE_UINT(buf+4); x = (x<<32) + y; assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); swapMixedEndianFloat(x); memcpy(&pMem->u.r, &x, sizeof(x)); if( IsNaN(x) ){ pMem->flags = MEM_Null; return 1; } pMem->flags = MEM_Real; return 0; } void sqlite3VdbeSerialGet( const unsigned char *buf, /* Buffer to deserialize from */ u32 serial_type, /* Serial type to deserialize */ Mem *pMem /* Memory cell to write value into */ ){ switch( serial_type ){ case 10: { /* Internal use only: NULL with virtual table ** UPDATE no-change flag set */ pMem->flags = MEM_Null|MEM_Zero; pMem->n = 0; pMem->u.nZero = 0; return; } case 11: /* Reserved for future use */ case 0: { /* Null */ /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ pMem->flags = MEM_Null; return; } case 1: { /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement ** integer. */ pMem->u.i = ONE_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return; } case 2: { /* 2-byte signed integer */ /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit ** twos-complement integer. */ pMem->u.i = TWO_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return; } case 3: { /* 3-byte signed integer */ /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit ** twos-complement integer. */ pMem->u.i = THREE_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return; } case 4: { /* 4-byte signed integer */ /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit ** twos-complement integer. */ pMem->u.i = FOUR_BYTE_INT(buf); #ifdef __HP_cc /* Work around a sign-extension bug in the HP compiler for HP/UX */ if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; #endif pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return; } case 5: { /* 6-byte signed integer */ /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit ** twos-complement integer. */ pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return; } case 6: /* 8-byte signed integer */ case 7: { /* IEEE floating point */ /* These use local variables, so do them in a separate routine ** to avoid having to move the frame pointer in the common case */ serialGet(buf,serial_type,pMem); return; } case 8: /* Integer 0 */ case 9: { /* Integer 1 */ /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ pMem->u.i = serial_type-8; pMem->flags = MEM_Int; return; } default: { /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in ** length. ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and ** (N-13)/2 bytes in length. */ static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; pMem->z = (char *)buf; pMem->n = (serial_type-12)/2; pMem->flags = aFlag[serial_type&1]; return; } } return; } /* ** This routine is used to allocate sufficient space for an UnpackedRecord ** structure large enough to be used with sqlite3VdbeRecordUnpack() if ** the first argument is a pointer to KeyInfo structure pKeyInfo. ** ** The space is either allocated using sqlite3DbMallocRaw() or from within ** the unaligned buffer passed via the second and third arguments (presumably ** stack space). If the former, then *ppFree is set to a pointer that should ** be eventually freed by the caller using sqlite3DbFree(). Or, if the ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL ** before returning. ** ** If an OOM error occurs, NULL is returned. */ UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( KeyInfo *pKeyInfo /* Description of the record */ ){ UnpackedRecord *p; /* Unpacked record to return */ int nByte; /* Number of bytes required for *p */ nByte = ROUND8P(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); if( !p ) return 0; p->aMem = (Mem*)&((char*)p)[ROUND8P(sizeof(UnpackedRecord))]; assert( pKeyInfo->aSortFlags!=0 ); p->pKeyInfo = pKeyInfo; p->nField = pKeyInfo->nKeyField + 1; return p; } /* ** Given the nKey-byte encoding of a record in pKey[], populate the ** UnpackedRecord structure indicated by the fourth argument with the ** contents of the decoded record. */ void sqlite3VdbeRecordUnpack( KeyInfo *pKeyInfo, /* Information about the record format */ int nKey, /* Size of the binary record */ const void *pKey, /* The binary record */ UnpackedRecord *p /* Populate this structure before returning. */ ){ const unsigned char *aKey = (const unsigned char *)pKey; u32 d; u32 idx; /* Offset in aKey[] to read from */ u16 u; /* Unsigned loop counter */ u32 szHdr; Mem *pMem = p->aMem; p->default_rc = 0; assert( EIGHT_BYTE_ALIGNMENT(pMem) ); idx = getVarint32(aKey, szHdr); d = szHdr; u = 0; while( idxenc = pKeyInfo->enc; pMem->db = pKeyInfo->db; /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ pMem->szMalloc = 0; pMem->z = 0; sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); d += sqlite3VdbeSerialTypeLen(serial_type); pMem++; if( (++u)>=p->nField ) break; } if( d>(u32)nKey && u ){ assert( CORRUPT_DB ); /* In a corrupt record entry, the last pMem might have been set up using ** uninitialized memory. Overwrite its value with NULL, to prevent ** warnings from MSAN. */ sqlite3VdbeMemSetNull(pMem-1); } assert( u<=pKeyInfo->nKeyField + 1 ); p->nField = u; } #ifdef SQLITE_DEBUG /* ** This function compares two index or table record keys in the same way ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), ** this function deserializes and compares values using the ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used ** in assert() statements to ensure that the optimized code in ** sqlite3VdbeRecordCompare() returns results with these two primitives. ** ** Return true if the result of comparison is equivalent to desiredResult. ** Return false if there is a disagreement. */ static int vdbeRecordCompareDebug( int nKey1, const void *pKey1, /* Left key */ const UnpackedRecord *pPKey2, /* Right key */ int desiredResult /* Correct answer */ ){ u32 d1; /* Offset into aKey[] of next data element */ u32 idx1; /* Offset into aKey[] of next header element */ u32 szHdr1; /* Number of bytes in header */ int i = 0; int rc = 0; const unsigned char *aKey1 = (const unsigned char *)pKey1; KeyInfo *pKeyInfo; Mem mem1; pKeyInfo = pPKey2->pKeyInfo; if( pKeyInfo->db==0 ) return 1; mem1.enc = pKeyInfo->enc; mem1.db = pKeyInfo->db; /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ /* Compilers may complain that mem1.u.i is potentially uninitialized. ** We could initialize it, as shown here, to silence those complaints. ** But in fact, mem1.u.i will never actually be used uninitialized, and doing ** the unnecessary initialization has a measurable negative performance ** impact, since this routine is a very high runner. And so, we choose ** to ignore the compiler warnings and leave this variable uninitialized. */ /* mem1.u.i = 0; // not needed, here to silence compiler warning */ idx1 = getVarint32(aKey1, szHdr1); if( szHdr1>98307 ) return SQLITE_CORRUPT; d1 = szHdr1; assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); assert( pKeyInfo->aSortFlags!=0 ); assert( pKeyInfo->nKeyField>0 ); assert( idx1<=szHdr1 || CORRUPT_DB ); do{ u32 serial_type1; /* Read the serial types for the next element in each key. */ idx1 += getVarint32( aKey1+idx1, serial_type1 ); /* Verify that there is enough key space remaining to avoid ** a buffer overread. The "d1+serial_type1+2" subexpression will ** always be greater than or equal to the amount of required key space. ** Use that approximation to avoid the more expensive call to ** sqlite3VdbeSerialTypeLen() in the common case. */ if( d1+(u64)serial_type1+2>(u64)nKey1 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1 ){ if( serial_type1>=1 && serial_type1<=7 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)<=(u64)nKey1+8 && CORRUPT_DB ){ return 1; /* corrupt record not detected by ** sqlite3VdbeRecordCompareWithSkip(). Return true ** to avoid firing the assert() */ } break; } /* Extract the values to be compared. */ sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); d1 += sqlite3VdbeSerialTypeLen(serial_type1); /* Do the comparison */ rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0); if( rc!=0 ){ assert( mem1.szMalloc==0 ); /* See comment below */ if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null)) ){ rc = -rc; } if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){ rc = -rc; /* Invert the result for DESC sort order. */ } goto debugCompareEnd; } i++; }while( idx1nField ); /* No memory allocation is ever used on mem1. Prove this using ** the following assert(). If the assert() fails, it indicates a ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ assert( mem1.szMalloc==0 ); /* rc==0 here means that one of the keys ran out of fields and ** all the fields up to that point were equal. Return the default_rc ** value. */ rc = pPKey2->default_rc; debugCompareEnd: if( desiredResult==0 && rc==0 ) return 1; if( desiredResult<0 && rc<0 ) return 1; if( desiredResult>0 && rc>0 ) return 1; if( CORRUPT_DB ) return 1; if( pKeyInfo->db->mallocFailed ) return 1; return 0; } #endif #ifdef SQLITE_DEBUG /* ** Count the number of fields (a.k.a. columns) in the record given by ** pKey,nKey. The verify that this count is less than or equal to the ** limit given by pKeyInfo->nAllField. ** ** If this constraint is not satisfied, it means that the high-speed ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will ** not work correctly. If this assert() ever fires, it probably means ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed ** incorrectly. */ static void vdbeAssertFieldCountWithinLimits( int nKey, const void *pKey, /* The record to verify */ const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ ){ int nField = 0; u32 szHdr; u32 idx; u32 