summaryrefslogtreecommitdiffstats
path: root/src/wal.c
blob: fd2eabfd963c6b07ace6d9a6fde8824a26e36d4e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
/*
** 2010 February 1
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains the implementation of a write-ahead log (WAL) used in
** "journal_mode=WAL" mode.
**
** WRITE-AHEAD LOG (WAL) FILE FORMAT
**
** A WAL file consists of a header followed by zero or more "frames".
** Each frame records the revised content of a single page from the
** database file.  All changes to the database are recorded by writing
** frames into the WAL.  Transactions commit when a frame is written that
** contains a commit marker.  A single WAL can and usually does record
** multiple transactions.  Periodically, the content of the WAL is
** transferred back into the database file in an operation called a
** "checkpoint".
**
** A single WAL file can be used multiple times.  In other words, the
** WAL can fill up with frames and then be checkpointed and then new
** frames can overwrite the old ones.  A WAL always grows from beginning
** toward the end.  Checksums and counters attached to each frame are
** used to determine which frames within the WAL are valid and which
** are leftovers from prior checkpoints.
**
** The WAL header is 32 bytes in size and consists of the following eight
** big-endian 32-bit unsigned integer values:
**
**     0: Magic number.  0x377f0682 or 0x377f0683
**     4: File format version.  Currently 3007000
**     8: Database page size.  Example: 1024
**    12: Checkpoint sequence number
**    16: Salt-1, random integer incremented with each checkpoint
**    20: Salt-2, a different random integer changing with each ckpt
**    24: Checksum-1 (first part of checksum for first 24 bytes of header).
**    28: Checksum-2 (second part of checksum for first 24 bytes of header).
**
** Immediately following the wal-header are zero or more frames. Each
** frame consists of a 24-byte frame-header followed by a <page-size> bytes
** of page data. The frame-header is six big-endian 32-bit unsigned
** integer values, as follows:
**
**     0: Page number.
**     4: For commit records, the size of the database image in pages
**        after the commit. For all other records, zero.
**     8: Salt-1 (copied from the header)
**    12: Salt-2 (copied from the header)
**    16: Checksum-1.
**    20: Checksum-2.
**
** A frame is considered valid if and only if the following conditions are
** true:
**
**    (1) The salt-1 and salt-2 values in the frame-header match
**        salt values in the wal-header
**
**    (2) The checksum values in the final 8 bytes of the frame-header
**        exactly match the checksum computed consecutively on the
**        WAL header and the first 8 bytes and the content of all frames
**        up to and including the current frame.
**
** The checksum is computed using 32-bit big-endian integers if the
** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
** is computed using little-endian if the magic number is 0x377f0682.
** The checksum values are always stored in the frame header in a
** big-endian format regardless of which byte order is used to compute
** the checksum.  The checksum is computed by interpreting the input as
** an even number of unsigned 32-bit integers: x[0] through x[N].  The
** algorithm used for the checksum is as follows:
**
**   for i from 0 to n-1 step 2:
**     s0 += x[i] + s1;
**     s1 += x[i+1] + s0;
**   endfor
**
** Note that s0 and s1 are both weighted checksums using fibonacci weights
** in reverse order (the largest fibonacci weight occurs on the first element
** of the sequence being summed.)  The s1 value spans all 32-bit
** terms of the sequence whereas s0 omits the final term.
**
** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
** WAL is transferred into the database, then the database is VFS.xSync-ed.
** The VFS.xSync operations serve as write barriers - all writes launched
** before the xSync must complete before any write that launches after the
** xSync begins.
**
** After each checkpoint, the salt-1 value is incremented and the salt-2
** value is randomized.  This prevents old and new frames in the WAL from
** being considered valid at the same time and being checkpointing together
** following a crash.
**
** READER ALGORITHM
**
** To read a page from the database (call it page number P), a reader
** first checks the WAL to see if it contains page P.  If so, then the
** last valid instance of page P that is a followed by a commit frame
** or is a commit frame itself becomes the value read.  If the WAL
** contains no copies of page P that are valid and which are a commit
** frame or are followed by a commit frame, then page P is read from
** the database file.
**
** To start a read transaction, the reader records the index of the last
** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
** for all subsequent read operations.  New transactions can be appended
** to the WAL, but as long as the reader uses its original mxFrame value
** and ignores the newly appended content, it will see a consistent snapshot
** of the database from a single point in time.  This technique allows
** multiple concurrent readers to view different versions of the database
** content simultaneously.
**
** The reader algorithm in the previous paragraphs works correctly, but
** because frames for page P can appear anywhere within the WAL, the
** reader has to scan the entire WAL looking for page P frames.  If the
** WAL is large (multiple megabytes is typical) that scan can be slow,
** and read performance suffers.  To overcome this problem, a separate
** data structure called the wal-index is maintained to expedite the
** search for frames of a particular page.
**
** WAL-INDEX FORMAT
**
** Conceptually, the wal-index is shared memory, though VFS implementations
** might choose to implement the wal-index using a mmapped file.  Because
** the wal-index is shared memory, SQLite does not support journal_mode=WAL
** on a network filesystem.  All users of the database must be able to
** share memory.
**
** In the default unix and windows implementation, the wal-index is a mmapped
** file whose name is the database name with a "-shm" suffix added.  For that
** reason, the wal-index is sometimes called the "shm" file.
**
** The wal-index is transient.  After a crash, the wal-index can (and should
** be) reconstructed from the original WAL file.  In fact, the VFS is required
** to either truncate or zero the header of the wal-index when the last
** connection to it closes.  Because the wal-index is transient, it can
** use an architecture-specific format; it does not have to be cross-platform.
** Hence, unlike the database and WAL file formats which store all values
** as big endian, the wal-index can store multi-byte values in the native
** byte order of the host computer.
**
** The purpose of the wal-index is to answer this question quickly:  Given
** a page number P and a maximum frame index M, return the index of the
** last frame in the wal before frame M for page P in the WAL, or return
** NULL if there are no frames for page P in the WAL prior to M.
**
** The wal-index consists of a header region, followed by an one or
** more index blocks.
**
** The wal-index header contains the total number of frames within the WAL
** in the mxFrame field.
**
** Each index block except for the first contains information on
** HASHTABLE_NPAGE frames. The first index block contains information on
** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
** HASHTABLE_NPAGE are selected so that together the wal-index header and
** first index block are the same size as all other index blocks in the
** wal-index.  The values are:
**
**   HASHTABLE_NPAGE      4096
**   HASHTABLE_NPAGE_ONE  4062
**
** Each index block contains two sections, a page-mapping that contains the
** database page number associated with each wal frame, and a hash-table
** that allows readers to query an index block for a specific page number.
** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
** for the first index block) 32-bit page numbers. The first entry in the
** first index-block contains the database page number corresponding to the
** first frame in the WAL file. The first entry in the second index block
** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
** the log, and so on.
**
** The last index block in a wal-index usually contains less than the full
** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
** depending on the contents of the WAL file. This does not change the
** allocated size of the page-mapping array - the page-mapping array merely
** contains unused entries.
**
** Even without using the hash table, the last frame for page P
** can be found by scanning the page-mapping sections of each index block
** starting with the last index block and moving toward the first, and
** within each index block, starting at the end and moving toward the
** beginning.  The first entry that equals P corresponds to the frame
** holding the content for that page.
**
** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
** hash table for each page number in the mapping section, so the hash
** table is never more than half full.  The expected number of collisions
** prior to finding a match is 1.  Each entry of the hash table is an
** 1-based index of an entry in the mapping section of the same
** index block.   Let K be the 1-based index of the largest entry in
** the mapping section.  (For index blocks other than the last, K will
** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
** contain a value of 0.
**
** To look for page P in the hash table, first compute a hash iKey on
** P as follows:
**
**      iKey = (P * 383) % HASHTABLE_NSLOT
**
** Then start scanning entries of the hash table, starting with iKey
** (wrapping around to the beginning when the end of the hash table is
** reached) until an unused hash slot is found. Let the first unused slot
** be at index iUnused.  (iUnused might be less than iKey if there was
** wrap-around.) Because the hash table is never more than half full,
** the search is guaranteed to eventually hit an unused entry.  Let
** iMax be the value between iKey and iUnused, closest to iUnused,
** where aHash[iMax]==P.  If there is no iMax entry (if there exists
** no hash slot such that aHash[i]==p) then page P is not in the
** current index block.  Otherwise the iMax-th mapping entry of the
** current index block corresponds to the last entry that references
** page P.
**
** A hash search begins with the last index block and moves toward the
** first index block, looking for entries corresponding to page P.  On
** average, only two or three slots in each index block need to be
** examined in order to either find the last entry for page P, or to
** establish that no such entry exists in the block.  Each index block
** holds over 4000 entries.  So two or three index blocks are sufficient
** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
** comparisons (on average) suffice to either locate a frame in the
** WAL or to establish that the frame does not exist in the WAL.  This
** is much faster than scanning the entire 10MB WAL.
**
** Note that entries are added in order of increasing K.  Hence, one
** reader might be using some value K0 and a second reader that started
** at a later time (after additional transactions were added to the WAL
** and to the wal-index) might be using a different value K1, where K1>K0.
** Both readers can use the same hash table and mapping section to get
** the correct result.  There may be entries in the hash table with
** K>K0 but to the first reader, those entries will appear to be unused
** slots in the hash table and so the first reader will get an answer as
** if no values greater than K0 had ever been inserted into the hash table
** in the first place - which is what reader one wants.  Meanwhile, the
** second reader using K1 will see additional values that were inserted
** later, which is exactly what reader two wants.
**
** When a rollback occurs, the value of K is decreased. Hash table entries
** that correspond to frames greater than the new K value are removed
** from the hash table at this point.
*/
#ifndef SQLITE_OMIT_WAL

#include "wal.h"

/*
** Trace output macros
*/
#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
int sqlite3WalTrace = 0;
# define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
#else
# define WALTRACE(X)
#endif

/*
** The maximum (and only) versions of the wal and wal-index formats
** that may be interpreted by this version of SQLite.
**
** If a client begins recovering a WAL file and finds that (a) the checksum
** values in the wal-header are correct and (b) the version field is not
** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
**
** Similarly, if a client successfully reads a wal-index header (i.e. the
** checksum test is successful) and finds that the version field is not
** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
** returns SQLITE_CANTOPEN.
*/
#define WAL_MAX_VERSION      3007000
#define WALINDEX_MAX_VERSION 3007000

/*
** Index numbers for various locking bytes.   WAL_NREADER is the number
** of available reader locks and should be at least 3.  The default
** is SQLITE_SHM_NLOCK==8 and  WAL_NREADER==5.
**
** Technically, the various VFSes are free to implement these locks however
** they see fit.  However, compatibility is encouraged so that VFSes can
** interoperate.  The standard implementation used on both unix and windows
** is for the index number to indicate a byte offset into the
** WalCkptInfo.aLock[] array in the wal-index header.  In other words, all
** locks are on the shm file.  The WALINDEX_LOCK_OFFSET constant (which
** should be 120) is the location in the shm file for the first locking
** byte.
*/
#define WAL_WRITE_LOCK         0
#define WAL_ALL_BUT_WRITE      1
#define WAL_CKPT_LOCK          1
#define WAL_RECOVER_LOCK       2
#define WAL_READ_LOCK(I)       (3+(I))
#define WAL_NREADER            (SQLITE_SHM_NLOCK-3)


/* Object declarations */
typedef struct WalIndexHdr WalIndexHdr;
typedef struct WalIterator WalIterator;
typedef struct WalCkptInfo WalCkptInfo;


/*
** The following object holds a copy of the wal-index header content.
**
** The actual header in the wal-index consists of two copies of this
** object followed by one instance of the WalCkptInfo object.
** For all versions of SQLite through 3.10.0 and probably beyond,
** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
** the total header size is 136 bytes.
**
** The szPage value can be any power of 2 between 512 and 32768, inclusive.
** Or it can be 1 to represent a 65536-byte page.  The latter case was
** added in 3.7.1 when support for 64K pages was added.
*/
struct WalIndexHdr {
  u32 iVersion;                   /* Wal-index version */
  u32 unused;                     /* Unused (padding) field */
  u32 iChange;                    /* Counter incremented each transaction */
  u8 isInit;                      /* 1 when initialized */
  u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
  u16 szPage;                     /* Database page size in bytes. 1==64K */
  u32 mxFrame;                    /* Index of last valid frame in the WAL */
  u32 nPage;                      /* Size of database in pages */
  u32 aFrameCksum[2];             /* Checksum of last frame in log */
  u32 aSalt[2];                   /* Two salt values copied from WAL header */
  u32 aCksum[2];                  /* Checksum over all prior fields */
};

/*
** A copy of the following object occurs in the wal-index immediately
** following the second copy of the WalIndexHdr.  This object stores
** information used by checkpoint.
**
** nBackfill is the number of frames in the WAL that have been written
** back into the database. (We call the act of moving content from WAL to
** database "backfilling".)  The nBackfill number is never greater than
** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
** mxFrame back to zero when the WAL is reset.
**
** nBackfillAttempted is the largest value of nBackfill that a checkpoint
** has attempted to achieve.  Normally nBackfill==nBackfillAtempted, however
** the nBackfillAttempted is set before any backfilling is done and the
** nBackfill is only set after all backfilling completes.  So if a checkpoint
** crashes, nBackfillAttempted might be larger than nBackfill.  The
** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
**
** The aLock[] field is a set of bytes used for locking.  These bytes should
** never be read or written.
**
** There is one entry in aReadMark[] for each reader lock.  If a reader
** holds read-lock K, then the value in aReadMark[K] is no greater than
** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
** for any aReadMark[] means that entry is unused.  aReadMark[0] is
** a special case; its value is never used and it exists as a place-holder
** to avoid having to offset aReadMark[] indexes by one.  Readers holding
** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
** directly from the database.
**
** The value of aReadMark[K] may only be changed by a thread that
** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
** aReadMark[K] cannot changed while there is a reader is using that mark
** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
**
** The checkpointer may only transfer frames from WAL to database where
** the frame numbers are less than or equal to every aReadMark[] that is
** in use (that is, every aReadMark[j] for which there is a corresponding
** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
** largest value and will increase an unused aReadMark[] to mxFrame if there
** is not already an aReadMark[] equal to mxFrame.  The exception to the
** previous sentence is when nBackfill equals mxFrame (meaning that everything
** in the WAL has been backfilled into the database) then new readers
** will choose aReadMark[0] which has value 0 and hence such reader will
** get all their all content directly from the database file and ignore
** the WAL.
**
** Writers normally append new frames to the end of the WAL.  However,
** if nBackfill equals mxFrame (meaning that all WAL content has been
** written back into the database) and if no readers are using the WAL
** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
** the writer will first "reset" the WAL back to the beginning and start
** writing new content beginning at frame 1.
**
** We assume that 32-bit loads are atomic and so no locks are needed in
** order to read from any aReadMark[] entries.
*/
struct WalCkptInfo {
  u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
  u32 aReadMark[WAL_NREADER];     /* Reader marks */
  u8 aLock[SQLITE_SHM_NLOCK];     /* Reserved space for locks */
  u32 nBackfillAttempted;         /* WAL frames perhaps written, or maybe not */
  u32 notUsed0;                   /* Available for future enhancements */
};
#define READMARK_NOT_USED  0xffffffff

/*
** This is a schematic view of the complete 136-byte header of the
** wal-index file (also known as the -shm file):
**
**      +-----------------------------+
**   0: | iVersion                    | \
**      +-----------------------------+  |
**   4: | (unused padding)            |  |
**      +-----------------------------+  |
**   8: | iChange                     |  |
**      +-------+-------+-------------+  |
**  12: | bInit |  bBig |   szPage    |  |
**      +-------+-------+-------------+  |
**  16: | mxFrame                     |  |  First copy of the
**      +-----------------------------+  |  WalIndexHdr object
**  20: | nPage                       |  |
**      +-----------------------------+  |
**  24: | aFrameCksum                 |  |
**      |                             |  |
**      +-----------------------------+  |
**  32: | aSalt                       |  |
**      |                             |  |
**      +-----------------------------+  |
**  40: | aCksum                      |  |
**      |                             | /
**      +-----------------------------+
**  48: | iVersion                    | \
**      +-----------------------------+  |
**  52: | (unused padding)            |  |
**      +-----------------------------+  |
**  56: | iChange                     |  |
**      +-------+-------+-------------+  |
**  60: | bInit |  bBig |   szPage    |  |
**      +-------+-------+-------------+  |  Second copy of the
**  64: | mxFrame                     |  |  WalIndexHdr
**      +-----------------------------+  |
**  68: | nPage                       |  |
**      +-----------------------------+  |
**  72: | aFrameCksum                 |  |
**      |                             |  |
**      +-----------------------------+  |
**  80: | aSalt                       |  |
**      |                             |  |
**      +-----------------------------+  |
**  88: | aCksum                      |  |
**      |                             | /
**      +-----------------------------+
**  96: | nBackfill                   |
**      +-----------------------------+
** 100: | 5 read marks                |
**      |                             |
**      |                             |
**      |                             |
**      |                             |
**      +-------+-------+------+------+
** 120: | Write | Ckpt  | Rcvr | Rd0  | \
**      +-------+-------+------+------+  ) 8 lock bytes
**      | Read1 | Read2 | Rd3  | Rd4  | /
**      +-------+-------+------+------+
** 128: | nBackfillAttempted          |
**      +-----------------------------+
** 132: | (unused padding)            |
**      +-----------------------------+
*/

/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
** only support mandatory file-locks, we do not read or write data
** from the region of the file on which locks are applied.
*/
#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
#define WALINDEX_HDR_SIZE    (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))

/* Size of header before each frame in wal */
#define WAL_FRAME_HDRSIZE 24

/* Size of write ahead log header, including checksum. */
#define WAL_HDRSIZE 32

/* WAL magic value. Either this value, or the same value with the least
** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
** big-endian format in the first 4 bytes of a WAL file.
**
** If the LSB is set, then the checksums for each frame within the WAL
** file are calculated by treating all data as an array of 32-bit
** big-endian words. Otherwise, they are calculated by interpreting
** all data as 32-bit little-endian words.
*/
#define WAL_MAGIC 0x377f0682

/*
** Return the offset of frame iFrame in the write-ahead log file,
** assuming a database page size of szPage bytes. The offset returned
** is to the start of the write-ahead log frame-header.
*/
#define walFrameOffset(iFrame, szPage) (                               \
  WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
)

