//! General purpose combinators use nom::bytes::streaming::take; use nom::combinator::map_parser; use nom::error::{make_error, ErrorKind, ParseError}; use nom::{IResult, Needed, Parser}; use nom::{InputIter, InputTake}; use nom::{InputLength, ToUsize}; #[deprecated(since = "3.0.1", note = "please use `be_var_u64` instead")] /// Read an entire slice as a big-endian value. /// /// Returns the value as `u64`. This function checks for integer overflows, and returns a /// `Result::Err` value if the value is too big. pub fn bytes_to_u64(s: &[u8]) -> Result { let mut u: u64 = 0; if s.is_empty() { return Err("empty"); }; if s.len() > 8 { return Err("overflow"); } for &c in s { let u1 = u << 8; u = u1 | (c as u64); } Ok(u) } /// Read the entire slice as a big endian unsigned integer, up to 8 bytes #[inline] pub fn be_var_u64<'a, E: ParseError<&'a [u8]>>(input: &'a [u8]) -> IResult<&'a [u8], u64, E> { if input.is_empty() { return Err(nom::Err::Incomplete(Needed::new(1))); } if input.len() > 8 { return Err(nom::Err::Error(make_error(input, ErrorKind::TooLarge))); } let mut res = 0u64; for byte in input { res = (res << 8) + *byte as u64; } Ok((&b""[..], res)) } /// Read the entire slice as a little endian unsigned integer, up to 8 bytes #[inline] pub fn le_var_u64<'a, E: ParseError<&'a [u8]>>(input: &'a [u8]) -> IResult<&'a [u8], u64, E> { if input.is_empty() { return Err(nom::Err::Incomplete(Needed::new(1))); } if input.len() > 8 { return Err(nom::Err::Error(make_error(input, ErrorKind::TooLarge))); } let mut res = 0u64; for byte in input.iter().rev() { res = (res << 8) + *byte as u64; } Ok((&b""[..], res)) } /// Read a slice as a big-endian value. #[inline] pub fn parse_hex_to_u64(i: &[u8], size: S) -> IResult<&[u8], u64> where S: ToUsize + Copy, { map_parser(take(size.to_usize()), be_var_u64)(i) } /// Apply combinator, automatically converts between errors if the underlying type supports it pub fn upgrade_error, E2: ParseError, F>( mut f: F, ) -> impl FnMut(I) -> IResult where F: FnMut(I) -> IResult, E2: From, { move |i| f(i).map_err(nom::Err::convert) } /// Create a combinator that returns the provided value, and input unchanged pub fn pure>(val: O) -> impl Fn(I) -> IResult where O: Clone, { move |input: I| Ok((input, val.clone())) } /// Return a closure that takes `len` bytes from input, and applies `parser`. pub fn flat_take, F>( len: C, mut parser: F, ) -> impl FnMut(I) -> IResult where I: InputTake + InputLength + InputIter, C: ToUsize + Copy, F: Parser, { // Note: this is the same as `map_parser(take(len), parser)` move |input: I| { let (input, o1) = take(len.to_usize())(input)?; let (_, o2) = parser.parse(o1)?; Ok((input, o2)) } } /// Take `len` bytes from `input`, and apply `parser`. pub fn flat_takec, C, F>(input: I, len: C, parser: F) -> IResult where C: ToUsize + Copy, F: Parser, I: InputTake + InputLength + InputIter, O: InputLength, { flat_take(len, parser)(input) } /// Helper macro for nom parsers: run first parser if condition is true, else second parser pub fn cond_else, C, F, G>( cond: C, mut first: F, mut second: G, ) -> impl FnMut(I) -> IResult where C: Fn() -> bool, F: Parser, G: Parser, { move |input: I| { if cond() { first.parse(input) } else { second.parse(input) } } } /// Align input value to the next multiple of n bytes /// Valid only if n is a power of 2 pub const fn align_n2(x: usize, n: usize) -> usize { (x + (n - 1)) & !(n - 1) } /// Align input value to the next multiple of 4 bytes pub const fn align32(x: usize) -> usize { (x + 3) & !3 } #[cfg(test)] mod tests { use super::{align32, be_var_u64, cond_else, flat_take, pure}; use nom::bytes::streaming::take; use nom::number::streaming::{be_u16, be_u32, be_u8}; use nom::{Err, IResult, Needed}; #[test] fn test_be_var_u64() { let res: IResult<&[u8], u64> = be_var_u64(b"\x12\x34\x56"); let (_, v) = res.expect("be_var_u64 failed"); assert_eq!(v, 0x123456); } #[test] fn test_flat_take() { let input = &[0x00, 0x01, 0xff]; // read first 2 bytes and use correct combinator: OK let res: IResult<&[u8], u16> = flat_take(2u8, be_u16)(input); assert_eq!(res, Ok((&input[2..], 0x0001))); // read 3 bytes and use 2: OK (some input is just lost) let res: IResult<&[u8], u16> = flat_take(3u8, be_u16)(input); assert_eq!(res, Ok((&b""[..], 0x0001))); // read 2 bytes and a combinator requiring more bytes let res: IResult<&[u8], u32> = flat_take(2u8, be_u32)(input); assert_eq!(res, Err(Err::Incomplete(Needed::new(2)))); } #[test] fn test_flat_take_str() { let input = "abcdef"; // read first 2 bytes and use correct combinator: OK let res: IResult<&str, &str> = flat_take(2u8, take(2u8))(input); assert_eq!(res, Ok(("cdef", "ab"))); // read 3 bytes and use 2: OK (some input is just lost) let res: IResult<&str, &str> = flat_take(3u8, take(2u8))(input); assert_eq!(res, Ok(("def", "ab"))); // read 2 bytes and a use combinator requiring more bytes let res: IResult<&str, &str> = flat_take(2u8, take(4u8))(input); assert_eq!(res, Err(Err::Incomplete(Needed::Unknown))); } #[test] fn test_cond_else() { let input = &[0x01][..]; let empty = &b""[..]; let a = 1; fn parse_u8(i: &[u8]) -> IResult<&[u8], u8> { be_u8(i) } assert_eq!( cond_else(|| a == 1, parse_u8, pure(0x02))(input), Ok((empty, 0x01)) ); assert_eq!( cond_else(|| a == 1, parse_u8, pure(0x02))(input), Ok((empty, 0x01)) ); assert_eq!( cond_else(|| a == 2, parse_u8, pure(0x02))(input), Ok((input, 0x02)) ); assert_eq!( cond_else(|| a == 1, pure(0x02), parse_u8)(input), Ok((input, 0x02)) ); let res: IResult<&[u8], u8> = cond_else(|| a == 1, parse_u8, parse_u8)(input); assert_eq!(res, Ok((empty, 0x01))); } #[test] fn test_align32() { assert_eq!(align32(3), 4); assert_eq!(align32(4), 4); assert_eq!(align32(5), 8); assert_eq!(align32(5usize), 8); } }