notUsed; const unsigned char *aKey = (const unsigned char*)pKey; if( CORRUPT_DB ) return; idx = getVarint32(aKey, szHdr); assert( nKey>=0 ); assert( szHdr<=(u32)nKey ); while( idxnAllField ); } #else # define vdbeAssertFieldCountWithinLimits(A,B,C) #endif /* ** Both *pMem1 and *pMem2 contain string values. Compare the two values ** using the collation sequence pColl. As usual, return a negative , zero ** or positive value if *pMem1 is less than, equal to or greater than ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". */ static int vdbeCompareMemString( const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl, u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ ){ if( pMem1->enc==pColl->enc ){ /* The strings are already in the correct encoding. Call the ** comparison function directly */ return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); }else{ int rc; const void *v1, *v2; Mem c1; Mem c2; sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); if( (v1==0 || v2==0) ){ if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; rc = 0; }else{ rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); } sqlite3VdbeMemReleaseMalloc(&c1); sqlite3VdbeMemReleaseMalloc(&c2); return rc; } } /* ** The input pBlob is guaranteed to be a Blob that is not marked ** with MEM_Zero. Return true if it could be a zero-blob. */ static int isAllZero(const char *z, int n){ int i; for(i=0; in; int n2 = pB2->n; /* It is possible to have a Blob value that has some non-zero content ** followed by zero content. But that only comes up for Blobs formed ** by the OP_MakeRecord opcode, and such Blobs never get passed into ** sqlite3MemCompare(). */ assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); if( (pB1->flags|pB2->flags) & MEM_Zero ){ if( pB1->flags & pB2->flags & MEM_Zero ){ return pB1->u.nZero - pB2->u.nZero; }else if( pB1->flags & MEM_Zero ){ if( !isAllZero(pB2->z, pB2->n) ) return -1; return pB1->u.nZero - n2; }else{ if( !isAllZero(pB1->z, pB1->n) ) return +1; return n1 - pB2->u.nZero; } } c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); if( c ) return c; return n1 - n2; } /* The following two functions are used only within testcase() to prove ** test coverage. These functions do no exist for production builds. ** We must use separate SQLITE_NOINLINE functions here, since otherwise ** optimizer code movement causes gcov to become very confused. */ #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG) static int SQLITE_NOINLINE doubleLt(double a, double b){ return ar ); testcase( x==r ); return (xr); }else{ i64 y; if( r<-9223372036854775808.0 ) return +1; if( r>=9223372036854775808.0 ) return -1; y = (i64)r; if( iy ) return +1; testcase( doubleLt(((double)i),r) ); testcase( doubleLt(r,((double)i)) ); testcase( doubleEq(r,((double)i)) ); return (((double)i)r); } } /* ** Compare the values contained by the two memory cells, returning ** negative, zero or positive if pMem1 is less than, equal to, or greater ** than pMem2. Sorting order is NULL's first, followed by numbers (integers ** and reals) sorted numerically, followed by text ordered by the collating ** sequence pColl and finally blob's ordered by memcmp(). ** ** Two NULL values are considered equal by this function. */ int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ int f1, f2; int combined_flags; f1 = pMem1->flags; f2 = pMem2->flags; combined_flags = f1|f2; assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) ); /* If one value is NULL, it is less than the other. If both values ** are NULL, return 0. */ if( combined_flags&MEM_Null ){ return (f2&MEM_Null) - (f1&MEM_Null); } /* At least one of the two values is a number */ if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){ testcase( combined_flags & MEM_Int ); testcase( combined_flags & MEM_Real ); testcase( combined_flags & MEM_IntReal ); if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){ testcase( f1 & f2 & MEM_Int ); testcase( f1 & f2 & MEM_IntReal ); if( pMem1->u.i < pMem2->u.i ) return -1; if( pMem1->u.i > pMem2->u.i ) return +1; return 0; } if( (f1 & f2 & MEM_Real)!=0 ){ if( pMem1->u.r < pMem2->u.r ) return -1; if( pMem1->u.r > pMem2->u.r ) return +1; return 0; } if( (f1&(MEM_Int|MEM_IntReal))!=0 ){ testcase( f1 & MEM_Int ); testcase( f1 & MEM_IntReal ); if( (f2&MEM_Real)!=0 ){ return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ if( pMem1->u.i < pMem2->u.i ) return -1; if( pMem1->u.i > pMem2->u.i ) return +1; return 0; }else{ return -1; } } if( (f1&MEM_Real)!