/*
** An open write-ahead log file is represented by an instance of the
** following object.
*/
struct Wal {
  sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
  sqlite3_file *pDbFd;       /* File handle for the database file */
  sqlite3_file *pWalFd;      /* File handle for WAL file */
  u32 iCallback;             /* Value to pass to log callback (or 0) */
  i64 mxWalSize;             /* Truncate WAL to this size upon reset */
  int nWiData;               /* Size of array apWiData */
  int szFirstBlock;          /* Size of first block written to WAL file */
  volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
  u32 szPage;                /* Database page size */
  i16 readLock;              /* Which read lock is being held.  -1 for none */
  u8 syncFlags;              /* Flags to use to sync header writes */
  u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
  u8 writeLock;              /* True if in a write transaction */
  u8 ckptLock;               /* True if holding a checkpoint lock */
  u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
  u8 truncateOnCommit;       /* True to truncate WAL file on commit */
  u8 syncHeader;             /* Fsync the WAL header if true */
  u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
  u8 bShmUnreliable;         /* SHM content is read-only and unreliable */
  WalIndexHdr hdr;           /* Wal-index header for current transaction */
  u32 minFrame;              /* Ignore wal frames before this one */
  u32 iReCksum;              /* On commit, recalculate checksums from here */
  const char *zWalName;      /* Name of WAL file */
  u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
#ifdef SQLITE_USE_SEH
  u32 lockMask;              /* Mask of locks held */
  void *pFree;               /* Pointer to sqlite3_free() if exception thrown */
  u32 *pWiValue;             /* Value to write into apWiData[iWiPg] */
  int iWiPg;                 /* Write pWiValue into apWiData[iWiPg] */
  int iSysErrno;             /* System error code following exception */
#endif
#ifdef SQLITE_DEBUG
  int nSehTry;               /* Number of nested SEH_TRY{} blocks */
  u8 lockError;              /* True if a locking error has occurred */
#endif
#ifdef SQLITE_ENABLE_SNAPSHOT
  WalIndexHdr *pSnapshot;    /* Start transaction here if not NULL */
#endif
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
  sqlite3 *db;
#endif
};

/*
** Candidate values for Wal.exclusiveMode.
*/
#define WAL_NORMAL_MODE     0
#define WAL_EXCLUSIVE_MODE  1
#define WAL_HEAPMEMORY_MODE 2

/*
** Possible values for WAL.readOnly
*/
#define WAL_RDWR        0    /* Normal read/write connection */
#define WAL_RDONLY      1    /* The WAL file is readonly */
#define WAL_SHM_RDONLY  2    /* The SHM file is readonly */

/*
** Each page of the wal-index mapping contains a hash-table made up of
** an array of HASHTABLE_NSLOT elements of the following type.
*/
typedef u16 ht_slot;

/*
** This structure is used to implement an iterator that loops through
** all frames in the WAL in database page order. Where two or more frames
** correspond to the same database page, the iterator visits only the
** frame most recently written to the WAL (in other words, the frame with
** the largest index).
**
** The internals of this structure are only accessed by:
**
**   walIteratorInit() - Create a new iterator,
**   walIteratorNext() - Step an iterator,
**   walIteratorFree() - Free an iterator.
**
** This functionality is used by the checkpoint code (see walCheckpoint()).
*/
struct WalIterator {
  u32 iPrior;                     /* Last result returned from the iterator */
  int nSegment;                   /* Number of entries in aSegment[] */
  struct WalSegment {
    int iNext;                    /* Next slot in aIndex[] not yet returned */
    ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
    u32 *aPgno;                   /* Array of page numbers. */
    int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
    int iZero;                    /* Frame number associated with aPgno[0] */
  } aSegment[1];                  /* One for every 32KB page in the wal-index */
};

/*
** Define the parameters of the hash tables in the wal-index file. There
** is a hash-table following every HASHTABLE_NPAGE page numbers in the
** wal-index.
**
** Changing any of these constants will alter the wal-index format and
** create incompatibilities.
*/
#define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
#define HASHTABLE_HASH_1     383                  /* Should be prime */
#define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */

/*
** The block of page numbers associated with the first hash-table in a
** wal-index is smaller than usual. This is so that there is a complete
** hash-table on each aligned 32KB page of the wal-index.
*/
#define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))

/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
#define WALINDEX_PGSZ   (                                         \
    sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
)

/*
** Structured Exception Handling (SEH) is a Windows-specific technique
** for catching exceptions raised while accessing memory-mapped files.
**
** The -DSQLITE_USE_SEH compile-time option means to use SEH to catch and
** deal with system-level errors that arise during WAL -shm file processing.
** Without this compile-time option, any system-level faults that appear
** while accessing the memory-mapped -shm file will cause a process-wide
** signal to be deliver, which will more than likely cause the entire
** process to exit.
*/
#ifdef SQLITE_USE_SEH
#include <Windows.h>

/* Beginning of a block of code in which an exception might occur */
# define SEH_TRY    __try { \
   assert( walAssertLockmask(pWal) && pWal->nSehTry==0 ); \
   VVA_ONLY(pWal->nSehTry++);

/* The end of a block of code in which an exception might occur */
# define SEH_EXCEPT(X) \
   VVA_ONLY(pWal->nSehTry--); \
   assert( pWal->nSehTry==0 ); \
   } __except( sehExceptionFilter(pWal, GetExceptionCode(), GetExceptionInformation() ) ){ X }

/* Simulate a memory-mapping fault in the -shm file for testing purposes */
# define SEH_INJECT_FAULT sehInjectFault(pWal) 

/*
** The second argument is the return value of GetExceptionCode() for the 
** current exception. Return EXCEPTION_EXECUTE_HANDLER if the exception code
** indicates that the exception may have been caused by accessing the *-shm 
** file mapping. Or EXCEPTION_CONTINUE_SEARCH otherwise.
*/
static int sehExceptionFilter(Wal *pWal, int eCode, EXCEPTION_POINTERS *p){
  VVA_ONLY(pWal->nSehTry--);
  if( eCode==EXCEPTION_IN_PAGE_ERROR ){
    if( p && p->ExceptionRecord && p->ExceptionRecord->NumberParameters>=3 ){
      /* From MSDN: For this type of exception, the first element of the
      ** ExceptionInformation[] array is a read-write flag - 0 if the exception
      ** was thrown while reading, 1 if while writing. The second element is
      ** the virtual address being accessed. The "third array element specifies
      ** the underlying NTSTATUS code that resulted in the exception". */
      pWal->iSysErrno = (int)p->ExceptionRecord->ExceptionInformation[2];
    }
    return EXCEPTION_EXECUTE_HANDLER;
  }
  return EXCEPTION_CONTINUE_SEARCH;
}

/*
** If one is configured, invoke the xTestCallback callback with 650 as
** the argument. If it returns true, throw the same exception that is
** thrown by the system if the *-shm file mapping is accessed after it
** has been invalidated.
*/
static void sehInjectFault(Wal *pWal){
  int res;
  assert( pWal->nSehTry>0 );

  res = sqlite3FaultSim(650);
  if( res!=0 ){
    ULONG_PTR aArg[3];
    aArg[0] = 0;
    aArg[1] = 0;
    aArg[2] = (ULONG_PTR)res;
    RaiseException(EXCEPTION_IN_PAGE_ERROR, 0, 3, (const ULONG_PTR*)aArg);
  }
}

/*
** There are two ways to use this macro. To set a pointer to be freed
** if an exception is thrown:
**
**   SEH_FREE_ON_ERROR(0, pPtr);
**
** and to cancel the same:
**
**   SEH_FREE_ON_ERROR(pPtr, 0);
**
** In the first case, there must not already be a pointer registered to
** be freed. In the second case, pPtr must be the registered pointer.
*/
#define SEH_FREE_ON_ERROR(X,Y) \
  assert( (X==0 || Y==0) && pWal->pFree==X ); pWal->pFree = Y

/*
** There are two ways to use this macro. To arrange for pWal->apWiData[iPg]
** to be set to pValue if an exception is thrown:
**
**   SEH_SET_ON_ERROR(iPg, pValue);
**
** and to cancel the same:
**
**   SEH_SET_ON_ERROR(0, 0);
*/
#define SEH_SET_ON_ERROR(X,Y)  pWal->iWiPg = X; pWal->pWiValue = Y

#else
# define SEH_TRY          VVA_ONLY(pWal->nSehTry++);
# define SEH_EXCEPT(X)    VVA_ONLY(pWal->nSehTry--); assert( pWal->nSehTry==0 );
# define SEH_INJECT_FAULT assert( pWal->nSehTry>0 );
# define SEH_FREE_ON_ERROR(X,Y)
# define SEH_SET_ON_ERROR(X,Y)
#endif /* ifdef SQLITE_USE_SEH */


/*
** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
** numbered from zero.
**
** If the wal-index is currently smaller the iPage pages then the size
** of the wal-index might be increased, but only if it is safe to do
** so.  It is safe to enlarge the wal-index if pWal->writeLock is true
** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
**
** Three possible result scenarios:
**
**   (1)  rc==SQLITE_OK    and *ppPage==Requested-Wal-Index-Page
**   (2)  rc>=SQLITE_ERROR and *ppPage==NULL
**   (3)  rc==SQLITE_OK    and *ppPage==NULL  // only if iPage==0
**
** Scenario (3) can only occur when pWal->writeLock is false and iPage==0
*/
static SQLITE_NOINLINE int walIndexPageRealloc(
  Wal *pWal,               /* The WAL context */
  int iPage,               /* The page we seek */
  volatile u32 **ppPage    /* Write the page pointer here */
){
  int rc = SQLITE_OK;

  /* Enlarge the pWal->apWiData[] array if required */
  if( pWal->nWiData<=iPage ){
    sqlite3_int64 nByte = sizeof(u32*)*(iPage+1);
    volatile u32 **apNew;
    apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte);
    if( !apNew ){
      *ppPage = 0;
      return SQLITE_NOMEM_BKPT;
    }
    memset((void*)&apNew[pWal->nWiData], 0,
           sizeof(u32*)*(iPage+1-pWal->nWiData));
    pWal->apWiData = apNew;
    pWal->nWiData = iPage+1;
  }

  /* Request a pointer to the required page from the VFS */
  assert( pWal->apWiData[iPage]==0 );
  if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
    pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
    if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
  }else{
    rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
        pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
    );
    assert( pWal->apWiData[iPage]!=0
         || rc!=SQLITE_OK
         || (pWal->writeLock==0 && iPage==0) );
    testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
    if( rc==SQLITE_OK ){
      if( iPage>0 && sqlite3FaultSim(600) ) rc = SQLITE_NOMEM;
    }else if( (rc&0xff)==SQLITE_READONLY ){
      pWal->readOnly |= WAL_SHM_RDONLY;
      if( rc==SQLITE_READONLY ){
        rc = SQLITE_OK;
      }
    }
  }

  *ppPage = pWal->apWiData[iPage];
  assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
  return rc;
}
static int walIndexPage(
  Wal *pWal,               /* The WAL context */
  int iPage,               /* The page we seek */
  volatile u32 **ppPage    /* Write the page pointer here */
){
  SEH_INJECT_FAULT;
  if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
    return walIndexPageRealloc(pWal, iPage, ppPage);
  }
  return SQLITE_OK;
}

/*
** Return a pointer to the WalCkptInfo structure in the wal-index.
*/
static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
  assert( pWal->nWiData>0 && pWal->apWiData[0] );
  SEH_INJECT_FAULT;
  return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
}

/*
** Return a pointer to the WalIndexHdr structure in the wal-index.
*/
static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
  assert( pWal->nWiData>0 && pWal->apWiData[0] );
  SEH_INJECT_FAULT;
  return (volatile WalIndexHdr*)pWal->apWiData[0];
}

/*
** The argument to this macro must be of type u32. On a little-endian
** architecture, it returns the u32 value that results from interpreting
** the 4 bytes as a big-endian value. On a big-endian architecture, it
** returns the value that would be produced by interpreting the 4 bytes
** of the input value as a little-endian integer.
*/
#define BYTESWAP32(x) ( \
    (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
  + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
)

/*
** Generate or extend an 8 byte checksum based on the data in
** array aByte[] and the initial values of aIn[0] and aIn[1] (or
** initial values of 0 and 0 if aIn==NULL).
**
** The checksum is written back into aOut[] before returning.
**
** nByte must be a positive multiple of 8.
*/
static void walChecksumBytes(
  int nativeCksum, /* True for native byte-order, false for non-native */
  u8 *a,           /* Content to be checksummed */
  int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
  const u32 *aIn,  /* Initial checksum value input */
  u32 *aOut        /* OUT: Final checksum value output */
){
  u32 s1, s2;
  u32 *aData = (u32 *)a;
  u32 *aEnd = (u32 *)&a[nByte];

  if( aIn ){
    s1 = aIn[0];
    s2 = aIn[1];
  }else{
    s1 = s2 = 0;
  }

  assert( nByte>=8 );
  assert( (nByte&0x00000007)==0 );
  assert( nByte<=65536 );
  assert( nByte%4==0 );

  if( !nativeCksum ){
    do {
      s1 += BYTESWAP32(aData[0]) + s2;
      s2 += BYTESWAP32(aData[1]) + s1;
      aData += 2;
    }while( aData<aEnd );
  }else if( nByte%64==0 ){
    do {
      s1 += *aData++ + s2;
      s2 += *aData++ + s1;
      s1 += *aData++ + s2;
      s2 += *aData++ + s1;
      s1 += *aData++ + s2;
      s2 += *aData++ + s1;
      s1 += *aData++ + s2;
      s2 += *aData++ + s1;
      s1 += *aData++ + s2;
      s2 += *aData++ + s1;
      s1 += *aData++ + s2;
      s2 += *aData++ + s1;
      s1 += *aData++ + s2;
      s2 += *aData++ + s1;
      s1 += *aData++ + s2;
      s2 += *aData++ + s1;
    }while( aData<aEnd );
  }else{
    do {
      s1 += *aData++ + s2;
      s2 += *aData++ + s1;
    }while( aData<aEnd );
  }
  assert( aData==aEnd );

  aOut[0] = s1;
  aOut[1] = s2;
}

/*
** If there is the possibility of concurrent access to the SHM file
** from multiple threads and/or processes, then do a memory barrier.
*/
static void walShmBarrier(Wal *pWal){
  if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
    sqlite3OsShmBarrier(pWal->pDbFd);
  }
}

/*
** Add the SQLITE_NO_TSAN as part of the return-type of a function
** definition as a hint that the function contains constructs that
** might give false-positive TSAN warnings.
**
** See tag-20200519-1.
*/
#if defined(__clang__) && !defined(SQLITE_NO_TSAN)
# define SQLITE_NO_TSAN __attribute__((no_sanitize_thread))
#else
# define SQLITE_NO_TSAN
#endif

/*
** Write the header information in pWal->hdr into the wal-index.
**
** The checksum on pWal->hdr is updated before it is written.
*/
static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){
  volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
  const int nCksum = offsetof(WalIndexHdr, aCksum);

  assert( pWal->writeLock );
  pWal->hdr.isInit = 1;
  pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
  walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
  /* Possible TSAN false-positive.  See tag-20200519-1 */
  memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
  walShmBarrier(pWal);
  memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
}

/*
** This function encodes a single frame header and writes it to a buffer
** supplied by the caller. A frame-header is made up of a series of
** 4-byte big-endian integers, as follows:
**
**     0: Page number.
**     4: For commit records, the size of the database image in pages
**        after the commit. For all other records, zero.
**     8: Salt-1 (copied from the wal-header)
**    12: Salt-2 (copied from the wal-header)
**    16: Checksum-1.
**    20: Checksum-2.
*/
static void walEncodeFrame(
  Wal *pWal,                      /* The write-ahead log */
  u32 iPage,                      /* Database page number for frame */
  u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
  u8 *aData,                      /* Pointer to page data */
  u8 *aFrame                      /* OUT: Write encoded frame here */
){
  int nativeCksum;                /* True for native byte-order checksums */
  u32 *aCksum = pWal->hdr.aFrameCksum;
  assert( WAL_FRAME_HDRSIZE==24 );
  sqlite3Put4byte(&aFrame[0], iPage);
  sqlite3Put4byte(&aFrame[4], nTruncate);
  if( pWal->iReCksum==0 ){
    memcpy(&aFrame[8], pWal->hdr.aSalt, 8);

    nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
    walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
    walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);

    sqlite3Put4byte(&aFrame[16], aCksum[0]);
    sqlite3Put4byte(&aFrame[20], aCksum[1]);
  }else{
    memset(&aFrame[8], 0, 16);
  }
}

/*
** Check to see if the frame with header in aFrame[] and content
** in aData[] is valid.  If it is a valid frame, fill *piPage and
** *pnTruncate and return true.  Return if the frame is not valid.
*/
static int walDecodeFrame(
  Wal *pWal,                      /* The write-ahead log */
  u32 *piPage,                    /* OUT: Database page number for frame */
  u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
  u8 *aData,                      /* Pointer to page data (for checksum) */
  u8 *aFrame                      /* Frame data */
){
  int nativeCksum;                /* True for native byte-order checksums */
  u32 *aCksum = pWal->hdr.aFrameCksum;
  u32 pgno;                       /* Page number of the frame */
  assert( WAL_FRAME_HDRSIZE==24 );

  /* A frame is only valid if the salt values in the frame-header
  ** match the salt values in the wal-header.
  */
  if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
    return 0;
  }

  /* A frame is only valid if the page number is greater than zero.
  */
  pgno = sqlite3Get4byte(&aFrame[0]);
  if( pgno==0 ){
    return 0;
  }

  /* A frame is only valid if a checksum of the WAL header,
  ** all prior frames, the first 16 bytes of this frame-header,
  ** and the frame-data matches the checksum in the last 8
  ** bytes of this frame-header.
  */
  nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
  walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
  walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
  if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
   || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
  ){
    /* Checksum failed. */
    return 0;
  }

  /* If we reach this point, the frame is valid.  Return the page number
  ** and the new database size.
  */
  *piPage = pgno;
  *pnTruncate = sqlite3Get4byte(&aFrame[4]);
  return 1;
}


#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
/*
** Names of locks.  This routine is used to provide debugging output and is not
** a part of an ordinary build.
*/
static const char *walLockName(int lockIdx){
  if( lockIdx==WAL_WRITE_LOCK ){
    return "WRITE-LOCK";
  }else if( lockIdx==WAL_CKPT_LOCK ){
    return "CKPT-LOCK";
  }else if( lockIdx==WAL_RECOVER_LOCK ){
    return "RECOVER-LOCK";
  }else{
    static char zName[15];
    sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
                     lockIdx-WAL_READ_LOCK(0));
    return zName;
  }
}
#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */


/*
** Set or release locks on the WAL.  Locks are either shared or exclusive.
** A lock cannot be moved directly between shared and exclusive - it must go
** through the unlocked state first.
**
** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
*/
static int walLockShared(Wal *pWal, int lockIdx){
  int rc;
  if( pWal->exclusiveMode ) return SQLITE_OK;
  rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
                        SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
  WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
            walLockName(lockIdx), rc ? "failed" : "ok"));
  VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
#ifdef SQLITE_USE_SEH
  if( rc==SQLITE_OK ) pWal->lockMask |= (1 << lockIdx);
#endif
  return rc;
}
static void walUnlockShared(Wal *pWal, int lockIdx){
  if( pWal->exclusiveMode ) return;
  (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
                         SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
#ifdef SQLITE_USE_SEH
  pWal->lockMask &= ~(1 << lockIdx);
#endif
  WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
}
static int walLockExclusive(Wal *pWal, int lockIdx, int n){
  int rc;
  if( pWal->exclusiveMode ) return SQLITE_OK;
  rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
                        SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
  WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
            walLockName(lockIdx), n, rc ? "failed" : "ok"));
  VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
#ifdef SQLITE_USE_SEH
  if( rc==SQLITE_OK ){
    pWal->lockMask |= (((1<<n)-1) << (SQLITE_SHM_NLOCK+lockIdx));
  }
#endif
  return rc;
}
static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
  if( pWal->exclusiveMode ) return;
  (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
                         SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
#ifdef SQLITE_USE_SEH
  pWal->lockMask &= ~(((1<<n)-1) << (SQLITE_SHM_NLOCK+lockIdx));
#endif
  WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
             walLockName(lockIdx), n));
}

/*
** Compute a hash on a page number.  The resulting hash value must land
** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
** the hash to the next value in the event of a collision.
*/
static int walHash(u32 iPage){
  assert( iPage>0 );
  assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
  return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
}
static int walNextHash(int iPriorHash){
  return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
}

/*
** An instance of the WalHashLoc object is used to describe the location
** of a page hash table in the wal-index.  This becomes the return value
** from walHashGet().
*/
typedef struct WalHashLoc WalHashLoc;
struct WalHashLoc {
  volatile ht_slot *aHash;  /* Start of the wal-index hash table */
  volatile u32 *aPgno;      /* aPgno[1] is the page of first frame indexed */
  u32 iZero;                /* One less than the frame number of first indexed*/
};

/*
** Return pointers to the hash table and page number array stored on
** page iHash of the wal-index. The wal-index is broken into 32KB pages
** numbered starting from 0.
**
** Set output variable pLoc->aHash to point to the start of the hash table
** in the wal-index file. Set pLoc->iZero to one less than the frame
** number of the first frame indexed by this hash table. If a
** slot in the hash table is set to N, it refers to frame number
** (pLoc->iZero+N) in the log.
**
** Finally, set pLoc->aPgno so that pLoc->aPgno[0] is the page number of the
** first frame indexed by the hash table, frame (pLoc->iZero).
*/
static int walHashGet(
  Wal *pWal,                      /* WAL handle */
  int iHash,                      /* Find the iHash'th table */
  WalHashLoc *pLoc                /* OUT: Hash table location */
){
  int rc;                         /* Return code */

  rc = walIndexPage(pWal, iHash, &pLoc->aPgno);
  assert( rc==SQLITE_OK || iHash>0 );

  if( pLoc->aPgno ){
    pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE];
    if( iHash==0 ){
      pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
      pLoc->iZero = 0;
    }else{
      pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
    }
  }else if( NEVER(rc==SQLITE_OK) ){
    rc = SQLITE_ERROR;
  }
  return rc;
}

/*
** Return the number of the wal-index page that contains the hash-table
** and page-number array that contain entries corresponding to WAL frame
** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
** are numbered starting from 0.
*/
static int walFramePage(u32 iFrame){
  int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
  assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
       && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
       && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
       && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
       && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
  );
  assert( iHash>=0 );
  return iHash;
}

/*
** Return the page number associated with frame iFrame in this WAL.
*/
static u32 walFramePgno(Wal *pWal, u32 iFrame){
  int iHash = walFramePage(iFrame);
  SEH_INJECT_FAULT;
  if( iHash==0 ){
    return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
  }
  return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
}

/*
** Remove entries from the hash table that point to WAL slots greater
** than pWal->hdr.mxFrame.
**
** This function is called whenever pWal->hdr.mxFrame is decreased due
** to a rollback or savepoint.
**
** At most only the hash table containing pWal->hdr.mxFrame needs to be
** updated.  Any later hash tables will be automatically cleared when
** pWal->hdr.mxFrame advances to the point where those hash tables are
** actually needed.
*/
static void walCleanupHash(Wal *pWal){
  WalHashLoc sLoc;                /* Hash table location */
  int iLimit = 0;                 /* Zero values greater than this */
  int nByte;                      /* Number of bytes to zero in aPgno[] */
  int i;                          /* Used to iterate through aHash[] */

  assert( pWal->writeLock );
  testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
  testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
  testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );

  if( pWal->hdr.mxFrame==0 ) return;

  /* Obtain pointers to the hash-table and page-number array containing
  ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
  ** that the page said hash-table and array reside on is already mapped.(1)
  */
  assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
  assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
  i = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc);
  if( NEVER(i) ) return; /* Defense-in-depth, in case (1) above is wrong */

  /* Zero all hash-table entries that correspond to frame numbers greater
  ** than pWal->hdr.mxFrame.
  */
  iLimit = pWal->hdr.mxFrame - sLoc.iZero;
  assert( iLimit>0 );
  for(i=0; i<HASHTABLE_NSLOT; i++){
    if( sLoc.aHash[i]>iLimit ){
      sLoc.aHash[i] = 0;
    }
  }

  /* Zero the entries in the aPgno array that correspond to frames with
  ** frame numbers greater than pWal->hdr.mxFrame.
  */
  nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit]);
  assert( nByte>=0 );
  memset((void *)&sLoc.aPgno[iLimit], 0, nByte);

#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
  /* Verify that the every entry in the mapping region is still reachable
  ** via the hash table even after the cleanup.
  */
  if( iLimit ){
    int j;           /* Loop counter */
    int iKey;        /* Hash key */
    for(j=0; j<iLimit; j++){
      for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){
        if( sLoc.aHash[iKey]==j+1 ) break;
      }
      assert( sLoc.aHash[iKey]==j+1 );
    }
  }
#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
}


/*
** Set an entry in the wal-index that will map database page number
** pPage into WAL frame iFrame.
*/
static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
  int rc;                         /* Return code */
  WalHashLoc sLoc;                /* Wal-index hash table location */

  rc = walHashGet(pWal, walFramePage(iFrame), &sLoc);

  /* Assuming the wal-index file was successfully mapped, populate the
  ** page number array and hash table entry.
  */
  if( rc==SQLITE_OK ){
    int iKey;                     /* Hash table key */
    int idx;                      /* Value to write to hash-table slot */
    int nCollide;                 /* Number of hash collisions */

    idx = iFrame - sLoc.iZero;
    assert( idx <= HASHTABLE_NSLOT/2 + 1 );

    /* If this is the first entry to be added to this hash-table, zero the
    ** entire hash table and aPgno[] array before proceeding.
    */
    if( idx==1 ){
      int nByte = (int)((u8*)&sLoc.aHash[HASHTABLE_NSLOT] - (u8*)sLoc.aPgno);
      assert( nByte>=0 );
      memset((void*)sLoc.aPgno, 0, nByte);
    }

    /* If the entry in aPgno[] is already set, then the previous writer
    ** must have exited unexpectedly in the middle of a transaction (after
    ** writing one or more dirty pages to the WAL to free up memory).
    ** Remove the remnants of that writers uncommitted transaction from
    ** the hash-table before writing any new entries.
    */
    if( sLoc.aPgno[idx-1] ){
      walCleanupHash(pWal);
      assert( !sLoc.aPgno[idx-1] );
    }

    /* Write the aPgno[] array entry and the hash-table slot. */
    nCollide = idx;
    for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
      if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
    }
    sLoc.aPgno[idx-1] = iPage;
    AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx);

#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
    /* Verify that the number of entries in the hash table exactly equals
    ** the number of entries in the mapping region.
    */
    {
      int i;           /* Loop counter */
      int nEntry = 0;  /* Number of entries in the hash table */
      for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; }
      assert( nEntry==idx );
    }

    /* Verify that the every entry in the mapping region is reachable
    ** via the hash table.  This turns out to be a really, really expensive
    ** thing to check, so only do this occasionally - not on every
    ** iteration.
    */
    if( (idx&0x3ff)==0 ){
      int i;           /* Loop counter */
      for(i=0; i<idx; i++){
        for(iKey=walHash(sLoc.aPgno[i]);
            sLoc.aHash[iKey];
            iKey=walNextHash(iKey)){
          if( sLoc.aHash[iKey]==i+1 ) break;
        }
        assert( sLoc.aHash[iKey]==i+1 );
      }
    }
#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
  }

  return rc;
}


/*
** Recover the wal-index by reading the write-ahead log file.
**
** This routine first tries to establish an exclusive lock on the
** wal-index to prevent other threads/processes from doing anything
** with the WAL or wal-index while recovery is running.  The
** WAL_RECOVER_LOCK is also held so that other threads will know
** that this thread is running recovery.  If unable to establish
** the necessary locks, this routine returns SQLITE_BUSY.
*/
static int walIndexRecover(Wal *pWal){
  int rc;                         /* Return Code */
  i64 nSize;                      /* Size of log file */
  u32 aFrameCksum[2] = {0, 0};
  int iLock;                      /* Lock offset to lock for checkpoint */

  /* Obtain an exclusive lock on all byte in the locking range not already
  ** locked by the caller. The caller is guaranteed to have locked the
  ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
  ** If successful, the same bytes that are locked here are unlocked before
  ** this function returns.
  */
  assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
  assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
  assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
  assert( pWal->writeLock );
  iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
  rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
  if( rc ){
    return rc;
  }

  WALTRACE(("WAL%p: recovery begin...\n", pWal));

  memset(&pWal->hdr, 0, sizeof(WalIndexHdr));

  rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
  if( rc!=SQLITE_OK ){
    goto recovery_error;
  }

  if( nSize>WAL_HDRSIZE ){
    u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
    u32 *aPrivate = 0;            /* Heap copy of *-shm hash being populated */
    u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
    int szFrame;                  /* Number of bytes in buffer aFrame[] */
    u8 *aData;                    /* Pointer to data part of aFrame buffer */
    int szPage;                   /* Page size according to the log */
    u32 magic;                    /* Magic value read from WAL header */
    u32 version;                  /* Magic value read from WAL header */
    int isValid;                  /* True if this frame is valid */
    u32 iPg;                      /* Current 32KB wal-index page */
    u32 iLastFrame;               /* Last frame in wal, based on nSize alone */

    /* Read in the WAL header. */
    rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
    if( rc!=SQLITE_OK ){
      goto recovery_error;
    }

    /* If the database page size is not a power of two, or is greater than
    ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
    ** data. Similarly, if the 'magic' value is invalid, ignore the whole
    ** WAL file.
    */
    magic = sqlite3Get4byte(&aBuf[0]);
    szPage = sqlite3Get4byte(&aBuf[8]);
    if( (magic&0xFFFFFFFE)!=WAL_MAGIC
     || szPage&(szPage-1)
     || szPage>SQLITE_MAX_PAGE_SIZE
     || szPage<512
    ){
      goto finished;
    }
    pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
    pWal->szPage = szPage;
    pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
    memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);

    /* Verify that the WAL header checksum is correct */
    walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
        aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
    );
    if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
     || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
    ){
      goto finished;
    }

    /* Verify that the version number on the WAL format is one that
    ** are able to understand */
    version = sqlite3Get4byte(&aBuf[4]);
    if( version!=WAL_MAX_VERSION ){
      rc = SQLITE_CANTOPEN_BKPT;
      goto finished;
    }

    /* Malloc a buffer to read frames into. */
    szFrame = szPage + WAL_FRAME_HDRSIZE;
    aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ);
    SEH_FREE_ON_ERROR(0, aFrame);
    if( !aFrame ){
      rc = SQLITE_NOMEM_BKPT;
      goto recovery_error;
    }
    aData = &aFrame[WAL_FRAME_HDRSIZE];
    aPrivate = (u32*)&aData[szPage];

    /* Read all frames from the log file. */
    iLastFrame = (nSize - WAL_HDRSIZE) / szFrame;
    for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){
      u32 *aShare;
      u32 iFrame;                 /* Index of last frame read */
      u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE);
      u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE);
      u32 nHdr, nHdr32;
      rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare);
      assert( aShare!=0 || rc!=SQLITE_OK );
      if( aShare==0 ) break;
      SEH_SET_ON_ERROR(iPg, aShare);
      pWal->apWiData[iPg] = aPrivate;

      for(iFrame=iFirst; iFrame<=iLast; iFrame++){
        i64 iOffset = walFrameOffset(iFrame, szPage);
        u32 pgno;                 /* Database page number for frame */
        u32 nTruncate;            /* dbsize field from frame header */

        /* Read and decode the next log frame. */
        rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
        if( rc!=SQLITE_OK ) break;
        isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
        if( !isValid ) break;
        rc = walIndexAppend(pWal, iFrame, pgno);
        if( NEVER(rc!=SQLITE_OK) ) break;

        /* If nTruncate is non-zero, this is a commit record. */
        if( nTruncate ){
          pWal->hdr.mxFrame = iFrame;
          pWal->hdr.nPage = nTruncate;
          pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
          testcase( szPage<=32768 );
          testcase( szPage>=65536 );
          aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
          aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
        }
      }
      pWal->apWiData[iPg] = aShare;
      SEH_SET_ON_ERROR(0,0);
      nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0);
      nHdr32 = nHdr / sizeof(u32);
#ifndef SQLITE_SAFER_WALINDEX_RECOVERY
      /* Memcpy() should work fine here, on all reasonable implementations.
      ** Technically, memcpy() might change the destination to some
      ** intermediate value before setting to the final value, and that might
      ** cause a concurrent reader to malfunction.  Memcpy() is allowed to
      ** do that, according to the spec, but no memcpy() implementation that
      ** we know of actually does that, which is why we say that memcpy()
      ** is safe for this.  Memcpy() is certainly a lot faster.
      */
      memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr);
#else
      /* In the event that some platform is found for which memcpy()
      ** changes the destination to some intermediate value before
      ** setting the final value, this alternative copy routine is
      ** provided.
      */
      {
        int i;
        for(i=nHdr32; i<WALINDEX_PGSZ/sizeof(u32); i++){
          if( aShare[i]!=aPrivate[i] ){
            /* Atomic memory operations are not required here because if
            ** the value needs to be changed, that means it is not being
            ** accessed concurrently. */
            aShare[i] = aPrivate[i];
          }
        }
      }
#endif
      SEH_INJECT_FAULT;
      if( iFrame<=iLast ) break;
    }

    SEH_FREE_ON_ERROR(aFrame, 0);
    sqlite3_free(aFrame);
  }

finished:
  if( rc==SQLITE_OK ){
    volatile WalCkptInfo *pInfo;
    int i;
    pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
    pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
    walIndexWriteHdr(pWal);

    /* Reset the checkpoint-header. This is safe because this thread is
    ** currently holding locks that exclude all other writers and
    ** checkpointers. Then set the values of read-mark slots 1 through N.
    */
    pInfo = walCkptInfo(pWal);
    pInfo->nBackfill = 0;
    pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
    pInfo->aReadMark[0] = 0;
    for(i=1; i<WAL_NREADER; i++){
      rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
      if( rc==SQLITE_OK ){
        if( i==1 && pWal->hdr.mxFrame ){
          pInfo->aReadMark[i] = pWal->hdr.mxFrame;
        }else{
          pInfo->aReadMark[i] = READMARK_NOT_USED;
        }
        SEH_INJECT_FAULT;
        walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
      }else if( rc!=SQLITE_BUSY ){
        goto recovery_error;
      }
    }

    /* If more than one frame was recovered from the log file, report an
    ** event via sqlite3_log(). This is to help with identifying performance
    ** problems caused by applications routinely shutting down without
    ** checkpointing the log file.
    */
    if( pWal->hdr.nPage ){
      sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
          "recovered %d frames from WAL file %s",
          pWal->hdr.mxFrame, pWal->zWalName
      );
    }
  }

recovery_error:
  WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
  walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
  return rc;
}

/*
** Close an open wal-index.
*/
static void walIndexClose(Wal *pWal, int isDelete){
  if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
    int i;
    for(i=0; i<pWal->nWiData; i++){
      sqlite3_free((void *)pWal->apWiData[i]);
      pWal->apWiData[i] = 0;
    }
  }
  if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
    sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
  }
}

/*
** Open a connection to the WAL file zWalName. The database file must
** already be opened on connection pDbFd. The buffer that zWalName points
** to must remain valid for the lifetime of the returned Wal* handle.
**
** A SHARED lock should be held on the database file when this function
** is called. The purpose of this SHARED lock is to prevent any other
** client from unlinking the WAL or wal-index file. If another process
** were to do this just after this client opened one of these files, the
** system would be badly broken.
**
** If the log file is successfully opened, SQLITE_OK is returned and
** *ppWal is set to point to a new WAL handle. If an error occurs,
** an SQLite error code is returned and *ppWal is left unmodified.
*/
int sqlite3WalOpen(
  sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
  sqlite3_file *pDbFd,            /* The open database file */
  const char *zWalName,           /* Name of the WAL file */
  int bNoShm,                     /* True to run in heap-memory mode */
  i64 mxWalSize,                  /* Truncate WAL to this size on reset */
  Wal **ppWal                     /* OUT: Allocated Wal handle */
){
  int rc;                         /* Return Code */
  Wal *pRet;                      /* Object to allocate and return */
  int flags;                      /* Flags passed to OsOpen() */

  assert( zWalName && zWalName[0] );
  assert( pDbFd );

  /* Verify the values of various constants.  Any changes to the values
  ** of these constants would result in an incompatible on-disk format
  ** for the -shm file.  Any change that causes one of these asserts to
  ** fail is a backward compatibility problem, even if the change otherwise
  ** works.
  **
  ** This table also serves as a helpful cross-reference when trying to
  ** interpret hex dumps of the -shm file.
  */
  assert(    48 ==  sizeof(WalIndexHdr)  );
  assert(    40 ==  sizeof(WalCkptInfo)  );
  assert(   120 ==  WALINDEX_LOCK_OFFSET );
  assert(   136 ==  WALINDEX_HDR_SIZE    );
  assert(  4096 ==  HASHTABLE_NPAGE      );
  assert(  4062 ==  HASHTABLE_NPAGE_ONE  );
  assert(  8192 ==  HASHTABLE_NSLOT      );
  assert(   383 ==  HASHTABLE_HASH_1     );
  assert( 32768 ==  WALINDEX_PGSZ        );
  assert(     8 ==  SQLITE_SHM_NLOCK     );
  assert(     5 ==  WAL_NREADER          );
  assert(    24 ==  WAL_FRAME_HDRSIZE    );
  assert(    32 ==  WAL_HDRSIZE          );
  assert(   120 ==  WALINDEX_LOCK_OFFSET + WAL_WRITE_LOCK   );
  assert(   121 ==  WALINDEX_LOCK_OFFSET + WAL_CKPT_LOCK    );
  assert(   122 ==  WALINDEX_LOCK_OFFSET + WAL_RECOVER_LOCK );
  assert(   123 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(0) );
  assert(   124 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(1) );
  assert(   125 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(2) );
  assert(   126 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(3) );
  assert(   127 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(4) );

  /* In the amalgamation, the os_unix.c and os_win.c source files come before
  ** this source file.  Verify that the #defines of the locking byte offsets
  ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
  ** For that matter, if the lock offset ever changes from its initial design
  ** value of 120, we need to know that so there is an assert() to check it.
  */
#ifdef WIN_SHM_BASE
  assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
#endif
#ifdef UNIX_SHM_BASE
  assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
#endif


  /* Allocate an instance of struct Wal to return. */
  *ppWal = 0;
  pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
  if( !pRet ){
    return SQLITE_NOMEM_BKPT;
  }

  pRet->pVfs = pVfs;
  pRet->pWalFd = (sqlite3_file *)&pRet[1];
  pRet->pDbFd = pDbFd;
  pRet->readLock = -1;
  pRet->mxWalSize = mxWalSize;
  pRet->zWalName = zWalName;
  pRet->syncHeader = 1;
  pRet->padToSectorBoundary = 1;
  pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);

  /* Open file handle on the write-ahead log file. */
  flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
  rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
  if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
    pRet->readOnly = WAL_RDONLY;
  }

  if( rc!=SQLITE_OK ){
    walIndexClose(pRet, 0);
    sqlite3OsClose(pRet->pWalFd);
    sqlite3_free(pRet);
  }else{
    int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
    if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
    if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
      pRet->padToSectorBoundary = 0;
    }
    *ppWal = pRet;
    WALTRACE(("WAL%d: opened\n", pRet));
  }
  return rc;
}

/*
** Change the size to which the WAL file is truncated on each reset.
*/
void sqlite3WalLimit(Wal *pWal, i64 iLimit){
  if( pWal ) pWal->mxWalSize = iLimit;
}

/*
** Find the smallest page number out of all pages held in the WAL that
** has not been returned by any prior invocation of this method on the
** same WalIterator object.   Write into *piFrame the frame index where
** that page was last written into the WAL.  Write into *piPage the page
** number.
**
** Return 0 on success.  If there are no pages in the WAL with a page
** number larger than *piPage, then return 1.
*/
static int walIteratorNext(
  WalIterator *p,               /* Iterator */
  u32 *piPage,                  /* OUT: The page number of the next page */
  u32 *piFrame                  /* OUT: Wal frame index of next page */
){
  u32 iMin;                     /* Result pgno must be greater than iMin */
  u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
  int i;                        /* For looping through segments */

  iMin = p->iPrior;
  assert( iMin<0xffffffff );
  for(i=p->nSegment-1; i>=0; i--){
    struct WalSegment *pSegment = &p->aSegment[i];
    while( pSegment->iNext<pSegment->nEntry ){
      u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
      if( iPg>iMin ){
        if( iPg<iRet ){
          iRet = iPg;
          *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
        }
        break;
      }
      pSegment->iNext++;
    }
  }

  *piPage = p->iPrior = iRet;
  return (iRet==0xFFFFFFFF);
}

/*
** This function merges two sorted lists into a single sorted list.
**
** aLeft[] and aRight[] are arrays of indices.  The sort key is
** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
** is guaranteed for all J<K:
**
**        aContent[aLeft[J]] < aContent[aLeft[K]]
**        aContent[aRight[J]] < aContent[aRight[K]]
**
** This routine overwrites aRight[] with a new (probably longer) sequence
** of indices such that the aRight[] contains every index that appears in
** either aLeft[] or the old aRight[] and such that the second condition
** above is still met.
**
** The aContent[aLeft[X]] values will be unique for all X.  And the
** aContent[aRight[X]] values will be unique too.  But there might be
** one or more combinations of X and Y such that
**
**      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
**
** When that happens, omit the aLeft[X] and use the aRight[Y] index.
*/
static void walMerge(
  const u32 *aContent,            /* Pages in wal - keys for the sort */
  ht_slot *aLeft,                 /* IN: Left hand input list */
  int nLeft,                      /* IN: Elements in array *paLeft */
  ht_slot **paRight,              /* IN/OUT: Right hand input list */
  int *pnRight,                   /* IN/OUT: Elements in *paRight */
  ht_slot *aTmp                   /* Temporary buffer */
){
  int iLeft = 0;                  /* Current index in aLeft */
  int iRight = 0;                 /* Current index in aRight */
  int iOut = 0;                   /* Current index in output buffer */
  int nRight = *pnRight;
  ht_slot *aRight = *paRight;

  assert( nLeft>0 && nRight>0 );
  while( iRight<nRight || iLeft<nLeft ){
    ht_slot logpage;
    Pgno dbpage;

    if( (iLeft<nLeft)
     && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
    ){
      logpage = aLeft[iLeft++];
    }else{
      logpage = aRight[iRight++];
    }
    dbpage = aContent[logpage];

    aTmp[iOut++] = logpage;
    if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;

    assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
    assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
  }

  *paRight = aLeft;
  *pnRight = iOut;
  memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
}

/*
** Sort the elements in list aList using aContent[] as the sort key.
** Remove elements with duplicate keys, preferring to keep the
** larger aList[] values.
**
** The aList[] entries are indices into aContent[].  The values in
** aList[] are to be sorted so that for all J<K:
**
**      aContent[aList[J]] < aContent[aList[K]]
**
** For any X and Y such that
**
**      aContent[aList[X]] == aContent[aList[Y]]
**
** Keep the larger of the two values aList[X] and aList[Y] and discard
** the smaller.
*/
static void walMergesort(
  const u32 *aContent,            /* Pages in wal */
  ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
  ht_slot *aList,                 /* IN/OUT: List to sort */
  int *pnList                     /* IN/OUT: Number of elements in aList[] */
){
  struct Sublist {
    int nList;                    /* Number of elements in aList */
    ht_slot *aList;               /* Pointer to sub-list content */
  };

  const int nList = *pnList;      /* Size of input list */
  int nMerge = 0;                 /* Number of elements in list aMerge */
  ht_slot *aMerge = 0;            /* List to be merged */
  int iList;                      /* Index into input list */
  u32 iSub = 0;                   /* Index into aSub array */
  struct Sublist aSub[13];        /* Array of sub-lists */

  memset(aSub, 0, sizeof(aSub));
  assert( nList<=HASHTABLE_NPAGE && nList>0 );
  assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );

  for(iList=0; iList<nList; iList++){
    nMerge = 1;
    aMerge = &aList[iList];
    for(iSub=0; iList & (1<<iSub); iSub++){
      struct Sublist *p;
      assert( iSub<ArraySize(aSub) );
      p = &aSub[iSub];
      assert( p->aList && p->nList<=(1<<iSub) );
      assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
      walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
    }
    aSub[iSub].aList = aMerge;
    aSub[iSub].nList = nMerge;
  }

  for(iSub++; iSub<ArraySize(aSub); iSub++){
    if( nList & (1<<iSub) ){
      struct Sublist *p;
      assert( iSub<ArraySize(aSub) );
      p = &aSub[iSub];
      assert( p->nList<=(1<<iSub) );
      assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
      walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
    }
  }
  assert( aMerge==aList );
  *pnList = nMerge;

#ifdef SQLITE_DEBUG
  {
    int i;
    for(i=1; i<*pnList; i++){
      assert( aContent[aList[i]] > aContent[aList[i-1]] );
    }
  }
#endif
}

/*
** Free an iterator allocated by walIteratorInit().
*/
static void walIteratorFree(WalIterator *p){
  sqlite3_free(p);
}

/*
** Construct a WalInterator object that can be used to loop over all
** pages in the WAL following frame nBackfill in ascending order. Frames
** nBackfill or earlier may be included - excluding them is an optimization
** only. The caller must hold the checkpoint lock.
**
** On success, make *pp point to the newly allocated WalInterator object
** return SQLITE_OK. Otherwise, return an error code. If this routine
** returns an error, the value of *pp is undefined.
**
** The calling routine should invoke walIteratorFree() to destroy the
** WalIterator object when it has finished with it.
*/
static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
  WalIterator *p;                 /* Return value */
  int nSegment;                   /* Number of segments to merge */
  u32 iLast;                      /* Last frame in log */
  sqlite3_int64 nByte;            /* Number of bytes to allocate */
  int i;                          /* Iterator variable */
  ht_slot *aTmp;                  /* Temp space used by merge-sort */
  int rc = SQLITE_OK;             /* Return Code */

  /* This routine only runs while holding the checkpoint lock. And
  ** it only runs if there is actually content in the log (mxFrame>0).
  */
  assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
  iLast = pWal->hdr.mxFrame;

  /* Allocate space for the WalIterator object. */
  nSegment = walFramePage(iLast) + 1;
  nByte = sizeof(WalIterator)
        + (nSegment-1)*sizeof(struct WalSegment)
        + iLast*sizeof(ht_slot);
  p = (WalIterator *)sqlite3_malloc64(nByte
      + sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
  );
  if( !p ){
    return SQLITE_NOMEM_BKPT;
  }
  memset(p, 0, nByte);
  p->nSegment = nSegment;
  aTmp = (ht_slot*)&(((u8*)p)[nByte]);
  SEH_FREE_ON_ERROR(0, p);
  for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
    WalHashLoc sLoc;

    rc = walHashGet(pWal, i, &sLoc);
    if( rc==SQLITE_OK ){
      int j;                      /* Counter variable */
      int nEntry;                 /* Number of entries in this segment */
      ht_slot *aIndex;            /* Sorted index for this segment */

      if( (i+1)==nSegment ){
        nEntry = (int)(iLast - sLoc.iZero);
      }else{
        nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno);
      }
      aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero];
      sLoc.iZero++;

      for(j=0; j<nEntry; j++){
        aIndex[j] = (ht_slot)j;
      }
      walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry);
      p->aSegment[i].iZero = sLoc.iZero;
      p->aSegment[i].nEntry = nEntry;
      p->aSegment[i].aIndex = aIndex;
      p->aSegment[i].aPgno = (u32 *)sLoc.aPgno;
    }
  }
  if( rc!=SQLITE_OK ){
    SEH_FREE_ON_ERROR(p, 0);
    walIteratorFree(p);
    p = 0;
  }
  *pp = p;
  return rc;
}

#ifdef SQLITE_ENABLE_SETLK_TIMEOUT


/*
** Attempt to enable blocking locks that block for nMs ms. Return 1 if 
** blocking locks are successfully enabled, or 0 otherwise.
*/
static int walEnableBlockingMs(Wal *pWal, int nMs){
  int rc = sqlite3OsFileControl(
      pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&nMs
  );
  return (rc==SQLITE_OK);
}

/*
** Attempt to enable blocking locks. Blocking locks are enabled only if (a)
** they are supported by the VFS, and (b) the database handle is configured
** with a busy-timeout. Return 1 if blocking locks are successfully enabled,
** or 0 otherwise.
*/
static int walEnableBlocking(Wal *pWal){
  int res = 0;
  if( pWal->db ){
    int tmout = pWal->db->busyTimeout;
    if( tmout ){
      res = walEnableBlockingMs(pWal, tmout);
    }
  }
  return res;
}

/*
** Disable blocking locks.
*/
static void walDisableBlocking(Wal *pWal){
  int tmout = 0;
  sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout);
}

/*
** If parameter bLock is true, attempt to enable blocking locks, take
** the WRITER lock, and then disable blocking locks. If blocking locks
** cannot be enabled, no attempt to obtain the WRITER lock is made. Return
** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not
** an error if blocking locks can not be enabled.
**
** If the bLock parameter is false and the WRITER lock is held, release it.
*/
int sqlite3WalWriteLock(Wal *pWal, int bLock){
  int rc = SQLITE_OK;
  assert( pWal->readLock<0 || bLock==0 );
  if( bLock ){
    assert( pWal->db );
    if( walEnableBlocking(pWal) ){
      rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
      if( rc==SQLITE_OK ){
        pWal->writeLock = 1;
      }
      walDisableBlocking(pWal);
    }
  }else if( pWal->writeLock ){
    walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
    pWal->writeLock = 0;
  }
  return rc;
}

/*
** Set the database handle used to determine if blocking locks are required.
*/
void sqlite3WalDb(Wal *pWal, sqlite3 *db){
  pWal->db = db;
}

#else
# define walEnableBlocking(x) 0
# define walDisableBlocking(x)
# define walEnableBlockingMs(pWal, ms) 0
# define sqlite3WalDb(pWal, db)
#endif   /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */


/*
** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
** n. If the attempt fails and parameter xBusy is not NULL, then it is a
** busy-handler function. Invoke it and retry the lock until either the
** lock is successfully obtained or the busy-handler returns 0.
*/
static int walBusyLock(
  Wal *pWal,                      /* WAL connection */
  int (*xBusy)(void*),            /* Function to call when busy */
  void *pBusyArg,                 /* Context argument for xBusyHandler */
  int lockIdx,                    /* Offset of first byte to lock */
  int n                           /* Number of bytes to lock */
){
  int rc;
  do {
    rc = walLockExclusive(pWal, lockIdx, n);
  }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
  if( rc==SQLITE_BUSY_TIMEOUT ){
    walDisableBlocking(pWal);
    rc = SQLITE_BUSY;
  }
#endif
  return rc;
}

/*
** The cache of the wal-index header must be valid to call this function.
** Return the page-size in bytes used by the database.
*/
static int walPagesize(Wal *pWal){
  return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
}

/*
** The following is guaranteed when this function is called:
**
**   a) the WRITER lock is held,
**   b) the entire log file has been checkpointed, and
**   c) any existing readers are reading exclusively from the database
**      file - there are no readers that may attempt to read a frame from
**      the log file.
**
** This function updates the shared-memory structures so that the next
** client to write to the database (which may be this one) does so by
** writing frames into the start of the log file.
**
** The value of parameter salt1 is used as the aSalt[1] value in the
** new wal-index header. It should be passed a pseudo-random value (i.e.
** one obtained from sqlite3_randomness()).
*/
static void walRestartHdr(Wal *pWal, u32 salt1){
  volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
  int i;                          /* Loop counter */
  u32 *aSalt = pWal->hdr.aSalt;   /* Big-endian salt values */
  pWal->nCkpt++;
  pWal->hdr.mxFrame = 0;
  sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
  memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
  walIndexWriteHdr(pWal);
  AtomicStore(&pInfo->nBackfill, 0);
  pInfo->nBackfillAttempted = 0;
  pInfo->aReadMark[1] = 0;
  for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
  assert( pInfo->aReadMark[0]==0 );
}

/*
** Copy as much content as we can from the WAL back into the database file
** in response to an sqlite3_wal_checkpoint() request or the equivalent.
**
** The amount of information copies from WAL to database might be limited
** by active readers.  This routine will never overwrite a database page
** that a concurrent reader might be using.
**
** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if
** checkpoints are always run by a background thread or background
** process, foreground threads will never block on a lengthy fsync call.
**
** Fsync is called on the WAL before writing content out of the WAL and
** into the database.  This ensures that if the new content is persistent
** in the WAL and can be recovered following a power-loss or hard reset.
**
** Fsync is also called on the database file if (and only if) the entire
** WAL content is copied into the database file.  This second fsync makes
** it safe to delete the WAL since the new content will persist in the
** database file.
**
** This routine uses and updates the nBackfill field of the wal-index header.
** This is the only routine that will increase the value of nBackfill.
** (A WAL reset or recovery will revert nBackfill to zero, but not increase
** its value.)
**
** The caller must be holding sufficient locks to ensure that no other
** checkpoint is running (in any other thread or process) at the same
** time.
*/
static int walCheckpoint(
  Wal *pWal,                      /* Wal connection */
  sqlite3 *db,                    /* Check for interrupts on this handle */
  int eMode,                      /* One of PASSIVE, FULL or RESTART */
  int (*xBusy)(void*),            /* Function to call when busy */
  void *pBusyArg,                 /* Context argument for xBusyHandler */
  int sync_flags,                 /* Flags for OsSync() (or 0) */
  u8 *zBuf                        /* Temporary buffer to use */
){
  int rc = SQLITE_OK;             /* Return code */
  int szPage;                     /* Database page-size */
  WalIterator *pIter = 0;         /* Wal iterator context */
  u32 iDbpage = 0;                /* Next database page to write */
  u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
  u32 mxSafeFrame;                /* Max frame that can be backfilled */
  u32 mxPage;                     /* Max database page to write */
  int i;                          /* Loop counter */
  volatile WalCkptInfo *pInfo;    /* The checkpoint status information */

  szPage = walPagesize(pWal);
  testcase( szPage<=32768 );
  testcase( szPage>=65536 );
  pInfo = walCkptInfo(pWal);
  if( pInfo->nBackfill<pWal->hdr.mxFrame ){

    /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
    ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
    assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );

    /* Compute in mxSafeFrame the index of the last frame of the WAL that is
    ** safe to write into the database.  Frames beyond mxSafeFrame might
    ** overwrite database pages that are in use by active readers and thus
    ** cannot be backfilled from the WAL.
    */
    mxSafeFrame = pWal->hdr.mxFrame;
    mxPage = pWal->hdr.nPage;
    for(i=1; i<WAL_NREADER; i++){
      u32 y = AtomicLoad(pInfo->aReadMark+i); SEH_INJECT_FAULT;
      if( mxSafeFrame>y ){
        assert( y<=pWal->hdr.mxFrame );
        rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
        if( rc==SQLITE_OK ){
          u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
          AtomicStore(pInfo->aReadMark+i, iMark); SEH_INJECT_FAULT;
          walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
        }else if( rc==SQLITE_BUSY ){
          mxSafeFrame = y;
          xBusy = 0;
        }else{
          goto walcheckpoint_out;
        }
      }
    }

    /* Allocate the iterator */
    if( pInfo->nBackfill<mxSafeFrame ){
      rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
      assert( rc==SQLITE_OK || pIter==0 );
    }

    if( pIter
     && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK
    ){
      u32 nBackfill = pInfo->nBackfill;
      pInfo->nBackfillAttempted = mxSafeFrame; SEH_INJECT_FAULT;

      /* Sync the WAL to disk */
      rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));

      /* If the database may grow as a result of this checkpoint, hint
      ** about the eventual size of the db file to the VFS layer.
      */
      if( rc==SQLITE_OK ){
        i64 nReq = ((i64)mxPage * szPage);
        i64 nSize;                    /* Current size of database file */
        sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0);
        rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
        if( rc==SQLITE_OK && nSize<nReq ){
          if( (nSize+65536+(i64)pWal->hdr.mxFrame*szPage)<nReq ){
            /* If the size of the final database is larger than the current
            ** database plus the amount of data in the wal file, plus the
            ** maximum size of the pending-byte page (65536 bytes), then
            ** must be corruption somewhere.  */
            rc = SQLITE_CORRUPT_BKPT;
          }else{
            sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT,&nReq);
          }
        }

      }

      /* Iterate through the contents of the WAL, copying data to the db file */
      while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
        i64 iOffset;
        assert( walFramePgno(pWal, iFrame)==iDbpage );
        SEH_INJECT_FAULT;
        if( AtomicLoad(&db->u1.isInterrupted) ){
          rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
          break;
        }
        if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
          continue;
        }
        iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
        /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
        rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
        if( rc!=SQLITE_OK ) break;
        iOffset = (iDbpage-1)*(i64)szPage;
        testcase( IS_BIG_INT(iOffset) );
        rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
        if( rc!=SQLITE_OK ) break;
      }
      sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0);

      /* If work was actually accomplished... */
      if( rc==SQLITE_OK ){
        if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
          i64 szDb = pWal->hdr.nPage*(i64)szPage;
          testcase( IS_BIG_INT(szDb) );
          rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
          if( rc==SQLITE_OK ){
            rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
          }
        }
        if( rc==SQLITE_OK ){
          AtomicStore(&pInfo->nBackfill, mxSafeFrame); SEH_INJECT_FAULT;
        }
      }

      /* Release the reader lock held while backfilling */
      walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
    }

    if( rc==SQLITE_BUSY ){
      /* Reset the return code so as not to report a checkpoint failure
      ** just because there are active readers.  */
      rc = SQLITE_OK;
    }
  }

  /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
  ** entire wal file has been copied into the database file, then block
  ** until all readers have finished using the wal file. This ensures that
  ** the next process to write to the database restarts the wal file.
  */
  if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
    assert( pWal->writeLock );
    SEH_INJECT_FAULT;
    if( pInfo->nBackfill<pWal->hdr.mxFrame ){
      rc = SQLITE_BUSY;
    }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
      u32 salt1;
      sqlite3_randomness(4, &salt1);
      assert( pInfo->nBackfill==pWal->hdr.mxFrame );
      rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
      if( rc==SQLITE_OK ){
        if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
          /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
          ** SQLITE_CHECKPOINT_RESTART with the addition that it also
          ** truncates the log file to zero bytes just prior to a
          ** successful return.
          **
          ** In theory, it might be safe to do this without updating the
          ** wal-index header in shared memory, as all subsequent reader or
          ** writer clients should see that the entire log file has been
          ** checkpointed and behave accordingly. This seems unsafe though,
          ** as it would leave the system in a state where the contents of
          ** the wal-index header do not match the contents of the
          ** file-system. To avoid this, update the wal-index header to
          ** indicate that the log file contains zero valid frames.  */
          walRestartHdr(pWal, salt1);
          rc = sqlite3OsTruncate(pWal->pWalFd, 0);
        }
        walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
      }
    }
  }

 walcheckpoint_out:
  SEH_FREE_ON_ERROR(pIter, 0);
  walIteratorFree(pIter);
  return rc;
}

/*
** If the WAL file is currently larger than nMax bytes in size, truncate
** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
*/
static void walLimitSize(Wal *pWal, i64 nMax){
  i64 sz;
  int rx;
  sqlite3BeginBenignMalloc();
  rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
  if( rx==SQLITE_OK && (sz > nMax ) ){
    rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
  }
  sqlite3EndBenignMalloc();
  if( rx ){
    sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
  }
}

#ifdef SQLITE_USE_SEH
/*
** This is the "standard" exception handler used in a few places to handle 
** an exception thrown by reading from the *-shm mapping after it has become
** invalid in SQLITE_USE_SEH builds. It is used as follows:
**
**   SEH_TRY { ... }
**   SEH_EXCEPT( rc = walHandleException(pWal); )
**
** This function does three things:
**
**   1) Determines the locks that should be held, based on the contents of
**      the Wal.readLock, Wal.writeLock and Wal.ckptLock variables. All other
**      held locks are assumed to be transient locks that would have been
**      released had the exception not been thrown and are dropped.
**
**   2) Frees the pointer at Wal.pFree, if any, using sqlite3_free().
**
**   3) Set pWal->apWiData[pWal->iWiPg] to pWal->pWiValue if not NULL
**
**   4) Returns SQLITE_IOERR.
*/
static int walHandleException(Wal *pWal){
  if( pWal->exclusiveMode==0 ){
    static const int S = 1;
    static const int E = (1<<SQLITE_SHM_NLOCK);
    int ii;
    u32 mUnlock = pWal->lockMask & ~(
        (pWal->readLock<0 ? 0 : (S << WAL_READ_LOCK(pWal->readLock)))
        | (pWal->writeLock ? (E << WAL_WRITE_LOCK) : 0)
        | (pWal->ckptLock ? (E << WAL_CKPT_LOCK) : 0)
        );
    for(ii=0; ii<SQLITE_SHM_NLOCK; ii++){
      if( (S<<ii) & mUnlock ) walUnlockShared(pWal, ii);
      if( (E<<ii) & mUnlock ) walUnlockExclusive(pWal, ii, 1);
    }
  }
  sqlite3_free(pWal->pFree);
  pWal->pFree = 0;
  if( pWal->pWiValue ){
    pWal->apWiData[pWal->iWiPg] = pWal->pWiValue;
    pWal->pWiValue = 0;
  }
  return SQLITE_IOERR_IN_PAGE;
}

/*
** Assert that the Wal.lockMask mask, which indicates the locks held
** by the connenction, is consistent with the Wal.readLock, Wal.writeLock
** and Wal.ckptLock variables. To be used as:
**
**   assert( walAssertLockmask(pWal) );
*/
static int walAssertLockmask(Wal *pWal){
  if( pWal->exclusiveMode==0 ){
    static const int S = 1;
    static const int E = (1<<SQLITE_SHM_NLOCK);
    u32 mExpect = (
        (pWal->readLock<0 ? 0 : (S << WAL_READ_LOCK(pWal->readLock)))
      | (pWal->writeLock ? (E << WAL_WRITE_LOCK) : 0)
      | (pWal->ckptLock ? (E << WAL_CKPT_LOCK) : 0)
#ifdef SQLITE_ENABLE_SNAPSHOT
      | (pWal->pSnapshot ? (pWal->lockMask & (1 << WAL_CKPT_LOCK)) : 0)
#endif
    );
    assert( mExpect==pWal->lockMask );
  }
  return 1;
}

/*
** Return and zero the "system error" field set when an 
** EXCEPTION_IN_PAGE_ERROR exception is caught.
*/
int sqlite3WalSystemErrno(Wal *pWal){
  int iRet = 0;
  if( pWal ){
    iRet = pWal->iSysErrno;
    pWal->iSysErrno = 0;
  }
  return iRet;
}

#else
# define walAssertLockmask(x) 1
#endif /* ifdef SQLITE_USE_SEH */

/*
** Close a connection to a log file.
*/
int sqlite3WalClose(
  Wal *pWal,                      /* Wal to close */
  sqlite3 *db,                    /* For interrupt flag */
  int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
  int nBuf,
  u8 *zBuf                        /* Buffer of at least nBuf bytes */
){
  int rc = SQLITE_OK;
  if( pWal ){
    int isDelete = 0;             /* True to unlink wal and wal-index files */

    assert( walAssertLockmask(pWal) );

    /* If an EXCLUSIVE lock can be obtained on the database file (using the
    ** ordinary, rollback-mode locking methods, this guarantees that the
    ** connection associated with this log file is the only connection to
    ** the database. In this case checkpoint the database and unlink both
    ** the wal and wal-index files.
    **
    ** The EXCLUSIVE lock is not released before returning.
    */
    if( zBuf!=0
     && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
    ){
      if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
        pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
      }
      rc = sqlite3WalCheckpoint(pWal, db,
          SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
      );
      if( rc==SQLITE_OK ){
        int bPersist = -1;
        sqlite3OsFileControlHint(
            pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
        );
        if( bPersist!=1 ){
          /* Try to delete the WAL file if the checkpoint completed and
          ** fsynced (rc==SQLITE_OK) and if we are not in persistent-wal
          ** mode (!bPersist) */
          isDelete = 1;
        }else if( pWal->mxWalSize>=0 ){
          /* Try to truncate the WAL file to zero bytes if the checkpoint
          ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
          ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
          ** non-negative value (pWal->mxWalSize>=0).  Note that we truncate
          ** to zero bytes as truncating to the journal_size_limit might
          ** leave a corrupt WAL file on disk. */
          walLimitSize(pWal, 0);
        }
      }
    }

    walIndexClose(pWal, isDelete);
    sqlite3OsClose(pWal->pWalFd);
    if( isDelete ){
      sqlite3BeginBenignMalloc();
      sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
      sqlite3EndBenignMalloc();
    }
    WALTRACE(("WAL%p: closed\n", pWal));
    sqlite3_free((void *)pWal->apWiData);
    sqlite3_free(pWal);
  }
  return rc;
}

/*
** Try to read the wal-index header.  Return 0 on success and 1 if
** there is a problem.
**
** The wal-index is in shared memory.  Another thread or process might
** be writing the header at the same time this procedure is trying to
** read it, which might result in inconsistency.  A dirty read is detected
** by verifying that both copies of the header are the same and also by
** a checksum on the header.
**
** If and only if the read is consistent and the header is different from
** pWal->hdr, then pWal->hdr is updated to the content of the new header
** and *pChanged is set to 1.
**
** If the checksum cannot be verified return non-zero. If the header
** is read successfully and the checksum verified, return zero.
*/
static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){
  u32 aCksum[2];                  /* Checksum on the header content */
  WalIndexHdr h1, h2;             /* Two copies of the header content */
  WalIndexHdr volatile *aHdr;     /* Header in shared memory */

  /* The first page of the wal-index must be mapped at this point. */
  assert( pWal->nWiData>0 && pWal->apWiData[0] );

  /* Read the header. This might happen concurrently with a write to the
  ** same area of shared memory on a different CPU in a SMP,
  ** meaning it is possible that an inconsistent snapshot is read
  ** from the file. If this happens, return non-zero.
  **
  ** tag-20200519-1:
  ** There are two copies of the header at the beginning of the wal-index.
  ** When reading, read [0] first then [1].  Writes are in the reverse order.
  ** Memory barriers are used to prevent the compiler or the hardware from
  ** reordering the reads and writes.  TSAN and similar tools can sometimes
  ** give false-positive warnings about these accesses because the tools do not
  ** account for the double-read and the memory barrier. The use of mutexes
  ** here would be problematic as the memory being accessed is potentially
  ** shared among multiple processes and not all mutex implementations work
  ** reliably in that environment.
  */
  aHdr = walIndexHdr(pWal);
  memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */
  walShmBarrier(pWal);
  memcpy(&h2, (void *)&aHdr[1], sizeof(h2));

  if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
    return 1;   /* Dirty read */
  }
  if( h1.isInit==0 ){
    return 1;   /* Malformed header - probably all zeros */
  }
  walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
  if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
    return 1;   /* Checksum does not match */
  }

  if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
    *pChanged = 1;
    memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
    pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
    testcase( pWal->szPage<=32768 );
    testcase( pWal->szPage>=65536 );
  }

  /* The header was successfully read. Return zero. */
  return 0;
}

/*
** This is the value that walTryBeginRead returns when it needs to
** be retried.
*/
#define WAL_RETRY  (-1)

/*
** Read the wal-index header from the wal-index and into pWal->hdr.
** If the wal-header appears to be corrupt, try to reconstruct the
** wal-index from the WAL before returning.
**
** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
** changed by this operation.  If pWal->hdr is unchanged, set *pChanged
** to 0.
**
** If the wal-index header is successfully read, return SQLITE_OK.
** Otherwise an SQLite error code.
*/
static int walIndexReadHdr(Wal *pWal, int *pChanged){
  int rc;                         /* Return code */
  int badHdr;                     /* True if a header read failed */
  volatile u32 *page0;            /* Chunk of wal-index containing header */

  /* Ensure that page 0 of the wal-index (the page that contains the
  ** wal-index header) is mapped. Return early if an error occurs here.
  */
  assert( pChanged );
  rc = walIndexPage(pWal, 0, &page0);
  if( rc!=SQLITE_OK ){
    assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
    if( rc==SQLITE_READONLY_CANTINIT ){
      /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
      ** was openable but is not writable, and this thread is unable to
      ** confirm that another write-capable connection has the shared-memory
      ** open, and hence the content of the shared-memory is unreliable,
      ** since the shared-memory might be inconsistent with the WAL file
      ** and there is no writer on hand to fix it. */
      assert( page0==0 );
      assert( pWal->writeLock==0 );
      assert( pWal->readOnly & WAL_SHM_RDONLY );
      pWal->bShmUnreliable = 1;
      pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
      *pChanged = 1;
    }else{
      return rc; /* Any other non-OK return is just an error */
    }
  }else{
    /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
    ** is zero, which prevents the SHM from growing */
    testcase( page0!=0 );
  }
  assert( page0!=0 || pWal->writeLock==0 );

  /* If the first page of the wal-index has been mapped, try to read the
  ** wal-index header immediately, without holding any lock. This usually
  ** works, but may fail if the wal-index header is corrupt or currently
  ** being modified by another thread or process.
  */
  badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);

  /* If the first attempt failed, it might have been due to a race
  ** with a writer.  So get a WRITE lock and try again.
  */
  if( badHdr ){
    if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
      if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
        walUnlockShared(pWal, WAL_WRITE_LOCK);
        rc = SQLITE_READONLY_RECOVERY;
      }
    }else{
      int bWriteLock = pWal->writeLock;
      if( bWriteLock 
       || SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) 
      ){
        pWal->writeLock = 1;
        if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
          badHdr = walIndexTryHdr(pWal, pChanged);
          if( badHdr ){
            /* If the wal-index header is still malformed even while holding
            ** a WRITE lock, it can only mean that the header is corrupted and
            ** needs to be reconstructed.  So run recovery to do exactly that.
            ** Disable blocking locks first.  */
            walDisableBlocking(pWal);
            rc = walIndexRecover(pWal);
            *pChanged = 1;
          }
        }
        if( bWriteLock==0 ){
          pWal->writeLock = 0;
          walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
        }
      }
    }
  }

  /* If the header is read successfully, check the version number to make
  ** sure the wal-index was not constructed with some future format that
  ** this version of SQLite cannot understand.
  */
  if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
    rc = SQLITE_CANTOPEN_BKPT;
  }
  if( pWal->bShmUnreliable ){
    if( rc!=SQLITE_OK ){
      walIndexClose(pWal, 0);
      pWal->bShmUnreliable = 0;
      assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
      /* walIndexRecover() might have returned SHORT_READ if a concurrent
      ** writer truncated the WAL out from under it.  If that happens, it
      ** indicates that a writer has fixed the SHM file for us, so retry */
      if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
    }
    pWal->exclusiveMode = WAL_NORMAL_MODE;
  }

  return rc;
}

/*
** Open a transaction in a connection where the shared-memory is read-only
** and where we cannot verify that there is a separate write-capable connection
** on hand to keep the shared-memory up-to-date with the WAL file.
**
** This can happen, for example, when the shared-memory is implemented by
** memory-mapping a *-shm file, where a prior writer has shut down and
** left the *-shm file on disk, and now the present connection is trying
** to use that database but lacks write permission on the *-shm file.
** Other scenarios are also possible, depending on the VFS implementation.
**
** Precondition:
**
**    The *-wal file has been read and an appropriate wal-index has been
**    constructed in pWal->apWiData[] using heap memory instead of shared
**    memory.
**
** If this function returns SQLITE_OK, then the read transaction has
** been successfully opened. In this case output variable (*pChanged)
** is set to true before returning if the caller should discard the
** contents of the page cache before proceeding. Or, if it returns
** WAL_RETRY, then the heap memory wal-index has been discarded and
** the caller should retry opening the read transaction from the
** beginning (including attempting to map the *-shm file).
**
** If an error occurs, an SQLite error code is returned.
*/
static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
  i64 szWal;                      /* Size of wal file on disk in bytes */
  i64 iOffset;                    /* Current offset when reading wal file */
  u8 aBuf[WAL_HDRSIZE];           /* Buffer to load WAL header into */
  u8 *aFrame = 0;                 /* Malloc'd buffer to load entire frame */
  int szFrame;                    /* Number of bytes in buffer aFrame[] */
  u8 *aData;                      /* Pointer to data part of aFrame buffer */
  volatile void *pDummy;          /* Dummy argument for xShmMap */
  int rc;                         /* Return code */
  u32 aSaveCksum[2];              /* Saved copy of pWal->hdr.aFrameCksum */

  assert( pWal->bShmUnreliable );
  assert( pWal->readOnly & WAL_SHM_RDONLY );
  assert( pWal->nWiData>0 && pWal->apWiData[0] );

  /* Take WAL_READ_LOCK(0). This has the effect of preventing any
  ** writers from running a checkpoint, but does not stop them
  ** from running recovery.  */
  rc = walLockShared(pWal, WAL_READ_LOCK(0));
  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
    goto begin_unreliable_shm_out;
  }
  pWal->readLock = 0;

  /* Check to see if a separate writer has attached to the shared-memory area,
  ** thus making the shared-memory "reliable" again.  Do this by invoking
  ** the xShmMap() routine of the VFS and looking to see if the return
  ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
  **
  ** If the shared-memory is now "reliable" return WAL_RETRY, which will
  ** cause the heap-memory WAL-index to be discarded and the actual
  ** shared memory to be used in its place.
  **
  ** This step is important because, even though this connection is holding
  ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
  ** have already checkpointed the WAL file and, while the current
  ** is active, wrap the WAL and start overwriting frames that this
  ** process wants to use.
  **
  ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
  ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
  ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
  ** even if some external agent does a "chmod" to make the shared-memory
  ** writable by us, until sqlite3OsShmUnmap() has been called.
  ** This is a requirement on the VFS implementation.
   */
  rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
  assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
  if( rc!=SQLITE_READONLY_CANTINIT ){
    rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
    goto begin_unreliable_shm_out;
  }

  /* We reach this point only if the real shared-memory is still unreliable.
  ** Assume the in-memory WAL-index substitute is correct and load it
  ** into pWal->hdr.
  */
  memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));

  /* Make sure some writer hasn't come in and changed the WAL file out
  ** from under us, then disconnected, while we were not looking.
  */
  rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
  if( rc!=SQLITE_OK ){
    goto begin_unreliable_shm_out;
  }
  if( szWal<WAL_HDRSIZE ){
    /* If the wal file is too small to contain a wal-header and the
    ** wal-index header has mxFrame==0, then it must be safe to proceed
    ** reading the database file only. However, the page cache cannot
    ** be trusted, as a read/write connection may have connected, written
    ** the db, run a checkpoint, truncated the wal file and disconnected
    ** since this client's last read transaction.  */
    *pChanged = 1;
    rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
    goto begin_unreliable_shm_out;
  }

  /* Check the salt keys at the start of the wal file still match. */
  rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
  if( rc!=SQLITE_OK ){
    goto begin_unreliable_shm_out;
  }
  if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
    /* Some writer has wrapped the WAL file while we were not looking.
    ** Return WAL_RETRY which will cause the in-memory WAL-index to be
    ** rebuilt. */
    rc = WAL_RETRY;
    goto begin_unreliable_shm_out;
  }

  /* Allocate a buffer to read frames into */
  assert( (pWal->szPage & (pWal->szPage-1))==0 );
  assert( pWal->szPage>=512 && pWal->szPage<=65536 );
  szFrame = pWal->szPage + WAL_FRAME_HDRSIZE;
  aFrame = (u8 *)sqlite3_malloc64(szFrame);
  if( aFrame==0 ){
    rc = SQLITE_NOMEM_BKPT;
    goto begin_unreliable_shm_out;
  }
  aData = &aFrame[WAL_FRAME_HDRSIZE];

  /* Check to see if a complete transaction has been appended to the
  ** wal file since the heap-memory wal-index was created. If so, the
  ** heap-memory wal-index is discarded and WAL_RETRY returned to
  ** the caller.  */
  aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
  aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
  for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->szPage);
      iOffset+szFrame<=szWal;
      iOffset+=szFrame
  ){
    u32 pgno;                   /* Database page number for frame */
    u32 nTruncate;              /* dbsize field from frame header */

    /* Read and decode the next log frame. */
    rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
    if( rc!=SQLITE_OK ) break;
    if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;

    /* If nTruncate is non-zero, then a complete transaction has been
    ** appended to this wal file. Set rc to WAL_RETRY and break out of
    ** the loop.  */
    if( nTruncate ){
      rc = WAL_RETRY;
      break;
    }
  }
  pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
  pWal->hdr.aFrameCksum[1] = aSaveCksum[1];

 begin_unreliable_shm_out:
  sqlite3_free(aFrame);
  if( rc!=SQLITE_OK ){
    int i;
    for(i=0; i<pWal->nWiData; i++){
      sqlite3_free((void*)pWal->apWiData[i]);
      pWal->apWiData[i] = 0;
    }
    pWal->bShmUnreliable = 0;
    sqlite3WalEndReadTransaction(pWal);
    *pChanged = 1;
  }
  return rc;
}

/*
** The final argument passed to walTryBeginRead() is of type (int*). The
** caller should invoke walTryBeginRead as follows:
**
**   int cnt = 0;
**   do {
**     rc = walTryBeginRead(..., &cnt);
**   }while( rc==WAL_RETRY );
**
** The final value of "cnt" is of no use to the caller. It is used by
** the implementation of walTryBeginRead() as follows:
**
**   + Each time walTryBeginRead() is called, it is incremented. Once
**     it reaches WAL_RETRY_PROTOCOL_LIMIT - indicating that walTryBeginRead()
**     has many times been invoked and failed with WAL_RETRY - walTryBeginRead()
**     returns SQLITE_PROTOCOL.
**
**   + If SQLITE_ENABLE_SETLK_TIMEOUT is defined and walTryBeginRead() failed
**     because a blocking lock timed out (SQLITE_BUSY_TIMEOUT from the OS
**     layer), the WAL_RETRY_BLOCKED_MASK bit is set in "cnt". In this case
**     the next invocation of walTryBeginRead() may omit an expected call to 
**     sqlite3OsSleep(). There has already been a delay when the previous call
**     waited on a lock.
*/
#define WAL_RETRY_PROTOCOL_LIMIT 100
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
# define WAL_RETRY_BLOCKED_MASK    0x10000000
#else
# define WAL_RETRY_BLOCKED_MASK    0
#endif

/*
** Attempt to start a read transaction.  This might fail due to a race or
** other transient condition.  When that happens, it returns WAL_RETRY to
** indicate to the caller that it is safe to retry immediately.
**
** On success return SQLITE_OK.  On a permanent failure (such an
** I/O error or an SQLITE_BUSY because another process is running
** recovery) return a positive error code.
**
** The useWal parameter is true to force the use of the WAL and disable
** the case where the WAL is bypassed because it has been completely
** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr()
** to make a copy of the wal-index header into pWal->hdr.  If the
** wal-index header has changed, *pChanged is set to 1 (as an indication
** to the caller that the local page cache is obsolete and needs to be
** flushed.)  When useWal==1, the wal-index header is assumed to already
** be loaded and the pChanged parameter is unused.
**
** The caller must set the cnt parameter to the number of prior calls to
** this routine during the current read attempt that returned WAL_RETRY.
** This routine will start taking more aggressive measures to clear the
** race conditions after multiple WAL_RETRY returns, and after an excessive
** number of errors will ultimately return SQLITE_PROTOCOL.  The
** SQLITE_PROTOCOL return indicates that some other process has gone rogue
** and is not honoring the locking protocol.  There is a vanishingly small
** chance that SQLITE_PROTOCOL could be returned because of a run of really
** bad luck when there is lots of contention for the wal-index, but that
** possibility is so small that it can be safely neglected, we believe.
**
** On success, this routine obtains a read lock on
** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
** that means the Wal does not hold any read lock.  The reader must not
** access any database page that is modified by a WAL frame up to and
** including frame number aReadMark[pWal->readLock].  The reader will
** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
** Or if pWal->readLock==0, then the reader will ignore the WAL
** completely and get all content directly from the database file.
** If the useWal parameter is 1 then the WAL will never be ignored and
** this routine will always set pWal->readLock>0 on success.
** When the read transaction is completed, the caller must release the
** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
**
** This routine uses the nBackfill and aReadMark[] fields of the header
** to select a particular WAL_READ_LOCK() that strives to let the
** checkpoint process do as much work as possible.  This routine might
** update values of the aReadMark[] array in the header, but if it does
** so it takes care to hold an exclusive lock on the corresponding
** WAL_READ_LOCK() while changing values.
*/
static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int *pCnt){
  volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
  u32 mxReadMark;                 /* Largest aReadMark[] value */
  int mxI;                        /* Index of largest aReadMark[] value */
  int i;                          /* Loop counter */
  int rc = SQLITE_OK;             /* Return code  */
  u32 mxFrame;                    /* Wal frame to lock to */
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
  int nBlockTmout = 0;
#endif

  assert( pWal->readLock<0 );     /* Not currently locked */

  /* useWal may only be set for read/write connections */
  assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );

  /* Take steps to avoid spinning forever if there is a protocol error.
  **
  ** Circumstances that cause a RETRY should only last for the briefest
  ** instances of time.  No I/O or other system calls are done while the
  ** locks are held, so the locks should not be held for very long. But
  ** if we are unlucky, another process that is holding a lock might get
  ** paged out or take a page-fault that is time-consuming to resolve,
  ** during the few nanoseconds that it is holding the lock.  In that case,
  ** it might take longer than normal for the lock to free.
  **
  ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
  ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
  ** is more of a scheduler yield than an actual delay.  But on the 10th
  ** an subsequent retries, the delays start becoming longer and longer,
  ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
  ** The total delay time before giving up is less than 10 seconds.
  */
  (*pCnt)++;
  if( *pCnt>5 ){
    int nDelay = 1;                      /* Pause time in microseconds */
    int cnt = (*pCnt & ~WAL_RETRY_BLOCKED_MASK);
    if( cnt>WAL_RETRY_PROTOCOL_LIMIT ){
      VVA_ONLY( pWal->lockError = 1; )
      return SQLITE_PROTOCOL;
    }
    if( *pCnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
    /* In SQLITE_ENABLE_SETLK_TIMEOUT builds, configure the file-descriptor
    ** to block for locks for approximately nDelay us. This affects three
    ** locks: (a) the shared lock taken on the DMS slot in os_unix.c (if
    ** using os_unix.c), (b) the WRITER lock taken in walIndexReadHdr() if the
    ** first attempted read fails, and (c) the shared lock taken on the 
    ** read-mark.  
    **
    ** If the previous call failed due to an SQLITE_BUSY_TIMEOUT error,
    ** then sleep for the minimum of 1us. The previous call already provided 
    ** an extra delay while it was blocking on the lock.
    */
    nBlockTmout = (nDelay+998) / 1000;
    if( !useWal && walEnableBlockingMs(pWal, nBlockTmout) ){
      if( *pCnt & WAL_RETRY_BLOCKED_MASK ) nDelay = 1;
    }
#endif
    sqlite3OsSleep(pWal->pVfs, nDelay);
    *pCnt &= ~WAL_RETRY_BLOCKED_MASK;
  }

  if( !useWal ){
    assert( rc==SQLITE_OK );
    if( pWal->bShmUnreliable==0 ){
      rc = walIndexReadHdr(pWal, pChanged);
    }
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
    walDisableBlocking(pWal);
    if( rc==SQLITE_BUSY_TIMEOUT ){
      rc = SQLITE_BUSY;
      *pCnt |= WAL_RETRY_BLOCKED_MASK;
    }
#endif
    if( rc==SQLITE_BUSY ){
      /* If there is not a recovery running in another thread or process
      ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
      ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
      ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
      ** would be technically correct.  But the race is benign since with
      ** WAL_RETRY this routine will be called again and will probably be
      ** right on the second iteration.
      */
      if( pWal->apWiData[0]==0 ){
        /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
        ** We assume this is a transient condition, so return WAL_RETRY. The
        ** xShmMap() implementation used by the default unix and win32 VFS
        ** modules may return SQLITE_BUSY due to a race condition in the
        ** code that determines whether or not the shared-memory region
        ** must be zeroed before the requested page is returned.
        */
        rc = WAL_RETRY;
      }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
        walUnlockShared(pWal, WAL_RECOVER_LOCK);
        rc = WAL_RETRY;
      }else if( rc==SQLITE_BUSY ){
        rc = SQLITE_BUSY_RECOVERY;
      }
    }
    if( rc!=SQLITE_OK ){
      return rc;
    }
    else if( pWal->bShmUnreliable ){
      return walBeginShmUnreliable(pWal, pChanged);
    }
  }

  assert( pWal->nWiData>0 );
  assert( pWal->apWiData[0]!=0 );
  pInfo = walCkptInfo(pWal);
  SEH_INJECT_FAULT;
  if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame
#ifdef SQLITE_ENABLE_SNAPSHOT
   && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
#endif
  ){
    /* The WAL has been completely backfilled (or it is empty).
    ** and can be safely ignored.
    */
    rc = walLockShared(pWal, WAL_READ_LOCK(0));
    walShmBarrier(pWal);
    if( rc==SQLITE_OK ){
      if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
        /* It is not safe to allow the reader to continue here if frames
        ** may have been appended to the log before READ_LOCK(0) was obtained.
        ** When holding READ_LOCK(0), the reader ignores the entire log file,
        ** which implies that the database file contains a trustworthy
        ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
        ** happening, this is usually correct.
        **
        ** However, if frames have been appended to the log (or if the log
        ** is wrapped and written for that matter) before the READ_LOCK(0)
        ** is obtained, that is not necessarily true. A checkpointer may
        ** have started to backfill the appended frames but crashed before
        ** it finished. Leaving a corrupt image in the database file.
        */
        walUnlockShared(pWal, WAL_READ_LOCK(0));
        return WAL_RETRY;
      }
      pWal->readLock = 0;
      return SQLITE_OK;
    }else if( rc!=SQLITE_BUSY ){
      return rc;
    }
  }

  /* If we get this far, it means that the reader will want to use
  ** the WAL to get at content from recent commits.  The job now is
  ** to select one of the aReadMark[] entries that is closest to
  ** but not exceeding pWal->hdr.mxFrame and lock that entry.
  */
  mxReadMark = 0;
  mxI = 0;
  mxFrame = pWal->hdr.mxFrame;
#ifdef SQLITE_ENABLE_SNAPSHOT
  if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
    mxFrame = pWal->pSnapshot->mxFrame;
  }
#endif
  for(i=1; i<WAL_NREADER; i++){
    u32 thisMark = AtomicLoad(pInfo->aReadMark+i); SEH_INJECT_FAULT;
    if( mxReadMark<=thisMark && thisMark<=mxFrame ){
      assert( thisMark!=READMARK_NOT_USED );
      mxReadMark = thisMark;
      mxI = i;
    }
  }
  if( (pWal->readOnly & WAL_SHM_RDONLY)==0
   && (mxReadMark<mxFrame || mxI==0)
  ){
    for(i=1; i<WAL_NREADER; i++){
      rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
      if( rc==SQLITE_OK ){
        AtomicStore(pInfo->aReadMark+i,mxFrame);
        mxReadMark = mxFrame;
        mxI = i;
        walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
        break;
      }else if( rc!=SQLITE_BUSY ){
        return rc;
      }
    }
  }
  if( mxI==0 ){
    assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
    return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
  }

  (void)walEnableBlockingMs(pWal, nBlockTmout);
  rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
  walDisableBlocking(pWal);
  if( rc ){
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
    if( rc==SQLITE_BUSY_TIMEOUT ){
      *pCnt |= WAL_RETRY_BLOCKED_MASK;
    }
#else
    assert( rc!=SQLITE_BUSY_TIMEOUT );
#endif
    assert( (rc&0xFF)!=SQLITE_BUSY||rc==SQLITE_BUSY||rc==SQLITE_BUSY_TIMEOUT );
    return (rc&0xFF)==SQLITE_BUSY ? WAL_RETRY : rc;
  }
  /* Now that the read-lock has been obtained, check that neither the
  ** value in the aReadMark[] array or the contents of the wal-index
  ** header have changed.
  **
  ** It is necessary to check that the wal-index header did not change
  ** between the time it was read and when the shared-lock was obtained
  ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
  ** that the log file may have been wrapped by a writer, or that frames
  ** that occur later in the log than pWal->hdr.mxFrame may have been
  ** copied into the database by a checkpointer. If either of these things
  ** happened, then reading the database with the current value of
  ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
  ** instead.
  **
  ** Before checking that the live wal-index header has not changed
  ** since it was read, set Wal.minFrame to the first frame in the wal
  ** file that has not yet been checkpointed. This client will not need
  ** to read any frames earlier than minFrame from the wal file - they
  ** can be safely read directly from the database file.
  **
  ** Because a ShmBarrier() call is made between taking the copy of
  ** nBackfill and checking that the wal-header in shared-memory still
  ** matches the one cached in pWal->hdr, it is guaranteed that the
  ** checkpointer that set nBackfill was not working with a wal-index
  ** header newer than that cached in pWal->hdr. If it were, that could
  ** cause a problem. The checkpointer could omit to checkpoint
  ** a version of page X that lies before pWal->minFrame (call that version
  ** A) on the basis that there is a newer version (version B) of the same
  ** page later in the wal file. But if version B happens to like past
  ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
  ** that it can read version A from the database file. However, since
  ** we can guarantee that the checkpointer that set nBackfill could not
  ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
  */
  pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1; SEH_INJECT_FAULT;
  walShmBarrier(pWal);
  if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark
   || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
  ){
    walUnlockShared(pWal, WAL_READ_LOCK(mxI));
    return WAL_RETRY;
  }else{
    assert( mxReadMark<=pWal->hdr.mxFrame );
    pWal->readLock = (i16)mxI;
  }
  return rc;
}

#ifdef SQLITE_ENABLE_SNAPSHOT
/*
** This function does the work of sqlite3WalSnapshotRecover().
*/
static int walSnapshotRecover(
  Wal *pWal,                      /* WAL handle */
  void *pBuf1,                    /* Temp buffer pWal->szPage bytes in size */
  void *pBuf2                     /* Temp buffer pWal->szPage bytes in size */
){
  int szPage = (int)pWal->szPage;
  int rc;
  i64 szDb;                       /* Size of db file in bytes */

  rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
  if( rc==SQLITE_OK ){
    volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
    u32 i = pInfo->nBackfillAttempted;
    for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){
      WalHashLoc sLoc;          /* Hash table location */
      u32 pgno;                 /* Page number in db file */
      i64 iDbOff;               /* Offset of db file entry */
      i64 iWalOff;              /* Offset of wal file entry */

      rc = walHashGet(pWal, walFramePage(i), &sLoc);
      if( rc!=SQLITE_OK ) break;
      assert( i - sLoc.iZero - 1 >=0 );
      pgno = sLoc.aPgno[i-sLoc.iZero-1];
      iDbOff = (i64)(pgno-1) * szPage;

      if( iDbOff+szPage<=szDb ){
        iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
        rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);

        if( rc==SQLITE_OK ){
          rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
        }

        if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
          break;
        }
      }

      pInfo->nBackfillAttempted = i-1;
    }
  }

  return rc;
}

/*
** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
** variable so that older snapshots can be accessed. To do this, loop
** through all wal frames from nBackfillAttempted to (nBackfill+1),
** comparing their content to the corresponding page with the database
** file, if any. Set nBackfillAttempted to the frame number of the
** first frame for which the wal file content matches the db file.
**
** This is only really safe if the file-system is such that any page
** writes made by earlier checkpointers were atomic operations, which
** is not always true. It is also possible that nBackfillAttempted
** may be left set to a value larger than expected, if a wal frame
** contains content that duplicate of an earlier version of the same
** page.
**
** SQLITE_OK is returned if successful, or an SQLite error code if an
** error occurs. It is not an error if nBackfillAttempted cannot be
** decreased at all.
*/
int sqlite3WalSnapshotRecover(Wal *pWal){
  int rc;

  assert( pWal->readLock>=0 );
  rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
  if( rc==SQLITE_OK ){
    void *pBuf1 = sqlite3_malloc(pWal->szPage);
    void *pBuf2 = sqlite3_malloc(pWal->szPage);
    if( pBuf1==0 || pBuf2==0 ){
      rc = SQLITE_NOMEM;
    }else{
      pWal->ckptLock = 1;
      SEH_TRY {
        rc = walSnapshotRecover(pWal, pBuf1, pBuf2);
      }
      SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; )
      pWal->ckptLock = 0;
    }

    sqlite3_free(pBuf1);
    sqlite3_free(pBuf2);
    walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
  }

  return rc;
}
#endif /* SQLITE_ENABLE_SNAPSHOT */

/*
** This function does the work of sqlite3WalBeginReadTransaction() (see 
** below). That function simply calls this one inside an SEH_TRY{...} block.
*/
static int walBeginReadTransaction(Wal *pWal, int *pChanged){
  int rc;                         /* Return code */
  int cnt = 0;                    /* Number of TryBeginRead attempts */
#ifdef SQLITE_ENABLE_SNAPSHOT
  int ckptLock = 0;
  int bChanged = 0;
  WalIndexHdr *pSnapshot = pWal->pSnapshot;
#endif

  assert( pWal->ckptLock==0 );
  assert( pWal->nSehTry>0 );

#ifdef SQLITE_ENABLE_SNAPSHOT
  if( pSnapshot ){
    if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
      bChanged = 1;
    }

    /* It is possible that there is a checkpointer thread running
    ** concurrent with this code. If this is the case, it may be that the
    ** checkpointer has already determined that it will checkpoint
    ** snapshot X, where X is later in the wal file than pSnapshot, but
    ** has not yet set the pInfo->nBackfillAttempted variable to indicate
    ** its intent. To avoid the race condition this leads to, ensure that
    ** there is no checkpointer process by taking a shared CKPT lock
    ** before checking pInfo->nBackfillAttempted.  */
    (void)walEnableBlocking(pWal);
    rc = walLockShared(pWal, WAL_CKPT_LOCK);
    walDisableBlocking(pWal);

    if( rc!=SQLITE_OK ){
      return rc;
    }
    ckptLock = 1;
  }
#endif

  do{
    rc = walTryBeginRead(pWal, pChanged, 0, &cnt);
  }while( rc==WAL_RETRY );
  testcase( (rc&0xff)==SQLITE_BUSY );
  testcase( (rc&0xff)==SQLITE_IOERR );
  testcase( rc==SQLITE_PROTOCOL );
  testcase( rc==SQLITE_OK );

#ifdef SQLITE_ENABLE_SNAPSHOT
  if( rc==SQLITE_OK ){
    if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
      /* At this point the client has a lock on an aReadMark[] slot holding
      ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
      ** is populated with the wal-index header corresponding to the head
      ** of the wal file. Verify that pSnapshot is still valid before
      ** continuing.  Reasons why pSnapshot might no longer be valid:
      **
      **    (1)  The WAL file has been reset since the snapshot was taken.
      **         In this case, the salt will have changed.
      **
      **    (2)  A checkpoint as been attempted that wrote frames past
      **         pSnapshot->mxFrame into the database file.  Note that the
      **         checkpoint need not have completed for this to cause problems.
      */
      volatile WalCkptInfo *pInfo = walCkptInfo(pWal);

      assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
      assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );

      /* Check that the wal file has not been wrapped. Assuming that it has
      ** not, also check that no checkpointer has attempted to checkpoint any
      ** frames beyond pSnapshot->mxFrame. If either of these conditions are
      ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr
      ** with *pSnapshot and set *pChanged as appropriate for opening the
      ** snapshot.  */
      if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
       && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
      ){
        assert( pWal->readLock>0 );
        memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
        *pChanged = bChanged;
      }else{
        rc = SQLITE_ERROR_SNAPSHOT;
      }

      /* A client using a non-current snapshot may not ignore any frames
      ** from the start of the wal file. This is because, for a system
      ** where (minFrame < iSnapshot < maxFrame), a checkpointer may
      ** have omitted to checkpoint a frame earlier than minFrame in
      ** the file because there exists a frame after iSnapshot that
      ** is the same database page.  */
      pWal->minFrame = 1;

      if( rc!=SQLITE_OK ){
        sqlite3WalEndReadTransaction(pWal);
      }
    }
  }

  /* Release the shared CKPT lock obtained above. */
  if( ckptLock ){
    assert( pSnapshot );
    walUnlockShared(pWal, WAL_CKPT_LOCK);
  }
#endif
  return rc;
}

/*
** Begin a read transaction on the database.
**
** This routine used to be called sqlite3OpenSnapshot() and with good reason:
** it takes a snapshot of the state of the WAL and wal-index for the current
** instant in time.  The current thread will continue to use this snapshot.
** Other threads might append new content to the WAL and wal-index but
** that extra content is ignored by the current thread.
**
** If the database contents have changes since the previous read
** transaction, then *pChanged is set to 1 before returning.  The
** Pager layer will use this to know that its cache is stale and
** needs to be flushed.
*/
int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
  int rc;
  SEH_TRY {
    rc = walBeginReadTransaction(pWal, pChanged);
  }
  SEH_EXCEPT( rc = walHandleException(pWal); )
  return rc;
}

/*
** Finish with a read transaction.  All this does is release the
** read-lock.
*/
void sqlite3WalEndReadTransaction(Wal *pWal){
  sqlite3WalEndWriteTransaction(pWal);
  if( pWal->readLock>=0 ){
    walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
    pWal->readLock = -1;
  }
}

/*
** Search the wal file for page pgno. If found, set *piRead to the frame that
** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
** to zero.
**
** Return SQLITE_OK if successful, or an error code if an error occurs. If an
** error does occur, the final value of *piRead is undefined.
*/
static int walFindFrame(
  Wal *pWal,                      /* WAL handle */
  Pgno pgno,                      /* Database page number to read data for */
  u32 *piRead                     /* OUT: Frame number (or zero) */
){
  u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
  u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
  int iHash;                      /* Used to loop through N hash tables */
  int iMinHash;

  /* This routine is only be called from within a read transaction. */
  assert( pWal->readLock>=0 || pWal->lockError );

  /* If the "last page" field of the wal-index header snapshot is 0, then
  ** no data will be read from the wal under any circumstances. Return early
  ** in this case as an optimization.  Likewise, if pWal->readLock==0,
  ** then the WAL is ignored by the reader so return early, as if the
  ** WAL were empty.
  */
  if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
    *piRead = 0;
    return SQLITE_OK;
  }

  /* Search the hash table or tables for an entry matching page number
  ** pgno. Each iteration of the following for() loop searches one
  ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
  **
  ** This code might run concurrently to the code in walIndexAppend()
  ** that adds entries to the wal-index (and possibly to this hash
  ** table). This means the value just read from the hash
  ** slot (aHash[iKey]) may have been added before or after the
  ** current read transaction was opened. Values added after the
  ** read transaction was opened may have been written incorrectly -
  ** i.e. these slots may contain garbage data. However, we assume
  ** that any slots written before the current read transaction was
  ** opened remain unmodified.
  **
  ** For the reasons above, the if(...) condition featured in the inner
  ** loop of the following block is more stringent that would be required
  ** if we had exclusive access to the hash-table:
  **
  **   (aPgno[iFrame]==pgno):
  **     This condition filters out normal hash-table collisions.
  **
  **   (iFrame<=iLast):
  **     This condition filters out entries that were added to the hash
  **     table after the current read-transaction had started.
  */
  iMinHash = walFramePage(pWal->minFrame);
  for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
    WalHashLoc sLoc;              /* Hash table location */
    int iKey;                     /* Hash slot index */
    int nCollide;                 /* Number of hash collisions remaining */
    int rc;                       /* Error code */
    u32 iH;

    rc = walHashGet(pWal, iHash, &sLoc);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    nCollide = HASHTABLE_NSLOT;
    iKey = walHash(pgno);
    SEH_INJECT_FAULT;
    while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){
      u32 iFrame = iH + sLoc.iZero;
      if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH-1]==pgno ){
        assert( iFrame>iRead || CORRUPT_DB );
        iRead = iFrame;
      }
      if( (nCollide--)==0 ){
        *piRead = 0;
        return SQLITE_CORRUPT_BKPT;
      }
      iKey = walNextHash(iKey);
    }
    if( iRead ) break;
  }

#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
  /* If expensive assert() statements are available, do a linear search
  ** of the wal-index file content. Make sure the results agree with the
  ** result obtained using the hash indexes above.  */
  {
    u32 iRead2 = 0;
    u32 iTest;
    assert( pWal->bShmUnreliable || pWal->minFrame>0 );
    for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
      if( walFramePgno(pWal, iTest)==pgno ){
        iRead2 = iTest;
        break;
      }
    }
    assert( iRead==iRead2 );
  }
#endif

  *piRead = iRead;
  return SQLITE_OK;
}

/*
** Search the wal file for page pgno. If found, set *piRead to the frame that
** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
** to zero.
**
** Return SQLITE_OK if successful, or an error code if an error occurs. If an
** error does occur, the final value of *piRead is undefined.
**
** The difference between this function and walFindFrame() is that this
** function wraps walFindFrame() in an SEH_TRY{...} block.
*/
int sqlite3WalFindFrame(
  Wal *pWal,                      /* WAL handle */
  Pgno pgno,                      /* Database page number to read data for */
  u32 *piRead                     /* OUT: Frame number (or zero) */
){
  int rc;
  SEH_TRY {
    rc = walFindFrame(pWal, pgno, piRead);
  }
  SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; )
  return rc;
}

/*
** Read the contents of frame iRead from the wal file into buffer pOut
** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
** error code otherwise.
*/
int sqlite3WalReadFrame(
  Wal *pWal,                      /* WAL handle */
  u32 iRead,                      /* Frame to read */
  int nOut,                       /* Size of buffer pOut in bytes */
  u8 *pOut                        /* Buffer to write page data to */
){
  int sz;
  i64 iOffset;
  sz = pWal->hdr.szPage;
  sz = (sz&0xfe00) + ((sz&0x0001)<<16);
  testcase( sz<=32768 );
  testcase( sz>=65536 );
  iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
  /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
  return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
}

/*
** Return the size of the database in pages (or zero, if unknown).
*/
Pgno sqlite3WalDbsize(Wal *pWal){
  if( pWal && ALWAYS(pWal->readLock>=0) ){
    return pWal->hdr.nPage;
  }
  return 0;
}


/*
** This function starts a write transaction on the WAL.
**
** A read transaction must have already been started by a prior call
** to sqlite3WalBeginReadTransaction().
**
** If another thread or process has written into the database since
** the read transaction was started, then it is not possible for this
** thread to write as doing so would cause a fork.  So this routine
** returns SQLITE_BUSY in that case and no write transaction is started.
**
** There can only be a single writer active at a time.
*/
int sqlite3WalBeginWriteTransaction(Wal *pWal){
  int rc;

#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
  /* If the write-lock is already held, then it was obtained before the
  ** read-transaction was even opened, making this call a no-op.
  ** Return early. */
  if( pWal->writeLock ){
    assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) );
    return SQLITE_OK;
  }
#endif

  /* Cannot start a write transaction without first holding a read
  ** transaction. */
  assert( pWal->readLock>=0 );
  assert( pWal->writeLock==0 && pWal->iReCksum==0 );

  if( pWal->readOnly ){
    return SQLITE_READONLY;
  }

  /* Only one writer allowed at a time.  Get the write lock.  Return
  ** SQLITE_BUSY if unable.
  */
  rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
  if( rc ){
    return rc;
  }
  pWal->writeLock = 1;

  /* If another connection has written to the database file since the
  ** time the read transaction on this connection was started, then
  ** the write is disallowed.
  */
  SEH_TRY {
    if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
      rc = SQLITE_BUSY_SNAPSHOT;
    }
  }
  SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; )

  if( rc!=SQLITE_OK ){
    walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
    pWal->writeLock = 0;
  }
  return rc;
}

/*
** End a write transaction.  The commit has already been done.  This
** routine merely releases the lock.
*/
int sqlite3WalEndWriteTransaction(Wal *pWal){
  if( pWal->writeLock ){
    walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
    pWal->writeLock = 0;
    pWal->iReCksum = 0;
    pWal->truncateOnCommit = 0;
  }
  return SQLITE_OK;
}

/*
** If any data has been written (but not committed) to the log file, this
** function moves the write-pointer back to the start of the transaction.
**
** Additionally, the callback function is invoked for each frame written
** to the WAL since the start of the transaction. If the callback returns
** other than SQLITE_OK, it is not invoked again and the error code is
** returned to the caller.
**
** Otherwise, if the callback function does not return an error, this
** function returns SQLITE_OK.
*/
int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
  int rc = SQLITE_OK;
  if( ALWAYS(pWal->writeLock) ){
    Pgno iMax = pWal->hdr.mxFrame;
    Pgno iFrame;

    SEH_TRY {
      /* Restore the clients cache of the wal-index header to the state it
      ** was in before the client began writing to the database. 
      */
      memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
  
      for(iFrame=pWal->hdr.mxFrame+1; 
          ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 
          iFrame++
      ){
        /* This call cannot fail. Unless the page for which the page number
        ** is passed as the second argument is (a) in the cache and
        ** (b) has an outstanding reference, then xUndo is either a no-op
        ** (if (a) is false) or simply expels the page from the cache (if (b)
        ** is false).
        **
        ** If the upper layer is doing a rollback, it is guaranteed that there
        ** are no outstanding references to any page other than page 1. And
        ** page 1 is never written to the log until the transaction is
        ** committed. As a result, the call to xUndo may not fail.
        */
        assert( walFramePgno(pWal, iFrame)!=1 );
        rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
      }
      if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
    }
    SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; )
  }
  return rc;
}

/*
** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
** values. This function populates the array with values required to
** "rollback" the write position of the WAL handle back to the current
** point in the event of a savepoint rollback (via WalSavepointUndo()).
*/
void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
  assert( pWal->writeLock );
  aWalData[0] = pWal->hdr.mxFrame;
  aWalData[1] = pWal->hdr.aFrameCksum[0];
  aWalData[2] = pWal->hdr.aFrameCksum[1];
  aWalData[3] = pWal->nCkpt;
}

/*
** Move the write position of the WAL back to the point identified by
** the values in the aWalData[] array. aWalData must point to an array
** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
** by a call to WalSavepoint().
*/
int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
  int rc = SQLITE_OK;

  assert( pWal->writeLock );
  assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );

  if( aWalData[3]!=pWal->nCkpt ){
    /* This savepoint was opened immediately after the write-transaction
    ** was started. Right after that, the writer decided to wrap around
    ** to the start of the log. Update the savepoint values to match.
    */
    aWalData[0] = 0;
    aWalData[3] = pWal->nCkpt;
  }

  if( aWalData[0]<pWal->hdr.mxFrame ){
    pWal->hdr.mxFrame = aWalData[0];
    pWal->hdr.aFrameCksum[0] = aWalData[1];
    pWal->hdr.aFrameCksum[1] = aWalData[2];
    SEH_TRY {
      walCleanupHash(pWal);
    }
    SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; )
  }

  return rc;
}

/*
** This function is called just before writing a set of frames to the log
** file (see sqlite3WalFrames()). It checks to see if, instead of appending
** to the current log file, it is possible to overwrite the start of the
** existing log file with the new frames (i.e. "reset" the log). If so,
** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
** unchanged.
**
** SQLITE_OK is returned if no error is encountered (regardless of whether
** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
** if an error occurs.
*/
static int walRestartLog(Wal *pWal){
  int rc = SQLITE_OK;
  int cnt;

  if( pWal->readLock==0 ){
    volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
    assert( pInfo->nBackfill==pWal->hdr.mxFrame );
    if( pInfo->nBackfill>0 ){
      u32 salt1;
      sqlite3_randomness(4, &salt1);
      rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
      if( rc==SQLITE_OK ){
        /* If all readers are using WAL_READ_LOCK(0) (in other words if no
        ** readers are currently using the WAL), then the transactions
        ** frames will overwrite the start of the existing log. Update the
        ** wal-index header to reflect this.
        **
        ** In theory it would be Ok to update the cache of the header only
        ** at this point. But updating the actual wal-index header is also
        ** safe and means there is no special case for sqlite3WalUndo()
        ** to handle if this transaction is rolled back.  */
        walRestartHdr(pWal, salt1);
        walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
      }else if( rc!=SQLITE_BUSY ){
        return rc;
      }
    }
    walUnlockShared(pWal, WAL_READ_LOCK(0));
    pWal->readLock = -1;
    cnt = 0;
    do{
      int notUsed;
      rc = walTryBeginRead(pWal, &notUsed, 1, &cnt);
    }while( rc==WAL_RETRY );
    assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
    testcase( (rc&0xff)==SQLITE_IOERR );
    testcase( rc==SQLITE_PROTOCOL );
    testcase( rc==SQLITE_OK );
  }
  return rc;
}

/*
** Information about the current state of the WAL file and where
** the next fsync should occur - passed from sqlite3WalFrames() into
** walWriteToLog().
*/
typedef struct WalWriter {
  Wal *pWal;                   /* The complete WAL information */
  sqlite3_file *pFd;           /* The WAL file to which we write */
  sqlite3_int64 iSyncPoint;    /* Fsync at this offset */
  int syncFlags;               /* Flags for the fsync */
  int szPage;                  /* Size of one page */
} WalWriter;

/*
** Write iAmt bytes of content into the WAL file beginning at iOffset.
** Do a sync when crossing the p->iSyncPoint boundary.
**
** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
** first write the part before iSyncPoint, then sync, then write the
** rest.
*/
static int walWriteToLog(
  WalWriter *p,              /* WAL to write to */
  void *pContent,            /* Content to be written */
  int iAmt,                  /* Number of bytes to write */
  sqlite3_int64 iOffset      /* Start writing at this offset */
){
  int rc;
  if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
    int iFirstAmt = (int)(p->iSyncPoint - iOffset);
    rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
    if( rc ) return rc;
    iOffset += iFirstAmt;
    iAmt -= iFirstAmt;
    pContent = (void*)(iFirstAmt + (char*)pContent);
    assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
    rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
    if( iAmt==0 || rc ) return rc;
  }
  rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
  return rc;
}

/*
** Write out a single frame of the WAL
*/
static int walWriteOneFrame(
  WalWriter *p,               /* Where to write the frame */
  PgHdr *pPage,               /* The page of the frame to be written */
  int nTruncate,              /* The commit flag.  Usually 0.  >0 for commit */
  sqlite3_int64 iOffset       /* Byte offset at which to write */
){
  int rc;                         /* Result code from subfunctions */
  void *pData;                    /* Data actually written */
  u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
  pData = pPage->pData;
  walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
  rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
  if( rc ) return rc;
  /* Write the page data */
  rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
  return rc;
}

