1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
|
/*
** 2003 September 6
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used for creating, destroying, and populating
** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
*/
#include "sqliteInt.h"
#include "vdbeInt.h"
/* Forward references */
static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
static void vdbeFreeOpArray(sqlite3 *, Op *, int);
/*
** Create a new virtual database engine.
*/
Vdbe *sqlite3VdbeCreate(Parse *pParse){
sqlite3 *db = pParse->db;
Vdbe *p;
p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
if( p==0 ) return 0;
memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
p->db = db;
if( db->pVdbe ){
db->pVdbe->ppVPrev = &p->pVNext;
}
p->pVNext = db->pVdbe;
p->ppVPrev = &db->pVdbe;
db->pVdbe = p;
assert( p->eVdbeState==VDBE_INIT_STATE );
p->pParse = pParse;
pParse->pVdbe = p;
assert( pParse->aLabel==0 );
assert( pParse->nLabel==0 );
assert( p->nOpAlloc==0 );
assert( pParse->szOpAlloc==0 );
sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
return p;
}
/*
** Return the Parse object that owns a Vdbe object.
*/
Parse *sqlite3VdbeParser(Vdbe *p){
return p->pParse;
}
/*
** Change the error string stored in Vdbe.zErrMsg
*/
void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
va_list ap;
sqlite3DbFree(p->db, p->zErrMsg);
va_start(ap, zFormat);
p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
va_end(ap);
}
/*
** Remember the SQL string for a prepared statement.
*/
void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
if( p==0 ) return;
p->prepFlags = prepFlags;
if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
p->expmask = 0;
}
assert( p->zSql==0 );
p->zSql = sqlite3DbStrNDup(p->db, z, n);
}
#ifdef SQLITE_ENABLE_NORMALIZE
/*
** Add a new element to the Vdbe->pDblStr list.
*/
void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
if( p ){
int n = sqlite3Strlen30(z);
DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
sizeof(*pStr)+n+1-sizeof(pStr->z));
if( pStr ){
pStr->pNextStr = p->pDblStr;
p->pDblStr = pStr;
memcpy(pStr->z, z, n+1);
}
}
}
#endif
#ifdef SQLITE_ENABLE_NORMALIZE
/*
** zId of length nId is a double-quoted identifier. Check to see if
** that identifier is really used as a string literal.
*/
int sqlite3VdbeUsesDoubleQuotedString(
Vdbe *pVdbe, /* The prepared statement */
const char *zId /* The double-quoted identifier, already dequoted */
){
DblquoteStr *pStr;
assert( zId!=0 );
if( pVdbe->pDblStr==0 ) return 0;
for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
if( strcmp(zId, pStr->z)==0 ) return 1;
}
return 0;
}
#endif
/*
** Swap byte-code between two VDBE structures.
**
** This happens after pB was previously run and returned
** SQLITE_SCHEMA. The statement was then reprepared in pA.
** This routine transfers the new bytecode in pA over to pB
** so that pB can be run again. The old pB byte code is
** moved back to pA so that it will be cleaned up when pA is
** finalized.
*/
void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
Vdbe tmp, *pTmp, **ppTmp;
char *zTmp;
assert( pA->db==pB->db );
tmp = *pA;
*pA = *pB;
*pB = tmp;
pTmp = pA->pVNext;
pA->pVNext = pB->pVNext;
pB->pVNext = pTmp;
ppTmp = pA->ppVPrev;
pA->ppVPrev = pB->ppVPrev;
pB->ppVPrev = ppTmp;
zTmp = pA->zSql;
pA->zSql = pB->zSql;
pB->zSql = zTmp;
#ifdef SQLITE_ENABLE_NORMALIZE
zTmp = pA->zNormSql;
pA->zNormSql = pB->zNormSql;
pB->zNormSql = zTmp;
#endif
pB->expmask = pA->expmask;
pB->prepFlags = pA->prepFlags;
memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
}
/*
** Resize the Vdbe.aOp array so that it is at least nOp elements larger
** than its current size. nOp is guaranteed to be less than or equal
** to 1024/sizeof(Op).
**
** If an out-of-memory error occurs while resizing the array, return
** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
** unchanged (this is so that any opcodes already allocated can be
** correctly deallocated along with the rest of the Vdbe).
*/
static int growOpArray(Vdbe *v, int nOp){
VdbeOp *pNew;
Parse *p = v->pParse;
/* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
** more frequent reallocs and hence provide more opportunities for
** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
** by the minimum* amount required until the size reaches 512. Normal
** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
** size of the op array or add 1KB of space, whichever is smaller. */
#ifdef SQLITE_TEST_REALLOC_STRESS
sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
: (sqlite3_int64)v->nOpAlloc+nOp);
#else
sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
: (sqlite3_int64)(1024/sizeof(Op)));
UNUSED_PARAMETER(nOp);
#endif
/* Ensure that the size of a VDBE does not grow too large */
if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
sqlite3OomFault(p->db);
return SQLITE_NOMEM;
}
assert( nOp<=(int)(1024/sizeof(Op)) );
assert( nNew>=(v->nOpAlloc+nOp) );
pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
if( pNew ){
p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
v->nOpAlloc = p->szOpAlloc/sizeof(Op);
v->aOp = pNew;
}
return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
}
#ifdef SQLITE_DEBUG
/* This routine is just a convenient place to set a breakpoint that will
** fire after each opcode is inserted and displayed using
** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and
** pOp are available to make the breakpoint conditional.
**
** Other useful labels for breakpoints include:
** test_trace_breakpoint(pc,pOp)
** sqlite3CorruptError(lineno)
** sqlite3MisuseError(lineno)
** sqlite3CantopenError(lineno)
*/
static void test_addop_breakpoint(int pc, Op *pOp){
static u64 n = 0;
(void)pc;
(void)pOp;
n++;
if( n==LARGEST_UINT64 ) abort(); /* so that n is used, preventing a warning */
}
#endif
/*
** Slow paths for sqlite3VdbeAddOp3() and sqlite3VdbeAddOp4Int() for the
** unusual case when we need to increase the size of the Vdbe.aOp[] array
** before adding the new opcode.
*/
static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
assert( p->nOpAlloc<=p->nOp );
if( growOpArray(p, 1) ) return 1;
assert( p->nOpAlloc>p->nOp );
return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
}
static SQLITE_NOINLINE int addOp4IntSlow(
Vdbe *p, /* Add the opcode to this VM */
int op, /* The new opcode */
int p1, /* The P1 operand */
int p2, /* The P2 operand */
int p3, /* The P3 operand */
int p4 /* The P4 operand as an integer */
){
int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
if( p->db->mallocFailed==0 ){
VdbeOp *pOp = &p->aOp[addr];
pOp->p4type = P4_INT32;
pOp->p4.i = p4;
}
return addr;
}
/*
** Add a new instruction to the list of instructions current in the
** VDBE. Return the address of the new instruction.
**
** Parameters:
**
** p Pointer to the VDBE
**
** op The opcode for this instruction
**
** p1, p2, p3, p4 Operands
*/
int sqlite3VdbeAddOp0(Vdbe *p, int op){
return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
}
int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
}
int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
}
int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
int i;
VdbeOp *pOp;
i = p->nOp;
assert( p->eVdbeState==VDBE_INIT_STATE );
assert( op>=0 && op<0xff );
if( p->nOpAlloc<=i ){
return growOp3(p, op, p1, p2, p3);
}
assert( p->aOp!=0 );
p->nOp++;
pOp = &p->aOp[i];
assert( pOp!=0 );
pOp->opcode = (u8)op;
pOp->p5 = 0;
pOp->p1 = p1;
pOp->p2 = p2;
pOp->p3 = p3;
pOp->p4.p = 0;
pOp->p4type = P4_NOTUSED;
/* Replicate this logic in sqlite3VdbeAddOp4Int()
** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
pOp->zComment = 0;
#endif
#if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
pOp->nExec = 0;
pOp->nCycle = 0;
#endif
#ifdef SQLITE_DEBUG
if( p->db->flags & SQLITE_VdbeAddopTrace ){
sqlite3VdbePrintOp(0, i, &p->aOp[i]);
test_addop_breakpoint(i, &p->aOp[i]);
}
#endif
#ifdef SQLITE_VDBE_COVERAGE
pOp->iSrcLine = 0;
#endif
/* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
** Replicate in sqlite3VdbeAddOp4Int() */
return i;
}
int sqlite3VdbeAddOp4Int(
Vdbe *p, /* Add the opcode to this VM */
int op, /* The new opcode */
int p1, /* The P1 operand */
int p2, /* The P2 operand */
int p3, /* The P3 operand */
int p4 /* The P4 operand as an integer */
){
int i;
VdbeOp *pOp;
i = p->nOp;
if( p->nOpAlloc<=i ){
return addOp4IntSlow(p, op, p1, p2, p3, p4);
}
p->nOp++;
pOp = &p->aOp[i];
assert( pOp!=0 );
pOp->opcode = (u8)op;
pOp->p5 = 0;
pOp->p1 = p1;
pOp->p2 = p2;
pOp->p3 = p3;
pOp->p4.i = p4;
pOp->p4type = P4_INT32;
/* Replicate this logic in sqlite3VdbeAddOp3()
** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
pOp->zComment = 0;
#endif
#if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
pOp->nExec = 0;
pOp->nCycle = 0;
#endif
#ifdef SQLITE_DEBUG
if( p->db->flags & SQLITE_VdbeAddopTrace ){
sqlite3VdbePrintOp(0, i, &p->aOp[i]);
test_addop_breakpoint(i, &p->aOp[i]);
}
#endif
#ifdef SQLITE_VDBE_COVERAGE
pOp->iSrcLine = 0;
#endif
/* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
** Replicate in sqlite3VdbeAddOp3() */
return i;
}
/* Generate code for an unconditional jump to instruction iDest
*/
int sqlite3VdbeGoto(Vdbe *p, int iDest){
return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
}
/* Generate code to cause the string zStr to be loaded into
** register iDest
*/
int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
}
/*
** Generate code that initializes multiple registers to string or integer
** constants. The registers begin with iDest and increase consecutively.
** One register is initialized for each characgter in zTypes[]. For each
** "s" character in zTypes[], the register is a string if the argument is
** not NULL, or OP_Null if the value is a null pointer. For each "i" character
** in zTypes[], the register is initialized to an integer.
**
** If the input string does not end with "X" then an OP_ResultRow instruction
** is generated for the values inserted.
*/
void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
va_list ap;
int i;
char c;
va_start(ap, zTypes);
for(i=0; (c = zTypes[i])!=0; i++){
if( c=='s' ){
const char *z = va_arg(ap, const char*);
sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
}else if( c=='i' ){
sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
}else{
goto skip_op_resultrow;
}
}
sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
skip_op_resultrow:
va_end(ap);
}
/*
** Add an opcode that includes the p4 value as a pointer.
*/
int sqlite3VdbeAddOp4(
Vdbe *p, /* Add the opcode to this VM */
int op, /* The new opcode */
int p1, /* The P1 operand */
int p2, /* The P2 operand */
int p3, /* The P3 operand */
const char *zP4, /* The P4 operand */
int p4type /* P4 operand type */
){
int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
sqlite3VdbeChangeP4(p, addr, zP4, p4type);
return addr;
}
/*
** Add an OP_Function or OP_PureFunc opcode.
**
** The eCallCtx argument is information (typically taken from Expr.op2)
** that describes the calling context of the function. 0 means a general
** function call. NC_IsCheck means called by a check constraint,
** NC_IdxExpr means called as part of an index expression. NC_PartIdx
** means in the WHERE clause of a partial index. NC_GenCol means called
** while computing a generated column value. 0 is the usual case.
*/
int sqlite3VdbeAddFunctionCall(
Parse *pParse, /* Parsing context */
int p1, /* Constant argument mask */
int p2, /* First argument register */
int p3, /* Register into which results are written */
int nArg, /* Number of argument */
const FuncDef *pFunc, /* The function to be invoked */
int eCallCtx /* Calling context */
){
Vdbe *v = pParse->pVdbe;
int nByte;
int addr;
sqlite3_context *pCtx;
assert( v );
nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
if( pCtx==0 ){
assert( pParse->db->mallocFailed );
freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
return 0;
}
pCtx->pOut = 0;
pCtx->pFunc = (FuncDef*)pFunc;
pCtx->pVdbe = 0;
pCtx->isError = 0;
pCtx->argc = nArg;
pCtx->iOp = sqlite3VdbeCurrentAddr(v);
addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
sqlite3MayAbort(pParse);
return addr;
}
/*
** Add an opcode that includes the p4 value with a P4_INT64 or
** P4_REAL type.
*/
int sqlite3VdbeAddOp4Dup8(
Vdbe *p, /* Add the opcode to this VM */
int op, /* The new opcode */
int p1, /* The P1 operand */
int p2, /* The P2 operand */
int p3, /* The P3 operand */
const u8 *zP4, /* The P4 operand */
int p4type /* P4 operand type */
){
char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
if( p4copy ) memcpy(p4copy, zP4, 8);
return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
}
#ifndef SQLITE_OMIT_EXPLAIN
/*
** Return the address of the current EXPLAIN QUERY PLAN baseline.
** 0 means "none".
*/
int sqlite3VdbeExplainParent(Parse *pParse){
VdbeOp *pOp;
if( pParse->addrExplain==0 ) return 0;
pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
return pOp->p2;
}
/*
** Set a debugger breakpoint on the following routine in order to
** monitor the EXPLAIN QUERY PLAN code generation.
*/
#if defined(SQLITE_DEBUG)
void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
(void)z1;
(void)z2;
}
#endif
/*
** Add a new OP_Explain opcode.
**
** If the bPush flag is true, then make this opcode the parent for
** subsequent Explains until sqlite3VdbeExplainPop() is called.
*/
int sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
int addr = 0;
#if !defined(SQLITE_DEBUG)
/* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
** But omit them (for performance) during production builds */
if( pParse->explain==2 || IS_STMT_SCANSTATUS(pParse->db) )
#endif
{
char *zMsg;
Vdbe *v;
va_list ap;
int iThis;
va_start(ap, zFmt);
zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
va_end(ap);
v = pParse->pVdbe;
iThis = v->nOp;
addr = sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
zMsg, P4_DYNAMIC);
sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetLastOp(v)->p4.z);
if( bPush){
pParse->addrExplain = iThis;
}
sqlite3VdbeScanStatus(v, iThis, -1, -1, 0, 0);
}
return addr;
}
/*
** Pop the EXPLAIN QUERY PLAN stack one level.
*/
void sqlite3VdbeExplainPop(Parse *pParse){
sqlite3ExplainBreakpoint("POP", 0);
pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
}
#endif /* SQLITE_OMIT_EXPLAIN */
/*
** Add an OP_ParseSchema opcode. This routine is broken out from
** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
** as having been used.
**
** The zWhere string must have been obtained from sqlite3_malloc().
** This routine will take ownership of the allocated memory.
*/
void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){
int j;
sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
sqlite3VdbeChangeP5(p, p5);
for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
sqlite3MayAbort(p->pParse);
}
/* Insert the end of a co-routine
*/
void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
/* Clear the temporary register cache, thereby ensuring that each
** co-routine has its own independent set of registers, because co-routines
** might expect their registers to be preserved across an OP_Yield, and
** that could cause problems if two or more co-routines are using the same
** temporary register.
*/
v->pParse->nTempReg = 0;
v->pParse->nRangeReg = 0;
}
/*
** Create a new symbolic label for an instruction that has yet to be
** coded. The symbolic label is really just a negative number. The
** label can be used as the P2 value of an operation. Later, when
** the label is resolved to a specific address, the VDBE will scan
** through its operation list and change all values of P2 which match
** the label into the resolved address.
**
** The VDBE knows that a P2 value is a label because labels are
** always negative and P2 values are suppose to be non-negative.
** Hence, a negative P2 value is a label that has yet to be resolved.
** (Later:) This is only true for opcodes that have the OPFLG_JUMP
** property.
**
** Variable usage notes:
**
** Parse.aLabel[x] Stores the address that the x-th label resolves
** into. For testing (SQLITE_DEBUG), unresolved
** labels stores -1, but that is not required.
** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[]
** Parse.nLabel The *negative* of the number of labels that have
** been issued. The negative is stored because
** that gives a performance improvement over storing
** the equivalent positive value.
*/
int sqlite3VdbeMakeLabel(Parse *pParse){
return --pParse->nLabel;
}
/*
** Resolve label "x" to be the address of the next instruction to
** be inserted. The parameter "x" must have been obtained from
** a prior call to sqlite3VdbeMakeLabel().
*/
static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
int nNewSize = 10 - p->nLabel;
p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
nNewSize*sizeof(p->aLabel[0]));
if( p->aLabel==0 ){
p->nLabelAlloc = 0;
}else{
#ifdef SQLITE_DEBUG
int i;
for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
#endif
if( nNewSize>=100 && (nNewSize/100)>(p->nLabelAlloc/100) ){
sqlite3ProgressCheck(p);
}
p->nLabelAlloc = nNewSize;
p->aLabel[j] = v->nOp;
}
}
void sqlite3VdbeResolveLabel(Vdbe *v, int x){
Parse *p = v->pParse;
int j = ADDR(x);
assert( v->eVdbeState==VDBE_INIT_STATE );
assert( j<-p->nLabel );
assert( j>=0 );
#ifdef SQLITE_DEBUG
if( p->db->flags & SQLITE_VdbeAddopTrace ){
printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
}
#endif
if( p->nLabelAlloc + p->nLabel < 0 ){
resizeResolveLabel(p,v,j);
}else{
assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
p->aLabel[j] = v->nOp;
}
}
/*
** Mark the VDBE as one that can only be run one time.
*/
void sqlite3VdbeRunOnlyOnce(Vdbe *p){
sqlite3VdbeAddOp2(p, OP_Expire, 1, 1);
}
/*
** Mark the VDBE as one that can be run multiple times.
*/
void sqlite3VdbeReusable(Vdbe *p){
int i;
for(i=1; ALWAYS(i<p->nOp); i++){
if( ALWAYS(p->aOp[i].opcode==OP_Expire) ){
p->aOp[1].opcode = OP_Noop;
break;
}
}
}
#ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
/*
** The following type and function are used to iterate through all opcodes
** in a Vdbe main program and each of the sub-programs (triggers) it may
** invoke directly or indirectly. It should be used as follows:
**
** Op *pOp;
** VdbeOpIter sIter;
**
** memset(&sIter, 0, sizeof(sIter));
** sIter.v = v; // v is of type Vdbe*
** while( (pOp = opIterNext(&sIter)) ){
** // Do something with pOp
** }
** sqlite3DbFree(v->db, sIter.apSub);
**
*/
typedef struct VdbeOpIter VdbeOpIter;
struct VdbeOpIter {
Vdbe *v; /* Vdbe to iterate through the opcodes of */
SubProgram **apSub; /* Array of subprograms */
int nSub; /* Number of entries in apSub */
int iAddr; /* Address of next instruction to return */
int iSub; /* 0 = main program, 1 = first sub-program etc. */
};
static Op *opIterNext(VdbeOpIter *p){
Vdbe *v = p->v;
Op *pRet = 0;
Op *aOp;
int nOp;
if( p->iSub<=p->nSub ){
if( p->iSub==0 ){
aOp = v->aOp;
nOp = v->nOp;
}else{
aOp = p->apSub[p->iSub-1]->aOp;
nOp = p->apSub[p->iSub-1]->nOp;
}
assert( p->iAddr<nOp );
pRet = &aOp[p->iAddr];
p->iAddr++;
if( p->iAddr==nOp ){
p->iSub++;
p->iAddr = 0;
}
if( pRet->p4type==P4_SUBPROGRAM ){
int nByte = (p->nSub+1)*sizeof(SubProgram*);
int j;
for(j=0; j<p->nSub; j++){
if( p->apSub[j]==pRet->p4.pProgram ) break;
}
if( j==p->nSub ){
p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
if( !p->apSub ){
pRet = 0;
}else{
p->apSub[p->nSub++] = pRet->p4.pProgram;
}
}
}
}
return pRet;
