/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements. This module is responsible for
** generating the code that loops through a table looking for applicable
** rows. Indices are selected and used to speed the search when doing
** so is applicable. Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
*/
#include "sqliteInt.h"
#include "whereInt.h"
/*
** Extra information appended to the end of sqlite3_index_info but not
** visible to the xBestIndex function, at least not directly. The
** sqlite3_vtab_collation() interface knows how to reach it, however.
**
** This object is not an API and can be changed from one release to the
** next. As long as allocateIndexInfo() and sqlite3_vtab_collation()
** agree on the structure, all will be well.
*/
typedef struct HiddenIndexInfo HiddenIndexInfo;
struct HiddenIndexInfo {
WhereClause *pWC; /* The Where clause being analyzed */
Parse *pParse; /* The parsing context */
int eDistinct; /* Value to return from sqlite3_vtab_distinct() */
u32 mIn; /* Mask of terms that are
IN (...) */
u32 mHandleIn; /* Terms that vtab will handle as IN (...) */
sqlite3_value *aRhs[1]; /* RHS values for constraints. MUST BE LAST
** because extra space is allocated to hold up
** to nTerm such values */
};
/* Forward declaration of methods */
static int whereLoopResize(sqlite3*, WhereLoop*, int);
/*
** Return the estimated number of output rows from a WHERE clause
*/
LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
return pWInfo->nRowOut;
}
/*
** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
** WHERE clause returns outputs for DISTINCT processing.
*/
int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
return pWInfo->eDistinct;
}
/*
** Return the number of ORDER BY terms that are satisfied by the
** WHERE clause. A return of 0 means that the output must be
** completely sorted. A return equal to the number of ORDER BY
** terms means that no sorting is needed at all. A return that
** is positive but less than the number of ORDER BY terms means that
** block sorting is required.
*/
int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
return pWInfo->nOBSat<0 ? 0 : pWInfo->nOBSat;
}
/*
** In the ORDER BY LIMIT optimization, if the inner-most loop is known
** to emit rows in increasing order, and if the last row emitted by the
** inner-most loop did not fit within the sorter, then we can skip all
** subsequent rows for the current iteration of the inner loop (because they
** will not fit in the sorter either) and continue with the second inner
** loop - the loop immediately outside the inner-most.
**
** When a row does not fit in the sorter (because the sorter already
** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
** label returned by this function.
**
** If the ORDER BY LIMIT optimization applies, the jump destination should
** be the continuation for the second-inner-most loop. If the ORDER BY
** LIMIT optimization does not apply, then the jump destination should
** be the continuation for the inner-most loop.
**
** It is always safe for this routine to return the continuation of the
** inner-most loop, in the sense that a correct answer will result.
** Returning the continuation the second inner loop is an optimization
** that might make the code run a little faster, but should not change
** the final answer.
*/
int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
WhereLevel *pInner;
if( !pWInfo->bOrderedInnerLoop ){
/* The ORDER BY LIMIT optimization does not apply. Jump to the
** continuation of the inner-most loop. */
return pWInfo->iContinue;
}
pInner = &pWInfo->a[pWInfo->nLevel-1];
assert( pInner->addrNxt!=0 );
return pInner->pRJ ? pWInfo->iContinue : pInner->addrNxt;
}
/*
** While generating code for the min/max optimization, after handling
** the aggregate-step call to min() or max(), check to see if any
** additional looping is required. If the output order is such that
** we are certain that the correct answer has already been found, then
** code an OP_Goto to by pass subsequent processing.
**
** Any extra OP_Goto that is coded here is an optimization. The
** correct answer should be obtained regardless. This OP_Goto just
** makes the answer appear faster.
*/
void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){
WhereLevel *pInner;
int i;
if( !pWInfo->bOrderedInnerLoop ) return;
if( pWInfo->nOBSat==0 ) return;
for(i=pWInfo->nLevel-1; i>=0; i--){
pInner = &pWInfo->a[i];
if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){
sqlite3VdbeGoto(v, pInner->addrNxt);
return;
}
}
sqlite3VdbeGoto(v, pWInfo->iBreak);
}
/*
** Return the VDBE address or label to jump to in order to continue
** immediately with the next row of a WHERE clause.
*/
int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
assert( pWInfo->iContinue!=0 );
return pWInfo->iContinue;
}
/*
** Return the VDBE address or label to jump to in order to break
** out of a WHERE loop.
*/
int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
return pWInfo->iBreak;
}
/*
** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
** operate directly on the rowids returned by a WHERE clause. Return
** ONEPASS_SINGLE (1) if the statement can operation directly because only
** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass
** optimization can be used on multiple
**
** If the ONEPASS optimization is used (if this routine returns true)
** then also write the indices of open cursors used by ONEPASS
** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data
** table and iaCur[1] gets the cursor used by an auxiliary index.
** Either value may be -1, indicating that cursor is not used.
** Any cursors returned will have been opened for writing.
**
** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
** unable to use the ONEPASS optimization.
*/
int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
#ifdef WHERETRACE_ENABLED
if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
sqlite3DebugPrintf("%s cursors: %d %d\n",
pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
aiCur[0], aiCur[1]);
}
#endif
return pWInfo->eOnePass;
}
/*
** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
** the data cursor to the row selected by the index cursor.
*/
int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){
return pWInfo->bDeferredSeek;
}
/*
** Move the content of pSrc into pDest
*/
static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
pDest->n = pSrc->n;
memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
}
/*
** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
**
** The new entry might overwrite an existing entry, or it might be
** appended, or it might be discarded. Do whatever is the right thing
** so that pSet keeps the N_OR_COST best entries seen so far.
*/
static int whereOrInsert(
WhereOrSet *pSet, /* The WhereOrSet to be updated */
Bitmask prereq, /* Prerequisites of the new entry */
LogEst rRun, /* Run-cost of the new entry */
LogEst nOut /* Number of outputs for the new entry */
){
u16 i;
WhereOrCost *p;
for(i=pSet->n, p=pSet->a; i>0; i--, p++){
if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
goto whereOrInsert_done;
}
if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
return 0;
}
}
if( pSet->na[pSet->n++];
p->nOut = nOut;
}else{
p = pSet->a;
for(i=1; in; i++){
if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
}
if( p->rRun<=rRun ) return 0;
}
whereOrInsert_done:
p->prereq = prereq;
p->rRun = rRun;
if( p->nOut>nOut ) p->nOut = nOut;
return 1;
}
/*
** Return the bitmask for the given cursor number. Return 0 if
** iCursor is not in the set.
*/
Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
int i;
assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
assert( pMaskSet->n>0 || pMaskSet->ix[0]<0 );
assert( iCursor>=-1 );
if( pMaskSet->ix[0]==iCursor ){
return 1;
}
for(i=1; in; i++){
if( pMaskSet->ix[i]==iCursor ){
return MASKBIT(i);
}
}
return 0;
}
/* Allocate memory that is automatically freed when pWInfo is freed.
*/
void *sqlite3WhereMalloc(WhereInfo *pWInfo, u64 nByte){
WhereMemBlock *pBlock;
pBlock = sqlite3DbMallocRawNN(pWInfo->pParse->db, nByte+sizeof(*pBlock));
if( pBlock ){
pBlock->pNext = pWInfo->pMemToFree;
pBlock->sz = nByte;
pWInfo->pMemToFree = pBlock;
pBlock++;
}
return (void*)pBlock;
}
void *sqlite3WhereRealloc(WhereInfo *pWInfo, void *pOld, u64 nByte){
void *pNew = sqlite3WhereMalloc(pWInfo, nByte);
if( pNew && pOld ){
WhereMemBlock *pOldBlk = (WhereMemBlock*)pOld;
pOldBlk--;
assert( pOldBlk->szsz);
}
return pNew;
}
/*
** Create a new mask for cursor iCursor.
**
** There is one cursor per table in the FROM clause. The number of
** tables in the FROM clause is limited by a test early in the
** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
** array will never overflow.
*/
static void createMask(WhereMaskSet *pMaskSet, int iCursor){
assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
pMaskSet->ix[pMaskSet->n++] = iCursor;
}
/*
** If the right-hand branch of the expression is a TK_COLUMN, then return
** a pointer to the right-hand branch. Otherwise, return NULL.
*/
static Expr *whereRightSubexprIsColumn(Expr *p){
p = sqlite3ExprSkipCollateAndLikely(p->pRight);
if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
return p;
}
return 0;
}
/*
** Advance to the next WhereTerm that matches according to the criteria
** established when the pScan object was initialized by whereScanInit().
** Return NULL if there are no more matching WhereTerms.
*/
static WhereTerm *whereScanNext(WhereScan *pScan){
int iCur; /* The cursor on the LHS of the term */
i16 iColumn; /* The column on the LHS of the term. -1 for IPK */
Expr *pX; /* An expression being tested */
WhereClause *pWC; /* Shorthand for pScan->pWC */
WhereTerm *pTerm; /* The term being tested */
int k = pScan->k; /* Where to start scanning */
assert( pScan->iEquiv<=pScan->nEquiv );
pWC = pScan->pWC;
while(1){
iColumn = pScan->aiColumn[pScan->iEquiv-1];
iCur = pScan->aiCur[pScan->iEquiv-1];
assert( pWC!=0 );
assert( iCur>=0 );
do{
for(pTerm=pWC->a+k; knTerm; k++, pTerm++){
assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 || pTerm->leftCursor<0 );
if( pTerm->leftCursor==iCur
&& pTerm->u.x.leftColumn==iColumn
&& (iColumn!=XN_EXPR
|| sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
pScan->pIdxExpr,iCur)==0)
&& (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_OuterON))
){
if( (pTerm->eOperator & WO_EQUIV)!=0
&& pScan->nEquivaiCur)
&& (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0
){
int j;
for(j=0; jnEquiv; j++){
if( pScan->aiCur[j]==pX->iTable
&& pScan->aiColumn[j]==pX->iColumn ){
break;
}
}
if( j==pScan->nEquiv ){
pScan->aiCur[j] = pX->iTable;
pScan->aiColumn[j] = pX->iColumn;
pScan->nEquiv++;
}
}
if( (pTerm->eOperator & pScan->opMask)!=0 ){
/* Verify the affinity and collating sequence match */
if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
CollSeq *pColl;
Parse *pParse = pWC->pWInfo->pParse;
pX = pTerm->pExpr;
if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
continue;
}
assert(pX->pLeft);
pColl = sqlite3ExprCompareCollSeq(pParse, pX);
if( pColl==0 ) pColl = pParse->db->pDfltColl;
if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
continue;
}
}
if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
&& (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0))
&& pX->op==TK_COLUMN
&& pX->iTable==pScan->aiCur[0]
&& pX->iColumn==pScan->aiColumn[0]
){
testcase( pTerm->eOperator & WO_IS );
continue;
}
pScan->pWC = pWC;
pScan->k = k+1;
#ifdef WHERETRACE_ENABLED
if( sqlite3WhereTrace & 0x20000 ){
int ii;
sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d",
pTerm, pScan->nEquiv);
for(ii=0; iinEquiv; ii++){
sqlite3DebugPrintf(" {%d:%d}",
pScan->aiCur[ii], pScan->aiColumn[ii]);
}
sqlite3DebugPrintf("\n");
}
#endif
return pTerm;
}
}
}
pWC = pWC->pOuter;
k = 0;
}while( pWC!=0 );
if( pScan->iEquiv>=pScan->nEquiv ) break;
pWC = pScan->pOrigWC;
k = 0;
pScan->iEquiv++;
}
return 0;
}
/*
** This is whereScanInit() for the case of an index on an expression.
** It is factored out into a separate tail-recursion subroutine so that
** the normal whereScanInit() routine, which is a high-runner, does not
** need to push registers onto the stack as part of its prologue.
*/
static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
return whereScanNext(pScan);
}
/*
** Initialize a WHERE clause scanner object. Return a pointer to the
** first match. Return NULL if there are no matches.
**
** The scanner will be searching the WHERE clause pWC. It will look
** for terms of the form "X " where X is column iColumn of table
** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx
** must be one of the indexes of table iCur.
**
** The must be one of the operators described by opMask.
**
** If the search is for X and the WHERE clause contains terms of the
** form X=Y then this routine might also return terms of the form
** "Y ". The number of levels of transitivity is limited,
** but is enough to handle most commonly occurring SQL statements.
**
** If X is not the INTEGER PRIMARY KEY then X must be compatible with
** index pIdx.
*/
static WhereTerm *whereScanInit(
WhereScan *pScan, /* The WhereScan object being initialized */
WhereClause *pWC, /* The WHERE clause to be scanned */
int iCur, /* Cursor to scan for */
int iColumn, /* Column to scan for */
u32 opMask, /* Operator(s) to scan for */
Index *pIdx /* Must be compatible with this index */
){
pScan->pOrigWC = pWC;
pScan->pWC = pWC;
pScan->pIdxExpr = 0;
pScan->idxaff = 0;
pScan->zCollName = 0;
pScan->opMask = opMask;
pScan->k = 0;
pScan->aiCur[0] = iCur;
pScan->nEquiv = 1;
pScan->iEquiv = 1;
if( pIdx ){
int j = iColumn;
iColumn = pIdx->aiColumn[j];
if( iColumn==pIdx->pTable->iPKey ){
iColumn = XN_ROWID;
}else if( iColumn>=0 ){
pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
pScan->zCollName = pIdx->azColl[j];
}else if( iColumn==XN_EXPR ){
pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
pScan->zCollName = pIdx->azColl[j];
pScan->aiColumn[0] = XN_EXPR;
return whereScanInitIndexExpr(pScan);
}
}else if( iColumn==XN_EXPR ){
return 0;
}
pScan->aiColumn[0] = iColumn;
return whereScanNext(pScan);
}
/*
** Search for a term in the WHERE clause that is of the form "X "
** where X is a reference to the iColumn of table iCur or of index pIdx
** if pIdx!=0 and is one of the WO_xx operator codes specified by
** the op parameter. Return a pointer to the term. Return 0 if not found.
**
** If pIdx!=0 then it must be one of the indexes of table iCur.
** Search for terms matching the iColumn-th column of pIdx
** rather than the iColumn-th column of table iCur.
**
** The term returned might by Y= if there is another constraint in
** the WHERE clause that specifies that X=Y. Any such constraints will be
** identified by the WO_EQUIV bit in the pTerm->eOperator field. The
** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
** other equivalent values. Hence a search for X will return if X=A1
** and A1=A2 and A2=A3 and ... and A9=A10 and A10=.
**
** If there are multiple terms in the WHERE clause of the form "X "
** then try for the one with no dependencies on - in other words where
** is a constant expression of some kind. Only return entries of
** the form "X Y" where Y is a column in another table if no terms of
** the form "X " exist. If no terms with a constant RHS
** exist, try to return a term that does not use WO_EQUIV.
*/
WhereTerm *sqlite3WhereFindTerm(
WhereClause *pWC, /* The WHERE clause to be searched */
int iCur, /* Cursor number of LHS */
int iColumn, /* Column number of LHS */
Bitmask notReady, /* RHS must not overlap with this mask */
u32 op, /* Mask of WO_xx values describing operator */
Index *pIdx /* Must be compatible with this index, if not NULL */
){
WhereTerm *pResult = 0;
WhereTerm *p;
WhereScan scan;
p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
op &= WO_EQ|WO_IS;
while( p ){
if( (p->prereqRight & notReady)==0 ){
if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
testcase( p->eOperator & WO_IS );
return p;
}
if( pResult==0 ) pResult = p;
}
p = whereScanNext(&scan);
}
return pResult;
}
/*
** This function searches pList for an entry that matches the iCol-th column
** of index pIdx.
**
** If such an expression is found, its index in pList->a[] is returned. If
** no expression is found, -1 is returned.
*/
static int findIndexCol(
Parse *pParse, /* Parse context */
ExprList *pList, /* Expression list to search */
int iBase, /* Cursor for table associated with pIdx */
Index *pIdx, /* Index to match column of */
int iCol /* Column of index to match */
){
int i;
const char *zColl = pIdx->azColl[iCol];
for(i=0; inExpr; i++){
Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
if( ALWAYS(p!=0)
&& (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN)
&& p->iColumn==pIdx->aiColumn[iCol]
&& p->iTable==iBase
){
CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
return i;
}
}
}
return -1;
}
/*
** Return TRUE if the iCol-th column of index pIdx is NOT NULL
*/
static int indexColumnNotNull(Index *pIdx, int iCol){
int j;
assert( pIdx!=0 );
assert( iCol>=0 && iColnColumn );
j = pIdx->aiColumn[iCol];
if( j>=0 ){
return pIdx->pTable->aCol[j].notNull;
}else if( j==(-1) ){
return 1;
}else{
assert( j==(-2) );
return 0; /* Assume an indexed expression can always yield a NULL */
}
}
/*
** Return true if the DISTINCT expression-list passed as the third argument
** is redundant.
**
** A DISTINCT list is redundant if any subset of the columns in the
** DISTINCT list are collectively unique and individually non-null.
*/
static int isDistinctRedundant(
Parse *pParse, /* Parsing context */
SrcList *pTabList, /* The FROM clause */
WhereClause *pWC, /* The WHERE clause */
ExprList *pDistinct /* The result set that needs to be DISTINCT */
){
Table *pTab;
Index *pIdx;
int i;
int iBase;
/* If there is more than one table or sub-select in the FROM clause of
** this query, then it will not be possible to show that the DISTINCT
** clause is redundant. */
if( pTabList->nSrc!=1 ) return 0;
iBase = pTabList->a[0].iCursor;
pTab = pTabList->a[0].pTab;
/* If any of the expressions is an IPK column on table iBase, then return
** true. Note: The (p->iTable==iBase) part of this test may be false if the
** current SELECT is a correlated sub-query.
*/
for(i=0; inExpr; i++){
Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
if( NEVER(p==0) ) continue;
if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue;
if( p->iTable==iBase && p->iColumn<0 ) return 1;
}
/* Loop through all indices on the table, checking each to see if it makes
** the DISTINCT qualifier redundant. It does so if:
**
** 1. The index is itself UNIQUE, and
**
** 2. All of the columns in the index are either part of the pDistinct
** list, or else the WHERE clause contains a term of the form "col=X",
** where X is a constant value. The collation sequences of the
** comparison and select-list expressions must match those of the index.
**
** 3. All of those index columns for which the WHERE clause does not
** contain a "col=X" term are subject to a NOT NULL constraint.
*/
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
if( !IsUniqueIndex(pIdx) ) continue;
if( pIdx->pPartIdxWhere ) continue;
for(i=0; inKeyCol; i++){
if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
if( indexColumnNotNull(pIdx, i)==0 ) break;
}
}
if( i==pIdx->nKeyCol ){
/* This index implies that the DISTINCT qualifier is redundant. */
return 1;
}
}
return 0;
}
/*
** Estimate the logarithm of the input value to base 2.
*/
static LogEst estLog(LogEst N){
return N<=10 ? 0 : sqlite3LogEst(N) - 33;
}
/*
** Convert OP_Column opcodes to OP_Copy in previously generated code.
**
** This routine runs over generated VDBE code and translates OP_Column
** opcodes into OP_Copy when the table is being accessed via co-routine
** instead of via table lookup.
**
** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
** cursor iTabCur are transformed into OP_Sequence opcode for the
** iAutoidxCur cursor, in order to generate unique rowids for the
** automatic index being generated.
*/
static void translateColumnToCopy(
Parse *pParse, /* Parsing context */
int iStart, /* Translate from this opcode to the end */
int iTabCur, /* OP_Column/OP_Rowid references to this table */
int iRegister, /* The first column is in this register */
int iAutoidxCur /* If non-zero, cursor of autoindex being generated */
){
Vdbe *v = pParse->pVdbe;
VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
int iEnd = sqlite3VdbeCurrentAddr(v);
if( pParse->db->mallocFailed ) return;
for(; iStartp1!=iTabCur ) continue;
if( pOp->opcode==OP_Column ){
#ifdef SQLITE_DEBUG
if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
printf("TRANSLATE OP_Column to OP_Copy at %d\n", iStart);
}
#endif
pOp->opcode = OP_Copy;
pOp->p1 = pOp->p2 + iRegister;
pOp->p2 = pOp->p3;
pOp->p3 = 0;
pOp->p5 = 2; /* Cause the MEM_Subtype flag to be cleared */
}else if( pOp->opcode==OP_Rowid ){
#ifdef SQLITE_DEBUG
if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
printf("TRANSLATE OP_Rowid to OP_Sequence at %d\n", iStart);
}
#endif
pOp->opcode = OP_Sequence;
pOp->p1 = iAutoidxCur;
#ifdef SQLITE_ALLOW_ROWID_IN_VIEW
if( iAutoidxCur==0 ){
pOp->opcode = OP_Null;
pOp->p3 = 0;
}
#endif
}
}
}
/*
** Two routines for printing the content of an sqlite3_index_info
** structure. Used for testing and debugging only. If neither
** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
** are no-ops.
*/
#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
static void whereTraceIndexInfoInputs(sqlite3_index_info *p){
int i;
if( (sqlite3WhereTrace & 0x10)==0 ) return;
for(i=0; inConstraint; i++){
sqlite3DebugPrintf(
" constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n",
i,
p->aConstraint[i].iColumn,
p->aConstraint[i].iTermOffset,
p->aConstraint[i].op,
p->aConstraint[i].usable,
sqlite3_vtab_collation(p,i));
}
for(i=0; inOrderBy; i++){
sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
i,
p->aOrderBy[i].iColumn,
p->aOrderBy[i].desc);
}
}
static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){
int i;
if( (sqlite3WhereTrace & 0x10)==0 ) return;
for(i=0; inConstraint; i++){
sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
i,
p->aConstraintUsage[i].argvIndex,
p->aConstraintUsage[i].omit);
}
sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows);
}
#else
#define whereTraceIndexInfoInputs(A)
#define whereTraceIndexInfoOutputs(A)
#endif
/*
** We know that pSrc is an operand of an outer join. Return true if
** pTerm is a constraint that is compatible with that join.
**
** pTerm must be EP_OuterON if pSrc is the right operand of an
** outer join. pTerm can be either EP_OuterON or EP_InnerON if pSrc
** is the left operand of a RIGHT join.
**
** See https://sqlite.org/forum/forumpost/206d99a16dd9212f
** for an example of a WHERE clause constraints that may not be used on
** the right table of a RIGHT JOIN because the constraint implies a
** not-NULL condition on the left table of the RIGHT JOIN.
*/
static int constraintCompatibleWithOuterJoin(
const WhereTerm *pTerm, /* WHERE clause term to check */
const SrcItem *pSrc /* Table we are trying to access */
){
assert( (pSrc->fg.jointype&(JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ); /* By caller */
testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT );
testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ );
testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) )
testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) );
if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON)
|| pTerm->pExpr->w.iJoin != pSrc->iCursor
){
return 0;
}
if( (pSrc->fg.jointype & (JT_LEFT|JT_RIGHT))!=0
&& ExprHasProperty(pTerm->pExpr, EP_InnerON)
){
return 0;
}
return 1;
}
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
/*
** Return TRUE if the WHERE clause term pTerm is of a form where it
** could be used with an index to access pSrc, assuming an appropriate
** index existed.
*/
static int termCanDriveIndex(
const WhereTerm *pTerm, /* WHERE clause term to check */
const SrcItem *pSrc, /* Table we are trying to access */
const Bitmask notReady /* Tables in outer loops of the join */
){
char aff;
if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
assert( (pSrc->fg.jointype & JT_RIGHT)==0 );
if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0
&& !constraintCompatibleWithOuterJoin(pTerm,pSrc)
){
return 0; /* See https://sqlite.org/forum/forumpost/51e6959f61 */
}
if( (pTerm->prereqRight & notReady)!=0 ) return 0;
assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
if( pTerm->u.x.leftColumn<0 ) return 0;
aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity;
if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
testcase( pTerm->pExpr->op==TK_IS );
return 1;
}
#endif
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
/*
** Argument pIdx represents an automatic index that the current statement
** will create and populate. Add an OP_Explain with text of the form:
**
** CREATE AUTOMATIC INDEX ON () [WHERE ]
**
** This is only required if sqlite3_stmt_scanstatus() is enabled, to
** associate an SQLITE_SCANSTAT_NCYCLE and SQLITE_SCANSTAT_NLOOP
** values with. In order to avoid breaking legacy code and test cases,
** the OP_Explain is not added if this is an EXPLAIN QUERY PLAN command.
*/
static void explainAutomaticIndex(
Parse *pParse,
Index *pIdx, /* Automatic index to explain */
int bPartial, /* True if pIdx is a partial index */
int *pAddrExplain /* OUT: Address of OP_Explain */
){
if( IS_STMT_SCANSTATUS(pParse->db) && pParse->explain!=2 ){
Table *pTab = pIdx->pTable;
const char *zSep = "";
char *zText = 0;
int ii = 0;
sqlite3_str *pStr = sqlite3_str_new(pParse->db);
sqlite3_str_appendf(pStr,"CREATE AUTOMATIC INDEX ON %s(", pTab->zName);
assert( pIdx->nColumn>1 );
assert( pIdx->aiColumn[pIdx->nColumn-1]==XN_ROWID );
for(ii=0; ii<(pIdx->nColumn-1); ii++){
const char *zName = 0;
int iCol = pIdx->aiColumn[ii];
zName = pTab->aCol[iCol].zCnName;
sqlite3_str_appendf(pStr, "%s%s", zSep, zName);
zSep = ", ";
}
zText = sqlite3_str_finish(pStr);
if( zText==0 ){
sqlite3OomFault(pParse->db);
}else{
*pAddrExplain = sqlite3VdbeExplain(
pParse, 0, "%s)%s", zText, (bPartial ? " WHERE " : "")
);
sqlite3_free(zText);