/*
** This function is called as part of committing a transaction within which
** one or more frames have been overwritten. It updates the checksums for
** all frames written to the wal file by the current transaction starting
** with the earliest to have been overwritten.
**
** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
*/
static int walRewriteChecksums(Wal *pWal, u32 iLast){
  const int szPage = pWal->szPage;/* Database page size */
  int rc = SQLITE_OK;             /* Return code */
  u8 *aBuf;                       /* Buffer to load data from wal file into */
  u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-headers in */
  u32 iRead;                      /* Next frame to read from wal file */
  i64 iCksumOff;

  aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
  if( aBuf==0 ) return SQLITE_NOMEM_BKPT;

  /* Find the checksum values to use as input for the recalculating the
  ** first checksum. If the first frame is frame 1 (implying that the current
  ** transaction restarted the wal file), these values must be read from the
  ** wal-file header. Otherwise, read them from the frame header of the
  ** previous frame.  */
  assert( pWal->iReCksum>0 );
  if( pWal->iReCksum==1 ){
    iCksumOff = 24;
  }else{
    iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
  }
  rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
  pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
  pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);

  iRead = pWal->iReCksum;
  pWal->iReCksum = 0;
  for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
    i64 iOff = walFrameOffset(iRead, szPage);
    rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
    if( rc==SQLITE_OK ){
      u32 iPgno, nDbSize;
      iPgno = sqlite3Get4byte(aBuf);
      nDbSize = sqlite3Get4byte(&aBuf[4]);

      walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
      rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
    }
  }

  sqlite3_free(aBuf);
  return rc;
}

/*
** Write a set of frames to the log. The caller must hold the write-lock
** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
*/
static int walFrames(
  Wal *pWal,                      /* Wal handle to write to */
  int szPage,                     /* Database page-size in bytes */
  PgHdr *pList,                   /* List of dirty pages to write */
  Pgno nTruncate,                 /* Database size after this commit */
  int isCommit,                   /* True if this is a commit */
  int sync_flags                  /* Flags to pass to OsSync() (or 0) */
){
  int rc;                         /* Used to catch return codes */
  u32 iFrame;                     /* Next frame address */
  PgHdr *p;                       /* Iterator to run through pList with. */
  PgHdr *pLast = 0;               /* Last frame in list */
  int nExtra = 0;                 /* Number of extra copies of last page */
  int szFrame;                    /* The size of a single frame */
  i64 iOffset;                    /* Next byte to write in WAL file */
  WalWriter w;                    /* The writer */
  u32 iFirst = 0;                 /* First frame that may be overwritten */
  WalIndexHdr *pLive;             /* Pointer to shared header */

  assert( pList );
  assert( pWal->writeLock );

  /* If this frame set completes a transaction, then nTruncate>0.  If
  ** nTruncate==0 then this frame set does not complete the transaction. */
  assert( (isCommit!=0)==(nTruncate!=0) );

#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
  { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
    WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
              pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
  }
#endif

  pLive = (WalIndexHdr*)walIndexHdr(pWal);
  if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
    iFirst = pLive->mxFrame+1;
  }

  /* See if it is possible to write these frames into the start of the
  ** log file, instead of appending to it at pWal->hdr.mxFrame.
  */
  if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
    return rc;
  }

  /* If this is the first frame written into the log, write the WAL
  ** header to the start of the WAL file. See comments at the top of
  ** this source file for a description of the WAL header format.
  */
  iFrame = pWal->hdr.mxFrame;
  if( iFrame==0 ){
    u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
    u32 aCksum[2];                /* Checksum for wal-header */

    sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
    sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
    sqlite3Put4byte(&aWalHdr[8], szPage);
    sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
    if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
    memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
    walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
    sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
    sqlite3Put4byte(&aWalHdr[28], aCksum[1]);

    pWal->szPage = szPage;
    pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
    pWal->hdr.aFrameCksum[0] = aCksum[0];
    pWal->hdr.aFrameCksum[1] = aCksum[1];
    pWal->truncateOnCommit = 1;

    rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
    WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
    if( rc!=SQLITE_OK ){
      return rc;
    }

    /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
    ** all syncing is turned off by PRAGMA synchronous=OFF).  Otherwise
    ** an out-of-order write following a WAL restart could result in
    ** database corruption.  See the ticket:
    **
    **     https://sqlite.org/src/info/ff5be73dee
    */
    if( pWal->syncHeader ){
      rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
      if( rc ) return rc;
    }
  }
  if( (int)pWal->szPage!=szPage ){
    return SQLITE_CORRUPT_BKPT;  /* TH3 test case: cov1/corrupt155.test */
  }

  /* Setup information needed to write frames into the WAL */
  w.pWal = pWal;
  w.pFd = pWal->pWalFd;
  w.iSyncPoint = 0;
  w.syncFlags = sync_flags;
  w.szPage = szPage;
  iOffset = walFrameOffset(iFrame+1, szPage);
  szFrame = szPage + WAL_FRAME_HDRSIZE;

  /* Write all frames into the log file exactly once */
  for(p=pList; p; p=p->pDirty){
    int nDbSize;   /* 0 normally.  Positive == commit flag */

    /* Check if this page has already been written into the wal file by
    ** the current transaction. If so, overwrite the existing frame and
    ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
    ** checksums must be recomputed when the transaction is committed.  */
    if( iFirst && (p->pDirty || isCommit==0) ){
      u32 iWrite = 0;
      VVA_ONLY(rc =) walFindFrame(pWal, p->pgno, &iWrite);
      assert( rc==SQLITE_OK || iWrite==0 );
      if( iWrite>=iFirst ){
        i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
        void *pData;
        if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
          pWal->iReCksum = iWrite;
        }
        pData = p->pData;
        rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
        if( rc ) return rc;
        p->flags &= ~PGHDR_WAL_APPEND;
        continue;
      }
    }

    iFrame++;
    assert( iOffset==walFrameOffset(iFrame, szPage) );
    nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
    rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
    if( rc ) return rc;
    pLast = p;
    iOffset += szFrame;
    p->flags |= PGHDR_WAL_APPEND;
  }

  /* Recalculate checksums within the wal file if required. */
  if( isCommit && pWal->iReCksum ){
    rc = walRewriteChecksums(pWal, iFrame);
    if( rc ) return rc;
  }

  /* If this is the end of a transaction, then we might need to pad
  ** the transaction and/or sync the WAL file.
  **
  ** Padding and syncing only occur if this set of frames complete a
  ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
  ** or synchronous==OFF, then no padding or syncing are needed.
  **
  ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
  ** needed and only the sync is done.  If padding is needed, then the
  ** final frame is repeated (with its commit mark) until the next sector
  ** boundary is crossed.  Only the part of the WAL prior to the last
  ** sector boundary is synced; the part of the last frame that extends
  ** past the sector boundary is written after the sync.
  */
  if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
    int bSync = 1;
    if( pWal->padToSectorBoundary ){
      int sectorSize = sqlite3SectorSize(pWal->pWalFd);
      w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
      bSync = (w.iSyncPoint==iOffset);
      testcase( bSync );
      while( iOffset<w.iSyncPoint ){
        rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
        if( rc ) return rc;
        iOffset += szFrame;
        nExtra++;
        assert( pLast!=0 );
      }
    }
    if( bSync ){
      assert( rc==SQLITE_OK );
      rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
    }
  }

  /* If this frame set completes the first transaction in the WAL and
  ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
  ** journal size limit, if possible.
  */
  if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
    i64 sz = pWal->mxWalSize;
    if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
      sz = walFrameOffset(iFrame+nExtra+1, szPage);
    }
    walLimitSize(pWal, sz);
    pWal->truncateOnCommit = 0;
  }

  /* Append data to the wal-index. It is not necessary to lock the
  ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
  ** guarantees that there are no other writers, and no data that may
  ** be in use by existing readers is being overwritten.
  */
  iFrame = pWal->hdr.mxFrame;
  for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
    if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
    iFrame++;
    rc = walIndexAppend(pWal, iFrame, p->pgno);
  }
  assert( pLast!=0 || nExtra==0 );
  while( rc==SQLITE_OK && nExtra>0 ){
    iFrame++;
    nExtra--;
    rc = walIndexAppend(pWal, iFrame, pLast->pgno);
  }

  if( rc==SQLITE_OK ){
    /* Update the private copy of the header. */
    pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
    testcase( szPage<=32768 );
    testcase( szPage>=65536 );
    pWal->hdr.mxFrame = iFrame;
    if( isCommit ){
      pWal->hdr.iChange++;
      pWal->hdr.nPage = nTruncate;
    }
    /* If this is a commit, update the wal-index header too. */
    if( isCommit ){
      walIndexWriteHdr(pWal);
      pWal->iCallback = iFrame;
    }
  }

  WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
  return rc;
}

/* 
** Write a set of frames to the log. The caller must hold the write-lock
** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
**
** The difference between this function and walFrames() is that this
** function wraps walFrames() in an SEH_TRY{...} block.
*/
int sqlite3WalFrames(
  Wal *pWal,                      /* Wal handle to write to */
  int szPage,                     /* Database page-size in bytes */
  PgHdr *pList,                   /* List of dirty pages to write */
  Pgno nTruncate,                 /* Database size after this commit */
  int isCommit,                   /* True if this is a commit */
  int sync_flags                  /* Flags to pass to OsSync() (or 0) */
){
  int rc;
  SEH_TRY {
    rc = walFrames(pWal, szPage, pList, nTruncate, isCommit, sync_flags);
  }
  SEH_EXCEPT( rc = walHandleException(pWal); )
  return rc;
}

/*
** This routine is called to implement sqlite3_wal_checkpoint() and
** related interfaces.
**
** Obtain a CHECKPOINT lock and then backfill as much information as
** we can from WAL into the database.
**
** If parameter xBusy is not NULL, it is a pointer to a busy-handler
** callback. In this case this function runs a blocking checkpoint.
*/
int sqlite3WalCheckpoint(
  Wal *pWal,                      /* Wal connection */
  sqlite3 *db,                    /* Check this handle's interrupt flag */
  int eMode,                      /* PASSIVE, FULL, RESTART, or TRUNCATE */
  int (*xBusy)(void*),            /* Function to call when busy */
  void *pBusyArg,                 /* Context argument for xBusyHandler */
  int sync_flags,                 /* Flags to sync db file with (or 0) */
  int nBuf,                       /* Size of temporary buffer */
  u8 *zBuf,                       /* Temporary buffer to use */
  int *pnLog,                     /* OUT: Number of frames in WAL */
  int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
){
  int rc;                         /* Return code */
  int isChanged = 0;              /* True if a new wal-index header is loaded */
  int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
  int (*xBusy2)(void*) = xBusy;   /* Busy handler for eMode2 */

  assert( pWal->ckptLock==0 );
  assert( pWal->writeLock==0 );

  /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
  ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
  assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );

  if( pWal->readOnly ) return SQLITE_READONLY;
  WALTRACE(("WAL%p: checkpoint begins\n", pWal));

  /* Enable blocking locks, if possible. */
  sqlite3WalDb(pWal, db);
  if( xBusy2 ) (void)walEnableBlocking(pWal);

  /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
  ** "checkpoint" lock on the database file.
  ** EVIDENCE-OF: R-10421-19736 If any other process is running a
  ** checkpoint operation at the same time, the lock cannot be obtained and
  ** SQLITE_BUSY is returned.
  ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
  ** it will not be invoked in this case.
  */
  rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
  testcase( rc==SQLITE_BUSY );
  testcase( rc!=SQLITE_OK && xBusy2!=0 );
  if( rc==SQLITE_OK ){
    pWal->ckptLock = 1;

    /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
    ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
    ** file.
    **
    ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
    ** immediately, and a busy-handler is configured, it is invoked and the
    ** writer lock retried until either the busy-handler returns 0 or the
    ** lock is successfully obtained.
    */
    if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
      rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1);
      if( rc==SQLITE_OK ){
        pWal->writeLock = 1;
      }else if( rc==SQLITE_BUSY ){
        eMode2 = SQLITE_CHECKPOINT_PASSIVE;
        xBusy2 = 0;
        rc = SQLITE_OK;
      }
    }
  }


  /* Read the wal-index header. */
  SEH_TRY {
    if( rc==SQLITE_OK ){
      /* For a passive checkpoint, do not re-enable blocking locks after
      ** reading the wal-index header. A passive checkpoint should not block 
      ** or invoke the busy handler. The only lock such a checkpoint may 
      ** attempt to obtain is a lock on a read-slot, and it should give up
      ** immediately and do a partial checkpoint if it cannot obtain it. */
      walDisableBlocking(pWal);
      rc = walIndexReadHdr(pWal, &isChanged);
      if( eMode2!=SQLITE_CHECKPOINT_PASSIVE ) (void)walEnableBlocking(pWal);
      if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
        sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
      }
    }
  
    /* Copy data from the log to the database file. */
    if( rc==SQLITE_OK ){
      if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
        rc = SQLITE_CORRUPT_BKPT;
      }else{
        rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags,zBuf);
      }

      /* If no error occurred, set the output variables. */
      if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
        if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
        SEH_INJECT_FAULT;
        if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
      }
    }
  }
  SEH_EXCEPT( rc = walHandleException(pWal); )

  if( isChanged ){
    /* If a new wal-index header was loaded before the checkpoint was
    ** performed, then the pager-cache associated with pWal is now
    ** out of date. So zero the cached wal-index header to ensure that
    ** next time the pager opens a snapshot on this database it knows that
    ** the cache needs to be reset.
    */
    memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
  }

  walDisableBlocking(pWal);
  sqlite3WalDb(pWal, 0);

  /* Release the locks. */
  sqlite3WalEndWriteTransaction(pWal);
  if( pWal->ckptLock ){
    walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
    pWal->ckptLock = 0;
  }
  WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
  if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
#endif
  return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
}

/* Return the value to pass to a sqlite3_wal_hook callback, the
** number of frames in the WAL at the point of the last commit since
** sqlite3WalCallback() was called.  If no commits have occurred since
** the last call, then return 0.
*/
int sqlite3WalCallback(Wal *pWal){
  u32 ret = 0;
  if( pWal ){
    ret = pWal->iCallback;
    pWal->iCallback = 0;
  }
  return (int)ret;
}

/*
** This function is called to change the WAL subsystem into or out
** of locking_mode=EXCLUSIVE.
**
** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
** into locking_mode=NORMAL.  This means that we must acquire a lock
** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
** or if the acquisition of the lock fails, then return 0.  If the
** transition out of exclusive-mode is successful, return 1.  This
** operation must occur while the pager is still holding the exclusive
** lock on the main database file.
**
** If op is one, then change from locking_mode=NORMAL into
** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
** be released.  Return 1 if the transition is made and 0 if the
** WAL is already in exclusive-locking mode - meaning that this
** routine is a no-op.  The pager must already hold the exclusive lock
** on the main database file before invoking this operation.
**
** If op is negative, then do a dry-run of the op==1 case but do
** not actually change anything. The pager uses this to see if it
** should acquire the database exclusive lock prior to invoking
** the op==1 case.
*/
int sqlite3WalExclusiveMode(Wal *pWal, int op){
  int rc;
  assert( pWal->writeLock==0 );
  assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );

  /* pWal->readLock is usually set, but might be -1 if there was a
  ** prior error while attempting to acquire are read-lock. This cannot
  ** happen if the connection is actually in exclusive mode (as no xShmLock
  ** locks are taken in this case). Nor should the pager attempt to
  ** upgrade to exclusive-mode following such an error.
  */
#ifndef SQLITE_USE_SEH
  assert( pWal->readLock>=0 || pWal->lockError );
#endif
  assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );

  if( op==0 ){
    if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
      pWal->exclusiveMode = WAL_NORMAL_MODE;
      if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
        pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
      }
      rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
    }else{
      /* Already in locking_mode=NORMAL */
      rc = 0;
    }
  }else if( op>0 ){
    assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
    assert( pWal->readLock>=0 );
    walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
    pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
    rc = 1;
  }else{
    rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
  }
  return rc;
}

/*
** Return true if the argument is non-NULL and the WAL module is using
** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
** WAL module is using shared-memory, return false.
*/
int sqlite3WalHeapMemory(Wal *pWal){
  return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
}

#ifdef SQLITE_ENABLE_SNAPSHOT
/* Create a snapshot object.  The content of a snapshot is opaque to
** every other subsystem, so the WAL module can put whatever it needs
** in the object.
*/
int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
  int rc = SQLITE_OK;
  WalIndexHdr *pRet;
  static const u32 aZero[4] = { 0, 0, 0, 0 };

  assert( pWal->readLock>=0 && pWal->writeLock==0 );

  if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
    *ppSnapshot = 0;
    return SQLITE_ERROR;
  }
  pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
  if( pRet==0 ){
    rc = SQLITE_NOMEM_BKPT;
  }else{
    memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
    *ppSnapshot = (sqlite3_snapshot*)pRet;
  }

  return rc;
}

/* Try to open on pSnapshot when the next read-transaction starts
*/
void sqlite3WalSnapshotOpen(
  Wal *pWal,
  sqlite3_snapshot *pSnapshot
){
  pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
}

/*
** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
*/
int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
  WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
  WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;

  /* aSalt[0] is a copy of the value stored in the wal file header. It
  ** is incremented each time the wal file is restarted.  */
  if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
  if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
  if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
  if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
  return 0;
}

/*
** The caller currently has a read transaction open on the database.
** This function takes a SHARED lock on the CHECKPOINTER slot and then
** checks if the snapshot passed as the second argument is still
** available. If so, SQLITE_OK is returned.
**
** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
** lock is released before returning.
*/
int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){
  int rc;
  SEH_TRY {
    rc = walLockShared(pWal, WAL_CKPT_LOCK);
    if( rc==SQLITE_OK ){
      WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot;
      if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
       || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted
      ){
        rc = SQLITE_ERROR_SNAPSHOT;
        walUnlockShared(pWal, WAL_CKPT_LOCK);
      }
    }
  }
  SEH_EXCEPT( rc = walHandleException(pWal); )
  return rc;
}

/*
** Release a lock obtained by an earlier successful call to
** sqlite3WalSnapshotCheck().
*/
void sqlite3WalSnapshotUnlock(Wal *pWal){
  assert( pWal );
  walUnlockShared(pWal, WAL_CKPT_LOCK);
}


#endif /* SQLITE_ENABLE_SNAPSHOT */

#ifdef SQLITE_ENABLE_ZIPVFS
/*
** If the argument is not NULL, it points to a Wal object that holds a
** read-lock. This function returns the database page-size if it is known,
** or zero if it is not (or if pWal is NULL).
*/
int sqlite3WalFramesize(Wal *pWal){
  assert( pWal==0 || pWal->readLock>=0 );
  return (pWal ? pWal->szPage : 0);
}
#endif

/* Return the sqlite3_file object for the WAL file
*/
sqlite3_file *sqlite3WalFile(Wal *pWal){
  return pWal->pWalFd;
}

#endif /* #ifndef SQLITE_OMIT_WAL */