}
/*
** Check if the program stored in the VM associated with pParse may
** throw an ABORT exception (causing the statement, but not entire transaction
** to be rolled back). This condition is true if the main program or any
** sub-programs contains any of the following:
**
** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
** * OP_Destroy
** * OP_VUpdate
** * OP_VCreate
** * OP_VRename
** * OP_FkCounter with P2==0 (immediate foreign key constraint)
** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
** (for CREATE TABLE AS SELECT ...)
**
** Then check that the value of Parse.mayAbort is true if an
** ABORT may be thrown, or false otherwise. Return true if it does
** match, or false otherwise. This function is intended to be used as
** part of an assert statement in the compiler. Similar to:
**
** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
*/
int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
int hasAbort = 0;
int hasFkCounter = 0;
int hasCreateTable = 0;
int hasCreateIndex = 0;
int hasInitCoroutine = 0;
Op *pOp;
VdbeOpIter sIter;
if( v==0 ) return 0;
memset(&sIter, 0, sizeof(sIter));
sIter.v = v;
while( (pOp = opIterNext(&sIter))!=0 ){
int opcode = pOp->opcode;
if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
|| opcode==OP_VDestroy
|| opcode==OP_VCreate
|| opcode==OP_ParseSchema
|| opcode==OP_Function || opcode==OP_PureFunc
|| ((opcode==OP_Halt || opcode==OP_HaltIfNull)
&& ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
){
hasAbort = 1;
break;
}
if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
if( mayAbort ){
/* hasCreateIndex may also be set for some DELETE statements that use
** OP_Clear. So this routine may end up returning true in the case
** where a "DELETE FROM tbl" has a statement-journal but does not
** require one. This is not so bad - it is an inefficiency, not a bug. */
if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
if( opcode==OP_Clear ) hasCreateIndex = 1;
}
if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
#ifndef SQLITE_OMIT_FOREIGN_KEY
if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
hasFkCounter = 1;
}
#endif
}
sqlite3DbFree(v->db, sIter.apSub);
/* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
** If malloc failed, then the while() loop above may not have iterated
** through all opcodes and hasAbort may be set incorrectly. Return
** true for this case to prevent the assert() in the callers frame
** from failing. */
return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
|| (hasCreateTable && hasInitCoroutine) || hasCreateIndex
);
}
#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
#ifdef SQLITE_DEBUG
/*
** Increment the nWrite counter in the VDBE if the cursor is not an
** ephemeral cursor, or if the cursor argument is NULL.
*/
void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
if( pC==0
|| (pC->eCurType!=CURTYPE_SORTER
&& pC->eCurType!=CURTYPE_PSEUDO
&& !pC->isEphemeral)
){
p->nWrite++;
}
}
#endif
#ifdef SQLITE_DEBUG
/*
** Assert if an Abort at this point in time might result in a corrupt
** database.
*/
void sqlite3VdbeAssertAbortable(Vdbe *p){
assert( p->nWrite==0 || p->usesStmtJournal );
}
#endif
/*
** This routine is called after all opcodes have been inserted. It loops
** through all the opcodes and fixes up some details.
**
** (1) For each jump instruction with a negative P2 value (a label)
** resolve the P2 value to an actual address.
**
** (2) Compute the maximum number of arguments used by any SQL function
** and store that value in *pMaxFuncArgs.
**
** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
** indicate what the prepared statement actually does.
**
** (4) (discontinued)
**
** (5) Reclaim the memory allocated for storing labels.
**
** This routine will only function correctly if the mkopcodeh.tcl generator
** script numbers the opcodes correctly. Changes to this routine must be
** coordinated with changes to mkopcodeh.tcl.
*/
static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
int nMaxArgs = *pMaxFuncArgs;
Op *pOp;
Parse *pParse = p->pParse;
int *aLabel = pParse->aLabel;
assert( pParse->db->mallocFailed==0 ); /* tag-20230419-1 */
p->readOnly = 1;
p->bIsReader = 0;
pOp = &p->aOp[p->nOp-1];
assert( p->aOp[0].opcode==OP_Init );
while( 1 /* Loop terminates when it reaches the OP_Init opcode */ ){
/* Only JUMP opcodes and the short list of special opcodes in the switch
** below need to be considered. The mkopcodeh.tcl generator script groups
** all these opcodes together near the front of the opcode list. Skip
** any opcode that does not need processing by virtual of the fact that
** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
*/
if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
/* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
** cases from this switch! */
switch( pOp->opcode ){
case OP_Transaction: {
if( pOp->p2!=0 ) p->readOnly = 0;
/* no break */ deliberate_fall_through
}
case OP_AutoCommit:
case OP_Savepoint: {
p->bIsReader = 1;
break;
}
#ifndef SQLITE_OMIT_WAL
case OP_Checkpoint:
#endif
case OP_Vacuum:
case OP_JournalMode: {
p->readOnly = 0;
p->bIsReader = 1;
break;
}
case OP_Init: {
assert( pOp->p2>=0 );
goto resolve_p2_values_loop_exit;
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
case OP_VUpdate: {
if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
break;
}
case OP_VFilter: {
int n;
assert( (pOp - p->aOp) >= 3 );
assert( pOp[-1].opcode==OP_Integer );
n = pOp[-1].p1;
if( n>nMaxArgs ) nMaxArgs = n;
/* Fall through into the default case */
/* no break */ deliberate_fall_through
}
#endif
default: {
if( pOp->p2<0 ){
/* The mkopcodeh.tcl script has so arranged things that the only
** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
** have non-negative values for P2. */
assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
assert( ADDR(pOp->p2)<-pParse->nLabel );
assert( aLabel!=0 ); /* True because of tag-20230419-1 */
pOp->p2 = aLabel[ADDR(pOp->p2)];
}
break;
}
}
/* The mkopcodeh.tcl script has so arranged things that the only
** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
** have non-negative values for P2. */
assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
}
assert( pOp>p->aOp );
pOp--;
}
resolve_p2_values_loop_exit:
if( aLabel ){
sqlite3DbNNFreeNN(p->db, pParse->aLabel);
pParse->aLabel = 0;
}
pParse->nLabel = 0;
*pMaxFuncArgs = nMaxArgs;
assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
}
#ifdef SQLITE_DEBUG
/*
** Check to see if a subroutine contains a jump to a location outside of
** the subroutine. If a jump outside the subroutine is detected, add code
** that will cause the program to halt with an error message.
**
** The subroutine consists of opcodes between iFirst and iLast. Jumps to
** locations within the subroutine are acceptable. iRetReg is a register
** that contains the return address. Jumps to outside the range of iFirst
** through iLast are also acceptable as long as the jump destination is
** an OP_Return to iReturnAddr.
**
** A jump to an unresolved label means that the jump destination will be
** beyond the current address. That is normally a jump to an early
** termination and is consider acceptable.
**
** This routine only runs during debug builds. The purpose is (of course)
** to detect invalid escapes out of a subroutine. The OP_Halt opcode
** is generated rather than an assert() or other error, so that ".eqp full"
** will still work to show the original bytecode, to aid in debugging.
*/
void sqlite3VdbeNoJumpsOutsideSubrtn(
Vdbe *v, /* The byte-code program under construction */
int iFirst, /* First opcode of the subroutine */
int iLast, /* Last opcode of the subroutine */
int iRetReg /* Subroutine return address register */
){
VdbeOp *pOp;
Parse *pParse;
int i;
sqlite3_str *pErr = 0;
assert( v!=0 );
pParse = v->pParse;
assert( pParse!=0 );
if( pParse->nErr ) return;
assert( iLast>=iFirst );
assert( iLast<v->nOp );
pOp = &v->aOp[iFirst];
for(i=iFirst; i<=iLast; i++, pOp++){
if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ){
int iDest = pOp->p2; /* Jump destination */
if( iDest==0 ) continue;
if( pOp->opcode==OP_Gosub ) continue;
if( pOp->p3==20230325 && pOp->opcode==OP_NotNull ){
/* This is a deliberately taken illegal branch. tag-20230325-2 */
continue;
}
if( iDest<0 ){
int j = ADDR(iDest);
assert( j>=0 );
if( j>=-pParse->nLabel || pParse->aLabel[j]<0 ){
continue;
}
iDest = pParse->aLabel[j];
}
if( iDest<iFirst || iDest>iLast ){
int j = iDest;
for(; j<v->nOp; j++){
VdbeOp *pX = &v->aOp[j];
if( pX->opcode==OP_Return ){
if( pX->p1==iRetReg ) break;
continue;
}
if( pX->opcode==OP_Noop ) continue;
if( pX->opcode==OP_Explain ) continue;
if( pErr==0 ){
pErr = sqlite3_str_new(0);
}else{
sqlite3_str_appendchar(pErr, 1, '\n');
}
sqlite3_str_appendf(pErr,
"Opcode at %d jumps to %d which is outside the "
"subroutine at %d..%d",
i, iDest, iFirst, iLast);
break;
}
}
}
}
if( pErr ){
char *zErr = sqlite3_str_finish(pErr);
sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_INTERNAL, OE_Abort, 0, zErr, 0);
sqlite3_free(zErr);
sqlite3MayAbort(pParse);
}
}
#endif /* SQLITE_DEBUG */
/*
** Return the address of the next instruction to be inserted.
*/
int sqlite3VdbeCurrentAddr(Vdbe *p){
assert( p->eVdbeState==VDBE_INIT_STATE );
return p->nOp;
}
/*
** Verify that at least N opcode slots are available in p without
** having to malloc for more space (except when compiled using
** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
** to verify that certain calls to sqlite3VdbeAddOpList() can never
** fail due to a OOM fault and hence that the return value from
** sqlite3VdbeAddOpList() will always be non-NULL.
*/
#if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
assert( p->nOp + N <= p->nOpAlloc );
}
#endif
/*
** Verify that the VM passed as the only argument does not contain
** an OP_ResultRow opcode. Fail an assert() if it does. This is used
** by code in pragma.c to ensure that the implementation of certain
** pragmas comports with the flags specified in the mkpragmatab.tcl
** script.
*/
#if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
int i;
for(i=0; i<p->nOp; i++){
assert( p->aOp[i].opcode!=OP_ResultRow );
}
}
#endif
/*
** Generate code (a single OP_Abortable opcode) that will
** verify that the VDBE program can safely call Abort in the current
** context.
*/
#if defined(SQLITE_DEBUG)
void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
}
#endif
/*
** This function returns a pointer to the array of opcodes associated with
** the Vdbe passed as the first argument. It is the callers responsibility
** to arrange for the returned array to be eventually freed using the
** vdbeFreeOpArray() function.
**
** Before returning, *pnOp is set to the number of entries in the returned
** array. Also, *pnMaxArg is set to the larger of its current value and
** the number of entries in the Vdbe.apArg[] array required to execute the
** returned program.
*/
VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
VdbeOp *aOp = p->aOp;
assert( aOp && !p->db->mallocFailed );
/* Check that sqlite3VdbeUsesBtree() was not called on this VM */
assert( DbMaskAllZero(p->btreeMask) );
resolveP2Values(p, pnMaxArg);
*pnOp = p->nOp;
p->aOp = 0;
return aOp;
}
/*
** Add a whole list of operations to the operation stack. Return a
** pointer to the first operation inserted.
**
** Non-zero P2 arguments to jump instructions are automatically adjusted
** so that the jump target is relative to the first operation inserted.
*/
VdbeOp *sqlite3VdbeAddOpList(
Vdbe *p, /* Add opcodes to the prepared statement */
int nOp, /* Number of opcodes to add */
VdbeOpList const *aOp, /* The opcodes to be added */
int iLineno /* Source-file line number of first opcode */
){
int i;
VdbeOp *pOut, *pFirst;
assert( nOp>0 );
assert( p->eVdbeState==VDBE_INIT_STATE );
if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
return 0;
}
pFirst = pOut = &p->aOp[p->nOp];
for(i=0; i<nOp; i++, aOp++, pOut++){
pOut->opcode = aOp->opcode;
pOut->p1 = aOp->p1;
pOut->p2 = aOp->p2;
assert( aOp->p2>=0 );
if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
pOut->p2 += p->nOp;
}
pOut->p3 = aOp->p3;
pOut->p4type = P4_NOTUSED;
pOut->p4.p = 0;
pOut->p5 = 0;
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
pOut->zComment = 0;
#endif
#ifdef SQLITE_VDBE_COVERAGE
pOut->iSrcLine = iLineno+i;
#else
(void)iLineno;
#endif
#ifdef SQLITE_DEBUG
if( p->db->flags & SQLITE_VdbeAddopTrace ){
sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
}
#endif
}
p->nOp += nOp;
return pFirst;
}
#if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
/*
** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
*/
void sqlite3VdbeScanStatus(
Vdbe *p, /* VM to add scanstatus() to */
int addrExplain, /* Address of OP_Explain (or 0) */
int addrLoop, /* Address of loop counter */
int addrVisit, /* Address of rows visited counter */
LogEst nEst, /* Estimated number of output rows */
const char *zName /* Name of table or index being scanned */
){
if( IS_STMT_SCANSTATUS(p->db) ){
sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
ScanStatus *aNew;
aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
if( aNew ){
ScanStatus *pNew = &aNew[p->nScan++];
memset(pNew, 0, sizeof(ScanStatus));
pNew->addrExplain = addrExplain;
pNew->addrLoop = addrLoop;
pNew->addrVisit = addrVisit;
pNew->nEst = nEst;
pNew->zName = sqlite3DbStrDup(p->db, zName);
p->aScan = aNew;
}
}
}
/*
** Add the range of instructions from addrStart to addrEnd (inclusive) to
** the set of those corresponding to the sqlite3_stmt_scanstatus() counters
** associated with the OP_Explain instruction at addrExplain. The
** sum of the sqlite3Hwtime() values for each of these instructions
** will be returned for SQLITE_SCANSTAT_NCYCLE requests.
*/
void sqlite3VdbeScanStatusRange(
Vdbe *p,
int addrExplain,
int addrStart,
int addrEnd
){
if( IS_STMT_SCANSTATUS(p->db) ){
ScanStatus *pScan = 0;
int ii;
for(ii=p->nScan-1; ii>=0; ii--){
pScan = &p->aScan[ii];
if( pScan->addrExplain==addrExplain ) break;
pScan = 0;
}
if( pScan ){
if( addrEnd<0 ) addrEnd = sqlite3VdbeCurrentAddr(p)-1;
for(ii=0; ii<ArraySize(pScan->aAddrRange); ii+=2){
if( pScan->aAddrRange[ii]==0 ){
pScan->aAddrRange[ii] = addrStart;
pScan->aAddrRange[ii+1] = addrEnd;
break;
}
}
}
}
}
/*
** Set the addresses for the SQLITE_SCANSTAT_NLOOP and SQLITE_SCANSTAT_NROW
** counters for the query element associated with the OP_Explain at
** addrExplain.
*/
void sqlite3VdbeScanStatusCounters(
Vdbe *p,
int addrExplain,
int addrLoop,
int addrVisit
){
if( IS_STMT_SCANSTATUS(p->db) ){
ScanStatus *pScan = 0;
int ii;
for(ii=p->nScan-1; ii>=0; ii--){
pScan = &p->aScan[ii];
if( pScan->addrExplain==addrExplain ) break;
pScan = 0;
}
if( pScan ){
if( addrLoop>0 ) pScan->addrLoop = addrLoop;
if( addrVisit>0 ) pScan->addrVisit = addrVisit;
}
}
}
#endif /* defined(SQLITE_ENABLE_STMT_SCANSTATUS) */
/*
** Change the value of the opcode, or P1, P2, P3, or P5 operands
** for a specific instruction.
*/
void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
assert( addr>=0 );
sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
}
void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
assert( addr>=0 );
sqlite3VdbeGetOp(p,addr)->p1 = val;
}
void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
assert( addr>=0 || p->db->mallocFailed );
sqlite3VdbeGetOp(p,addr)->p2 = val;
}
void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
assert( addr>=0 );
sqlite3VdbeGetOp(p,addr)->p3 = val;
}
void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
assert( p->nOp>0 || p->db->mallocFailed );
if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
}
/*
** If the previous opcode is an OP_Column that delivers results
** into register iDest, then add the OPFLAG_TYPEOFARG flag to that
** opcode.
*/
void sqlite3VdbeTypeofColumn(Vdbe *p, int iDest){
VdbeOp *pOp = sqlite3VdbeGetLastOp(p);
if( pOp->p3==iDest && pOp->opcode==OP_Column ){
pOp->p5 |= OPFLAG_TYPEOFARG;
}
}
/*
** Change the P2 operand of instruction addr so that it points to
** the address of the next instruction to be coded.
*/
void sqlite3VdbeJumpHere(Vdbe *p, int addr){
sqlite3VdbeChangeP2(p, addr, p->nOp);
}
/*
** Change the P2 operand of the jump instruction at addr so that
** the jump lands on the next opcode. Or if the jump instruction was
** the previous opcode (and is thus a no-op) then simply back up
** the next instruction counter by one slot so that the jump is
** overwritten by the next inserted opcode.
**
** This routine is an optimization of sqlite3VdbeJumpHere() that
** strives to omit useless byte-code like this:
**
** 7 Once 0 8 0
** 8 ...
*/
void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){
if( addr==p->nOp-1 ){
assert( p->aOp[addr].opcode==OP_Once
|| p->aOp[addr].opcode==OP_If
|| p->aOp[addr].opcode==OP_FkIfZero );
assert( p->aOp[addr].p4type==0 );
#ifdef SQLITE_VDBE_COVERAGE
sqlite3VdbeGetLastOp(p)->iSrcLine = 0; /* Erase VdbeCoverage() macros */
#endif
p->nOp--;
}else{
sqlite3VdbeChangeP2(p, addr, p->nOp);
}
}
/*
** If the input FuncDef structure is ephemeral, then free it. If
** the FuncDef is not ephemeral, then do nothing.
*/
static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
assert( db!=0 );
if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
sqlite3DbNNFreeNN(db, pDef);
