1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
|
/*
** 2011-08-18
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains the implementation of an in-memory tree structure.
**
** Technically the tree is a B-tree of order 4 (in the Knuth sense - each
** node may have up to 4 children). Keys are stored within B-tree nodes by
** reference. This may be slightly slower than a conventional red-black
** tree, but it is simpler. It is also an easier structure to modify to
** create a version that supports nested transaction rollback.
**
** This tree does not currently support a delete operation. One is not
** required. When LSM deletes a key from a database, it inserts a DELETE
** marker into the data structure. As a result, although the value associated
** with a key stored in the in-memory tree structure may be modified, no
** keys are ever removed.
*/
/*
** MVCC NOTES
**
** The in-memory tree structure supports SQLite-style MVCC. This means
** that while one client is writing to the tree structure, other clients
** may still be querying an older snapshot of the tree.
**
** One way to implement this is to use an append-only b-tree. In this
** case instead of modifying nodes in-place, a copy of the node is made
** and the required modifications made to the copy. The parent of the
** node is then modified (to update the pointer so that it points to
** the new copy), which causes a copy of the parent to be made, and so on.
** This means that each time the tree is written to a new root node is
** created. A snapshot is identified by the root node that it uses.
**
** The problem with the above is that each time the tree is written to,
** a copy of the node structure modified and all of its ancestor nodes
** is made. This may prove excessive with large tree structures.
**
** To reduce this overhead, the data structure used for a tree node is
** designed so that it may be edited in place exactly once without
** affecting existing users. In other words, the node structure is capable
** of storing two separate versions of the node at the same time.
** When a node is to be edited, if the node structure already contains
** two versions, a copy is made as in the append-only approach. Or, if
** it only contains a single version, it is edited in place.
**
** This reduces the overhead so that, roughly, one new node structure
** must be allocated for each write (on top of those allocations that
** would have been required by a non-MVCC tree). Logic: Assume that at
** any time, 50% of nodes in the tree already contain 2 versions. When
** a new entry is written to a node, there is a 50% chance that a copy
** of the node will be required. And a 25% chance that a copy of its
** parent is required. And so on.
**
** ROLLBACK
**
** The in-memory tree also supports transaction and sub-transaction
** rollback. In order to rollback to point in time X, the following is
** necessary:
**
** 1. All memory allocated since X must be freed, and
** 2. All "v2" data adding to nodes that existed at X should be zeroed.
** 3. The root node must be restored to its X value.
**
** The Mempool object used to allocate memory for the tree supports
** operation (1) - see the lsmPoolMark() and lsmPoolRevert() functions.
**
** To support (2), all nodes that have v2 data are part of a singly linked
** list, sorted by the age of the v2 data (nodes that have had data added
** most recently are at the end of the list). So to zero all v2 data added
** since X, the linked list is traversed from the first node added following
** X onwards.
**
*/
#ifndef _LSM_INT_H
# include "lsmInt.h"
#endif
#include <string.h>
#define MAX_DEPTH 32
typedef struct TreeKey TreeKey;
typedef struct TreeNode TreeNode;
typedef struct TreeLeaf TreeLeaf;
typedef struct NodeVersion NodeVersion;
struct TreeOld {
u32 iShmid; /* Last shared-memory chunk in use by old */
u32 iRoot; /* Offset of root node in shm file */
u32 nHeight; /* Height of tree structure */
};
#if 0
/*
** assert() that a TreeKey.flags value is sane. Usage:
**
** assert( lsmAssertFlagsOk(pTreeKey->flags) );
*/
static int lsmAssertFlagsOk(u8 keyflags){
/* At least one flag must be set. Otherwise, what is this key doing? */
assert( keyflags!=0 );
/* The POINT_DELETE and INSERT flags cannot both be set. */
assert( (keyflags & LSM_POINT_DELETE)==0 || (keyflags & LSM_INSERT)==0 );
/* If both the START_DELETE and END_DELETE flags are set, then the INSERT
** flag must also be set. In other words - the three DELETE flags cannot
** all be set */
assert( (keyflags & LSM_END_DELETE)==0
|| (keyflags & LSM_START_DELETE)==0
|| (keyflags & LSM_POINT_DELETE)==0
);
return 1;
}
#endif
static int assert_delete_ranges_match(lsm_db *);
static int treeCountEntries(lsm_db *db);
/*
** Container for a key-value pair. Within the *-shm file, each key/value
** pair is stored in a single allocation (which may not actually be
** contiguous in memory). Layout is the TreeKey structure, followed by
** the nKey bytes of key blob, followed by the nValue bytes of value blob
** (if nValue is non-negative).
*/
struct TreeKey {
int nKey; /* Size of pKey in bytes */
int nValue; /* Size of pValue. Or negative. */
u8 flags; /* Various LSM_XXX flags */
};
#define TKV_KEY(p) ((void *)&(p)[1])
#define TKV_VAL(p) ((void *)(((u8 *)&(p)[1]) + (p)->nKey))
/*
** A single tree node. A node structure may contain up to 3 key/value
** pairs. Internal (non-leaf) nodes have up to 4 children.
**
** TODO: Update the format of this to be more compact. Get it working
** first though...
*/
struct TreeNode {
u32 aiKeyPtr[3]; /* Array of pointers to TreeKey objects */
/* The following fields are present for interior nodes only, not leaves. */
u32 aiChildPtr[4]; /* Array of pointers to child nodes */
/* The extra child pointer slot. */
u32 iV2; /* Transaction number of v2 */
u8 iV2Child; /* apChild[] entry replaced by pV2Ptr */
u32 iV2Ptr; /* Substitute pointer */
};
struct TreeLeaf {
u32 aiKeyPtr[3]; /* Array of pointers to TreeKey objects */
};
typedef struct TreeBlob TreeBlob;
struct TreeBlob {
int n;
u8 *a;
};
/*
** Cursor for searching a tree structure.
**
** If a cursor does not point to any element (a.k.a. EOF), then the
** TreeCursor.iNode variable is set to a negative value. Otherwise, the
** cursor currently points to key aiCell[iNode] on node apTreeNode[iNode].
**
** Entries in the apTreeNode[] and aiCell[] arrays contain the node and
** index of the TreeNode.apChild[] pointer followed to descend to the
** current element. Hence apTreeNode[0] always contains the root node of
** the tree.
*/
struct TreeCursor {
lsm_db *pDb; /* Database handle for this cursor */
TreeRoot *pRoot; /* Root node and height of tree to access */
int iNode; /* Cursor points at apTreeNode[iNode] */
TreeNode *apTreeNode[MAX_DEPTH];/* Current position in tree */
u8 aiCell[MAX_DEPTH]; /* Current position in tree */
TreeKey *pSave; /* Saved key */
TreeBlob blob; /* Dynamic storage for a key */
};
/*
** A value guaranteed to be larger than the largest possible transaction
** id (TreeHeader.iTransId).
*/
#define WORKING_VERSION (1<<30)
static int tblobGrow(lsm_db *pDb, TreeBlob *p, int n, int *pRc){
if( n>p->n ){
lsmFree(pDb->pEnv, p->a);
p->a = lsmMallocRc(pDb->pEnv, n, pRc);
p->n = n;
}
return (p->a==0);
}
static void tblobFree(lsm_db *pDb, TreeBlob *p){
lsmFree(pDb->pEnv, p->a);
}
/***********************************************************************
** Start of IntArray methods. */
/*
** Append value iVal to the contents of IntArray *p. Return LSM_OK if
** successful, or LSM_NOMEM if an OOM condition is encountered.
*/
static int intArrayAppend(lsm_env *pEnv, IntArray *p, u32 iVal){
assert( p->nArray<=p->nAlloc );
if( p->nArray>=p->nAlloc ){
u32 *aNew;
int nNew = p->nArray ? p->nArray*2 : 128;
aNew = lsmRealloc(pEnv, p->aArray, nNew*sizeof(u32));
if( !aNew ) return LSM_NOMEM_BKPT;
p->aArray = aNew;
p->nAlloc = nNew;
}
p->aArray[p->nArray++] = iVal;
return LSM_OK;
}
/*
** Zero the IntArray object.
*/
static void intArrayFree(lsm_env *pEnv, IntArray *p){
p->nArray = 0;
}
/*
** Return the number of entries currently in the int-array object.
*/
static int intArraySize(IntArray *p){
return p->nArray;
}
/*
** Return a copy of the iIdx'th entry in the int-array.
*/
static u32 intArrayEntry(IntArray *p, int iIdx){
return p->aArray[iIdx];
}
/*
** Truncate the int-array so that all but the first nVal values are
** discarded.
*/
static void intArrayTruncate(IntArray *p, int nVal){
p->nArray = nVal;
}
/* End of IntArray methods.
***********************************************************************/
static int treeKeycmp(void *p1, int n1, void *p2, int n2){
int res;
res = memcmp(p1, p2, LSM_MIN(n1, n2));
if( res==0 ) res = (n1-n2);
return res;
}
/*
** The pointer passed as the first argument points to an interior node,
** not a leaf. This function returns the offset of the iCell'th child
** sub-tree of the node.
*/
static u32 getChildPtr(TreeNode *p, int iVersion, int iCell){
assert( iVersion>=0 );
assert( iCell>=0 && iCell<=array_size(p->aiChildPtr) );
if( p->iV2 && p->iV2<=(u32)iVersion && iCell==p->iV2Child ) return p->iV2Ptr;
return p->aiChildPtr[iCell];
}
/*
** Given an offset within the *-shm file, return the associated chunk number.
*/
static int treeOffsetToChunk(u32 iOff){
assert( LSM_SHM_CHUNK_SIZE==(1<<15) );
return (int)(iOff>>15);
}
#define treeShmptrUnsafe(pDb, iPtr) \
(&((u8*)((pDb)->apShm[(iPtr)>>15]))[(iPtr) & (LSM_SHM_CHUNK_SIZE-1)])