=0 ){ if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ testcase( f2 & MEM_Int ); testcase( f2 & MEM_IntReal ); return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); }else{ return -1; } } return +1; } /* If one value is a string and the other is a blob, the string is less. ** If both are strings, compare using the collating functions. */ if( combined_flags&MEM_Str ){ if( (f1 & MEM_Str)==0 ){ return 1; } if( (f2 & MEM_Str)==0 ){ return -1; } assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); assert( pMem1->enc==SQLITE_UTF8 || pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); /* The collation sequence must be defined at this point, even if ** the user deletes the collation sequence after the vdbe program is ** compiled (this was not always the case). */ assert( !pColl || pColl->xCmp ); if( pColl ){ return vdbeCompareMemString(pMem1, pMem2, pColl, 0); } /* If a NULL pointer was passed as the collate function, fall through ** to the blob case and use memcmp(). */ } /* Both values must be blobs. Compare using memcmp(). */ return sqlite3BlobCompare(pMem1, pMem2); } /* ** The first argument passed to this function is a serial-type that ** corresponds to an integer - all values between 1 and 9 inclusive ** except 7. The second points to a buffer containing an integer value ** serialized according to serial_type. This function deserializes ** and returns the value. */ static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ u32 y; assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); switch( serial_type ){ case 0: case 1: testcase( aKey[0]&0x80 ); return ONE_BYTE_INT(aKey); case 2: testcase( aKey[0]&0x80 ); return TWO_BYTE_INT(aKey); case 3: testcase( aKey[0]&0x80 ); return THREE_BYTE_INT(aKey); case 4: { testcase( aKey[0]&0x80 ); y = FOUR_BYTE_UINT(aKey); return (i64)*(int*)&y; } case 5: { testcase( aKey[0]&0x80 ); return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); } case 6: { u64 x = FOUR_BYTE_UINT(aKey); testcase( aKey[0]&0x80 ); x = (x<<32) | FOUR_BYTE_UINT(aKey+4); return (i64)*(i64*)&x; } } return (serial_type - 8); } /* ** This function compares the two table rows or index records ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero ** or positive integer if key1 is less than, equal to or ** greater than key2. The {nKey1, pKey1} key must be a blob ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 ** key must be a parsed key such as obtained from ** sqlite3VdbeParseRecord. ** ** If argument bSkip is non-zero, it is assumed that the caller has already ** determined that the first fields of the keys are equal. ** ** Key1 and Key2 do not have to contain the same number of fields. If all ** fields that appear in both keys are equal, then pPKey2->default_rc is ** returned. ** ** If database corruption is discovered, set pPKey2->errCode to ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). */ int sqlite3VdbeRecordCompareWithSkip( int nKey1, const void *pKey1, /* Left key */ UnpackedRecord *pPKey2, /* Right key */ int bSkip /* If true, skip the first field */ ){ u32 d1; /* Offset into aKey[] of next data element */ int i; /* Index of next field to compare */ u32 szHdr1; /* Size of record header in bytes */ u32 idx1; /* Offset of first type in header */ int rc = 0; /* Return value */ Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ KeyInfo *pKeyInfo; const unsigned char *aKey1 = (const unsigned char *)pKey1; Mem mem1; /* If bSkip is true, then the caller has already determined that the first ** two elements in the keys are equal. Fix the various stack variables so ** that this routine begins comparing at the second field. */ if( bSkip ){ u32 s1 = aKey1[1]; if( s1<0x80 ){ idx1 = 2; }else{ idx1 = 1 + sqlite3GetVarint32(&aKey1[1], &s1); } szHdr1 = aKey1[0]; d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); i = 1; pRhs++; }else{ if( (szHdr1 = aKey1[0])<0x80 ){ idx1 = 1; }else{ idx1 = sqlite3GetVarint32(aKey1, &szHdr1); } d1 = szHdr1; i = 0; } if( d1>(unsigned)nKey1 ){ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; return 0; /* Corruption */ } VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); assert( pPKey2->pKeyInfo->aSortFlags!=0 ); assert( pPKey2->pKeyInfo->nKeyField>0 ); assert( idx1<=szHdr1 || CORRUPT_DB ); while( 1 /*exit-by-break*/ ){ u32 serial_type; /* RHS is an integer */ if( pRhs->flags & (MEM_Int|MEM_IntReal) ){ testcase( pRhs->flags & MEM_Int ); testcase( pRhs->flags & MEM_IntReal ); serial_type = aKey1[idx1]; testcase( serial_type==12 ); if( serial_type>=10 ){ rc = serial_type==10 ? -1 : +1; }else if( serial_type==0 ){ rc = -1; }else if( serial_type==7 ){ serialGet7(&aKey1[d1], &mem1); rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); }else{ i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); i64 rhs = pRhs->u.i; if( lhsrhs ){ rc = +1; } } } /* RHS is real */ else if( pRhs->flags & MEM_Real ){ serial_type = aKey1[idx1]; if( serial_type>=10 ){ /* Serial types 12 or greater are strings and blobs (greater than ** numbers). Types 10 and 11 are currently "reserved for future ** use", so it doesn't really matter what the results of comparing ** them to numeric values are. */ rc = serial_type==10 ? -1 : +1; }else if( serial_type==0 ){ rc = -1; }else{ if( serial_type==7 ){ if( serialGet7(&aKey1[d1], &mem1) ){ rc = -1; /* mem1 is a NaN */ }else if( mem1.u.ru.r ){ rc = -1; }else if( mem1.u.r>pRhs->u.r ){ rc = +1; }else{ assert( rc==0 ); } }else{ sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); } } } /* RHS is a string */ else if( pRhs->flags & MEM_Str ){ getVarint32NR(&aKey1[idx1], serial_type); testcase( serial_type==12 ); if( serial_type<12 ){ rc = -1; }else if( !