}
}
/*
** Delete a P4 value if necessary.
*/
static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
sqlite3DbNNFreeNN(db, p);
}
static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
assert( db!=0 );
freeEphemeralFunction(db, p->pFunc);
sqlite3DbNNFreeNN(db, p);
}
static void freeP4(sqlite3 *db, int p4type, void *p4){
assert( db );
switch( p4type ){
case P4_FUNCCTX: {
freeP4FuncCtx(db, (sqlite3_context*)p4);
break;
}
case P4_REAL:
case P4_INT64:
case P4_DYNAMIC:
case P4_INTARRAY: {
if( p4 ) sqlite3DbNNFreeNN(db, p4);
break;
}
case P4_KEYINFO: {
if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
break;
}
#ifdef SQLITE_ENABLE_CURSOR_HINTS
case P4_EXPR: {
sqlite3ExprDelete(db, (Expr*)p4);
break;
}
#endif
case P4_FUNCDEF: {
freeEphemeralFunction(db, (FuncDef*)p4);
break;
}
case P4_MEM: {
if( db->pnBytesFreed==0 ){
sqlite3ValueFree((sqlite3_value*)p4);
}else{
freeP4Mem(db, (Mem*)p4);
}
break;
}
case P4_VTAB : {
if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
break;
}
case P4_TABLEREF: {
if( db->pnBytesFreed==0 ) sqlite3DeleteTable(db, (Table*)p4);
break;
}
}
}
/*
** Free the space allocated for aOp and any p4 values allocated for the
** opcodes contained within. If aOp is not NULL it is assumed to contain
** nOp entries.
*/
static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
assert( nOp>=0 );
assert( db!=0 );
if( aOp ){
Op *pOp = &aOp[nOp-1];
while(1){ /* Exit via break */
if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
sqlite3DbFree(db, pOp->zComment);
#endif
if( pOp==aOp ) break;
pOp--;
}
sqlite3DbNNFreeNN(db, aOp);
}
}
/*
** Link the SubProgram object passed as the second argument into the linked
** list at Vdbe.pSubProgram. This list is used to delete all sub-program
** objects when the VM is no longer required.
*/
void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
p->pNext = pVdbe->pProgram;
pVdbe->pProgram = p;
}
/*
** Return true if the given Vdbe has any SubPrograms.
*/
int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
return pVdbe->pProgram!=0;
}
/*
** Change the opcode at addr into OP_Noop
*/
int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
VdbeOp *pOp;
if( p->db->mallocFailed ) return 0;
assert( addr>=0 && addr<p->nOp );
pOp = &p->aOp[addr];
freeP4(p->db, pOp->p4type, pOp->p4.p);
pOp->p4type = P4_NOTUSED;
pOp->p4.z = 0;
pOp->opcode = OP_Noop;
return 1;
}
/*
** If the last opcode is "op" and it is not a jump destination,
** then remove it. Return true if and only if an opcode was removed.
*/
int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
return sqlite3VdbeChangeToNoop(p, p->nOp-1);
}else{
return 0;
}
}
#ifdef SQLITE_DEBUG
/*
** Generate an OP_ReleaseReg opcode to indicate that a range of
** registers, except any identified by mask, are no longer in use.
*/
void sqlite3VdbeReleaseRegisters(
Parse *pParse, /* Parsing context */
int iFirst, /* Index of first register to be released */
int N, /* Number of registers to release */
u32 mask, /* Mask of registers to NOT release */
int bUndefine /* If true, mark registers as undefined */
){
if( N==0 || OptimizationDisabled(pParse->db, SQLITE_ReleaseReg) ) return;
assert( pParse->pVdbe );
assert( iFirst>=1 );
assert( iFirst+N-1<=pParse->nMem );
if( N<=31 && mask!=0 ){
while( N>0 && (mask&1)!=0 ){
mask >>= 1;
iFirst++;
N--;
}
while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){
mask &= ~MASKBIT32(N-1);
N--;
}
}
if( N>0 ){
sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
}
}
#endif /* SQLITE_DEBUG */
/*
** Change the value of the P4 operand for a specific instruction.
** This routine is useful when a large program is loaded from a
** static array using sqlite3VdbeAddOpList but we want to make a
** few minor changes to the program.
**
** If n>=0 then the P4 operand is dynamic, meaning that a copy of
** the string is made into memory obtained from sqlite3_malloc().
** A value of n==0 means copy bytes of zP4 up to and including the
** first null byte. If n>0 then copy n+1 bytes of zP4.
**
** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
** to a string or structure that is guaranteed to exist for the lifetime of
** the Vdbe. In these cases we can just copy the pointer.
**
** If addr<0 then change P4 on the most recently inserted instruction.
*/
static void SQLITE_NOINLINE vdbeChangeP4Full(
Vdbe *p,
Op *pOp,
const char *zP4,
int n
){
if( pOp->p4type ){
assert( pOp->p4type > P4_FREE_IF_LE );
pOp->p4type = 0;
pOp->p4.p = 0;
}
if( n<0 ){
sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
}else{
if( n==0 ) n = sqlite3Strlen30(zP4);
pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
pOp->p4type = P4_DYNAMIC;
}
}
void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
Op *pOp;
sqlite3 *db;
assert( p!=0 );
db = p->db;
assert( p->eVdbeState==VDBE_INIT_STATE );
assert( p->aOp!=0 || db->mallocFailed );
if( db->mallocFailed ){
if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
return;
}
assert( p->nOp>0 );
assert( addr<p->nOp );
if( addr<0 ){
addr = p->nOp - 1;
}
pOp = &p->aOp[addr];
if( n>=0 || pOp->p4type ){
vdbeChangeP4Full(p, pOp, zP4, n);
return;
}
if( n==P4_INT32 ){
/* Note: this cast is safe, because the origin data point was an int
** that was cast to a (const char *). */
pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
pOp->p4type = P4_INT32;
}else if( zP4!=0 ){
assert( n<0 );
pOp->p4.p = (void*)zP4;
pOp->p4type = (signed char)n;
if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
}
}
/*
** Change the P4 operand of the most recently coded instruction
** to the value defined by the arguments. This is a high-speed
** version of sqlite3VdbeChangeP4().
**
** The P4 operand must not have been previously defined. And the new
** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
** those cases.
*/
void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
VdbeOp *pOp;
assert( n!=P4_INT32 && n!=P4_VTAB );
assert( n<=0 );
if( p->db->mallocFailed ){
freeP4(p->db, n, pP4);
}else{
assert( pP4!=0 || n==P4_DYNAMIC );
assert( p->nOp>0 );
pOp = &p->aOp[p->nOp-1];
assert( pOp->p4type==P4_NOTUSED );
pOp->p4type = n;
pOp->p4.p = pP4;
}
}
/*
** Set the P4 on the most recently added opcode to the KeyInfo for the
** index given.
*/
void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
Vdbe *v = pParse->pVdbe;
KeyInfo *pKeyInfo;
assert( v!=0 );
assert( pIdx!=0 );
pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
}
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
/*
** Change the comment on the most recently coded instruction. Or
** insert a No-op and add the comment to that new instruction. This
** makes the code easier to read during debugging. None of this happens
** in a production build.
*/
static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
assert( p->nOp>0 || p->aOp==0 );
assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 );
if( p->nOp ){
assert( p->aOp );
sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
}
}
void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
va_list ap;
if( p ){
va_start(ap, zFormat);
vdbeVComment(p, zFormat, ap);
va_end(ap);
}
}
void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
va_list ap;
if( p ){
sqlite3VdbeAddOp0(p, OP_Noop);
va_start(ap, zFormat);
vdbeVComment(p, zFormat, ap);
va_end(ap);
}
}
#endif /* NDEBUG */
#ifdef SQLITE_VDBE_COVERAGE
/*
** Set the value if the iSrcLine field for the previously coded instruction.
*/
void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
sqlite3VdbeGetLastOp(v)->iSrcLine = iLine;
}
#endif /* SQLITE_VDBE_COVERAGE */
/*
** Return the opcode for a given address. The address must be non-negative.
** See sqlite3VdbeGetLastOp() to get the most recently added opcode.
**
** If a memory allocation error has occurred prior to the calling of this
** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
** is readable but not writable, though it is cast to a writable value.
** The return of a dummy opcode allows the call to continue functioning
** after an OOM fault without having to check to see if the return from
** this routine is a valid pointer. But because the dummy.opcode is 0,
** dummy will never be written to. This is verified by code inspection and
** by running with Valgrind.
*/
VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
/* C89 specifies that the constant "dummy" will be initialized to all
** zeros, which is correct. MSVC generates a warning, nevertheless. */
static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
assert( p->eVdbeState==VDBE_INIT_STATE );
assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
if( p->db->mallocFailed ){
return (VdbeOp*)&dummy;
}else{
return &p->aOp[addr];
}
}
/* Return the most recently added opcode
*/
VdbeOp *sqlite3VdbeGetLastOp(Vdbe *p){
return sqlite3VdbeGetOp(p, p->nOp - 1);
}
#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
/*
** Return an integer value for one of the parameters to the opcode pOp
** determined by character c.
*/
static int translateP(char c, const Op *pOp){
if( c=='1' ) return pOp->p1;
if( c=='2' ) return pOp->p2;
if( c=='3' ) return pOp->p3;
if( c=='4' ) return pOp->p4.i;
return pOp->p5;
}
/*
** Compute a string for the "comment" field of a VDBE opcode listing.
**
** The Synopsis: field in comments in the vdbe.c source file gets converted
** to an extra string that is appended to the sqlite3OpcodeName(). In the
** absence of other comments, this synopsis becomes the comment on the opcode.
** Some translation occurs:
**
** "PX" -> "r[X]"
** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
*/
char *sqlite3VdbeDisplayComment(
sqlite3 *db, /* Optional - Oom error reporting only */
const Op *pOp, /* The opcode to be commented */
const char *zP4 /* Previously obtained value for P4 */
){
const char *zOpName;
const char *zSynopsis;
int nOpName;
int ii;
char zAlt[50];
StrAccum x;
sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
zOpName = sqlite3OpcodeName(pOp->opcode);
nOpName = sqlite3Strlen30(zOpName);
if( zOpName[nOpName+1] ){
int seenCom = 0;
char c;
zSynopsis = zOpName + nOpName + 1;
if( strncmp(zSynopsis,"IF ",3)==0 ){
sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
zSynopsis = zAlt;
}
for(ii=0; (c = zSynopsis[ii])!=0; ii++){
if( c=='P' ){
c = zSynopsis[++ii];
if( c=='4' ){
sqlite3_str_appendall(&x, zP4);
}else if( c=='X' ){
if( pOp->zComment && pOp->zComment[0] ){
sqlite3_str_appendall(&x, pOp->zComment);
seenCom = 1;
break;
}
}else{
int v1 = translateP(c, pOp);
int v2;
if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
ii += 3;
v2 = translateP(zSynopsis[ii], pOp);
if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
ii += 2;
v2++;
}
if( v2<2 ){
sqlite3_str_appendf(&x, "%d", v1);
}else{
sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1);
}
}else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){
sqlite3_context *pCtx = pOp->p4.pCtx;
if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){
sqlite3_str_appendf(&x, "%d", v1);
}else if( pCtx->argc>1 ){
sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1);
}else if( x.accError==0 ){
assert( x.nChar>2 );
x.nChar -= 2;
ii++;
}
ii += 3;
}else{
sqlite3_str_appendf(&x, "%d", v1);
if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
ii += 4;
}
}
}
}else{
sqlite3_str_appendchar(&x, 1, c);
}
}
if( !seenCom && pOp->zComment ){
sqlite3_str_appendf(&x, "; %s", pOp->zComment);
}
}else if( pOp->zComment ){
sqlite3_str_appendall(&x, pOp->zComment);
}
if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){
sqlite3OomFault(db);
}
return sqlite3StrAccumFinish(&x);
}
#endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
#if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
/*
** Translate the P4.pExpr value for an OP_CursorHint opcode into text
** that can be displayed in the P4 column of EXPLAIN output.
*/
static void displayP4Expr(StrAccum *p, Expr *pExpr){
const char *zOp = 0;
switch( pExpr->op ){
case TK_STRING:
assert( !ExprHasProperty(pExpr, EP_IntValue) );
sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
break;
case TK_INTEGER:
sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
break;
case TK_NULL:
sqlite3_str_appendf(p, "NULL");
break;
case TK_REGISTER: {
sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
break;
}
case TK_COLUMN: {
if( pExpr->iColumn<0 ){
sqlite3_str_appendf(p, "rowid");
}else{
sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
}
break;
}
case TK_LT: zOp = "LT"; break;
case TK_LE: zOp = "LE"; break;
case TK_GT: zOp = "GT"; break;
case TK_GE: zOp = "GE"; break;
case TK_NE: zOp = "NE"; break;
case TK_EQ: zOp = "EQ"; break;
case TK_IS: zOp = "IS"; break;
case TK_ISNOT: zOp = "ISNOT"; break;
case TK_AND: zOp = "AND"; break;
case TK_OR: zOp = "OR"; break;
case TK_PLUS: zOp = "ADD"; break;
case TK_STAR: zOp = "MUL"; break;
case TK_MINUS: zOp = "SUB"; break;
case TK_REM: zOp = "REM"; break;
case TK_BITAND: zOp = "BITAND"; break;
case TK_BITOR: zOp = "BITOR"; break;
case TK_SLASH: zOp = "DIV"; break;
case TK_LSHIFT: zOp = "LSHIFT"; break;
case TK_RSHIFT: zOp = "RSHIFT"; break;
case TK_CONCAT: zOp = "CONCAT"; break;
case TK_UMINUS: zOp = "MINUS"; break;
case TK_UPLUS: zOp = "PLUS"; break;
case TK_BITNOT: zOp = "BITNOT"; break;
case TK_NOT: zOp = "NOT"; break;
case TK_ISNULL: zOp = "ISNULL"; break;
case TK_NOTNULL: zOp = "NOTNULL"; break;
default:
sqlite3_str_appendf(p, "%s", "expr");
break;
}
if( zOp ){
sqlite3_str_appendf(p, "%s(", zOp);
displayP4Expr(p, pExpr->pLeft);
if( pExpr->pRight ){
sqlite3_str_append(p, ",", 1);
displayP4Expr(p, pExpr->pRight);
}
sqlite3_str_append(p, ")", 1);
}
}
#endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
#if VDBE_DISPLAY_P4
/*
** Compute a string that describes the P4 parameter for an opcode.
** Use zTemp for any required temporary buffer space.
*/
char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){
char *zP4 = 0;
StrAccum x;
sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
switch( pOp->p4type ){
case P4_KEYINFO: {
int j;
KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
assert( pKeyInfo->aSortFlags!=0 );
sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
for(j=0; j<pKeyInfo->nKeyField; j++){
CollSeq *pColl = pKeyInfo->aColl[j];
const char *zColl = pColl ? pColl->zName : "";
if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
sqlite3_str_appendf(&x, ",%s%s%s",
(pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
(pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
zColl);
}
sqlite3_str_append(&x, ")", 1);
break;
}
#ifdef SQLITE_ENABLE_CURSOR_HINTS
case P4_EXPR: {
displayP4Expr(&x, pOp->p4.pExpr);
break;
}
#endif
case P4_COLLSEQ: {
static const char *const encnames[] = {"?", "8", "16LE", "16BE"};
CollSeq *pColl = pOp->p4.pColl;
assert( pColl->enc<4 );
sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName,
encnames[pColl->enc]);
break;
}
case P4_FUNCDEF: {
FuncDef *pDef = pOp->p4.pFunc;
sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
break;
}
case P4_FUNCCTX: {
FuncDef *pDef = pOp->p4.pCtx->pFunc;
sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
break;
}
case P4_INT64: {
sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
break;
}
case P4_INT32: {
sqlite3_str_appendf(&x, "%d", pOp->p4.i);
break;
}
case P4_REAL: {
sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
break;
}
case P4_MEM: {
Mem *pMem = pOp->p4.pMem;
if( pMem->flags & MEM_Str ){
zP4 = pMem->z;
}else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
sqlite3_str_appendf(&x, "%lld", pMem->u.i);
}else if( pMem->flags & MEM_Real ){
sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
}else if( pMem->flags & MEM_Null ){
zP4 = "NULL";
}else{
assert( pMem->flags & MEM_Blob );
zP4 = "(blob)";
}
break;
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
case P4_VTAB: {
sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
sqlite3_str_appendf(&x, "vtab:%p", pVtab);
break;
}
#endif
case P4_INTARRAY: {
u32 i;
u32 *ai = pOp->p4.ai;
u32 n = ai[0]; /* The first element of an INTARRAY is always the
** count of the number of elements to follow */
for(i=1; i<=n; i++){
sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]);
}
sqlite3_str_append(&x, "]", 1);
break;
}
case P4_SUBPROGRAM: {
zP4 = "program";
break;
}
case P4_TABLE: {
zP4 = pOp->p4.pTab->zName;
break;
}
default: {
zP4 = pOp->p4.z;
}
}
if( zP4 ) sqlite3_str_appendall(&x, zP4);
if( (x.accError & SQLITE_NOMEM)!=0 ){
sqlite3OomFault(db);
}
return sqlite3StrAccumFinish(&x);
}
#endif /* VDBE_DISPLAY_P4 */
/*
** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
**
** The prepared statements need to know in advance the complete set of
** attached databases that will be use. A mask of these databases
** is maintained in p->btreeMask. The p->lockMask value is the subset of
** p->btreeMask of databases that will require a lock.
*/
void sqlite3VdbeUsesBtree(Vdbe *p, int i){
assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
assert( i<(int)sizeof(p->btreeMask)*8 );
DbMaskSet(p->btreeMask, i);
if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
DbMaskSet(p->lockMask, i);
}
}
#if !defined(SQLITE_OMIT_SHARED_CACHE)
/*
** If SQLite is compiled to support shared-cache mode and to be threadsafe,
** this routine obtains the mutex associated with each BtShared structure
** that may be accessed by the VM passed as an argument. In doing so it also
** sets the BtShared.db member of each of the BtShared structures, ensuring
** that the correct busy-handler callback is invoked if required.
**
** If SQLite is not threadsafe but does support shared-cache mode, then
** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
** of all of BtShared structures accessible via the database handle
** associated with the VM.
**
** If SQLite is not threadsafe and does not support shared-cache mode, this
** function is a no-op.
**
** The p->btreeMask field is a bitmask of all btrees that the prepared
** statement p will ever use. Let N be the number of bits in p->btreeMask
** corresponding to btrees that use shared cache. Then the runtime of
** this routine is N*N. But as N is rarely more than 1, this should not
** be a problem.
*/
void sqlite3VdbeEnter(Vdbe *p){
int i;
sqlite3 *db;
Db *aDb;
int nDb;
if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
db = p->db;
aDb = db->aDb;
nDb = db->nDb;
for(i=0; i<nDb; i++){
if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
sqlite3BtreeEnter(aDb[i].pBt);
}
}
}
#endif
#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
/*
** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
*/
static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
int i;
sqlite3 *db;
Db *aDb;
int nDb;
db = p->db;
aDb = db->aDb;
nDb = db->nDb;
for(i=0; i<nDb; i++){
if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
sqlite3BtreeLeave(aDb[i].pBt);
}
}
}
void sqlite3VdbeLeave(Vdbe *p){
if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
vdbeLeave(p);
}
#endif
#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
/*
** Print a single opcode. This routine is used for debugging only.
*/
void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
char *zP4;
char *zCom;
sqlite3 dummyDb;
static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
if( pOut==0 ) pOut = stdout;
sqlite3BeginBenignMalloc();
dummyDb.mallocFailed = 1;
zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp);
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
zCom = sqlite3VdbeDisplayComment(0, pOp, zP4);
#else
zCom = 0;
#endif
/* NB: The sqlite3OpcodeName() function is implemented by code created
** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
** information from the vdbe.c source text */
fprintf(pOut, zFormat1, pc,
sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3,
zP4 ? zP4 : "", pOp->p5,
zCom ? zCom : ""
);
fflush(pOut);
sqlite3_free(zP4);
sqlite3_free(zCom);
sqlite3EndBenignMalloc();
}
#endif
/*
** Initialize an array of N Mem element.
**
** This is a high-runner, so only those fields that really do need to
** be initialized are set. The Mem structure is organized so that
** the fields that get initialized are nearby and hopefully on the same
** cache line.
**
** Mem.flags = flags
** Mem.db = db
** Mem.szMalloc = 0
**
** All other fields of Mem can safely remain uninitialized for now. They
** will be initialized before use.
*/
static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
if( N>0 ){
do{
p->flags = flags;
p->db = db;
p->szMalloc = 0;
#ifdef SQLITE_DEBUG
p->pScopyFrom = 0;
#endif
p++;
}while( (--N)>0 );
}
}
/*
** Release auxiliary memory held in an array of N Mem elements.
**
** After this routine returns, all Mem elements in the array will still
** be valid. Those Mem elements that were not holding auxiliary resources
** will be unchanged. Mem elements which had something freed will be
** set to MEM_Undefined.
*/
static void releaseMemArray(Mem *p, int N){
if( p && N ){
Mem *pEnd = &p[N];
sqlite3 *db = p->db;
if( db->pnBytesFreed ){
do{
if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
}while( (++p)<pEnd );
return;
}
do{
assert( (&p[1])==pEnd || p[0].db==p[1].db );
assert( sqlite3VdbeCheckMemInvariants(p) );
/* This block is really an inlined version of sqlite3VdbeMemRelease()
** that takes advantage of the fact that the memory cell value is
** being set to NULL after releasing any dynamic resources.
**
** The justification for duplicating code is that according to
** callgrind, this causes a certain test case to hit the CPU 4.7
** percent less (x86 linux, gcc version 4.1.2, -O6) than if
** sqlite3MemRelease() were called from here. With -O2, this jumps
** to 6.6 percent. The test case is inserting 1000 rows into a table
** with no indexes using a single prepared INSERT statement, bind()
** and reset(). Inserts are grouped into a transaction.
*/
testcase( p->flags & MEM_Agg );
testcase( p->flags & MEM_Dyn );
if( p->flags&(MEM_Agg|MEM_Dyn) ){
testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel );
sqlite3VdbeMemRelease(p);
p->flags = MEM_Undefined;
}else if( p->szMalloc ){
sqlite3DbNNFreeNN(db, p->zMalloc);
p->szMalloc = 0;
p->flags = MEM_Undefined;
}
#ifdef SQLITE_DEBUG
else{
p->flags = MEM_Undefined;
}
#endif
}while( (++p)<pEnd );
}
}
#ifdef SQLITE_DEBUG
/*
** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is
** and false if something is wrong.
**
** This routine is intended for use inside of assert() statements only.
*/
int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
return 1;
}
#endif
/*
** This is a destructor on a Mem object (which is really an sqlite3_value)
** that deletes the Frame object that is attached to it as a blob.
**
** This routine does not delete the Frame right away. It merely adds the
** frame to a list of frames to be deleted when the Vdbe halts.
*/
void sqlite3VdbeFrameMemDel(void *pArg){
VdbeFrame *pFrame = (VdbeFrame*)pArg;
assert( sqlite3VdbeFrameIsValid(pFrame) );
pFrame->pParent = pFrame->v->pDelFrame;
pFrame->v->pDelFrame = pFrame;
}
#if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
/*
** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
** QUERY PLAN output.
**
** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no
** more opcodes to be displayed.
*/
int sqlite3VdbeNextOpcode(
Vdbe *p, /* The statement being explained */
Mem *pSub, /* Storage for keeping track of subprogram nesting */
int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */
int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */
int *piAddr, /* OUT: Write index into (*paOp)[] here */
Op **paOp /* OUT: Write the opcode array here */
){
int nRow; /* Stop when row count reaches this */
int nSub = 0; /* Number of sub-vdbes seen so far */
SubProgram **apSub = 0; /* Array of sub-vdbes */
int i; /* Next instruction address */
int rc = SQLITE_OK; /* Result code */
Op *aOp = 0; /* Opcode array */
int iPc; /* Rowid. Copy of value in *piPc */
/* When the number of output rows reaches nRow, that means the
** listing has finished and sqlite3_step() should return SQLITE_DONE.
** nRow is the sum of the number of rows in the main program, plus
** the sum of the number of rows in all trigger subprograms encountered
** so far. The nRow value will increase as new trigger subprograms are
** encountered, but p->pc will eventually catch up to nRow.
*/
nRow = p->nOp;
if( pSub!=0 ){
if( pSub->flags&MEM_Blob ){
/* pSub is initiallly NULL. It is initialized to a BLOB by
** the P4_SUBPROGRAM processing logic below */
nSub = pSub->n/sizeof(Vdbe*);
apSub = (SubProgram **)pSub->z;
}
for(i=0; i<nSub; i++){
nRow += apSub[i]->nOp;
}
}
iPc = *piPc;
while(1){ /* Loop exits via break */
i = iPc++;
if( i>=nRow ){
p->rc = SQLITE_OK;
rc = SQLITE_DONE;
break;
}
if( i<p->nOp ){
/* The rowid is small enough that we are still in the
** main program. */
aOp = p->aOp;
}else{
/* We are currently listing subprograms. Figure out which one and
** pick up the appropriate opcode. */
int j;
i -= p->nOp;
assert( apSub!=0 );
assert( nSub>0 );
for(j=0; i>=apSub[j]->nOp; j++){
i -= apSub[j]->nOp;
assert( i<apSub[j]->nOp || j+1<nSub );
}
aOp = apSub[j]->aOp;
}
/* When an OP_Program opcode is encounter (the only opcode that has
** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
** kept in p->aMem[9].z to hold the new program - assuming this subprogram
** has not already been seen.
*/
if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){
int nByte = (nSub+1)*sizeof(SubProgram*);
int j;
for(j=0; j<nSub; j++){
if( apSub[j]==aOp[i].p4.pProgram ) break;
}
if( j==nSub ){
p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
if( p->rc!=SQLITE_OK ){
rc = SQLITE_ERROR;
break;
}
apSub = (SubProgram **)pSub->z;
apSub[nSub++] = aOp[i].p4.pProgram;
MemSetTypeFlag(pSub, MEM_Blob);
pSub->n = nSub*sizeof(SubProgram*);
nRow += aOp[i].p4.pProgram->nOp;
}
}
if( eMode==0 ) break;
#ifdef SQLITE_ENABLE_BYTECODE_VTAB
if( eMode==2 ){
Op *pOp = aOp + i;
if( pOp->opcode==OP_OpenRead ) break;
if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break;
if( pOp->opcode==OP_ReopenIdx ) break;
}else
#endif
{
assert( eMode==1 );
if( aOp[i].opcode==OP_Explain ) break;
if( aOp[i].opcode==OP_Init && iPc>1 ) break;
}
}
*piPc = iPc;
*piAddr = i;
*paOp = aOp;
return rc;
}
#endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
/*
** Delete a VdbeFrame object and its contents. VdbeFrame objects are
** allocated by the OP_Program opcode in sqlite3VdbeExec().
*/
void sqlite3VdbeFrameDelete(VdbeFrame *p){
int i;
Mem *aMem = VdbeFrameMem(p);
VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
assert( sqlite3VdbeFrameIsValid(p) );
for(i=0; i<p->nChildCsr; i++){
if( apCsr[i] ) sqlite3VdbeFreeCursorNN(p->v, apCsr[i]);
}
releaseMemArray(aMem, p->nChildMem);
sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
sqlite3DbFree(p->v->db, p);
}
#ifndef SQLITE_OMIT_EXPLAIN
/*
** Give a listing of the program in the virtual machine.
**
** The interface is the same as sqlite3VdbeExec(). But instead of
** running the code, it invokes the callback once for each instruction.
** This feature is used to implement "EXPLAIN".
**
** When p->explain==1, each instruction is listed. When
** p->explain==2, only OP_Explain instructions are listed and these
** are shown in a different format. p->explain==2 is used to implement
** EXPLAIN QUERY PLAN.
** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers
** are also shown, so that the boundaries between the main program and
** each trigger are clear.
**
** When p->explain==1, first the main program is listed, then each of
** the trigger subprograms are listed one by one.
*/
int sqlite3VdbeList(
Vdbe *p /* The VDBE */
){
Mem *pSub = 0; /* Memory cell hold array of subprogs */
sqlite3 *db = p->db; /* The database connection */
int i; /* Loop counter */
int rc = SQLITE_OK; /* Return code */
Mem *pMem = &p->aMem[1]; /* First Mem of result set */
int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
Op *aOp; /* Array of opcodes */
Op *pOp; /* Current opcode */
assert( p->explain );
assert( p->eVdbeState==VDBE_RUN_STATE );
assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
/* Even though this opcode does not use dynamic strings for
** the result, result columns may become dynamic if the user calls
** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
*/
releaseMemArray(pMem, 8);
if( p->rc==SQLITE_NOMEM ){
/* This happens if a malloc() inside a call to sqlite3_column_text() or
** sqlite3_column_text16() failed. */
sqlite3OomFault(db);
return SQLITE_ERROR;
}
if( bListSubprogs ){
/* The first 8 memory cells are used for the result set. So we will
** commandeer the 9th cell to use as storage for an array of pointers
** to trigger subprograms. The VDBE is guaranteed to have at least 9
** cells. */
assert( p->nMem>9 );
pSub = &p->aMem[9];
}else{
pSub = 0;
}
/* Figure out which opcode is next to display */
rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp);
if( rc==SQLITE_OK ){
pOp = aOp + i;
if( AtomicLoad(&db->u1.isInterrupted) ){
p->rc = SQLITE_INTERRUPT;
rc = SQLITE_ERROR;
sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
}else{
char *zP4 = sqlite3VdbeDisplayP4(db, pOp);
if( p->explain==2 ){
sqlite3VdbeMemSetInt64(pMem, pOp->p1);
sqlite3VdbeMemSetInt64(pMem+1, pOp->p2);
sqlite3VdbeMemSetInt64(pMem+2, pOp->p3);
sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free);
assert( p->nResColumn==4 );
}else{
sqlite3VdbeMemSetInt64(pMem+0, i);
sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode),
-1, SQLITE_UTF8, SQLITE_STATIC);
sqlite3VdbeMemSetInt64(pMem+2, pOp->p1);
sqlite3VdbeMemSetInt64(pMem+3, pOp->p2);
sqlite3VdbeMemSetInt64(pMem+4, pOp->p3);
/* pMem+5 for p4 is done last */
sqlite3VdbeMemSetInt64(pMem+6, pOp->p5);
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
{
char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4);
sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free);
}
#else
sqlite3VdbeMemSetNull(pMem+7);
#endif
sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free);
assert( p->nResColumn==8 );
}
p->pResultRow = pMem;
if( db->mallocFailed ){
p->rc = SQLITE_NOMEM;
rc = SQLITE_ERROR;
}else{
p->rc = SQLITE_OK;
rc = SQLITE_ROW;
}
}
}
return rc;
}
#endif /* SQLITE_OMIT_EXPLAIN */
#ifdef SQLITE_DEBUG
/*
** Print the SQL that was used to generate a VDBE program.
*/
void sqlite3VdbePrintSql(Vdbe *p){
const char *z = 0;
if( p->zSql ){
z = p->zSql;
}else if( p->nOp>=1 ){
const VdbeOp *pOp = &p->aOp[0];
if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
z = pOp->p4.z;
while( sqlite3Isspace(*z) ) z++;
}
}
if( z ) printf("SQL: [%s]\n", z);
}
#endif
#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
/*
** Print an IOTRACE message showing SQL content.
*/
void sqlite3VdbeIOTraceSql(Vdbe *p){
int nOp = p->nOp;
VdbeOp *pOp;
if( sqlite3IoTrace==0 ) return;
if( nOp<1 ) return;
pOp = &p->aOp[0];
if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
int i, j;
char z[1000];
sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
for(i=0; sqlite3Isspace(z[i]); i++){}
for(j=0; z[i]; i++){
if( sqlite3Isspace(z[i]) ){
if( z[i-1]!=' ' ){
z[j++] = ' ';
}
}else{
z[j++] = z[i];
}
}
z[j] = 0;
sqlite3IoTrace("SQL %s\n", z);
}
}
#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
/* An instance of this object describes bulk memory available for use
** by subcomponents of a prepared statement. Space is allocated out
** of a ReusableSpace object by the allocSpace() routine below.
*/
struct ReusableSpace {
u8 *pSpace; /* Available memory */
sqlite3_int64 nFree; /* Bytes of available memory */
sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
};
/* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
** from the ReusableSpace object. Return a pointer to the allocated
** memory on success. If insufficient memory is available in the
** ReusableSpace object, increase the ReusableSpace.nNeeded
** value by the amount needed and return NULL.
**
** If pBuf is not initially NULL, that means that the memory has already
** been allocated by a prior call to this routine, so just return a copy
** of pBuf and leave ReusableSpace unchanged.
**
** This allocator is employed to repurpose unused slots at the end of the
** opcode array of prepared state for other memory needs of the prepared
** statement.
*/
static void *allocSpace(
struct ReusableSpace *p, /* Bulk memory available for allocation */
void *pBuf, /* Pointer to a prior allocation */
sqlite3_int64 nByte /* Bytes of memory needed. */
){
assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
if( pBuf==0 ){
nByte = ROUND8P(nByte);
if( nByte <= p->nFree ){
p->nFree -= nByte;
pBuf = &p->pSpace[p->nFree];
}else{
p->nNeeded += nByte;
}
}
assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
return pBuf;
}
/*
** Rewind the VDBE back to the beginning in preparation for
** running it.
*/
void sqlite3VdbeRewind(Vdbe *p){
#if defined(SQLITE_DEBUG)
int i;
#endif
assert( p!=0 );
assert( p->eVdbeState==VDBE_INIT_STATE
|| p->eVdbeState==VDBE_READY_STATE
|| p->eVdbeState==VDBE_HALT_STATE );
/* There should be at least one opcode.
*/
assert( p->nOp>0 );
p->eVdbeState = VDBE_READY_STATE;
#ifdef SQLITE_DEBUG
for(i=0; i<p->nMem; i++){
assert( p->aMem[i].db==p->db );
}
#endif
p->pc = -1;
p->rc = SQLITE_OK;
p->errorAction = OE_Abort;
p->nChange = 0;
p->cacheCtr = 1;
p->minWriteFileFormat = 255;
p->iStatement = 0;
p->nFkConstraint = 0;
#ifdef VDBE_PROFILE
for(i=0; i<p->nOp; i++){
p->aOp[i].nExec = 0;
p->aOp[i].nCycle = 0;
}
#endif
}
/*
** Prepare a virtual machine for execution for the first time after
** creating the virtual machine. This involves things such
** as allocating registers and initializing the program counter.
** After the VDBE has be prepped, it can be executed by one or more
** calls to sqlite3VdbeExec().
**
** This function may be called exactly once on each virtual machine.
** After this routine is called the VM has been "packaged" and is ready
** to run. After this routine is called, further calls to
** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
** the Vdbe from the Parse object that helped generate it so that the
** the Vdbe becomes an independent entity and the Parse object can be
** destroyed.
**
** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
** to its initial state after it has been run.
*/
void sqlite3VdbeMakeReady(
Vdbe *p, /* The VDBE */
Parse *pParse /* Parsing context */
){
sqlite3 *db; /* The database connection */
int nVar; /* Number of parameters */
int nMem; /* Number of VM memory registers */
int nCursor; /* Number of cursors required */
int nArg; /* Number of arguments in subprograms */
int n; /* Loop counter */
struct ReusableSpace x; /* Reusable bulk memory */
assert( p!=0 );
assert( p->nOp>0 );
assert( pParse!=0 );
assert( p->eVdbeState==VDBE_INIT_STATE );
assert( pParse==p->pParse );
p->pVList = pParse->pVList;
pParse->pVList = 0;
db = p->db;
assert( db->mallocFailed==0 );
nVar = pParse->nVar;
nMem = pParse->nMem;
nCursor = pParse->nTab;
nArg = pParse->nMaxArg;
/* Each cursor uses a memory cell. The first cursor (cursor 0) can
** use aMem[0] which is not otherwise used by the VDBE program. Allocate
** space at the end of aMem[] for cursors 1 and greater.
** See also: allocateCursor().
*/
nMem += nCursor;
if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */
/* Figure out how much reusable memory is available at the end of the
** opcode array. This extra memory will be reallocated for other elements
** of the prepared statement.
*/
n = ROUND8P(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
assert( x.nFree>=0 );
assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
resolveP2Values(p, &nArg);
p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
if( pParse->explain ){
if( nMem<10 ) nMem = 10;
p->explain = pParse->explain;
p->nResColumn = 12 - 4*p->explain;
}
p->expired = 0;
/* Memory for registers, parameters, cursor, etc, is allocated in one or two
** passes. On the first pass, we try to reuse unused memory at the
** end of the opcode array. If we are unable to satisfy all memory
** requirements by reusing the opcode array tail, then the second
** pass will fill in the remainder using a fresh memory allocation.
**
** This two-pass approach that reuses as much memory as possible from
** the leftover memory at the end of the opcode array. This can significantly
** reduce the amount of memory held by a prepared statement.
*/
x.nNeeded = 0;
p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
if( x.nNeeded ){
x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
x.nFree = x.nNeeded;
if( !db->mallocFailed ){
p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
}
}
if( db->mallocFailed ){
p->nVar = 0;
p->nCursor = 0;
p->nMem = 0;
}else{
p->nCursor = nCursor;
p->nVar = (ynVar)nVar;
initMemArray(p->aVar, nVar, db, MEM_Null);
p->nMem = nMem;
initMemArray(p->aMem, nMem, db, MEM_Undefined);
memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
}
sqlite3VdbeRewind(p);
}
/*
** Close a VDBE cursor and release all the resources that cursor
** happens to hold.
*/
void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx);
}
static SQLITE_NOINLINE void freeCursorWithCache(Vdbe *p, VdbeCursor *pCx){
VdbeTxtBlbCache *pCache = pCx->pCache;
assert( pCx->colCache );
pCx->colCache = 0;
pCx->pCache = 0;
if( pCache->pCValue ){
sqlite3RCStrUnref(pCache->pCValue);
pCache->pCValue = 0;
}
sqlite3DbFree(p->db, pCache);
sqlite3VdbeFreeCursorNN(p, pCx);
}
void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){
if( pCx->colCache ){
freeCursorWithCache(p, pCx);
return;
}
switch( pCx->eCurType ){
case CURTYPE_SORTER: {
sqlite3VdbeSorterClose(p->db, pCx);
break;
}
case CURTYPE_BTREE: {
assert( pCx->uc.pCursor!=0 );
sqlite3BtreeCloseCursor(pCx->uc.pCursor);
break;
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
case CURTYPE_VTAB: {
sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
const sqlite3_module *pModule = pVCur->pVtab->pModule;
assert( pVCur->pVtab->nRef>0 );
pVCur->pVtab->nRef--;
pModule->xClose(pVCur);
break;
}
#endif
}
}
/*
** Close all cursors in the current frame.
*/
static void closeCursorsInFrame(Vdbe *p){
int i;
for(i=0; i<p->nCursor; i++){
VdbeCursor *pC = p->apCsr[i];
if( pC ){
sqlite3VdbeFreeCursorNN(p, pC);
p->apCsr[i] = 0;
}
}
}
/*
** Copy the values stored in the VdbeFrame structure to its Vdbe. This
** is used, for example, when a trigger sub-program is halted to restore
** control to the main program.
*/
int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
Vdbe *v = pFrame->v;
closeCursorsInFrame(v);
v->aOp = pFrame->aOp;
v->nOp = pFrame->nOp;
v->aMem = pFrame->aMem;
v->nMem = pFrame->nMem;
v->apCsr = pFrame->apCsr;
v->nCursor = pFrame->nCursor;
v->db->lastRowid = pFrame->lastRowid;
v->nChange = pFrame->nChange;
v->db->nChange = pFrame->nDbChange;
sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
v->pAuxData = pFrame->pAuxData;
pFrame->pAuxData = 0;
return pFrame->pc;
}
/*
** Close all cursors.
**
** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
** cell array. This is necessary as the memory cell array may contain
** pointers to VdbeFrame objects, which may in turn contain pointers to
** open cursors.
*/
static void closeAllCursors(Vdbe *p){
if( p->pFrame ){
VdbeFrame *pFrame;
for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
sqlite3VdbeFrameRestore(pFrame);
p->pFrame = 0;
p->nFrame = 0;
}
assert( p->nFrame==0 );
closeCursorsInFrame(p);
releaseMemArray(p->aMem, p->nMem);
while( p->pDelFrame ){
VdbeFrame *pDel = p->pDelFrame;
p->pDelFrame = pDel->pParent;
sqlite3VdbeFrameDelete(pDel);
}
/* Delete any auxdata allocations made by the VM */
if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
assert( p->pAuxData==0 );
}
/*
** Set the number of result columns that will be returned by this SQL
** statement. This is now set at compile time, rather than during
** execution of the vdbe program so that sqlite3_column_count() can
** be called on an SQL statement before sqlite3_step().
*/
void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
int n;
sqlite3 *db = p->db;
if( p->nResAlloc ){
releaseMemArray(p->aColName, p->nResAlloc*COLNAME_N);
sqlite3DbFree(db, p->aColName);
}
n = nResColumn*COLNAME_N;
p->nResColumn = p->nResAlloc = (u16)nResColumn;
p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
if( p->aColName==0 ) return;
initMemArray(p->aColName, n, db, MEM_Null);
}
/*
** Set the name of the idx'th column to be returned by the SQL statement.
** zName must be a pointer to a nul terminated string.
**
** This call must be made after a call to sqlite3VdbeSetNumCols().
**
** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
*/
int sqlite3VdbeSetColName(
Vdbe *p, /* Vdbe being configured */
int idx, /* Index of column zName applies to */
int var, /* One of the COLNAME_* constants */
const char *zName, /* Pointer to buffer containing name */
void (*xDel)(void*) /* Memory management strategy for zName */
){
int rc;
Mem *pColName;
assert( idx<p->nResAlloc );
assert( var<COLNAME_N );
if( p->db->mallocFailed ){
assert( !zName || xDel!=SQLITE_DYNAMIC );
return SQLITE_NOMEM_BKPT;
}
assert( p->aColName!=0 );
pColName = &(p->aColName[idx+var*p->nResAlloc]);
rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
return rc;
}
/*
** A read or write transaction may or may not be active on database handle
** db. If a transaction is active, commit it. If there is a
** write-transaction spanning more than one database file, this routine
** takes care of the super-journal trickery.
*/
static int vdbeCommit(sqlite3 *db, Vdbe *p){
int i;
int nTrans = 0; /* Number of databases with an active write-transaction
** that are candidates for a two-phase commit using a
** super-journal */
int rc = SQLITE_OK;
int needXcommit = 0;
#ifdef SQLITE_OMIT_VIRTUALTABLE
/* With this option, sqlite3VtabSync() is defined to be simply
** SQLITE_OK so p is not used.
*/
UNUSED_PARAMETER(p);
#endif
/* Before doing anything else, call the xSync() callback for any
** virtual module tables written in this transaction. This has to
** be done before determining whether a super-journal file is
** required, as an xSync() callback may add an attached database
** to the transaction.
*/
rc = sqlite3VtabSync(db, p);
/* This loop determines (a) if the commit hook should be invoked and
** (b) how many database files have open write transactions, not
** including the temp database. (b) is important because if more than
** one database file has an open write transaction, a super-journal
** file is required for an atomic commit.
*/
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
/* Whether or not a database might need a super-journal depends upon
** its journal mode (among other things). This matrix determines which
** journal modes use a super-journal and which do not */
static const u8 aMJNeeded[] = {
/* DELETE */ 1,
/* PERSIST */ 1,
/* OFF */ 0,
/* TRUNCATE */ 1,
/* MEMORY */ 0,
/* WAL */ 0
};
Pager *pPager; /* Pager associated with pBt */
needXcommit = 1;
sqlite3BtreeEnter(pBt);
pPager = sqlite3BtreePager(pBt);
if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
&& aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
&& sqlite3PagerIsMemdb(pPager)==0
){
assert( i!=1 );
nTrans++;
}
rc = sqlite3PagerExclusiveLock(pPager);
sqlite3BtreeLeave(pBt);
}
}
if( rc!=SQLITE_OK ){
return rc;
}
/* If there are any write-transactions at all, invoke the commit hook */
if( needXcommit && db->xCommitCallback ){
rc = db->xCommitCallback(db->pCommitArg);
if( rc ){
return SQLITE_CONSTRAINT_COMMITHOOK;
}
}
/* The simple case - no more than one database file (not counting the
** TEMP database) has a transaction active. There is no need for the
** super-journal.
**
** If the return value of sqlite3BtreeGetFilename() is a zero length
** string, it means the main database is :memory: or a temp file. In
** that case we do not support atomic multi-file commits, so use the
** simple case then too.
*/
if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
|| nTrans<=1
){
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( pBt ){
rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
}
}
/* Do the commit only if all databases successfully complete phase 1.
** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
** IO error while deleting or truncating a journal file. It is unlikely,
** but could happen. In this case abandon processing and return the error.
*/
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( pBt ){
rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
}
}
if( rc==SQLITE_OK ){
sqlite3VtabCommit(db);
}
}
/* The complex case - There is a multi-file write-transaction active.
** This requires a super-journal file to ensure the transaction is
** committed atomically.
*/
#ifndef SQLITE_OMIT_DISKIO
else{
sqlite3_vfs *pVfs = db->pVfs;
char *zSuper = 0; /* File-name for the super-journal */
char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
sqlite3_file *pSuperJrnl = 0;
i64 offset = 0;
int res;
int retryCount = 0;
int nMainFile;
/* Select a super-journal file name */
nMainFile = sqlite3Strlen30(zMainFile);
zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0);
if( zSuper==0 ) return SQLITE_NOMEM_BKPT;
zSuper += 4;
do {
u32 iRandom;
if( retryCount ){
if( retryCount>100 ){
sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper);
sqlite3OsDelete(pVfs, zSuper, 0);
break;
}else if( retryCount==1 ){
sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper);
}
}
retryCount++;
sqlite3_randomness(sizeof(iRandom), &iRandom);
sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X",
(iRandom>>8)&0xffffff, iRandom&0xff);
/* The antipenultimate character of the super-journal name must
** be "9" to avoid name collisions when using 8+3 filenames. */
assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' );
sqlite3FileSuffix3(zMainFile, zSuper);
rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res);
}while( rc==SQLITE_OK && res );
if( rc==SQLITE_OK ){
/* Open the super-journal. */
rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl,
SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0
);
}
if( rc!=SQLITE_OK ){
sqlite3DbFree(db, zSuper-4);
return rc;
}
/* Write the name of each database file in the transaction into the new
** super-journal file. If an error occurs at this point close
** and delete the super-journal file. All the individual journal files
** still have 'null' as the super-journal pointer, so they will roll
** back independently if a failure occurs.
*/
for(i=0; i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
char const *zFile = sqlite3BtreeGetJournalname(pBt);
if( zFile==0 ){
continue; /* Ignore TEMP and :memory: databases */
}
assert( zFile[0]!=0 );
rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset);
offset += sqlite3Strlen30(zFile)+1;
if( rc!=SQLITE_OK ){
sqlite3OsCloseFree(pSuperJrnl);
sqlite3OsDelete(pVfs, zSuper, 0);
sqlite3DbFree(db, zSuper-4);
return rc;
}
}
}
/* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
** flag is set this is not required.
*/
if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL)
&& SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL))
){
sqlite3OsCloseFree(pSuperJrnl);
sqlite3OsDelete(pVfs, zSuper, 0);
sqlite3DbFree(db, zSuper-4);
return rc;
}
/* Sync all the db files involved in the transaction. The same call
** sets the super-journal pointer in each individual journal. If
** an error occurs here, do not delete the super-journal file.
**
** If the error occurs during the first call to
** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
** super-journal file will be orphaned. But we cannot delete it,
** in case the super-journal file name was written into the journal
** file before the failure occurred.
*/
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( pBt ){
rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper);
}
}
sqlite3OsCloseFree(pSuperJrnl);
assert( rc!=SQLITE_BUSY );
if( rc!=SQLITE_OK ){
sqlite3DbFree(db, zSuper-4);
return rc;
}
/* Delete the super-journal file. This commits the transaction. After
** doing this the directory is synced again before any individual
** transaction files are deleted.
*/
rc = sqlite3OsDelete(pVfs, zSuper, 1);
sqlite3DbFree(db, zSuper-4);
zSuper = 0;
if( rc ){
return rc;
}
/* All files and directories have already been synced, so the following
** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
** deleting or truncating journals. If something goes wrong while
** this is happening we don't really care. The integrity of the
** transaction is already guaranteed, but some stray 'cold' journals
** may be lying around. Returning an error code won't help matters.
*/
disable_simulated_io_errors();
sqlite3BeginBenignMalloc();
for(i=0; i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( pBt ){
sqlite3BtreeCommitPhaseTwo(pBt, 1);
}
}
sqlite3EndBenignMalloc();
enable_simulated_io_errors();
sqlite3VtabCommit(db);
}
#endif
return rc;
}
/*
** This routine checks that the sqlite3.nVdbeActive count variable
** matches the number of vdbe's in the list sqlite3.pVdbe that are
** currently active. An assertion fails if the two counts do not match.
** This is an internal self-check only - it is not an essential processing
** step.
**
** This is a no-op if NDEBUG is defined.
*/
#ifndef NDEBUG
static void checkActiveVdbeCnt(sqlite3 *db){
Vdbe *p;
int cnt = 0;
int nWrite = 0;
int nRead = 0;
p = db->pVdbe;
while( p ){
if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
cnt++;
if( p->readOnly==0 ) nWrite++;
if( p->bIsReader ) nRead++;
}
p = p->pVNext;
}
assert( cnt==db->nVdbeActive );
assert( nWrite==db->nVdbeWrite );
assert( nRead==db->nVdbeRead );
}
#else
#define checkActiveVdbeCnt(x)
#endif
/*
** If the Vdbe passed as the first argument opened a statement-transaction,
** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
** statement transaction is committed.
**
** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
** Otherwise SQLITE_OK.
*/
static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
sqlite3 *const db = p->db;
int rc = SQLITE_OK;
int i;
const int iSavepoint = p->iStatement-1;
assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
assert( db->nStatement>0 );
assert( p->iStatement==(db->nStatement+db->nSavepoint) );
for(i=0; i<db->nDb; i++){
int rc2 = SQLITE_OK;
Btree *pBt = db->aDb[i].pBt;
if( pBt ){
if( eOp==SAVEPOINT_ROLLBACK ){
rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
}
if( rc2==SQLITE_OK ){
rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
}
if( rc==SQLITE_OK ){
rc = rc2;
}
}
}
db->nStatement--;
p->iStatement = 0;
if( rc==SQLITE_OK ){
if( eOp==SAVEPOINT_ROLLBACK ){
rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
}
if( rc==SQLITE_OK ){
rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
}
}
/* If the statement transaction is being rolled back, also restore the
** database handles deferred constraint counter to the value it had when
** the statement transaction was opened. */
if( eOp==SAVEPOINT_ROLLBACK ){
db->nDeferredCons = p->nStmtDefCons;
db->nDeferredImmCons = p->nStmtDefImmCons;
}
return rc;
}
int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
if( p->db->nStatement && p->iStatement ){
return vdbeCloseStatement(p, eOp);
}
return SQLITE_OK;
}
/*
** This function is called when a transaction opened by the database
** handle associated with the VM passed as an argument is about to be
** committed. If there are outstanding deferred foreign key constraint
** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
**
** If there are outstanding FK violations and this function returns
** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
** and write an error message to it. Then return SQLITE_ERROR.
*/
#ifndef SQLITE_OMIT_FOREIGN_KEY
int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
sqlite3 *db = p->db;
if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
|| (!deferred && p->nFkConstraint>0)
){
p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
p->errorAction = OE_Abort;
sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ) return SQLITE_ERROR;
return SQLITE_CONSTRAINT_FOREIGNKEY;
}
return SQLITE_OK;
}
#endif
/*
** This routine is called the when a VDBE tries to halt. If the VDBE
** has made changes and is in autocommit mode, then commit those
** changes. If a rollback is needed, then do the rollback.
**
** This routine is the only way to move the sqlite3eOpenState of a VM from
** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to
** call this on a VM that is in the SQLITE_STATE_HALT state.
**
** Return an error code. If the commit could not complete because of
** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
** means the close did not happen and needs to be repeated.
*/
int sqlite3VdbeHalt(Vdbe *p){
int rc; /* Used to store transient return codes */
sqlite3 *db = p->db;
/* This function contains the logic that determines if a statement or
** transaction will be committed or rolled back as a result of the
** execution of this virtual machine.
**
** If any of the following errors occur:
**
** SQLITE_NOMEM
** SQLITE_IOERR
** SQLITE_FULL
** SQLITE_INTERRUPT
**
** Then the internal cache might have been left in an inconsistent
** state. We need to rollback the statement transaction, if there is
** one, or the complete transaction if there is no statement transaction.
*/
assert( p->eVdbeState==VDBE_RUN_STATE );
if( db->mallocFailed ){
p->rc = SQLITE_NOMEM_BKPT;
}
closeAllCursors(p);
checkActiveVdbeCnt(db);
/* No commit or rollback needed if the program never started or if the
** SQL statement does not read or write a database file. */
if( p->bIsReader ){
int mrc; /* Primary error code from p->rc */
int eStatementOp = 0;
int isSpecialError; /* Set to true if a 'special' error */
/* Lock all btrees used by the statement */
sqlite3VdbeEnter(p);
/* Check for one of the special errors */
if( p->rc ){
mrc = p->rc & 0xff;
isSpecialError = mrc==SQLITE_NOMEM
|| mrc==SQLITE_IOERR
|| mrc==SQLITE_INTERRUPT
|| mrc==SQLITE_FULL;
}else{
mrc = isSpecialError = 0;
}
if( isSpecialError ){
/* If the query was read-only and the error code is SQLITE_INTERRUPT,
** no rollback is necessary. Otherwise, at least a savepoint
** transaction must be rolled back to restore the database to a
** consistent state.
**
** Even if the statement is read-only, it is important to perform
** a statement or transaction rollback operation. If the error
** occurred while writing to the journal, sub-journal or database
** file as part of an effort to free up cache space (see function
** pagerStress() in pager.c), the rollback is required to restore
** the pager to a consistent state.
*/
if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
eStatementOp = SAVEPOINT_ROLLBACK;
}else{
/* We are forced to roll back the active transaction. Before doing
** so, abort any other statements this handle currently has active.
*/
sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
sqlite3CloseSavepoints(db);
db->autoCommit = 1;
p->nChange = 0;
}
}
}
/* Check for immediate foreign key violations. */
if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
sqlite3VdbeCheckFk(p, 0);
}
/* If the auto-commit flag is set and this is the only active writer
** VM, then we do either a commit or rollback of the current transaction.
**
** Note: This block also runs if one of the special errors handled
** above has occurred.
*/
if( !sqlite3VtabInSync(db)
&& db->autoCommit
&& db->nVdbeWrite==(p->readOnly==0)
){
if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
rc = sqlite3VdbeCheckFk(p, 1);
if( rc!=SQLITE_OK ){
if( NEVER(p->readOnly) ){
sqlite3VdbeLeave(p);
return SQLITE_ERROR;
}
rc = SQLITE_CONSTRAINT_FOREIGNKEY;
}else if( db->flags & SQLITE_CorruptRdOnly ){
rc = SQLITE_CORRUPT;
db->flags &= ~SQLITE_CorruptRdOnly;
}else{
/* The auto-commit flag is true, the vdbe program was successful
** or hit an 'OR FAIL' constraint and there are no deferred foreign
** key constraints to hold up the transaction. This means a commit
** is required. */
rc = vdbeCommit(db, p);
}
if( rc==SQLITE_BUSY && p->readOnly ){
sqlite3VdbeLeave(p);
return SQLITE_BUSY;
}else if( rc!=SQLITE_OK ){
sqlite3SystemError(db, rc);
p->rc = rc;
sqlite3RollbackAll(db, SQLITE_OK);
p->nChange = 0;
}else{
db->nDeferredCons = 0;
db->nDeferredImmCons = 0;
db->flags &= ~(u64)SQLITE_DeferFKs;
sqlite3CommitInternalChanges(db);
}
}else if( p->rc==SQLITE_SCHEMA && db->nVdbeActive>1 ){
p->nChange = 0;
}else{
sqlite3RollbackAll(db, SQLITE_OK);
p->nChange = 0;
}
db->nStatement = 0;
}else if( eStatementOp==0 ){
if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
eStatementOp = SAVEPOINT_RELEASE;
}else if( p->errorAction==OE_Abort ){
eStatementOp = SAVEPOINT_ROLLBACK;
}else{
sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
sqlite3CloseSavepoints(db);
db->autoCommit = 1;
p->nChange = 0;
}
}
/* If eStatementOp is non-zero, then a statement transaction needs to
** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
** do so. If this operation returns an error, and the current statement
** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
** current statement error code.
*/
if( eStatementOp ){
rc = sqlite3VdbeCloseStatement(p, eStatementOp);
if( rc ){
if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
p->rc = rc;
sqlite3DbFree(db, p->zErrMsg);
p->zErrMsg = 0;
}
sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
sqlite3CloseSavepoints(db);
db->autoCommit = 1;
p->nChange = 0;
}
}
/* If this was an INSERT, UPDATE or DELETE and no statement transaction
** has been rolled back, update the database connection change-counter.
*/
if( p->changeCntOn ){
if( eStatementOp!=SAVEPOINT_ROLLBACK ){
sqlite3VdbeSetChanges(db, p->nChange);
}else{
sqlite3VdbeSetChanges(db, 0);
}
p->nChange = 0;
}
/* Release the locks */
sqlite3VdbeLeave(p);
}
/* We have successfully halted and closed the VM. Record this fact. */
db->nVdbeActive--;
if( !p->readOnly ) db->nVdbeWrite--;
if( p->bIsReader ) db->nVdbeRead--;
assert( db->nVdbeActive>=db->nVdbeRead );
assert( db->nVdbeRead>=db->nVdbeWrite );
assert( db->nVdbeWrite>=0 );
p->eVdbeState = VDBE_HALT_STATE;
checkActiveVdbeCnt(db);
if( db->mallocFailed ){
p->rc = SQLITE_NOMEM_BKPT;
}
/* If the auto-commit flag is set to true, then any locks that were held
** by connection db have now been released. Call sqlite3ConnectionUnlocked()
** to invoke any required unlock-notify callbacks.
*/
if( db->autoCommit ){
sqlite3ConnectionUnlocked(db);
}
assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
}
/*
** Each VDBE holds the result of the most recent sqlite3_step() call
** in p->rc. This routine sets that result back to SQLITE_OK.
*/
void sqlite3VdbeResetStepResult(Vdbe *p){
p->rc = SQLITE_OK;
}
/*
** Copy the error code and error message belonging to the VDBE passed
** as the first argument to its database handle (so that they will be
** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
**
** This function does not clear the VDBE error code or message, just
** copies them to the database handle.
*/
int sqlite3VdbeTransferError(Vdbe *p){
sqlite3 *db = p->db;
int rc = p->rc;
if( p->zErrMsg ){
db->bBenignMalloc++;
sqlite3BeginBenignMalloc();
if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
sqlite3EndBenignMalloc();
db->bBenignMalloc--;
}else if( db->pErr ){
sqlite3ValueSetNull(db->pErr);
}
db->errCode = rc;
db->errByteOffset = -1;
return rc;
}
#ifdef SQLITE_ENABLE_SQLLOG
/*
** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
** invoke it.
*/
static void vdbeInvokeSqllog(Vdbe *v){
if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
assert( v->db->init.busy==0 );
if( zExpanded ){
sqlite3GlobalConfig.xSqllog(
sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
);
sqlite3DbFree(v->db, zExpanded);
}
}
}
#else
# define vdbeInvokeSqllog(x)
#endif
/*
** Clean up a VDBE after execution but do not delete the VDBE just yet.
** Write any error messages into *pzErrMsg. Return the result code.
**
** After this routine is run, the VDBE should be ready to be executed
** again.
**
** To look at it another way, this routine resets the state of the
** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to
** VDBE_READY_STATE.
*/
int sqlite3VdbeReset(Vdbe *p){
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
int i;
#endif
sqlite3 *db;
db = p->db;
/* If the VM did not run to completion or if it encountered an
** error, then it might not have been halted properly. So halt
** it now.
*/
if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
/* If the VDBE has been run even partially, then transfer the error code
** and error message from the VDBE into the main database structure. But
** if the VDBE has just been set to run but has not actually executed any
** instructions yet, leave the main database error information unchanged.
*/
if( p->pc>=0 ){
vdbeInvokeSqllog(p);
if( db->pErr || p->zErrMsg ){
sqlite3VdbeTransferError(p);
}else{
db->errCode = p->rc;
}
}
/* Reset register contents and reclaim error message memory.