/*
** Return a pointer to the mapped memory location associated with *-shm
** file offset iPtr.
*/
static void *treeShmptr(lsm_db *pDb, u32 iPtr){
assert( (iPtr>>15)<(u32)pDb->nShm );
assert( pDb->apShm[iPtr>>15] );
return iPtr ? treeShmptrUnsafe(pDb, iPtr) : 0;
}
static ShmChunk * treeShmChunk(lsm_db *pDb, int iChunk){
return (ShmChunk *)(pDb->apShm[iChunk]);
}
static ShmChunk * treeShmChunkRc(lsm_db *pDb, int iChunk, int *pRc){
assert( *pRc==LSM_OK );
if( iChunk<pDb->nShm || LSM_OK==(*pRc = lsmShmCacheChunks(pDb, iChunk+1)) ){
return (ShmChunk *)(pDb->apShm[iChunk]);
}
return 0;
}
#ifndef NDEBUG
static void assertIsWorkingChild(
lsm_db *db,
TreeNode *pNode,
TreeNode *pParent,
int iCell
){
TreeNode *p;
u32 iPtr = getChildPtr(pParent, WORKING_VERSION, iCell);
p = treeShmptr(db, iPtr);
assert( p==pNode );
}
#else
# define assertIsWorkingChild(w,x,y,z)
#endif
/* Values for the third argument to treeShmkey(). */
#define TKV_LOADKEY 1
#define TKV_LOADVAL 2
static TreeKey *treeShmkey(
lsm_db *pDb, /* Database handle */
u32 iPtr, /* Shmptr to TreeKey struct */
int eLoad, /* Either zero or a TREEKEY_LOADXXX value */
TreeBlob *pBlob, /* Used if dynamic memory is required */
int *pRc /* IN/OUT: Error code */
){
TreeKey *pRet;
assert( eLoad==TKV_LOADKEY || eLoad==TKV_LOADVAL );
pRet = (TreeKey *)treeShmptr(pDb, iPtr);
if( pRet ){
int nReq; /* Bytes of space required at pRet */
int nAvail; /* Bytes of space available at pRet */
nReq = sizeof(TreeKey) + pRet->nKey;
if( eLoad==TKV_LOADVAL && pRet->nValue>0 ){
nReq += pRet->nValue;
}
assert( LSM_SHM_CHUNK_SIZE==(1<<15) );
nAvail = LSM_SHM_CHUNK_SIZE - (iPtr & (LSM_SHM_CHUNK_SIZE-1));
if( nAvail<nReq ){
if( tblobGrow(pDb, pBlob, nReq, pRc)==0 ){
int nLoad = 0;
while( *pRc==LSM_OK ){
ShmChunk *pChunk;
void *p = treeShmptr(pDb, iPtr);
int n = LSM_MIN(nAvail, nReq-nLoad);
memcpy(&pBlob->a[nLoad], p, n);
nLoad += n;
if( nLoad==nReq ) break;
pChunk = treeShmChunk(pDb, treeOffsetToChunk(iPtr));
assert( pChunk );
iPtr = (pChunk->iNext * LSM_SHM_CHUNK_SIZE) + LSM_SHM_CHUNK_HDR;
nAvail = LSM_SHM_CHUNK_SIZE - LSM_SHM_CHUNK_HDR;
}
}
pRet = (TreeKey *)(pBlob->a);
}
}
return pRet;
}
#if defined(LSM_DEBUG) && defined(LSM_EXPENSIVE_ASSERT)
void assert_leaf_looks_ok(TreeNode *pNode){
assert( pNode->apKey[1] );
}
void assert_node_looks_ok(TreeNode *pNode, int nHeight){
if( pNode ){
assert( pNode->apKey[1] );
if( nHeight>1 ){
int i;
assert( getChildPtr(pNode, WORKING_VERSION, 1) );
assert( getChildPtr(pNode, WORKING_VERSION, 2) );
for(i=0; i<4; i++){
assert_node_looks_ok(getChildPtr(pNode, WORKING_VERSION, i), nHeight-1);
}
}
}
}
/*
** Run various assert() statements to check that the working-version of the
** tree is correct in the following respects:
**
** * todo...
*/
void assert_tree_looks_ok(int rc, Tree *pTree){
}
#else
# define assert_tree_looks_ok(x,y)
#endif
void lsmFlagsToString(int flags, char *zFlags){
zFlags[0] = (flags & LSM_END_DELETE) ? ']' : '.';
/* Only one of LSM_POINT_DELETE, LSM_INSERT and LSM_SEPARATOR should ever
** be set. If this is not true, write a '?' to the output. */
switch( flags & (LSM_POINT_DELETE|LSM_INSERT|LSM_SEPARATOR) ){
case 0: zFlags[1] = '.'; break;
case LSM_POINT_DELETE: zFlags[1] = '-'; break;
case LSM_INSERT: zFlags[1] = '+'; break;
case LSM_SEPARATOR: zFlags[1] = '^'; break;
default: zFlags[1] = '?'; break;
}
zFlags[2] = (flags & LSM_SYSTEMKEY) ? '*' : '.';
zFlags[3] = (flags & LSM_START_DELETE) ? '[' : '.';
zFlags[4] = '\0';
}
#ifdef LSM_DEBUG
/*
** Pointer pBlob points to a buffer containing a blob of binary data
** nBlob bytes long. Append the contents of this blob to *pStr, with
** each octet represented by a 2-digit hexadecimal number. For example,
** if the input blob is three bytes in size and contains {0x01, 0x44, 0xFF},
** then "0144ff" is appended to *pStr.
*/
static void lsmAppendStrBlob(LsmString *pStr, void *pBlob, int nBlob){
int i;
lsmStringExtend(pStr, nBlob*2);
if( pStr->nAlloc==0 ) return;
for(i=0; i<nBlob; i++){
u8 c = ((u8*)pBlob)[i];
if( c>='a' && c<='z' ){
pStr->z[pStr->n++] = c;
}else if( c!=0 || nBlob==1 || i!=(nBlob-1) ){
pStr->z[pStr->n++] = "0123456789abcdef"[(c>>4)&0xf];
pStr->z[pStr->n++] = "0123456789abcdef"[c&0xf];
}
}
pStr->z[pStr->n] = 0;
}
#if 0 /* NOT USED */
/*
** Append nIndent space (0x20) characters to string *pStr.
*/
static void lsmAppendIndent(LsmString *pStr, int nIndent){
int i;
lsmStringExtend(pStr, nIndent);
for(i=0; i<nIndent; i++) lsmStringAppend(pStr, " ", 1);
}
#endif
static void strAppendFlags(LsmString *pStr, u8 flags){
char zFlags[8];
lsmFlagsToString(flags, zFlags);
zFlags[4] = ':';
lsmStringAppend(pStr, zFlags, 5);
}
void dump_node_contents(
lsm_db *pDb,
u32 iNode, /* Print out the contents of this node */
char *zPath, /* Path from root to this node */
int nPath, /* Number of bytes in zPath */
int nHeight /* Height: (0==leaf) (1==parent-of-leaf) */
){
const char *zSpace = " ";
int i;
int rc = LSM_OK;
LsmString s;
TreeNode *pNode;
TreeBlob b = {0, 0};
pNode = (TreeNode *)treeShmptr(pDb, iNode);
if( nHeight==0 ){
/* Append the nIndent bytes of space to string s. */
lsmStringInit(&s, pDb->pEnv);
/* Append each key to string s. */
for(i=0; i<3; i++){
u32 iPtr = pNode->aiKeyPtr[i];
if( iPtr ){
TreeKey *pKey = treeShmkey(pDb, pNode->aiKeyPtr[i],TKV_LOADKEY, &b,&rc);
strAppendFlags(&s, pKey->flags);
lsmAppendStrBlob(&s, TKV_KEY(pKey), pKey->nKey);
lsmStringAppend(&s, " ", -1);
}
}
printf("% 6d %.*sleaf%.*s: %s\n",
iNode, nPath, zPath, 20-nPath-4, zSpace, s.z
);
lsmStringClear(&s);
}else{
for(i=0; i<4 && nHeight>0; i++){
u32 iPtr = getChildPtr(pNode, pDb->treehdr.root.iTransId, i);
zPath[nPath] = (char)(i+'0');
zPath[nPath+1] = '/';
if( iPtr ){
dump_node_contents(pDb, iPtr, zPath, nPath+2, nHeight-1);
}
if( i!=3 && pNode->aiKeyPtr[i] ){
TreeKey *pKey = treeShmkey(pDb, pNode->aiKeyPtr[i], TKV_LOADKEY,&b,&rc);
lsmStringInit(&s, pDb->pEnv);
strAppendFlags(&s, pKey->flags);
lsmAppendStrBlob(&s, TKV_KEY(pKey), pKey->nKey);
printf("% 6d %.*s%.*s: %s\n",
iNode, nPath+1, zPath, 20-nPath-1, zSpace, s.z);
lsmStringClear(&s);
}
}
}
tblobFree(pDb, &b);
}
void dump_tree_contents(lsm_db *pDb, const char *zCaption){
char zPath[64];
TreeRoot *p = &pDb->treehdr.root;
printf("\n%s\n", zCaption);
zPath[0] = '/';
if( p->iRoot ){
dump_node_contents(pDb, p->iRoot, zPath, 1, p->nHeight-1);
}
fflush(stdout);
}
#endif
/*
** Initialize a cursor object, the space for which has already been
** allocated.
*/
static void treeCursorInit(lsm_db *pDb, int bOld, TreeCursor *pCsr){
memset(pCsr, 0, sizeof(TreeCursor));
pCsr->pDb = pDb;
if( bOld ){
pCsr->pRoot = &pDb->treehdr.oldroot;
}else{
pCsr->pRoot = &pDb->treehdr.root;
}
pCsr->iNode = -1;
}
/*
** Return a pointer to the mapping of the TreeKey object that the cursor
** is pointing to.
*/
static TreeKey *csrGetKey(TreeCursor *pCsr, TreeBlob *pBlob, int *pRc){
TreeKey *pRet;
lsm_db *pDb = pCsr->pDb;
u32 iPtr = pCsr->apTreeNode[pCsr->iNode]->aiKeyPtr[pCsr->aiCell[pCsr->iNode]];
assert( iPtr );
pRet = (TreeKey*)treeShmptrUnsafe(pDb, iPtr);
if( !(pRet->flags & LSM_CONTIGUOUS) ){
pRet = treeShmkey(pDb, iPtr, TKV_LOADVAL, pBlob, pRc);
}
return pRet;
}
/*
** Save the current position of tree cursor pCsr.
*/
int lsmTreeCursorSave(TreeCursor *pCsr){
int rc = LSM_OK;
if( pCsr && pCsr->pSave==0 ){
int iNode = pCsr->iNode;
if( iNode>=0 ){
pCsr->pSave = csrGetKey(pCsr, &pCsr->blob, &rc);
}
pCsr->iNode = -1;
}
return rc;
}
/*
** Restore the position of a saved tree cursor.
*/
static int treeCursorRestore(TreeCursor *pCsr, int *pRes){
int rc = LSM_OK;
if( pCsr->pSave ){
TreeKey *pKey = pCsr->pSave;
pCsr->pSave = 0;
if( pRes ){
rc = lsmTreeCursorSeek(pCsr, TKV_KEY(pKey), pKey->nKey, pRes);
}
}
return rc;
}
/*
** Allocate nByte bytes of space within the *-shm file. If successful,
** return LSM_OK and set *piPtr to the offset within the file at which
** the allocated space is located.
*/
static u32 treeShmalloc(lsm_db *pDb, int bAlign, int nByte, int *pRc){
u32 iRet = 0;
if( *pRc==LSM_OK ){
const static int CHUNK_SIZE = LSM_SHM_CHUNK_SIZE;
const static int CHUNK_HDR = LSM_SHM_CHUNK_HDR;
u32 iWrite; /* Current write offset */
u32 iEof; /* End of current chunk */
int iChunk; /* Current chunk */
assert( nByte <= (CHUNK_SIZE-CHUNK_HDR) );
/* Check if there is enough space on the current chunk to fit the
** new allocation. If not, link in a new chunk and put the new
** allocation at the start of it. */
iWrite = pDb->treehdr.iWrite;
if( bAlign ){
iWrite = (iWrite + 3) & ~0x0003;
assert( (iWrite % 4)==0 );
}
assert( iWrite );
iChunk = treeOffsetToChunk(iWrite-1);
iEof = (iChunk+1) * CHUNK_SIZE;
assert( iEof>=iWrite && (iEof-iWrite)<(u32)CHUNK_SIZE );
if( (iWrite+nByte)>iEof ){
ShmChunk *pHdr; /* Header of chunk just finished (iChunk) */
ShmChunk *pFirst; /* Header of chunk treehdr.iFirst */
ShmChunk *pNext; /* Header of new chunk */
int iNext = 0; /* Next chunk */
int rc = LSM_OK;
pFirst = treeShmChunk(pDb, pDb->treehdr.iFirst);
assert( shm_sequence_ge(pDb->treehdr.iUsedShmid, pFirst->iShmid) );
assert( (pDb->treehdr.iNextShmid+1-pDb->treehdr.nChunk)==pFirst->iShmid );
/* Check if the chunk at the start of the linked list is still in
** use. If not, reuse it. If so, allocate a new chunk by appending
** to the *-shm file. */
if( pDb->treehdr.iUsedShmid!=pFirst->iShmid ){
int bInUse;
rc = lsmTreeInUse(pDb, pFirst->iShmid, &bInUse);
if( rc!=LSM_OK ){
*pRc = rc;
return 0;
}
if( bInUse==0 ){
iNext = pDb->treehdr.iFirst;
pDb->treehdr.iFirst = pFirst->iNext;
assert( pDb->treehdr.iFirst );
}
}
if( iNext==0 ) iNext = pDb->treehdr.nChunk++;
/* Set the header values for the new chunk */
pNext = treeShmChunkRc(pDb, iNext, &rc);
if( pNext ){
pNext->iNext = 0;
pNext->iShmid = (pDb->treehdr.iNextShmid++);
}else{
*pRc = rc;
return 0;
}
/* Set the header values for the chunk just finished */
pHdr = (ShmChunk *)treeShmptr(pDb, iChunk*CHUNK_SIZE);
pHdr->iNext = iNext;
/* Advance to the next chunk */
iWrite = iNext * CHUNK_SIZE + CHUNK_HDR;
}
/* Allocate space at iWrite. */
iRet = iWrite;
pDb->treehdr.iWrite = iWrite + nByte;
pDb->treehdr.root.nByte += nByte;
}
return iRet;
}
/*
** Allocate and zero nByte bytes of space within the *-shm file.
*/
static void *treeShmallocZero(lsm_db *pDb, int nByte, u32 *piPtr, int *pRc){
u32 iPtr;
void *p;
iPtr = treeShmalloc(pDb, 1, nByte, pRc);
p = treeShmptr(pDb, iPtr);
if( p ){
assert( *pRc==LSM_OK );
memset(p, 0, nByte);
*piPtr = iPtr;
}
return p;
}
static TreeNode *newTreeNode(lsm_db *pDb, u32 *piPtr, int *pRc){
return treeShmallocZero(pDb, sizeof(TreeNode), piPtr, pRc);
}
static TreeLeaf *newTreeLeaf(lsm_db *pDb, u32 *piPtr, int *pRc){
return treeShmallocZero(pDb, sizeof(TreeLeaf), piPtr, pRc);
}
static TreeKey *newTreeKey(
lsm_db *pDb,
u32 *piPtr,
void *pKey, int nKey, /* Key data */
void *pVal, int nVal, /* Value data (or nVal<0 for delete) */
int *pRc
){
TreeKey *p;
u32 iPtr;
u32 iEnd;
int nRem;
u8 *a;
int n;
/* Allocate space for the TreeKey structure itself */
*piPtr = iPtr = treeShmalloc(pDb, 1, sizeof(TreeKey), pRc);
p = treeShmptr(pDb, iPtr);
if( *pRc ) return 0;
p->nKey = nKey;
p->nValue = nVal;
/* Allocate and populate the space required for the key and value. */
n = nRem = nKey;
a = (u8 *)pKey;
while( a ){
while( nRem>0 ){
u8 *aAlloc;
int nAlloc;
u32 iWrite;
iWrite = (pDb->treehdr.iWrite & (LSM_SHM_CHUNK_SIZE-1));
iWrite = LSM_MAX(iWrite, LSM_SHM_CHUNK_HDR);
nAlloc = LSM_MIN((LSM_SHM_CHUNK_SIZE-iWrite), (u32)nRem);
aAlloc = treeShmptr(pDb, treeShmalloc(pDb, 0, nAlloc, pRc));
if( aAlloc==0 ) break;
memcpy(aAlloc, &a[n-nRem], nAlloc);
nRem -= nAlloc;
}
a = pVal;
n = nRem = nVal;
pVal = 0;
}
iEnd = iPtr + sizeof(TreeKey) + nKey + LSM_MAX(0, nVal);
if( (iPtr & ~(LSM_SHM_CHUNK_SIZE-1))!=(iEnd & ~(LSM_SHM_CHUNK_SIZE-1)) ){
p->flags = 0;
}else{
p->flags = LSM_CONTIGUOUS;
}
if( *pRc ) return 0;
#if 0
printf("store: %d %s\n", (int)iPtr, (char *)pKey);
#endif
return p;
}
static TreeNode *copyTreeNode(
lsm_db *pDb,
TreeNode *pOld,
u32 *piNew,
int *pRc
){
TreeNode *pNew;
pNew = newTreeNode(pDb, piNew, pRc);
if( pNew ){
memcpy(pNew->aiKeyPtr, pOld->aiKeyPtr, sizeof(pNew->aiKeyPtr));
memcpy(pNew->aiChildPtr, pOld->aiChildPtr, sizeof(pNew->aiChildPtr));
if( pOld->iV2 ) pNew->aiChildPtr[pOld->iV2Child] = pOld->iV2Ptr;
}
return pNew;
}
static TreeNode *copyTreeLeaf(
lsm_db *pDb,
TreeLeaf *pOld,
u32 *piNew,
int *pRc
){
TreeLeaf *pNew;
pNew = newTreeLeaf(pDb, piNew, pRc);
if( pNew ){
memcpy(pNew, pOld, sizeof(TreeLeaf));
}
return (TreeNode *)pNew;
}
/*
** The tree cursor passed as the second argument currently points to an
** internal node (not a leaf). Specifically, to a sub-tree pointer. This
** function replaces the sub-tree that the cursor currently points to
** with sub-tree pNew.
**
** The sub-tree may be replaced either by writing the "v2 data" on the
** internal node, or by allocating a new TreeNode structure and then
** calling this function on the parent of the internal node.
*/
static int treeUpdatePtr(lsm_db *pDb, TreeCursor *pCsr, u32 iNew){
int rc = LSM_OK;
if( pCsr->iNode<0 ){
/* iNew is the new root node */
pDb->treehdr.root.iRoot = iNew;
}else{
/* If this node already has version 2 content, allocate a copy and
** update the copy with the new pointer value. Otherwise, store the
** new pointer as v2 data within the current node structure. */
TreeNode *p; /* The node to be modified */
int iChildPtr; /* apChild[] entry to modify */
p = pCsr->apTreeNode[pCsr->iNode];
iChildPtr = pCsr->aiCell[pCsr->iNode];
if( p->iV2 ){
/* The "allocate new TreeNode" option */
u32 iCopy;
TreeNode *pCopy;
pCopy = copyTreeNode(pDb, p, &iCopy, &rc);
if( pCopy ){
assert( rc==LSM_OK );
pCopy->aiChildPtr[iChildPtr] = iNew;
pCsr->iNode--;
rc = treeUpdatePtr(pDb, pCsr, iCopy);
}
}else{
/* The "v2 data" option */
u32 iPtr;
assert( pDb->treehdr.root.iTransId>0 );
if( pCsr->iNode ){
iPtr = getChildPtr(
pCsr->apTreeNode[pCsr->iNode-1],
pDb->treehdr.root.iTransId, pCsr->aiCell[pCsr->iNode-1]
);
}else{
iPtr = pDb->treehdr.root.iRoot;
}
rc = intArrayAppend(pDb->pEnv, &pDb->rollback, iPtr);
if( rc==LSM_OK ){
p->iV2 = pDb->treehdr.root.iTransId;
p->iV2Child = (u8)iChildPtr;
p->iV2Ptr = iNew;
}
}
}
return rc;
}
/*
** Cursor pCsr points at a node that is part of pTree. This function
** inserts a new key and optionally child node pointer into that node.
**
** The position into which the new key and pointer are inserted is
** determined by the iSlot parameter. The new key will be inserted to
** the left of the key currently stored in apKey[iSlot]. Or, if iSlot is
** greater than the index of the rightmost key in the node.
**
** Pointer pLeftPtr points to a child tree that contains keys that are
** smaller than pTreeKey.
*/
static int treeInsert(
lsm_db *pDb, /* Database handle */
TreeCursor *pCsr, /* Cursor indicating path to insert at */
u32 iLeftPtr, /* Left child pointer */
u32 iTreeKey, /* Location of key to insert */
u32 iRightPtr, /* Right child pointer */
int iSlot /* Position to insert key into */
){
int rc = LSM_OK;
TreeNode *pNode = pCsr->apTreeNode[pCsr->iNode];
/* Check if the node is currently full. If so, split pNode in two and
** call this function recursively to add a key to the parent. Otherwise,
** insert the new key directly into pNode. */
assert( pNode->aiKeyPtr[1] );
if( pNode->aiKeyPtr[0] && pNode->aiKeyPtr[2] ){
u32 iLeft; TreeNode *pLeft; /* New left-hand sibling node */
u32 iRight; TreeNode *pRight; /* New right-hand sibling node */
pLeft = newTreeNode(pDb, &iLeft, &rc);
pRight = newTreeNode(pDb, &iRight, &rc);
if( rc ) return rc;
pLeft->aiChildPtr[1] = getChildPtr(pNode, WORKING_VERSION, 0);
pLeft->aiKeyPtr[1] = pNode->aiKeyPtr[0];
pLeft->aiChildPtr[2] = getChildPtr(pNode, WORKING_VERSION, 1);
pRight->aiChildPtr[1] = getChildPtr(pNode, WORKING_VERSION, 2);
pRight->aiKeyPtr[1] = pNode->aiKeyPtr[2];
pRight->aiChildPtr[2] = getChildPtr(pNode, WORKING_VERSION, 3);
if( pCsr->iNode==0 ){
/* pNode is the root of the tree. Grow the tree by one level. */
u32 iRoot; TreeNode *pRoot; /* New root node */
pRoot = newTreeNode(pDb, &iRoot, &rc);
pRoot->aiKeyPtr[1] = pNode->aiKeyPtr[1];
pRoot->aiChildPtr[1] = iLeft;
pRoot->aiChildPtr[2] = iRight;
pDb->treehdr.root.iRoot = iRoot;
pDb->treehdr.root.nHeight++;
}else{
pCsr->iNode--;
rc = treeInsert(pDb, pCsr,
iLeft, pNode->aiKeyPtr[1], iRight, pCsr->aiCell[pCsr->iNode]
);
}
assert( pLeft->iV2==0 );
assert( pRight->iV2==0 );
switch( iSlot ){
case 0:
pLeft->aiKeyPtr[0] = iTreeKey;
pLeft->aiChildPtr[0] = iLeftPtr;
if( iRightPtr ) pLeft->aiChildPtr[1] = iRightPtr;
break;
case 1:
pLeft->aiChildPtr[3] = (iRightPtr ? iRightPtr : pLeft->aiChildPtr[2]);
pLeft->aiKeyPtr[2] = iTreeKey;
pLeft->aiChildPtr[2] = iLeftPtr;
break;
case 2:
pRight->aiKeyPtr[0] = iTreeKey;
pRight->aiChildPtr[0] = iLeftPtr;
if( iRightPtr ) pRight->aiChildPtr[1] = iRightPtr;
break;
case 3:
pRight->aiChildPtr[3] = (iRightPtr ? iRightPtr : pRight->aiChildPtr[2]);
pRight->aiKeyPtr[2] = iTreeKey;
pRight->aiChildPtr[2] = iLeftPtr;
break;
}
}else{
TreeNode *pNew;
u32 *piKey;
u32 *piChild;
u32 iStore = 0;
u32 iNew = 0;
int i;
/* Allocate a new version of node pNode. */
pNew = newTreeNode(pDb, &iNew, &rc);
if( rc ) return rc;
piKey = pNew->aiKeyPtr;
piChild = pNew->aiChildPtr;
for(i=0; i<iSlot; i++){
if( pNode->aiKeyPtr[i] ){
*(piKey++) = pNode->aiKeyPtr[i];
*(piChild++) = getChildPtr(pNode, WORKING_VERSION, i);
}
}
*piKey++ = iTreeKey;
*piChild++ = iLeftPtr;
iStore = iRightPtr;
for(i=iSlot; i<3; i++){
if( pNode->aiKeyPtr[i] ){
*(piKey++) = pNode->aiKeyPtr[i];
*(piChild++) = iStore ? iStore : getChildPtr(pNode, WORKING_VERSION, i);
iStore = 0;
}
}
if( iStore ){
*piChild = iStore;
}else{
*piChild = getChildPtr(pNode, WORKING_VERSION,
(pNode->aiKeyPtr[2] ? 3 : 2)
);
}
pCsr->iNode--;
rc = treeUpdatePtr(pDb, pCsr, iNew);
}
return rc;
}
static int treeInsertLeaf(
lsm_db *pDb, /* Database handle */
TreeCursor *pCsr, /* Cursor structure */
u32 iTreeKey, /* Key pointer to insert */
int iSlot /* Insert key to the left of this */
){
int rc = LSM_OK; /* Return code */
TreeNode *pLeaf = pCsr->apTreeNode[pCsr->iNode];
TreeLeaf *pNew;
u32 iNew;
assert( iSlot>=0 && iSlot<=4 );
assert( pCsr->iNode>0 );
assert( pLeaf->aiKeyPtr[1] );
pCsr->iNode--;
pNew = newTreeLeaf(pDb, &iNew, &rc);
if( pNew ){
if( pLeaf->aiKeyPtr[0] && pLeaf->aiKeyPtr[2] ){
/* The leaf is full. Split it in two. */
TreeLeaf *pRight;
u32 iRight;
pRight = newTreeLeaf(pDb, &iRight, &rc);
if( pRight ){
assert( rc==LSM_OK );
pNew->aiKeyPtr[1] = pLeaf->aiKeyPtr[0];
pRight->aiKeyPtr[1] = pLeaf->aiKeyPtr[2];
switch( iSlot ){
case 0: pNew->aiKeyPtr[0] = iTreeKey; break;
case 1: pNew->aiKeyPtr[2] = iTreeKey; break;
case 2: pRight->aiKeyPtr[0] = iTreeKey; break;
case 3: pRight->aiKeyPtr[2] = iTreeKey; break;
}
rc = treeInsert(pDb, pCsr, iNew, pLeaf->aiKeyPtr[1], iRight,
pCsr->aiCell[pCsr->iNode]
);
}
}else{
int iOut = 0;
int i;
for(i=0; i<4; i++){
if( i==iSlot ) pNew->aiKeyPtr[iOut++] = iTreeKey;
if( i<3 && pLeaf->aiKeyPtr[i] ){
pNew->aiKeyPtr[iOut++] = pLeaf->aiKeyPtr[i];
}
}
rc = treeUpdatePtr(pDb, pCsr, iNew);
}
}
return rc;
}
void lsmTreeMakeOld(lsm_db *pDb){
/* A write transaction must be open. Otherwise the code below that
** assumes (pDb->pClient->iLogOff) is current may malfunction.
**
** Update: currently this assert fails due to lsm_flush(), which does
** not set nTransOpen.
*/
assert( /* pDb->nTransOpen>0 && */ pDb->iReader>=0 );
if( pDb->treehdr.iOldShmid==0 ){
pDb->treehdr.iOldLog = (pDb->treehdr.log.aRegion[2].iEnd << 1);
pDb->treehdr.iOldLog |= (~(pDb->pClient->iLogOff) & (i64)0x0001);
pDb->treehdr.oldcksum0 = pDb->treehdr.log.cksum0;
pDb->treehdr.oldcksum1 = pDb->treehdr.log.cksum1;
pDb->treehdr.iOldShmid = pDb->treehdr.iNextShmid-1;
memcpy(&pDb->treehdr.oldroot, &pDb->treehdr.root, sizeof(TreeRoot));
pDb->treehdr.root.iTransId = 1;
pDb->treehdr.root.iRoot = 0;
pDb->treehdr.root.nHeight = 0;
pDb->treehdr.root.nByte = 0;
}
}
void lsmTreeDiscardOld(lsm_db *pDb){
assert( lsmShmAssertLock(pDb, LSM_LOCK_WRITER, LSM_LOCK_EXCL)
|| lsmShmAssertLock(pDb, LSM_LOCK_DMS2, LSM_LOCK_EXCL)
);
pDb->treehdr.iUsedShmid = pDb->treehdr.iOldShmid;
pDb->treehdr.iOldShmid = 0;
}
int lsmTreeHasOld(lsm_db *pDb){
return pDb->treehdr.iOldShmid!=0;
}
/*
** This function is called during recovery to initialize the
** tree header. Only the database connections private copy of the tree-header
** is initialized here - it will be copied into shared memory if log file
** recovery is successful.
*/
int lsmTreeInit(lsm_db *pDb){
ShmChunk *pOne;
int rc = LSM_OK;
memset(&pDb->treehdr, 0, sizeof(TreeHeader));
pDb->treehdr.root.iTransId = 1;
pDb->treehdr.iFirst = 1;
pDb->treehdr.nChunk = 2;
pDb->treehdr.iWrite = LSM_SHM_CHUNK_SIZE + LSM_SHM_CHUNK_HDR;
pDb->treehdr.iNextShmid = 2;
pDb->treehdr.iUsedShmid = 1;
pOne = treeShmChunkRc(pDb, 1, &rc);
if( pOne ){
pOne->iNext = 0;
pOne->iShmid = 1;
}
return rc;
}
static void treeHeaderChecksum(
TreeHeader *pHdr,
u32 *aCksum
){
u32 cksum1 = 0x12345678;
u32 cksum2 = 0x9ABCDEF0;
u32 *a = (u32 *)pHdr;
int i;
assert( (offsetof(TreeHeader, aCksum) + sizeof(u32)*2)==sizeof(TreeHeader) );
assert( (sizeof(TreeHeader) % (sizeof(u32)*2))==0 );
for(i=0; i<(offsetof(TreeHeader, aCksum) / sizeof(u32)); i+=2){
cksum1 += a[i];
cksum2 += (cksum1 + a[i+1]);
}
aCksum[0] = cksum1;
aCksum[1] = cksum2;
}
/*
** Return true if the checksum stored in TreeHeader object *pHdr is
** consistent with the contents of its other fields.
*/
static int treeHeaderChecksumOk(TreeHeader *pHdr){
u32 aCksum[2];
treeHeaderChecksum(pHdr, aCksum);
return (0==memcmp(aCksum, pHdr->aCksum, sizeof(aCksum)));
}
/*
** This type is used by functions lsmTreeRepair() and treeSortByShmid() to
** make relinking the linked list of shared-memory chunks easier.
*/
typedef struct ShmChunkLoc ShmChunkLoc;
struct ShmChunkLoc {
ShmChunk *pShm;
u32 iLoc;
};
/*
** This function checks that the linked list of shared memory chunks
** that starts at chunk db->treehdr.iFirst:
**
** 1) Includes all chunks in the shared-memory region, and
** 2) Links them together in order of ascending shm-id.
**
** If no error occurs and the conditions above are met, LSM_OK is returned.
**
** If either of the conditions are untrue, LSM_CORRUPT is returned. Or, if
** an error is encountered before the checks are completed, another LSM error
** code (i.e. LSM_IOERR or LSM_NOMEM) may be returned.
*/
static int treeCheckLinkedList(lsm_db *db){
int rc = LSM_OK;
int nVisit = 0;
ShmChunk *p;
p = treeShmChunkRc(db, db->treehdr.iFirst, &rc);
while( rc==LSM_OK && p ){
if( p->iNext ){
if( p->iNext>=db->treehdr.nChunk ){
rc = LSM_CORRUPT_BKPT;
}else{
ShmChunk *pNext = treeShmChunkRc(db, p->iNext, &rc);
if( rc==LSM_OK ){
if( pNext->iShmid!=p->iShmid+1 ){
rc = LSM_CORRUPT_BKPT;
}
p = pNext;
}
}
}else{
p = 0;
}
nVisit++;
}
if( rc==LSM_OK && (u32)nVisit!=db->treehdr.nChunk-1 ){
rc = LSM_CORRUPT_BKPT;
}
return rc;
}
/*
** Iterate through the current in-memory tree. If there are any v2-pointers
** with transaction ids larger than db->treehdr.iTransId, zero them.
*/
static int treeRepairPtrs(lsm_db *db){
int rc = LSM_OK;
if( db->treehdr.root.nHeight>1 ){
TreeCursor csr; /* Cursor used to iterate through tree */
u32 iTransId = db->treehdr.root.iTransId;
/* Initialize the cursor structure. Also decrement the nHeight variable
** in the tree-header. This will prevent the cursor from visiting any
** leaf nodes. */
db->treehdr.root.nHeight--;
treeCursorInit(db, 0, &csr);
rc = lsmTreeCursorEnd(&csr, 0);
while( rc==LSM_OK && lsmTreeCursorValid(&csr) ){
TreeNode *pNode = csr.apTreeNode[csr.iNode];
if( pNode->iV2>iTransId ){
pNode->iV2Child = 0;
pNode->iV2Ptr = 0;
pNode->iV2 = 0;
}
rc = lsmTreeCursorNext(&csr);
}
tblobFree(csr.pDb, &csr.blob);
db->treehdr.root.nHeight++;
}
return rc;
}
static int treeRepairList(lsm_db *db){
int rc = LSM_OK;
int i;
ShmChunk *p;
ShmChunk *pMin = 0;
u32 iMin = 0;
/* Iterate through all shm chunks. Find the smallest shm-id present in
** the shared-memory region. */
for(i=1; rc==LSM_OK && (u32)i<db->treehdr.nChunk; i++){
p = treeShmChunkRc(db, i, &rc);
if( p && (pMin==0 || shm_sequence_ge(pMin->iShmid, p->iShmid)) ){
pMin = p;
iMin = i;
}
}
/* Fix the shm-id values on any chunks with a shm-id greater than or
** equal to treehdr.iNextShmid. Then do a merge-sort of all chunks to
** fix the ShmChunk.iNext pointers.
*/
if( rc==LSM_OK ){
int nSort;
int nByte;
u32 iPrevShmid;
ShmChunkLoc *aSort;
/* Allocate space for a merge sort. */
nSort = 1;
while( (u32)nSort < (db->treehdr.nChunk-1) ) nSort = nSort * 2;
nByte = sizeof(ShmChunkLoc) * nSort * 2;
aSort = lsmMallocZeroRc(db->pEnv, nByte, &rc);
iPrevShmid = pMin->iShmid;
/* Fix all shm-ids, if required. */
if( rc==LSM_OK ){
iPrevShmid = pMin->iShmid-1;
for(i=1; (u32)i<db->treehdr.nChunk; i++){
p = treeShmChunk(db, i);
aSort[i-1].pShm = p;
aSort[i-1].iLoc = i;
if( (u32)i!=db->treehdr.iFirst ){
if( shm_sequence_ge(p->iShmid, db->treehdr.iNextShmid) ){
p->iShmid = iPrevShmid--;
}
}
}
if( iMin!=db->treehdr.iFirst ){
p = treeShmChunk(db, db->treehdr.iFirst);
p->iShmid = iPrevShmid;
}
}
if( rc==LSM_OK ){
ShmChunkLoc *aSpace = &aSort[nSort];
for(i=0; i<nSort; i++){
if( aSort[i].pShm ){
assert( shm_sequence_ge(aSort[i].pShm->iShmid, iPrevShmid) );
assert( aSpace[aSort[i].pShm->iShmid - iPrevShmid].pShm==0 );
aSpace[aSort[i].pShm->iShmid - iPrevShmid] = aSort[i];
}
}
if( aSpace[nSort-1].pShm ) aSpace[nSort-1].pShm->iNext = 0;
for(i=0; i<nSort-1; i++){
if( aSpace[i].pShm ){
aSpace[i].pShm->iNext = aSpace[i+1].iLoc;
}
}
rc = treeCheckLinkedList(db);
lsmFree(db->pEnv, aSort);
}
}
return rc;
}
/*
** This function is called as part of opening a write-transaction if the
** writer-flag is already set - indicating that the previous writer
** failed before ending its transaction.
*/
int lsmTreeRepair(lsm_db *db){
int rc = LSM_OK;
TreeHeader hdr;
ShmHeader *pHdr = db->pShmhdr;
/* Ensure that the two tree-headers are consistent. Copy one over the other
** if necessary. Prefer the data from a tree-header for which the checksum
** computes. Or, if they both compute, prefer tree-header-1. */
if( memcmp(&pHdr->hdr1, &pHdr->hdr2, sizeof(TreeHeader)) ){
if( treeHeaderChecksumOk(&pHdr->hdr1) ){
memcpy(&pHdr->hdr2, &pHdr->hdr1, sizeof(TreeHeader));
}else{
memcpy(&pHdr->hdr1, &pHdr->hdr2, sizeof(TreeHeader));
}
}
/* Save the connections current copy of the tree-header. It will be
** restored before returning. */
memcpy(&hdr, &db->treehdr, sizeof(TreeHeader));
/* Walk the tree. Zero any v2 pointers with a transaction-id greater than
** the transaction-id currently in the tree-headers. */
rc = treeRepairPtrs(db);
/* Repair the linked list of shared-memory chunks. */
if( rc==LSM_OK ){
rc = treeRepairList(db);
}
memcpy(&db->treehdr, &hdr, sizeof(TreeHeader));
return rc;
}
static void treeOverwriteKey(lsm_db *db, TreeCursor *pCsr, u32 iKey, int *pRc){
if( *pRc==LSM_OK ){
TreeRoot *p = &db->treehdr.root;
TreeNode *pNew;
u32 iNew;
TreeNode *pNode = pCsr->apTreeNode[pCsr->iNode];
int iCell = pCsr->aiCell[pCsr->iNode];
/* Create a copy of this node */
if( (pCsr->iNode>0 && (u32)pCsr->iNode==(p->nHeight-1)) ){
pNew = copyTreeLeaf(db, (TreeLeaf *)pNode, &iNew, pRc);
}else{
pNew = copyTreeNode(db, pNode, &iNew, pRc);
}
if( pNew ){
/* Modify the value in the new version */
pNew->aiKeyPtr[iCell] = iKey;
/* Change the pointer in the parent (if any) to point at the new
** TreeNode */
pCsr->iNode--;
treeUpdatePtr(db, pCsr, iNew);
}
}
}
static int treeNextIsEndDelete(lsm_db *db, TreeCursor *pCsr){
int iNode = pCsr->iNode;
int iCell = pCsr->aiCell[iNode]+1;
/* Cursor currently points to a leaf node. */
assert( (u32)pCsr->iNode==(db->treehdr.root.nHeight-1) );
while( iNode>=0 ){
TreeNode *pNode = pCsr->apTreeNode[iNode];
if( iCell<3 && pNode->aiKeyPtr[iCell] ){
int rc = LSM_OK;
TreeKey *pKey = treeShmptr(db, pNode->aiKeyPtr[iCell]);
assert( rc==LSM_OK );
return ((pKey->flags & LSM_END_DELETE) ? 1 : 0);
}
iNode--;
iCell = pCsr->aiCell[iNode];
}
return 0;
}
static int treePrevIsStartDelete(lsm_db *db, TreeCursor *pCsr){
int iNode = pCsr->iNode;
/* Cursor currently points to a leaf node. */
assert( (u32)pCsr->iNode==(db->treehdr.root.nHeight-1) );
while( iNode>=0 ){
TreeNode *pNode = pCsr->apTreeNode[iNode];
int iCell = pCsr->aiCell[iNode]-1;
if( iCell>=0 && pNode->aiKeyPtr[iCell] ){
int rc = LSM_OK;
TreeKey *pKey = treeShmptr(db, pNode->aiKeyPtr[iCell]);
assert( rc==LSM_OK );
return ((pKey->flags & LSM_START_DELETE) ? 1 : 0);
}
iNode--;
}
return 0;
}
static int treeInsertEntry(
lsm_db *pDb, /* Database handle */
int flags, /* Flags associated with entry */
void *pKey, /* Pointer to key data */
int nKey, /* Size of key data in bytes */
void *pVal, /* Pointer to value data (or NULL) */
int nVal /* Bytes in value data (or -ve for delete) */
){
int rc = LSM_OK; /* Return Code */
TreeKey *pTreeKey; /* New key-value being inserted */
u32 iTreeKey;
TreeRoot *p = &pDb->treehdr.root;
TreeCursor csr; /* Cursor to seek to pKey/nKey */
int res = 0; /* Result of seek operation on csr */
assert( nVal>=0 || pVal==0 );
assert_tree_looks_ok(LSM_OK, pTree);
assert( flags==LSM_INSERT || flags==LSM_POINT_DELETE
|| flags==LSM_START_DELETE || flags==LSM_END_DELETE
);
assert( (flags & LSM_CONTIGUOUS)==0 );
#if 0
dump_tree_contents(pDb, "before");
#endif
if( p->iRoot ){
TreeKey *pRes; /* Key at end of seek operation */
treeCursorInit(pDb, 0, &csr);
/* Seek to the leaf (or internal node) that the new key belongs on */
rc = lsmTreeCursorSeek(&csr, pKey, nKey, &res);
pRes = csrGetKey(&csr, &csr.blob, &rc);
if( rc!=LSM_OK ) return rc;
assert( pRes );
if( flags==LSM_START_DELETE ){
/* When inserting a start-delete-range entry, if the key that
** occurs immediately before the new entry is already a START_DELETE,
** then the new entry is not required. */
if( (res<=0 && (pRes->flags & LSM_START_DELETE))
|| (res>0 && treePrevIsStartDelete(pDb, &csr))
){
goto insert_entry_out;
}
}else if( flags==LSM_END_DELETE ){
/* When inserting an start-delete-range entry, if the key that
** occurs immediately after the new entry is already an END_DELETE,
** then the new entry is not required. */
if( (res<0 && treeNextIsEndDelete(pDb, &csr))
|| (res>=0 && (pRes->flags & LSM_END_DELETE))
){
goto insert_entry_out;
}
}
if( res==0 && (flags & (LSM_END_DELETE|LSM_START_DELETE)) ){
if( pRes->flags & LSM_INSERT ){
nVal = pRes->nValue;
pVal = TKV_VAL(pRes);
}
flags = flags | pRes->flags;
}
if( flags & (LSM_INSERT|LSM_POINT_DELETE) ){
if( (res<0 && (pRes->flags & LSM_START_DELETE))
|| (res>0 && (pRes->flags & LSM_END_DELETE))
){
flags = flags | (LSM_END_DELETE|LSM_START_DELETE);
}else if( res==0 ){
flags = flags | (pRes->flags & (LSM_END_DELETE|LSM_START_DELETE));
}
}
}else{
memset(&csr, 0, sizeof(TreeCursor));
}
/* Allocate and populate a new key-value pair structure */
pTreeKey = newTreeKey(pDb, &iTreeKey, pKey, nKey, pVal, nVal, &rc);
if( rc!=LSM_OK ) return rc;
assert( pTreeKey->flags==0 || pTreeKey->flags==LSM_CONTIGUOUS );
pTreeKey->flags |= flags;
if( p->iRoot==0 ){
/* The tree is completely empty. Add a new root node and install
** (pKey/nKey) as the middle entry. Even though it is a leaf at the
** moment, use newTreeNode() to allocate the node (i.e. allocate enough
** space for the fields used by interior nodes). This is because the
** treeInsert() routine may convert this node to an interior node. */
TreeNode *pRoot = newTreeNode(pDb, &p->iRoot, &rc);
if( rc==LSM_OK ){
assert( p->nHeight==0 );
pRoot->aiKeyPtr[1] = iTreeKey;
p->nHeight = 1;
}
}else{
if( res==0 ){
/* The search found a match within the tree. */
treeOverwriteKey(pDb, &csr, iTreeKey, &rc);
}else{
/* The cursor now points to the leaf node into which the new entry should
** be inserted. There may or may not be a free slot within the leaf for
** the new key-value pair.
**
** iSlot is set to the index of the key within pLeaf that the new key
** should be inserted to the left of (or to a value 1 greater than the
** index of the rightmost key if the new key is larger than all keys
** currently stored in the node).
*/
int iSlot = csr.aiCell[csr.iNode] + (res<0);
if( csr.iNode==0 ){
rc = treeInsert(pDb, &csr, 0, iTreeKey, 0, iSlot);
}else{
rc = treeInsertLeaf(pDb, &csr, iTreeKey, iSlot);
}
}
}
#if 0
dump_tree_contents(pDb, "after");
#endif
insert_entry_out:
tblobFree(pDb, &csr.blob);
assert_tree_looks_ok(rc, pTree);
return rc;
}
/*
** Insert a new entry into the in-memory tree.
**
** If the value of the 5th parameter, nVal, is negative, then a delete-marker
** is inserted into the tree. In this case the value pointer, pVal, must be
** NULL.
*/
int lsmTreeInsert(
lsm_db *pDb, /* Database handle */
void *pKey, /* Pointer to key data */
int nKey, /* Size of key data in bytes */
void *pVal, /* Pointer to value data (or NULL) */
int nVal /* Bytes in value data (or -ve for delete) */
){
int flags;
if( nVal<0 ){
flags = LSM_POINT_DELETE;
}else{
flags = LSM_INSERT;
}
return treeInsertEntry(pDb, flags, pKey, nKey, pVal, nVal);
}
static int treeDeleteEntry(lsm_db *db, TreeCursor *pCsr, u32 iNewptr){
TreeRoot *p = &db->treehdr.root;
TreeNode *pNode = pCsr->apTreeNode[pCsr->iNode];
int iSlot = pCsr->aiCell[pCsr->iNode];
int bLeaf;
int rc = LSM_OK;
assert( pNode->aiKeyPtr[1] );
assert( pNode->aiKeyPtr[iSlot] );
assert( iSlot==0 || iSlot==1 || iSlot==2 );
assert( ((u32)pCsr->iNode==(db->treehdr.root.nHeight-1))==(iNewptr==0) );
bLeaf = ((u32)pCsr->iNode==(p->nHeight-1) && p->nHeight>1);
if( pNode->aiKeyPtr[0] || pNode->aiKeyPtr[2] ){
/* There are currently at least 2 keys on this node. So just create
** a new copy of the node with one of the keys removed. If the node
** happens to be the root node of the tree, allocate an entire
** TreeNode structure instead of just a TreeLeaf. */
TreeNode *pNew;
u32 iNew;
if( bLeaf ){
pNew = (TreeNode *)newTreeLeaf(db, &iNew, &rc);
}else{
pNew = newTreeNode(db, &iNew, &rc);
}
if( pNew ){
int i;
int iOut = 1;
for(i=0; i<4; i++){
if( i==iSlot ){
i++;
if( bLeaf==0 ) pNew->aiChildPtr[iOut] = iNewptr;
if( i<3 ) pNew->aiKeyPtr[iOut] = pNode->aiKeyPtr[i];
iOut++;
}else if( bLeaf || p->nHeight==1 ){
if( i<3 && pNode->aiKeyPtr[i] ){
pNew->aiKeyPtr[iOut++] = pNode->aiKeyPtr[i];
}
}else{
if( getChildPtr(pNode, WORKING_VERSION, i) ){
pNew->aiChildPtr[iOut] = getChildPtr(pNode, WORKING_VERSION, i);
if( i<3 ) pNew->aiKeyPtr[iOut] = pNode->aiKeyPtr[i];
iOut++;
}
}
}
assert( iOut<=4 );
assert( bLeaf || pNew->aiChildPtr[0]==0 );
pCsr->iNode--;
rc = treeUpdatePtr(db, pCsr, iNew);
}
}else if( pCsr->iNode==0 ){
/* Removing the only key in the root node. iNewptr is the new root. */
assert( iSlot==1 );
db->treehdr.root.iRoot = iNewptr;
db->treehdr.root.nHeight--;
}else{
/* There is only one key on this node and the node is not the root
** node. Find a peer for this node. Then redistribute the contents of
** the peer and the parent cell between the parent and either one or
** two new nodes. */
TreeNode *pParent; /* Parent tree node */
int iPSlot;
u32 iPeer; /* Pointer to peer leaf node */
int iDir;
TreeNode *pPeer; /* The peer leaf node */
TreeNode *pNew1; u32 iNew1; /* First new leaf node */
assert( iSlot==1 );
pParent = pCsr->apTreeNode[pCsr->iNode-1];
iPSlot = pCsr->aiCell[pCsr->iNode-1];
if( iPSlot>0 && getChildPtr(pParent, WORKING_VERSION, iPSlot-1) ){
iDir = -1;
}else{
iDir = +1;
}
iPeer = getChildPtr(pParent, WORKING_VERSION, iPSlot+iDir);
pPeer = (TreeNode *)treeShmptr(db, iPeer);
assertIsWorkingChild(db, pNode, pParent, iPSlot);
/* Allocate the first new leaf node. This is always required. */
if( bLeaf ){
pNew1 = (TreeNode *)newTreeLeaf(db, &iNew1, &rc);
}else{
pNew1 = (TreeNode *)newTreeNode(db, &iNew1, &rc);
}
if( pPeer->aiKeyPtr[0] && pPeer->aiKeyPtr[2] ){
/* Peer node is completely full. This means that two new leaf nodes
** and a new parent node are required. */
TreeNode *pNew2; u32 iNew2; /* Second new leaf node */
TreeNode *pNewP; u32 iNewP; /* New parent node */
if( bLeaf ){
pNew2 = (TreeNode *)newTreeLeaf(db, &iNew2, &rc);
}else{
pNew2 = (TreeNode *)newTreeNode(db, &iNew2, &rc);
}
pNewP = copyTreeNode(db, pParent, &iNewP, &rc);
if( iDir==-1 ){
pNew1->aiKeyPtr[1] = pPeer->aiKeyPtr[0];
if( bLeaf==0 ){
pNew1->aiChildPtr[1] = getChildPtr(pPeer, WORKING_VERSION, 0);
pNew1->aiChildPtr[2] = getChildPtr(pPeer, WORKING_VERSION, 1);
}
pNewP->aiChildPtr[iPSlot-1] = iNew1;
pNewP->aiKeyPtr[iPSlot-1] = pPeer->aiKeyPtr[1];
pNewP->aiChildPtr[iPSlot] = iNew2;
pNew2->aiKeyPtr[0] = pPeer->aiKeyPtr[2];
pNew2->aiKeyPtr[1] = pParent->aiKeyPtr[iPSlot-1];
if( bLeaf==0 ){
pNew2->aiChildPtr[0] = getChildPtr(pPeer, WORKING_VERSION, 2);
pNew2->aiChildPtr[1] = getChildPtr(pPeer, WORKING_VERSION, 3);
pNew2->aiChildPtr[2] = iNewptr;
}
}else{
pNew1->aiKeyPtr[1] = pParent->aiKeyPtr[iPSlot];
if( bLeaf==0 ){
pNew1->aiChildPtr[1] = iNewptr;
pNew1->aiChildPtr[2] = getChildPtr(pPeer, WORKING_VERSION, 0);
}
pNewP->aiChildPtr[iPSlot] = iNew1;
pNewP->aiKeyPtr[iPSlot] = pPeer->aiKeyPtr[0];
pNewP->aiChildPtr[iPSlot+1] = iNew2;
pNew2->aiKeyPtr[0] = pPeer->aiKeyPtr[1];
pNew2->aiKeyPtr[1] = pPeer->aiKeyPtr[2];
if( bLeaf==0 ){
pNew2->aiChildPtr[0] = getChildPtr(pPeer, WORKING_VERSION, 1);
pNew2->aiChildPtr[1] = getChildPtr(pPeer, WORKING_VERSION, 2);
pNew2->aiChildPtr[2] = getChildPtr(pPeer, WORKING_VERSION, 3);
}
}
assert( pCsr->iNode>=1 );
pCsr->iNode -= 2;
if( rc==LSM_OK ){
assert( pNew1->aiKeyPtr[1] && pNew2->aiKeyPtr[1] );
rc = treeUpdatePtr(db, pCsr, iNewP);
}
}else{
int iKOut = 0;
int iPOut = 0;
int i;
pCsr->iNode--;
if( iDir==1 ){
pNew1->aiKeyPtr[iKOut++] = pParent->aiKeyPtr[iPSlot];
if( bLeaf==0 ) pNew1->aiChildPtr[iPOut++] = iNewptr;
}
for(i=0; i<3; i++){
if( pPeer->aiKeyPtr[i] ){
pNew1->aiKeyPtr[iKOut++] = pPeer->aiKeyPtr[i];
}
}
if( bLeaf==0 ){
for(i=0; i<4; i++){
if( getChildPtr(pPeer, WORKING_VERSION, i) ){
pNew1->aiChildPtr[iPOut++] = getChildPtr(pPeer, WORKING_VERSION, i);
}
}
}
if( iDir==-1 ){
iPSlot--;
pNew1->aiKeyPtr[iKOut++] = pParent->aiKeyPtr[iPSlot];
if( bLeaf==0 ) pNew1->aiChildPtr[iPOut++] = iNewptr;
pCsr->aiCell[pCsr->iNode] = (u8)iPSlot;
}
rc = treeDeleteEntry(db, pCsr, iNew1);
}
}
return rc;
}
/*
** Delete a range of keys from the tree structure (i.e. the lsm_delete_range()
** function, not lsm_delete()).
**
** This is a two step process:
**
** 1) Remove all entries currently stored in the tree that have keys
** that fall into the deleted range.
**
** TODO: There are surely good ways to optimize this step - removing
** a range of keys from a b-tree. But for now, this function removes
** them one at a time using the usual approach.
**
** 2) Unless the largest key smaller than or equal to (pKey1/nKey1) is
** already marked as START_DELETE, insert a START_DELETE key.
** Similarly, unless the smallest key greater than or equal to
** (pKey2/nKey2) is already START_END, insert a START_END key.
*/
int lsmTreeDelete(
lsm_db *db,
void *pKey1, int nKey1, /* Start of range */
void *pKey2, int nKey2 /* End of range */
){
int rc = LSM_OK;
int bDone = 0;
TreeRoot *p = &db->treehdr.root;
TreeBlob blob = {0, 0};
/* The range must be sensible - that (key1 < key2). */
assert( treeKeycmp(pKey1, nKey1, pKey2, nKey2)<0 );
assert( assert_delete_ranges_match(db) );
#if 0
static int nCall = 0;
printf("\n");
nCall++;
printf("%d delete %s .. %s\n", nCall, (char *)pKey1, (char *)pKey2);
dump_tree_contents(db, "before delete");
#endif
/* Step 1. This loop runs until the tree contains no keys within the
** range being deleted. Or until an error occurs. */
while( bDone==0 && rc==LSM_OK ){
int res;
TreeCursor csr; /* Cursor to seek to first key in range */
void *pDel; int nDel; /* Key to (possibly) delete this iteration */
#ifndef NDEBUG
int nEntry = treeCountEntries(db);
#endif
/* Seek the cursor to the first entry in the tree greater than pKey1. */
treeCursorInit(db, 0, &csr);
lsmTreeCursorSeek(&csr, pKey1, nKey1, &res);
if( res<=0 && lsmTreeCursorValid(&csr) ) lsmTreeCursorNext(&csr);
/* If there is no such entry, or if it is greater than pKey2, then the
** tree now contains no keys in the range being deleted. In this case
** break out of the loop. */
bDone = 1;
if( lsmTreeCursorValid(&csr) ){
lsmTreeCursorKey(&csr, 0, &pDel, &nDel);
if( treeKeycmp(pDel, nDel, pKey2, nKey2)<0 ) bDone = 0;
}
if( bDone==0 ){
if( (u32)csr.iNode==(p->nHeight-1) ){
/* The element to delete already lies on a leaf node */
rc = treeDeleteEntry(db, &csr, 0);
}else{
/* 1. Overwrite the current key with a copy of the next key in the
** tree (key N).
**
** 2. Seek to key N (cursor will stop at the internal node copy of
** N). Move to the next key (original copy of N). Delete
** this entry.
*/
u32 iKey;
TreeKey *pKey;
int iNode = csr.iNode;
lsmTreeCursorNext(&csr);
assert( (u32)csr.iNode==(p->nHeight-1) );
iKey = csr.apTreeNode[csr.iNode]->aiKeyPtr[csr.aiCell[csr.iNode]];
lsmTreeCursorPrev(&csr);
treeOverwriteKey(db, &csr, iKey, &rc);
pKey = treeShmkey(db, iKey, TKV_LOADKEY, &blob, &rc);
if( pKey ){
rc = lsmTreeCursorSeek(&csr, TKV_KEY(pKey), pKey->nKey, &res);
}
if( rc==LSM_OK ){
assert( res==0 && csr.iNode==iNode );
rc = lsmTreeCursorNext(&csr);
if( rc==LSM_OK ){
rc = treeDeleteEntry(db, &csr, 0);
}
}
}
}
/* Clean up any memory allocated by the cursor. */
tblobFree(db, &csr.blob);
#if 0
dump_tree_contents(db, "ddd delete");
#endif
assert( bDone || treeCountEntries(db)==(nEntry-1) );
}
#if 0
dump_tree_contents(db, "during delete");
#endif
/* Now insert the START_DELETE and END_DELETE keys. */
if( rc==LSM_OK ){
rc = treeInsertEntry(db, LSM_START_DELETE, pKey1, nKey1, 0, -1);
}
#if 0
dump_tree_contents(db, "during delete 2");
#endif
if( rc==LSM_OK ){
rc = treeInsertEntry(db, LSM_END_DELETE, pKey2, nKey2, 0, -1);
}
#if 0
dump_tree_contents(db, "after delete");
#endif
tblobFree(db, &blob);
assert( assert_delete_ranges_match(db) );
return rc;
}
/*
** Return, in bytes, the amount of memory currently used by the tree
** structure.
*/
int lsmTreeSize(lsm_db *pDb){
return pDb->treehdr.root.nByte;
}
/*
** Open a cursor on the in-memory tree pTree.
*/
int lsmTreeCursorNew(lsm_db *pDb, int bOld, TreeCursor **ppCsr){
TreeCursor *pCsr;
*ppCsr = pCsr = lsmMalloc(pDb->pEnv, sizeof(TreeCursor));
if( pCsr ){
treeCursorInit(pDb, bOld, pCsr);
return LSM_OK;
}
return LSM_NOMEM_BKPT;
}
/*
** Close an in-memory tree cursor.
*/
void lsmTreeCursorDestroy(TreeCursor *pCsr){
if( pCsr ){
tblobFree(pCsr->pDb, &pCsr->blob);
lsmFree(pCsr->pDb->pEnv, pCsr);
}
}
void lsmTreeCursorReset(TreeCursor *pCsr){
if( pCsr ){
pCsr->iNode = -1;
pCsr->pSave = 0;
}
}
#ifndef NDEBUG
static int treeCsrCompare(TreeCursor *pCsr, void *pKey, int nKey, int *pRc){
TreeKey *p;
int cmp = 0;
assert( pCsr->iNode>=0 );
p = csrGetKey(pCsr, &pCsr->blob, pRc);
if( p ){
cmp = treeKeycmp(TKV_KEY(p), p->nKey, pKey, nKey);
}
return cmp;
}
#endif
/*
** Attempt to seek the cursor passed as the first argument to key (pKey/nKey)
** in the tree structure. If an exact match for the key is found, leave the
** cursor pointing to it and set *pRes to zero before returning. If an
** exact match cannot be found, do one of the following:
**
** * Leave the cursor pointing to the smallest element in the tree that
** is larger than the key and set *pRes to +1, or
**
** * Leave the cursor pointing to the largest element in the tree that
** is smaller than the key and set *pRes to -1, or
**
** * If the tree is empty, leave the cursor at EOF and set *pRes to -1.
*/
int lsmTreeCursorSeek(TreeCursor *pCsr, void *pKey, int nKey, int *pRes){
int rc = LSM_OK; /* Return code */
lsm_db *pDb = pCsr->pDb;
TreeRoot *pRoot = pCsr->pRoot;
u32 iNodePtr; /* Location of current node in search */
/* Discard any saved position data */
treeCursorRestore(pCsr, 0);
iNodePtr = pRoot->iRoot;
if( iNodePtr==0 ){
/* Either an error occurred or the tree is completely empty. */
assert( rc!=LSM_OK || pRoot->iRoot==0 );
*pRes = -1;
pCsr->iNode = -1;
}else{
TreeBlob b = {0, 0};
int res = 0; /* Result of comparison function */
int iNode = -1;
while( iNodePtr ){
TreeNode *pNode; /* Node at location iNodePtr */
int iTest; /* Index of second key to test (0 or 2) */
u32 iTreeKey;
TreeKey *pTreeKey; /* Key to compare against */
pNode = (TreeNode *)treeShmptrUnsafe(pDb, iNodePtr);
iNode++;
pCsr->apTreeNode[iNode] = pNode;
/* Compare (pKey/nKey) with the key in the middle slot of B-tree node
** pNode. The middle slot is never empty. If the comparison is a match,
** then the search is finished. Break out of the loop. */
pTreeKey = (TreeKey*)treeShmptrUnsafe(pDb, pNode->aiKeyPtr[1]);
if( !(pTreeKey->flags & LSM_CONTIGUOUS) ){
pTreeKey = treeShmkey(pDb, pNode->aiKeyPtr[1], TKV_LOADKEY, &b, &rc);
if( rc!=LSM_OK ) break;
}
res = treeKeycmp((void *)&pTreeKey[1], pTreeKey->nKey, pKey, nKey);
if( res==0 ){
pCsr->aiCell[iNode] = 1;
break;
}
/* Based on the results of the previous comparison, compare (pKey/nKey)
** to either the left or right key of the B-tree node, if such a key
** exists. */
iTest = (res>0 ? 0 : 2);
iTreeKey = pNode->aiKeyPtr[iTest];
if( iTreeKey ){
pTreeKey = (TreeKey*)treeShmptrUnsafe(pDb, iTreeKey);
if( !(pTreeKey->flags & LSM_CONTIGUOUS) ){
pTreeKey = treeShmkey(pDb, iTreeKey, TKV_LOADKEY, &b, &rc);
if( rc ) break;
}
res = treeKeycmp((void *)&pTreeKey[1], pTreeKey->nKey, pKey, nKey);
if( res==0 ){
pCsr->aiCell[iNode] = (u8)iTest;
break;
}
}else{
iTest = 1;
}
if( (u32)iNode<(pRoot->nHeight-1) ){
iNodePtr = getChildPtr(pNode, pRoot->iTransId, iTest + (res<0));
}else{
iNodePtr = 0;
}
pCsr->aiCell[iNode] = (u8)(iTest + (iNodePtr && (res<0)));
}
*pRes = res;
pCsr->iNode = iNode;
tblobFree(pDb, &b);
}
/* assert() that *pRes has been set properly */
#ifndef NDEBUG
if( rc==LSM_OK && lsmTreeCursorValid(pCsr) ){
int cmp = treeCsrCompare(pCsr, pKey, nKey, &rc);
assert( rc!=LSM_OK || *pRes==cmp || (*pRes ^ cmp)>0 );
}
#endif
return rc;
}
int lsmTreeCursorNext(TreeCursor *pCsr){
#ifndef NDEBUG
TreeKey *pK1;
TreeBlob key1 = {0, 0};
#endif
lsm_db *pDb = pCsr->pDb;
TreeRoot *pRoot = pCsr->pRoot;
const int iLeaf = pRoot->nHeight-1;
int iCell;
int rc = LSM_OK;
TreeNode *pNode;
/* Restore the cursor position, if required */
int iRestore = 0;
treeCursorRestore(pCsr, &iRestore);
if( iRestore>0 ) return LSM_OK;
/* Save a pointer to the current key. This is used in an assert() at the
** end of this function - to check that the 'next' key really is larger
** than the current key. */
#ifndef NDEBUG
pK1 = csrGetKey(pCsr, &key1, &rc);
if( rc!=LSM_OK ) return rc;
#endif
assert( lsmTreeCursorValid(pCsr) );
assert( pCsr->aiCell[pCsr->iNode]<3 );
pNode = pCsr->apTreeNode[pCsr->iNode];
iCell = ++pCsr->aiCell[pCsr->iNode];
/* If the current node is not a leaf, and the current cell has sub-tree
** associated with it, descend to the left-most key on the left-most
** leaf of the sub-tree. */
if( pCsr->iNode<iLeaf && getChildPtr(pNode, pRoot->iTransId, iCell) ){
do {
u32 iNodePtr;
pCsr->iNode++;
iNodePtr = getChildPtr(pNode, pRoot->iTransId, iCell);
pNode = (TreeNode *)treeShmptr(pDb, iNodePtr);
pCsr->apTreeNode[pCsr->iNode] = pNode;
iCell = pCsr->aiCell[pCsr->iNode] = (pNode->aiKeyPtr[0]==0);
}while( pCsr->iNode < iLeaf );
}
/* Otherwise, the next key is found by following pointer up the tree
** until there is a key immediately to the right of the pointer followed
** to reach the sub-tree containing the current key. */
else if( iCell>=3 || pNode->aiKeyPtr[iCell]==0 ){
while( (--pCsr->iNode)>=0 ){
iCell = pCsr->aiCell[pCsr->iNode];
if( iCell<3 && pCsr->apTreeNode[pCsr->iNode]->aiKeyPtr[iCell] ) break;
}
}
#ifndef NDEBUG
if( pCsr->iNode>=0 ){
TreeKey *pK2 = csrGetKey(pCsr, &pCsr->blob, &rc);
assert( rc||treeKeycmp(TKV_KEY(pK2),pK2->nKey,TKV_KEY(pK1),pK1->nKey)>=0 );
}
tblobFree(pDb, &key1);
#endif
return rc;
}
int lsmTreeCursorPrev(TreeCursor *pCsr){
#ifndef NDEBUG
TreeKey *pK1;
TreeBlob key1 = {0, 0};
#endif
lsm_db *pDb = pCsr->pDb;
TreeRoot *pRoot = pCsr->pRoot;
const int iLeaf = pRoot->nHeight-1;
int iCell;
int rc = LSM_OK;
TreeNode *pNode;
/* Restore the cursor position, if required */
int iRestore = 0;
treeCursorRestore(pCsr, &iRestore);
if( iRestore<0 ) return LSM_OK;
/* Save a pointer to the current key. This is used in an assert() at the
** end of this function - to check that the 'next' key really is smaller
** than the current key. */
#ifndef NDEBUG
pK1 = csrGetKey(pCsr, &key1, &rc);
if( rc!=LSM_OK ) return rc;
#endif
assert( lsmTreeCursorValid(pCsr) );
pNode = pCsr->apTreeNode[pCsr->iNode];
iCell = pCsr->aiCell[pCsr->iNode];
assert( iCell>=0 && iCell<3 );
/* If the current node is not a leaf, and the current cell has sub-tree
** associated with it, descend to the right-most key on the right-most
** leaf of the sub-tree. */
if( pCsr->iNode<iLeaf && getChildPtr(pNode, pRoot->iTransId, iCell) ){
do {
u32 iNodePtr;
pCsr->iNode++;
iNodePtr = getChildPtr(pNode, pRoot->iTransId, iCell);
pNode = (TreeNode *)treeShmptr(pDb, iNodePtr);
if( rc!=LSM_OK ) break;
pCsr->apTreeNode[pCsr->iNode] = pNode;
iCell = 1 + (pNode->aiKeyPtr[2]!=0) + (pCsr->iNode < iLeaf);
pCsr->aiCell[pCsr->iNode] = (u8)iCell;
}while( pCsr->iNode < iLeaf );
}
/* Otherwise, the next key is found by following pointer up the tree until
** there is a key immediately to the left of the pointer followed to reach
** the sub-tree containing the current key. */
else{
do {
iCell = pCsr->aiCell[pCsr->iNode]-1;
if( iCell>=0 && pCsr->apTreeNode[pCsr->iNode]->aiKeyPtr[iCell] ) break;
}while( (--pCsr->iNode)>=0 );
pCsr->aiCell[pCsr->iNode] = (u8)iCell;
}
#ifndef NDEBUG
if( pCsr->iNode>=0 ){
TreeKey *pK2 = csrGetKey(pCsr, &pCsr->blob, &rc);
assert( rc || treeKeycmp(TKV_KEY(pK2),pK2->nKey,TKV_KEY(pK1),pK1->nKey)<0 );
}
tblobFree(pDb, &key1);
#endif
return rc;
}
/*
** Move the cursor to the first (bLast==0) or last (bLast!=0) entry in the
** in-memory tree.
*/
int lsmTreeCursorEnd(TreeCursor *pCsr, int bLast){
lsm_db *pDb = pCsr->pDb;
TreeRoot *pRoot = pCsr->pRoot;
int rc = LSM_OK;
u32 iNodePtr;
pCsr->iNode = -1;
/* Discard any saved position data */
treeCursorRestore(pCsr, 0);
iNodePtr = pRoot->iRoot;
while( iNodePtr ){
int iCell;
TreeNode *pNode;
pNode = (TreeNode *)treeShmptr(pDb, iNodePtr);
if( rc ) break;
if( bLast ){
iCell = ((pNode->aiKeyPtr[2]==0) ? 2 : 3);
}else{
iCell = ((pNode->aiKeyPtr[0]==0) ? 1 : 0);
}
pCsr->iNode++;
pCsr->apTreeNode[pCsr->iNode] = pNode;
if( (u32)pCsr->iNode<pRoot->nHeight-1 ){
iNodePtr = getChildPtr(pNode, pRoot->iTransId, iCell);
}else{
iNodePtr = 0;
}
pCsr->aiCell[pCsr->iNode] = (u8)(iCell - (iNodePtr==0 && bLast));
}
return rc;
}
int lsmTreeCursorFlags(TreeCursor *pCsr){
int flags = 0;
if( pCsr && pCsr->iNode>=0 ){
int rc = LSM_OK;
TreeKey *pKey = (TreeKey *)treeShmptrUnsafe(pCsr->pDb,
pCsr->apTreeNode[pCsr->iNode]->aiKeyPtr[pCsr->aiCell[pCsr->iNode]]
);
assert( rc==LSM_OK );
flags = (pKey->flags & ~LSM_CONTIGUOUS);
}
return flags;
}
int lsmTreeCursorKey(TreeCursor *pCsr, int *pFlags, void **ppKey, int *pnKey){
TreeKey *pTreeKey;
int rc = LSM_OK;
assert( lsmTreeCursorValid(pCsr) );
pTreeKey = pCsr->pSave;
if( !pTreeKey ){
pTreeKey = csrGetKey(pCsr, &pCsr->blob, &rc);
}
if( rc==LSM_OK ){
*pnKey = pTreeKey->nKey;
if( pFlags ) *pFlags = pTreeKey->flags;
*ppKey = (void *)&pTreeKey[1];
}
return rc;
}
int lsmTreeCursorValue(TreeCursor *pCsr, void **ppVal, int *pnVal){
int res = 0;
int rc;
rc = treeCursorRestore(pCsr, &res);
if( res==0 ){
TreeKey *pTreeKey = csrGetKey(pCsr, &pCsr->blob, &rc);
if( rc==LSM_OK ){
if( pTreeKey->flags & LSM_INSERT ){
*pnVal = pTreeKey->nValue;
*ppVal = TKV_VAL(pTreeKey);
}else{
*ppVal = 0;
*pnVal = -1;
}
}
}else{
*ppVal = 0;
*pnVal = 0;
}
return rc;
}
/*
** Return true if the cursor currently points to a valid entry.
*/
int lsmTreeCursorValid(TreeCursor *pCsr){
return (pCsr && (pCsr->pSave || pCsr->iNode>=0));
}
/*
** Store a mark in *pMark. Later on, a call to lsmTreeRollback() with a
** pointer to the same TreeMark structure may be used to roll the tree
** contents back to their current state.
*/
void lsmTreeMark(lsm_db *pDb, TreeMark *pMark){
pMark->iRoot = pDb->treehdr.root.iRoot;
pMark->nHeight = pDb->treehdr.root.nHeight;
pMark->iWrite = pDb->treehdr.iWrite;
pMark->nChunk = pDb->treehdr.nChunk;
pMark->iNextShmid = pDb->treehdr.iNextShmid;
pMark->iRollback = intArraySize(&pDb->rollback);
}
/*
** Roll back to mark pMark. Structure *pMark should have been previously
** populated by a call to lsmTreeMark().
*/
void lsmTreeRollback(lsm_db *pDb, TreeMark *pMark){
int iIdx;
int nIdx;
u32 iNext;
ShmChunk *pChunk;
u32 iChunk;
u32 iShmid;
/* Revert all required v2 pointers. */
nIdx = intArraySize(&pDb->rollback);
for(iIdx = pMark->iRollback; iIdx<nIdx; iIdx++){
TreeNode *pNode;
pNode = treeShmptr(pDb, intArrayEntry(&pDb->rollback, iIdx));
assert( pNode );
pNode->iV2 = 0;
pNode->iV2Child = 0;
pNode->iV2Ptr = 0;
}
intArrayTruncate(&pDb->rollback, pMark->iRollback);
/* Restore the free-chunk list. */
assert( pMark->iWrite!=0 );
iChunk = treeOffsetToChunk(pMark->iWrite-1);
pChunk = treeShmChunk(pDb, iChunk);
iNext = pChunk->iNext;
pChunk->iNext = 0;
pChunk = treeShmChunk(pDb, pDb->treehdr.iFirst);
iShmid = pChunk->iShmid-1;
while( iNext ){
u32 iFree = iNext; /* Current chunk being rollback-freed */
ShmChunk *pFree; /* Pointer to chunk iFree */
pFree = treeShmChunk(pDb, iFree);
iNext = pFree->iNext;
if( iFree<pMark->nChunk ){
pFree->iNext = pDb->treehdr.iFirst;
pFree->iShmid = iShmid--;
pDb->treehdr.iFirst = iFree;
}
}
/* Restore the tree-header fields */
pDb->treehdr.root.iRoot = pMark->iRoot;
pDb->treehdr.root.nHeight = pMark->nHeight;
pDb->treehdr.iWrite = pMark->iWrite;
pDb->treehdr.nChunk = pMark->nChunk;
pDb->treehdr.iNextShmid = pMark->iNextShmid;
}
/*
** Load the in-memory tree header from shared-memory into pDb->treehdr.
** If the header cannot be loaded, return LSM_PROTOCOL.
**
** If the header is successfully loaded and parameter piRead is not NULL,
** is is set to 1 if the header was loaded from ShmHeader.hdr1, or 2 if
** the header was loaded from ShmHeader.hdr2.
*/
int lsmTreeLoadHeader(lsm_db *pDb, int *piRead){
int nRem = LSM_ATTEMPTS_BEFORE_PROTOCOL;
while( (nRem--)>0 ){
ShmHeader *pShm = pDb->pShmhdr;
memcpy(&pDb->treehdr, &pShm->hdr1, sizeof(TreeHeader));
if( treeHeaderChecksumOk(&pDb->treehdr) ){
if( piRead ) *piRead = 1;
return LSM_OK;
}
memcpy(&pDb->treehdr, &pShm->hdr2, sizeof(TreeHeader));
if( treeHeaderChecksumOk(&pDb->treehdr) ){
if( piRead ) *piRead = 2;
return LSM_OK;
}
lsmShmBarrier(pDb);
}
return LSM_PROTOCOL_BKPT;
}
int lsmTreeLoadHeaderOk(lsm_db *pDb, int iRead){
TreeHeader *p = (iRead==1) ? &pDb->pShmhdr->hdr1 : &pDb->pShmhdr->hdr2;
assert( iRead==1 || iRead==2 );
return (0==memcmp(pDb->treehdr.aCksum, p->aCksum, sizeof(u32)*2));
}
/*
** This function is called to conclude a transaction. If argument bCommit
** is true, the transaction is committed. Otherwise it is rolled back.
*/
int lsmTreeEndTransaction(lsm_db *pDb, int bCommit){
ShmHeader *pShm = pDb->pShmhdr;
treeHeaderChecksum(&pDb->treehdr, pDb->treehdr.aCksum);
memcpy(&pShm->hdr2, &pDb->treehdr, sizeof(TreeHeader));
lsmShmBarrier(pDb);
memcpy(&pShm->hdr1, &pDb->treehdr, sizeof(TreeHeader));
pShm->bWriter = 0;
intArrayFree(pDb->pEnv, &pDb->rollback);
return LSM_OK;
}
#ifndef NDEBUG
static int assert_delete_ranges_match(lsm_db *db){
int prev = 0;
TreeBlob blob = {0, 0};
TreeCursor csr; /* Cursor used to iterate through tree */
int rc;
treeCursorInit(db, 0, &csr);
for( rc = lsmTreeCursorEnd(&csr, 0);
rc==LSM_OK && lsmTreeCursorValid(&csr);
rc = lsmTreeCursorNext(&csr)
){
TreeKey *pKey = csrGetKey(&csr, &blob, &rc);
if( rc!=LSM_OK ) break;
assert( ((prev&LSM_START_DELETE)==0)==((pKey->flags&LSM_END_DELETE)==0) );
prev = pKey->flags;
}
tblobFree(csr.pDb, &csr.blob);
tblobFree(csr.pDb, &blob);
return 1;
}
static int treeCountEntries(lsm_db *db){
TreeCursor csr; /* Cursor used to iterate through tree */
int rc;
int nEntry = 0;
treeCursorInit(db, 0, &csr);
for( rc = lsmTreeCursorEnd(&csr, 0);
rc==LSM_OK && lsmTreeCursorValid(&csr);
rc = lsmTreeCursorNext(&csr)
){
nEntry++;
}
tblobFree(csr.pDb, &csr.blob);
return nEntry;
}
#endif
|