(serial_type & 0x01) ){ rc = +1; }else{ mem1.n = (serial_type - 12) / 2; testcase( (d1+mem1.n)==(unsigned)nKey1 ); testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); if( (d1+mem1.n) > (unsigned)nKey1 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i ){ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; return 0; /* Corruption */ }else if( pKeyInfo->aColl[i] ){ mem1.enc = pKeyInfo->enc; mem1.db = pKeyInfo->db; mem1.flags = MEM_Str; mem1.z = (char*)&aKey1[d1]; rc = vdbeCompareMemString( &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode ); }else{ int nCmp = MIN(mem1.n, pRhs->n); rc = memcmp(&aKey1[d1], pRhs->z, nCmp); if( rc==0 ) rc = mem1.n - pRhs->n; } } } /* RHS is a blob */ else if( pRhs->flags & MEM_Blob ){ assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); getVarint32NR(&aKey1[idx1], serial_type); testcase( serial_type==12 ); if( serial_type<12 || (serial_type & 0x01) ){ rc = -1; }else{ int nStr = (serial_type - 12) / 2; testcase( (d1+nStr)==(unsigned)nKey1 ); testcase( (d1+nStr+1)==(unsigned)nKey1 ); if( (d1+nStr) > (unsigned)nKey1 ){ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; return 0; /* Corruption */ }else if( pRhs->flags & MEM_Zero ){ if( !isAllZero((const char*)&aKey1[d1],nStr) ){ rc = 1; }else{ rc = nStr - pRhs->u.nZero; } }else{ int nCmp = MIN(nStr, pRhs->n); rc = memcmp(&aKey1[d1], pRhs->z, nCmp); if( rc==0 ) rc = nStr - pRhs->n; } } } /* RHS is null */ else{ serial_type = aKey1[idx1]; if( serial_type==0 || serial_type==10 || (serial_type==7 && serialGet7(&aKey1[d1], &mem1)!=0) ){ assert( rc==0 ); }else{ rc = 1; } } if( rc!=0 ){ int sortFlags = pPKey2->pKeyInfo->aSortFlags[i]; if( sortFlags ){ if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0 || ((sortFlags & KEYINFO_ORDER_DESC) !=(serial_type==0 || (pRhs->flags&MEM_Null))) ){ rc = -rc; } } assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); assert( mem1.szMalloc==0 ); /* See comment below */ return rc; } i++; if( i==pPKey2->nField ) break; pRhs++; d1 += sqlite3VdbeSerialTypeLen(serial_type); if( d1>(unsigned)nKey1 ) break; idx1 += sqlite3VarintLen(serial_type); if( idx1>=(unsigned)szHdr1 ){ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; return 0; /* Corrupt index */ } } /* No memory allocation is ever used on mem1. Prove this using ** the following assert(). If the assert() fails, it indicates a ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ assert( mem1.szMalloc==0 ); /* rc==0 here means that one or both of the keys ran out of fields and ** all the fields up to that point were equal. Return the default_rc ** value. */ assert( CORRUPT_DB || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) || pPKey2->pKeyInfo->db->mallocFailed ); pPKey2->eqSeen = 1; return pPKey2->default_rc; } int sqlite3VdbeRecordCompare( int nKey1, const void *pKey1, /* Left key */ UnpackedRecord *pPKey2 /* Right key */ ){ return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); } /* ** This function is an optimized version of sqlite3VdbeRecordCompare() ** that (a) the first field of pPKey2 is an integer, and (b) the ** size-of-header varint at the start of (pKey1/nKey1) fits in a single ** byte (i.e. is less than 128). ** ** To avoid concerns about buffer overreads, this routine is only used ** on schemas where the maximum valid header size is 63 bytes or less. */ static int vdbeRecordCompareInt( int nKey1, const void *pKey1, /* Left key */ UnpackedRecord *pPKey2 /* Right key */ ){ const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; int serial_type = ((const u8*)pKey1)[1]; int res; u32 y; u64 x; i64 v; i64 lhs; vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); switch( serial_type ){ case 1: { /* 1-byte signed integer */ lhs = ONE_BYTE_INT(aKey); testcase( lhs<0 ); break; } case 2: { /* 2-byte signed integer */ lhs = TWO_BYTE_INT(aKey); testcase( lhs<0 ); break; } case 3: { /* 3-byte signed integer */ lhs = THREE_BYTE_INT(aKey); testcase( lhs<0 ); break; } case 4: { /* 4-byte signed integer */ y = FOUR_BYTE_UINT(aKey); lhs = (i64)*(int*)&y; testcase( lhs<0 ); break; } case 5: { /* 6-byte signed integer */ lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); testcase( lhs<0 ); break; } case 6: { /* 8-byte signed