*/
#ifdef SQLITE_DEBUG
/* Execute assert() statements to ensure that the Vdbe.apCsr[] and
** Vdbe.aMem[] arrays have already been cleaned up. */
if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
if( p->aMem ){
for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
}
#endif
if( p->zErrMsg ){
sqlite3DbFree(db, p->zErrMsg);
p->zErrMsg = 0;
}
p->pResultRow = 0;
#ifdef SQLITE_DEBUG
p->nWrite = 0;
#endif
/* Save profiling information from this VDBE run.
*/
#ifdef VDBE_PROFILE
{
FILE *out = fopen("vdbe_profile.out", "a");
if( out ){
fprintf(out, "---- ");
for(i=0; i<p->nOp; i++){
fprintf(out, "%02x", p->aOp[i].opcode);
}
fprintf(out, "\n");
if( p->zSql ){
char c, pc = 0;
fprintf(out, "-- ");
for(i=0; (c = p->zSql[i])!=0; i++){
if( pc=='\n' ) fprintf(out, "-- ");
putc(c, out);
pc = c;
}
if( pc!='\n' ) fprintf(out, "\n");
}
for(i=0; i<p->nOp; i++){
char zHdr[100];
i64 cnt = p->aOp[i].nExec;
i64 cycles = p->aOp[i].nCycle;
sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
cnt,
cycles,
cnt>0 ? cycles/cnt : 0
);
fprintf(out, "%s", zHdr);
sqlite3VdbePrintOp(out, i, &p->aOp[i]);
}
fclose(out);
}
}
#endif
return p->rc & db->errMask;
}
/*
** Clean up and delete a VDBE after execution. Return an integer which is
** the result code. Write any error message text into *pzErrMsg.
*/
int sqlite3VdbeFinalize(Vdbe *p){
int rc = SQLITE_OK;
assert( VDBE_RUN_STATE>VDBE_READY_STATE );
assert( VDBE_HALT_STATE>VDBE_READY_STATE );
assert( VDBE_INIT_STATE<VDBE_READY_STATE );
if( p->eVdbeState>=VDBE_READY_STATE ){
rc = sqlite3VdbeReset(p);
assert( (rc & p->db->errMask)==rc );
}
sqlite3VdbeDelete(p);
return rc;
}
/*
** If parameter iOp is less than zero, then invoke the destructor for
** all auxiliary data pointers currently cached by the VM passed as
** the first argument.
**
** Or, if iOp is greater than or equal to zero, then the destructor is
** only invoked for those auxiliary data pointers created by the user
** function invoked by the OP_Function opcode at instruction iOp of
** VM pVdbe, and only then if:
**
** * the associated function parameter is the 32nd or later (counting
** from left to right), or
**
** * the corresponding bit in argument mask is clear (where the first
** function parameter corresponds to bit 0 etc.).
*/
void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
while( *pp ){
AuxData *pAux = *pp;
if( (iOp<0)
|| (pAux->iAuxOp==iOp
&& pAux->iAuxArg>=0
&& (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
){
testcase( pAux->iAuxArg==31 );
if( pAux->xDeleteAux ){
pAux->xDeleteAux(pAux->pAux);
}
*pp = pAux->pNextAux;
sqlite3DbFree(db, pAux);
}else{
pp= &pAux->pNextAux;
}
}
}
/*
** Free all memory associated with the Vdbe passed as the second argument,
** except for object itself, which is preserved.
**
** The difference between this function and sqlite3VdbeDelete() is that
** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
** the database connection and frees the object itself.
*/
static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
SubProgram *pSub, *pNext;
assert( db!=0 );
assert( p->db==0 || p->db==db );
if( p->aColName ){
releaseMemArray(p->aColName, p->nResAlloc*COLNAME_N);
sqlite3DbNNFreeNN(db, p->aColName);
}
for(pSub=p->pProgram; pSub; pSub=pNext){
pNext = pSub->pNext;
vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
sqlite3DbFree(db, pSub);
}
if( p->eVdbeState!=VDBE_INIT_STATE ){
releaseMemArray(p->aVar, p->nVar);
if( p->pVList ) sqlite3DbNNFreeNN(db, p->pVList);
if( p->pFree ) sqlite3DbNNFreeNN(db, p->pFree);
}
vdbeFreeOpArray(db, p->aOp, p->nOp);
if( p->zSql ) sqlite3DbNNFreeNN(db, p->zSql);
#ifdef SQLITE_ENABLE_NORMALIZE
sqlite3DbFree(db, p->zNormSql);
{
DblquoteStr *pThis, *pNxt;
for(pThis=p->pDblStr; pThis; pThis=pNxt){
pNxt = pThis->pNextStr;
sqlite3DbFree(db, pThis);
}
}
#endif
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
{
int i;
for(i=0; i<p->nScan; i++){
sqlite3DbFree(db, p->aScan[i].zName);
}
sqlite3DbFree(db, p->aScan);
}
#endif
}
/*
** Delete an entire VDBE.
*/
void sqlite3VdbeDelete(Vdbe *p){
sqlite3 *db;
assert( p!=0 );
db = p->db;
assert( db!=0 );
assert( sqlite3_mutex_held(db->mutex) );
sqlite3VdbeClearObject(db, p);
if( db->pnBytesFreed==0 ){
assert( p->ppVPrev!=0 );
*p->ppVPrev = p->pVNext;
if( p->pVNext ){
p->pVNext->ppVPrev = p->ppVPrev;
}
}
sqlite3DbNNFreeNN(db, p);
}
/*
** The cursor "p" has a pending seek operation that has not yet been
** carried out. Seek the cursor now. If an error occurs, return
** the appropriate error code.
*/
int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){
int res, rc;
#ifdef SQLITE_TEST
extern int sqlite3_search_count;
#endif
assert( p->deferredMoveto );
assert( p->isTable );
assert( p->eCurType==CURTYPE_BTREE );
rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res);
if( rc ) return rc;
if( res!=0 ) return SQLITE_CORRUPT_BKPT;
#ifdef SQLITE_TEST
sqlite3_search_count++;
#endif
p->deferredMoveto = 0;
p->cacheStatus = CACHE_STALE;
return SQLITE_OK;
}
/*
** Something has moved cursor "p" out of place. Maybe the row it was
** pointed to was deleted out from under it. Or maybe the btree was
** rebalanced. Whatever the cause, try to restore "p" to the place it
** is supposed to be pointing. If the row was deleted out from under the
** cursor, set the cursor to point to a NULL row.
*/
int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){
int isDifferentRow, rc;
assert( p->eCurType==CURTYPE_BTREE );
assert( p->uc.pCursor!=0 );
assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
p->cacheStatus = CACHE_STALE;
if( isDifferentRow ) p->nullRow = 1;
return rc;
}
/*
** Check to ensure that the cursor is valid. Restore the cursor
** if need be. Return any I/O error from the restore operation.
*/
int sqlite3VdbeCursorRestore(VdbeCursor *p){
assert( p->eCurType==CURTYPE_BTREE || IsNullCursor(p) );
if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
return sqlite3VdbeHandleMovedCursor(p);
}
return SQLITE_OK;
}
/*
** The following functions:
**
** sqlite3VdbeSerialType()
** sqlite3VdbeSerialTypeLen()
** sqlite3VdbeSerialLen()
** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02
** sqlite3VdbeSerialGet()
**
** encapsulate the code that serializes values for storage in SQLite
** data and index records. Each serialized value consists of a
** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
** integer, stored as a varint.
**
** In an SQLite index record, the serial type is stored directly before
** the blob of data that it corresponds to. In a table record, all serial
** types are stored at the start of the record, and the blobs of data at
** the end. Hence these functions allow the caller to handle the
** serial-type and data blob separately.
**
** The following table describes the various storage classes for data:
**
** serial type bytes of data type
** -------------- --------------- ---------------
** 0 0 NULL
** 1 1 signed integer
** 2 2 signed integer
** 3 3 signed integer
** 4 4 signed integer
** 5 6 signed integer
** 6 8 signed integer
** 7 8 IEEE float
** 8 0 Integer constant 0
** 9 0 Integer constant 1
** 10,11 reserved for expansion
** N>=12 and even (N-12)/2 BLOB
** N>=13 and odd (N-13)/2 text
**
** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
** of SQLite will not understand those serial types.
*/
#if 0 /* Inlined into the OP_MakeRecord opcode */
/*
** Return the serial-type for the value stored in pMem.
**
** This routine might convert a large MEM_IntReal value into MEM_Real.
**
** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord
** opcode in the byte-code engine. But by moving this routine in-line, we
** can omit some redundant tests and make that opcode a lot faster. So
** this routine is now only used by the STAT3 logic and STAT3 support has
** ended. The code is kept here for historical reference only.
*/
u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
int flags = pMem->flags;
u32 n;
assert( pLen!=0 );
if( flags&MEM_Null ){
*pLen = 0;
return 0;
}
if( flags&(MEM_Int|MEM_IntReal) ){
/* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
# define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
i64 i = pMem->u.i;
u64 u;
testcase( flags & MEM_Int );
testcase( flags & MEM_IntReal );
if( i<0 ){
u = ~i;
}else{
u = i;
}
if( u<=127 ){
if( (i&1)==i && file_format>=4 ){
*pLen = 0;
return 8+(u32)u;
}else{
*pLen = 1;
return 1;
}
}
if( u<=32767 ){ *pLen = 2; return 2; }
if( u<=8388607 ){ *pLen = 3; return 3; }
if( u<=2147483647 ){ *pLen = 4; return 4; }
if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
*pLen = 8;
if( flags&MEM_IntReal ){
/* If the value is IntReal and is going to take up 8 bytes to store
** as an integer, then we might as well make it an 8-byte floating
** point value */
pMem->u.r = (double)pMem->u.i;
pMem->flags &= ~MEM_IntReal;
pMem->flags |= MEM_Real;
return 7;
}
return 6;
}
if( flags&MEM_Real ){
*pLen = 8;
return 7;
}
assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
assert( pMem->n>=0 );
n = (u32)pMem->n;
if( flags & MEM_Zero ){
n += pMem->u.nZero;
}
*pLen = n;
return ((n*2) + 12 + ((flags&MEM_Str)!=0));
}
#endif /* inlined into OP_MakeRecord */
/*
** The sizes for serial types less than 128
*/
const u8 sqlite3SmallTypeSizes[128] = {
/* 0 1 2 3 4 5 6 7 8 9 */
/* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
/* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
/* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
/* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
/* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
/* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
/* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
/* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
/* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
/* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
/* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
/* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
/* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
};
/*
** Return the length of the data corresponding to the supplied serial-type.
*/
u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
if( serial_type>=128 ){
return (serial_type-12)/2;
}else{
assert( serial_type<12
|| sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
return sqlite3SmallTypeSizes[serial_type];
}
}
u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
assert( serial_type<128 );
return sqlite3SmallTypeSizes[serial_type];
}
/*
** If we are on an architecture with mixed-endian floating
** points (ex: ARM7) then swap the lower 4 bytes with the
** upper 4 bytes. Return the result.
**
** For most architectures, this is a no-op.
**
** (later): It is reported to me that the mixed-endian problem
** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
** that early versions of GCC stored the two words of a 64-bit
** float in the wrong order. And that error has been propagated
** ever since. The blame is not necessarily with GCC, though.
** GCC might have just copying the problem from a prior compiler.
** I am also told that newer versions of GCC that follow a different
** ABI get the byte order right.
**
** Developers using SQLite on an ARM7 should compile and run their
** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
** enabled, some asserts below will ensure that the byte order of
** floating point values is correct.
**
** (2007-08-30) Frank van Vugt has studied this problem closely
** and has send his findings to the SQLite developers. Frank
** writes that some Linux kernels offer floating point hardware
** emulation that uses only 32-bit mantissas instead of a full
** 48-bits as required by the IEEE standard. (This is the
** CONFIG_FPE_FASTFPE option.) On such systems, floating point
** byte swapping becomes very complicated. To avoid problems,
** the necessary byte swapping is carried out using a 64-bit integer
** rather than a 64-bit float. Frank assures us that the code here
** works for him. We, the developers, have no way to independently
** verify this, but Frank seems to know what he is talking about
** so we trust him.
*/
#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
u64 sqlite3FloatSwap(u64 in){
union {
u64 r;
u32 i[2];
} u;
u32 t;
u.r = in;
t = u.i[0];
u.i[0] = u.i[1];
u.i[1] = t;
return u.r;
}
#endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */
/* Input "x" is a sequence of unsigned characters that represent a
** big-endian integer. Return the equivalent native integer
*/
#define ONE_BYTE_INT(x) ((i8)(x)[0])
#define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
#define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
#define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
#define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
/*
** Deserialize the data blob pointed to by buf as serial type serial_type
** and store the result in pMem.
**
** This function is implemented as two separate routines for performance.
** The few cases that require local variables are broken out into a separate
** routine so that in most cases the overhead of moving the stack pointer
** is avoided.
*/
static void serialGet(
const unsigned char *buf, /* Buffer to deserialize from */
u32 serial_type, /* Serial type to deserialize */
Mem *pMem /* Memory cell to write value into */
){
u64 x = FOUR_BYTE_UINT(buf);
u32 y = FOUR_BYTE_UINT(buf+4);
x = (x<<32) + y;
if( serial_type==6 ){
/* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
** twos-complement integer. */
pMem->u.i = *(i64*)&x;
pMem->flags = MEM_Int;
testcase( pMem->u.i<0 );
}else{
/* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
** floating point number. */
#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
/* Verify that integers and floating point values use the same
** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
** defined that 64-bit floating point values really are mixed
** endian.
*/
static const u64 t1 = ((u64)0x3ff00000)<<32;
static const double r1 = 1.0;
u64 t2 = t1;
swapMixedEndianFloat(t2);
assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
#endif
assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
swapMixedEndianFloat(x);
memcpy(&pMem->u.r, &x, sizeof(x));
pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
}
}
static int serialGet7(
const unsigned char *buf, /* Buffer to deserialize from */
Mem *pMem /* Memory cell to write value into */
){
u64 x = FOUR_BYTE_UINT(buf);
u32 y = FOUR_BYTE_UINT(buf+4);
x = (x<<32) + y;
assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
swapMixedEndianFloat(x);
memcpy(&pMem->u.r, &x, sizeof(x));
if( IsNaN(x) ){
pMem->flags = MEM_Null;
return 1;
}
pMem->flags = MEM_Real;
return 0;
}
void sqlite3VdbeSerialGet(
const unsigned char *buf, /* Buffer to deserialize from */
u32 serial_type, /* Serial type to deserialize */
Mem *pMem /* Memory cell to write value into */
){
switch( serial_type ){
case 10: { /* Internal use only: NULL with virtual table
** UPDATE no-change flag set */
pMem->flags = MEM_Null|MEM_Zero;
pMem->n = 0;
pMem->u.nZero = 0;
return;
}
case 11: /* Reserved for future use */
case 0: { /* Null */
/* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
pMem->flags = MEM_Null;
return;
}
case 1: {
/* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
** integer. */
pMem->u.i = ONE_BYTE_INT(buf);
pMem->flags = MEM_Int;
testcase( pMem->u.i<0 );
return;
}
case 2: { /* 2-byte signed integer */
/* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
** twos-complement integer. */
pMem->u.i = TWO_BYTE_INT(buf);
pMem->flags = MEM_Int;
testcase( pMem->u.i<0 );
return;
}
case 3: { /* 3-byte signed integer */
/* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
** twos-complement integer. */
pMem->u.i = THREE_BYTE_INT(buf);
pMem->flags = MEM_Int;
testcase( pMem->u.i<0 );
return;
}
case 4: { /* 4-byte signed integer */
/* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
** twos-complement integer. */
pMem->u.i = FOUR_BYTE_INT(buf);
#ifdef __HP_cc
/* Work around a sign-extension bug in the HP compiler for HP/UX */
if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
#endif
pMem->flags = MEM_Int;
testcase( pMem->u.i<0 );
return;
}
case 5: { /* 6-byte signed integer */
/* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
** twos-complement integer. */
pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
pMem->flags = MEM_Int;
testcase( pMem->u.i<0 );
return;
}
case 6: /* 8-byte signed integer */
case 7: { /* IEEE floating point */
/* These use local variables, so do them in a separate routine
** to avoid having to move the frame pointer in the common case */
serialGet(buf,serial_type,pMem);
return;
}
case 8: /* Integer 0 */
case 9: { /* Integer 1 */
/* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
/* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
pMem->u.i = serial_type-8;
pMem->flags = MEM_Int;
return;
}
default: {
/* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
** length.
** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
** (N-13)/2 bytes in length. */
static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
pMem->z = (char *)buf;
pMem->n = (serial_type-12)/2;
pMem->flags = aFlag[serial_type&1];
return;
}
}
return;
}
/*
** This routine is used to allocate sufficient space for an UnpackedRecord
** structure large enough to be used with sqlite3VdbeRecordUnpack() if
** the first argument is a pointer to KeyInfo structure pKeyInfo.
**
** The space is either allocated using sqlite3DbMallocRaw() or from within
** the unaligned buffer passed via the second and third arguments (presumably
** stack space). If the former, then *ppFree is set to a pointer that should
** be eventually freed by the caller using sqlite3DbFree(). Or, if the
** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
** before returning.
**
** If an OOM error occurs, NULL is returned.
*/
UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
KeyInfo *pKeyInfo /* Description of the record */
){
UnpackedRecord *p; /* Unpacked record to return */
int nByte; /* Number of bytes required for *p */
nByte = ROUND8P(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
if( !p ) return 0;
p->aMem = (Mem*)&((char*)p)[ROUND8P(sizeof(UnpackedRecord))];
assert( pKeyInfo->aSortFlags!=0 );
p->pKeyInfo = pKeyInfo;
p->nField = pKeyInfo->nKeyField + 1;
return p;
}
/*
** Given the nKey-byte encoding of a record in pKey[], populate the
** UnpackedRecord structure indicated by the fourth argument with the
** contents of the decoded record.
*/
void sqlite3VdbeRecordUnpack(
KeyInfo *pKeyInfo, /* Information about the record format */
int nKey, /* Size of the binary record */
const void *pKey, /* The binary record */
UnpackedRecord *p /* Populate this structure before returning. */
){
const unsigned char *aKey = (const unsigned char *)pKey;
u32 d;
u32 idx; /* Offset in aKey[] to read from */
u16 u; /* Unsigned loop counter */
u32 szHdr;
Mem *pMem = p->aMem;
p->default_rc = 0;
assert( EIGHT_BYTE_ALIGNMENT(pMem) );
idx = getVarint32(aKey, szHdr);
d = szHdr;
u = 0;
while( idx<szHdr && d<=(u32)nKey ){
u32 serial_type;
idx += getVarint32(&aKey[idx], serial_type);
pMem->enc = pKeyInfo->enc;
pMem->db = pKeyInfo->db;
/* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
pMem->szMalloc = 0;
pMem->z = 0;
sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
d += sqlite3VdbeSerialTypeLen(serial_type);
pMem++;
if( (++u)>=p->nField ) break;
}
if( d>(u32)nKey && u ){
assert( CORRUPT_DB );
/* In a corrupt record entry, the last pMem might have been set up using
** uninitialized memory. Overwrite its value with NULL, to prevent
** warnings from MSAN. */
sqlite3VdbeMemSetNull(pMem-1);
}
assert( u<=pKeyInfo->nKeyField + 1 );
p->nField = u;
}
#ifdef SQLITE_DEBUG
/*
** This function compares two index or table record keys in the same way
** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
** this function deserializes and compares values using the
** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
** in assert() statements to ensure that the optimized code in
** sqlite3VdbeRecordCompare() returns results with these two primitives.
**
** Return true if the result of comparison is equivalent to desiredResult.
** Return false if there is a disagreement.
*/
static int vdbeRecordCompareDebug(
int nKey1, const void *pKey1, /* Left key */
const UnpackedRecord *pPKey2, /* Right key */
int desiredResult /* Correct answer */
){
u32 d1; /* Offset into aKey[] of next data element */
u32 idx1; /* Offset into aKey[] of next header element */
u32 szHdr1; /* Number of bytes in header */
int i = 0;
int rc = 0;
const unsigned char *aKey1 = (const unsigned char *)pKey1;
KeyInfo *pKeyInfo;
Mem mem1;
pKeyInfo = pPKey2->pKeyInfo;
if( pKeyInfo->db==0 ) return 1;
mem1.enc = pKeyInfo->enc;
mem1.db = pKeyInfo->db;
/* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
/* Compilers may complain that mem1.u.i is potentially uninitialized.
** We could initialize it, as shown here, to silence those complaints.
** But in fact, mem1.u.i will never actually be used uninitialized, and doing
** the unnecessary initialization has a measurable negative performance
** impact, since this routine is a very high runner. And so, we choose
** to ignore the compiler warnings and leave this variable uninitialized.
*/
/* mem1.u.i = 0; // not needed, here to silence compiler warning */
idx1 = getVarint32(aKey1, szHdr1);
if( szHdr1>98307 ) return SQLITE_CORRUPT;
d1 = szHdr1;
assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
assert( pKeyInfo->aSortFlags!=0 );
assert( pKeyInfo->nKeyField>0 );
assert( idx1<=szHdr1 || CORRUPT_DB );
do{
u32 serial_type1;
/* Read the serial types for the next element in each key. */
idx1 += getVarint32( aKey1+idx1, serial_type1 );
/* Verify that there is enough key space remaining to avoid
** a buffer overread. The "d1+serial_type1+2" subexpression will
** always be greater than or equal to the amount of required key space.
** Use that approximation to avoid the more expensive call to
** sqlite3VdbeSerialTypeLen() in the common case.
*/
if( d1+(u64)serial_type1+2>(u64)nKey1
&& d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
){
if( serial_type1>=1
&& serial_type1<=7
&& d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)<=(u64)nKey1+8
&& CORRUPT_DB
){
return 1; /* corrupt record not detected by
** sqlite3VdbeRecordCompareWithSkip(). Return true
** to avoid firing the assert() */
}
break;
}
/* Extract the values to be compared.
*/
sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
d1 += sqlite3VdbeSerialTypeLen(serial_type1);
/* Do the comparison
*/
rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
if( rc!=0 ){
assert( mem1.szMalloc==0 ); /* See comment below */
if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
&& ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
){
rc = -rc;
}
if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
rc = -rc; /* Invert the result for DESC sort order. */
}
goto debugCompareEnd;
}
i++;
}while( idx1<szHdr1 && i<pPKey2->nField );
/* No memory allocation is ever used on mem1. Prove this using
** the following assert(). If the assert() fails, it indicates a
** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
*/
assert( mem1.szMalloc==0 );
/* rc==0 here means that one of the keys ran out of fields and
** all the fields up to that point were equal. Return the default_rc
** value. */
rc = pPKey2->default_rc;
debugCompareEnd:
if( desiredResult==0 && rc==0 ) return 1;
if( desiredResult<0 && rc<0 ) return 1;
if( desiredResult>0 && rc>0 ) return 1;
if( CORRUPT_DB ) return 1;
if( pKeyInfo->db->mallocFailed ) return 1;
return 0;
}
#endif
#ifdef SQLITE_DEBUG
/*
** Count the number of fields (a.k.a. columns) in the record given by
** pKey,nKey. The verify that this count is less than or equal to the
** limit given by pKeyInfo->nAllField.
**
** If this constraint is not satisfied, it means that the high-speed
** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
** not work correctly. If this assert() ever fires, it probably means
** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
** incorrectly.
*/
static void vdbeAssertFieldCountWithinLimits(
int nKey, const void *pKey, /* The record to verify */
const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
){
int nField = 0;
u32 szHdr;
u32 idx;
u32 notUsed;
const unsigned char *aKey = (const unsigned char*)pKey;
if( CORRUPT_DB ) return;
idx = getVarint32(aKey, szHdr);
assert( nKey>=0 );
assert( szHdr<=(u32)nKey );
while( idx<szHdr ){
idx += getVarint32(aKey+idx, notUsed);
nField++;
}
assert( nField <= pKeyInfo->nAllField );
}
#else
# define vdbeAssertFieldCountWithinLimits(A,B,C)
#endif
/*
** Both *pMem1 and *pMem2 contain string values. Compare the two values
** using the collation sequence pColl. As usual, return a negative , zero
** or positive value if *pMem1 is less than, equal to or greater than
** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
*/
static int vdbeCompareMemString(
const Mem *pMem1,
const Mem *pMem2,
const CollSeq *pColl,
u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
){
if( pMem1->enc==pColl->enc ){
/* The strings are already in the correct encoding. Call the
** comparison function directly */
return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
}else{
int rc;
const void *v1, *v2;
Mem c1;
Mem c2;
sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
if( (v1==0 || v2==0) ){
if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
rc = 0;
}else{
rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
}
sqlite3VdbeMemReleaseMalloc(&c1);
sqlite3VdbeMemReleaseMalloc(&c2);
return rc;
}
}
/*
** The input pBlob is guaranteed to be a Blob that is not marked
** with MEM_Zero. Return true if it could be a zero-blob.
*/
static int isAllZero(const char *z, int n){
int i;
for(i=0; i<n; i++){
if( z[i] ) return 0;
}
return 1;
}
/*
** Compare two blobs. Return negative, zero, or positive if the first
** is less than, equal to, or greater than the second, respectively.
** If one blob is a prefix of the other, then the shorter is the lessor.
*/
SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
int c;
int n1 = pB1->n;
int n2 = pB2->n;
/* It is possible to have a Blob value that has some non-zero content
** followed by zero content. But that only comes up for Blobs formed
** by the OP_MakeRecord opcode, and such Blobs never get passed into
** sqlite3MemCompare(). */
assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
if( (pB1->flags|pB2->flags) & MEM_Zero ){
if( pB1->flags & pB2->flags & MEM_Zero ){
return pB1->u.nZero - pB2->u.nZero;
}else if( pB1->flags & MEM_Zero ){
if( !isAllZero(pB2->z, pB2->n) ) return -1;
return pB1->u.nZero - n2;
}else{
if( !isAllZero(pB1->z, pB1->n) ) return +1;
return n1 - pB2->u.nZero;
}
}
c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
if( c ) return c;
return n1 - n2;
}
/* The following two functions are used only within testcase() to prove
** test coverage. These functions do no exist for production builds.
** We must use separate SQLITE_NOINLINE functions here, since otherwise
** optimizer code movement causes gcov to become very confused.
*/
#if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG)
static int SQLITE_NOINLINE doubleLt(double a, double b){ return a<b; }
static int SQLITE_NOINLINE doubleEq(double a, double b){ return a==b; }
#endif
/*
** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
** number. Return negative, zero, or positive if the first (i64) is less than,
** equal to, or greater than the second (double).
*/
int sqlite3IntFloatCompare(i64 i, double r){
if( sqlite3IsNaN(r) ){
/* SQLite considers NaN to be a NULL. And all integer values are greater
** than NULL */
return 1;
}
if( sqlite3Config.bUseLongDouble ){
LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
testcase( x<r );
testcase( x>r );
testcase( x==r );
return (x<r) ? -1 : (x>r);
}else{
i64 y;
double s;
if( r<-9223372036854775808.0 ) return +1;
if( r>=9223372036854775808.0 ) return -1;
y = (i64)r;
if( i<y ) return -1;
if( i>y ) return +1;
s = (double)i;
testcase( doubleLt(s,r) );
testcase( doubleLt(r,s) );
testcase( doubleEq(r,s) );
return (s<r) ? -1 : (s>r);
}
}
/*
** Compare the values contained by the two memory cells, returning
** negative, zero or positive if pMem1 is less than, equal to, or greater
** than pMem2. Sorting order is NULL's first, followed by numbers (integers
** and reals) sorted numerically, followed by text ordered by the collating
** sequence pColl and finally blob's ordered by memcmp().
**
** Two NULL values are considered equal by this function.
*/
int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
int f1, f2;
int combined_flags;
f1 = pMem1->flags;
f2 = pMem2->flags;
combined_flags = f1|f2;
assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
/* If one value is NULL, it is less than the other. If both values
** are NULL, return 0.
*/
if( combined_flags&MEM_Null ){
return (f2&MEM_Null) - (f1&MEM_Null);
}
/* At least one of the two values is a number
*/
if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
testcase( combined_flags & MEM_Int );
testcase( combined_flags & MEM_Real );
testcase( combined_flags & MEM_IntReal );
if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
testcase( f1 & f2 & MEM_Int );
testcase( f1 & f2 & MEM_IntReal );
if( pMem1->u.i < pMem2->u.i ) return -1;
if( pMem1->u.i > pMem2->u.i ) return +1;
return 0;
}
if( (f1 & f2 & MEM_Real)!=0 ){
if( pMem1->u.r < pMem2->u.r ) return -1;
if( pMem1->u.r > pMem2->u.r ) return +1;
return 0;
}
if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
testcase( f1 & MEM_Int );
testcase( f1 & MEM_IntReal );
if( (f2&MEM_Real)!=0 ){
return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
}else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
if( pMem1->u.i < pMem2->u.i ) return -1;
if( pMem1->u.i > pMem2->u.i ) return +1;
return 0;
}else{
return -1;
}
}
if( (f1&MEM_Real)!=0 ){
if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
testcase( f2 & MEM_Int );
testcase( f2 & MEM_IntReal );
return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
}else{
return -1;
}
}
return +1;
}
/* If one value is a string and the other is a blob, the string is less.
** If both are strings, compare using the collating functions.
*/
if( combined_flags&MEM_Str ){
if( (f1 & MEM_Str)==0 ){
return 1;
}
if( (f2 & MEM_Str)==0 ){
return -1;
}
assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
assert( pMem1->enc==SQLITE_UTF8 ||
pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
/* The collation sequence must be defined at this point, even if
** the user deletes the collation sequence after the vdbe program is
** compiled (this was not always the case).
*/
assert( !pColl || pColl->xCmp );
if( pColl ){
return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
}
/* If a NULL pointer was passed as the collate function, fall through
** to the blob case and use memcmp(). */
}
/* Both values must be blobs. Compare using memcmp(). */
return sqlite3BlobCompare(pMem1, pMem2);
}
/*
** The first argument passed to this function is a serial-type that
** corresponds to an integer - all values between 1 and 9 inclusive
** except 7. The second points to a buffer containing an integer value
** serialized according to serial_type. This function deserializes
** and returns the value.
*/
static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
u32 y;
assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
switch( serial_type ){
case 0:
case 1:
testcase( aKey[0]&0x80 );
return ONE_BYTE_INT(aKey);
case 2:
testcase( aKey[0]&0x80 );
return TWO_BYTE_INT(aKey);
case 3:
testcase( aKey[0]&0x80 );
return THREE_BYTE_INT(aKey);
case 4: {
testcase( aKey[0]&0x80 );
y = FOUR_BYTE_UINT(aKey);
return (i64)*(int*)&y;
}
case 5: {
testcase( aKey[0]&0x80 );
return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
}
case 6: {
u64 x = FOUR_BYTE_UINT(aKey);
testcase( aKey[0]&0x80 );
x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
return (i64)*(i64*)&x;
}
}
return (serial_type - 8);
}
/*
** This function compares the two table rows or index records
** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
** or positive integer if key1 is less than, equal to or
** greater than key2. The {nKey1, pKey1} key must be a blob
** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
** key must be a parsed key such as obtained from
** sqlite3VdbeParseRecord.
**
** If argument bSkip is non-zero, it is assumed that the caller has already
** determined that the first fields of the keys are equal.
**
** Key1 and Key2 do not have to contain the same number of fields. If all
** fields that appear in both keys are equal, then pPKey2->default_rc is
** returned.
**
** If database corruption is discovered, set pPKey2->errCode to
** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
*/
int sqlite3VdbeRecordCompareWithSkip(
int nKey1, const void *pKey1, /* Left key */
UnpackedRecord *pPKey2, /* Right key */
int bSkip /* If true, skip the first field */
){
u32 d1; /* Offset into aKey[] of next data element */
int i; /* Index of next field to compare */
u32 szHdr1; /* Size of record header in bytes */
u32 idx1; /* Offset of first type in header */
int rc = 0; /* Return value */
Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
KeyInfo *pKeyInfo;
const unsigned char *aKey1 = (const unsigned char *)pKey1;
Mem mem1;
/* If bSkip is true, then the caller has already determined that the first
** two elements in the keys are equal. Fix the various stack variables so
** that this routine begins comparing at the second field. */
if( bSkip ){
u32 s1 = aKey1[1];
if( s1<0x80 ){
idx1 = 2;
}else{
idx1 = 1 + sqlite3GetVarint32(&aKey1[1], &s1);
}
szHdr1 = aKey1[0];
d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
i = 1;
pRhs++;
}else{
if( (szHdr1 = aKey1[0])<0x80 ){
idx1 = 1;
}else{
idx1 = sqlite3GetVarint32(aKey1, &szHdr1);
}
d1 = szHdr1;
i = 0;
}
if( d1>(unsigned)nKey1 ){
pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
return 0; /* Corruption */
}
VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
|| CORRUPT_DB );
assert( pPKey2->pKeyInfo->aSortFlags!=0 );
assert( pPKey2->pKeyInfo->nKeyField>0 );
assert( idx1<=szHdr1 || CORRUPT_DB );
while( 1 /*exit-by-break*/ ){
u32 serial_type;
/* RHS is an integer */
if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
testcase( pRhs->flags & MEM_Int );
testcase( pRhs->flags & MEM_IntReal );
serial_type = aKey1[idx1];
testcase( serial_type==12 );
if( serial_type>=10 ){
rc = serial_type==10 ? -1 : +1;
}else if( serial_type==0 ){
rc = -1;
}else if( serial_type==7 ){
serialGet7(&aKey1[d1], &mem1);
rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
}else{
i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
i64 rhs = pRhs->u.i;
if( lhs<rhs ){
rc = -1;
}else if( lhs>rhs ){
rc = +1;
}
}
}
/* RHS is real */
else if( pRhs->flags & MEM_Real ){
serial_type = aKey1[idx1];
if( serial_type>=10 ){
/* Serial types 12 or greater are strings and blobs (greater than
** numbers). Types 10 and 11 are currently "reserved for future
** use", so it doesn't really matter what the results of comparing
** them to numeric values are. */
rc = serial_type==10 ? -1 : +1;
}else if( serial_type==0 ){
rc = -1;
}else{
if( serial_type==7 ){
if( serialGet7(&aKey1[d1], &mem1) ){
rc = -1; /* mem1 is a NaN */
}else if( mem1.u.r<pRhs->u.r ){
rc = -1;
}else if( mem1.u.r>pRhs->u.r ){
rc = +1;
}else{
assert( rc==0 );
}
}else{
sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
}
}
}
/* RHS is a string */
else if( pRhs->flags & MEM_Str ){
getVarint32NR(&aKey1[idx1], serial_type);
testcase( serial_type==12 );
if( serial_type<12 ){
rc = -1;
}else if( !(serial_type & 0x01) ){
rc = +1;
}else{
mem1.n = (serial_type - 12) / 2;
testcase( (d1+mem1.n)==(unsigned)nKey1 );
testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
if( (d1+mem1.n) > (unsigned)nKey1
|| (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
){
pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
return 0; /* Corruption */
}else if( pKeyInfo->aColl[i] ){
mem1.enc = pKeyInfo->enc;
mem1.db = pKeyInfo->db;
mem1.flags = MEM_Str;
mem1.z = (char*)&aKey1[d1];
rc = vdbeCompareMemString(
&mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
);
}else{
int nCmp = MIN(mem1.n, pRhs->n);
rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
if( rc==0 ) rc = mem1.n - pRhs->n;
}
}
}
/* RHS is a blob */
else if( pRhs->flags & MEM_Blob ){
assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
getVarint32NR(&aKey1[idx1], serial_type);
testcase( serial_type==12 );
if( serial_type<12 || (serial_type & 0x01) ){
rc = -1;
}else{
int nStr = (serial_type - 12) / 2;
testcase( (d1+nStr)==(unsigned)nKey1 );
testcase( (d1+nStr+1)==(unsigned)nKey1 );
if( (d1+nStr) > (unsigned)nKey1 ){
pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
return 0; /* Corruption */
}else if( pRhs->flags & MEM_Zero ){
if( !isAllZero((const char*)&aKey1[d1],nStr) ){
rc = 1;
}else{
rc = nStr - pRhs->u.nZero;
}
}else{
int nCmp = MIN(nStr, pRhs->n);
rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
if( rc==0 ) rc = nStr - pRhs->n;
}
}
}
/* RHS is null */
else{
serial_type = aKey1[idx1];
if( serial_type==0
|| serial_type==10
|| (serial_type==7 && serialGet7(&aKey1[d1], &mem1)!=0)
){
assert( rc==0 );
}else{
rc = 1;
}
}
if( rc!=0 ){
int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
if( sortFlags ){
if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
|| ((sortFlags & KEYINFO_ORDER_DESC)
!=(serial_type==0 || (pRhs->flags&MEM_Null)))
){
rc = -rc;
}
}
assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
assert( mem1.szMalloc==0 ); /* See comment below */
return rc;
}
i++;
if( i==pPKey2->nField ) break;
pRhs++;
d1 += sqlite3VdbeSerialTypeLen(serial_type);
if( d1>(unsigned)nKey1 ) break;
idx1 += sqlite3VarintLen(serial_type);
if( idx1>=(unsigned)szHdr1 ){
pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
return 0; /* Corrupt index */
}
}
/* No memory allocation is ever used on mem1. Prove this using
** the following assert(). If the assert() fails, it indicates a
** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
assert( mem1.szMalloc==0 );
/* rc==0 here means that one or both of the keys ran out of fields and
** all the fields up to that point were equal. Return the default_rc
** value. */
assert( CORRUPT_DB
|| vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
|| pPKey2->pKeyInfo->db->mallocFailed
);
pPKey2->eqSeen = 1;
return pPKey2->default_rc;