}
}
}
#else
# define explainAutomaticIndex(a,b,c,d)
#endif
/*
** Generate code to construct the Index object for an automatic index
** and to set up the WhereLevel object pLevel so that the code generator
** makes use of the automatic index.
*/
static SQLITE_NOINLINE void constructAutomaticIndex(
Parse *pParse, /* The parsing context */
WhereClause *pWC, /* The WHERE clause */
const Bitmask notReady, /* Mask of cursors that are not available */
WhereLevel *pLevel /* Write new index here */
){
int nKeyCol; /* Number of columns in the constructed index */
WhereTerm *pTerm; /* A single term of the WHERE clause */
WhereTerm *pWCEnd; /* End of pWC->a[] */
Index *pIdx; /* Object describing the transient index */
Vdbe *v; /* Prepared statement under construction */
int addrInit; /* Address of the initialization bypass jump */
Table *pTable; /* The table being indexed */
int addrTop; /* Top of the index fill loop */
int regRecord; /* Register holding an index record */
int n; /* Column counter */
int i; /* Loop counter */
int mxBitCol; /* Maximum column in pSrc->colUsed */
CollSeq *pColl; /* Collating sequence to on a column */
WhereLoop *pLoop; /* The Loop object */
char *zNotUsed; /* Extra space on the end of pIdx */
Bitmask idxCols; /* Bitmap of columns used for indexing */
Bitmask extraCols; /* Bitmap of additional columns */
u8 sentWarning = 0; /* True if a warning has been issued */
u8 useBloomFilter = 0; /* True to also add a Bloom filter */
Expr *pPartial = 0; /* Partial Index Expression */
int iContinue = 0; /* Jump here to skip excluded rows */
SrcList *pTabList; /* The complete FROM clause */
SrcItem *pSrc; /* The FROM clause term to get the next index */
int addrCounter = 0; /* Address where integer counter is initialized */
int regBase; /* Array of registers where record is assembled */
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
int addrExp = 0; /* Address of OP_Explain */
#endif
/* Generate code to skip over the creation and initialization of the
** transient index on 2nd and subsequent iterations of the loop. */
v = pParse->pVdbe;
assert( v!=0 );
addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
/* Count the number of columns that will be added to the index
** and used to match WHERE clause constraints */
nKeyCol = 0;
pTabList = pWC->pWInfo->pTabList;
pSrc = &pTabList->a[pLevel->iFrom];
pTable = pSrc->pTab;
pWCEnd = &pWC->a[pWC->nTerm];
pLoop = pLevel->pWLoop;
idxCols = 0;
for(pTerm=pWC->a; pTermpExpr;
/* Make the automatic index a partial index if there are terms in the
** WHERE clause (or the ON clause of a LEFT join) that constrain which
** rows of the target table (pSrc) that can be used. */
if( (pTerm->wtFlags & TERM_VIRTUAL)==0
&& sqlite3ExprIsSingleTableConstraint(pExpr, pTabList, pLevel->iFrom)
){
pPartial = sqlite3ExprAnd(pParse, pPartial,
sqlite3ExprDup(pParse->db, pExpr, 0));
}
if( termCanDriveIndex(pTerm, pSrc, notReady) ){
int iCol;
Bitmask cMask;
assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
iCol = pTerm->u.x.leftColumn;
cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
testcase( iCol==BMS );
testcase( iCol==BMS-1 );
if( !sentWarning ){
sqlite3_log(SQLITE_WARNING_AUTOINDEX,
"automatic index on %s(%s)", pTable->zName,
pTable->aCol[iCol].zCnName);
sentWarning = 1;
}
if( (idxCols & cMask)==0 ){
if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
goto end_auto_index_create;
}
pLoop->aLTerm[nKeyCol++] = pTerm;
idxCols |= cMask;
}
}
}
assert( nKeyCol>0 || pParse->db->mallocFailed );
pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
| WHERE_AUTO_INDEX;
/* Count the number of additional columns needed to create a
** covering index. A "covering index" is an index that contains all
** columns that are needed by the query. With a covering index, the
** original table never needs to be accessed. Automatic indices must
** be a covering index because the index will not be updated if the
** original table changes and the index and table cannot both be used
** if they go out of sync.
*/
if( IsView(pTable) ){
extraCols = ALLBITS;
}else{
extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
}
mxBitCol = MIN(BMS-1,pTable->nCol);
testcase( pTable->nCol==BMS-1 );
testcase( pTable->nCol==BMS-2 );
for(i=0; icolUsed & MASKBIT(BMS-1) ){
nKeyCol += pTable->nCol - BMS + 1;
}
/* Construct the Index object to describe this index */
pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
if( pIdx==0 ) goto end_auto_index_create;
pLoop->u.btree.pIndex = pIdx;
pIdx->zName = "auto-index";
pIdx->pTable = pTable;
n = 0;
idxCols = 0;
for(pTerm=pWC->a; pTermeOperator & (WO_OR|WO_AND))==0 );
iCol = pTerm->u.x.leftColumn;
cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
testcase( iCol==BMS-1 );
testcase( iCol==BMS );
if( (idxCols & cMask)==0 ){
Expr *pX = pTerm->pExpr;
idxCols |= cMask;
pIdx->aiColumn[n] = pTerm->u.x.leftColumn;
pColl = sqlite3ExprCompareCollSeq(pParse, pX);
assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */
pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
n++;
if( ALWAYS(pX->pLeft!=0)
&& sqlite3ExprAffinity(pX->pLeft)!=SQLITE_AFF_TEXT
){
/* TUNING: only use a Bloom filter on an automatic index
** if one or more key columns has the ability to hold numeric
** values, since strings all have the same hash in the Bloom
** filter implementation and hence a Bloom filter on a text column
** is not usually helpful. */
useBloomFilter = 1;
}
}
}
}
assert( (u32)n==pLoop->u.btree.nEq );
/* Add additional columns needed to make the automatic index into
** a covering index */
for(i=0; iaiColumn[n] = i;
pIdx->azColl[n] = sqlite3StrBINARY;
n++;
}
}
if( pSrc->colUsed & MASKBIT(BMS-1) ){
for(i=BMS-1; inCol; i++){
pIdx->aiColumn[n] = i;
pIdx->azColl[n] = sqlite3StrBINARY;
n++;
}
}
assert( n==nKeyCol );
pIdx->aiColumn[n] = XN_ROWID;
pIdx->azColl[n] = sqlite3StrBINARY;
/* Create the automatic index */
explainAutomaticIndex(pParse, pIdx, pPartial!=0, &addrExp);
assert( pLevel->iIdxCur>=0 );
pLevel->iIdxCur = pParse->nTab++;
sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
VdbeComment((v, "for %s", pTable->zName));
if( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) && useBloomFilter ){
sqlite3WhereExplainBloomFilter(pParse, pWC->pWInfo, pLevel);
pLevel->regFilter = ++pParse->nMem;
sqlite3VdbeAddOp2(v, OP_Blob, 10000, pLevel->regFilter);
}
/* Fill the automatic index with content */
assert( pSrc == &pWC->pWInfo->pTabList->a[pLevel->iFrom] );
if( pSrc->fg.viaCoroutine ){
int regYield = pSrc->regReturn;
addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pSrc->addrFillSub);
addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield);
VdbeCoverage(v);
VdbeComment((v, "next row of %s", pSrc->pTab->zName));
}else{
addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
}
if( pPartial ){
iContinue = sqlite3VdbeMakeLabel(pParse);
sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
pLoop->wsFlags |= WHERE_PARTIALIDX;
}
regRecord = sqlite3GetTempReg(pParse);
regBase = sqlite3GenerateIndexKey(
pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
);
if( pLevel->regFilter ){
sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0,
regBase, pLoop->u.btree.nEq);
}
sqlite3VdbeScanStatusCounters(v, addrExp, addrExp, sqlite3VdbeCurrentAddr(v));
sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
if( pSrc->fg.viaCoroutine ){
sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
testcase( pParse->db->mallocFailed );
assert( pLevel->iIdxCur>0 );
translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
pSrc->regResult, pLevel->iIdxCur);
sqlite3VdbeGoto(v, addrTop);
pSrc->fg.viaCoroutine = 0;
}else{
sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
}
sqlite3VdbeJumpHere(v, addrTop);
sqlite3ReleaseTempReg(pParse, regRecord);
/* Jump here when skipping the initialization */
sqlite3VdbeJumpHere(v, addrInit);
sqlite3VdbeScanStatusRange(v, addrExp, addrExp, -1);
end_auto_index_create:
sqlite3ExprDelete(pParse->db, pPartial);
}
#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
/*
** Generate bytecode that will initialize a Bloom filter that is appropriate
** for pLevel.
**
** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER
** flag set, initialize a Bloomfilter for them as well. Except don't do
** this recursive initialization if the SQLITE_BloomPulldown optimization has
** been turned off.
**
** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared
** from the loop, but the regFilter value is set to a register that implements
** the Bloom filter. When regFilter is positive, the
** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter
** and skip the subsequence B-Tree seek if the Bloom filter indicates that
** no matching rows exist.
**
** This routine may only be called if it has previously been determined that
** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit
** is set.
*/
static SQLITE_NOINLINE void sqlite3ConstructBloomFilter(
WhereInfo *pWInfo, /* The WHERE clause */
int iLevel, /* Index in pWInfo->a[] that is pLevel */
WhereLevel *pLevel, /* Make a Bloom filter for this FROM term */
Bitmask notReady /* Loops that are not ready */
){
int addrOnce; /* Address of opening OP_Once */
int addrTop; /* Address of OP_Rewind */
int addrCont; /* Jump here to skip a row */
const WhereTerm *pTerm; /* For looping over WHERE clause terms */
const WhereTerm *pWCEnd; /* Last WHERE clause term */
Parse *pParse = pWInfo->pParse; /* Parsing context */
Vdbe *v = pParse->pVdbe; /* VDBE under construction */
WhereLoop *pLoop = pLevel->pWLoop; /* The loop being coded */
int iCur; /* Cursor for table getting the filter */
IndexedExpr *saved_pIdxEpr; /* saved copy of Parse.pIdxEpr */
IndexedExpr *saved_pIdxPartExpr; /* saved copy of Parse.pIdxPartExpr */
saved_pIdxEpr = pParse->pIdxEpr;
saved_pIdxPartExpr = pParse->pIdxPartExpr;
pParse->pIdxEpr = 0;
pParse->pIdxPartExpr = 0;
assert( pLoop!=0 );
assert( v!=0 );
assert( pLoop->wsFlags & WHERE_BLOOMFILTER );
assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 );
addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
do{
const SrcList *pTabList;
const SrcItem *pItem;
const Table *pTab;
u64 sz;
int iSrc;
sqlite3WhereExplainBloomFilter(pParse, pWInfo, pLevel);
addrCont = sqlite3VdbeMakeLabel(pParse);
iCur = pLevel->iTabCur;
pLevel->regFilter = ++pParse->nMem;
/* The Bloom filter is a Blob held in a register. Initialize it
** to zero-filled blob of at least 80K bits, but maybe more if the
** estimated size of the table is larger. We could actually
** measure the size of the table at run-time using OP_Count with
** P3==1 and use that value to initialize the blob. But that makes
** testing complicated. By basing the blob size on the value in the
** sqlite_stat1 table, testing is much easier.
*/
pTabList = pWInfo->pTabList;
iSrc = pLevel->iFrom;
pItem = &pTabList->a[iSrc];
assert( pItem!=0 );
pTab = pItem->pTab;
assert( pTab!=0 );
sz = sqlite3LogEstToInt(pTab->nRowLogEst);
if( sz<10000 ){
sz = 10000;
}else if( sz>10000000 ){
sz = 10000000;
}
sqlite3VdbeAddOp2(v, OP_Blob, (int)sz, pLevel->regFilter);
addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
pWCEnd = &pWInfo->sWC.a[pWInfo->sWC.nTerm];
for(pTerm=pWInfo->sWC.a; pTermpExpr;
if( (pTerm->wtFlags & TERM_VIRTUAL)==0
&& sqlite3ExprIsSingleTableConstraint(pExpr, pTabList, iSrc)
){
sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
}
}
if( pLoop->wsFlags & WHERE_IPK ){
int r1 = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1);
sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, 1);
sqlite3ReleaseTempReg(pParse, r1);
}else{
Index *pIdx = pLoop->u.btree.pIndex;
int n = pLoop->u.btree.nEq;
int r1 = sqlite3GetTempRange(pParse, n);
int jj;
for(jj=0; jjpTable==pItem->pTab );
sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iCur, jj, r1+jj);
}
sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, n);
sqlite3ReleaseTempRange(pParse, r1, n);
}
sqlite3VdbeResolveLabel(v, addrCont);
sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
VdbeCoverage(v);
sqlite3VdbeJumpHere(v, addrTop);
pLoop->wsFlags &= ~WHERE_BLOOMFILTER;
if( OptimizationDisabled(pParse->db, SQLITE_BloomPulldown) ) break;
while( ++iLevel < pWInfo->nLevel ){
const SrcItem *pTabItem;
pLevel = &pWInfo->a[iLevel];
pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ) ) continue;
pLoop = pLevel->pWLoop;
if( NEVER(pLoop==0) ) continue;
if( pLoop->prereq & notReady ) continue;
if( (pLoop->wsFlags & (WHERE_BLOOMFILTER|WHERE_COLUMN_IN))
==WHERE_BLOOMFILTER
){
/* This is a candidate for bloom-filter pull-down (early evaluation).
** The test that WHERE_COLUMN_IN is omitted is important, as we are
** not able to do early evaluation of bloom filters that make use of
** the IN operator */
break;
}
}
}while( iLevel < pWInfo->nLevel );
sqlite3VdbeJumpHere(v, addrOnce);
pParse->pIdxEpr = saved_pIdxEpr;
pParse->pIdxPartExpr = saved_pIdxPartExpr;
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Allocate and populate an sqlite3_index_info structure. It is the
** responsibility of the caller to eventually release the structure
** by passing the pointer returned by this function to freeIndexInfo().
*/
static sqlite3_index_info *allocateIndexInfo(
WhereInfo *pWInfo, /* The WHERE clause */
WhereClause *pWC, /* The WHERE clause being analyzed */
Bitmask mUnusable, /* Ignore terms with these prereqs */
SrcItem *pSrc, /* The FROM clause term that is the vtab */
u16 *pmNoOmit /* Mask of terms not to omit */
){
int i, j;
int nTerm;
Parse *pParse = pWInfo->pParse;
struct sqlite3_index_constraint *pIdxCons;
struct sqlite3_index_orderby *pIdxOrderBy;
struct sqlite3_index_constraint_usage *pUsage;
struct HiddenIndexInfo *pHidden;
WhereTerm *pTerm;
int nOrderBy;
sqlite3_index_info *pIdxInfo;
u16 mNoOmit = 0;
const Table *pTab;
int eDistinct = 0;
ExprList *pOrderBy = pWInfo->pOrderBy;
assert( pSrc!=0 );
pTab = pSrc->pTab;
assert( pTab!=0 );
assert( IsVirtual(pTab) );
/* Find all WHERE clause constraints referring to this virtual table.
** Mark each term with the TERM_OK flag. Set nTerm to the number of
** terms found.
*/
for(i=nTerm=0, pTerm=pWC->a; inTerm; i++, pTerm++){
pTerm->wtFlags &= ~TERM_OK;
if( pTerm->leftCursor != pSrc->iCursor ) continue;
if( pTerm->prereqRight & mUnusable ) continue;
assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
testcase( pTerm->eOperator & WO_IN );
testcase( pTerm->eOperator & WO_ISNULL );
testcase( pTerm->eOperator & WO_IS );
testcase( pTerm->eOperator & WO_ALL );
if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
if( pTerm->wtFlags & TERM_VNULL ) continue;
assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
assert( pTerm->u.x.leftColumn>=XN_ROWID );
assert( pTerm->u.x.leftColumnnCol );
if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0
&& !constraintCompatibleWithOuterJoin(pTerm,pSrc)
){
continue;
}
nTerm++;
pTerm->wtFlags |= TERM_OK;
}
/* If the ORDER BY clause contains only columns in the current
** virtual table then allocate space for the aOrderBy part of
** the sqlite3_index_info structure.
*/
nOrderBy = 0;
if( pOrderBy ){
int n = pOrderBy->nExpr;
for(i=0; ia[i].pExpr;
Expr *pE2;
/* Skip over constant terms in the ORDER BY clause */
if( sqlite3ExprIsConstant(pExpr) ){
continue;
}
/* Virtual tables are unable to deal with NULLS FIRST */
if( pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL ) break;
/* First case - a direct column references without a COLLATE operator */
if( pExpr->op==TK_COLUMN && pExpr->iTable==pSrc->iCursor ){
assert( pExpr->iColumn>=XN_ROWID && pExpr->iColumnnCol );
continue;
}
/* 2nd case - a column reference with a COLLATE operator. Only match
** of the COLLATE operator matches the collation of the column. */
if( pExpr->op==TK_COLLATE
&& (pE2 = pExpr->pLeft)->op==TK_COLUMN
&& pE2->iTable==pSrc->iCursor
){
const char *zColl; /* The collating sequence name */
assert( !ExprHasProperty(pExpr, EP_IntValue) );
assert( pExpr->u.zToken!=0 );
assert( pE2->iColumn>=XN_ROWID && pE2->iColumnnCol );
pExpr->iColumn = pE2->iColumn;
if( pE2->iColumn<0 ) continue; /* Collseq does not matter for rowid */
zColl = sqlite3ColumnColl(&pTab->aCol[pE2->iColumn]);
if( zColl==0 ) zColl = sqlite3StrBINARY;
if( sqlite3_stricmp(pExpr->u.zToken, zColl)==0 ) continue;
}
/* No matches cause a break out of the loop */
break;
}
if( i==n ){
nOrderBy = n;
if( (pWInfo->wctrlFlags & WHERE_DISTINCTBY) ){
eDistinct = 2 + ((pWInfo->wctrlFlags & WHERE_SORTBYGROUP)!=0);
}else if( pWInfo->wctrlFlags & WHERE_GROUPBY ){
eDistinct = 1;
}
}
}
/* Allocate the sqlite3_index_info structure
*/
pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
+ (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
+ sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden)
+ sizeof(sqlite3_value*)*nTerm );
if( pIdxInfo==0 ){
sqlite3ErrorMsg(pParse, "out of memory");
return 0;
}
pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
pIdxCons = (struct sqlite3_index_constraint*)&pHidden->aRhs[nTerm];
pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
pIdxInfo->aConstraint = pIdxCons;
pIdxInfo->aOrderBy = pIdxOrderBy;
pIdxInfo->aConstraintUsage = pUsage;
pHidden->pWC = pWC;
pHidden->pParse = pParse;
pHidden->eDistinct = eDistinct;
pHidden->mIn = 0;
for(i=j=0, pTerm=pWC->a; inTerm; i++, pTerm++){
u16 op;
if( (pTerm->wtFlags & TERM_OK)==0 ) continue;
pIdxCons[j].iColumn = pTerm->u.x.leftColumn;
pIdxCons[j].iTermOffset = i;
op = pTerm->eOperator & WO_ALL;
if( op==WO_IN ){
if( (pTerm->wtFlags & TERM_SLICE)==0 ){
pHidden->mIn |= SMASKBIT32(j);
}
op = WO_EQ;
}
if( op==WO_AUX ){
pIdxCons[j].op = pTerm->eMatchOp;
}else if( op & (WO_ISNULL|WO_IS) ){
if( op==WO_ISNULL ){
pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
}else{
pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
}
}else{
pIdxCons[j].op = (u8)op;
/* The direct assignment in the previous line is possible only because
** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
** following asserts verify this fact. */
assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
&& sqlite3ExprIsVector(pTerm->pExpr->pRight)
){
testcase( j!=i );
if( j<16 ) mNoOmit |= (1 << j);
if( op==WO_LT ) pIdxCons[j].op = WO_LE;
if( op==WO_GT ) pIdxCons[j].op = WO_GE;
}
}
j++;
}
assert( j==nTerm );
pIdxInfo->nConstraint = j;
for(i=j=0; ia[i].pExpr;
if( sqlite3ExprIsConstant(pExpr) ) continue;
assert( pExpr->op==TK_COLUMN
|| (pExpr->op==TK_COLLATE && pExpr->pLeft->op==TK_COLUMN
&& pExpr->iColumn==pExpr->pLeft->iColumn) );
pIdxOrderBy[j].iColumn = pExpr->iColumn;
pIdxOrderBy[j].desc = pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC;
j++;
}
pIdxInfo->nOrderBy = j;
*pmNoOmit = mNoOmit;
return pIdxInfo;
}
/*
** Free an sqlite3_index_info structure allocated by allocateIndexInfo()
** and possibly modified by xBestIndex methods.
*/
static void freeIndexInfo(sqlite3 *db, sqlite3_index_info *pIdxInfo){
HiddenIndexInfo *pHidden;
int i;
assert( pIdxInfo!=0 );
pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
assert( pHidden->pParse!=0 );
assert( pHidden->pParse->db==db );
for(i=0; inConstraint; i++){
sqlite3ValueFree(pHidden->aRhs[i]); /* IMP: R-14553-25174 */
pHidden->aRhs[i] = 0;
}
sqlite3DbFree(db, pIdxInfo);
}
/*
** The table object reference passed as the second argument to this function
** must represent a virtual table. This function invokes the xBestIndex()
** method of the virtual table with the sqlite3_index_info object that
** comes in as the 3rd argument to this function.
**
** If an error occurs, pParse is populated with an error message and an
** appropriate error code is returned. A return of SQLITE_CONSTRAINT from
** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that
** the current configuration of "unusable" flags in sqlite3_index_info can
** not result in a valid plan.
**
** Whether or not an error is returned, it is the responsibility of the
** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
** that this is required.
*/
static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
int rc;
whereTraceIndexInfoInputs(p);
pParse->db->nSchemaLock++;
rc = pVtab->pModule->xBestIndex(pVtab, p);
pParse->db->nSchemaLock--;
whereTraceIndexInfoOutputs(p);
if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
if( rc==SQLITE_NOMEM ){
sqlite3OomFault(pParse->db);
}else if( !pVtab->zErrMsg ){
sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
}else{
sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
}
}
if( pTab->u.vtab.p->bAllSchemas ){
sqlite3VtabUsesAllSchemas(pParse);
}
sqlite3_free(pVtab->zErrMsg);
pVtab->zErrMsg = 0;
return rc;
}
#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
#ifdef SQLITE_ENABLE_STAT4
/*
** Estimate the location of a particular key among all keys in an
** index. Store the results in aStat as follows:
**
** aStat[0] Est. number of rows less than pRec
** aStat[1] Est. number of rows equal to pRec
**
** Return the index of the sample that is the smallest sample that
** is greater than or equal to pRec. Note that this index is not an index
** into the aSample[] array - it is an index into a virtual set of samples
** based on the contents of aSample[] and the number of fields in record
** pRec.
*/
static int whereKeyStats(
Parse *pParse, /* Database connection */
Index *pIdx, /* Index to consider domain of */
UnpackedRecord *pRec, /* Vector of values to consider */
int roundUp, /* Round up if true. Round down if false */
tRowcnt *aStat /* OUT: stats written here */
){
IndexSample *aSample = pIdx->aSample;
int iCol; /* Index of required stats in anEq[] etc. */
int i; /* Index of first sample >= pRec */
int iSample; /* Smallest sample larger than or equal to pRec */
int iMin = 0; /* Smallest sample not yet tested */
int iTest; /* Next sample to test */
int res; /* Result of comparison operation */
int nField; /* Number of fields in pRec */
tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */
#ifndef SQLITE_DEBUG
UNUSED_PARAMETER( pParse );
#endif
assert( pRec!=0 );
assert( pIdx->nSample>0 );
assert( pRec->nField>0 );
/* Do a binary search to find the first sample greater than or equal
** to pRec. If pRec contains a single field, the set of samples to search
** is simply the aSample[] array. If the samples in aSample[] contain more
** than one fields, all fields following the first are ignored.
**
** If pRec contains N fields, where N is more than one, then as well as the
** samples in aSample[] (truncated to N fields), the search also has to
** consider prefixes of those samples. For example, if the set of samples
** in aSample is:
**
** aSample[0] = (a, 5)
** aSample[1] = (a, 10)
** aSample[2] = (b, 5)
** aSample[3] = (c, 100)
** aSample[4] = (c, 105)
**
** Then the search space should ideally be the samples above and the
** unique prefixes [a], [b] and [c]. But since that is hard to organize,
** the code actually searches this set:
**
** 0: (a)
** 1: (a, 5)
** 2: (a, 10)
** 3: (a, 10)
** 4: (b)
** 5: (b, 5)
** 6: (c)
** 7: (c, 100)
** 8: (c, 105)
** 9: (c, 105)
**
** For each sample in the aSample[] array, N samples are present in the
** effective sample array. In the above, samples 0 and 1 are based on
** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
**
** Often, sample i of each block of N effective samples has (i+1) fields.
** Except, each sample may be extended to ensure that it is greater than or
** equal to the previous sample in the array. For example, in the above,
** sample 2 is the first sample of a block of N samples, so at first it
** appears that it should be 1 field in size. However, that would make it
** smaller than sample 1, so the binary search would not work. As a result,
** it is extended to two fields. The duplicates that this creates do not
** cause any problems.
*/
if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){
nField = pIdx->nKeyCol;
}else{
nField = pIdx->nColumn;
}
nField = MIN(pRec->nField, nField);
iCol = 0;
iSample = pIdx->nSample * nField;
do{
int iSamp; /* Index in aSample[] of test sample */
int n; /* Number of fields in test sample */
iTest = (iMin+iSample)/2;
iSamp = iTest / nField;
if( iSamp>0 ){
/* The proposed effective sample is a prefix of sample aSample[iSamp].
** Specifically, the shortest prefix of at least (1 + iTest%nField)
** fields that is greater than the previous effective sample. */
for(n=(iTest % nField) + 1; nnField = n;
res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
if( res<0 ){
iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
iMin = iTest+1;
}else if( res==0 && ndb->mallocFailed==0 ){
if( res==0 ){
/* If (res==0) is true, then pRec must be equal to sample i. */
assert( inSample );
assert( iCol==nField-1 );
pRec->nField = nField;
assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
|| pParse->db->mallocFailed
);
}else{
/* Unless i==pIdx->nSample, indicating that pRec is larger than
** all samples in the aSample[] array, pRec must be smaller than the
** (iCol+1) field prefix of sample i. */
assert( i<=pIdx->nSample && i>=0 );
pRec->nField = iCol+1;
assert( i==pIdx->nSample
|| sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
|| pParse->db->mallocFailed );
/* if i==0 and iCol==0, then record pRec is smaller than all samples
** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
** be greater than or equal to the (iCol) field prefix of sample i.
** If (i>0), then pRec must also be greater than sample (i-1). */
if( iCol>0 ){
pRec->nField = iCol;
assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
|| pParse->db->mallocFailed || CORRUPT_DB );
}
if( i>0 ){
pRec->nField = nField;
assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
|| pParse->db->mallocFailed || CORRUPT_DB );
}
}
}
#endif /* ifdef SQLITE_DEBUG */
if( res==0 ){
/* Record pRec is equal to sample i */
assert( iCol==nField-1 );
aStat[0] = aSample[i].anLt[iCol];
aStat[1] = aSample[i].anEq[iCol];
}else{
/* At this point, the (iCol+1) field prefix of aSample[i] is the first
** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
** is larger than all samples in the array. */
tRowcnt iUpper, iGap;
if( i>=pIdx->nSample ){
iUpper = pIdx->nRowEst0;
}else{
iUpper = aSample[i].anLt[iCol];
}
if( iLower>=iUpper ){
iGap = 0;
}else{
iGap = iUpper - iLower;
}
if( roundUp ){
iGap = (iGap*2)/3;
}else{
iGap = iGap/3;
}
aStat[0] = iLower + iGap;
aStat[1] = pIdx->aAvgEq[nField-1];
}
/* Restore the pRec->nField value before returning. */
pRec->nField = nField;
return i;
}
#endif /* SQLITE_ENABLE_STAT4 */
/*
** If it is not NULL, pTerm is a term that provides an upper or lower
** bound on a range scan. Without considering pTerm, it is estimated
** that the scan will visit nNew rows. This function returns the number
** estimated to be visited after taking pTerm into account.
**
** If the user explicitly specified a likelihood() value for this term,
** then the return value is the likelihood multiplied by the number of
** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
** has a likelihood of 0.50, and any other term a likelihood of 0.25.
*/
static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
LogEst nRet = nNew;
if( pTerm ){
if( pTerm->truthProb<=0 ){
nRet += pTerm->truthProb;
}else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
nRet -= 20; assert( 20==sqlite3LogEst(4) );
}
}
return nRet;
}
#ifdef SQLITE_ENABLE_STAT4
/*
** Return the affinity for a single column of an index.
*/
char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
assert( iCol>=0 && iColnColumn );
if( !pIdx->zColAff ){
if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
}
assert( pIdx->zColAff[iCol]!=0 );
return pIdx->zColAff[iCol];
}
#endif
#ifdef SQLITE_ENABLE_STAT4
/*
** This function is called to estimate the number of rows visited by a
** range-scan on a skip-scan index. For example:
**
** CREATE INDEX i1 ON t1(a, b, c);
** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
**
** Value pLoop->nOut is currently set to the estimated number of rows
** visited for scanning (a=? AND b=?). This function reduces that estimate
** by some factor to account for the (c BETWEEN ? AND ?) expression based
** on the stat4 data for the index. this scan will be performed multiple
** times (once for each (a,b) combination that matches a=?) is dealt with
** by the caller.
**
** It does this by scanning through all stat4 samples, comparing values
** extracted from pLower and pUpper with the corresponding column in each
** sample. If L and U are the number of samples found to be less than or
** equal to the values extracted from pLower and pUpper respectively, and
** N is the total number of samples, the pLoop->nOut value is adjusted
** as follows:
**
** nOut = nOut * ( min(U - L, 1) / N )
**
** If pLower is NULL, or a value cannot be extracted from the term, L is
** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
** U is set to N.
**
** Normally, this function sets *pbDone to 1 before returning. However,
** if no value can be extracted from either pLower or pUpper (and so the
** estimate of the number of rows delivered remains unchanged), *pbDone
** is left as is.
**
** If an error occurs, an SQLite error code is returned. Otherwise,
** SQLITE_OK.
*/
static int whereRangeSkipScanEst(
Parse *pParse, /* Parsing & code generating context */
WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
WhereLoop *pLoop, /* Update the .nOut value of this loop */
int *pbDone /* Set to true if at least one expr. value extracted */
){
Index *p = pLoop->u.btree.pIndex;
int nEq = pLoop->u.btree.nEq;
sqlite3 *db = pParse->db;
int nLower = -1;
int nUpper = p->nSample+1;
int rc = SQLITE_OK;
u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
CollSeq *pColl;
sqlite3_value *p1 = 0; /* Value extracted from pLower */
sqlite3_value *p2 = 0; /* Value extracted from pUpper */
sqlite3_value *pVal = 0; /* Value extracted from record */
pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
if( pLower ){
rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
nLower = 0;
}
if( pUpper && rc==SQLITE_OK ){
rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
nUpper = p2 ? 0 : p->nSample;
}
if( p1 || p2 ){
int i;
int nDiff;
for(i=0; rc==SQLITE_OK && inSample; i++){
rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
if( rc==SQLITE_OK && p1 ){
int res = sqlite3MemCompare(p1, pVal, pColl);
if( res>=0 ) nLower++;
}
if( rc==SQLITE_OK && p2 ){
int res = sqlite3MemCompare(p2, pVal, pColl);
if( res>=0 ) nUpper++;
}
}
nDiff = (nUpper - nLower);
if( nDiff<=0 ) nDiff = 1;
/* If there is both an upper and lower bound specified, and the
** comparisons indicate that they are close together, use the fallback
** method (assume that the scan visits 1/64 of the rows) for estimating
** the number of rows visited. Otherwise, estimate the number of rows
** using the method described in the header comment for this function. */
if( nDiff!=1 || pUpper==0 || pLower==0 ){
int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
pLoop->nOut -= nAdjust;
*pbDone = 1;
WHERETRACE(0x20, ("range skip-scan regions: %u..%u adjust=%d est=%d\n",
nLower, nUpper, nAdjust*-1, pLoop->nOut));
}
}else{
assert( *pbDone==0 );
}
sqlite3ValueFree(p1);
sqlite3ValueFree(p2);
sqlite3ValueFree(pVal);
return rc;
}
#endif /* SQLITE_ENABLE_STAT4 */
/*
** This function is used to estimate the number of rows that will be visited
** by scanning an index for a range of values. The range may have an upper
** bound, a lower bound, or both. The WHERE clause terms that set the upper
** and lower bounds are represented by pLower and pUpper respectively. For
** example, assuming that index p is on t1(a):
**
** ... FROM t1 WHERE a > ? AND a < ? ...
** |_____| |_____|
** | |
** pLower pUpper
**
** If either of the upper or lower bound is not present, then NULL is passed in
** place of the corresponding WhereTerm.
**
** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
** column subject to the range constraint. Or, equivalently, the number of
** equality constraints optimized by the proposed index scan. For example,
** assuming index p is on t1(a, b), and the SQL query is:
**
** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
**
** then nEq is set to 1 (as the range restricted column, b, is the second
** left-most column of the index). Or, if the query is:
**
** ... FROM t1 WHERE a > ? AND a < ? ...
**
** then nEq is set to 0.
**
** When this function is called, *pnOut is set to the sqlite3LogEst() of the
** number of rows that the index scan is expected to visit without
** considering the range constraints. If nEq is 0, then *pnOut is the number of
** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
** to account for the range constraints pLower and pUpper.
**
** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
** used, a single range inequality reduces the search space by a factor of 4.
** and a pair of constraints (x>? AND x) reduces the expected number of
** rows visited by a factor of 64.
*/
static int whereRangeScanEst(
Parse *pParse, /* Parsing & code generating context */
WhereLoopBuilder *pBuilder,
WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */
){
int rc = SQLITE_OK;
int nOut = pLoop->nOut;
LogEst nNew;
#ifdef SQLITE_ENABLE_STAT4
Index *p = pLoop->u.btree.pIndex;
int nEq = pLoop->u.btree.nEq;
if( p->nSample>0 && ALWAYS(nEqnSampleCol)
&& OptimizationEnabled(pParse->db, SQLITE_Stat4)
){
if( nEq==pBuilder->nRecValid ){
UnpackedRecord *pRec = pBuilder->pRec;
tRowcnt a[2];
int nBtm = pLoop->u.btree.nBtm;
int nTop = pLoop->u.btree.nTop;
/* Variable iLower will be set to the estimate of the number of rows in
** the index that are less than the lower bound of the range query. The
** lower bound being the concatenation of $P and $L, where $P is the
** key-prefix formed by the nEq values matched against the nEq left-most
** columns of the index, and $L is the value in pLower.
**
** Or, if pLower is NULL or $L cannot be extracted from it (because it
** is not a simple variable or literal value), the lower bound of the
** range is $P. Due to a quirk in the way whereKeyStats() works, even
** if $L is available, whereKeyStats() is called for both ($P) and
** ($P:$L) and the larger of the two returned values is used.
**
** Similarly, iUpper is to be set to the estimate of the number of rows
** less than the upper bound of the range query. Where the upper bound
** is either ($P) or ($P:$U). Again, even if $U is available, both values
** of iUpper are requested of whereKeyStats() and the smaller used.
**
** The number of rows between the two bounds is then just iUpper-iLower.
*/
tRowcnt iLower; /* Rows less than the lower bound */
tRowcnt iUpper; /* Rows less than the upper bound */
int iLwrIdx = -2; /* aSample[] for the lower bound */
int iUprIdx = -1; /* aSample[] for the upper bound */
if( pRec ){
testcase( pRec->nField!=pBuilder->nRecValid );
pRec->nField = pBuilder->nRecValid;
}
/* Determine iLower and iUpper using ($P) only. */
if( nEq==0 ){
iLower = 0;
iUpper = p->nRowEst0;
}else{
/* Note: this call could be optimized away - since the same values must
** have been requested when testing key $P in whereEqualScanEst(). */
whereKeyStats(pParse, p, pRec, 0, a);
iLower = a[0];
iUpper = a[0] + a[1];
}
assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
assert( p->aSortOrder!=0 );
if( p->aSortOrder[nEq] ){
/* The roles of pLower and pUpper are swapped for a DESC index */
SWAP(WhereTerm*, pLower, pUpper);
SWAP(int, nBtm, nTop);
}
/* If possible, improve on the iLower estimate using ($P:$L). */
if( pLower ){
int n; /* Values extracted from pExpr */
Expr *pExpr = pLower->pExpr->pRight;
rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
if( rc==SQLITE_OK && n ){
tRowcnt iNew;
u16 mask = WO_GT|WO_LE;
if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
if( iNew>iLower ) iLower = iNew;
nOut--;
pLower = 0;
}
}
/* If possible, improve on the iUpper estimate using ($P:$U). */
if( pUpper ){
int n; /* Values extracted from pExpr */
Expr *pExpr = pUpper->pExpr->pRight;
rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
if( rc==SQLITE_OK && n ){
tRowcnt iNew;
u16 mask = WO_GT|WO_LE;
if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
if( iNewpRec = pRec;
if( rc==SQLITE_OK ){
if( iUpper>iLower ){
nNew = sqlite3LogEst(iUpper - iLower);
/* TUNING: If both iUpper and iLower are derived from the same
** sample, then assume they are 4x more selective. This brings
** the estimated selectivity more in line with what it would be
** if estimated without the use of STAT4 tables. */
if( iLwrIdx==iUprIdx ){ nNew -= 20; }
assert( 20==sqlite3LogEst(4) );
}else{
nNew = 10; assert( 10==sqlite3LogEst(2) );
}
if( nNewwtFlags & TERM_VNULL)==0 || pParse->nErr>0 );
nNew = whereRangeAdjust(pLower, nOut);
nNew = whereRangeAdjust(pUpper, nNew);
/* TUNING: If there is both an upper and lower limit and neither limit
** has an application-defined likelihood(), assume the range is
** reduced by an additional 75%. This means that, by default, an open-ended
** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
** match 1/64 of the index. */
if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
nNew -= 20;
}
nOut -= (pLower!=0) + (pUpper!=0);
if( nNew<10 ) nNew = 10;
if( nNewnOut>nOut ){
WHERETRACE(0x20,("Range scan lowers nOut from %d to %d\n",
pLoop->nOut, nOut));
}
#endif
pLoop->nOut = (LogEst)nOut;
return rc;
}
#ifdef SQLITE_ENABLE_STAT4
/*
** Estimate the number of rows that will be returned based on
** an equality constraint x=VALUE and where that VALUE occurs in
** the histogram data. This only works when x is the left-most
** column of an index and sqlite_stat4 histogram data is available
** for that index. When pExpr==NULL that means the constraint is
** "x IS NULL" instead of "x=VALUE".
**
** Write the estimated row count into *pnRow and return SQLITE_OK.
** If unable to make an estimate, leave *pnRow unchanged and return
** non-zero.
**
** This routine can fail if it is unable to load a collating sequence
** required for string comparison, or if unable to allocate memory
** for a UTF conversion required for comparison. The error is stored
** in the pParse structure.
*/
static int whereEqualScanEst(
Parse *pParse, /* Parsing & code generating context */
WhereLoopBuilder *pBuilder,
Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */
tRowcnt *pnRow /* Write the revised row estimate here */
){
Index *p = pBuilder->pNew->u.btree.pIndex;
int nEq = pBuilder->pNew->u.btree.nEq;
UnpackedRecord *pRec = pBuilder->pRec;
int rc; /* Subfunction return code */
tRowcnt a[2]; /* Statistics */
int bOk;
assert( nEq>=1 );
assert( nEq<=p->nColumn );
assert( p->aSample!=0 );
assert( p->nSample>0 );
assert( pBuilder->nRecValidnRecValid<(nEq-1) ){
return SQLITE_NOTFOUND;
}
/* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
** below would return the same value. */
if( nEq>=p->nColumn ){
*pnRow = 1;
return SQLITE_OK;
}
rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
pBuilder->pRec = pRec;
if( rc!=SQLITE_OK ) return rc;
if( bOk==0 ) return SQLITE_NOTFOUND;
pBuilder->nRecValid = nEq;
whereKeyStats(pParse, p, pRec, 0, a);
WHERETRACE(0x20,("equality scan regions %s(%d): %d\n",
p->zName, nEq-1, (int)a[1]));
*pnRow = a[1];
return rc;
}
#endif /* SQLITE_ENABLE_STAT4 */
#ifdef SQLITE_ENABLE_STAT4
/*
** Estimate the number of rows that will be returned based on
** an IN constraint where the right-hand side of the IN operator
** is a list of values. Example:
**
** WHERE x IN (1,2,3,4)
**
** Write the estimated row count into *pnRow and return SQLITE_OK.
** If unable to make an estimate, leave *pnRow unchanged and return
** non-zero.
**
** This routine can fail if it is unable to load a collating sequence
** required for string comparison, or if unable to allocate memory
** for a UTF conversion required for comparison. The error is stored
** in the pParse structure.
*/
static int whereInScanEst(
Parse *pParse, /* Parsing & code generating context */
WhereLoopBuilder *pBuilder,
ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
tRowcnt *pnRow /* Write the revised row estimate here */
){
Index *p = pBuilder->pNew->u.btree.pIndex;
i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
int nRecValid = pBuilder->nRecValid;
int rc = SQLITE_OK; /* Subfunction return code */
tRowcnt nEst; /* Number of rows for a single term */
tRowcnt nRowEst = 0; /* New estimate of the number of rows */
int i; /* Loop counter */
assert( p->aSample!=0 );
for(i=0; rc==SQLITE_OK && inExpr; i++){
nEst = nRow0;
rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
nRowEst += nEst;
pBuilder->nRecValid = nRecValid;
}
if( rc==SQLITE_OK ){
if( nRowEst > (tRowcnt)nRow0 ) nRowEst = nRow0;
*pnRow = nRowEst;
WHERETRACE(0x20,("IN row estimate: est=%d\n", nRowEst));
}
assert( pBuilder->nRecValid==nRecValid );
return rc;
}
#endif /* SQLITE_ENABLE_STAT4 */
#ifdef WHERETRACE_ENABLED
/*
** Print the content of a WhereTerm object
*/
void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){
if( pTerm==0 ){
sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
}else{
char zType[8];
char zLeft[50];
memcpy(zType, "....", 5);
if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E';
if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) zType[2] = 'L';
if( pTerm->wtFlags & TERM_CODED ) zType[3] = 'C';
if( pTerm->eOperator & WO_SINGLE ){
assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
pTerm->leftCursor, pTerm->u.x.leftColumn);
}else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx",
pTerm->u.pOrInfo->indexable);
}else{
sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
}
sqlite3DebugPrintf(
"TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags);
/* The 0x10000 .wheretrace flag causes extra information to be
** shown about each Term */
if( sqlite3WhereTrace & 0x10000 ){
sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight);
}
if( (pTerm->eOperator & (WO_OR|WO_AND))==0 && pTerm->u.x.iField ){
sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField);
}
if( pTerm->iParent>=0 ){
sqlite3DebugPrintf(" iParent=%d", pTerm->iParent);
}
sqlite3DebugPrintf("\n");
sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
}
}
#endif
#ifdef WHERETRACE_ENABLED
/*
** Show the complete content of a WhereClause
*/
void sqlite3WhereClausePrint(WhereClause *pWC){
int i;
for(i=0; inTerm; i++){
sqlite3WhereTermPrint(&pWC->a[i], i);
}
}
#endif
#ifdef WHERETRACE_ENABLED
/*
** Print a WhereLoop object for debugging purposes
**
** Format example:
**
** .--- Position in WHERE clause rSetup, rRun, nOut ---.
** | |
** | .--- selfMask nTerm ------. |
** | | | |
** | | .-- prereq Idx wsFlags----. | |
** | | | Name | | |
** | | | __|__ nEq ---. ___|__ | __|__
** | / \ / \ / \ | / \ / \ / \
** 1.002.001 t2.t2xy 2 f 010241 N 2 cost 0,56,31
*/
void sqlite3WhereLoopPrint(const WhereLoop *p, const WhereClause *pWC){
if( pWC ){
WhereInfo *pWInfo = pWC->pWInfo;
int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
SrcItem *pItem = pWInfo->pTabList->a + p->iTab;
Table *pTab = pItem->pTab;
Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
sqlite3DebugPrintf(" %12s",
pItem->zAlias ? pItem->zAlias : pTab->zName);
}else{
sqlite3DebugPrintf("%c%2d.%03llx.%03llx %c%d",
p->cId, p->iTab, p->maskSelf, p->prereq & 0xfff, p->cId, p->iTab);
}
if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
const char *zName;
if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
int i = sqlite3Strlen30(zName) - 1;
while( zName[i]!='_' ) i--;
zName += i;
}
sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
}else{
sqlite3DebugPrintf("%20s","");
}
}else{
char *z;
if( p->u.vtab.idxStr ){
z = sqlite3_mprintf("(%d,\"%s\",%#x)",
p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
}else{
z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
}
sqlite3DebugPrintf(" %-19s", z);
sqlite3_free(z);
}
if( p->wsFlags & WHERE_SKIPSCAN ){
sqlite3DebugPrintf(" f %06x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
}else{
sqlite3DebugPrintf(" f %06x N %d", p->wsFlags, p->nLTerm);
}
sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
if( p->nLTerm && (sqlite3WhereTrace & 0x4000)!=0 ){
int i;
for(i=0; inLTerm; i++){
sqlite3WhereTermPrint(p->aLTerm[i], i);
}
}
}
void sqlite3ShowWhereLoop(const WhereLoop *p){
if( p ) sqlite3WhereLoopPrint(p, 0);
}
void sqlite3ShowWhereLoopList(const WhereLoop *p){
while( p ){
sqlite3ShowWhereLoop(p);
p = p->pNextLoop;
}
}
#endif
/*
** Convert bulk memory into a valid WhereLoop that can be passed
** to whereLoopClear harmlessly.
*/
static void whereLoopInit(WhereLoop *p){
p->aLTerm = p->aLTermSpace;
p->nLTerm = 0;
p->nLSlot = ArraySize(p->aLTermSpace);
p->wsFlags = 0;
}
/*
** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact.
*/
static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
sqlite3_free(p->u.vtab.idxStr);
p->u.vtab.needFree = 0;
p->u.vtab.idxStr = 0;
}else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
sqlite3DbFreeNN(db, p->u.btree.pIndex);
p->u.btree.pIndex = 0;
}
}
}
/*
** Deallocate internal memory used by a WhereLoop object. Leave the
** object in an initialized state, as if it had been newly allocated.
*/
static void whereLoopClear(sqlite3 *db, WhereLoop *p){
if( p->aLTerm!=p->aLTermSpace ){
sqlite3DbFreeNN(db, p->aLTerm);
p->aLTerm = p->aLTermSpace;
p->nLSlot = ArraySize(p->aLTermSpace);
}
whereLoopClearUnion(db, p);
p->nLTerm = 0;
p->wsFlags = 0;
}
/*
** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
*/
static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
WhereTerm **paNew;
if( p->nLSlot>=n ) return SQLITE_OK;
n = (n+7)&~7;
paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
if( paNew==0 ) return SQLITE_NOMEM_BKPT;
memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
p->aLTerm = paNew;
p->nLSlot = n;
return SQLITE_OK;
}
/*
** Transfer content from the second pLoop into the first.
*/
static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
whereLoopClearUnion(db, pTo);
if( pFrom->nLTerm > pTo->nLSlot
&& whereLoopResize(db, pTo, pFrom->nLTerm)
){
memset(pTo, 0, WHERE_LOOP_XFER_SZ);
return SQLITE_NOMEM_BKPT;
}
memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
pFrom->u.vtab.needFree = 0;
}else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
pFrom->u.btree.pIndex = 0;
}
return SQLITE_OK;
}
/*
** Delete a WhereLoop object
*/
static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
assert( db!=0 );
whereLoopClear(db, p);
sqlite3DbNNFreeNN(db, p);
}
/*
** Free a WhereInfo structure
*/
static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
assert( pWInfo!=0 );
assert( db!=0 );
sqlite3WhereClauseClear(&pWInfo->sWC);
while( pWInfo->pLoops ){
WhereLoop *p = pWInfo->pLoops;
pWInfo->pLoops = p->pNextLoop;
whereLoopDelete(db, p);
}
while( pWInfo->pMemToFree ){
WhereMemBlock *pNext = pWInfo->pMemToFree->pNext;
sqlite3DbNNFreeNN(db, pWInfo->pMemToFree);
pWInfo->pMemToFree = pNext;
}
sqlite3DbNNFreeNN(db, pWInfo);
}
/*
** Return TRUE if X is a proper subset of Y but is of equal or less cost.
** In other words, return true if all constraints of X are also part of Y
** and Y has additional constraints that might speed the search that X lacks
** but the cost of running X is not more than the cost of running Y.
**
** In other words, return true if the cost relationwship between X and Y
** is inverted and needs to be adjusted.
**
** Case 1:
**
** (1a) X and Y use the same index.
** (1b) X has fewer == terms than Y
** (1c) Neither X nor Y use skip-scan
** (1d) X does not have a a greater cost than Y
**
** Case 2:
**
** (2a) X has the same or lower cost, or returns the same or fewer rows,
** than Y.
** (2b) X uses fewer WHERE clause terms than Y
** (2c) Every WHERE clause term used by X is also used by Y
** (2d) X skips at least as many columns as Y
** (2e) If X is a covering index, than Y is too
*/
static int whereLoopCheaperProperSubset(
const WhereLoop *pX, /* First WhereLoop to compare */
const WhereLoop *pY /* Compare against this WhereLoop */
){
int i, j;
if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0; /* (1d) and (2a) */
assert( (pX->wsFlags & WHERE_VIRTUALTABLE)==0 );
assert( (pY->wsFlags & WHERE_VIRTUALTABLE)==0 );
if( pX->u.btree.nEq < pY->u.btree.nEq /* (1b) */
&& pX->u.btree.pIndex==pY->u.btree.pIndex /* (1a) */
&& pX->nSkip==0 && pY->nSkip==0 /* (1c) */
){
return 1; /* Case 1 is true */
}
if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
return 0; /* (2b) */
}
if( pY->nSkip > pX->nSkip ) return 0; /* (2d) */
for(i=pX->nLTerm-1; i>=0; i--){
if( pX->aLTerm[i]==0 ) continue;
for(j=pY->nLTerm-1; j>=0; j--){
if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
}
if( j<0 ) return 0; /* (2c) */
}
if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
&& (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
return 0; /* (2e) */
}
return 1; /* Case 2 is true */
}
/*
** Try to adjust the cost and number of output rows of WhereLoop pTemplate
** upwards or downwards so that:
**
** (1) pTemplate costs less than any other WhereLoops that are a proper
** subset of pTemplate
**
** (2) pTemplate costs more than any other WhereLoops for which pTemplate
** is a proper subset.
**
** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
** WHERE clause terms than Y and that every WHERE clause term used by X is
** also used by Y.
*/
static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
for(; p; p=p->pNextLoop){
if( p->iTab!=pTemplate->iTab ) continue;
if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
if( whereLoopCheaperProperSubset(p, pTemplate) ){
/* Adjust pTemplate cost downward so that it is cheaper than its
** subset p. */
WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
pTemplate->rRun, pTemplate->nOut,
MIN(p->rRun, pTemplate->rRun),
MIN(p->nOut - 1, pTemplate->nOut)));
pTemplate->rRun = MIN(p->rRun, pTemplate->rRun);
pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut);
}else if( whereLoopCheaperProperSubset(pTemplate, p) ){
/* Adjust pTemplate cost upward so that it is costlier than p since
** pTemplate is a proper subset of p */
WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
pTemplate->rRun, pTemplate->nOut,
MAX(p->rRun, pTemplate->rRun),
MAX(p->nOut + 1, pTemplate->nOut)));
pTemplate->rRun = MAX(p->rRun, pTemplate->rRun);
pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut);
}
}
}
/*
** Search the list of WhereLoops in *ppPrev looking for one that can be
** replaced by pTemplate.
**
** Return NULL if pTemplate does not belong on the WhereLoop list.
** In other words if pTemplate ought to be dropped from further consideration.
**
** If pX is a WhereLoop that pTemplate can replace, then return the
** link that points to pX.
**
** If pTemplate cannot replace any existing element of the list but needs
** to be added to the list as a new entry, then return a pointer to the
** tail of the list.
*/
static WhereLoop **whereLoopFindLesser(
WhereLoop **ppPrev,
const WhereLoop *pTemplate
){
WhereLoop *p;
for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
/* If either the iTab or iSortIdx values for two WhereLoop are different
** then those WhereLoops need to be considered separately. Neither is
** a candidate to replace the other. */
continue;
}
/* In the current implementation, the rSetup value is either zero
** or the cost of building an automatic index (NlogN) and the NlogN
** is the same for compatible WhereLoops. */
assert( p->rSetup==0 || pTemplate->rSetup==0
|| p->rSetup==pTemplate->rSetup );
/* whereLoopAddBtree() always generates and inserts the automatic index
** case first. Hence compatible candidate WhereLoops never have a larger
** rSetup. Call this SETUP-INVARIANT */
assert( p->rSetup>=pTemplate->rSetup );
/* Any loop using an application-defined index (or PRIMARY KEY or
** UNIQUE constraint) with one or more == constraints is better
** than an automatic index. Unless it is a skip-scan. */
if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
&& (pTemplate->nSkip)==0
&& (pTemplate->wsFlags & WHERE_INDEXED)!=0
&& (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
&& (p->prereq & pTemplate->prereq)==pTemplate->prereq
){
break;
}
/* If existing WhereLoop p is better than pTemplate, pTemplate can be
** discarded. WhereLoop p is better if:
** (1) p has no more dependencies than pTemplate, and
** (2) p has an equal or lower cost than pTemplate
*/
if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */
&& p->rSetup<=pTemplate->rSetup /* (2a) */
&& p->rRun<=pTemplate->rRun /* (2b) */
&& p->nOut<=pTemplate->nOut /* (2c) */
){
return 0; /* Discard pTemplate */
}
/* If pTemplate is always better than p, then cause p to be overwritten
** with pTemplate. pTemplate is better than p if:
** (1) pTemplate has no more dependencies than p, and
** (2) pTemplate has an equal or lower cost than p.
*/
if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */
&& p->rRun>=pTemplate->rRun /* (2a) */
&& p->nOut>=pTemplate->nOut /* (2b) */
){
assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
break; /* Cause p to be overwritten by pTemplate */
}
}
return ppPrev;
}
/*
** Insert or replace a WhereLoop entry using the template supplied.
**
** An existing WhereLoop entry might be overwritten if the new template
** is better and has fewer dependencies. Or the template will be ignored
** and no insert will occur if an existing WhereLoop is faster and has
** fewer dependencies than the template. Otherwise a new WhereLoop is
** added based on the template.
**
** If pBuilder->pOrSet is not NULL then we care about only the
** prerequisites and rRun and nOut costs of the N best loops. That
** information is gathered in the pBuilder->pOrSet object. This special
** processing mode is used only for OR clause processing.
**
** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
** still might overwrite similar loops with the new template if the
** new template is better. Loops may be overwritten if the following
** conditions are met:
**
** (1) They have the same iTab.
** (2) They have the same iSortIdx.
** (3) The template has same or fewer dependencies than the current loop
** (4) The template has the same or lower cost than the current loop
*/
static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
WhereLoop **ppPrev, *p;
WhereInfo *pWInfo = pBuilder->pWInfo;
sqlite3 *db = pWInfo->pParse->db;
int rc;
/* Stop the search once we hit the query planner search limit */
if( pBuilder->iPlanLimit==0 ){
WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
return SQLITE_DONE;
}
pBuilder->iPlanLimit--;
whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
/* If pBuilder->pOrSet is defined, then only keep track of the costs
** and prereqs.
*/
if( pBuilder->pOrSet!=0 ){
if( pTemplate->nLTerm ){
#if WHERETRACE_ENABLED
u16 n = pBuilder->pOrSet->n;
int x =
#endif
whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
pTemplate->nOut);
#if WHERETRACE_ENABLED /* 0x8 */
if( sqlite3WhereTrace & 0x8 ){
sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n);
sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
}
#endif
}
return SQLITE_OK;
}
/* Look for an existing WhereLoop to replace with pTemplate
*/
ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
if( ppPrev==0 ){
/* There already exists a WhereLoop on the list that is better
** than pTemplate, so just ignore pTemplate */
#if WHERETRACE_ENABLED /* 0x8 */
if( sqlite3WhereTrace & 0x8 ){
sqlite3DebugPrintf(" skip: ");
sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
}
#endif
return SQLITE_OK;
}else{
p = *ppPrev;
}
/* If we reach this point it means that either p[] should be overwritten
** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
** WhereLoop and insert it.
*/
#if WHERETRACE_ENABLED /* 0x8 */
if( sqlite3WhereTrace & 0x8 ){
if( p!=0 ){
sqlite3DebugPrintf("replace: ");
sqlite3WhereLoopPrint(p, pBuilder->pWC);
sqlite3DebugPrintf(" with: ");
}else{
sqlite3DebugPrintf(" add: ");
}
sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
}
#endif
if( p==0 ){
/* Allocate a new WhereLoop to add to the end of the list */
*ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
if( p==0 ) return SQLITE_NOMEM_BKPT;
whereLoopInit(p);
p->pNextLoop = 0;
}else{
/* We will be overwriting WhereLoop p[]. But before we do, first
** go through the rest of the list and delete any other entries besides
** p[] that are also supplanted by pTemplate */
WhereLoop **ppTail = &p->pNextLoop;
WhereLoop *pToDel;
while( *ppTail ){
ppTail = whereLoopFindLesser(ppTail, pTemplate);
if( ppTail==0 ) break;
pToDel = *ppTail;
if( pToDel==0 ) break;
*ppTail = pToDel->pNextLoop;
#if WHERETRACE_ENABLED /* 0x8 */
if( sqlite3WhereTrace & 0x8 ){
sqlite3DebugPrintf(" delete: ");
sqlite3WhereLoopPrint(pToDel, pBuilder->pWC);
}
#endif
whereLoopDelete(db, pToDel);
}
}
rc = whereLoopXfer(db, p, pTemplate);
if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
Index *pIndex = p->u.btree.pIndex;
if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
p->u.btree.pIndex = 0;
}
}
return rc;
}
/*
** Adjust the WhereLoop.nOut value downward to account for terms of the
** WHERE clause that reference the loop but which are not used by an
** index.
*
** For every WHERE clause term that is not used by the index
** and which has a truth probability assigned by one of the likelihood(),
** likely(), or unlikely() SQL functions, reduce the estimated number
** of output rows by the probability specified.
**
** TUNING: For every WHERE clause term that is not used by the index
** and which does not have an assigned truth probability, heuristics
** described below are used to try to estimate the truth probability.
** TODO --> Perhaps this is something that could be improved by better
** table statistics.
**
** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75%
** value corresponds to -1 in LogEst notation, so this means decrement
** the WhereLoop.nOut field for every such WHERE clause term.
**
** Heuristic 2: If there exists one or more WHERE clause terms of the
** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
** final output row estimate is no greater than 1/4 of the total number
** of rows in the table. In other words, assume that x==EXPR will filter
** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the
** "x" column is boolean or else -1 or 0 or 1 is a common default value
** on the "x" column and so in that case only cap the output row estimate
** at 1/2 instead of 1/4.
*/
static void whereLoopOutputAdjust(
WhereClause *pWC, /* The WHERE clause */
WhereLoop *pLoop, /* The loop to adjust downward */
LogEst nRow /* Number of rows in the entire table */
){
WhereTerm *pTerm, *pX;
Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
int i, j;
LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */
assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
for(i=pWC->nBase, pTerm=pWC->a; i>0; i--, pTerm++){
assert( pTerm!=0 );
if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) continue;
for(j=pLoop->nLTerm-1; j>=0; j--){
pX = pLoop->aLTerm[j];
if( pX==0 ) continue;
if( pX==pTerm ) break;
if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
}
if( j<0 ){
sqlite3ProgressCheck(pWC->pWInfo->pParse);
if( pLoop->maskSelf==pTerm->prereqAll ){
/* If there are extra terms in the WHERE clause not used by an index
** that depend only on the table being scanned, and that will tend to
** cause many rows to be omitted, then mark that table as
** "self-culling".
**
** 2022-03-24: Self-culling only applies if either the extra terms
** are straight comparison operators that are non-true with NULL
** operand, or if the loop is not an OUTER JOIN.
*/
if( (pTerm->eOperator & 0x3f)!=0
|| (pWC->pWInfo->pTabList->a[pLoop->iTab].fg.jointype
& (JT_LEFT|JT_LTORJ))==0
){
pLoop->wsFlags |= WHERE_SELFCULL;
}
}
if( pTerm->truthProb<=0 ){
/* If a truth probability is specified using the likelihood() hints,
** then use the probability provided by the application. */
pLoop->nOut += pTerm->truthProb;
}else{
/* In the absence of explicit truth probabilities, use heuristics to
** guess a reasonable truth probability. */
pLoop->nOut--;
if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0
&& (pTerm->wtFlags & TERM_HIGHTRUTH)==0 /* tag-20200224-1 */
){
Expr *pRight = pTerm->pExpr->pRight;
int k = 0;
testcase( pTerm->pExpr->op==TK_IS );
if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
k = 10;
}else{
k = 20;
}
if( iReducewtFlags |= TERM_HEURTRUTH;
iReduce = k;
}
}
}
}
}
if( pLoop->nOut > nRow-iReduce ){
pLoop->nOut = nRow - iReduce;
}
}
/*
** Term pTerm is a vector range comparison operation. The first comparison
** in the vector can be optimized using column nEq of the index. This
** function returns the total number of vector elements that can be used
** as part of the range comparison.
**
** For example, if the query is:
**
** WHERE a = ? AND (b, c, d) > (?, ?, ?)
**
** and the index:
**
** CREATE INDEX ... ON (a, b, c, d, e)
**
** then this function would be invoked with nEq=1. The value returned in
** this case is 3.
*/
static int whereRangeVectorLen(
Parse *pParse, /* Parsing context */
int iCur, /* Cursor open on pIdx */
Index *pIdx, /* The index to be used for a inequality constraint */
int nEq, /* Number of prior equality constraints on same index */
WhereTerm *pTerm /* The vector inequality constraint */
){
int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
int i;
nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
for(i=1; ipExpr->pLeft) );
pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
pRhs = pTerm->pExpr->pRight;
if( ExprUseXSelect(pRhs) ){
pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
}else{
pRhs = pRhs->x.pList->a[i].pExpr;
}
/* Check that the LHS of the comparison is a column reference to
** the right column of the right source table. And that the sort
** order of the index column is the same as the sort order of the
** leftmost index column. */
if( pLhs->op!=TK_COLUMN
|| pLhs->iTable!=iCur
|| pLhs->iColumn!=pIdx->aiColumn[i+nEq]
|| pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
){
break;
}
testcase( pLhs->iColumn==XN_ROWID );
aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
if( aff!=idxaff ) break;
pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
if( pColl==0 ) break;
if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
}
return i;
}
/*
** Adjust the cost C by the costMult factor T. This only occurs if
** compiled with -DSQLITE_ENABLE_COSTMULT
*/
#ifdef SQLITE_ENABLE_COSTMULT
# define ApplyCostMultiplier(C,T) C += T
#else
# define ApplyCostMultiplier(C,T)
#endif
/*
** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
** index pIndex. Try to match one more.
**
** When this function is called, pBuilder->pNew->nOut contains the
** number of rows expected to be visited by filtering using the nEq
** terms only. If it is modified, this value is restored before this
** function returns.
**
** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
** a fake index used for the INTEGER PRIMARY KEY.
*/
static int whereLoopAddBtreeIndex(
WhereLoopBuilder *pBuilder, /* The WhereLoop factory */
SrcItem *pSrc, /* FROM clause term being analyzed */
Index *pProbe, /* An index on pSrc */
LogEst nInMul /* log(Number of iterations due to IN) */
){
WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyze context */
Parse *pParse = pWInfo->pParse; /* Parsing context */
sqlite3 *db = pParse->db; /* Database connection malloc context */
WhereLoop *pNew; /* Template WhereLoop under construction */
WhereTerm *pTerm; /* A WhereTerm under consideration */
int opMask; /* Valid operators for constraints */
WhereScan scan; /* Iterator for WHERE terms */
Bitmask saved_prereq; /* Original value of pNew->prereq */
u16 saved_nLTerm; /* Original value of pNew->nLTerm */
u16 saved_nEq; /* Original value of pNew->u.btree.nEq */
u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */
u16 saved_nTop; /* Original value of pNew->u.btree.nTop */
u16 saved_nSkip; /* Original value of pNew->nSkip */
u32 saved_wsFlags; /* Original value of pNew->wsFlags */
LogEst saved_nOut; /* Original value of pNew->nOut */
int rc = SQLITE_OK; /* Return code */
LogEst rSize; /* Number of rows in the table */
LogEst rLogSize; /* Logarithm of table size */
WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
pNew = pBuilder->pNew;
assert( db->mallocFailed==0 || pParse->nErr>0 );
if( pParse->nErr ){
return pParse->rc;
}
WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
pProbe->pTable->zName,pProbe->zName,
pNew->u.btree.nEq, pNew->nSkip, pNew->rRun));
assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
if( pNew->wsFlags & WHERE_BTM_LIMIT ){
opMask = WO_LT|WO_LE;
}else{
assert( pNew->u.btree.nBtm==0 );
opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
}
if( pProbe->bUnordered || pProbe->bLowQual ){
if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
if( pProbe->bLowQual ) opMask &= ~(WO_EQ|WO_IN|WO_IS);
}
assert( pNew->u.btree.nEqnColumn );
assert( pNew->u.btree.nEqnKeyCol
|| pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY );
saved_nEq = pNew->u.btree.nEq;
saved_nBtm = pNew->u.btree.nBtm;
saved_nTop = pNew->u.btree.nTop;
saved_nSkip = pNew->nSkip;
saved_nLTerm = pNew->nLTerm;
saved_wsFlags = pNew->wsFlags;
saved_prereq = pNew->prereq;
saved_nOut = pNew->nOut;
pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
opMask, pProbe);
pNew->rSetup = 0;
rSize = pProbe->aiRowLogEst[0];
rLogSize = estLog(rSize);
for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */
LogEst rCostIdx;
LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */
int nIn = 0;
#ifdef SQLITE_ENABLE_STAT4
int nRecValid = pBuilder->nRecValid;
#endif
if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
&& indexColumnNotNull(pProbe, saved_nEq)
){
continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
}
if( pTerm->prereqRight & pNew->maskSelf ) continue;
/* Do not allow the upper bound of a LIKE optimization range constraint
** to mix with a lower range bound from some other source */
if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0
&& !constraintCompatibleWithOuterJoin(pTerm,pSrc)
){
continue;
}
if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
}else{
pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
}
pNew->wsFlags = saved_wsFlags;
pNew->u.btree.nEq = saved_nEq;
pNew->u.btree.nBtm = saved_nBtm;
pNew->u.btree.nTop = saved_nTop;
pNew->nLTerm = saved_nLTerm;
if( pNew->nLTerm>=pNew->nLSlot
&& whereLoopResize(db, pNew, pNew->nLTerm+1)
){
break; /* OOM while trying to enlarge the pNew->aLTerm array */
}
pNew->aLTerm[pNew->nLTerm++] = pTerm;
pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
assert( nInMul==0
|| (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
|| (pNew->wsFlags & WHERE_COLUMN_IN)!=0
|| (pNew->wsFlags & WHERE_SKIPSCAN)!=0
);
if( eOp & WO_IN ){
Expr *pExpr = pTerm->pExpr;
if( ExprUseXSelect(pExpr) ){
/* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */
int i;
nIn = 46; assert( 46==sqlite3LogEst(25) );
/* The expression may actually be of the form (x, y) IN (SELECT...).
** In this case there is a separate term for each of (x) and (y).
** However, the nIn multiplier should only be applied once, not once
** for each such term. The following loop checks that pTerm is the
** first such term in use, and sets nIn back to 0 if it is not. */
for(i=0; inLTerm-1; i++){
if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
}
}else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
/* "x IN (value, value, ...)" */
nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
}
if( pProbe->hasStat1 && rLogSize>=10 ){
LogEst M, logK, x;
/* Let:
** N = the total number of rows in the table
** K = the number of entries on the RHS of the IN operator
** M = the number of rows in the table that match terms to the
** to the left in the same index. If the IN operator is on
** the left-most index column, M==N.
**
** Given the definitions above, it is better to omit the IN operator
** from the index lookup and instead do a scan of the M elements,
** testing each scanned row against the IN operator separately, if:
**
** M*log(K) < K*log(N)
**
** Our estimates for M, K, and N might be inaccurate, so we build in
** a safety margin of 2 (LogEst: 10) that favors using the IN operator
** with the index, as using an index has better worst-case behavior.
** If we do not have real sqlite_stat1 data, always prefer to use
** the index. Do not bother with this optimization on very small
** tables (less than 2 rows) as it is pointless in that case.
*/
M = pProbe->aiRowLogEst[saved_nEq];
logK = estLog(nIn);
/* TUNING v----- 10 to bias toward indexed IN */
x = M + logK + 10 - (nIn + rLogSize);
if( x>=0 ){
WHERETRACE(0x40,
("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) "
"prefers indexed lookup\n",
saved_nEq, M, logK, nIn, rLogSize, x));
}else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){
WHERETRACE(0x40,
("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
" nInMul=%d) prefers skip-scan\n",
saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
pNew->wsFlags |= WHERE_IN_SEEKSCAN;
}else{
WHERETRACE(0x40,
("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
" nInMul=%d) prefers normal scan\n",
saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
continue;
}
}
pNew->wsFlags |= WHERE_COLUMN_IN;
}else if( eOp & (WO_EQ|WO_IS) ){
int iCol = pProbe->aiColumn[saved_nEq];
pNew->wsFlags |= WHERE_COLUMN_EQ;
assert( saved_nEq==pNew->u.btree.nEq );
if( iCol==XN_ROWID
|| (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
){
if( iCol==XN_ROWID || pProbe->uniqNotNull
|| (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
){
pNew->wsFlags |= WHERE_ONEROW;
}else{
pNew->wsFlags |= WHERE_UNQ_WANTED;
}
}
if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS;
}else if( eOp & WO_ISNULL ){
pNew->wsFlags |= WHERE_COLUMN_NULL;
}else{
int nVecLen = whereRangeVectorLen(
pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
);
if( eOp & (WO_GT|WO_GE) ){
testcase( eOp & WO_GT );
testcase( eOp & WO_GE );
pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
pNew->u.btree.nBtm = nVecLen;
pBtm = pTerm;
pTop = 0;
if( pTerm->wtFlags & TERM_LIKEOPT ){
/* Range constraints that come from the LIKE optimization are
** always used in pairs. */
pTop = &pTerm[1];
assert( (pTop-(pTerm->pWC->a))pWC->nTerm );
assert( pTop->wtFlags & TERM_LIKEOPT );
assert( pTop->eOperator==WO_LT );
if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
pNew->aLTerm[pNew->nLTerm++] = pTop;
pNew->wsFlags |= WHERE_TOP_LIMIT;
pNew->u.btree.nTop = 1;
}
}else{
assert( eOp & (WO_LT|WO_LE) );
testcase( eOp & WO_LT );
testcase( eOp & WO_LE );
pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
pNew->u.btree.nTop = nVecLen;
pTop = pTerm;
pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
pNew->aLTerm[pNew->nLTerm-2] : 0;
}
}
/* At this point pNew->nOut is set to the number of rows expected to
** be visited by the index scan before considering term pTerm, or the
** values of nIn and nInMul. In other words, assuming that all
** "x IN(...)" terms are replaced with "x = ?". This block updates
** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */
assert( pNew->nOut==saved_nOut );
if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
/* Adjust nOut using stat4 data. Or, if there is no stat4
** data, using some other estimate. */
whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
}else{
int nEq = ++pNew->u.btree.nEq;
assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
assert( pNew->nOut==saved_nOut );
if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
assert( (eOp & WO_IN) || nIn==0 );
testcase( eOp & WO_IN );
pNew->nOut += pTerm->truthProb;
pNew->nOut -= nIn;
}else{
#ifdef SQLITE_ENABLE_STAT4
tRowcnt nOut = 0;
if( nInMul==0
&& pProbe->nSample
&& ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol)
&& ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr))
&& OptimizationEnabled(db, SQLITE_Stat4)
){
Expr *pExpr = pTerm->pExpr;
if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
testcase( eOp & WO_EQ );
testcase( eOp & WO_IS );
testcase( eOp & WO_ISNULL );
rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
}else{
rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
}
if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */
if( nOut ){
pNew->nOut = sqlite3LogEst(nOut);
if( nEq==1
/* TUNING: Mark terms as "low selectivity" if they seem likely
** to be true for half or more of the rows in the table.
** See tag-202002240-1 */
&& pNew->nOut+10 > pProbe->aiRowLogEst[0]
){
#if WHERETRACE_ENABLED /* 0x01 */
if( sqlite3WhereTrace & 0x20 ){
sqlite3DebugPrintf(
"STAT4 determines term has low selectivity:\n");
sqlite3WhereTermPrint(pTerm, 999);
}
#endif
pTerm->wtFlags |= TERM_HIGHTRUTH;
if( pTerm->wtFlags & TERM_HEURTRUTH ){
/* If the term has previously been used with an assumption of
** higher selectivity, then set the flag to rerun the
** loop computations. */
pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS;
}
}
if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
pNew->nOut -= nIn;
}
}
if( nOut==0 )
#endif
{
pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
if( eOp & WO_ISNULL ){
/* TUNING: If there is no likelihood() value, assume that a
** "col IS NULL" expression matches twice as many rows
** as (col=?). */
pNew->nOut += 10;
}
}
}
}
/* Set rCostIdx to the cost of visiting selected rows in index. Add
** it to pNew->rRun, which is currently set to the cost of the index
** seek only. Then, if this is a non-covering index, add the cost of
** visiting the rows in the main table. */
assert( pSrc->pTab->szTabRow>0 );
if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
/* The pProbe->szIdxRow is low for an IPK table since the interior
** pages are small. Thus szIdxRow gives a good estimate of seek cost.
** But the leaf pages are full-size, so pProbe->szIdxRow would badly
** under-estimate the scanning cost. */
rCostIdx = pNew->nOut + 16;
}else{
rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
}
pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK|WHERE_EXPRIDX))==0 ){
pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
}
ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
nOutUnadjusted = pNew->nOut;
pNew->rRun += nInMul + nIn;
pNew->nOut += nInMul + nIn;
whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
rc = whereLoopInsert(pBuilder, pNew);
if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
pNew->nOut = saved_nOut;
}else{
pNew->nOut = nOutUnadjusted;
}
if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
&& pNew->u.btree.nEqnColumn
&& (pNew->u.btree.nEqnKeyCol ||
pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY)
){
if( pNew->u.btree.nEq>3 ){
sqlite3ProgressCheck(pParse);
}
whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
}
pNew->nOut = saved_nOut;
#ifdef SQLITE_ENABLE_STAT4
pBuilder->nRecValid = nRecValid;
#endif
}
pNew->prereq = saved_prereq;
pNew->u.btree.nEq = saved_nEq;
pNew->u.btree.nBtm = saved_nBtm;
pNew->u.btree.nTop = saved_nTop;
pNew->nSkip = saved_nSkip;
pNew->wsFlags = saved_wsFlags;
pNew->nOut = saved_nOut;
pNew->nLTerm = saved_nLTerm;
/* Consider using a skip-scan if there are no WHERE clause constraints
** available for the left-most terms of the index, and if the average
** number of repeats in the left-most terms is at least 18.
**
** The magic number 18 is selected on the basis that scanning 17 rows
** is almost always quicker than an index seek (even though if the index
** contains fewer than 2^17 rows we assume otherwise in other parts of
** the code). And, even if it is not, it should not be too much slower.
** On the other hand, the extra seeks could end up being significantly
** more expensive. */
assert( 42==sqlite3LogEst(18) );
if( saved_nEq==saved_nSkip
&& saved_nEq+1nKeyCol
&& saved_nEq==pNew->nLTerm
&& pProbe->noSkipScan==0
&& pProbe->hasStat1!=0
&& OptimizationEnabled(db, SQLITE_SkipScan)
&& pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */
&& (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
){
LogEst nIter;
pNew->u.btree.nEq++;
pNew->nSkip++;
pNew->aLTerm[pNew->nLTerm++] = 0;
pNew->wsFlags |= WHERE_SKIPSCAN;
nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
pNew->nOut -= nIter;
/* TUNING: Because uncertainties in the estimates for skip-scan queries,
** add a 1.375 fudge factor to make skip-scan slightly less likely. */
nIter += 5;
whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
pNew->nOut = saved_nOut;
pNew->u.btree.nEq = saved_nEq;
pNew->nSkip = saved_nSkip;
pNew->wsFlags = saved_wsFlags;
}
WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
return rc;
}
/*
** Return True if it is possible that pIndex might be useful in
** implementing the ORDER BY clause in pBuilder.
**
** Return False if pBuilder does not contain an ORDER BY clause or
** if there is no way for pIndex to be useful in implementing that
** ORDER BY clause.
*/
static int indexMightHelpWithOrderBy(
WhereLoopBuilder *pBuilder,
Index *pIndex,
int iCursor
){
ExprList *pOB;
ExprList *aColExpr;
int ii, jj;
if( pIndex->bUnordered ) return 0;
if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
for(ii=0; iinExpr; ii++){
Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
if( NEVER(pExpr==0) ) continue;
if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
if( pExpr->iColumn<0 ) return 1;
for(jj=0; jjnKeyCol; jj++){
if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
}
}else if( (aColExpr = pIndex->aColExpr)!=0 ){
for(jj=0; jjnKeyCol; jj++){
if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
return 1;
}
}
}
}
return 0;
}
/* Check to see if a partial index with pPartIndexWhere can be used
** in the current query. Return true if it can be and false if not.
*/
static int whereUsablePartialIndex(
int iTab, /* The table for which we want an index */
u8 jointype, /* The JT_* flags on the join */
WhereClause *pWC, /* The WHERE clause of the query */
Expr *pWhere /* The WHERE clause from the partial index */
){
int i;
WhereTerm *pTerm;
Parse *pParse;
if( jointype & JT_LTORJ ) return 0;
pParse = pWC->pWInfo->pParse;
while( pWhere->op==TK_AND ){
if( !whereUsablePartialIndex(iTab,jointype,pWC,pWhere->pLeft) ) return 0;
pWhere = pWhere->pRight;
}
if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
for(i=0, pTerm=pWC->a; inTerm; i++, pTerm++){
Expr *pExpr;
pExpr = pTerm->pExpr;
if( (!ExprHasProperty(pExpr, EP_OuterON) || pExpr->w.iJoin==iTab)
&& ((jointype & JT_OUTER)==0 || ExprHasProperty(pExpr, EP_OuterON))
&& sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
&& (pTerm->wtFlags & TERM_VNULL)==0
){
return 1;
}
}
return 0;
}
/*
** pIdx is an index containing expressions. Check it see if any of the
** expressions in the index match the pExpr expression.
*/
static int exprIsCoveredByIndex(
const Expr *pExpr,
const Index *pIdx,
int iTabCur
){
int i;
for(i=0; inColumn; i++){
if( pIdx->aiColumn[i]==XN_EXPR
&& sqlite3ExprCompare(0, pExpr, pIdx->aColExpr->a[i].pExpr, iTabCur)==0
){
return 1;
}
}
return 0;
}
/*
** Structure passed to the whereIsCoveringIndex Walker callback.
*/
typedef struct CoveringIndexCheck CoveringIndexCheck;
struct CoveringIndexCheck {
Index *pIdx; /* The index */
int iTabCur; /* Cursor number for the corresponding table */
u8 bExpr; /* Uses an indexed expression */
u8 bUnidx; /* Uses an unindexed column not within an indexed expr */
};
/*
** Information passed in is pWalk->u.pCovIdxCk. Call it pCk.
**
** If the Expr node references the table with cursor pCk->iTabCur, then
** make sure that column is covered by the index pCk->pIdx. We know that
** all columns less than 63 (really BMS-1) are covered, so we don't need
** to check them. But we do need to check any column at 63 or greater.
**
** If the index does not cover the column, then set pWalk->eCode to
** non-zero and return WRC_Abort to stop the search.
**
** If this node does not disprove that the index can be a covering index,
** then just return WRC_Continue, to continue the search.
**
** If pCk->pIdx contains indexed expressions and one of those expressions
** matches pExpr, then prune the search.
*/
static int whereIsCoveringIndexWalkCallback(Walker *pWalk, Expr *pExpr){
int i; /* Loop counter */
const Index *pIdx; /* The index of interest */
const i16 *aiColumn; /* Columns contained in the index */
u16 nColumn; /* Number of columns in the index */
CoveringIndexCheck *pCk; /* Info about this search */
pCk = pWalk->u.pCovIdxCk;
pIdx = pCk->pIdx;
if( (pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN) ){
/* if( pExpr->iColumn<(BMS-1) && pIdx->bHasExpr==0 ) return WRC_Continue;*/
if( pExpr->iTable!=pCk->iTabCur ) return WRC_Continue;
pIdx = pWalk->u.pCovIdxCk->pIdx;
aiColumn = pIdx->aiColumn;
nColumn = pIdx->nColumn;
for(i=0; iiColumn ) return WRC_Continue;
}
pCk->bUnidx = 1;
return WRC_Abort;
}else if( pIdx->bHasExpr
&& exprIsCoveredByIndex(pExpr, pIdx, pWalk->u.pCovIdxCk->iTabCur) ){
pCk->bExpr = 1;
return WRC_Prune;
}
return WRC_Continue;
}
/*
** pIdx is an index that covers all of the low-number columns used by
** pWInfo->pSelect (columns from 0 through 62) or an index that has
** expressions terms. Hence, we cannot determine whether or not it is
** a covering index by using the colUsed bitmasks. We have to do a search
** to see if the index is covering. This routine does that search.
**
** The return value is one of these:
**
** 0 The index is definitely not a covering index
**
** WHERE_IDX_ONLY The index is definitely a covering index
**
** WHERE_EXPRIDX The index is likely a covering index, but it is
** difficult to determine precisely because of the
** expressions that are indexed. Score it as a
** covering index, but still keep the main table open
** just in case we need it.
**
** This routine is an optimization. It is always safe to return zero.
** But returning one of the other two values when zero should have been
** returned can lead to incorrect bytecode and assertion faults.
*/
static SQLITE_NOINLINE u32 whereIsCoveringIndex(
WhereInfo *pWInfo, /* The WHERE clause context */
Index *pIdx, /* Index that is being tested */
int iTabCur /* Cursor for the table being indexed */
){
int i, rc;
struct CoveringIndexCheck ck;
Walker w;
if( pWInfo->pSelect==0 ){
/* We don't have access to the full query, so we cannot check to see
** if pIdx is covering. Assume it is not. */
return 0;
}
if( pIdx->bHasExpr==0 ){
for(i=0; inColumn; i++){
if( pIdx->aiColumn[i]>=BMS-1 ) break;
}
if( i>=pIdx->nColumn ){
/* pIdx does not index any columns greater than 62, but we know from
** colMask that columns greater than 62 are used, so this is not a
** covering index */
return 0;
}
}
ck.pIdx = pIdx;
ck.iTabCur = iTabCur;
ck.bExpr = 0;
ck.bUnidx = 0;
memset(&w, 0, sizeof(w));
w.xExprCallback = whereIsCoveringIndexWalkCallback;
w.xSelectCallback = sqlite3SelectWalkNoop;
w.u.pCovIdxCk = &ck;
sqlite3WalkSelect(&w, pWInfo->pSelect);
if( ck.bUnidx ){
rc = 0;
}else if( ck.bExpr ){
rc = WHERE_EXPRIDX;
}else{
rc = WHERE_IDX_ONLY;
}
return rc;
}
/*
** This is an sqlite3ParserAddCleanup() callback that is invoked to
** free the Parse->pIdxEpr list when the Parse object is destroyed.
*/
static void whereIndexedExprCleanup(sqlite3 *db, void *pObject){
IndexedExpr **pp = (IndexedExpr**)pObject;
while( *pp!=0 ){
IndexedExpr *p = *pp;
*pp = p->pIENext;
sqlite3ExprDelete(db, p->pExpr);
sqlite3DbFreeNN(db, p);
}
}
/*
** This function is called for a partial index - one with a WHERE clause - in
** two scenarios. In both cases, it determines whether or not the WHERE
** clause on the index implies that a column of the table may be safely
** replaced by a constant expression. For example, in the following
** SELECT:
**
** CREATE INDEX i1 ON t1(b, c) WHERE a=;
** SELECT a, b, c FROM t1 WHERE a= AND b=?;
**
** The "a" in the select-list may be replaced by , iff:
**
** (a) is a constant expression, and
** (b) The (a=) comparison uses the BINARY collation sequence, and
** (c) Column "a" has an affinity other than NONE or BLOB.
**
** If argument pItem is NULL, then pMask must not be NULL. In this case this
** function is being called as part of determining whether or not pIdx
** is a covering index. This function clears any bits in (*pMask)
** corresponding to columns that may be replaced by constants as described
** above.
**
** Otherwise, if pItem is not NULL, then this function is being called
** as part of coding a loop that uses index pIdx. In this case, add entries
** to the Parse.pIdxPartExpr list for each column that can be replaced
** by a constant.
*/
static void wherePartIdxExpr(
Parse *pParse, /* Parse context */
Index *pIdx, /* Partial index being processed */
Expr *pPart, /* WHERE clause being processed */
Bitmask *pMask, /* Mask to clear bits in */
int iIdxCur, /* Cursor number for index */
SrcItem *pItem /* The FROM clause entry for the table */
){
assert( pItem==0 || (pItem->fg.jointype & JT_RIGHT)==0 );
assert( (pItem==0 || pMask==0) && (pMask!=0 || pItem!=0) );
if( pPart->op==TK_AND ){
wherePartIdxExpr(pParse, pIdx, pPart->pRight, pMask, iIdxCur, pItem);
pPart = pPart->pLeft;
}
if( (pPart->op==TK_EQ || pPart->op==TK_IS) ){
Expr *pLeft = pPart->pLeft;
Expr *pRight = pPart->pRight;
u8 aff;
if( pLeft->op!=TK_COLUMN ) return;
if( !sqlite3ExprIsConstant(pRight) ) return;
if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pParse, pPart)) ) return;
if( pLeft->iColumn<0 ) return;
aff = pIdx->pTable->aCol[pLeft->iColumn].affinity;
if( aff>=SQLITE_AFF_TEXT ){
if( pItem ){
sqlite3 *db = pParse->db;
IndexedExpr *p = (IndexedExpr*)sqlite3DbMallocRaw(db, sizeof(*p));
if( p ){
int bNullRow = (pItem->fg.jointype&(JT_LEFT|JT_LTORJ))!=0;
p->pExpr = sqlite3ExprDup(db, pRight, 0);
p->iDataCur = pItem->iCursor;
p->iIdxCur = iIdxCur;
p->iIdxCol = pLeft->iColumn;
p->bMaybeNullRow = bNullRow;
p->pIENext = pParse->pIdxPartExpr;
p->aff = aff;
pParse->pIdxPartExpr = p;
if( p->pIENext==0 ){
void *pArg = (void*)&pParse->pIdxPartExpr;
sqlite3ParserAddCleanup(pParse, whereIndexedExprCleanup, pArg);
}
}
}else if( pLeft->iColumn<(BMS-1) ){
*pMask &= ~((Bitmask)1 << pLeft->iColumn);
}
}
}
}
/*
** Add all WhereLoop objects for a single table of the join where the table
** is identified by pBuilder->pNew->iTab. That table is guaranteed to be
** a b-tree table, not a virtual table.
**
** The costs (WhereLoop.rRun) of the b-tree loops added by this function
** are calculated as follows:
**
** For a full scan, assuming the table (or index) contains nRow rows:
**
** cost = nRow * 3.0 // full-table scan
** cost = nRow * K // scan of covering index
** cost = nRow * (K+3.0) // scan of non-covering index
**
** where K is a value between 1.1 and 3.0 set based on the relative
** estimated average size of the index and table records.
**
** For an index scan, where nVisit is the number of index rows visited
** by the scan, and nSeek is the number of seek operations required on
** the index b-tree:
**
** cost = nSeek * (log(nRow) + K * nVisit) // covering index
** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index
**
** Normally, nSeek is 1. nSeek values greater than 1 come about if the
** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
**
** The estimated values (nRow, nVisit, nSeek) often contain a large amount
** of uncertainty. For this reason, scoring is designed to pick plans that
** "do the least harm" if the estimates are inaccurate. For example, a
** log(nRow) factor is omitted from a non-covering index scan in order to
** bias the scoring in favor of using an index, since the worst-case
** performance of using an index is far better than the worst-case performance
** of a full table scan.
*/
static int whereLoopAddBtree(
WhereLoopBuilder *pBuilder, /* WHERE clause information */
Bitmask mPrereq /* Extra prerequisites for using this table */
){
WhereInfo *pWInfo; /* WHERE analysis context */
Index *pProbe; /* An index we are evaluating */
Index sPk; /* A fake index object for the primary key */
LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */
i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */
SrcList *pTabList; /* The FROM clause */
SrcItem *pSrc; /* The FROM clause btree term to add */
WhereLoop *pNew; /* Template WhereLoop object */
int rc = SQLITE_OK; /* Return code */
int iSortIdx = 1; /* Index number */
int b; /* A boolean value */
LogEst rSize; /* number of rows in the table */
WhereClause *pWC; /* The parsed WHERE clause */
Table *pTab; /* Table being queried */
pNew = pBuilder->pNew;
pWInfo = pBuilder->pWInfo;
pTabList = pWInfo->pTabList;
pSrc = pTabList->a + pNew->iTab;
pTab = pSrc->pTab;
pWC = pBuilder->pWC;
assert( !IsVirtual(pSrc->pTab) );
if( pSrc->fg.isIndexedBy ){
assert( pSrc->fg.isCte==0 );
/* An INDEXED BY clause specifies a particular index to use */
pProbe = pSrc->u2.pIBIndex;
}else if( !HasRowid(pTab) ){
pProbe = pTab->pIndex;
}else{
/* There is no INDEXED BY clause. Create a fake Index object in local
** variable sPk to represent the rowid primary key index. Make this
** fake index the first in a chain of Index objects with all of the real
** indices to follow */
Index *pFirst; /* First of real indices on the table */
memset(&sPk, 0, sizeof(Index));
sPk.nKeyCol = 1;
sPk.nColumn = 1;
sPk.aiColumn = &aiColumnPk;
sPk.aiRowLogEst = aiRowEstPk;
sPk.onError = OE_Replace;
sPk.pTable = pTab;
sPk.szIdxRow = 3; /* TUNING: Interior rows of IPK table are very small */
sPk.idxType = SQLITE_IDXTYPE_IPK;
aiRowEstPk[0] = pTab->nRowLogEst;
aiRowEstPk[1] = 0;
pFirst = pSrc->pTab->pIndex;
if( pSrc->fg.notIndexed==0 ){
/* The real indices of the table are only considered if the
** NOT INDEXED qualifier is omitted from the FROM clause */
sPk.pNext = pFirst;
}
pProbe = &sPk;
}
rSize = pTab->nRowLogEst;
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
/* Automatic indexes */
if( !pBuilder->pOrSet /* Not part of an OR optimization */
&& (pWInfo->wctrlFlags & (WHERE_RIGHT_JOIN|WHERE_OR_SUBCLAUSE))==0
&& (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
&& !pSrc->fg.isIndexedBy /* Has no INDEXED BY clause */
&& !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */
&& HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */
&& !pSrc->fg.isCorrelated /* Not a correlated subquery */
&& !pSrc->fg.isRecursive /* Not a recursive common table expression. */
&& (pSrc->fg.jointype & JT_RIGHT)==0 /* Not the right tab of a RIGHT JOIN */
){
/* Generate auto-index WhereLoops */
LogEst rLogSize; /* Logarithm of the number of rows in the table */
WhereTerm *pTerm;
WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
rLogSize = estLog(rSize);
for(pTerm=pWC->a; rc==SQLITE_OK && pTermprereqRight & pNew->maskSelf ) continue;
if( termCanDriveIndex(pTerm, pSrc, 0) ){
pNew->u.btree.nEq = 1;
pNew->nSkip = 0;
pNew->u.btree.pIndex = 0;
pNew->nLTerm = 1;
pNew->aLTerm[0] = pTerm;
/* TUNING: One-time cost for computing the automatic index is
** estimated to be X*N*log2(N) where N is the number of rows in
** the table being indexed and where X is 7 (LogEst=28) for normal
** tables or 0.5 (LogEst=-10) for views and subqueries. The value
** of X is smaller for views and subqueries so that the query planner
** will be more aggressive about generating automatic indexes for
** those objects, since there is no opportunity to add schema
** indexes on subqueries and views. */
pNew->rSetup = rLogSize + rSize;
if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){
pNew->rSetup += 28;
}else{
pNew->rSetup -= 25; /* Greatly reduced setup cost for auto indexes
** on ephemeral materializations of views */
}
ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
if( pNew->rSetup<0 ) pNew->rSetup = 0;
/* TUNING: Each index lookup yields 20 rows in the table. This
** is more than the usual guess of 10 rows, since we have no way
** of knowing how selective the index will ultimately be. It would
** not be unreasonable to make this value much larger. */
pNew->nOut = 43; assert( 43==sqlite3LogEst(20) );
pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
pNew->wsFlags = WHERE_AUTO_INDEX;
pNew->prereq = mPrereq | pTerm->prereqRight;
rc = whereLoopInsert(pBuilder, pNew);
}
}
}
#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
/* Loop over all indices. If there was an INDEXED BY clause, then only
** consider index pProbe. */
for(; rc==SQLITE_OK && pProbe;
pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++
){
if( pProbe->pPartIdxWhere!=0
&& !whereUsablePartialIndex(pSrc->iCursor, pSrc->fg.jointype, pWC,
pProbe->pPartIdxWhere)
){
testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */
continue; /* Partial index inappropriate for this query */
}
if( pProbe->bNoQuery ) continue;
rSize = pProbe->aiRowLogEst[0];
pNew->u.btree.nEq = 0;
pNew->u.btree.nBtm = 0;
pNew->u.btree.nTop = 0;
pNew->nSkip = 0;
pNew->nLTerm = 0;
pNew->iSortIdx = 0;
pNew->rSetup = 0;
pNew->prereq = mPrereq;
pNew->nOut = rSize;
pNew->u.btree.pIndex = pProbe;
b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
/* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
/* Integer primary key index */
pNew->wsFlags = WHERE_IPK;
/* Full table scan */
pNew->iSortIdx = b ? iSortIdx : 0;
/* TUNING: Cost of full table scan is 3.0*N. The 3.0 factor is an
** extra cost designed to discourage the use of full table scans,
** since index lookups have better worst-case performance if our
** stat guesses are wrong. Reduce the 3.0 penalty slightly
** (to 2.75) if we have valid STAT4 information for the table.
** At 2.75, a full table scan is preferred over using an index on
** a column with just two distinct values where each value has about
** an equal number of appearances. Without STAT4 data, we still want
** to use an index in that case, since the constraint might be for
** the scarcer of the two values, and in that case an index lookup is
** better.
*/
#ifdef SQLITE_ENABLE_STAT4
pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0);
#else
pNew->rRun = rSize + 16;
#endif
ApplyCostMultiplier(pNew->rRun, pTab->costMult);
whereLoopOutputAdjust(pWC, pNew, rSize);
rc = whereLoopInsert(pBuilder, pNew);
pNew->nOut = rSize;
if( rc ) break;
}else{
Bitmask m;
if( pProbe->isCovering ){
m = 0;
pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
}else{
m = pSrc->colUsed & pProbe->colNotIdxed;
if( pProbe->pPartIdxWhere ){
wherePartIdxExpr(
pWInfo->pParse, pProbe, pProbe->pPartIdxWhere, &m, 0, 0
);
}
pNew->wsFlags = WHERE_INDEXED;
if( m==TOPBIT || (pProbe->bHasExpr && !pProbe->bHasVCol && m!=0) ){
u32 isCov = whereIsCoveringIndex(pWInfo, pProbe, pSrc->iCursor);
if( isCov==0 ){
WHERETRACE(0x200,
("-> %s is not a covering index"
" according to whereIsCoveringIndex()\n", pProbe->zName));
assert( m!=0 );
}else{
m = 0;
pNew->wsFlags |= isCov;
if( isCov & WHERE_IDX_ONLY ){
WHERETRACE(0x200,
("-> %s is a covering expression index"
" according to whereIsCoveringIndex()\n", pProbe->zName));
}else{
assert( isCov==WHERE_EXPRIDX );
WHERETRACE(0x200,
("-> %s might be a covering expression index"
" according to whereIsCoveringIndex()\n", pProbe->zName));
}
}
}else if( m==0 ){
WHERETRACE(0x200,
("-> %s a covering index according to bitmasks\n",
pProbe->zName, m==0 ? "is" : "is not"));
pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
}
}
/* Full scan via index */
if( b
|| !HasRowid(pTab)
|| pProbe->pPartIdxWhere!=0
|| pSrc->fg.isIndexedBy
|| ( m==0
&& pProbe->bUnordered==0
&& (pProbe->szIdxRowszTabRow)
&& (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
&& sqlite3GlobalConfig.bUseCis
&& OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
)
){
pNew->iSortIdx = b ? iSortIdx : 0;
/* The cost of visiting the index rows is N*K, where K is
** between 1.1 and 3.0, depending on the relative sizes of the
** index and table rows. */
pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
if( m!=0 ){
/* If this is a non-covering index scan, add in the cost of
** doing table lookups. The cost will be 3x the number of
** lookups. Take into account WHERE clause terms that can be
** satisfied using just the index, and that do not require a
** table lookup. */
LogEst nLookup = rSize + 16; /* Base cost: N*3 */
int ii;
int iCur = pSrc->iCursor;
WhereClause *pWC2 = &pWInfo->sWC;
for(ii=0; iinTerm; ii++){
WhereTerm *pTerm = &pWC2->a[ii];
if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
break;
}
/* pTerm can be evaluated using just the index. So reduce
** the expected number of table lookups accordingly */
if( pTerm->truthProb<=0 ){
nLookup += pTerm->truthProb;
}else{
nLookup--;
if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
}
}
pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
}
ApplyCostMultiplier(pNew->rRun, pTab->costMult);
whereLoopOutputAdjust(pWC, pNew, rSize);
if( (pSrc->fg.jointype & JT_RIGHT)!=0 && pProbe->aColExpr ){
/* Do not do an SCAN of a index-on-expression in a RIGHT JOIN
** because the cursor used to access the index might not be
** positioned to the correct row during the right-join no-match
** loop. */
}else{
rc = whereLoopInsert(pBuilder, pNew);
}
pNew->nOut = rSize;
if( rc ) break;
}
}
pBuilder->bldFlags1 = 0;
rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
/* If a non-unique index is used, or if a prefix of the key for
** unique index is used (making the index functionally non-unique)
** then the sqlite_stat1 data becomes important for scoring the
** plan */
pTab->tabFlags |= TF_StatsUsed;
}
#ifdef SQLITE_ENABLE_STAT4
sqlite3Stat4ProbeFree(pBuilder->pRec);
pBuilder->nRecValid = 0;
pBuilder->pRec = 0;
#endif
}
return rc;
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Return true if pTerm is a virtual table LIMIT or OFFSET term.
*/
static int isLimitTerm(WhereTerm *pTerm){
assert( pTerm->eOperator==WO_AUX || pTerm->eMatchOp==0 );
return pTerm->eMatchOp>=SQLITE_INDEX_CONSTRAINT_LIMIT
&& pTerm->eMatchOp<=SQLITE_INDEX_CONSTRAINT_OFFSET;
}
/*
** Argument pIdxInfo is already populated with all constraints that may
** be used by the virtual table identified by pBuilder->pNew->iTab. This
** function marks a subset of those constraints usable, invokes the
** xBestIndex method and adds the returned plan to pBuilder.
**
** A constraint is marked usable if:
**
** * Argument mUsable indicates that its prerequisites are available, and
**
** * It is not one of the operators specified in the mExclude mask passed
** as the fourth argument (which in practice is either WO_IN or 0).
**
** Argument mPrereq is a mask of tables that must be scanned before the
** virtual table in question. These are added to the plans prerequisites
** before it is added to pBuilder.
**
** Output parameter *pbIn is set to true if the plan added to pBuilder
** uses one or more WO_IN terms, or false otherwise.
*/
static int whereLoopAddVirtualOne(
WhereLoopBuilder *pBuilder,
Bitmask mPrereq, /* Mask of tables that must be used. */
Bitmask mUsable, /* Mask of usable tables */
u16 mExclude, /* Exclude terms using these operators */
sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */
u16 mNoOmit, /* Do not omit these constraints */
int *pbIn, /* OUT: True if plan uses an IN(...) op */
int *pbRetryLimit /* OUT: Retry without LIMIT/OFFSET */
){
WhereClause *pWC = pBuilder->pWC;
HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
struct sqlite3_index_constraint *pIdxCons;
struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
int i;
int mxTerm;
int rc = SQLITE_OK;
WhereLoop *pNew = pBuilder->pNew;
Parse *pParse = pBuilder->pWInfo->pParse;
SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
int nConstraint = pIdxInfo->nConstraint;
assert( (mUsable & mPrereq)==mPrereq );
*pbIn = 0;
pNew->prereq = mPrereq;
/* Set the usable flag on the subset of constraints identified by
** arguments mUsable and mExclude. */
pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
for(i=0; ia[pIdxCons->iTermOffset];
pIdxCons->usable = 0;
if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
&& (pTerm->eOperator & mExclude)==0
&& (pbRetryLimit || !isLimitTerm(pTerm))
){
pIdxCons->usable = 1;
}
}
/* Initialize the output fields of the sqlite3_index_info structure */
memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
assert( pIdxInfo->needToFreeIdxStr==0 );
pIdxInfo->idxStr = 0;
pIdxInfo->idxNum = 0;
pIdxInfo->orderByConsumed = 0;
pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
pIdxInfo->estimatedRows = 25;
pIdxInfo->idxFlags = 0;
pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
pHidden->mHandleIn = 0;
/* Invoke the virtual table xBestIndex() method */
rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
if( rc ){
if( rc==SQLITE_CONSTRAINT ){
/* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
** that the particular combination of parameters provided is unusable.
** Make no entries in the loop table.
*/
WHERETRACE(0xffffffff, (" ^^^^--- non-viable plan rejected!\n"));
return SQLITE_OK;
}
return rc;
}
mxTerm = -1;
assert( pNew->nLSlot>=nConstraint );
memset(pNew->aLTerm, 0, sizeof(pNew->aLTerm[0])*nConstraint );
memset(&pNew->u.vtab, 0, sizeof(pNew->u.vtab));
pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
for(i=0; i=0 ){
WhereTerm *pTerm;
int j = pIdxCons->iTermOffset;
if( iTerm>=nConstraint
|| j<0
|| j>=pWC->nTerm
|| pNew->aLTerm[iTerm]!=0
|| pIdxCons->usable==0
){
sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
testcase( pIdxInfo->needToFreeIdxStr );
return SQLITE_ERROR;
}
testcase( iTerm==nConstraint-1 );
testcase( j==0 );
testcase( j==pWC->nTerm-1 );
pTerm = &pWC->a[j];
pNew->prereq |= pTerm->prereqRight;
assert( iTermnLSlot );
pNew->aLTerm[iTerm] = pTerm;
if( iTerm>mxTerm ) mxTerm = iTerm;
testcase( iTerm==15 );
testcase( iTerm==16 );
if( pUsage[i].omit ){
if( i<16 && ((1<u.vtab.omitMask |= 1<eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET ){
pNew->u.vtab.bOmitOffset = 1;
}
}
if( SMASKBIT32(i) & pHidden->mHandleIn ){
pNew->u.vtab.mHandleIn |= MASKBIT32(iTerm);
}else if( (pTerm->eOperator & WO_IN)!=0 ){
/* A virtual table that is constrained by an IN clause may not
** consume the ORDER BY clause because (1) the order of IN terms
** is not necessarily related to the order of output terms and
** (2) Multiple outputs from a single IN value will not merge
** together. */
pIdxInfo->orderByConsumed = 0;
pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
*pbIn = 1; assert( (mExclude & WO_IN)==0 );
}
assert( pbRetryLimit || !isLimitTerm(pTerm) );
if( isLimitTerm(pTerm) && *pbIn ){
/* If there is an IN(...) term handled as an == (separate call to
** xFilter for each value on the RHS of the IN) and a LIMIT or
** OFFSET term handled as well, the plan is unusable. Set output
** variable *pbRetryLimit to true to tell the caller to retry with
** LIMIT and OFFSET disabled. */
if( pIdxInfo->needToFreeIdxStr ){
sqlite3_free(pIdxInfo->idxStr);
pIdxInfo->idxStr = 0;
pIdxInfo->needToFreeIdxStr = 0;
}
*pbRetryLimit = 1;
return SQLITE_OK;
}
}
}
pNew->nLTerm = mxTerm+1;
for(i=0; i<=mxTerm; i++){
if( pNew->aLTerm[i]==0 ){
/* The non-zero argvIdx values must be contiguous. Raise an
** error if they are not */
sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
testcase( pIdxInfo->needToFreeIdxStr );
return SQLITE_ERROR;
}
}
assert( pNew->nLTerm<=pNew->nLSlot );
pNew->u.vtab.idxNum = pIdxInfo->idxNum;
pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
pIdxInfo->needToFreeIdxStr = 0;
pNew->u.vtab.idxStr = pIdxInfo->idxStr;
pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
pIdxInfo->nOrderBy : 0);
pNew->rSetup = 0;
pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
/* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
** that the scan will visit at most one row. Clear it otherwise. */
if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
pNew->wsFlags |= WHERE_ONEROW;
}else{
pNew->wsFlags &= ~WHERE_ONEROW;
}
rc = whereLoopInsert(pBuilder, pNew);
if( pNew->u.vtab.needFree ){
sqlite3_free(pNew->u.vtab.idxStr);
pNew->u.vtab.needFree = 0;
}
WHERETRACE(0xffffffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
*pbIn, (sqlite3_uint64)mPrereq,
(sqlite3_uint64)(pNew->prereq & ~mPrereq)));
return rc;
}
/*
** Return the collating sequence for a constraint passed into xBestIndex.
**
** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex.
** This routine depends on there being a HiddenIndexInfo structure immediately
** following the sqlite3_index_info structure.
**
** Return a pointer to the collation name:
**
** 1. If there is an explicit COLLATE operator on the constraint, return it.
**
** 2. Else, if the column has an alternative collation, return that.
**
** 3. Otherwise, return "BINARY".
*/
const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
const char *zRet = 0;
if( iCons>=0 && iConsnConstraint ){
CollSeq *pC = 0;
int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
Expr *pX = pHidden->pWC->a[iTerm].pExpr;
if( pX->pLeft ){
pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
}
zRet = (pC ? pC->zName : sqlite3StrBINARY);
}
return zRet;
}
/*
** Return true if constraint iCons is really an IN(...) constraint, or
** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0)
** or clear (if bHandle==0) the flag to handle it using an iterator.
*/
int sqlite3_vtab_in(sqlite3_index_info *pIdxInfo, int iCons, int bHandle){
HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
u32 m = SMASKBIT32(iCons);
if( m & pHidden->mIn ){
if( bHandle==0 ){
pHidden->mHandleIn &= ~m;
}else if( bHandle>0 ){
pHidden->mHandleIn |= m;
}
return 1;
}
return 0;
}
/*
** This interface is callable from within the xBestIndex callback only.
**
** If possible, set (*ppVal) to point to an object containing the value
** on the right-hand-side of constraint iCons.
*/
int sqlite3_vtab_rhs_value(
sqlite3_index_info *pIdxInfo, /* Copy of first argument to xBestIndex */
int iCons, /* Constraint for which RHS is wanted */
sqlite3_value **ppVal /* Write value extracted here */
){
HiddenIndexInfo *pH = (HiddenIndexInfo*)&pIdxInfo[1];
sqlite3_value *pVal = 0;
int rc = SQLITE_OK;
if( iCons<0 || iCons>=pIdxInfo->nConstraint ){
rc = SQLITE_MISUSE_BKPT; /* EV: R-30545-25046 */
}else{
if( pH->aRhs[iCons]==0 ){
WhereTerm *pTerm = &pH->pWC->a[pIdxInfo->aConstraint[iCons].iTermOffset];
rc = sqlite3ValueFromExpr(
pH->pParse->db, pTerm->pExpr->pRight, ENC(pH->pParse->db),
SQLITE_AFF_BLOB, &pH->aRhs[iCons]
);
testcase( rc!=SQLITE_OK );
}
pVal = pH->aRhs[iCons];
}
*ppVal = pVal;
if( rc==SQLITE_OK && pVal==0 ){ /* IMP: R-19933-32160 */
rc = SQLITE_NOTFOUND; /* IMP: R-36424-56542 */
}
return rc;
}
/*
** Return true if ORDER BY clause may be handled as DISTINCT.
*/
int sqlite3_vtab_distinct(sqlite3_index_info *pIdxInfo){
HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
assert( pHidden->eDistinct>=0 && pHidden->eDistinct<=3 );
return pHidden->eDistinct;
}
/*
** Cause the prepared statement that is associated with a call to
** xBestIndex to potentially use all schemas. If the statement being
** prepared is read-only, then just start read transactions on all
** schemas. But if this is a write operation, start writes on all
** schemas.
**
** This is used by the (built-in) sqlite_dbpage virtual table.
*/
void sqlite3VtabUsesAllSchemas(Parse *pParse){
int nDb = pParse->db->nDb;
int i;
for(i=0; iwriteMask) ){
for(i=0; ipNew->iTab. That table is guaranteed to be a virtual table.
**
** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
** entries that occur before the virtual table in the FROM clause and are
** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
** mUnusable mask contains all FROM clause entries that occur after the
** virtual table and are separated from it by at least one LEFT or
** CROSS JOIN.
**
** For example, if the query were:
**
** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
**
** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
**
** All the tables in mPrereq must be scanned before the current virtual
** table. So any terms for which all prerequisites are satisfied by
** mPrereq may be specified as "usable" in all calls to xBestIndex.
** Conversely, all tables in mUnusable must be scanned after the current
** virtual table, so any terms for which the prerequisites overlap with
** mUnusable should always be configured as "not-usable" for xBestIndex.
*/
static int whereLoopAddVirtual(
WhereLoopBuilder *pBuilder, /* WHERE clause information */
Bitmask mPrereq, /* Tables that must be scanned before this one */
Bitmask mUnusable /* Tables that must be scanned after this one */
){
int rc = SQLITE_OK; /* Return code */
WhereInfo *pWInfo; /* WHERE analysis context */
Parse *pParse; /* The parsing context */
WhereClause *pWC; /* The WHERE clause */
SrcItem *pSrc; /* The FROM clause term to search */
sqlite3_index_info *p; /* Object to pass to xBestIndex() */
int nConstraint; /* Number of constraints in p */
int bIn; /* True if plan uses IN(...) operator */
WhereLoop *pNew;
Bitmask mBest; /* Tables used by best possible plan */
u16 mNoOmit;
int bRetry = 0; /* True to retry with LIMIT/OFFSET disabled */
assert( (mPrereq & mUnusable)==0 );
pWInfo = pBuilder->pWInfo;
pParse = pWInfo->pParse;
pWC = pBuilder->pWC;
pNew = pBuilder->pNew;
pSrc = &pWInfo->pTabList->a[pNew->iTab];
assert( IsVirtual(pSrc->pTab) );
p = allocateIndexInfo(pWInfo, pWC, mUnusable, pSrc, &mNoOmit);
if( p==0 ) return SQLITE_NOMEM_BKPT;
pNew->rSetup = 0;
pNew->wsFlags = WHERE_VIRTUALTABLE;
pNew->nLTerm = 0;
pNew->u.vtab.needFree = 0;
nConstraint = p->nConstraint;
if( whereLoopResize(pParse->db, pNew, nConstraint) ){
freeIndexInfo(pParse->db, p);
return SQLITE_NOMEM_BKPT;
}
/* First call xBestIndex() with all constraints usable. */
WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
WHERETRACE(0x800, (" VirtualOne: all usable\n"));
rc = whereLoopAddVirtualOne(
pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, &bRetry
);
if( bRetry ){
assert( rc==SQLITE_OK );
rc = whereLoopAddVirtualOne(
pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, 0
);
}
/* If the call to xBestIndex() with all terms enabled produced a plan
** that does not require any source tables (IOW: a plan with mBest==0)
** and does not use an IN(...) operator, then there is no point in making
** any further calls to xBestIndex() since they will all return the same
** result (if the xBestIndex() implementation is sane). */
if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
int seenZero = 0; /* True if a plan with no prereqs seen */
int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */
Bitmask mPrev = 0;
Bitmask mBestNoIn = 0;
/* If the plan produced by the earlier call uses an IN(...) term, call
** xBestIndex again, this time with IN(...) terms disabled. */
if( bIn ){
WHERETRACE(0x800, (" VirtualOne: all usable w/o IN\n"));
rc = whereLoopAddVirtualOne(
pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn, 0);
assert( bIn==0 );
mBestNoIn = pNew->prereq & ~mPrereq;
if( mBestNoIn==0 ){
seenZero = 1;
seenZeroNoIN = 1;
}
}
/* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
** in the set of terms that apply to the current virtual table. */
while( rc==SQLITE_OK ){
int i;
Bitmask mNext = ALLBITS;
assert( mNext>0 );
for(i=0; ia[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
);
if( mThis>mPrev && mThisprereq==mPrereq ){
seenZero = 1;
if( bIn==0 ) seenZeroNoIN = 1;
}
}
/* If the calls to xBestIndex() in the above loop did not find a plan
** that requires no source tables at all (i.e. one guaranteed to be
** usable), make a call here with all source tables disabled */
if( rc==SQLITE_OK && seenZero==0 ){
WHERETRACE(0x800, (" VirtualOne: all disabled\n"));
rc = whereLoopAddVirtualOne(
pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn, 0);
if( bIn==0 ) seenZeroNoIN = 1;
}
/* If the calls to xBestIndex() have so far failed to find a plan
** that requires no source tables at all and does not use an IN(...)
** operator, make a final call to obtain one here. */
if( rc==SQLITE_OK && seenZeroNoIN==0 ){
WHERETRACE(0x800, (" VirtualOne: all disabled and w/o IN\n"));
rc = whereLoopAddVirtualOne(
pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn, 0);
}
}
if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
freeIndexInfo(pParse->db, p);
WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
return rc;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
/*
** Add WhereLoop entries to handle OR terms. This works for either
** btrees or virtual tables.
*/
static int whereLoopAddOr(
WhereLoopBuilder *pBuilder,
Bitmask mPrereq,
Bitmask mUnusable
){
WhereInfo *pWInfo = pBuilder->pWInfo;
WhereClause *pWC;
WhereLoop *pNew;
WhereTerm *pTerm, *pWCEnd;
int rc = SQLITE_OK;
int iCur;
WhereClause tempWC;
WhereLoopBuilder sSubBuild;
WhereOrSet sSum, sCur;
SrcItem *pItem;
pWC = pBuilder->pWC;
pWCEnd = pWC->a + pWC->nTerm;
pNew = pBuilder->pNew;
memset(&sSum, 0, sizeof(sSum));
pItem = pWInfo->pTabList->a + pNew->iTab;
iCur = pItem->iCursor;
/* The multi-index OR optimization does not work for RIGHT and FULL JOIN */
if( pItem->fg.jointype & JT_RIGHT ) return SQLITE_OK;
for(pTerm=pWC->a; pTermeOperator & WO_OR)!=0
&& (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
){
WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
WhereTerm *pOrTerm;
int once = 1;
int i, j;
sSubBuild = *pBuilder;
sSubBuild.pOrSet = &sCur;
WHERETRACE(0x400, ("Begin processing OR-clause %p\n", pTerm));
for(pOrTerm=pOrWC->a; pOrTermeOperator & WO_AND)!=0 ){
sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
}else if( pOrTerm->leftCursor==iCur ){
tempWC.pWInfo = pWC->pWInfo;
tempWC.pOuter = pWC;
tempWC.op = TK_AND;
tempWC.nTerm = 1;
tempWC.nBase = 1;
tempWC.a = pOrTerm;
sSubBuild.pWC = &tempWC;
}else{
continue;
}
sCur.n = 0;
#ifdef WHERETRACE_ENABLED
WHERETRACE(0x400, ("OR-term %d of %p has %d subterms:\n",
(int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
if( sqlite3WhereTrace & 0x20000 ){
sqlite3WhereClausePrint(sSubBuild.pWC);
}
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( IsVirtual(pItem->pTab) ){
rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
}else
#endif
{
rc = whereLoopAddBtree(&sSubBuild, mPrereq);
}
if( rc==SQLITE_OK ){
rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
}
testcase( rc==SQLITE_NOMEM && sCur.n>0 );
testcase( rc==SQLITE_DONE );
if( sCur.n==0 ){
sSum.n = 0;
break;
}else if( once ){
whereOrMove(&sSum, &sCur);
once = 0;
}else{
WhereOrSet sPrev;
whereOrMove(&sPrev, &sSum);
sSum.n = 0;
for(i=0; inLTerm = 1;
pNew->aLTerm[0] = pTerm;
pNew->wsFlags = WHERE_MULTI_OR;
pNew->rSetup = 0;
pNew->iSortIdx = 0;
memset(&pNew->u, 0, sizeof(pNew->u));
for(i=0; rc==SQLITE_OK && irRun = sSum.a[i].rRun + 1;
pNew->nOut = sSum.a[i].nOut;
pNew->prereq = sSum.a[i].prereq;
rc = whereLoopInsert(pBuilder, pNew);
}
WHERETRACE(0x400, ("End processing OR-clause %p\n", pTerm));
}
}
return rc;
}
/*
** Add all WhereLoop objects for all tables
*/
static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
WhereInfo *pWInfo = pBuilder->pWInfo;
Bitmask mPrereq = 0;
Bitmask mPrior = 0;
int iTab;
SrcList *pTabList = pWInfo->pTabList;
SrcItem *pItem;
SrcItem *pEnd = &pTabList->a[pWInfo->nLevel];
sqlite3 *db = pWInfo->pParse->db;
int rc = SQLITE_OK;
int bFirstPastRJ = 0;
int hasRightJoin = 0;
WhereLoop *pNew;
/* Loop over the tables in the join, from left to right */
pNew = pBuilder->pNew;
/* Verify that pNew has already been initialized */
assert( pNew->nLTerm==0 );
assert( pNew->wsFlags==0 );
assert( pNew->nLSlot>=ArraySize(pNew->aLTermSpace) );
assert( pNew->aLTerm!=0 );
pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
for(iTab=0, pItem=pTabList->a; pItemiTab = iTab;
pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
if( bFirstPastRJ
|| (pItem->fg.jointype & (JT_OUTER|JT_CROSS|JT_LTORJ))!=0
){
/* Add prerequisites to prevent reordering of FROM clause terms
** across CROSS joins and outer joins. The bFirstPastRJ boolean
** prevents the right operand of a RIGHT JOIN from being swapped with
** other elements even further to the right.
**
** The JT_LTORJ case and the hasRightJoin flag work together to
** prevent FROM-clause terms from moving from the right side of
** a LEFT JOIN over to the left side of that join if the LEFT JOIN
** is itself on the left side of a RIGHT JOIN.
*/
if( pItem->fg.jointype & JT_LTORJ ) hasRightJoin = 1;
mPrereq |= mPrior;
bFirstPastRJ = (pItem->fg.jointype & JT_RIGHT)!=0;
}else if( !hasRightJoin ){
mPrereq = 0;
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( IsVirtual(pItem->pTab) ){
SrcItem *p;
for(p=&pItem[1]; pfg.jointype & (JT_OUTER|JT_CROSS)) ){
mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
}
}
rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
}else
#endif /* SQLITE_OMIT_VIRTUALTABLE */
{
rc = whereLoopAddBtree(pBuilder, mPrereq);
}
if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
}
mPrior |= pNew->maskSelf;
if( rc || db->mallocFailed ){
if( rc==SQLITE_DONE ){
/* We hit the query planner search limit set by iPlanLimit */
sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
rc = SQLITE_OK;
}else{
break;
}
}
}
whereLoopClear(db, pNew);
return rc;
}
/*
** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
** parameters) to see if it outputs rows in the requested ORDER BY
** (or GROUP BY) without requiring a separate sort operation. Return N:
**
** N>0: N terms of the ORDER BY clause are satisfied
** N==0: No terms of the ORDER BY clause are satisfied
** N<0: Unknown yet how many terms of ORDER BY might be satisfied.
**
** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
** strict. With GROUP BY and DISTINCT the only requirement is that
** equivalent rows appear immediately adjacent to one another. GROUP BY
** and DISTINCT do not require rows to appear in any particular order as long
** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT
** the pOrderBy terms can be matched in any order. With ORDER BY, the
** pOrderBy terms must be matched in strict left-to-right order.
*/
static i8 wherePathSatisfiesOrderBy(
WhereInfo *pWInfo, /* The WHERE clause */
ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */
WherePath *pPath, /* The WherePath to check */
u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
u16 nLoop, /* Number of entries in pPath->aLoop[] */
WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */
Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */
){
u8 revSet; /* True if rev is known */
u8 rev; /* Composite sort order */
u8 revIdx; /* Index sort order */
u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */
u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */
u8 isMatch; /* iColumn matches a term of the ORDER BY clause */
u16 eqOpMask; /* Allowed equality operators */
u16 nKeyCol; /* Number of key columns in pIndex */
u16 nColumn; /* Total number of ordered columns in the index */
u16 nOrderBy; /* Number terms in the ORDER BY clause */
int iLoop; /* Index of WhereLoop in pPath being processed */
int i, j; /* Loop counters */
int iCur; /* Cursor number for current WhereLoop */
int iColumn; /* A column number within table iCur */
WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
WhereTerm *pTerm; /* A single term of the WHERE clause */
Expr *pOBExpr; /* An expression from the ORDER BY clause */
CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */
Index *pIndex; /* The index associated with pLoop */
sqlite3 *db = pWInfo->pParse->db; /* Database connection */
Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */
Bitmask obDone; /* Mask of all ORDER BY terms */
Bitmask orderDistinctMask; /* Mask of all well-ordered loops */
Bitmask ready; /* Mask of inner loops */
/*
** We say the WhereLoop is "one-row" if it generates no more than one
** row of output. A WhereLoop is one-row if all of the following are true:
** (a) All index columns match with WHERE_COLUMN_EQ.
** (b) The index is unique
** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
**
** We say the WhereLoop is "order-distinct" if the set of columns from
** that WhereLoop that are in the ORDER BY clause are different for every
** row of the WhereLoop. Every one-row WhereLoop is automatically
** order-distinct. A WhereLoop that has no columns in the ORDER BY clause
** is not order-distinct. To be order-distinct is not quite the same as being
** UNIQUE since a UNIQUE column or index can have multiple rows that
** are NULL and NULL values are equivalent for the purpose of order-distinct.
** To be order-distinct, the columns must be UNIQUE and NOT NULL.
**
** The rowid for a table is always UNIQUE and NOT NULL so whenever the
** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
** automatically order-distinct.
*/
assert( pOrderBy!=0 );
if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
nOrderBy = pOrderBy->nExpr;
testcase( nOrderBy==BMS-1 );
if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */
isOrderDistinct = 1;
obDone = MASKBIT(nOrderBy)-1;
orderDistinctMask = 0;
ready = 0;
eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){
eqOpMask |= WO_IN;
}
for(iLoop=0; isOrderDistinct && obSat0 ) ready |= pLoop->maskSelf;
if( iLoopaLoop[iLoop];
if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
}else{
pLoop = pLast;
}
if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
if( pLoop->u.vtab.isOrdered
&& ((wctrlFlags&(WHERE_DISTINCTBY|WHERE_SORTBYGROUP))!=WHERE_DISTINCTBY)
){
obSat = obDone;
}
break;
}else if( wctrlFlags & WHERE_DISTINCTBY ){
pLoop->u.btree.nDistinctCol = 0;
}
iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
/* Mark off any ORDER BY term X that is a column in the table of
** the current loop for which there is term in the WHERE
** clause of the form X IS NULL or X=? that reference only outer
** loops.
*/
for(i=0; ia[i].pExpr);
if( NEVER(pOBExpr==0) ) continue;
if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
if( pOBExpr->iTable!=iCur ) continue;
pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
~ready, eqOpMask, 0);
if( pTerm==0 ) continue;
if( pTerm->eOperator==WO_IN ){
/* IN terms are only valid for sorting in the ORDER BY LIMIT
** optimization, and then only if they are actually used
** by the query plan */
assert( wctrlFlags &
(WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) );
for(j=0; jnLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
if( j>=pLoop->nLTerm ) continue;
}
if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
Parse *pParse = pWInfo->pParse;
CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr);
CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr);
assert( pColl1 );
if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){
continue;
}
testcase( pTerm->pExpr->op==TK_IS );
}
obSat |= MASKBIT(i);
}
if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
if( pLoop->wsFlags & WHERE_IPK ){
pIndex = 0;
nKeyCol = 0;
nColumn = 1;
}else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
return 0;
}else{
nKeyCol = pIndex->nKeyCol;
nColumn = pIndex->nColumn;
assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
|| !HasRowid(pIndex->pTable));
/* All relevant terms of the index must also be non-NULL in order
** for isOrderDistinct to be true. So the isOrderDistint value
** computed here might be a false positive. Corrections will be
** made at tag-20210426-1 below */
isOrderDistinct = IsUniqueIndex(pIndex)
&& (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
}
/* Loop through all columns of the index and deal with the ones
** that are not constrained by == or IN.
*/
rev = revSet = 0;
distinctColumns = 0;
for(j=0; j=pLoop->u.btree.nEq
|| (pLoop->aLTerm[j]==0)==(jnSkip)
);
if( ju.btree.nEq && j>=pLoop->nSkip ){
u16 eOp = pLoop->aLTerm[j]->eOperator;
/* Skip over == and IS and ISNULL terms. (Also skip IN terms when
** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL
** terms imply that the index is not UNIQUE NOT NULL in which case
** the loop need to be marked as not order-distinct because it can
** have repeated NULL rows.
**
** If the current term is a column of an ((?,?) IN (SELECT...))
** expression for which the SELECT returns more than one column,
** check that it is the only column used by this loop. Otherwise,
** if it is one of two or more, none of the columns can be
** considered to match an ORDER BY term.
*/
if( (eOp & eqOpMask)!=0 ){
if( eOp & (WO_ISNULL|WO_IS) ){
testcase( eOp & WO_ISNULL );
testcase( eOp & WO_IS );
testcase( isOrderDistinct );
isOrderDistinct = 0;
}
continue;
}else if( ALWAYS(eOp & WO_IN) ){
/* ALWAYS() justification: eOp is an equality operator due to the
** ju.btree.nEq constraint above. Any equality other
** than WO_IN is captured by the previous "if". So this one
** always has to be WO_IN. */
Expr *pX = pLoop->aLTerm[j]->pExpr;
for(i=j+1; iu.btree.nEq; i++){
if( pLoop->aLTerm[i]->pExpr==pX ){
assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
bOnce = 0;
break;
}
}
}
}
/* Get the column number in the table (iColumn) and sort order
** (revIdx) for the j-th column of the index.
*/
if( pIndex ){
iColumn = pIndex->aiColumn[j];
revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
}else{
iColumn = XN_ROWID;
revIdx = 0;
}
/* An unconstrained column that might be NULL means that this
** WhereLoop is not well-ordered. tag-20210426-1
*/
if( isOrderDistinct ){
if( iColumn>=0
&& j>=pLoop->u.btree.nEq
&& pIndex->pTable->aCol[iColumn].notNull==0
){
isOrderDistinct = 0;
}
if( iColumn==XN_EXPR ){
isOrderDistinct = 0;
}
}
/* Find the ORDER BY term that corresponds to the j-th column
** of the index and mark that ORDER BY term off
*/
isMatch = 0;
for(i=0; bOnce && ia[i].pExpr);
testcase( wctrlFlags & WHERE_GROUPBY );
testcase( wctrlFlags & WHERE_DISTINCTBY );
if( NEVER(pOBExpr==0) ) continue;
if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
if( iColumn>=XN_ROWID ){
if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
if( pOBExpr->iTable!=iCur ) continue;
if( pOBExpr->iColumn!=iColumn ) continue;
}else{
Expr *pIxExpr = pIndex->aColExpr->a[j].pExpr;
if( sqlite3ExprCompareSkip(pOBExpr, pIxExpr, iCur) ){
continue;
}
}
if( iColumn!=XN_ROWID ){
pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
}
if( wctrlFlags & WHERE_DISTINCTBY ){
pLoop->u.btree.nDistinctCol = j+1;
}
isMatch = 1;
break;
}
if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
/* Make sure the sort order is compatible in an ORDER BY clause.
** Sort order is irrelevant for a GROUP BY clause. */
if( revSet ){
if( (rev ^ revIdx)
!= (pOrderBy->a[i].fg.sortFlags&KEYINFO_ORDER_DESC)
){
isMatch = 0;
}
}else{
rev = revIdx ^ (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC);
if( rev ) *pRevMask |= MASKBIT(iLoop);
revSet = 1;
}
}
if( isMatch && (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL) ){
if( j==pLoop->u.btree.nEq ){
pLoop->wsFlags |= WHERE_BIGNULL_SORT;
}else{
isMatch = 0;
}
}
if( isMatch ){
if( iColumn==XN_ROWID ){
testcase( distinctColumns==0 );
distinctColumns = 1;
}
obSat |= MASKBIT(i);
}else{
/* No match found */
if( j==0 || jmaskSelf;
for(i=0; ia[i].pExpr;
mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
if( (mTerm&~orderDistinctMask)==0 ){
obSat |= MASKBIT(i);
}
}
}
} /* End the loop over all WhereLoops from outer-most down to inner-most */
if( obSat==obDone ) return (i8)nOrderBy;
if( !isOrderDistinct ){
for(i=nOrderBy-1; i>0; i--){
Bitmask m = ALWAYS(iwctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY) );
assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
return pWInfo->sorted;
}
#ifdef WHERETRACE_ENABLED
/* For debugging use only: */
static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
static char zName[65];
int i;
for(i=0; iaLoop[i]->cId; }
if( pLast ) zName[i++] = pLast->cId;
zName[i] = 0;
return zName;
}
#endif
/*
** Return the cost of sorting nRow rows, assuming that the keys have
** nOrderby columns and that the first nSorted columns are already in
** order.
*/
static LogEst whereSortingCost(
WhereInfo *pWInfo, /* Query planning context */
LogEst nRow, /* Estimated number of rows to sort */
int nOrderBy, /* Number of ORDER BY clause terms */
int nSorted /* Number of initial ORDER BY terms naturally in order */
){
/* Estimated cost of a full external sort, where N is
** the number of rows to sort is:
**
** cost = (K * N * log(N)).
**
** Or, if the order-by clause has X terms but only the last Y
** terms are out of order, then block-sorting will reduce the
** sorting cost to:
**
** cost = (K * N * log(N)) * (Y/X)
**
** The constant K is at least 2.0 but will be larger if there are a
** large number of columns to be sorted, as the sorting time is
** proportional to the amount of content to be sorted. The algorithm
** does not currently distinguish between fat columns (BLOBs and TEXTs)
** and skinny columns (INTs). It just uses the number of columns as
** an approximation for the row width.
**
** And extra factor of 2.0 or 3.0 is added to the sorting cost if the sort
** is built using OP_IdxInsert and OP_Sort rather than with OP_SorterInsert.
*/
LogEst rSortCost, nCol;
assert( pWInfo->pSelect!=0 );
assert( pWInfo->pSelect->pEList!=0 );
/* TUNING: sorting cost proportional to the number of output columns: */
nCol = sqlite3LogEst((pWInfo->pSelect->pEList->nExpr+59)/30);
rSortCost = nRow + nCol;
if( nSorted>0 ){
/* Scale the result by (Y/X) */
rSortCost += sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
}
/* Multiple by log(M) where M is the number of output rows.
** Use the LIMIT for M if it is smaller. Or if this sort is for
** a DISTINCT operator, M will be the number of distinct output
** rows, so fudge it downwards a bit.
*/
if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 ){
rSortCost += 10; /* TUNING: Extra 2.0x if using LIMIT */
if( nSorted!=0 ){
rSortCost += 6; /* TUNING: Extra 1.5x if also using partial sort */
}
if( pWInfo->iLimitiLimit;
}
}else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){
/* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
** reduces the number of output rows by a factor of 2 */
if( nRow>10 ){ nRow -= 10; assert( 10==sqlite3LogEst(2) ); }
}
rSortCost += estLog(nRow);
return rSortCost;
}
/*
** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
** attempts to find the lowest cost path that visits each WhereLoop
** once. This path is then loaded into the pWInfo->a[].pWLoop fields.
**
** Assume that the total number of output rows that will need to be sorted
** will be nRowEst (in the 10*log2 representation). Or, ignore sorting
** costs if nRowEst==0.
**
** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
** error occurs.
*/
static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
int mxChoice; /* Maximum number of simultaneous paths tracked */
int nLoop; /* Number of terms in the join */
Parse *pParse; /* Parsing context */
int iLoop; /* Loop counter over the terms of the join */
int ii, jj; /* Loop counters */
int mxI = 0; /* Index of next entry to replace */
int nOrderBy; /* Number of ORDER BY clause terms */
LogEst mxCost = 0; /* Maximum cost of a set of paths */
LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */
int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */
WherePath *aFrom; /* All nFrom paths at the previous level */
WherePath *aTo; /* The nTo best paths at the current level */
WherePath *pFrom; /* An element of aFrom[] that we are working on */
WherePath *pTo; /* An element of aTo[] that we are working on */
WhereLoop *pWLoop; /* One of the WhereLoop objects */
WhereLoop **pX; /* Used to divy up the pSpace memory */
LogEst *aSortCost = 0; /* Sorting and partial sorting costs */
char *pSpace; /* Temporary memory used by this routine */
int nSpace; /* Bytes of space allocated at pSpace */
pParse = pWInfo->pParse;
nLoop = pWInfo->nLevel;
/* TUNING: For simple queries, only the best path is tracked.
** For 2-way joins, the 5 best paths are followed.
** For joins of 3 or more tables, track the 10 best paths */
mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
assert( nLoop<=pWInfo->pTabList->nSrc );
WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d, nQueryLoop=%d)\n",
nRowEst, pParse->nQueryLoop));
/* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
** case the purpose of this call is to estimate the number of rows returned
** by the overall query. Once this estimate has been obtained, the caller
** will invoke this function a second time, passing the estimate as the
** nRowEst parameter. */
if( pWInfo->pOrderBy==0 || nRowEst==0 ){
nOrderBy = 0;
}else{
nOrderBy = pWInfo->pOrderBy->nExpr;
}
/* Allocate and initialize space for aTo, aFrom and aSortCost[] */
nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
nSpace += sizeof(LogEst) * nOrderBy;
pSpace = sqlite3StackAllocRawNN(pParse->db, nSpace);
if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
aTo = (WherePath*)pSpace;
aFrom = aTo+mxChoice;
memset(aFrom, 0, sizeof(aFrom[0]));
pX = (WhereLoop**)(aFrom+mxChoice);
for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
pFrom->aLoop = pX;
}
if( nOrderBy ){
/* If there is an ORDER BY clause and it is not being ignored, set up
** space for the aSortCost[] array. Each element of the aSortCost array
** is either zero - meaning it has not yet been initialized - or the
** cost of sorting nRowEst rows of data where the first X terms of
** the ORDER BY clause are already in order, where X is the array
** index. */
aSortCost = (LogEst*)pX;
memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
}
assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
/* Seed the search with a single WherePath containing zero WhereLoops.
**
** TUNING: Do not let the number of iterations go above 28. If the cost
** of computing an automatic index is not paid back within the first 28
** rows, then do not use the automatic index. */
aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) );
nFrom = 1;
assert( aFrom[0].isOrdered==0 );
if( nOrderBy ){
/* If nLoop is zero, then there are no FROM terms in the query. Since
** in this case the query may return a maximum of one row, the results
** are already in the requested order. Set isOrdered to nOrderBy to
** indicate this. Or, if nLoop is greater than zero, set isOrdered to
** -1, indicating that the result set may or may not be ordered,
** depending on the loops added to the current plan. */
aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
}
/* Compute successively longer WherePaths using the previous generation
** of WherePaths as the basis for the next. Keep track of the mxChoice
** best paths at each generation */
for(iLoop=0; iLooppLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
LogEst nOut; /* Rows visited by (pFrom+pWLoop) */
LogEst rCost; /* Cost of path (pFrom+pWLoop) */
LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */
i8 isOrdered; /* isOrdered for (pFrom+pWLoop) */
Bitmask maskNew; /* Mask of src visited by (..) */
Bitmask revMask; /* Mask of rev-order loops for (..) */
if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
/* Do not use an automatic index if the this loop is expected
** to run less than 1.25 times. It is tempting to also exclude
** automatic index usage on an outer loop, but sometimes an automatic
** index is useful in the outer loop of a correlated subquery. */
assert( 10==sqlite3LogEst(2) );
continue;
}
/* At this point, pWLoop is a candidate to be the next loop.
** Compute its cost */
rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
nOut = pFrom->nRow + pWLoop->nOut;
maskNew = pFrom->maskLoop | pWLoop->maskSelf;
isOrdered = pFrom->isOrdered;
if( isOrdered<0 ){
revMask = 0;
isOrdered = wherePathSatisfiesOrderBy(pWInfo,
pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
iLoop, pWLoop, &revMask);
}else{
revMask = pFrom->revLoop;
}
if( isOrdered>=0 && isOrderedisOrdered^isOrdered)&0x80)==0" is equivalent
** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
** of legal values for isOrdered, -1..64.
*/
for(jj=0, pTo=aTo; jjmaskLoop==maskNew
&& ((pTo->isOrdered^isOrdered)&0x80)==0
){
testcase( jj==nTo-1 );
break;
}
}
if( jj>=nTo ){
/* None of the existing best-so-far paths match the candidate. */
if( nTo>=mxChoice
&& (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
){
/* The current candidate is no better than any of the mxChoice
** paths currently in the best-so-far buffer. So discard
** this candidate as not viable. */
#ifdef WHERETRACE_ENABLED /* 0x4 */
if( sqlite3WhereTrace&0x4 ){
sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n",
wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
isOrdered>=0 ? isOrdered+'0' : '?');
}
#endif
continue;
}
/* If we reach this points it means that the new candidate path
** needs to be added to the set of best-so-far paths. */
if( nTo=0 ? isOrdered+'0' : '?');
}
#endif
}else{
/* Control reaches here if best-so-far path pTo=aTo[jj] covers the
** same set of loops and has the same isOrdered setting as the
** candidate path. Check to see if the candidate should replace
** pTo or if the candidate should be skipped.
**
** The conditional is an expanded vector comparison equivalent to:
** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
*/
if( pTo->rCostrCost==rCost
&& (pTo->nRownRow==nOut && pTo->rUnsorted<=rUnsorted)
)
)
){
#ifdef WHERETRACE_ENABLED /* 0x4 */
if( sqlite3WhereTrace&0x4 ){
sqlite3DebugPrintf(
"Skip %s cost=%-3d,%3d,%3d order=%c",
wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
isOrdered>=0 ? isOrdered+'0' : '?');
sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n",
wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
}
#endif
/* Discard the candidate path from further consideration */
testcase( pTo->rCost==rCost );
continue;
}
testcase( pTo->rCost==rCost+1 );
/* Control reaches here if the candidate path is better than the
** pTo path. Replace pTo with the candidate. */
#ifdef WHERETRACE_ENABLED /* 0x4 */
if( sqlite3WhereTrace&0x4 ){
sqlite3DebugPrintf(
"Update %s cost=%-3d,%3d,%3d order=%c",
wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
isOrdered>=0 ? isOrdered+'0' : '?');
sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n",
wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
}
#endif
}
/* pWLoop is a winner. Add it to the set of best so far */
pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
pTo->revLoop = revMask;
pTo->nRow = nOut;
pTo->rCost = rCost;
pTo->rUnsorted = rUnsorted;
pTo->isOrdered = isOrdered;
memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
pTo->aLoop[iLoop] = pWLoop;
if( nTo>=mxChoice ){
mxI = 0;
mxCost = aTo[0].rCost;
mxUnsorted = aTo[0].nRow;
for(jj=1, pTo=&aTo[1]; jjrCost>mxCost
|| (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
){
mxCost = pTo->rCost;
mxUnsorted = pTo->rUnsorted;
mxI = jj;
}
}
}
}
}
#ifdef WHERETRACE_ENABLED /* >=2 */
if( sqlite3WhereTrace & 0x02 ){
sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
for(ii=0, pTo=aTo; iirCost, pTo->nRow,
pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
if( pTo->isOrdered>0 ){
sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
}else{
sqlite3DebugPrintf("\n");
}
}
}
#endif
/* Swap the roles of aFrom and aTo for the next generation */
pFrom = aTo;
aTo = aFrom;
aFrom = pFrom;
nFrom = nTo;
}
if( nFrom==0 ){
sqlite3ErrorMsg(pParse, "no query solution");
sqlite3StackFreeNN(pParse->db, pSpace);
return SQLITE_ERROR;
}
/* Find the lowest cost path. pFrom will be left pointing to that path */
pFrom = aFrom;
for(ii=1; iirCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
}
assert( pWInfo->nLevel==nLoop );
/* Load the lowest cost path into pWInfo */
for(iLoop=0; iLoopa + iLoop;
pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
pLevel->iFrom = pWLoop->iTab;
pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
}
if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
&& (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
&& pWInfo->eDistinct==WHERE_DISTINCT_NOOP
&& nRowEst
){
Bitmask notUsed;
int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used);
if( rc==pWInfo->pResultSet->nExpr ){
pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
}
}
pWInfo->bOrderedInnerLoop = 0;
if( pWInfo->pOrderBy ){
pWInfo->nOBSat = pFrom->isOrdered;
if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
}
if( pWInfo->pSelect->pOrderBy
&& pWInfo->nOBSat > pWInfo->pSelect->pOrderBy->nExpr ){
pWInfo->nOBSat = pWInfo->pSelect->pOrderBy->nExpr;
}
}else{
pWInfo->revMask = pFrom->revLoop;
if( pWInfo->nOBSat<=0 ){
pWInfo->nOBSat = 0;
if( nLoop>0 ){
u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
if( (wsFlags & WHERE_ONEROW)==0
&& (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
){
Bitmask m = 0;
int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
testcase( wsFlags & WHERE_IPK );
testcase( wsFlags & WHERE_COLUMN_IN );
if( rc==pWInfo->pOrderBy->nExpr ){
pWInfo->bOrderedInnerLoop = 1;
pWInfo->revMask = m;
}
}
}
}else if( nLoop
&& pWInfo->nOBSat==1
&& (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0
){
pWInfo->bOrderedInnerLoop = 1;
}
}
if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
&& pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
){
Bitmask revMask = 0;
int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
);
assert( pWInfo->sorted==0 );
if( nOrder==pWInfo->pOrderBy->nExpr ){
pWInfo->sorted = 1;
pWInfo->revMask = revMask;
}
}
}
pWInfo->nRowOut = pFrom->nRow;
/* Free temporary memory and return success */
sqlite3StackFreeNN(pParse->db, pSpace);
return SQLITE_OK;
}
/*
** Most queries use only a single table (they are not joins) and have
** simple == constraints against indexed fields. This routine attempts
** to plan those simple cases using much less ceremony than the
** general-purpose query planner, and thereby yield faster sqlite3_prepare()
** times for the common case.
**
** Return non-zero on success, if this query can be handled by this
** no-frills query planner. Return zero if this query needs the
** general-purpose query planner.
*/
static int whereShortCut(WhereLoopBuilder *pBuilder){
WhereInfo *pWInfo;
SrcItem *pItem;
WhereClause *pWC;
WhereTerm *pTerm;
WhereLoop *pLoop;
int iCur;
int j;
Table *pTab;
Index *pIdx;
WhereScan scan;
pWInfo = pBuilder->pWInfo;
if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
assert( pWInfo->pTabList->nSrc>=1 );
pItem = pWInfo->pTabList->a;
pTab = pItem->pTab;
if( IsVirtual(pTab) ) return 0;
if( pItem->fg.isIndexedBy || pItem->fg.notIndexed ){
testcase( pItem->fg.isIndexedBy );
testcase( pItem->fg.notIndexed );
return 0;
}
iCur = pItem->iCursor;
pWC = &pWInfo->sWC;
pLoop = pBuilder->pNew;
pLoop->wsFlags = 0;
pLoop->nSkip = 0;
pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0);
while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
if( pTerm ){
testcase( pTerm->eOperator & WO_IS );
pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
pLoop->aLTerm[0] = pTerm;
pLoop->nLTerm = 1;
pLoop->u.btree.nEq = 1;
/* TUNING: Cost of a rowid lookup is 10 */
pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */
}else{
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
int opMask;
assert( pLoop->aLTermSpace==pLoop->aLTerm );
if( !IsUniqueIndex(pIdx)
|| pIdx->pPartIdxWhere!=0
|| pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
) continue;
opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
for(j=0; jnKeyCol; j++){
pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx);
while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
if( pTerm==0 ) break;
testcase( pTerm->eOperator & WO_IS );
pLoop->aLTerm[j] = pTerm;
}
if( j!=pIdx->nKeyCol ) continue;
pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
pLoop->wsFlags |= WHERE_IDX_ONLY;
}
pLoop->nLTerm = j;
pLoop->u.btree.nEq = j;
pLoop->u.btree.pIndex = pIdx;
/* TUNING: Cost of a unique index lookup is 15 */
pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */
break;
}
}
if( pLoop->wsFlags ){
pLoop->nOut = (LogEst)1;
pWInfo->a[0].pWLoop = pLoop;
assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
pWInfo->a[0].iTabCur = iCur;
pWInfo->nRowOut = 1;
if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr;
if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
}
if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS;
#ifdef SQLITE_DEBUG
pLoop->cId = '0';
#endif
#ifdef WHERETRACE_ENABLED
if( sqlite3WhereTrace & 0x02 ){
sqlite3DebugPrintf("whereShortCut() used to compute solution\n");
}
#endif
return 1;
}
return 0;
}
/*
** Helper function for exprIsDeterministic().
*/
static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
pWalker->eCode = 0;
return WRC_Abort;
}
return WRC_Continue;
}
/*
** Return true if the expression contains no non-deterministic SQL
** functions. Do not consider non-deterministic SQL functions that are
** part of sub-select statements.
*/
static int exprIsDeterministic(Expr *p){
Walker w;
memset(&w, 0, sizeof(w));
w.eCode = 1;
w.xExprCallback = exprNodeIsDeterministic;
w.xSelectCallback = sqlite3SelectWalkFail;
sqlite3WalkExpr(&w, p);
return w.eCode;
}
#ifdef WHERETRACE_ENABLED
/*
** Display all WhereLoops in pWInfo
*/
static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){
if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */
WhereLoop *p;
int i;
static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
"ABCDEFGHIJKLMNOPQRSTUVWYXZ";
for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
p->cId = zLabel[i%(sizeof(zLabel)-1)];
sqlite3WhereLoopPrint(p, pWC);
}
}
}
# define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
#else
# define WHERETRACE_ALL_LOOPS(W,C)
#endif
/* Attempt to omit tables from a join that do not affect the result.
** For a table to not affect the result, the following must be true:
**
** 1) The query must not be an aggregate.
** 2) The table must be the RHS of a LEFT JOIN.
** 3) Either the query must be DISTINCT, or else the ON or USING clause
** must contain a constraint that limits the scan of the table to
** at most a single row.
** 4) The table must not be referenced by any part of the query apart
** from its own USING or ON clause.
** 5) The table must not have an inner-join ON or USING clause if there is
** a RIGHT JOIN anywhere in the query. Otherwise the ON/USING clause
** might move from the right side to the left side of the RIGHT JOIN.
** Note: Due to (2), this condition can only arise if the table is
** the right-most table of a subquery that was flattened into the
** main query and that subquery was the right-hand operand of an
** inner join that held an ON or USING clause.
**
** For example, given:
**
** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
**
** then table t2 can be omitted from the following:
**
** SELECT v1, v3 FROM t1
** LEFT JOIN t2 ON (t1.ipk=t2.ipk)
** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
**
** or from:
**
** SELECT DISTINCT v1, v3 FROM t1
** LEFT JOIN t2
** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
*/
static SQLITE_NOINLINE Bitmask whereOmitNoopJoin(
WhereInfo *pWInfo,
Bitmask notReady
){
int i;
Bitmask tabUsed;
int hasRightJoin;
/* Preconditions checked by the caller */
assert( pWInfo->nLevel>=2 );
assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_OmitNoopJoin) );
/* These two preconditions checked by the caller combine to guarantee
** condition (1) of the header comment */
assert( pWInfo->pResultSet!=0 );
assert( 0==(pWInfo->wctrlFlags & WHERE_AGG_DISTINCT) );
tabUsed = sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pResultSet);
if( pWInfo->pOrderBy ){
tabUsed |= sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pOrderBy);
}
hasRightJoin = (pWInfo->pTabList->a[0].fg.jointype & JT_LTORJ)!=0;
for(i=pWInfo->nLevel-1; i>=1; i--){
WhereTerm *pTerm, *pEnd;
SrcItem *pItem;
WhereLoop *pLoop;
pLoop = pWInfo->a[i].pWLoop;
pItem = &pWInfo->pTabList->a[pLoop->iTab];
if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ) continue;
if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)==0
&& (pLoop->wsFlags & WHERE_ONEROW)==0
){
continue;
}
if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
pEnd = pWInfo->sWC.a + pWInfo->sWC.nTerm;
for(pTerm=pWInfo->sWC.a; pTermprereqAll & pLoop->maskSelf)!=0 ){
if( !ExprHasProperty(pTerm->pExpr, EP_OuterON)
|| pTerm->pExpr->w.iJoin!=pItem->iCursor
){
break;
}
}
if( hasRightJoin
&& ExprHasProperty(pTerm->pExpr, EP_InnerON)
&& pTerm->pExpr->w.iJoin==pItem->iCursor
){
break; /* restriction (5) */
}
}
if( pTerm drop loop %c not used\n", pLoop->cId));
notReady &= ~pLoop->maskSelf;
for(pTerm=pWInfo->sWC.a; pTermprereqAll & pLoop->maskSelf)!=0 ){
pTerm->wtFlags |= TERM_CODED;
}
}
if( i!=pWInfo->nLevel-1 ){
int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
}
pWInfo->nLevel--;
assert( pWInfo->nLevel>0 );
}
return notReady;
}
/*
** Check to see if there are any SEARCH loops that might benefit from
** using a Bloom filter. Consider a Bloom filter if:
**
** (1) The SEARCH happens more than N times where N is the number
** of rows in the table that is being considered for the Bloom
** filter.
** (2) Some searches are expected to find zero rows. (This is determined
** by the WHERE_SELFCULL flag on the term.)
** (3) Bloom-filter processing is not disabled. (Checked by the
** caller.)
** (4) The size of the table being searched is known by ANALYZE.
**
** This block of code merely checks to see if a Bloom filter would be
** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the
** WhereLoop. The implementation of the Bloom filter comes further
** down where the code for each WhereLoop is generated.
*/
static SQLITE_NOINLINE void whereCheckIfBloomFilterIsUseful(
const WhereInfo *pWInfo
){
int i;
LogEst nSearch = 0;
assert( pWInfo->nLevel>=2 );
assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_BloomFilter) );
for(i=0; inLevel; i++){
WhereLoop *pLoop = pWInfo->a[i].pWLoop;
const unsigned int reqFlags = (WHERE_SELFCULL|WHERE_COLUMN_EQ);
SrcItem *pItem = &pWInfo->pTabList->a[pLoop->iTab];
Table *pTab = pItem->pTab;
if( (pTab->tabFlags & TF_HasStat1)==0 ) break;
pTab->tabFlags |= TF_StatsUsed;
if( i>=1
&& (pLoop->wsFlags & reqFlags)==reqFlags
/* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */
&& ALWAYS((pLoop->wsFlags & (WHERE_IPK|WHERE_INDEXED))!=0)
){
if( nSearch > pTab->nRowLogEst ){
testcase( pItem->fg.jointype & JT_LEFT );
pLoop->wsFlags |= WHERE_BLOOMFILTER;
pLoop->wsFlags &= ~WHERE_IDX_ONLY;
WHERETRACE(0xffffffff, (
"-> use Bloom-filter on loop %c because there are ~%.1e "
"lookups into %s which has only ~%.1e rows\n",
pLoop->cId, (double)sqlite3LogEstToInt(nSearch), pTab->zName,
(double)sqlite3LogEstToInt(pTab->nRowLogEst)));
}
}
nSearch += pLoop->nOut;
}
}
/*
** The index pIdx is used by a query and contains one or more expressions.
** In other words pIdx is an index on an expression. iIdxCur is the cursor
** number for the index and iDataCur is the cursor number for the corresponding
** table.
**
** This routine adds IndexedExpr entries to the Parse->pIdxEpr field for
** each of the expressions in the index so that the expression code generator
** will know to replace occurrences of the indexed expression with
** references to the corresponding column of the index.
*/
static SQLITE_NOINLINE void whereAddIndexedExpr(
Parse *pParse, /* Add IndexedExpr entries to pParse->pIdxEpr */
Index *pIdx, /* The index-on-expression that contains the expressions */
int iIdxCur, /* Cursor number for pIdx */
SrcItem *pTabItem /* The FROM clause entry for the table */
){
int i;
IndexedExpr *p;
Table *pTab;
assert( pIdx->bHasExpr );
pTab = pIdx->pTable;
for(i=0; inColumn; i++){
Expr *pExpr;
int j = pIdx->aiColumn[i];
int bMaybeNullRow;
if( j==XN_EXPR ){
pExpr = pIdx->aColExpr->a[i].pExpr;
testcase( pTabItem->fg.jointype & JT_LEFT );
testcase( pTabItem->fg.jointype & JT_RIGHT );
testcase( pTabItem->fg.jointype & JT_LTORJ );
bMaybeNullRow = (pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0;
}else if( j>=0 && (pTab->aCol[j].colFlags & COLFLAG_VIRTUAL)!=0 ){
pExpr = sqlite3ColumnExpr(pTab, &pTab->aCol[j]);
bMaybeNullRow = 0;
}else{
continue;
}
if( sqlite3ExprIsConstant(pExpr) ) continue;
if( pExpr->op==TK_FUNCTION ){
/* Functions that might set a subtype should not be replaced by the
** value taken from an expression index since the index omits the
** subtype. https://sqlite.org/forum/forumpost/68d284c86b082c3e */
int n;
FuncDef *pDef;
sqlite3 *db = pParse->db;
assert( ExprUseXList(pExpr) );
n = pExpr->x.pList ? pExpr->x.pList->nExpr : 0;
pDef = sqlite3FindFunction(db, pExpr->u.zToken, n, ENC(db), 0);
if( pDef==0 || (pDef->funcFlags & SQLITE_RESULT_SUBTYPE)!=0 ){
continue;
}
}
p = sqlite3DbMallocRaw(pParse->db, sizeof(IndexedExpr));
if( p==0 ) break;
p->pIENext = pParse->pIdxEpr;
#ifdef WHERETRACE_ENABLED
if( sqlite3WhereTrace & 0x200 ){
sqlite3DebugPrintf("New pParse->pIdxEpr term {%d,%d}\n", iIdxCur, i);
if( sqlite3WhereTrace & 0x5000 ) sqlite3ShowExpr(pExpr);
}
#endif
p->pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
p->iDataCur = pTabItem->iCursor;
p->iIdxCur = iIdxCur;
p->iIdxCol = i;
p->bMaybeNullRow = bMaybeNullRow;
if( sqlite3IndexAffinityStr(pParse->db, pIdx) ){
p->aff = pIdx->zColAff[i];
}
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
p->zIdxName = pIdx->zName;
#endif
pParse->pIdxEpr = p;
if( p->pIENext==0 ){
void *pArg = (void*)&pParse->pIdxEpr;
sqlite3ParserAddCleanup(pParse, whereIndexedExprCleanup, pArg);
}
}
}
/*
** Set the reverse-scan order mask to one for all tables in the query
** with the exception of MATERIALIZED common table expressions that have
** their own internal ORDER BY clauses.
**
** This implements the PRAGMA reverse_unordered_selects=ON setting.
** (Also SQLITE_DBCONFIG_REVERSE_SCANORDER).
*/
static SQLITE_NOINLINE void whereReverseScanOrder(WhereInfo *pWInfo){
int ii;
for(ii=0; iipTabList->nSrc; ii++){
SrcItem *pItem = &pWInfo->pTabList->a[ii];
if( !pItem->fg.isCte
|| pItem->u2.pCteUse->eM10d!=M10d_Yes
|| NEVER(pItem->pSelect==0)
|| pItem->pSelect->pOrderBy==0
){
pWInfo->revMask |= MASKBIT(ii);
}
}
}
/*
** Generate the beginning of the loop used for WHERE clause processing.
** The return value is a pointer to an opaque structure that contains
** information needed to terminate the loop. Later, the calling routine
** should invoke sqlite3WhereEnd() with the return value of this function
** in order to complete the WHERE clause processing.
**
** If an error occurs, this routine returns NULL.
**
** The basic idea is to do a nested loop, one loop for each table in
** the FROM clause of a select. (INSERT and UPDATE statements are the
** same as a SELECT with only a single table in the FROM clause.) For
** example, if the SQL is this:
**
** SELECT * FROM t1, t2, t3 WHERE ...;
**
** Then the code generated is conceptually like the following:
**
** foreach row1 in t1 do \ Code generated
** foreach row2 in t2 do |-- by sqlite3WhereBegin()
** foreach row3 in t3 do /
** ...
** end \ Code generated
** end |-- by sqlite3WhereEnd()
** end /
**
** Note that the loops might not be nested in the order in which they
** appear in the FROM clause if a different order is better able to make
** use of indices. Note also that when the IN operator appears in
** the WHERE clause, it might result in additional nested loops for
** scanning through all values on the right-hand side of the IN.
**
** There are Btree cursors associated with each table. t1 uses cursor
** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
** And so forth. This routine generates code to open those VDBE cursors
** and sqlite3WhereEnd() generates the code to close them.
**
** The code that sqlite3WhereBegin() generates leaves the cursors named
** in pTabList pointing at their appropriate entries. The [...] code
** can use OP_Column and OP_Rowid opcodes on these cursors to extract
** data from the various tables of the loop.
**
** If the WHERE clause is empty, the foreach loops must each scan their
** entire tables. Thus a three-way join is an O(N^3) operation. But if
** the tables have indices and there are terms in the WHERE clause that
** refer to those indices, a complete table scan can be avoided and the
** code will run much faster. Most of the work of this routine is checking
** to see if there are indices that can be used to speed up the loop.
**
** Terms of the WHERE clause are also used to limit which rows actually
** make it to the "..." in the middle of the loop. After each "foreach",
** terms of the WHERE clause that use only terms in that loop and outer
** loops are evaluated and if false a jump is made around all subsequent
** inner loops (or around the "..." if the test occurs within the inner-
** most loop)
**
** OUTER JOINS
**
** An outer join of tables t1 and t2 is conceptually coded as follows:
**
** foreach row1 in t1 do
** flag = 0
** foreach row2 in t2 do
** start:
** ...
** flag = 1
** end
** if flag==0 then
** move the row2 cursor to a null row
** goto start
** fi
** end
**
** ORDER BY CLAUSE PROCESSING
**
** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
** if there is one. If there is no ORDER BY clause or if this routine
** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
**
** The iIdxCur parameter is the cursor number of an index. If
** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
** to use for OR clause processing. The WHERE clause should use this
** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
** the first cursor in an array of cursors for all indices. iIdxCur should
** be used to compute the appropriate cursor depending on which index is
** used.
*/
WhereInfo *sqlite3WhereBegin(
Parse *pParse, /* The parser context */
SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */
Expr *pWhere, /* The WHERE clause */
ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */
ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */
Select *pSelect, /* The entire SELECT statement */
u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */
int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number
** If WHERE_USE_LIMIT, then the limit amount */
){
int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */
int nTabList; /* Number of elements in pTabList */
WhereInfo *pWInfo; /* Will become the return value of this function */
Vdbe *v = pParse->pVdbe; /* The virtual database engine */
Bitmask notReady; /* Cursors that are not yet positioned */
WhereLoopBuilder sWLB; /* The WhereLoop builder */
WhereMaskSet *pMaskSet; /* The expression mask set */
WhereLevel *pLevel; /* A single level in pWInfo->a[] */
WhereLoop *pLoop; /* Pointer to a single WhereLoop object */
int ii; /* Loop counter */
sqlite3 *db; /* Database connection */
int rc; /* Return code */
u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */
assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
(wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
&& (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
));
/* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
|| (wctrlFlags & WHERE_USE_LIMIT)==0 );
/* Variable initialization */
db = pParse->db;
memset(&sWLB, 0, sizeof(sWLB));
/* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
if( pOrderBy && pOrderBy->nExpr>=BMS ){
pOrderBy = 0;
wctrlFlags &= ~WHERE_WANT_DISTINCT;
}
/* The number of tables in the FROM clause is limited by the number of
** bits in a Bitmask
*/
testcase( pTabList->nSrc==BMS );
if( pTabList->nSrc>BMS ){
sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
return 0;
}
/* This function normally generates a nested loop for all tables in
** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should
** only generate code for the first table in pTabList and assume that
** any cursors associated with subsequent tables are uninitialized.
*/
nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
/* Allocate and initialize the WhereInfo structure that will become the
** return value. A single allocation is used to store the WhereInfo
** struct, the contents of WhereInfo.a[], the WhereClause structure
** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
** field (type Bitmask) it must be aligned on an 8-byte boundary on
** some architectures. Hence the ROUND8() below.
*/
nByteWInfo = ROUND8P(sizeof(WhereInfo));
if( nTabList>1 ){
nByteWInfo = ROUND8P(nByteWInfo + (nTabList-1)*sizeof(WhereLevel));
}
pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
if( db->mallocFailed ){
sqlite3DbFree(db, pWInfo);
pWInfo = 0;
goto whereBeginError;
}
pWInfo->pParse = pParse;
pWInfo->pTabList = pTabList;
pWInfo->pOrderBy = pOrderBy;
#if WHERETRACE_ENABLED
pWInfo->pWhere = pWhere;
#endif
pWInfo->pResultSet = pResultSet;
pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
pWInfo->nLevel = nTabList;
pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
pWInfo->wctrlFlags = wctrlFlags;
pWInfo->iLimit = iAuxArg;
pWInfo->savedNQueryLoop = pParse->nQueryLoop;
pWInfo->pSelect = pSelect;
memset(&pWInfo->nOBSat, 0,
offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */
pMaskSet = &pWInfo->sMaskSet;
pMaskSet->n = 0;
pMaskSet->ix[0] = -99; /* Initialize ix[0] to a value that can never be
** a valid cursor number, to avoid an initial
** test for pMaskSet->n==0 in sqlite3WhereGetMask() */
sWLB.pWInfo = pWInfo;
sWLB.pWC = &pWInfo->sWC;
sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
whereLoopInit(sWLB.pNew);
#ifdef SQLITE_DEBUG
sWLB.pNew->cId = '*';
#endif
/* Split the WHERE clause into separate subexpressions where each
** subexpression is separated by an AND operator.
*/
sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
/* Special case: No FROM clause
*/
if( nTabList==0 ){
if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
if( (wctrlFlags & WHERE_WANT_DISTINCT)!=0
&& OptimizationEnabled(db, SQLITE_DistinctOpt)
){
pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
}
ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
}else{
/* Assign a bit from the bitmask to every term in the FROM clause.
**
** The N-th term of the FROM clause is assigned a bitmask of 1<nSrc tables in
** pTabList, not just the first nTabList tables. nTabList is normally
** equal to pTabList->nSrc but might be shortened to 1 if the
** WHERE_OR_SUBCLAUSE flag is set.
*/
ii = 0;
do{
createMask(pMaskSet, pTabList->a[ii].iCursor);
sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
}while( (++ii)nSrc );
#ifdef SQLITE_DEBUG
{
Bitmask mx = 0;
for(ii=0; iinSrc; ii++){
Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
assert( m>=mx );
mx = m;
}
}
#endif
}
/* Analyze all of the subexpressions. */
sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
if( pSelect && pSelect->pLimit ){
sqlite3WhereAddLimit(&pWInfo->sWC, pSelect);
}
if( pParse->nErr ) goto whereBeginError;
/* The False-WHERE-Term-Bypass optimization:
**
** If there are WHERE terms that are false, then no rows will be output,
** so skip over all of the code generated here.
**
** Conditions:
**
** (1) The WHERE term must not refer to any tables in the join.
** (2) The term must not come from an ON clause on the
** right-hand side of a LEFT or FULL JOIN.
** (3) The term must not come from an ON clause, or there must be
** no RIGHT or FULL OUTER joins in pTabList.
** (4) If the expression contains non-deterministic functions
** that are not within a sub-select. This is not required
** for correctness but rather to preserves SQLite's legacy
** behaviour in the following two cases:
**
** WHERE random()>0; -- eval random() once per row
** WHERE (SELECT random())>0; -- eval random() just once overall
**
** Note that the Where term need not be a constant in order for this
** optimization to apply, though it does need to be constant relative to
** the current subquery (condition 1). The term might include variables
** from outer queries so that the value of the term changes from one
** invocation of the current subquery to the next.
*/
for(ii=0; iinBase; ii++){
WhereTerm *pT = &sWLB.pWC->a[ii]; /* A term of the WHERE clause */
Expr *pX; /* The expression of pT */
if( pT->wtFlags & TERM_VIRTUAL ) continue;
pX = pT->pExpr;
assert( pX!=0 );
assert( pT->prereqAll!=0 || !ExprHasProperty(pX, EP_OuterON) );
if( pT->prereqAll==0 /* Conditions (1) and (2) */
&& (nTabList==0 || exprIsDeterministic(pX)) /* Condition (4) */
&& !(ExprHasProperty(pX, EP_InnerON) /* Condition (3) */
&& (pTabList->a[0].fg.jointype & JT_LTORJ)!=0 )
){
sqlite3ExprIfFalse(pParse, pX, pWInfo->iBreak, SQLITE_JUMPIFNULL);
pT->wtFlags |= TERM_CODED;
}
}
if( wctrlFlags & WHERE_WANT_DISTINCT ){
if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
/* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
wctrlFlags &= ~WHERE_WANT_DISTINCT;
pWInfo->wctrlFlags &= ~WHERE_WANT_DISTINCT;
}else if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
/* The DISTINCT marking is pointless. Ignore it. */
pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
}else if( pOrderBy==0 ){
/* Try to ORDER BY the result set to make distinct processing easier */
pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
pWInfo->pOrderBy = pResultSet;
}
}
/* Construct the WhereLoop objects */
#if defined(WHERETRACE_ENABLED)
if( sqlite3WhereTrace & 0xffffffff ){
sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
if( wctrlFlags & WHERE_USE_LIMIT ){
sqlite3DebugPrintf(", limit: %d", iAuxArg);
}
sqlite3DebugPrintf(")\n");
if( sqlite3WhereTrace & 0x8000 ){
Select sSelect;
memset(&sSelect, 0, sizeof(sSelect));
sSelect.selFlags = SF_WhereBegin;
sSelect.pSrc = pTabList;
sSelect.pWhere = pWhere;
sSelect.pOrderBy = pOrderBy;
sSelect.pEList = pResultSet;
sqlite3TreeViewSelect(0, &sSelect, 0);
}
if( sqlite3WhereTrace & 0x4000 ){ /* Display all WHERE clause terms */
sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
sqlite3WhereClausePrint(sWLB.pWC);
}
}
#endif
if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
rc = whereLoopAddAll(&sWLB);
if( rc ) goto whereBeginError;
#ifdef SQLITE_ENABLE_STAT4
/* If one or more WhereTerm.truthProb values were used in estimating
** loop parameters, but then those truthProb values were subsequently
** changed based on STAT4 information while computing subsequent loops,
** then we need to rerun the whole loop building process so that all
** loops will be built using the revised truthProb values. */
if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){
WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
WHERETRACE(0xffffffff,
("**** Redo all loop computations due to"
" TERM_HIGHTRUTH changes ****\n"));
while( pWInfo->pLoops ){
WhereLoop *p = pWInfo->pLoops;
pWInfo->pLoops = p->pNextLoop;
whereLoopDelete(db, p);
}
rc = whereLoopAddAll(&sWLB);
if( rc ) goto whereBeginError;
}
#endif
WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
wherePathSolver(pWInfo, 0);
if( db->mallocFailed ) goto whereBeginError;
if( pWInfo->pOrderBy ){
wherePathSolver(pWInfo, pWInfo->nRowOut+1);
if( db->mallocFailed ) goto whereBeginError;
}
/* TUNING: Assume that a DISTINCT clause on a subquery reduces
** the output size by a factor of 8 (LogEst -30).
*/
if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 ){
WHERETRACE(0x0080,("nRowOut reduced from %d to %d due to DISTINCT\n",
pWInfo->nRowOut, pWInfo->nRowOut-30));
pWInfo->nRowOut -= 30;
}
}
assert( pWInfo->pTabList!=0 );
if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
whereReverseScanOrder(pWInfo);
}
if( pParse->nErr ){
goto whereBeginError;
}
assert( db->mallocFailed==0 );
#ifdef WHERETRACE_ENABLED
if( sqlite3WhereTrace ){
sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
if( pWInfo->nOBSat>0 ){
sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
}
switch( pWInfo->eDistinct ){
case WHERE_DISTINCT_UNIQUE: {
sqlite3DebugPrintf(" DISTINCT=unique");
break;
}
case WHERE_DISTINCT_ORDERED: {
sqlite3DebugPrintf(" DISTINCT=ordered");
break;
}
case WHERE_DISTINCT_UNORDERED: {
sqlite3DebugPrintf(" DISTINCT=unordered");
break;
}
}
sqlite3DebugPrintf("\n");
for(ii=0; iinLevel; ii++){
sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
}
}
#endif
/* Attempt to omit tables from a join that do not affect the result.
** See the comment on whereOmitNoopJoin() for further information.
**
** This query optimization is factored out into a separate "no-inline"
** procedure to keep the sqlite3WhereBegin() procedure from becoming
** too large. If sqlite3WhereBegin() becomes too large, that prevents
** some C-compiler optimizers from in-lining the
** sqlite3WhereCodeOneLoopStart() procedure, and it is important to
** in-line sqlite3WhereCodeOneLoopStart() for performance reasons.
*/
notReady = ~(Bitmask)0;
if( pWInfo->nLevel>=2
&& pResultSet!=0 /* these two combine to guarantee */
&& 0==(wctrlFlags & WHERE_AGG_DISTINCT) /* condition (1) above */
&& OptimizationEnabled(db, SQLITE_OmitNoopJoin)
){
notReady = whereOmitNoopJoin(pWInfo, notReady);
nTabList = pWInfo->nLevel;
assert( nTabList>0 );
}
/* Check to see if there are any SEARCH loops that might benefit from
** using a Bloom filter.
*/
if( pWInfo->nLevel>=2
&& OptimizationEnabled(db, SQLITE_BloomFilter)
){
whereCheckIfBloomFilterIsUseful(pWInfo);
}
#if defined(WHERETRACE_ENABLED)
if( sqlite3WhereTrace & 0x4000 ){ /* Display all terms of the WHERE clause */
sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
sqlite3WhereClausePrint(sWLB.pWC);
}
WHERETRACE(0xffffffff,("*** Optimizer Finished ***\n"));
#endif
pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
/* If the caller is an UPDATE or DELETE statement that is requesting
** to use a one-pass algorithm, determine if this is appropriate.
**
** A one-pass approach can be used if the caller has requested one
** and either (a) the scan visits at most one row or (b) each
** of the following are true:
**
** * the caller has indicated that a one-pass approach can be used
** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
** * the table is not a virtual table, and
** * either the scan does not use the OR optimization or the caller
** is a DELETE operation (WHERE_DUPLICATES_OK is only specified
** for DELETE).
**
** The last qualification is because an UPDATE statement uses
** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
** use a one-pass approach, and this is not set accurately for scans
** that use the OR optimization.
*/
assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
if( bOnerow || (
0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
&& !IsVirtual(pTabList->a[0].pTab)
&& (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
&& OptimizationEnabled(db, SQLITE_OnePass)
)){
pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
bFordelete = OPFLAG_FORDELETE;
}
pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
}
}
}
/* Open all tables in the pTabList and any indices selected for
** searching those tables.
*/
for(ii=0, pLevel=pWInfo->a; iia[pLevel->iFrom];
pTab = pTabItem->pTab;
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
pLoop = pLevel->pWLoop;
if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){
/* Do nothing */
}else
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
int iCur = pTabItem->iCursor;
sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
}else if( IsVirtual(pTab) ){
/* noop */
}else
#endif
if( ((pLoop->wsFlags & WHERE_IDX_ONLY)==0
&& (wctrlFlags & WHERE_OR_SUBCLAUSE)==0)
|| (pTabItem->fg.jointype & (JT_LTORJ|JT_RIGHT))!=0
){
int op = OP_OpenRead;
if( pWInfo->eOnePass!=ONEPASS_OFF ){
op = OP_OpenWrite;
pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
};
sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
assert( pTabItem->iCursor==pLevel->iTabCur );
testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
if( pWInfo->eOnePass==ONEPASS_OFF
&& pTab->nColtabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
&& (pLoop->wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))==0
){
/* If we know that only a prefix of the record will be used,
** it is advantageous to reduce the "column count" field in
** the P4 operand of the OP_OpenRead/Write opcode. */
Bitmask b = pTabItem->colUsed;
int n = 0;
for(; b; b=b>>1, n++){}
sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
assert( n<=pTab->nCol );
}
#ifdef SQLITE_ENABLE_CURSOR_HINTS
if( pLoop->u.btree.pIndex!=0 && (pTab->tabFlags & TF_WithoutRowid)==0 ){
sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
}else
#endif
{
sqlite3VdbeChangeP5(v, bFordelete);
}
#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
(const u8*)&pTabItem->colUsed, P4_INT64);
#endif
}else{
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
}
if( pLoop->wsFlags & WHERE_INDEXED ){
Index *pIx = pLoop->u.btree.pIndex;
int iIndexCur;
int op = OP_OpenRead;
/* iAuxArg is always set to a positive value if ONEPASS is possible */
assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
&& (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
){
/* This is one term of an OR-optimization using the PRIMARY KEY of a
** WITHOUT ROWID table. No need for a separate index */
iIndexCur = pLevel->iTabCur;
op = 0;
}else if( pWInfo->eOnePass!=ONEPASS_OFF ){
Index *pJ = pTabItem->pTab->pIndex;
iIndexCur = iAuxArg;
assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
while( ALWAYS(pJ) && pJ!=pIx ){
iIndexCur++;
pJ = pJ->pNext;
}
op = OP_OpenWrite;
pWInfo->aiCurOnePass[1] = iIndexCur;
}else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
iIndexCur = iAuxArg;
op = OP_ReopenIdx;
}else{
iIndexCur = pParse->nTab++;
if( pIx->bHasExpr && OptimizationEnabled(db, SQLITE_IndexedExpr) ){
whereAddIndexedExpr(pParse, pIx, iIndexCur, pTabItem);
}
if( pIx->pPartIdxWhere && (pTabItem->fg.jointype & JT_RIGHT)==0 ){
wherePartIdxExpr(
pParse, pIx, pIx->pPartIdxWhere, 0, iIndexCur, pTabItem
);
}
}
pLevel->iIdxCur = iIndexCur;
assert( pIx!=0 );
assert( pIx->pSchema==pTab->pSchema );
assert( iIndexCur>=0 );
if( op ){
sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
sqlite3VdbeSetP4KeyInfo(pParse, pIx);
if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
&& (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
&& (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
&& (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
&& (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
&& pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
){
sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ);
}
VdbeComment((v, "%s", pIx->zName));
#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
{
u64 colUsed = 0;
int ii, jj;
for(ii=0; iinColumn; ii++){
jj = pIx->aiColumn[ii];
if( jj<0 ) continue;
if( jj>63 ) jj = 63;
if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
}
sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
(u8*)&colUsed, P4_INT64);
}
#endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
}
}
if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
if( (pTabItem->fg.jointype & JT_RIGHT)!=0
&& (pLevel->pRJ = sqlite3WhereMalloc(pWInfo, sizeof(WhereRightJoin)))!=0
){
WhereRightJoin *pRJ = pLevel->pRJ;
pRJ->iMatch = pParse->nTab++;
pRJ->regBloom = ++pParse->nMem;
sqlite3VdbeAddOp2(v, OP_Blob, 65536, pRJ->regBloom);
pRJ->regReturn = ++pParse->nMem;
sqlite3VdbeAddOp2(v, OP_Null, 0, pRJ->regReturn);
assert( pTab==pTabItem->pTab );
if( HasRowid(pTab) ){
KeyInfo *pInfo;
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, 1);
pInfo = sqlite3KeyInfoAlloc(pParse->db, 1, 0);
if( pInfo ){
pInfo->aColl[0] = 0;
pInfo->aSortFlags[0] = 0;
sqlite3VdbeAppendP4(v, pInfo, P4_KEYINFO);
}
}else{
Index *pPk = sqlite3PrimaryKeyIndex(pTab);
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, pPk->nKeyCol);
sqlite3VdbeSetP4KeyInfo(pParse, pPk);
}
pLoop->wsFlags &= ~WHERE_IDX_ONLY;
/* The nature of RIGHT JOIN processing is such that it messes up
** the output order. So omit any ORDER BY/GROUP BY elimination
** optimizations. We need to do an actual sort for RIGHT JOIN. */
pWInfo->nOBSat = 0;
pWInfo->eDistinct = WHERE_DISTINCT_UNORDERED;
}
}
pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
if( db->mallocFailed ) goto whereBeginError;
/* Generate the code to do the search. Each iteration of the for
** loop below generates code for a single nested loop of the VM
** program.
*/
for(ii=0; iinErr ) goto whereBeginError;
pLevel = &pWInfo->a[ii];
wsFlags = pLevel->pWLoop->wsFlags;
pSrc = &pTabList->a[pLevel->iFrom];
if( pSrc->fg.isMaterialized ){
if( pSrc->fg.isCorrelated ){
sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub);
}else{
int iOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub);
sqlite3VdbeJumpHere(v, iOnce);
}
}
assert( pTabList == pWInfo->pTabList );
if( (wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))!=0 ){
if( (wsFlags & WHERE_AUTO_INDEX)!=0 ){
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
constructAutomaticIndex(pParse, &pWInfo->sWC, notReady, pLevel);
#endif
}else{
sqlite3ConstructBloomFilter(pWInfo, ii, pLevel, notReady);
}
if( db->mallocFailed ) goto whereBeginError;
}
addrExplain = sqlite3WhereExplainOneScan(
pParse, pTabList, pLevel, wctrlFlags
);
pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
pWInfo->iContinue = pLevel->addrCont;
if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
}
}
/* Done. */
VdbeModuleComment((v, "Begin WHERE-core"));
pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v);
return pWInfo;
/* Jump here if malloc fails */
whereBeginError:
if( pWInfo ){
pParse->nQueryLoop = pWInfo->savedNQueryLoop;
whereInfoFree(db, pWInfo);
}
#ifdef WHERETRACE_ENABLED
/* Prevent harmless compiler warnings about debugging routines
** being declared but never used */
sqlite3ShowWhereLoopList(0);
#endif /* WHERETRACE_ENABLED */
return 0;
}
/*
** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
** index rather than the main table. In SQLITE_DEBUG mode, we want
** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine
** does that.
*/
#ifndef SQLITE_DEBUG
# define OpcodeRewriteTrace(D,K,P) /* no-op */
#else
# define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
static void sqlite3WhereOpcodeRewriteTrace(
sqlite3 *db,
int pc,
VdbeOp *pOp
){
if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
sqlite3VdbePrintOp(0, pc, pOp);
}
#endif
#ifdef SQLITE_DEBUG
/*
** Return true if cursor iCur is opened by instruction k of the
** bytecode. Used inside of assert() only.
*/
static int cursorIsOpen(Vdbe *v, int iCur, int k){
while( k>=0 ){
VdbeOp *pOp = sqlite3VdbeGetOp(v,k--);
if( pOp->p1!=iCur ) continue;
if( pOp->opcode==OP_Close ) return 0;
if( pOp->opcode==OP_OpenRead ) return 1;
if( pOp->opcode==OP_OpenWrite ) return 1;
if( pOp->opcode==OP_OpenDup ) return 1;
if( pOp->opcode==OP_OpenAutoindex ) return 1;
if( pOp->opcode==OP_OpenEphemeral ) return 1;
}
return 0;
}
#endif /* SQLITE_DEBUG */
/*
** Generate the end of the WHERE loop. See comments on
** sqlite3WhereBegin() for additional information.
*/
void sqlite3WhereEnd(WhereInfo *pWInfo){
Parse *pParse = pWInfo->pParse;
Vdbe *v = pParse->pVdbe;
int i;
WhereLevel *pLevel;
WhereLoop *pLoop;
SrcList *pTabList = pWInfo->pTabList;
sqlite3 *db = pParse->db;
int iEnd = sqlite3VdbeCurrentAddr(v);
int nRJ = 0;
/* Generate loop termination code.
*/
VdbeModuleComment((v, "End WHERE-core"));
for(i=pWInfo->nLevel-1; i>=0; i--){
int addr;
pLevel = &pWInfo->a[i];
if( pLevel->pRJ ){
/* Terminate the subroutine that forms the interior of the loop of
** the RIGHT JOIN table */
WhereRightJoin *pRJ = pLevel->pRJ;
sqlite3VdbeResolveLabel(v, pLevel->addrCont);
pLevel->addrCont = 0;
pRJ->endSubrtn = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp3(v, OP_Return, pRJ->regReturn, pRJ->addrSubrtn, 1);
VdbeCoverage(v);
nRJ++;
}
pLoop = pLevel->pWLoop;
if( pLevel->op!=OP_Noop ){
#ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
int addrSeek = 0;
Index *pIdx;
int n;
if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
&& i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */
&& (pLoop->wsFlags & WHERE_INDEXED)!=0
&& (pIdx = pLoop->u.btree.pIndex)->hasStat1
&& (n = pLoop->u.btree.nDistinctCol)>0
&& pIdx->aiRowLogEst[n]>=36
){
int r1 = pParse->nMem+1;
int j, op;
for(j=0; jiIdxCur, j, r1+j);
}
pParse->nMem += n+1;
op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
VdbeCoverageIf(v, op==OP_SeekLT);
VdbeCoverageIf(v, op==OP_SeekGT);
sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
}
#endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
/* The common case: Advance to the next row */
if( pLevel->addrCont ) sqlite3VdbeResolveLabel(v, pLevel->addrCont);
sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
sqlite3VdbeChangeP5(v, pLevel->p5);
VdbeCoverage(v);
VdbeCoverageIf(v, pLevel->op==OP_Next);
VdbeCoverageIf(v, pLevel->op==OP_Prev);
VdbeCoverageIf(v, pLevel->op==OP_VNext);
if( pLevel->regBignull ){
sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
VdbeCoverage(v);
}
#ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
#endif
}else if( pLevel->addrCont ){
sqlite3VdbeResolveLabel(v, pLevel->addrCont);
}
if( (pLoop->wsFlags & WHERE_IN_ABLE)!=0 && pLevel->u.in.nIn>0 ){
struct InLoop *pIn;
int j;
sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull
|| pParse->db->mallocFailed );
sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
if( pIn->eEndLoopOp!=OP_Noop ){
if( pIn->nPrefix ){
int bEarlyOut =
(pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
&& (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0;
if( pLevel->iLeftJoin ){
/* For LEFT JOIN queries, cursor pIn->iCur may not have been
** opened yet. This occurs for WHERE clauses such as
** "a = ? AND b IN (...)", where the index is on (a, b). If
** the RHS of the (a=?) is NULL, then the "b IN (...)" may
** never have been coded, but the body of the loop run to
** return the null-row. So, if the cursor is not open yet,
** jump over the OP_Next or OP_Prev instruction about to
** be coded. */
sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur,
sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut);
VdbeCoverage(v);
}
if( bEarlyOut ){
sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
sqlite3VdbeCurrentAddr(v)+2,
pIn->iBase, pIn->nPrefix);
VdbeCoverage(v);
/* Retarget the OP_IsNull against the left operand of IN so
** it jumps past the OP_IfNoHope. This is because the
** OP_IsNull also bypasses the OP_Affinity opcode that is
** required by OP_IfNoHope. */
sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
}
}
sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
VdbeCoverage(v);
VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
}
sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
}
}
sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
if( pLevel->pRJ ){
sqlite3VdbeAddOp3(v, OP_Return, pLevel->pRJ->regReturn, 0, 1);
VdbeCoverage(v);
}
if( pLevel->addrSkip ){
sqlite3VdbeGoto(v, pLevel->addrSkip);
VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
sqlite3VdbeJumpHere(v, pLevel->addrSkip);
sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
}
#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
if( pLevel->addrLikeRep ){
sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
pLevel->addrLikeRep);
VdbeCoverage(v);
}
#endif
if( pLevel->iLeftJoin ){
int ws = pLoop->wsFlags;
addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
if( (ws & WHERE_IDX_ONLY)==0 ){
assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
}
if( (ws & WHERE_INDEXED)
|| ((ws & WHERE_MULTI_OR) && pLevel->u.pCoveringIdx)
){
if( ws & WHERE_MULTI_OR ){
Index *pIx = pLevel->u.pCoveringIdx;
int iDb = sqlite3SchemaToIndex(db, pIx->pSchema);
sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb);
sqlite3VdbeSetP4KeyInfo(pParse, pIx);
}
sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
}
if( pLevel->op==OP_Return ){
sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
}else{
sqlite3VdbeGoto(v, pLevel->addrFirst);
}
sqlite3VdbeJumpHere(v, addr);
}
VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
}
assert( pWInfo->nLevel<=pTabList->nSrc );
for(i=0, pLevel=pWInfo->a; inLevel; i++, pLevel++){
int k, last;
VdbeOp *pOp, *pLastOp;
Index *pIdx = 0;
SrcItem *pTabItem = &pTabList->a[pLevel->iFrom];
Table *pTab = pTabItem->pTab;
assert( pTab!=0 );
pLoop = pLevel->pWLoop;
/* Do RIGHT JOIN processing. Generate code that will output the
** unmatched rows of the right operand of the RIGHT JOIN with
** all of the columns of the left operand set to NULL.
*/
if( pLevel->pRJ ){
sqlite3WhereRightJoinLoop(pWInfo, i, pLevel);
continue;
}
/* For a co-routine, change all OP_Column references to the table of
** the co-routine into OP_Copy of result contained in a register.
** OP_Rowid becomes OP_Null.
*/
if( pTabItem->fg.viaCoroutine ){
testcase( pParse->db->mallocFailed );
translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
pTabItem->regResult, 0);
continue;
}
/* If this scan uses an index, make VDBE code substitutions to read data
** from the index instead of from the table where possible. In some cases
** this optimization prevents the table from ever being read, which can
** yield a significant performance boost.
**
** Calls to the code generator in between sqlite3WhereBegin and
** sqlite3WhereEnd will have created code that references the table
** directly. This loop scans all that code looking for opcodes
** that reference the table and converts them into opcodes that
** reference the index.
*/
if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
pIdx = pLoop->u.btree.pIndex;
}else if( pLoop->wsFlags & WHERE_MULTI_OR ){
pIdx = pLevel->u.pCoveringIdx;
}
if( pIdx
&& !db->mallocFailed
){
if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){
last = iEnd;
}else{
last = pWInfo->iEndWhere;
}
if( pIdx->bHasExpr ){
IndexedExpr *p = pParse->pIdxEpr;
while( p ){
if( p->iIdxCur==pLevel->iIdxCur ){
#ifdef WHERETRACE_ENABLED
if( sqlite3WhereTrace & 0x200 ){
sqlite3DebugPrintf("Disable pParse->pIdxEpr term {%d,%d}\n",
p->iIdxCur, p->iIdxCol);
if( sqlite3WhereTrace & 0x5000 ) sqlite3ShowExpr(p->pExpr);
}
#endif
p->iDataCur = -1;
p->iIdxCur = -1;
}
p = p->pIENext;
}
}
k = pLevel->addrBody + 1;
#ifdef SQLITE_DEBUG
if( db->flags & SQLITE_VdbeAddopTrace ){
printf("TRANSLATE cursor %d->%d in opcode range %d..%d\n",
pLevel->iTabCur, pLevel->iIdxCur, k, last-1);
}
/* Proof that the "+1" on the k value above is safe */
pOp = sqlite3VdbeGetOp(v, k - 1);
assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur );
assert( pOp->opcode!=OP_Rowid || pOp->p1!=pLevel->iTabCur );
assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur );
#endif
pOp = sqlite3VdbeGetOp(v, k);
pLastOp = pOp + (last - k);
assert( pOp<=pLastOp );
do{
if( pOp->p1!=pLevel->iTabCur ){
/* no-op */
}else if( pOp->opcode==OP_Column
#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
|| pOp->opcode==OP_Offset
#endif
){
int x = pOp->p2;
assert( pIdx->pTable==pTab );
#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
if( pOp->opcode==OP_Offset ){
/* Do not need to translate the column number */
}else
#endif
if( !HasRowid(pTab) ){
Index *pPk = sqlite3PrimaryKeyIndex(pTab);
x = pPk->aiColumn[x];
assert( x>=0 );
}else{
testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
x = sqlite3StorageColumnToTable(pTab,x);
}
x = sqlite3TableColumnToIndex(pIdx, x);
if( x>=0 ){
pOp->p2 = x;
pOp->p1 = pLevel->iIdxCur;
OpcodeRewriteTrace(db, k, pOp);
}else{
/* Unable to translate the table reference into an index
** reference. Verify that this is harmless - that the
** table being referenced really is open.
*/
#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
|| cursorIsOpen(v,pOp->p1,k)
|| pOp->opcode==OP_Offset
);
#else
assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
|| cursorIsOpen(v,pOp->p1,k)
);
#endif
}
}else if( pOp->opcode==OP_Rowid ){
pOp->p1 = pLevel->iIdxCur;
pOp->opcode = OP_IdxRowid;
OpcodeRewriteTrace(db, k, pOp);
}else if( pOp->opcode==OP_IfNullRow ){
pOp->p1 = pLevel->iIdxCur;
OpcodeRewriteTrace(db, k, pOp);
}
#ifdef SQLITE_DEBUG
k++;
#endif
}while( (++pOp)flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
#endif
}
}
/* The "break" point is here, just past the end of the outer loop.
** Set it.
*/
sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
/* Final cleanup
*/
pParse->nQueryLoop = pWInfo->savedNQueryLoop;
whereInfoFree(db, pWInfo);
pParse->withinRJSubrtn -= nRJ;
return;
}