integer */ x = FOUR_BYTE_UINT(aKey); x = (x<<32) | FOUR_BYTE_UINT(aKey+4); lhs = *(i64*)&x; testcase( lhs<0 ); break; } case 8: lhs = 0; break; case 9: lhs = 1; break; /* This case could be removed without changing the results of running ** this code. Including it causes gcc to generate a faster switch ** statement (since the range of switch targets now starts at zero and ** is contiguous) but does not cause any duplicate code to be generated ** (as gcc is clever enough to combine the two like cases). Other ** compilers might be similar. */ case 0: case 7: return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); default: return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); } assert( pPKey2->u.i == pPKey2->aMem[0].u.i ); v = pPKey2->u.i; if( v>lhs ){ res = pPKey2->r1; }else if( vr2; }else if( pPKey2->nField>1 ){ /* The first fields of the two keys are equal. Compare the trailing ** fields. */ res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); }else{ /* The first fields of the two keys are equal and there are no trailing ** fields. Return pPKey2->default_rc in this case. */ res = pPKey2->default_rc; pPKey2->eqSeen = 1; } assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); return res; } /* ** This function is an optimized version of sqlite3VdbeRecordCompare() ** that (a) the first field of pPKey2 is a string, that (b) the first field ** uses the collation sequence BINARY and (c) that the size-of-header varint ** at the start of (pKey1/nKey1) fits in a single byte. */ static int vdbeRecordCompareString( int nKey1, const void *pKey1, /* Left key */ UnpackedRecord *pPKey2 /* Right key */ ){ const u8 *aKey1 = (const u8*)pKey1; int serial_type; int res; assert( pPKey2->aMem[0].flags & MEM_Str ); assert( pPKey2->aMem[0].n == pPKey2->n ); assert( pPKey2->aMem[0].z == pPKey2->u.z ); vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); serial_type = (signed char)(aKey1[1]); vrcs_restart: if( serial_type<12 ){ if( serial_type<0 ){ sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type); if( serial_type>=12 ) goto vrcs_restart; assert( CORRUPT_DB ); } res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ }else if( !(serial_type & 0x01) ){ res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ }else{ int nCmp; int nStr; int szHdr = aKey1[0]; nStr = (serial_type-12) / 2; if( (szHdr + nStr) > nKey1 ){ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; return 0; /* Corruption */ } nCmp = MIN( pPKey2->n, nStr ); res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp); if( res>0 ){ res = pPKey2->r2; }else if( res<0 ){ res = pPKey2->r1; }else{ res = nStr - pPKey2->n; if( res==0 ){ if( pPKey2->nField>1 ){ res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); }else{ res = pPKey2->default_rc; pPKey2->eqSeen = 1; } }else if( res>0 ){ res = pPKey2->r2; }else{ res = pPKey2->r1; } } } assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) || CORRUPT_DB || pPKey2->pKeyInfo->db->mallocFailed ); return res; } /* ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function ** suitable for comparing serialized records to the unpacked record passed ** as the only argument. */ RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ /* varintRecordCompareInt() and varintRecordCompareString() both assume ** that the size-of-header varint that occurs at the start of each record ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() ** also assumes that it is safe to overread a buffer by at least the ** maximum possible legal header size plus 8 bytes. Because there is ** guaranteed to be at least 74 (but not 136) bytes of padding following each ** buffer passed to varintRecordCompareInt() this makes it convenient to ** limit the size of the header to 64 bytes in cases where the first field ** is an integer. ** ** The easiest way to enforce this limit is to consider only records with ** 13 fields or less. If the first field is an integer, the maximum legal ** header size is (12*5 + 1 + 1) bytes. */ if( p->pKeyInfo->nAllField<=13 ){ int flags = p->aMem[0].flags; if( p->pKeyInfo->aSortFlags[0] ){ if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){ return sqlite3VdbeRecordCompare; } p->r1 = 1; p->r2 = -1; }else{ p->r1 = -1; p->r2 = 1; } if( (flags & MEM_Int) ){ p->u.i = p->aMem[0].u.i; return vdbeRecordCompareInt; } testcase( flags & MEM_Real ); testcase( flags & MEM_Null ); testcase( flags & MEM_Blob ); if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ assert( flags & MEM_Str ); p->u.z = p->aMem[0].z; p->n = p->aMem[0].n; return vdbeRecordCompareString; } } return sqlite3VdbeRecordCompare; } /* ** pCur points at an index entry created using the OP_MakeRecord opcode. ** Read the rowid (the last field in the record) and store it in *rowid. ** Return SQLITE_OK if everything works, or an error code otherwise. ** ** pCur might be pointing to text obtained from a corrupt database file. ** So the content cannot be trusted. Do appropriate checks on the content. */ int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ i64 nCellKey = 0; int rc; u32 szHdr; /* Size of the header */ u32 typeRowid; /* Serial type of the rowid */ u32 lenRowid; /* Size of the rowid */ Mem m, v; /* Get the size of the index entry. Only indices entries of less ** than 2GiB are support - anything large must be database corruption. ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so ** this code can safely assume that nCellKey is 32-bits */ assert( sqlite3BtreeCursorIsValid(pCur) ); nCellKey = sqlite3BtreePayloadSize(pCur); assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); /* Read in the complete content of the index entry */ sqlite3VdbeMemInit(&m, db, 0); rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); if( rc ){ return rc; } /* The index entry must begin with a header size */ getVarint32NR((u8*)m.z, szHdr); testcase( szHdr==3 ); testcase( szHdr==(u32)m.n ); testcase( szHdr>0x7fffffff ); assert( m.n>=0 ); if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){ goto idx_rowid_corruption; } /* The last field of the index should be an integer - the ROWID. ** Verify that the last entry really is an integer. */ getVarint32NR((u8*)&m.z[szHdr-1], typeRowid); testcase( typeRowid==1 ); testcase( typeRowid==2 ); testcase( typeRowid==3 ); testcase( typeRowid==4 ); testcase( typeRowid==5 ); testcase( typeRowid==6 ); testcase( typeRowid==8 ); testcase( typeRowid==9 ); if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ goto idx_rowid_corruption; } lenRowid = sqlite3SmallTypeSizes[typeRowid]; testcase( (u32)m.n==szHdr+lenRowid ); if( unlikely((u32)m.neCurType==CURTYPE_BTREE ); pCur = pC->uc.pCursor; assert( sqlite3BtreeCursorIsValid(pCur) ); nCellKey = sqlite3BtreePayloadSize(pCur); /* nCellKey will always be between 0 and 0xffffffff because of the way ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ if( nCellKey<=0 || nCellKey>0x7fffffff ){ *res = 0; return SQLITE_CORRUPT_BKPT; } sqlite3VdbeMemInit(&m, db, 0); rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); if( rc ){ return rc; } *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0); sqlite3VdbeMemReleaseMalloc(&m); return SQLITE_OK; } /* ** This routine sets the value to be returned by subsequent calls to ** sqlite3_changes() on the database handle 'db'. */ void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){ assert( sqlite3_mutex_held(db->mutex) ); db->nChange = nChange; db->nTotalChange += nChange; } /* ** Set a flag in the vdbe to update the change counter when it is finalised ** or reset. */ void sqlite3VdbeCountChanges(Vdbe *v){ v->changeCntOn = 1; } /* ** Mark every prepared statement associated with a database connection ** as expired. ** ** An expired statement means that recompilation of the statement is ** recommend. Statements expire when things happen that make their ** programs obsolete. Removing user-defined functions or collating ** sequences, or changing an authorization function are the types of ** things that make prepared statements obsolete. ** ** If iCode is 1, then expiration is advisory. The statement should ** be reprepared before being restarted, but if it is already running ** it is allowed to run to completion. ** ** Internally, this function just sets the Vdbe.expired flag on all ** prepared statements. The flag is set to 1 for an immediate expiration ** and set to 2 for an advisory expiration. */ void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){ Vdbe *p; for(p = db->pVdbe; p; p=p->pVNext){ p->expired = iCode+1; } } /* ** Return the database associated with the Vdbe. */ sqlite3 *sqlite3VdbeDb(Vdbe *v){ return v->db; } /* ** Return the SQLITE_PREPARE flags for a Vdbe. */ u8 sqlite3VdbePrepareFlags(Vdbe *v){ return v->prepFlags; } /* ** Return a pointer to an sqlite3_value structure containing the value bound ** parameter iVar of VM v. Except, if the value is an SQL NULL, return ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* ** constants) to the value before returning it. ** ** The returned value must be freed by the caller using sqlite3ValueFree(). */ sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ assert( iVar>0 ); if( v ){ Mem *pMem = &v->aVar[iVar-1]; assert( (v->db->flags & SQLITE_EnableQPSG)==0 || (v->db->mDbFlags & DBFLAG_InternalFunc)!=0 ); if( 0==(pMem->flags & MEM_Null) ){ sqlite3_value *pRet = sqlite3ValueNew(v->db); if( pRet ){ sqlite3VdbeMemCopy((Mem *)pRet, pMem); sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); } return pRet; } } return 0; } /* ** Configure SQL variable iVar so that binding a new value to it signals ** to sqlite3_reoptimize() that re-preparing the statement may result ** in a better query plan. */ void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ assert( iVar>0 ); assert( (v->db->flags & SQLITE_EnableQPSG)==0 || (v->db->mDbFlags & DBFLAG_InternalFunc)!