}
int sqlite3VdbeRecordCompare(
int nKey1, const void *pKey1, /* Left key */
UnpackedRecord *pPKey2 /* Right key */
){
return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
}
/*
** This function is an optimized version of sqlite3VdbeRecordCompare()
** that (a) the first field of pPKey2 is an integer, and (b) the
** size-of-header varint at the start of (pKey1/nKey1) fits in a single
** byte (i.e. is less than 128).
**
** To avoid concerns about buffer overreads, this routine is only used
** on schemas where the maximum valid header size is 63 bytes or less.
*/
static int vdbeRecordCompareInt(
int nKey1, const void *pKey1, /* Left key */
UnpackedRecord *pPKey2 /* Right key */
){
const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
int serial_type = ((const u8*)pKey1)[1];
int res;
u32 y;
u64 x;
i64 v;
i64 lhs;
vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
switch( serial_type ){
case 1: { /* 1-byte signed integer */
lhs = ONE_BYTE_INT(aKey);
testcase( lhs<0 );
break;
}
case 2: { /* 2-byte signed integer */
lhs = TWO_BYTE_INT(aKey);
testcase( lhs<0 );
break;
}
case 3: { /* 3-byte signed integer */
lhs = THREE_BYTE_INT(aKey);
testcase( lhs<0 );
break;
}
case 4: { /* 4-byte signed integer */
y = FOUR_BYTE_UINT(aKey);
lhs = (i64)*(int*)&y;
testcase( lhs<0 );
break;
}
case 5: { /* 6-byte signed integer */
lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
testcase( lhs<0 );
break;
}
case 6: { /* 8-byte signed integer */
x = FOUR_BYTE_UINT(aKey);
x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
lhs = *(i64*)&x;
testcase( lhs<0 );
break;
}
case 8:
lhs = 0;
break;
case 9:
lhs = 1;
break;
/* This case could be removed without changing the results of running
** this code. Including it causes gcc to generate a faster switch
** statement (since the range of switch targets now starts at zero and
** is contiguous) but does not cause any duplicate code to be generated
** (as gcc is clever enough to combine the two like cases). Other
** compilers might be similar. */
case 0: case 7:
return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
default:
return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
}
assert( pPKey2->u.i == pPKey2->aMem[0].u.i );
v = pPKey2->u.i;
if( v>lhs ){
res = pPKey2->r1;
}else if( v<lhs ){
res = pPKey2->r2;
}else if( pPKey2->nField>1 ){
/* The first fields of the two keys are equal. Compare the trailing
** fields. */
res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
}else{
/* The first fields of the two keys are equal and there are no trailing
** fields. Return pPKey2->default_rc in this case. */
res = pPKey2->default_rc;
pPKey2->eqSeen = 1;
}
assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
return res;
}
/*
** This function is an optimized version of sqlite3VdbeRecordCompare()
** that (a) the first field of pPKey2 is a string, that (b) the first field
** uses the collation sequence BINARY and (c) that the size-of-header varint
** at the start of (pKey1/nKey1) fits in a single byte.
*/
static int vdbeRecordCompareString(
int nKey1, const void *pKey1, /* Left key */
UnpackedRecord *pPKey2 /* Right key */
){
const u8 *aKey1 = (const u8*)pKey1;
int serial_type;
int res;
assert( pPKey2->aMem[0].flags & MEM_Str );
assert( pPKey2->aMem[0].n == pPKey2->n );
assert( pPKey2->aMem[0].z == pPKey2->u.z );
vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
serial_type = (signed char)(aKey1[1]);
vrcs_restart:
if( serial_type<12 ){
if( serial_type<0 ){
sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type);
if( serial_type>=12 ) goto vrcs_restart;
assert( CORRUPT_DB );
}
res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
}else if( !(serial_type & 0x01) ){
res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
}else{
int nCmp;
int nStr;
int szHdr = aKey1[0];
nStr = (serial_type-12) / 2;
if( (szHdr + nStr) > nKey1 ){
pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
return 0; /* Corruption */
}
nCmp = MIN( pPKey2->n, nStr );
res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp);
if( res>0 ){
res = pPKey2->r2;
}else if( res<0 ){
res = pPKey2->r1;
}else{
res = nStr - pPKey2->n;
if( res==0 ){
if( pPKey2->nField>1 ){
res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
}else{
res = pPKey2->default_rc;
pPKey2->eqSeen = 1;
}
}else if( res>0 ){
res = pPKey2->r2;
}else{
res = pPKey2->r1;
}
}
}
assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
|| CORRUPT_DB
|| pPKey2->pKeyInfo->db->mallocFailed
);
return res;
}
/*
** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
** suitable for comparing serialized records to the unpacked record passed
** as the only argument.
*/
RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
/* varintRecordCompareInt() and varintRecordCompareString() both assume
** that the size-of-header varint that occurs at the start of each record
** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
** also assumes that it is safe to overread a buffer by at least the
** maximum possible legal header size plus 8 bytes. Because there is
** guaranteed to be at least 74 (but not 136) bytes of padding following each
** buffer passed to varintRecordCompareInt() this makes it convenient to
** limit the size of the header to 64 bytes in cases where the first field
** is an integer.
**
** The easiest way to enforce this limit is to consider only records with
** 13 fields or less. If the first field is an integer, the maximum legal
** header size is (12*5 + 1 + 1) bytes. */
if( p->pKeyInfo->nAllField<=13 ){
int flags = p->aMem[0].flags;
if( p->pKeyInfo->aSortFlags[0] ){
if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
return sqlite3VdbeRecordCompare;
}
p->r1 = 1;
p->r2 = -1;
}else{
p->r1 = -1;
p->r2 = 1;
}
if( (flags & MEM_Int) ){
p->u.i = p->aMem[0].u.i;
return vdbeRecordCompareInt;
}
testcase( flags & MEM_Real );
testcase( flags & MEM_Null );
testcase( flags & MEM_Blob );
if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
&& p->pKeyInfo->aColl[0]==0
){
assert( flags & MEM_Str );
p->u.z = p->aMem[0].z;
p->n = p->aMem[0].n;
return vdbeRecordCompareString;
}
}
return sqlite3VdbeRecordCompare;
}
/*
** pCur points at an index entry created using the OP_MakeRecord opcode.
** Read the rowid (the last field in the record) and store it in *rowid.
** Return SQLITE_OK if everything works, or an error code otherwise.
**
** pCur might be pointing to text obtained from a corrupt database file.
** So the content cannot be trusted. Do appropriate checks on the content.
*/
int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
i64 nCellKey = 0;
int rc;
u32 szHdr; /* Size of the header */
u32 typeRowid; /* Serial type of the rowid */
u32 lenRowid; /* Size of the rowid */
Mem m, v;
/* Get the size of the index entry. Only indices entries of less
** than 2GiB are support - anything large must be database corruption.
** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
** this code can safely assume that nCellKey is 32-bits
*/
assert( sqlite3BtreeCursorIsValid(pCur) );
nCellKey = sqlite3BtreePayloadSize(pCur);
assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
/* Read in the complete content of the index entry */
sqlite3VdbeMemInit(&m, db, 0);
rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
if( rc ){
return rc;
}
/* The index entry must begin with a header size */
getVarint32NR((u8*)m.z, szHdr);
testcase( szHdr==3 );
testcase( szHdr==(u32)m.n );
testcase( szHdr>0x7fffffff );
assert( m.n>=0 );
if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
goto idx_rowid_corruption;
}
/* The last field of the index should be an integer - the ROWID.
** Verify that the last entry really is an integer. */
getVarint32NR((u8*)&m.z[szHdr-1], typeRowid);
testcase( typeRowid==1 );
testcase( typeRowid==2 );
testcase( typeRowid==3 );
testcase( typeRowid==4 );
testcase( typeRowid==5 );
testcase( typeRowid==6 );
testcase( typeRowid==8 );
testcase( typeRowid==9 );
if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
goto idx_rowid_corruption;
}
lenRowid = sqlite3SmallTypeSizes[typeRowid];
testcase( (u32)m.n==szHdr+lenRowid );
if( unlikely((u32)m.n<szHdr+lenRowid) ){
goto idx_rowid_corruption;
}
/* Fetch the integer off the end of the index record */
sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
*rowid = v.u.i;
sqlite3VdbeMemReleaseMalloc(&m);
return SQLITE_OK;
/* Jump here if database corruption is detected after m has been
** allocated. Free the m object and return SQLITE_CORRUPT. */
idx_rowid_corruption:
testcase( m.szMalloc!=0 );
sqlite3VdbeMemReleaseMalloc(&m);
return SQLITE_CORRUPT_BKPT;
}
/*
** Compare the key of the index entry that cursor pC is pointing to against
** the key string in pUnpacked. Write into *pRes a number
** that is negative, zero, or positive if pC is less than, equal to,
** or greater than pUnpacked. Return SQLITE_OK on success.
**
** pUnpacked is either created without a rowid or is truncated so that it
** omits the rowid at the end. The rowid at the end of the index entry
** is ignored as well. Hence, this routine only compares the prefixes
** of the keys prior to the final rowid, not the entire key.
*/
int sqlite3VdbeIdxKeyCompare(
sqlite3 *db, /* Database connection */
VdbeCursor *pC, /* The cursor to compare against */
UnpackedRecord *pUnpacked, /* Unpacked version of key */
int *res /* Write the comparison result here */
){
i64 nCellKey = 0;
int rc;
BtCursor *pCur;
Mem m;
assert( pC->eCurType==CURTYPE_BTREE );
pCur = pC->uc.pCursor;
assert( sqlite3BtreeCursorIsValid(pCur) );
nCellKey = sqlite3BtreePayloadSize(pCur);
/* nCellKey will always be between 0 and 0xffffffff because of the way
** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
if( nCellKey<=0 || nCellKey>0x7fffffff ){
*res = 0;
return SQLITE_CORRUPT_BKPT;
}
sqlite3VdbeMemInit(&m, db, 0);
rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
if( rc ){
return rc;
}
*res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
sqlite3VdbeMemReleaseMalloc(&m);
return SQLITE_OK;
}
/*
** This routine sets the value to be returned by subsequent calls to
** sqlite3_changes() on the database handle 'db'.
*/
void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){
assert( sqlite3_mutex_held(db->mutex) );
db->nChange = nChange;
db->nTotalChange += nChange;
}
/*
** Set a flag in the vdbe to update the change counter when it is finalised
** or reset.
*/
void sqlite3VdbeCountChanges(Vdbe *v){
v->changeCntOn = 1;
}
/*
** Mark every prepared statement associated with a database connection
** as expired.
**
** An expired statement means that recompilation of the statement is
** recommend. Statements expire when things happen that make their
** programs obsolete. Removing user-defined functions or collating
** sequences, or changing an authorization function are the types of
** things that make prepared statements obsolete.
**
** If iCode is 1, then expiration is advisory. The statement should
** be reprepared before being restarted, but if it is already running
** it is allowed to run to completion.
**
** Internally, this function just sets the Vdbe.expired flag on all
** prepared statements. The flag is set to 1 for an immediate expiration
** and set to 2 for an advisory expiration.
*/
void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
Vdbe *p;
for(p = db->pVdbe; p; p=p->pVNext){
p->expired = iCode+1;
}
}
/*
** Return the database associated with the Vdbe.
*/
sqlite3 *sqlite3VdbeDb(Vdbe *v){
return v->db;
}
/*
** Return the SQLITE_PREPARE flags for a Vdbe.
*/
u8 sqlite3VdbePrepareFlags(Vdbe *v){
return v->prepFlags;
}
/*
** Return a pointer to an sqlite3_value structure containing the value bound
** parameter iVar of VM v. Except, if the value is an SQL NULL, return
** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
** constants) to the value before returning it.
**
** The returned value must be freed by the caller using sqlite3ValueFree().
*/
sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
assert( iVar>0 );
if( v ){
Mem *pMem = &v->aVar[iVar-1];
assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
if( 0==(pMem->flags & MEM_Null) ){
sqlite3_value *pRet = sqlite3ValueNew(v->db);
if( pRet ){
sqlite3VdbeMemCopy((Mem *)pRet, pMem);
sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
}
return pRet;
}
}
return 0;
}
/*
** Configure SQL variable iVar so that binding a new value to it signals
** to sqlite3_reoptimize() that re-preparing the statement may result
** in a better query plan.
*/
void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
assert( iVar>0 );
assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
if( iVar>=32 ){
v->expmask |= 0x80000000;
}else{
v->expmask |= ((u32)1 << (iVar-1));
}
}
/*
** Cause a function to throw an error if it was call from OP_PureFunc
** rather than OP_Function.
**
** OP_PureFunc means that the function must be deterministic, and should
** throw an error if it is given inputs that would make it non-deterministic.
** This routine is invoked by date/time functions that use non-deterministic
** features such as 'now'.
*/
int sqlite3NotPureFunc(sqlite3_context *pCtx){
const VdbeOp *pOp;
#ifdef SQLITE_ENABLE_STAT4
if( pCtx->pVdbe==0 ) return 1;
#endif
pOp = pCtx->pVdbe->aOp + pCtx->iOp;
if( pOp->opcode==OP_PureFunc ){
const char *zContext;
char *zMsg;
if( pOp->p5 & NC_IsCheck ){
zContext = "a CHECK constraint";
}else if( pOp->p5 & NC_GenCol ){
zContext = "a generated column";
}else{
zContext = "an index";
}
zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
pCtx->pFunc->zName, zContext);
sqlite3_result_error(pCtx, zMsg, -1);
sqlite3_free(zMsg);
return 0;
}
return 1;
}
#if defined(SQLITE_ENABLE_CURSOR_HINTS) && defined(SQLITE_DEBUG)
/*
** This Walker callback is used to help verify that calls to
** sqlite3BtreeCursorHint() with opcode BTREE_HINT_RANGE have
** byte-code register values correctly initialized.
*/
int sqlite3CursorRangeHintExprCheck(Walker *pWalker, Expr *pExpr){
if( pExpr->op==TK_REGISTER ){
assert( (pWalker->u.aMem[pExpr->iTable].flags & MEM_Undefined)==0 );
}
return WRC_Continue;
}
#endif /* SQLITE_ENABLE_CURSOR_HINTS && SQLITE_DEBUG */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
** in memory obtained from sqlite3DbMalloc).
*/
void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
if( pVtab->zErrMsg ){
sqlite3 *db = p->db;
sqlite3DbFree(db, p->zErrMsg);
p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
sqlite3_free(pVtab->zErrMsg);
pVtab->zErrMsg = 0;
}
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
/*
** If the second argument is not NULL, release any allocations associated
** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
** structure itself, using sqlite3DbFree().
**
** This function is used to free UnpackedRecord structures allocated by
** the vdbeUnpackRecord() function found in vdbeapi.c.
*/
static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
assert( db!=0 );
if( p ){
int i;
for(i=0; i<nField; i++){
Mem *pMem = &p->aMem[i];
if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem);
}
sqlite3DbNNFreeNN(db, p);
}
}
#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
/*
** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
** then cursor passed as the second argument should point to the row about
** to be update or deleted. If the application calls sqlite3_preupdate_old(),
** the required value will be read from the row the cursor points to.
*/
void sqlite3VdbePreUpdateHook(
Vdbe *v, /* Vdbe pre-update hook is invoked by */
VdbeCursor *pCsr, /* Cursor to grab old.* values from */
int op, /* SQLITE_INSERT, UPDATE or DELETE */
const char *zDb, /* Database name */
Table *pTab, /* Modified table */
i64 iKey1, /* Initial key value */
int iReg, /* Register for new.* record */
int iBlobWrite
){
sqlite3 *db = v->db;
i64 iKey2;
PreUpdate preupdate;
const char *zTbl = pTab->zName;
static const u8 fakeSortOrder = 0;
#ifdef SQLITE_DEBUG
int nRealCol;
if( pTab->tabFlags & TF_WithoutRowid ){
nRealCol = sqlite3PrimaryKeyIndex(pTab)->nColumn;
}else if( pTab->tabFlags & TF_HasVirtual ){
nRealCol = pTab->nNVCol;
}else{
nRealCol = pTab->nCol;
}
#endif
assert( db->pPreUpdate==0 );
memset(&preupdate, 0, sizeof(PreUpdate));
if( HasRowid(pTab)==0 ){
iKey1 = iKey2 = 0;
preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
}else{
if( op==SQLITE_UPDATE ){
iKey2 = v->aMem[iReg].u.i;
}else{
iKey2 = iKey1;
}
}
assert( pCsr!=0 );
assert( pCsr->eCurType==CURTYPE_BTREE );
assert( pCsr->nField==nRealCol
|| (pCsr->nField==nRealCol+1 && op==SQLITE_DELETE && iReg==-1)
);
preupdate.v = v;
preupdate.pCsr = pCsr;
preupdate.op = op;
preupdate.iNewReg = iReg;
preupdate.keyinfo.db = db;
preupdate.keyinfo.enc = ENC(db);
preupdate.keyinfo.nKeyField = pTab->nCol;
preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
preupdate.iKey1 = iKey1;
preupdate.iKey2 = iKey2;
preupdate.pTab = pTab;
preupdate.iBlobWrite = iBlobWrite;
db->pPreUpdate = &preupdate;
db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
db->pPreUpdate = 0;
sqlite3DbFree(db, preupdate.aRecord);
vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
if( preupdate.aNew ){
int i;
for(i=0; i<pCsr->nField; i++){
sqlite3VdbeMemRelease(&preupdate.aNew[i]);
}
sqlite3DbNNFreeNN(db, preupdate.aNew);
}
}
#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
|