=0 ); if( iVar>=32 ){ v->expmask |= 0x80000000; }else{ v->expmask |= ((u32)1 << (iVar-1)); } } /* ** Cause a function to throw an error if it was call from OP_PureFunc ** rather than OP_Function. ** ** OP_PureFunc means that the function must be deterministic, and should ** throw an error if it is given inputs that would make it non-deterministic. ** This routine is invoked by date/time functions that use non-deterministic ** features such as 'now'. */ int sqlite3NotPureFunc(sqlite3_context *pCtx){ const VdbeOp *pOp; #ifdef SQLITE_ENABLE_STAT4 if( pCtx->pVdbe==0 ) return 1; #endif pOp = pCtx->pVdbe->aOp + pCtx->iOp; if( pOp->opcode==OP_PureFunc ){ const char *zContext; char *zMsg; if( pOp->p5 & NC_IsCheck ){ zContext = "a CHECK constraint"; }else if( pOp->p5 & NC_GenCol ){ zContext = "a generated column"; }else{ zContext = "an index"; } zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s", pCtx->pFunc->zName, zContext); sqlite3_result_error(pCtx, zMsg, -1); sqlite3_free(zMsg); return 0; } return 1; } #if defined(SQLITE_ENABLE_CURSOR_HINTS) && defined(SQLITE_DEBUG) /* ** This Walker callback is used to help verify that calls to ** sqlite3BtreeCursorHint() with opcode BTREE_HINT_RANGE have ** byte-code register values correctly initialized. */ int sqlite3CursorRangeHintExprCheck(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_REGISTER ){ assert( (pWalker->u.aMem[pExpr->iTable].flags & MEM_Undefined)==0 ); } return WRC_Continue; } #endif /* SQLITE_ENABLE_CURSOR_HINTS && SQLITE_DEBUG */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored ** in memory obtained from sqlite3DbMalloc). */ void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ if( pVtab->zErrMsg ){ sqlite3 *db = p->db; sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); sqlite3_free(pVtab->zErrMsg); pVtab->zErrMsg = 0; } } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* ** If the second argument is not NULL, release any allocations associated ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord ** structure itself, using sqlite3DbFree(). ** ** This function is used to free UnpackedRecord structures allocated by ** the vdbeUnpackRecord() function found in vdbeapi.c. */ static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ assert( db!=0 ); if( p ){ int i; for(i=0; iaMem[i]; if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem); } sqlite3DbNNFreeNN(db, p); } } #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, ** then cursor passed as the second argument should point to the row about ** to be update or deleted. If the application calls sqlite3_preupdate_old(), ** the required value will be read from the row the cursor points to. */ void sqlite3VdbePreUpdateHook( Vdbe *v, /* Vdbe pre-update hook is invoked by */ VdbeCursor *pCsr, /* Cursor to grab old.* values from */ int op, /* SQLITE_INSERT, UPDATE or DELETE */ const char *zDb, /* Database name */ Table *pTab, /* Modified table */ i64 iKey1, /* Initial key value */ int iReg, /* Register for new.* record */ int iBlobWrite ){ sqlite3 *db = v->db; i64 iKey2; PreUpdate preupdate; const char *zTbl = pTab->zName; static const u8 fakeSortOrder = 0; #ifdef SQLITE_DEBUG int nRealCol; if( pTab->tabFlags & TF_WithoutRowid ){ nRealCol = sqlite3PrimaryKeyIndex(pTab)->nColumn; }else if( pTab->tabFlags & TF_HasVirtual ){ nRealCol = pTab->nNVCol; }else{ nRealCol = pTab->nCol; } #endif assert( db->pPreUpdate==0 ); memset(&preupdate, 0, sizeof(PreUpdate)); if( HasRowid(pTab)==0 ){ iKey1 = iKey2 = 0; preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); }else{ if( op==SQLITE_UPDATE ){ iKey2 = v->aMem[iReg].u.i; }else{ iKey2 = iKey1; } } assert( pCsr!=0 ); assert( pCsr->eCurType==CURTYPE_BTREE ); assert( pCsr->nField==nRealCol || (pCsr->nField==nRealCol+1 && op==SQLITE_DELETE && iReg==-1) ); preupdate.v = v; preupdate.pCsr = pCsr; preupdate.op = op; preupdate.iNewReg = iReg; preupdate.keyinfo.db = db; preupdate.keyinfo.enc = ENC(db); preupdate.keyinfo.nKeyField = pTab->nCol; preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder; preupdate.iKey1 = iKey1; preupdate.iKey2 = iKey2; preupdate.pTab = pTab; preupdate.iBlobWrite = iBlobWrite; db->pPreUpdate = &preupdate; db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); db->pPreUpdate = 0; sqlite3DbFree(db, preupdate.aRecord); vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); if( preupdate.aNew ){ int i; for(i=0; inField; i++){ sqlite3VdbeMemRelease(&preupdate.aNew[i]); } sqlite3DbNNFreeNN(db, preupdate.aNew); } } #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */