summaryrefslogtreecommitdiffstats
path: root/src/core/service.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-10 20:49:52 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-10 20:49:52 +0000
commit55944e5e40b1be2afc4855d8d2baf4b73d1876b5 (patch)
tree33f869f55a1b149e9b7c2b7e201867ca5dd52992 /src/core/service.c
parentInitial commit. (diff)
downloadsystemd-55944e5e40b1be2afc4855d8d2baf4b73d1876b5.tar.xz
systemd-55944e5e40b1be2afc4855d8d2baf4b73d1876b5.zip
Adding upstream version 255.4.upstream/255.4
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/core/service.c')
-rw-r--r--src/core/service.c5161
1 files changed, 5161 insertions, 0 deletions
diff --git a/src/core/service.c b/src/core/service.c
new file mode 100644
index 0000000..060ac08
--- /dev/null
+++ b/src/core/service.c
@@ -0,0 +1,5161 @@
+/* SPDX-License-Identifier: LGPL-2.1-or-later */
+
+#include <errno.h>
+#include <math.h>
+#include <sys/stat.h>
+#include <sys/types.h>
+#include <unistd.h>
+
+#include "sd-messages.h"
+
+#include "alloc-util.h"
+#include "async.h"
+#include "bus-error.h"
+#include "bus-kernel.h"
+#include "bus-util.h"
+#include "chase.h"
+#include "constants.h"
+#include "dbus-service.h"
+#include "dbus-unit.h"
+#include "devnum-util.h"
+#include "env-util.h"
+#include "escape.h"
+#include "exit-status.h"
+#include "fd-util.h"
+#include "fileio.h"
+#include "format-util.h"
+#include "load-dropin.h"
+#include "load-fragment.h"
+#include "log.h"
+#include "manager.h"
+#include "missing_audit.h"
+#include "open-file.h"
+#include "parse-util.h"
+#include "path-util.h"
+#include "process-util.h"
+#include "random-util.h"
+#include "serialize.h"
+#include "service.h"
+#include "signal-util.h"
+#include "special.h"
+#include "stdio-util.h"
+#include "string-table.h"
+#include "string-util.h"
+#include "strv.h"
+#include "unit-name.h"
+#include "unit.h"
+#include "utf8.h"
+
+#define service_spawn(...) service_spawn_internal(__func__, __VA_ARGS__)
+
+static const UnitActiveState state_translation_table[_SERVICE_STATE_MAX] = {
+ [SERVICE_DEAD] = UNIT_INACTIVE,
+ [SERVICE_CONDITION] = UNIT_ACTIVATING,
+ [SERVICE_START_PRE] = UNIT_ACTIVATING,
+ [SERVICE_START] = UNIT_ACTIVATING,
+ [SERVICE_START_POST] = UNIT_ACTIVATING,
+ [SERVICE_RUNNING] = UNIT_ACTIVE,
+ [SERVICE_EXITED] = UNIT_ACTIVE,
+ [SERVICE_RELOAD] = UNIT_RELOADING,
+ [SERVICE_RELOAD_SIGNAL] = UNIT_RELOADING,
+ [SERVICE_RELOAD_NOTIFY] = UNIT_RELOADING,
+ [SERVICE_STOP] = UNIT_DEACTIVATING,
+ [SERVICE_STOP_WATCHDOG] = UNIT_DEACTIVATING,
+ [SERVICE_STOP_SIGTERM] = UNIT_DEACTIVATING,
+ [SERVICE_STOP_SIGKILL] = UNIT_DEACTIVATING,
+ [SERVICE_STOP_POST] = UNIT_DEACTIVATING,
+ [SERVICE_FINAL_WATCHDOG] = UNIT_DEACTIVATING,
+ [SERVICE_FINAL_SIGTERM] = UNIT_DEACTIVATING,
+ [SERVICE_FINAL_SIGKILL] = UNIT_DEACTIVATING,
+ [SERVICE_FAILED] = UNIT_FAILED,
+ [SERVICE_DEAD_BEFORE_AUTO_RESTART] = UNIT_INACTIVE,
+ [SERVICE_FAILED_BEFORE_AUTO_RESTART] = UNIT_FAILED,
+ [SERVICE_DEAD_RESOURCES_PINNED] = UNIT_INACTIVE,
+ [SERVICE_AUTO_RESTART] = UNIT_ACTIVATING,
+ [SERVICE_AUTO_RESTART_QUEUED] = UNIT_ACTIVATING,
+ [SERVICE_CLEANING] = UNIT_MAINTENANCE,
+};
+
+/* For Type=idle we never want to delay any other jobs, hence we
+ * consider idle jobs active as soon as we start working on them */
+static const UnitActiveState state_translation_table_idle[_SERVICE_STATE_MAX] = {
+ [SERVICE_DEAD] = UNIT_INACTIVE,
+ [SERVICE_CONDITION] = UNIT_ACTIVE,
+ [SERVICE_START_PRE] = UNIT_ACTIVE,
+ [SERVICE_START] = UNIT_ACTIVE,
+ [SERVICE_START_POST] = UNIT_ACTIVE,
+ [SERVICE_RUNNING] = UNIT_ACTIVE,
+ [SERVICE_EXITED] = UNIT_ACTIVE,
+ [SERVICE_RELOAD] = UNIT_RELOADING,
+ [SERVICE_RELOAD_SIGNAL] = UNIT_RELOADING,
+ [SERVICE_RELOAD_NOTIFY] = UNIT_RELOADING,
+ [SERVICE_STOP] = UNIT_DEACTIVATING,
+ [SERVICE_STOP_WATCHDOG] = UNIT_DEACTIVATING,
+ [SERVICE_STOP_SIGTERM] = UNIT_DEACTIVATING,
+ [SERVICE_STOP_SIGKILL] = UNIT_DEACTIVATING,
+ [SERVICE_STOP_POST] = UNIT_DEACTIVATING,
+ [SERVICE_FINAL_WATCHDOG] = UNIT_DEACTIVATING,
+ [SERVICE_FINAL_SIGTERM] = UNIT_DEACTIVATING,
+ [SERVICE_FINAL_SIGKILL] = UNIT_DEACTIVATING,
+ [SERVICE_FAILED] = UNIT_FAILED,
+ [SERVICE_DEAD_BEFORE_AUTO_RESTART] = UNIT_INACTIVE,
+ [SERVICE_FAILED_BEFORE_AUTO_RESTART] = UNIT_FAILED,
+ [SERVICE_DEAD_RESOURCES_PINNED] = UNIT_INACTIVE,
+ [SERVICE_AUTO_RESTART] = UNIT_ACTIVATING,
+ [SERVICE_AUTO_RESTART_QUEUED] = UNIT_ACTIVATING,
+ [SERVICE_CLEANING] = UNIT_MAINTENANCE,
+};
+
+static int service_dispatch_inotify_io(sd_event_source *source, int fd, uint32_t events, void *userdata);
+static int service_dispatch_timer(sd_event_source *source, usec_t usec, void *userdata);
+static int service_dispatch_watchdog(sd_event_source *source, usec_t usec, void *userdata);
+static int service_dispatch_exec_io(sd_event_source *source, int fd, uint32_t events, void *userdata);
+
+static void service_enter_signal(Service *s, ServiceState state, ServiceResult f);
+static void service_enter_reload_by_notify(Service *s);
+
+static void service_init(Unit *u) {
+ Service *s = SERVICE(u);
+
+ assert(u);
+ assert(u->load_state == UNIT_STUB);
+
+ s->timeout_start_usec = u->manager->defaults.timeout_start_usec;
+ s->timeout_stop_usec = u->manager->defaults.timeout_stop_usec;
+ s->timeout_abort_usec = u->manager->defaults.timeout_abort_usec;
+ s->timeout_abort_set = u->manager->defaults.timeout_abort_set;
+ s->restart_usec = u->manager->defaults.restart_usec;
+ s->restart_max_delay_usec = USEC_INFINITY;
+ s->runtime_max_usec = USEC_INFINITY;
+ s->type = _SERVICE_TYPE_INVALID;
+ s->socket_fd = -EBADF;
+ s->stdin_fd = s->stdout_fd = s->stderr_fd = -EBADF;
+ s->guess_main_pid = true;
+ s->main_pid = PIDREF_NULL;
+ s->control_pid = PIDREF_NULL;
+ s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID;
+
+ s->exec_context.keyring_mode = MANAGER_IS_SYSTEM(u->manager) ?
+ EXEC_KEYRING_PRIVATE : EXEC_KEYRING_INHERIT;
+
+ s->notify_access_override = _NOTIFY_ACCESS_INVALID;
+
+ s->watchdog_original_usec = USEC_INFINITY;
+
+ s->oom_policy = _OOM_POLICY_INVALID;
+ s->reload_begin_usec = USEC_INFINITY;
+ s->reload_signal = SIGHUP;
+
+ s->fd_store_preserve_mode = EXEC_PRESERVE_RESTART;
+}
+
+static void service_unwatch_control_pid(Service *s) {
+ assert(s);
+
+ if (!pidref_is_set(&s->control_pid))
+ return;
+
+ unit_unwatch_pidref(UNIT(s), &s->control_pid);
+ pidref_done(&s->control_pid);
+}
+
+static void service_unwatch_main_pid(Service *s) {
+ assert(s);
+
+ if (!pidref_is_set(&s->main_pid))
+ return;
+
+ unit_unwatch_pidref(UNIT(s), &s->main_pid);
+ pidref_done(&s->main_pid);
+}
+
+static void service_unwatch_pid_file(Service *s) {
+ if (!s->pid_file_pathspec)
+ return;
+
+ log_unit_debug(UNIT(s), "Stopping watch for PID file %s", s->pid_file_pathspec->path);
+ path_spec_unwatch(s->pid_file_pathspec);
+ path_spec_done(s->pid_file_pathspec);
+ s->pid_file_pathspec = mfree(s->pid_file_pathspec);
+}
+
+static int service_set_main_pidref(Service *s, PidRef *pidref) {
+ int r;
+
+ assert(s);
+
+ /* Takes ownership of the specified pidref on success, but not on failure. */
+
+ if (!pidref_is_set(pidref))
+ return -ESRCH;
+
+ if (pidref->pid <= 1)
+ return -EINVAL;
+
+ if (pidref_is_self(pidref))
+ return -EINVAL;
+
+ if (pidref_equal(&s->main_pid, pidref) && s->main_pid_known) {
+ pidref_done(pidref);
+ return 0;
+ }
+
+ if (!pidref_equal(&s->main_pid, pidref)) {
+ service_unwatch_main_pid(s);
+ exec_status_start(&s->main_exec_status, pidref->pid);
+ }
+
+ s->main_pid = TAKE_PIDREF(*pidref);
+ s->main_pid_known = true;
+
+ r = pidref_is_my_child(&s->main_pid);
+ if (r < 0)
+ log_unit_warning_errno(UNIT(s), r, "Can't determine if process "PID_FMT" is our child, assuming it is not: %m", s->main_pid.pid);
+ else if (r == 0)
+ log_unit_warning(UNIT(s), "Supervising process "PID_FMT" which is not our child. We'll most likely not notice when it exits.", s->main_pid.pid);
+
+ s->main_pid_alien = r <= 0;
+ return 0;
+}
+
+void service_release_socket_fd(Service *s) {
+ assert(s);
+
+ if (s->socket_fd < 0 && !UNIT_ISSET(s->accept_socket) && !s->socket_peer)
+ return;
+
+ log_unit_debug(UNIT(s), "Closing connection socket.");
+
+ /* Undo the effect of service_set_socket_fd(). */
+
+ s->socket_fd = asynchronous_close(s->socket_fd);
+
+ if (UNIT_ISSET(s->accept_socket)) {
+ socket_connection_unref(SOCKET(UNIT_DEREF(s->accept_socket)));
+ unit_ref_unset(&s->accept_socket);
+ }
+
+ s->socket_peer = socket_peer_unref(s->socket_peer);
+}
+
+static void service_override_notify_access(Service *s, NotifyAccess notify_access_override) {
+ assert(s);
+
+ s->notify_access_override = notify_access_override;
+
+ log_unit_debug(UNIT(s), "notify_access=%s", notify_access_to_string(s->notify_access));
+ log_unit_debug(UNIT(s), "notify_access_override=%s", notify_access_to_string(s->notify_access_override));
+}
+
+static void service_stop_watchdog(Service *s) {
+ assert(s);
+
+ s->watchdog_event_source = sd_event_source_disable_unref(s->watchdog_event_source);
+ s->watchdog_timestamp = DUAL_TIMESTAMP_NULL;
+}
+
+static void service_start_watchdog(Service *s) {
+ usec_t watchdog_usec;
+ int r;
+
+ assert(s);
+
+ watchdog_usec = service_get_watchdog_usec(s);
+ if (!timestamp_is_set(watchdog_usec)) {
+ service_stop_watchdog(s);
+ return;
+ }
+
+ if (s->watchdog_event_source) {
+ r = sd_event_source_set_time(s->watchdog_event_source, usec_add(s->watchdog_timestamp.monotonic, watchdog_usec));
+ if (r < 0) {
+ log_unit_warning_errno(UNIT(s), r, "Failed to reset watchdog timer: %m");
+ return;
+ }
+
+ r = sd_event_source_set_enabled(s->watchdog_event_source, SD_EVENT_ONESHOT);
+ } else {
+ r = sd_event_add_time(
+ UNIT(s)->manager->event,
+ &s->watchdog_event_source,
+ CLOCK_MONOTONIC,
+ usec_add(s->watchdog_timestamp.monotonic, watchdog_usec), 0,
+ service_dispatch_watchdog, s);
+ if (r < 0) {
+ log_unit_warning_errno(UNIT(s), r, "Failed to add watchdog timer: %m");
+ return;
+ }
+
+ (void) sd_event_source_set_description(s->watchdog_event_source, "service-watchdog");
+
+ /* Let's process everything else which might be a sign
+ * of living before we consider a service died. */
+ r = sd_event_source_set_priority(s->watchdog_event_source, SD_EVENT_PRIORITY_IDLE);
+ }
+ if (r < 0)
+ log_unit_warning_errno(UNIT(s), r, "Failed to install watchdog timer: %m");
+}
+
+usec_t service_restart_usec_next(Service *s) {
+ unsigned n_restarts_next;
+
+ assert(s);
+
+ /* When the service state is in SERVICE_*_BEFORE_AUTO_RESTART or SERVICE_AUTO_RESTART, we still need
+ * to add 1 to s->n_restarts manually, because s->n_restarts is not updated until a restart job is
+ * enqueued, i.e. state has transitioned to SERVICE_AUTO_RESTART_QUEUED. */
+ n_restarts_next = s->n_restarts + (s->state == SERVICE_AUTO_RESTART_QUEUED ? 0 : 1);
+
+ if (n_restarts_next <= 1 ||
+ s->restart_steps == 0 ||
+ s->restart_usec == 0 ||
+ s->restart_max_delay_usec == USEC_INFINITY ||
+ s->restart_usec >= s->restart_max_delay_usec)
+ return s->restart_usec;
+
+ if (n_restarts_next > s->restart_steps)
+ return s->restart_max_delay_usec;
+
+ /* Enforced in service_verify() and above */
+ assert(s->restart_max_delay_usec > s->restart_usec);
+
+ /* r_i / r_0 = (r_n / r_0) ^ (i / n)
+ * where,
+ * r_0 : initial restart usec (s->restart_usec),
+ * r_i : i-th restart usec (value),
+ * r_n : maximum restart usec (s->restart_max_delay_usec),
+ * i : index of the next step (n_restarts_next - 1)
+ * n : num maximum steps (s->restart_steps) */
+ return (usec_t) (s->restart_usec * powl((long double) s->restart_max_delay_usec / s->restart_usec,
+ (long double) (n_restarts_next - 1) / s->restart_steps));
+}
+
+static void service_extend_event_source_timeout(Service *s, sd_event_source *source, usec_t extended) {
+ usec_t current;
+ int r;
+
+ assert(s);
+
+ /* Extends the specified event source timer to at least the specified time, unless it is already later
+ * anyway. */
+
+ if (!source)
+ return;
+
+ r = sd_event_source_get_time(source, &current);
+ if (r < 0) {
+ const char *desc;
+ (void) sd_event_source_get_description(s->timer_event_source, &desc);
+ log_unit_warning_errno(UNIT(s), r, "Failed to retrieve timeout time for event source '%s', ignoring: %m", strna(desc));
+ return;
+ }
+
+ if (current >= extended) /* Current timeout is already longer, ignore this. */
+ return;
+
+ r = sd_event_source_set_time(source, extended);
+ if (r < 0) {
+ const char *desc;
+ (void) sd_event_source_get_description(s->timer_event_source, &desc);
+ log_unit_warning_errno(UNIT(s), r, "Failed to set timeout time for event source '%s', ignoring %m", strna(desc));
+ }
+}
+
+static void service_extend_timeout(Service *s, usec_t extend_timeout_usec) {
+ usec_t extended;
+
+ assert(s);
+
+ if (!timestamp_is_set(extend_timeout_usec))
+ return;
+
+ extended = usec_add(now(CLOCK_MONOTONIC), extend_timeout_usec);
+
+ service_extend_event_source_timeout(s, s->timer_event_source, extended);
+ service_extend_event_source_timeout(s, s->watchdog_event_source, extended);
+}
+
+static void service_reset_watchdog(Service *s) {
+ assert(s);
+
+ dual_timestamp_now(&s->watchdog_timestamp);
+ service_start_watchdog(s);
+}
+
+static void service_override_watchdog_timeout(Service *s, usec_t watchdog_override_usec) {
+ assert(s);
+
+ s->watchdog_override_enable = true;
+ s->watchdog_override_usec = watchdog_override_usec;
+ service_reset_watchdog(s);
+
+ log_unit_debug(UNIT(s), "watchdog_usec="USEC_FMT, s->watchdog_usec);
+ log_unit_debug(UNIT(s), "watchdog_override_usec="USEC_FMT, s->watchdog_override_usec);
+}
+
+static ServiceFDStore* service_fd_store_unlink(ServiceFDStore *fs) {
+ if (!fs)
+ return NULL;
+
+ if (fs->service) {
+ assert(fs->service->n_fd_store > 0);
+ LIST_REMOVE(fd_store, fs->service->fd_store, fs);
+ fs->service->n_fd_store--;
+ }
+
+ sd_event_source_disable_unref(fs->event_source);
+
+ free(fs->fdname);
+ asynchronous_close(fs->fd);
+ return mfree(fs);
+}
+
+DEFINE_TRIVIAL_CLEANUP_FUNC(ServiceFDStore*, service_fd_store_unlink);
+
+static void service_release_fd_store(Service *s) {
+ assert(s);
+
+ if (!s->fd_store)
+ return;
+
+ log_unit_debug(UNIT(s), "Releasing all stored fds");
+
+ while (s->fd_store)
+ service_fd_store_unlink(s->fd_store);
+
+ assert(s->n_fd_store == 0);
+}
+
+static void service_release_stdio_fd(Service *s) {
+ assert(s);
+
+ if (s->stdin_fd < 0 && s->stdout_fd < 0 && s->stdout_fd < 0)
+ return;
+
+ log_unit_debug(UNIT(s), "Releasing stdin/stdout/stderr file descriptors.");
+
+ s->stdin_fd = asynchronous_close(s->stdin_fd);
+ s->stdout_fd = asynchronous_close(s->stdout_fd);
+ s->stderr_fd = asynchronous_close(s->stderr_fd);
+}
+static void service_done(Unit *u) {
+ Service *s = SERVICE(u);
+
+ assert(s);
+
+ open_file_free_many(&s->open_files);
+
+ s->pid_file = mfree(s->pid_file);
+ s->status_text = mfree(s->status_text);
+
+ s->exec_runtime = exec_runtime_free(s->exec_runtime);
+ exec_command_free_array(s->exec_command, _SERVICE_EXEC_COMMAND_MAX);
+ s->control_command = NULL;
+ s->main_command = NULL;
+
+ exit_status_set_free(&s->restart_prevent_status);
+ exit_status_set_free(&s->restart_force_status);
+ exit_status_set_free(&s->success_status);
+
+ /* This will leak a process, but at least no memory or any of our resources */
+ service_unwatch_main_pid(s);
+ service_unwatch_control_pid(s);
+ service_unwatch_pid_file(s);
+
+ if (s->bus_name) {
+ unit_unwatch_bus_name(u, s->bus_name);
+ s->bus_name = mfree(s->bus_name);
+ }
+
+ s->bus_name_owner = mfree(s->bus_name_owner);
+
+ s->usb_function_descriptors = mfree(s->usb_function_descriptors);
+ s->usb_function_strings = mfree(s->usb_function_strings);
+
+ service_stop_watchdog(s);
+
+ s->timer_event_source = sd_event_source_disable_unref(s->timer_event_source);
+ s->exec_fd_event_source = sd_event_source_disable_unref(s->exec_fd_event_source);
+
+ s->bus_name_pid_lookup_slot = sd_bus_slot_unref(s->bus_name_pid_lookup_slot);
+
+ service_release_socket_fd(s);
+ service_release_stdio_fd(s);
+ service_release_fd_store(s);
+}
+
+static int on_fd_store_io(sd_event_source *e, int fd, uint32_t revents, void *userdata) {
+ ServiceFDStore *fs = ASSERT_PTR(userdata);
+
+ assert(e);
+
+ /* If we get either EPOLLHUP or EPOLLERR, it's time to remove this entry from the fd store */
+ log_unit_debug(UNIT(fs->service),
+ "Received %s on stored fd %d (%s), closing.",
+ revents & EPOLLERR ? "EPOLLERR" : "EPOLLHUP",
+ fs->fd, strna(fs->fdname));
+ service_fd_store_unlink(fs);
+ return 0;
+}
+
+static int service_add_fd_store(Service *s, int fd_in, const char *name, bool do_poll) {
+ _cleanup_(service_fd_store_unlinkp) ServiceFDStore *fs = NULL;
+ _cleanup_(asynchronous_closep) int fd = ASSERT_FD(fd_in);
+ struct stat st;
+ int r;
+
+ /* fd is always consumed even if the function fails. */
+
+ assert(s);
+
+ if (fstat(fd, &st) < 0)
+ return -errno;
+
+ log_unit_debug(UNIT(s), "Trying to stash fd for dev=" DEVNUM_FORMAT_STR "/inode=%" PRIu64, DEVNUM_FORMAT_VAL(st.st_dev), (uint64_t) st.st_ino);
+
+ if (s->n_fd_store >= s->n_fd_store_max)
+ /* Our store is full. Use this errno rather than E[NM]FILE to distinguish from the case
+ * where systemd itself hits the file limit. */
+ return log_unit_debug_errno(UNIT(s), SYNTHETIC_ERRNO(EXFULL), "Hit fd store limit.");
+
+ LIST_FOREACH(fd_store, i, s->fd_store) {
+ r = same_fd(i->fd, fd);
+ if (r < 0)
+ return r;
+ if (r > 0) {
+ log_unit_debug(UNIT(s), "Suppressing duplicate fd %i in fd store.", fd);
+ return 0; /* fd already included */
+ }
+ }
+
+ fs = new(ServiceFDStore, 1);
+ if (!fs)
+ return -ENOMEM;
+
+ *fs = (ServiceFDStore) {
+ .fd = TAKE_FD(fd),
+ .do_poll = do_poll,
+ .fdname = strdup(name ?: "stored"),
+ };
+
+ if (!fs->fdname)
+ return -ENOMEM;
+
+ if (do_poll) {
+ r = sd_event_add_io(UNIT(s)->manager->event, &fs->event_source, fs->fd, 0, on_fd_store_io, fs);
+ if (r < 0 && r != -EPERM) /* EPERM indicates fds that aren't pollable, which is OK */
+ return r;
+ else if (r >= 0)
+ (void) sd_event_source_set_description(fs->event_source, "service-fd-store");
+ }
+
+ fs->service = s;
+ LIST_PREPEND(fd_store, s->fd_store, fs);
+ s->n_fd_store++;
+
+ log_unit_debug(UNIT(s), "Added fd %i (%s) to fd store.", fs->fd, fs->fdname);
+
+ TAKE_PTR(fs);
+ return 1; /* fd newly stored */
+}
+
+static int service_add_fd_store_set(Service *s, FDSet *fds, const char *name, bool do_poll) {
+ int r;
+
+ assert(s);
+
+ for (;;) {
+ int fd;
+
+ fd = fdset_steal_first(fds);
+ if (fd < 0)
+ break;
+
+ r = service_add_fd_store(s, fd, name, do_poll);
+ if (r == -EXFULL)
+ return log_unit_warning_errno(UNIT(s), r,
+ "Cannot store more fds than FileDescriptorStoreMax=%u, closing remaining.",
+ s->n_fd_store_max);
+ if (r < 0)
+ return log_unit_error_errno(UNIT(s), r, "Failed to add fd to store: %m");
+ }
+
+ return 0;
+}
+
+static void service_remove_fd_store(Service *s, const char *name) {
+ assert(s);
+ assert(name);
+
+ LIST_FOREACH(fd_store, fs, s->fd_store) {
+ if (!streq(fs->fdname, name))
+ continue;
+
+ log_unit_debug(UNIT(s), "Got explicit request to remove fd %i (%s), closing.", fs->fd, name);
+ service_fd_store_unlink(fs);
+ }
+}
+
+static usec_t service_running_timeout(Service *s) {
+ usec_t delta = 0;
+
+ assert(s);
+
+ if (s->runtime_rand_extra_usec != 0) {
+ delta = random_u64_range(s->runtime_rand_extra_usec);
+ log_unit_debug(UNIT(s), "Adding delta of %s sec to timeout", FORMAT_TIMESPAN(delta, USEC_PER_SEC));
+ }
+
+ return usec_add(usec_add(UNIT(s)->active_enter_timestamp.monotonic,
+ s->runtime_max_usec),
+ delta);
+}
+
+static int service_arm_timer(Service *s, bool relative, usec_t usec) {
+ assert(s);
+
+ return unit_arm_timer(UNIT(s), &s->timer_event_source, relative, usec, service_dispatch_timer);
+}
+
+static int service_verify(Service *s) {
+ assert(s);
+ assert(UNIT(s)->load_state == UNIT_LOADED);
+
+ for (ServiceExecCommand c = 0; c < _SERVICE_EXEC_COMMAND_MAX; c++)
+ LIST_FOREACH(command, command, s->exec_command[c]) {
+ if (!path_is_absolute(command->path) && !filename_is_valid(command->path))
+ return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC),
+ "Service %s= binary path \"%s\" is neither a valid executable name nor an absolute path. Refusing.",
+ command->path,
+ service_exec_command_to_string(c));
+ if (strv_isempty(command->argv))
+ return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC),
+ "Service has an empty argv in %s=. Refusing.",
+ service_exec_command_to_string(c));
+ }
+
+ if (!s->exec_command[SERVICE_EXEC_START] && !s->exec_command[SERVICE_EXEC_STOP] &&
+ UNIT(s)->success_action == EMERGENCY_ACTION_NONE)
+ /* FailureAction= only makes sense if one of the start or stop commands is specified.
+ * SuccessAction= will be executed unconditionally if no commands are specified. Hence,
+ * either a command or SuccessAction= are required. */
+
+ return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has no ExecStart=, ExecStop=, or SuccessAction=. Refusing.");
+
+ if (s->type != SERVICE_ONESHOT && !s->exec_command[SERVICE_EXEC_START])
+ return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has no ExecStart= setting, which is only allowed for Type=oneshot services. Refusing.");
+
+ if (!s->remain_after_exit && !s->exec_command[SERVICE_EXEC_START] && UNIT(s)->success_action == EMERGENCY_ACTION_NONE)
+ return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has no ExecStart= and no SuccessAction= settings and does not have RemainAfterExit=yes set. Refusing.");
+
+ if (s->type != SERVICE_ONESHOT && s->exec_command[SERVICE_EXEC_START]->command_next)
+ return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has more than one ExecStart= setting, which is only allowed for Type=oneshot services. Refusing.");
+
+ if (s->type == SERVICE_ONESHOT && IN_SET(s->restart, SERVICE_RESTART_ALWAYS, SERVICE_RESTART_ON_SUCCESS))
+ return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has Restart= set to either always or on-success, which isn't allowed for Type=oneshot services. Refusing.");
+
+ if (s->type == SERVICE_ONESHOT && !exit_status_set_is_empty(&s->restart_force_status))
+ return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has RestartForceExitStatus= set, which isn't allowed for Type=oneshot services. Refusing.");
+
+ if (s->type == SERVICE_ONESHOT && s->exit_type == SERVICE_EXIT_CGROUP)
+ return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has ExitType=cgroup set, which isn't allowed for Type=oneshot services. Refusing.");
+
+ if (s->type == SERVICE_DBUS && !s->bus_name)
+ return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service is of type D-Bus but no D-Bus service name has been specified. Refusing.");
+
+ if (s->exec_context.pam_name && !IN_SET(s->kill_context.kill_mode, KILL_CONTROL_GROUP, KILL_MIXED))
+ return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has PAM enabled. Kill mode must be set to 'control-group' or 'mixed'. Refusing.");
+
+ if (s->usb_function_descriptors && !s->usb_function_strings)
+ log_unit_warning(UNIT(s), "Service has USBFunctionDescriptors= setting, but no USBFunctionStrings=. Ignoring.");
+
+ if (!s->usb_function_descriptors && s->usb_function_strings)
+ log_unit_warning(UNIT(s), "Service has USBFunctionStrings= setting, but no USBFunctionDescriptors=. Ignoring.");
+
+ if (s->runtime_max_usec != USEC_INFINITY && s->type == SERVICE_ONESHOT)
+ log_unit_warning(UNIT(s), "RuntimeMaxSec= has no effect in combination with Type=oneshot. Ignoring.");
+
+ if (s->runtime_max_usec == USEC_INFINITY && s->runtime_rand_extra_usec != 0)
+ log_unit_warning(UNIT(s), "Service has RuntimeRandomizedExtraSec= setting, but no RuntimeMaxSec=. Ignoring.");
+
+ if (s->exit_type == SERVICE_EXIT_CGROUP && cg_unified() < CGROUP_UNIFIED_SYSTEMD)
+ log_unit_warning(UNIT(s), "Service has ExitType=cgroup set, but we are running with legacy cgroups v1, which might not work correctly. Continuing.");
+
+ if (s->restart_max_delay_usec == USEC_INFINITY && s->restart_steps > 0)
+ log_unit_warning(UNIT(s), "Service has RestartSteps= but no RestartMaxDelaySec= setting. Ignoring.");
+
+ if (s->restart_max_delay_usec != USEC_INFINITY && s->restart_steps == 0)
+ log_unit_warning(UNIT(s), "Service has RestartMaxDelaySec= but no RestartSteps= setting. Ignoring.");
+
+ if (s->restart_max_delay_usec < s->restart_usec) {
+ log_unit_warning(UNIT(s), "RestartMaxDelaySec= has a value smaller than RestartSec=, resetting RestartSec= to RestartMaxDelaySec=.");
+ s->restart_usec = s->restart_max_delay_usec;
+ }
+
+ return 0;
+}
+
+static int service_add_default_dependencies(Service *s) {
+ int r;
+
+ assert(s);
+
+ if (!UNIT(s)->default_dependencies)
+ return 0;
+
+ /* Add a number of automatic dependencies useful for the
+ * majority of services. */
+
+ if (MANAGER_IS_SYSTEM(UNIT(s)->manager)) {
+ /* First, pull in the really early boot stuff, and
+ * require it, so that we fail if we can't acquire
+ * it. */
+
+ r = unit_add_two_dependencies_by_name(UNIT(s), UNIT_AFTER, UNIT_REQUIRES, SPECIAL_SYSINIT_TARGET, true, UNIT_DEPENDENCY_DEFAULT);
+ if (r < 0)
+ return r;
+ } else {
+
+ /* In the --user instance there's no sysinit.target,
+ * in that case require basic.target instead. */
+
+ r = unit_add_dependency_by_name(UNIT(s), UNIT_REQUIRES, SPECIAL_BASIC_TARGET, true, UNIT_DEPENDENCY_DEFAULT);
+ if (r < 0)
+ return r;
+ }
+
+ /* Second, if the rest of the base system is in the same
+ * transaction, order us after it, but do not pull it in or
+ * even require it. */
+ r = unit_add_dependency_by_name(UNIT(s), UNIT_AFTER, SPECIAL_BASIC_TARGET, true, UNIT_DEPENDENCY_DEFAULT);
+ if (r < 0)
+ return r;
+
+ /* Third, add us in for normal shutdown. */
+ return unit_add_two_dependencies_by_name(UNIT(s), UNIT_BEFORE, UNIT_CONFLICTS, SPECIAL_SHUTDOWN_TARGET, true, UNIT_DEPENDENCY_DEFAULT);
+}
+
+static void service_fix_stdio(Service *s) {
+ assert(s);
+
+ /* Note that EXEC_INPUT_NULL and EXEC_OUTPUT_INHERIT play a special role here: they are both the
+ * default value that is subject to automatic overriding triggered by other settings and an explicit
+ * choice the user can make. We don't distinguish between these cases currently. */
+
+ if (s->exec_context.std_input == EXEC_INPUT_NULL &&
+ s->exec_context.stdin_data_size > 0)
+ s->exec_context.std_input = EXEC_INPUT_DATA;
+
+ if (IN_SET(s->exec_context.std_input,
+ EXEC_INPUT_TTY,
+ EXEC_INPUT_TTY_FORCE,
+ EXEC_INPUT_TTY_FAIL,
+ EXEC_INPUT_SOCKET,
+ EXEC_INPUT_NAMED_FD))
+ return;
+
+ /* We assume these listed inputs refer to bidirectional streams, and hence duplicating them from
+ * stdin to stdout/stderr makes sense and hence leaving EXEC_OUTPUT_INHERIT in place makes sense,
+ * too. Outputs such as regular files or sealed data memfds otoh don't really make sense to be
+ * duplicated for both input and output at the same time (since they then would cause a feedback
+ * loop), hence override EXEC_OUTPUT_INHERIT with the default stderr/stdout setting. */
+
+ if (s->exec_context.std_error == EXEC_OUTPUT_INHERIT &&
+ s->exec_context.std_output == EXEC_OUTPUT_INHERIT)
+ s->exec_context.std_error = UNIT(s)->manager->defaults.std_error;
+
+ if (s->exec_context.std_output == EXEC_OUTPUT_INHERIT)
+ s->exec_context.std_output = UNIT(s)->manager->defaults.std_output;
+}
+
+static int service_setup_bus_name(Service *s) {
+ int r;
+
+ assert(s);
+
+ /* If s->bus_name is not set, then the unit will be refused by service_verify() later. */
+ if (!s->bus_name)
+ return 0;
+
+ if (s->type == SERVICE_DBUS) {
+ r = unit_add_dependency_by_name(UNIT(s), UNIT_REQUIRES, SPECIAL_DBUS_SOCKET, true, UNIT_DEPENDENCY_FILE);
+ if (r < 0)
+ return log_unit_error_errno(UNIT(s), r, "Failed to add dependency on " SPECIAL_DBUS_SOCKET ": %m");
+
+ /* We always want to be ordered against dbus.socket if both are in the transaction. */
+ r = unit_add_dependency_by_name(UNIT(s), UNIT_AFTER, SPECIAL_DBUS_SOCKET, true, UNIT_DEPENDENCY_FILE);
+ if (r < 0)
+ return log_unit_error_errno(UNIT(s), r, "Failed to add dependency on " SPECIAL_DBUS_SOCKET ": %m");
+ }
+
+ r = unit_watch_bus_name(UNIT(s), s->bus_name);
+ if (r == -EEXIST)
+ return log_unit_error_errno(UNIT(s), r, "Two services allocated for the same bus name %s, refusing operation.", s->bus_name);
+ if (r < 0)
+ return log_unit_error_errno(UNIT(s), r, "Cannot watch bus name %s: %m", s->bus_name);
+
+ return 0;
+}
+
+static int service_add_extras(Service *s) {
+ int r;
+
+ assert(s);
+
+ if (s->type == _SERVICE_TYPE_INVALID) {
+ /* Figure out a type automatically */
+ if (s->bus_name)
+ s->type = SERVICE_DBUS;
+ else if (s->exec_command[SERVICE_EXEC_START])
+ s->type = SERVICE_SIMPLE;
+ else
+ s->type = SERVICE_ONESHOT;
+ }
+
+ /* Oneshot services have disabled start timeout by default */
+ if (s->type == SERVICE_ONESHOT && !s->start_timeout_defined)
+ s->timeout_start_usec = USEC_INFINITY;
+
+ service_fix_stdio(s);
+
+ r = unit_patch_contexts(UNIT(s));
+ if (r < 0)
+ return r;
+
+ r = unit_add_exec_dependencies(UNIT(s), &s->exec_context);
+ if (r < 0)
+ return r;
+
+ r = unit_set_default_slice(UNIT(s));
+ if (r < 0)
+ return r;
+
+ /* If the service needs the notify socket, let's enable it automatically. */
+ if (s->notify_access == NOTIFY_NONE &&
+ (IN_SET(s->type, SERVICE_NOTIFY, SERVICE_NOTIFY_RELOAD) || s->watchdog_usec > 0 || s->n_fd_store_max > 0))
+ s->notify_access = NOTIFY_MAIN;
+
+ /* If no OOM policy was explicitly set, then default to the configure default OOM policy. Except when
+ * delegation is on, in that case it we assume the payload knows better what to do and can process
+ * things in a more focused way. */
+ if (s->oom_policy < 0)
+ s->oom_policy = s->cgroup_context.delegate ? OOM_CONTINUE : UNIT(s)->manager->defaults.oom_policy;
+
+ /* Let the kernel do the killing if that's requested. */
+ s->cgroup_context.memory_oom_group = s->oom_policy == OOM_KILL;
+
+ r = service_add_default_dependencies(s);
+ if (r < 0)
+ return r;
+
+ r = service_setup_bus_name(s);
+ if (r < 0)
+ return r;
+
+ return 0;
+}
+
+static int service_load(Unit *u) {
+ Service *s = SERVICE(u);
+ int r;
+
+ r = unit_load_fragment_and_dropin(u, true);
+ if (r < 0)
+ return r;
+
+ if (u->load_state != UNIT_LOADED)
+ return 0;
+
+ /* This is a new unit? Then let's add in some extras */
+ r = service_add_extras(s);
+ if (r < 0)
+ return r;
+
+ return service_verify(s);
+}
+
+static void service_dump_fdstore(Service *s, FILE *f, const char *prefix) {
+ assert(s);
+ assert(f);
+ assert(prefix);
+
+ LIST_FOREACH(fd_store, i, s->fd_store) {
+ _cleanup_free_ char *path = NULL;
+ struct stat st;
+ int flags;
+
+ if (fstat(i->fd, &st) < 0) {
+ log_debug_errno(errno, "Failed to stat fdstore entry: %m");
+ continue;
+ }
+
+ flags = fcntl(i->fd, F_GETFL);
+ if (flags < 0) {
+ log_debug_errno(errno, "Failed to get fdstore entry flags: %m");
+ continue;
+ }
+
+ (void) fd_get_path(i->fd, &path);
+
+ fprintf(f,
+ "%s%s '%s' (type=%s; dev=" DEVNUM_FORMAT_STR "; inode=%" PRIu64 "; rdev=" DEVNUM_FORMAT_STR "; path=%s; access=%s)\n",
+ prefix, i == s->fd_store ? "File Descriptor Store Entry:" : " ",
+ i->fdname,
+ inode_type_to_string(st.st_mode),
+ DEVNUM_FORMAT_VAL(st.st_dev),
+ (uint64_t) st.st_ino,
+ DEVNUM_FORMAT_VAL(st.st_rdev),
+ strna(path),
+ accmode_to_string(flags));
+ }
+}
+
+static void service_dump(Unit *u, FILE *f, const char *prefix) {
+ Service *s = SERVICE(u);
+ const char *prefix2;
+
+ assert(s);
+
+ prefix = strempty(prefix);
+ prefix2 = strjoina(prefix, "\t");
+
+ fprintf(f,
+ "%sService State: %s\n"
+ "%sResult: %s\n"
+ "%sReload Result: %s\n"
+ "%sClean Result: %s\n"
+ "%sPermissionsStartOnly: %s\n"
+ "%sRootDirectoryStartOnly: %s\n"
+ "%sRemainAfterExit: %s\n"
+ "%sGuessMainPID: %s\n"
+ "%sType: %s\n"
+ "%sRestart: %s\n"
+ "%sNotifyAccess: %s\n"
+ "%sNotifyState: %s\n"
+ "%sOOMPolicy: %s\n"
+ "%sReloadSignal: %s\n",
+ prefix, service_state_to_string(s->state),
+ prefix, service_result_to_string(s->result),
+ prefix, service_result_to_string(s->reload_result),
+ prefix, service_result_to_string(s->clean_result),
+ prefix, yes_no(s->permissions_start_only),
+ prefix, yes_no(s->root_directory_start_only),
+ prefix, yes_no(s->remain_after_exit),
+ prefix, yes_no(s->guess_main_pid),
+ prefix, service_type_to_string(s->type),
+ prefix, service_restart_to_string(s->restart),
+ prefix, notify_access_to_string(service_get_notify_access(s)),
+ prefix, notify_state_to_string(s->notify_state),
+ prefix, oom_policy_to_string(s->oom_policy),
+ prefix, signal_to_string(s->reload_signal));
+
+ if (pidref_is_set(&s->control_pid))
+ fprintf(f,
+ "%sControl PID: "PID_FMT"\n",
+ prefix, s->control_pid.pid);
+
+ if (pidref_is_set(&s->main_pid))
+ fprintf(f,
+ "%sMain PID: "PID_FMT"\n"
+ "%sMain PID Known: %s\n"
+ "%sMain PID Alien: %s\n",
+ prefix, s->main_pid.pid,
+ prefix, yes_no(s->main_pid_known),
+ prefix, yes_no(s->main_pid_alien));
+
+ if (s->pid_file)
+ fprintf(f,
+ "%sPIDFile: %s\n",
+ prefix, s->pid_file);
+
+ if (s->bus_name)
+ fprintf(f,
+ "%sBusName: %s\n"
+ "%sBus Name Good: %s\n",
+ prefix, s->bus_name,
+ prefix, yes_no(s->bus_name_good));
+
+ if (UNIT_ISSET(s->accept_socket))
+ fprintf(f,
+ "%sAccept Socket: %s\n",
+ prefix, UNIT_DEREF(s->accept_socket)->id);
+
+ fprintf(f,
+ "%sRestartSec: %s\n"
+ "%sRestartSteps: %u\n"
+ "%sRestartMaxDelaySec: %s\n"
+ "%sTimeoutStartSec: %s\n"
+ "%sTimeoutStopSec: %s\n"
+ "%sTimeoutStartFailureMode: %s\n"
+ "%sTimeoutStopFailureMode: %s\n",
+ prefix, FORMAT_TIMESPAN(s->restart_usec, USEC_PER_SEC),
+ prefix, s->restart_steps,
+ prefix, FORMAT_TIMESPAN(s->restart_max_delay_usec, USEC_PER_SEC),
+ prefix, FORMAT_TIMESPAN(s->timeout_start_usec, USEC_PER_SEC),
+ prefix, FORMAT_TIMESPAN(s->timeout_stop_usec, USEC_PER_SEC),
+ prefix, service_timeout_failure_mode_to_string(s->timeout_start_failure_mode),
+ prefix, service_timeout_failure_mode_to_string(s->timeout_stop_failure_mode));
+
+ if (s->timeout_abort_set)
+ fprintf(f,
+ "%sTimeoutAbortSec: %s\n",
+ prefix, FORMAT_TIMESPAN(s->timeout_abort_usec, USEC_PER_SEC));
+
+ fprintf(f,
+ "%sRuntimeMaxSec: %s\n"
+ "%sRuntimeRandomizedExtraSec: %s\n"
+ "%sWatchdogSec: %s\n",
+ prefix, FORMAT_TIMESPAN(s->runtime_max_usec, USEC_PER_SEC),
+ prefix, FORMAT_TIMESPAN(s->runtime_rand_extra_usec, USEC_PER_SEC),
+ prefix, FORMAT_TIMESPAN(s->watchdog_usec, USEC_PER_SEC));
+
+ kill_context_dump(&s->kill_context, f, prefix);
+ exec_context_dump(&s->exec_context, f, prefix);
+
+ for (ServiceExecCommand c = 0; c < _SERVICE_EXEC_COMMAND_MAX; c++) {
+ if (!s->exec_command[c])
+ continue;
+
+ fprintf(f, "%s-> %s:\n",
+ prefix, service_exec_command_to_string(c));
+
+ exec_command_dump_list(s->exec_command[c], f, prefix2);
+ }
+
+ if (s->status_text)
+ fprintf(f, "%sStatus Text: %s\n",
+ prefix, s->status_text);
+
+ if (s->n_fd_store_max > 0)
+ fprintf(f,
+ "%sFile Descriptor Store Max: %u\n"
+ "%sFile Descriptor Store Pin: %s\n"
+ "%sFile Descriptor Store Current: %zu\n",
+ prefix, s->n_fd_store_max,
+ prefix, exec_preserve_mode_to_string(s->fd_store_preserve_mode),
+ prefix, s->n_fd_store);
+
+ service_dump_fdstore(s, f, prefix);
+
+ if (s->open_files)
+ LIST_FOREACH(open_files, of, s->open_files) {
+ _cleanup_free_ char *ofs = NULL;
+ int r;
+
+ r = open_file_to_string(of, &ofs);
+ if (r < 0) {
+ log_debug_errno(r,
+ "Failed to convert OpenFile= setting to string, ignoring: %m");
+ continue;
+ }
+
+ fprintf(f, "%sOpen File: %s\n", prefix, ofs);
+ }
+
+ cgroup_context_dump(UNIT(s), f, prefix);
+}
+
+static int service_is_suitable_main_pid(Service *s, PidRef *pid, int prio) {
+ Unit *owner;
+ int r;
+
+ assert(s);
+ assert(pidref_is_set(pid));
+
+ /* Checks whether the specified PID is suitable as main PID for this service. returns negative if not, 0 if the
+ * PID is questionnable but should be accepted if the source of configuration is trusted. > 0 if the PID is
+ * good */
+
+ if (pidref_is_self(pid) || pid->pid == 1)
+ return log_unit_full_errno(UNIT(s), prio, SYNTHETIC_ERRNO(EPERM), "New main PID "PID_FMT" is the manager, refusing.", pid->pid);
+
+ if (pidref_equal(pid, &s->control_pid))
+ return log_unit_full_errno(UNIT(s), prio, SYNTHETIC_ERRNO(EPERM), "New main PID "PID_FMT" is the control process, refusing.", pid->pid);
+
+ r = pidref_is_alive(pid);
+ if (r < 0)
+ return log_unit_full_errno(UNIT(s), prio, r, "Failed to check if main PID "PID_FMT" exists or is a zombie: %m", pid->pid);
+ if (r == 0)
+ return log_unit_full_errno(UNIT(s), prio, SYNTHETIC_ERRNO(ESRCH), "New main PID "PID_FMT" does not exist or is a zombie.", pid->pid);
+
+ owner = manager_get_unit_by_pidref(UNIT(s)->manager, pid);
+ if (owner == UNIT(s)) {
+ log_unit_debug(UNIT(s), "New main PID "PID_FMT" belongs to service, we are happy.", pid->pid);
+ return 1; /* Yay, it's definitely a good PID */
+ }
+
+ return 0; /* Hmm it's a suspicious PID, let's accept it if configuration source is trusted */
+}
+
+static int service_load_pid_file(Service *s, bool may_warn) {
+ _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL;
+ bool questionable_pid_file = false;
+ _cleanup_free_ char *k = NULL;
+ _cleanup_close_ int fd = -EBADF;
+ int r, prio;
+
+ assert(s);
+
+ if (!s->pid_file)
+ return -ENOENT;
+
+ prio = may_warn ? LOG_INFO : LOG_DEBUG;
+
+ r = chase(s->pid_file, NULL, CHASE_SAFE, NULL, &fd);
+ if (r == -ENOLINK) {
+ log_unit_debug_errno(UNIT(s), r,
+ "Potentially unsafe symlink chain, will now retry with relaxed checks: %s", s->pid_file);
+
+ questionable_pid_file = true;
+
+ r = chase(s->pid_file, NULL, 0, NULL, &fd);
+ }
+ if (r < 0)
+ return log_unit_full_errno(UNIT(s), prio, r,
+ "Can't open PID file %s (yet?) after %s: %m", s->pid_file, service_state_to_string(s->state));
+
+ /* Let's read the PID file now that we chased it down. But we need to convert the O_PATH fd
+ * chase() returned us into a proper fd first. */
+ r = read_one_line_file(FORMAT_PROC_FD_PATH(fd), &k);
+ if (r < 0)
+ return log_unit_error_errno(UNIT(s), r,
+ "Can't convert PID files %s O_PATH file descriptor to proper file descriptor: %m",
+ s->pid_file);
+
+ r = pidref_set_pidstr(&pidref, k);
+ if (r < 0)
+ return log_unit_full_errno(UNIT(s), prio, r, "Failed to parse PID from file %s: %m", s->pid_file);
+
+ if (s->main_pid_known && pidref_equal(&pidref, &s->main_pid))
+ return 0;
+
+ r = service_is_suitable_main_pid(s, &pidref, prio);
+ if (r < 0)
+ return r;
+ if (r == 0) {
+ struct stat st;
+
+ if (questionable_pid_file)
+ return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(EPERM),
+ "Refusing to accept PID outside of service control group, acquired through unsafe symlink chain: %s", s->pid_file);
+
+ /* Hmm, it's not clear if the new main PID is safe. Let's allow this if the PID file is owned by root */
+
+ if (fstat(fd, &st) < 0)
+ return log_unit_error_errno(UNIT(s), errno, "Failed to fstat() PID file O_PATH fd: %m");
+
+ if (st.st_uid != 0)
+ return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(EPERM),
+ "New main PID "PID_FMT" does not belong to service, and PID file is not owned by root. Refusing.", pidref.pid);
+
+ log_unit_debug(UNIT(s), "New main PID "PID_FMT" does not belong to service, but we'll accept it since PID file is owned by root.", pidref.pid);
+ }
+
+ if (s->main_pid_known) {
+ log_unit_debug(UNIT(s), "Main PID changing: "PID_FMT" -> "PID_FMT, s->main_pid.pid, pidref.pid);
+
+ service_unwatch_main_pid(s);
+ s->main_pid_known = false;
+ } else
+ log_unit_debug(UNIT(s), "Main PID loaded: "PID_FMT, pidref.pid);
+
+ r = service_set_main_pidref(s, &pidref);
+ if (r < 0)
+ return r;
+
+ r = unit_watch_pidref(UNIT(s), &s->main_pid, /* exclusive= */ false);
+ if (r < 0) /* FIXME: we need to do something here */
+ return log_unit_warning_errno(UNIT(s), r, "Failed to watch PID "PID_FMT" for service: %m", s->main_pid.pid);
+
+ return 1;
+}
+
+static void service_search_main_pid(Service *s) {
+ _cleanup_(pidref_done) PidRef pid = PIDREF_NULL;
+ int r;
+
+ assert(s);
+
+ /* If we know it anyway, don't ever fall back to unreliable heuristics */
+ if (s->main_pid_known)
+ return;
+
+ if (!s->guess_main_pid)
+ return;
+
+ assert(!pidref_is_set(&s->main_pid));
+
+ if (unit_search_main_pid(UNIT(s), &pid) < 0)
+ return;
+
+ log_unit_debug(UNIT(s), "Main PID guessed: "PID_FMT, pid.pid);
+ if (service_set_main_pidref(s, &pid) < 0)
+ return;
+
+ r = unit_watch_pidref(UNIT(s), &s->main_pid, /* exclusive= */ false);
+ if (r < 0)
+ /* FIXME: we need to do something here */
+ log_unit_warning_errno(UNIT(s), r, "Failed to watch PID "PID_FMT" from: %m", s->main_pid.pid);
+}
+
+static void service_set_state(Service *s, ServiceState state) {
+ ServiceState old_state;
+ const UnitActiveState *table;
+
+ assert(s);
+
+ if (s->state != state)
+ bus_unit_send_pending_change_signal(UNIT(s), false);
+
+ table = s->type == SERVICE_IDLE ? state_translation_table_idle : state_translation_table;
+
+ old_state = s->state;
+ s->state = state;
+
+ service_unwatch_pid_file(s);
+
+ if (!IN_SET(state,
+ SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST,
+ SERVICE_RUNNING,
+ SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY,
+ SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST,
+ SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL,
+ SERVICE_AUTO_RESTART,
+ SERVICE_CLEANING))
+ s->timer_event_source = sd_event_source_disable_unref(s->timer_event_source);
+
+ if (!IN_SET(state,
+ SERVICE_START, SERVICE_START_POST,
+ SERVICE_RUNNING,
+ SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY,
+ SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST,
+ SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL)) {
+ service_unwatch_main_pid(s);
+ s->main_command = NULL;
+ }
+
+ if (!IN_SET(state,
+ SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST,
+ SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY,
+ SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST,
+ SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL,
+ SERVICE_CLEANING)) {
+ service_unwatch_control_pid(s);
+ s->control_command = NULL;
+ s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID;
+ }
+
+ if (IN_SET(state,
+ SERVICE_DEAD, SERVICE_FAILED,
+ SERVICE_DEAD_BEFORE_AUTO_RESTART, SERVICE_FAILED_BEFORE_AUTO_RESTART, SERVICE_AUTO_RESTART, SERVICE_AUTO_RESTART_QUEUED,
+ SERVICE_DEAD_RESOURCES_PINNED)) {
+ unit_unwatch_all_pids(UNIT(s));
+ unit_dequeue_rewatch_pids(UNIT(s));
+ }
+
+ if (state != SERVICE_START)
+ s->exec_fd_event_source = sd_event_source_disable_unref(s->exec_fd_event_source);
+
+ if (!IN_SET(state, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY))
+ service_stop_watchdog(s);
+
+ /* For the inactive states unit_notify() will trim the cgroup,
+ * but for exit we have to do that ourselves... */
+ if (state == SERVICE_EXITED && !MANAGER_IS_RELOADING(UNIT(s)->manager))
+ unit_prune_cgroup(UNIT(s));
+
+ if (old_state != state)
+ log_unit_debug(UNIT(s), "Changed %s -> %s", service_state_to_string(old_state), service_state_to_string(state));
+
+ unit_notify(UNIT(s), table[old_state], table[state], s->reload_result == SERVICE_SUCCESS);
+}
+
+static usec_t service_coldplug_timeout(Service *s) {
+ assert(s);
+
+ switch (s->deserialized_state) {
+
+ case SERVICE_CONDITION:
+ case SERVICE_START_PRE:
+ case SERVICE_START:
+ case SERVICE_START_POST:
+ case SERVICE_RELOAD:
+ case SERVICE_RELOAD_SIGNAL:
+ case SERVICE_RELOAD_NOTIFY:
+ return usec_add(UNIT(s)->state_change_timestamp.monotonic, s->timeout_start_usec);
+
+ case SERVICE_RUNNING:
+ return service_running_timeout(s);
+
+ case SERVICE_STOP:
+ case SERVICE_STOP_SIGTERM:
+ case SERVICE_STOP_SIGKILL:
+ case SERVICE_STOP_POST:
+ case SERVICE_FINAL_SIGTERM:
+ case SERVICE_FINAL_SIGKILL:
+ return usec_add(UNIT(s)->state_change_timestamp.monotonic, s->timeout_stop_usec);
+
+ case SERVICE_STOP_WATCHDOG:
+ case SERVICE_FINAL_WATCHDOG:
+ return usec_add(UNIT(s)->state_change_timestamp.monotonic, service_timeout_abort_usec(s));
+
+ case SERVICE_AUTO_RESTART:
+ return usec_add(UNIT(s)->inactive_enter_timestamp.monotonic, service_restart_usec_next(s));
+
+ case SERVICE_CLEANING:
+ return usec_add(UNIT(s)->state_change_timestamp.monotonic, s->exec_context.timeout_clean_usec);
+
+ default:
+ return USEC_INFINITY;
+ }
+}
+
+static int service_coldplug(Unit *u) {
+ Service *s = SERVICE(u);
+ int r;
+
+ assert(s);
+ assert(s->state == SERVICE_DEAD);
+
+ if (s->deserialized_state == s->state)
+ return 0;
+
+ r = service_arm_timer(s, /* relative= */ false, service_coldplug_timeout(s));
+ if (r < 0)
+ return r;
+
+ if (pidref_is_set(&s->main_pid) &&
+ pidref_is_unwaited(&s->main_pid) > 0 &&
+ (IN_SET(s->deserialized_state,
+ SERVICE_START, SERVICE_START_POST,
+ SERVICE_RUNNING,
+ SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY,
+ SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST,
+ SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL))) {
+ r = unit_watch_pidref(UNIT(s), &s->main_pid, /* exclusive= */ false);
+ if (r < 0)
+ return r;
+ }
+
+ if (pidref_is_set(&s->control_pid) &&
+ pidref_is_unwaited(&s->control_pid) > 0 &&
+ IN_SET(s->deserialized_state,
+ SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST,
+ SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY,
+ SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST,
+ SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL,
+ SERVICE_CLEANING)) {
+ r = unit_watch_pidref(UNIT(s), &s->control_pid, /* exclusive= */ false);
+ if (r < 0)
+ return r;
+ }
+
+ if (!IN_SET(s->deserialized_state,
+ SERVICE_DEAD, SERVICE_FAILED,
+ SERVICE_DEAD_BEFORE_AUTO_RESTART, SERVICE_FAILED_BEFORE_AUTO_RESTART, SERVICE_AUTO_RESTART, SERVICE_AUTO_RESTART_QUEUED,
+ SERVICE_CLEANING,
+ SERVICE_DEAD_RESOURCES_PINNED)) {
+ (void) unit_enqueue_rewatch_pids(u);
+ (void) unit_setup_exec_runtime(u);
+ }
+
+ if (IN_SET(s->deserialized_state, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY))
+ service_start_watchdog(s);
+
+ if (UNIT_ISSET(s->accept_socket)) {
+ Socket* socket = SOCKET(UNIT_DEREF(s->accept_socket));
+
+ if (socket->max_connections_per_source > 0) {
+ SocketPeer *peer;
+
+ /* Make a best-effort attempt at bumping the connection count */
+ if (socket_acquire_peer(socket, s->socket_fd, &peer) > 0) {
+ socket_peer_unref(s->socket_peer);
+ s->socket_peer = peer;
+ }
+ }
+ }
+
+ service_set_state(s, s->deserialized_state);
+ return 0;
+}
+
+static int service_collect_fds(
+ Service *s,
+ int **fds,
+ char ***fd_names,
+ size_t *n_socket_fds,
+ size_t *n_storage_fds) {
+
+ _cleanup_strv_free_ char **rfd_names = NULL;
+ _cleanup_free_ int *rfds = NULL;
+ size_t rn_socket_fds = 0, rn_storage_fds = 0;
+ int r;
+
+ assert(s);
+ assert(fds);
+ assert(fd_names);
+ assert(n_socket_fds);
+ assert(n_storage_fds);
+
+ if (s->socket_fd >= 0) {
+
+ /* Pass the per-connection socket */
+
+ rfds = newdup(int, &s->socket_fd, 1);
+ if (!rfds)
+ return -ENOMEM;
+
+ rfd_names = strv_new("connection");
+ if (!rfd_names)
+ return -ENOMEM;
+
+ rn_socket_fds = 1;
+ } else {
+ Unit *u;
+
+ /* Pass all our configured sockets for singleton services */
+
+ UNIT_FOREACH_DEPENDENCY(u, UNIT(s), UNIT_ATOM_TRIGGERED_BY) {
+ _cleanup_free_ int *cfds = NULL;
+ Socket *sock;
+ int cn_fds;
+
+ if (u->type != UNIT_SOCKET)
+ continue;
+
+ sock = SOCKET(u);
+
+ cn_fds = socket_collect_fds(sock, &cfds);
+ if (cn_fds < 0)
+ return cn_fds;
+
+ if (cn_fds <= 0)
+ continue;
+
+ if (!rfds) {
+ rfds = TAKE_PTR(cfds);
+ rn_socket_fds = cn_fds;
+ } else {
+ int *t;
+
+ t = reallocarray(rfds, rn_socket_fds + cn_fds, sizeof(int));
+ if (!t)
+ return -ENOMEM;
+
+ memcpy(t + rn_socket_fds, cfds, cn_fds * sizeof(int));
+
+ rfds = t;
+ rn_socket_fds += cn_fds;
+ }
+
+ r = strv_extend_n(&rfd_names, socket_fdname(sock), cn_fds);
+ if (r < 0)
+ return r;
+ }
+ }
+
+ if (s->n_fd_store > 0) {
+ size_t n_fds;
+ char **nl;
+ int *t;
+
+ t = reallocarray(rfds, rn_socket_fds + s->n_fd_store, sizeof(int));
+ if (!t)
+ return -ENOMEM;
+
+ rfds = t;
+
+ nl = reallocarray(rfd_names, rn_socket_fds + s->n_fd_store + 1, sizeof(char *));
+ if (!nl)
+ return -ENOMEM;
+
+ rfd_names = nl;
+ n_fds = rn_socket_fds;
+
+ LIST_FOREACH(fd_store, fs, s->fd_store) {
+ rfds[n_fds] = fs->fd;
+ rfd_names[n_fds] = strdup(strempty(fs->fdname));
+ if (!rfd_names[n_fds])
+ return -ENOMEM;
+
+ rn_storage_fds++;
+ n_fds++;
+ }
+
+ rfd_names[n_fds] = NULL;
+ }
+
+ *fds = TAKE_PTR(rfds);
+ *fd_names = TAKE_PTR(rfd_names);
+ *n_socket_fds = rn_socket_fds;
+ *n_storage_fds = rn_storage_fds;
+
+ return 0;
+}
+
+static int service_allocate_exec_fd_event_source(
+ Service *s,
+ int fd,
+ sd_event_source **ret_event_source) {
+
+ _cleanup_(sd_event_source_unrefp) sd_event_source *source = NULL;
+ int r;
+
+ assert(s);
+ assert(fd >= 0);
+ assert(ret_event_source);
+
+ r = sd_event_add_io(UNIT(s)->manager->event, &source, fd, 0, service_dispatch_exec_io, s);
+ if (r < 0)
+ return log_unit_error_errno(UNIT(s), r, "Failed to allocate exec_fd event source: %m");
+
+ /* This is a bit lower priority than SIGCHLD, as that carries a lot more interesting failure information */
+
+ r = sd_event_source_set_priority(source, SD_EVENT_PRIORITY_NORMAL-3);
+ if (r < 0)
+ return log_unit_error_errno(UNIT(s), r, "Failed to adjust priority of exec_fd event source: %m");
+
+ (void) sd_event_source_set_description(source, "service exec_fd");
+
+ r = sd_event_source_set_io_fd_own(source, true);
+ if (r < 0)
+ return log_unit_error_errno(UNIT(s), r, "Failed to pass ownership of fd to event source: %m");
+
+ *ret_event_source = TAKE_PTR(source);
+ return 0;
+}
+
+static int service_allocate_exec_fd(
+ Service *s,
+ sd_event_source **ret_event_source,
+ int *ret_exec_fd) {
+
+ _cleanup_close_pair_ int p[] = EBADF_PAIR;
+ int r;
+
+ assert(s);
+ assert(ret_event_source);
+ assert(ret_exec_fd);
+
+ if (pipe2(p, O_CLOEXEC|O_NONBLOCK) < 0)
+ return log_unit_error_errno(UNIT(s), errno, "Failed to allocate exec_fd pipe: %m");
+
+ r = service_allocate_exec_fd_event_source(s, p[0], ret_event_source);
+ if (r < 0)
+ return r;
+
+ TAKE_FD(p[0]);
+ *ret_exec_fd = TAKE_FD(p[1]);
+
+ return 0;
+}
+
+static bool service_exec_needs_notify_socket(Service *s, ExecFlags flags) {
+ assert(s);
+
+ /* Notifications are accepted depending on the process and
+ * the access setting of the service:
+ * process: \ access: NONE MAIN EXEC ALL
+ * main no yes yes yes
+ * control no no yes yes
+ * other (forked) no no no yes */
+
+ if (flags & EXEC_IS_CONTROL)
+ /* A control process */
+ return IN_SET(service_get_notify_access(s), NOTIFY_EXEC, NOTIFY_ALL);
+
+ /* We only spawn main processes and control processes, so any
+ * process that is not a control process is a main process */
+ return service_get_notify_access(s) != NOTIFY_NONE;
+}
+
+static Service *service_get_triggering_service(Service *s) {
+ Unit *candidate = NULL, *other;
+
+ assert(s);
+
+ /* Return the service which triggered service 's', this means dependency
+ * types which include the UNIT_ATOM_ON_{FAILURE,SUCCESS}_OF atoms.
+ *
+ * N.B. if there are multiple services which could trigger 's' via OnFailure=
+ * or OnSuccess= then we return NULL. This is since we don't know from which
+ * one to propagate the exit status. */
+
+ UNIT_FOREACH_DEPENDENCY(other, UNIT(s), UNIT_ATOM_ON_FAILURE_OF) {
+ if (candidate)
+ goto have_other;
+ candidate = other;
+ }
+
+ UNIT_FOREACH_DEPENDENCY(other, UNIT(s), UNIT_ATOM_ON_SUCCESS_OF) {
+ if (candidate)
+ goto have_other;
+ candidate = other;
+ }
+
+ return SERVICE(candidate);
+
+ have_other:
+ log_unit_warning(UNIT(s), "multiple trigger source candidates for exit status propagation (%s, %s), skipping.",
+ candidate->id, other->id);
+ return NULL;
+}
+
+static int service_spawn_internal(
+ const char *caller,
+ Service *s,
+ ExecCommand *c,
+ usec_t timeout,
+ ExecFlags flags,
+ PidRef *ret_pid) {
+
+ _cleanup_(exec_params_shallow_clear) ExecParameters exec_params = EXEC_PARAMETERS_INIT(flags);
+ _cleanup_(sd_event_source_unrefp) sd_event_source *exec_fd_source = NULL;
+ _cleanup_strv_free_ char **final_env = NULL, **our_env = NULL;
+ _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL;
+ size_t n_env = 0;
+ pid_t pid;
+ int r;
+
+ assert(caller);
+ assert(s);
+ assert(c);
+ assert(ret_pid);
+
+ log_unit_debug(UNIT(s), "Will spawn child (%s): %s", caller, c->path);
+
+ r = unit_prepare_exec(UNIT(s)); /* This realizes the cgroup, among other things */
+ if (r < 0)
+ return r;
+
+ assert(!s->exec_fd_event_source);
+
+ if (flags & EXEC_IS_CONTROL) {
+ /* If this is a control process, mask the permissions/chroot application if this is requested. */
+ if (s->permissions_start_only)
+ exec_params.flags &= ~EXEC_APPLY_SANDBOXING;
+ if (s->root_directory_start_only)
+ exec_params.flags &= ~EXEC_APPLY_CHROOT;
+ }
+
+ if ((flags & EXEC_PASS_FDS) ||
+ s->exec_context.std_input == EXEC_INPUT_SOCKET ||
+ s->exec_context.std_output == EXEC_OUTPUT_SOCKET ||
+ s->exec_context.std_error == EXEC_OUTPUT_SOCKET) {
+
+ r = service_collect_fds(s,
+ &exec_params.fds,
+ &exec_params.fd_names,
+ &exec_params.n_socket_fds,
+ &exec_params.n_storage_fds);
+ if (r < 0)
+ return r;
+
+ exec_params.open_files = s->open_files;
+
+ log_unit_debug(UNIT(s), "Passing %zu fds to service", exec_params.n_socket_fds + exec_params.n_storage_fds);
+ }
+
+ if (!FLAGS_SET(flags, EXEC_IS_CONTROL) && s->type == SERVICE_EXEC) {
+ r = service_allocate_exec_fd(s, &exec_fd_source, &exec_params.exec_fd);
+ if (r < 0)
+ return r;
+ }
+
+ r = service_arm_timer(s, /* relative= */ true, timeout);
+ if (r < 0)
+ return r;
+
+ our_env = new0(char*, 13);
+ if (!our_env)
+ return -ENOMEM;
+
+ if (service_exec_needs_notify_socket(s, flags)) {
+ if (asprintf(our_env + n_env++, "NOTIFY_SOCKET=%s", UNIT(s)->manager->notify_socket) < 0)
+ return -ENOMEM;
+
+ exec_params.notify_socket = UNIT(s)->manager->notify_socket;
+
+ if (s->n_fd_store_max > 0)
+ if (asprintf(our_env + n_env++, "FDSTORE=%u", s->n_fd_store_max) < 0)
+ return -ENOMEM;
+ }
+
+ if (pidref_is_set(&s->main_pid))
+ if (asprintf(our_env + n_env++, "MAINPID="PID_FMT, s->main_pid.pid) < 0)
+ return -ENOMEM;
+
+ if (MANAGER_IS_USER(UNIT(s)->manager))
+ if (asprintf(our_env + n_env++, "MANAGERPID="PID_FMT, getpid_cached()) < 0)
+ return -ENOMEM;
+
+ if (s->pid_file)
+ if (asprintf(our_env + n_env++, "PIDFILE=%s", s->pid_file) < 0)
+ return -ENOMEM;
+
+ if (s->socket_fd >= 0) {
+ union sockaddr_union sa;
+ socklen_t salen = sizeof(sa);
+
+ /* If this is a per-connection service instance, let's set $REMOTE_ADDR and $REMOTE_PORT to something
+ * useful. Note that we do this only when we are still connected at this point in time, which we might
+ * very well not be. Hence we ignore all errors when retrieving peer information (as that might result
+ * in ENOTCONN), and just use whate we can use. */
+
+ if (getpeername(s->socket_fd, &sa.sa, &salen) >= 0 &&
+ IN_SET(sa.sa.sa_family, AF_INET, AF_INET6, AF_VSOCK)) {
+ _cleanup_free_ char *addr = NULL;
+ char *t;
+ unsigned port;
+
+ r = sockaddr_pretty(&sa.sa, salen, true, false, &addr);
+ if (r < 0)
+ return r;
+
+ t = strjoin("REMOTE_ADDR=", addr);
+ if (!t)
+ return -ENOMEM;
+ our_env[n_env++] = t;
+
+ r = sockaddr_port(&sa.sa, &port);
+ if (r < 0)
+ return r;
+
+ if (asprintf(&t, "REMOTE_PORT=%u", port) < 0)
+ return -ENOMEM;
+ our_env[n_env++] = t;
+ }
+ }
+
+ Service *env_source = NULL;
+ const char *monitor_prefix;
+ if (flags & EXEC_SETENV_RESULT) {
+ env_source = s;
+ monitor_prefix = "";
+ } else if (flags & EXEC_SETENV_MONITOR_RESULT) {
+ env_source = service_get_triggering_service(s);
+ monitor_prefix = "MONITOR_";
+ }
+
+ if (env_source) {
+ if (asprintf(our_env + n_env++, "%sSERVICE_RESULT=%s", monitor_prefix, service_result_to_string(env_source->result)) < 0)
+ return -ENOMEM;
+
+ if (env_source->main_exec_status.pid > 0 &&
+ dual_timestamp_is_set(&env_source->main_exec_status.exit_timestamp)) {
+ if (asprintf(our_env + n_env++, "%sEXIT_CODE=%s", monitor_prefix, sigchld_code_to_string(env_source->main_exec_status.code)) < 0)
+ return -ENOMEM;
+
+ if (env_source->main_exec_status.code == CLD_EXITED)
+ r = asprintf(our_env + n_env++, "%sEXIT_STATUS=%i", monitor_prefix, env_source->main_exec_status.status);
+ else
+ r = asprintf(our_env + n_env++, "%sEXIT_STATUS=%s", monitor_prefix, signal_to_string(env_source->main_exec_status.status));
+
+ if (r < 0)
+ return -ENOMEM;
+ }
+
+ if (env_source != s) {
+ if (!sd_id128_is_null(UNIT(env_source)->invocation_id)) {
+ r = asprintf(our_env + n_env++, "%sINVOCATION_ID=" SD_ID128_FORMAT_STR,
+ monitor_prefix, SD_ID128_FORMAT_VAL(UNIT(env_source)->invocation_id));
+ if (r < 0)
+ return -ENOMEM;
+ }
+
+ if (asprintf(our_env + n_env++, "%sUNIT=%s", monitor_prefix, UNIT(env_source)->id) < 0)
+ return -ENOMEM;
+ }
+ }
+
+ if (UNIT(s)->activation_details) {
+ r = activation_details_append_env(UNIT(s)->activation_details, &our_env);
+ if (r < 0)
+ return r;
+ /* The number of env vars added here can vary, rather than keeping the allocation block in
+ * sync manually, these functions simply use the strv methods to append to it, so we need
+ * to update n_env when we are done in case of future usage. */
+ n_env += r;
+ }
+
+ r = unit_set_exec_params(UNIT(s), &exec_params);
+ if (r < 0)
+ return r;
+
+ final_env = strv_env_merge(exec_params.environment, our_env);
+ if (!final_env)
+ return -ENOMEM;
+
+ /* System D-Bus needs nss-systemd disabled, so that we don't deadlock */
+ SET_FLAG(exec_params.flags, EXEC_NSS_DYNAMIC_BYPASS,
+ MANAGER_IS_SYSTEM(UNIT(s)->manager) && unit_has_name(UNIT(s), SPECIAL_DBUS_SERVICE));
+
+ strv_free_and_replace(exec_params.environment, final_env);
+ exec_params.watchdog_usec = service_get_watchdog_usec(s);
+ exec_params.selinux_context_net = s->socket_fd_selinux_context_net;
+ if (s->type == SERVICE_IDLE)
+ exec_params.idle_pipe = UNIT(s)->manager->idle_pipe;
+ exec_params.stdin_fd = s->stdin_fd;
+ exec_params.stdout_fd = s->stdout_fd;
+ exec_params.stderr_fd = s->stderr_fd;
+
+ r = exec_spawn(UNIT(s),
+ c,
+ &s->exec_context,
+ &exec_params,
+ s->exec_runtime,
+ &s->cgroup_context,
+ &pid);
+ if (r < 0)
+ return r;
+
+ s->exec_fd_event_source = TAKE_PTR(exec_fd_source);
+ s->exec_fd_hot = false;
+
+ r = pidref_set_pid(&pidref, pid);
+ if (r < 0)
+ return r;
+
+ r = unit_watch_pidref(UNIT(s), &pidref, /* exclusive= */ true);
+ if (r < 0)
+ return r;
+
+ *ret_pid = TAKE_PIDREF(pidref);
+ return 0;
+}
+
+static int main_pid_good(Service *s) {
+ assert(s);
+
+ /* Returns 0 if the pid is dead, > 0 if it is good, < 0 if we don't know */
+
+ /* If we know the pid file, then let's just check if it is still valid */
+ if (s->main_pid_known) {
+
+ /* If it's an alien child let's check if it is still alive ... */
+ if (s->main_pid_alien && pidref_is_set(&s->main_pid))
+ return pidref_is_alive(&s->main_pid);
+
+ /* .. otherwise assume we'll get a SIGCHLD for it, which we really should wait for to collect
+ * exit status and code */
+ return pidref_is_set(&s->main_pid);
+ }
+
+ /* We don't know the pid */
+ return -EAGAIN;
+}
+
+static int control_pid_good(Service *s) {
+ assert(s);
+
+ /* Returns 0 if the control PID is dead, > 0 if it is good. We never actually return < 0 here, but in order to
+ * make this function as similar as possible to main_pid_good() and cgroup_good(), we pretend that < 0 also
+ * means: we can't figure it out. */
+
+ return pidref_is_set(&s->control_pid);
+}
+
+static int cgroup_good(Service *s) {
+ int r;
+
+ assert(s);
+
+ /* Returns 0 if the cgroup is empty or doesn't exist, > 0 if it is exists and is populated, < 0 if we can't
+ * figure it out */
+
+ if (!UNIT(s)->cgroup_path)
+ return 0;
+
+ r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, UNIT(s)->cgroup_path);
+ if (r < 0)
+ return r;
+
+ return r == 0;
+}
+
+static bool service_shall_restart(Service *s, const char **reason) {
+ assert(s);
+
+ /* Don't restart after manual stops */
+ if (s->forbid_restart) {
+ *reason = "manual stop";
+ return false;
+ }
+
+ /* Never restart if this is configured as special exception */
+ if (exit_status_set_test(&s->restart_prevent_status, s->main_exec_status.code, s->main_exec_status.status)) {
+ *reason = "prevented by exit status";
+ return false;
+ }
+
+ /* Restart if the exit code/status are configured as restart triggers */
+ if (exit_status_set_test(&s->restart_force_status, s->main_exec_status.code, s->main_exec_status.status)) {
+ *reason = "forced by exit status";
+ return true;
+ }
+
+ *reason = "restart setting";
+ switch (s->restart) {
+
+ case SERVICE_RESTART_NO:
+ return false;
+
+ case SERVICE_RESTART_ALWAYS:
+ return s->result != SERVICE_SKIP_CONDITION;
+
+ case SERVICE_RESTART_ON_SUCCESS:
+ return s->result == SERVICE_SUCCESS;
+
+ case SERVICE_RESTART_ON_FAILURE:
+ return !IN_SET(s->result, SERVICE_SUCCESS, SERVICE_SKIP_CONDITION);
+
+ case SERVICE_RESTART_ON_ABNORMAL:
+ return !IN_SET(s->result, SERVICE_SUCCESS, SERVICE_FAILURE_EXIT_CODE, SERVICE_SKIP_CONDITION);
+
+ case SERVICE_RESTART_ON_WATCHDOG:
+ return s->result == SERVICE_FAILURE_WATCHDOG;
+
+ case SERVICE_RESTART_ON_ABORT:
+ return IN_SET(s->result, SERVICE_FAILURE_SIGNAL, SERVICE_FAILURE_CORE_DUMP);
+
+ default:
+ assert_not_reached();
+ }
+}
+
+static bool service_will_restart(Unit *u) {
+ Service *s = SERVICE(u);
+
+ assert(s);
+
+ if (IN_SET(s->state, SERVICE_DEAD_BEFORE_AUTO_RESTART, SERVICE_FAILED_BEFORE_AUTO_RESTART, SERVICE_AUTO_RESTART, SERVICE_AUTO_RESTART_QUEUED))
+ return true;
+
+ return unit_will_restart_default(u);
+}
+
+static ServiceState service_determine_dead_state(Service *s) {
+ assert(s);
+
+ return s->fd_store && s->fd_store_preserve_mode == EXEC_PRESERVE_YES ? SERVICE_DEAD_RESOURCES_PINNED : SERVICE_DEAD;
+}
+
+static void service_enter_dead(Service *s, ServiceResult f, bool allow_restart) {
+ ServiceState end_state, restart_state;
+ int r;
+
+ assert(s);
+
+ /* If there's a stop job queued before we enter the DEAD state, we shouldn't act on Restart=, in order to not
+ * undo what has already been enqueued. */
+ if (unit_stop_pending(UNIT(s)))
+ allow_restart = false;
+
+ if (s->result == SERVICE_SUCCESS)
+ s->result = f;
+
+ if (s->result == SERVICE_SUCCESS) {
+ unit_log_success(UNIT(s));
+ end_state = service_determine_dead_state(s);
+ restart_state = SERVICE_DEAD_BEFORE_AUTO_RESTART;
+ } else if (s->result == SERVICE_SKIP_CONDITION) {
+ unit_log_skip(UNIT(s), service_result_to_string(s->result));
+ end_state = service_determine_dead_state(s);
+ restart_state = SERVICE_DEAD_BEFORE_AUTO_RESTART;
+ } else {
+ unit_log_failure(UNIT(s), service_result_to_string(s->result));
+ end_state = SERVICE_FAILED;
+ restart_state = SERVICE_FAILED_BEFORE_AUTO_RESTART;
+ }
+ unit_warn_leftover_processes(UNIT(s), unit_log_leftover_process_stop);
+
+ if (!allow_restart)
+ log_unit_debug(UNIT(s), "Service restart not allowed.");
+ else {
+ const char *reason;
+
+ allow_restart = service_shall_restart(s, &reason);
+ log_unit_debug(UNIT(s), "Service will %srestart (%s)",
+ allow_restart ? "" : "not ",
+ reason);
+ }
+
+ if (allow_restart) {
+ usec_t restart_usec_next;
+
+ /* We make two state changes here: one that maps to the high-level UNIT_INACTIVE/UNIT_FAILED
+ * state (i.e. a state indicating deactivation), and then one that that maps to the
+ * high-level UNIT_STARTING state (i.e. a state indicating activation). We do this so that
+ * external software can watch the state changes and see all service failures, even if they
+ * are only transitionary and followed by an automatic restart. We have fine-grained
+ * low-level states for this though so that software can distinguish the permanent UNIT_INACTIVE
+ * state from this transitionary UNIT_INACTIVE state by looking at the low-level states. */
+ if (s->restart_mode != SERVICE_RESTART_MODE_DIRECT)
+ service_set_state(s, restart_state);
+
+ restart_usec_next = service_restart_usec_next(s);
+
+ r = service_arm_timer(s, /* relative= */ true, restart_usec_next);
+ if (r < 0) {
+ log_unit_warning_errno(UNIT(s), r, "Failed to install restart timer: %m");
+ service_enter_dead(s, SERVICE_FAILURE_RESOURCES, /* allow_restart= */ false);
+ return;
+ }
+
+ log_unit_debug(UNIT(s), "Next restart interval calculated as: %s", FORMAT_TIMESPAN(restart_usec_next, 0));
+
+ service_set_state(s, SERVICE_AUTO_RESTART);
+ } else {
+ service_set_state(s, end_state);
+
+ /* If we shan't restart, then flush out the restart counter. But don't do that immediately, so that the
+ * user can still introspect the counter. Do so on the next start. */
+ s->flush_n_restarts = true;
+ }
+
+ /* The new state is in effect, let's decrease the fd store ref counter again. Let's also re-add us to the GC
+ * queue, so that the fd store is possibly gc'ed again */
+ unit_add_to_gc_queue(UNIT(s));
+
+ /* The next restart might not be a manual stop, hence reset the flag indicating manual stops */
+ s->forbid_restart = false;
+
+ /* Reset NotifyAccess override */
+ s->notify_access_override = _NOTIFY_ACCESS_INVALID;
+
+ /* We want fresh tmpdirs and ephemeral snapshots in case the service is started again immediately. */
+ s->exec_runtime = exec_runtime_destroy(s->exec_runtime);
+
+ /* Also, remove the runtime directory */
+ unit_destroy_runtime_data(UNIT(s), &s->exec_context);
+
+ /* Also get rid of the fd store, if that's configured. */
+ if (s->fd_store_preserve_mode == EXEC_PRESERVE_NO)
+ service_release_fd_store(s);
+
+ /* Get rid of the IPC bits of the user */
+ unit_unref_uid_gid(UNIT(s), true);
+
+ /* Try to delete the pid file. At this point it will be
+ * out-of-date, and some software might be confused by it, so
+ * let's remove it. */
+ if (s->pid_file)
+ (void) unlink(s->pid_file);
+
+ /* Reset TTY ownership if necessary */
+ exec_context_revert_tty(&s->exec_context);
+}
+
+static void service_enter_stop_post(Service *s, ServiceResult f) {
+ int r;
+ assert(s);
+
+ if (s->result == SERVICE_SUCCESS)
+ s->result = f;
+
+ service_unwatch_control_pid(s);
+ (void) unit_enqueue_rewatch_pids(UNIT(s));
+
+ s->control_command = s->exec_command[SERVICE_EXEC_STOP_POST];
+ if (s->control_command) {
+ s->control_command_id = SERVICE_EXEC_STOP_POST;
+ pidref_done(&s->control_pid);
+
+ r = service_spawn(s,
+ s->control_command,
+ s->timeout_stop_usec,
+ EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_APPLY_TTY_STDIN|EXEC_IS_CONTROL|EXEC_SETENV_RESULT|EXEC_CONTROL_CGROUP,
+ &s->control_pid);
+ if (r < 0) {
+ log_unit_warning_errno(UNIT(s), r, "Failed to spawn 'stop-post' task: %m");
+ service_enter_signal(s, SERVICE_FINAL_SIGTERM, SERVICE_FAILURE_RESOURCES);
+ return;
+ }
+
+ service_set_state(s, SERVICE_STOP_POST);
+ } else
+ service_enter_signal(s, SERVICE_FINAL_SIGTERM, SERVICE_SUCCESS);
+}
+
+static int state_to_kill_operation(Service *s, ServiceState state) {
+ switch (state) {
+
+ case SERVICE_STOP_WATCHDOG:
+ case SERVICE_FINAL_WATCHDOG:
+ return KILL_WATCHDOG;
+
+ case SERVICE_STOP_SIGTERM:
+ if (unit_has_job_type(UNIT(s), JOB_RESTART))
+ return KILL_RESTART;
+ _fallthrough_;
+
+ case SERVICE_FINAL_SIGTERM:
+ return KILL_TERMINATE;
+
+ case SERVICE_STOP_SIGKILL:
+ case SERVICE_FINAL_SIGKILL:
+ return KILL_KILL;
+
+ default:
+ return _KILL_OPERATION_INVALID;
+ }
+}
+
+static void service_enter_signal(Service *s, ServiceState state, ServiceResult f) {
+ int kill_operation, r;
+
+ assert(s);
+
+ if (s->result == SERVICE_SUCCESS)
+ s->result = f;
+
+ /* Before sending any signal, make sure we track all members of this cgroup */
+ (void) unit_watch_all_pids(UNIT(s));
+
+ /* Also, enqueue a job that we recheck all our PIDs a bit later, given that it's likely some processes have
+ * died now */
+ (void) unit_enqueue_rewatch_pids(UNIT(s));
+
+ kill_operation = state_to_kill_operation(s, state);
+ r = unit_kill_context(
+ UNIT(s),
+ &s->kill_context,
+ kill_operation,
+ &s->main_pid,
+ &s->control_pid,
+ s->main_pid_alien);
+ if (r < 0) {
+ log_unit_warning_errno(UNIT(s), r, "Failed to kill processes: %m");
+ goto fail;
+ }
+
+ if (r > 0) {
+ r = service_arm_timer(s, /* relative= */ true,
+ kill_operation == KILL_WATCHDOG ? service_timeout_abort_usec(s) : s->timeout_stop_usec);
+ if (r < 0) {
+ log_unit_warning_errno(UNIT(s), r, "Failed to install timer: %m");
+ goto fail;
+ }
+
+ service_set_state(s, state);
+ } else if (IN_SET(state, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM) && s->kill_context.send_sigkill)
+ service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_SUCCESS);
+ else if (IN_SET(state, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL))
+ service_enter_stop_post(s, SERVICE_SUCCESS);
+ else if (IN_SET(state, SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM) && s->kill_context.send_sigkill)
+ service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_SUCCESS);
+ else
+ service_enter_dead(s, SERVICE_SUCCESS, /* allow_restart= */ true);
+
+ return;
+
+fail:
+ if (IN_SET(state, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL))
+ service_enter_stop_post(s, SERVICE_FAILURE_RESOURCES);
+ else
+ service_enter_dead(s, SERVICE_FAILURE_RESOURCES, /* allow_restart= */ true);
+}
+
+static void service_enter_stop_by_notify(Service *s) {
+ int r;
+
+ assert(s);
+
+ (void) unit_enqueue_rewatch_pids(UNIT(s));
+
+ r = service_arm_timer(s, /* relative= */ true, s->timeout_stop_usec);
+ if (r < 0) {
+ log_unit_warning_errno(UNIT(s), r, "Failed to install timer: %m");
+ service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES);
+ return;
+ }
+
+ /* The service told us it's stopping, so it's as if we SIGTERM'd it. */
+ service_set_state(s, SERVICE_STOP_SIGTERM);
+}
+
+static void service_enter_stop(Service *s, ServiceResult f) {
+ int r;
+
+ assert(s);
+
+ if (s->result == SERVICE_SUCCESS)
+ s->result = f;
+
+ service_unwatch_control_pid(s);
+ (void) unit_enqueue_rewatch_pids(UNIT(s));
+
+ s->control_command = s->exec_command[SERVICE_EXEC_STOP];
+ if (s->control_command) {
+ s->control_command_id = SERVICE_EXEC_STOP;
+ pidref_done(&s->control_pid);
+
+ r = service_spawn(s,
+ s->control_command,
+ s->timeout_stop_usec,
+ EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_IS_CONTROL|EXEC_SETENV_RESULT|EXEC_CONTROL_CGROUP,
+ &s->control_pid);
+ if (r < 0) {
+ log_unit_warning_errno(UNIT(s), r, "Failed to spawn 'stop' task: %m");
+ service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES);
+ return;
+ }
+
+ service_set_state(s, SERVICE_STOP);
+ } else
+ service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_SUCCESS);
+}
+
+static bool service_good(Service *s) {
+ int main_pid_ok;
+ assert(s);
+
+ if (s->type == SERVICE_DBUS && !s->bus_name_good)
+ return false;
+
+ main_pid_ok = main_pid_good(s);
+ if (main_pid_ok > 0) /* It's alive */
+ return true;
+ if (main_pid_ok == 0 && s->exit_type == SERVICE_EXIT_MAIN) /* It's dead */
+ return false;
+
+ /* OK, we don't know anything about the main PID, maybe
+ * because there is none. Let's check the control group
+ * instead. */
+
+ return cgroup_good(s) != 0;
+}
+
+static void service_enter_running(Service *s, ServiceResult f) {
+ int r;
+
+ assert(s);
+
+ if (s->result == SERVICE_SUCCESS)
+ s->result = f;
+
+ service_unwatch_control_pid(s);
+
+ if (s->result != SERVICE_SUCCESS)
+ service_enter_signal(s, SERVICE_STOP_SIGTERM, f);
+ else if (service_good(s)) {
+
+ /* If there are any queued up sd_notify() notifications, process them now */
+ if (s->notify_state == NOTIFY_RELOADING)
+ service_enter_reload_by_notify(s);
+ else if (s->notify_state == NOTIFY_STOPPING)
+ service_enter_stop_by_notify(s);
+ else {
+ service_set_state(s, SERVICE_RUNNING);
+
+ r = service_arm_timer(s, /* relative= */ false, service_running_timeout(s));
+ if (r < 0) {
+ log_unit_warning_errno(UNIT(s), r, "Failed to install timer: %m");
+ service_enter_running(s, SERVICE_FAILURE_RESOURCES);
+ return;
+ }
+ }
+
+ } else if (s->remain_after_exit)
+ service_set_state(s, SERVICE_EXITED);
+ else
+ service_enter_stop(s, SERVICE_SUCCESS);
+}
+
+static void service_enter_start_post(Service *s) {
+ int r;
+ assert(s);
+
+ service_unwatch_control_pid(s);
+ service_reset_watchdog(s);
+
+ s->control_command = s->exec_command[SERVICE_EXEC_START_POST];
+ if (s->control_command) {
+ s->control_command_id = SERVICE_EXEC_START_POST;
+ pidref_done(&s->control_pid);
+
+ r = service_spawn(s,
+ s->control_command,
+ s->timeout_start_usec,
+ EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_IS_CONTROL|EXEC_CONTROL_CGROUP,
+ &s->control_pid);
+ if (r < 0) {
+ log_unit_warning_errno(UNIT(s), r, "Failed to spawn 'start-post' task: %m");
+ service_enter_stop(s, SERVICE_FAILURE_RESOURCES);
+ return;
+ }
+
+ service_set_state(s, SERVICE_START_POST);
+ } else
+ service_enter_running(s, SERVICE_SUCCESS);
+}
+
+static void service_kill_control_process(Service *s) {
+ int r;
+
+ assert(s);
+
+ if (!pidref_is_set(&s->control_pid))
+ return;
+
+ r = pidref_kill_and_sigcont(&s->control_pid, SIGKILL);
+ if (r < 0) {
+ _cleanup_free_ char *comm = NULL;
+
+ (void) pidref_get_comm(&s->control_pid, &comm);
+
+ log_unit_debug_errno(UNIT(s), r, "Failed to kill control process " PID_FMT " (%s), ignoring: %m",
+ s->control_pid.pid, strna(comm));
+ }
+}
+
+static int service_adverse_to_leftover_processes(Service *s) {
+ assert(s);
+
+ /* KillMode=mixed and control group are used to indicate that all process should be killed off.
+ * SendSIGKILL= is used for services that require a clean shutdown. These are typically database
+ * service where a SigKilled process would result in a lengthy recovery and who's shutdown or startup
+ * time is quite variable (so Timeout settings aren't of use).
+ *
+ * Here we take these two factors and refuse to start a service if there are existing processes
+ * within a control group. Databases, while generally having some protection against multiple
+ * instances running, lets not stress the rigor of these. Also ExecStartPre= parts of the service
+ * aren't as rigoriously written to protect aganst against multiple use. */
+
+ if (unit_warn_leftover_processes(UNIT(s), unit_log_leftover_process_start) > 0 &&
+ IN_SET(s->kill_context.kill_mode, KILL_MIXED, KILL_CONTROL_GROUP) &&
+ !s->kill_context.send_sigkill)
+ return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(EBUSY),
+ "Will not start SendSIGKILL=no service of type KillMode=control-group or mixed while processes exist");
+
+ return 0;
+}
+
+static void service_enter_start(Service *s) {
+ _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL;
+ ExecCommand *c;
+ usec_t timeout;
+ int r;
+
+ assert(s);
+
+ service_unwatch_control_pid(s);
+ service_unwatch_main_pid(s);
+
+ r = service_adverse_to_leftover_processes(s);
+ if (r < 0)
+ goto fail;
+
+ if (s->type == SERVICE_FORKING) {
+ s->control_command_id = SERVICE_EXEC_START;
+ c = s->control_command = s->exec_command[SERVICE_EXEC_START];
+
+ s->main_command = NULL;
+ } else {
+ s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID;
+ s->control_command = NULL;
+
+ c = s->main_command = s->exec_command[SERVICE_EXEC_START];
+ }
+
+ if (!c) {
+ if (s->type != SERVICE_ONESHOT) {
+ /* There's no command line configured for the main command? Hmm, that is strange.
+ * This can only happen if the configuration changes at runtime. In this case,
+ * let's enter a failure state. */
+ r = log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENXIO), "There's no 'start' task anymore we could start.");
+ goto fail;
+ }
+
+ /* We force a fake state transition here. Otherwise, the unit would go directly from
+ * SERVICE_DEAD to SERVICE_DEAD without SERVICE_ACTIVATING or SERVICE_ACTIVE
+ * in between. This way we can later trigger actions that depend on the state
+ * transition, including SuccessAction=. */
+ service_set_state(s, SERVICE_START);
+
+ service_enter_start_post(s);
+ return;
+ }
+
+ if (IN_SET(s->type, SERVICE_SIMPLE, SERVICE_IDLE))
+ /* For simple + idle this is the main process. We don't apply any timeout here, but
+ * service_enter_running() will later apply the .runtime_max_usec timeout. */
+ timeout = USEC_INFINITY;
+ else
+ timeout = s->timeout_start_usec;
+
+ r = service_spawn(s,
+ c,
+ timeout,
+ EXEC_PASS_FDS|EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_APPLY_TTY_STDIN|EXEC_SET_WATCHDOG|EXEC_WRITE_CREDENTIALS|EXEC_SETENV_MONITOR_RESULT,
+ &pidref);
+ if (r < 0) {
+ log_unit_warning_errno(UNIT(s), r, "Failed to spawn 'start' task: %m");
+ goto fail;
+ }
+
+ if (IN_SET(s->type, SERVICE_SIMPLE, SERVICE_IDLE)) {
+ /* For simple services we immediately start
+ * the START_POST binaries. */
+
+ (void) service_set_main_pidref(s, &pidref);
+ service_enter_start_post(s);
+
+ } else if (s->type == SERVICE_FORKING) {
+
+ /* For forking services we wait until the start
+ * process exited. */
+
+ pidref_done(&s->control_pid);
+ s->control_pid = TAKE_PIDREF(pidref);
+ service_set_state(s, SERVICE_START);
+
+ } else if (IN_SET(s->type, SERVICE_ONESHOT, SERVICE_DBUS, SERVICE_NOTIFY, SERVICE_NOTIFY_RELOAD, SERVICE_EXEC)) {
+
+ /* For oneshot services we wait until the start process exited, too, but it is our main process. */
+
+ /* For D-Bus services we know the main pid right away, but wait for the bus name to appear on the
+ * bus. 'notify' and 'exec' services are similar. */
+
+ (void) service_set_main_pidref(s, &pidref);
+ service_set_state(s, SERVICE_START);
+ } else
+ assert_not_reached();
+
+ return;
+
+fail:
+ service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES);
+}
+
+static void service_enter_start_pre(Service *s) {
+ int r;
+
+ assert(s);
+
+ service_unwatch_control_pid(s);
+
+ s->control_command = s->exec_command[SERVICE_EXEC_START_PRE];
+ if (s->control_command) {
+
+ r = service_adverse_to_leftover_processes(s);
+ if (r < 0)
+ goto fail;
+
+ s->control_command_id = SERVICE_EXEC_START_PRE;
+
+ r = service_spawn(s,
+ s->control_command,
+ s->timeout_start_usec,
+ EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_IS_CONTROL|EXEC_APPLY_TTY_STDIN|EXEC_SETENV_MONITOR_RESULT|EXEC_WRITE_CREDENTIALS,
+ &s->control_pid);
+ if (r < 0) {
+ log_unit_warning_errno(UNIT(s), r, "Failed to spawn 'start-pre' task: %m");
+ goto fail;
+ }
+
+ service_set_state(s, SERVICE_START_PRE);
+ } else
+ service_enter_start(s);
+
+ return;
+
+fail:
+ service_enter_dead(s, SERVICE_FAILURE_RESOURCES, /* allow_restart= */ true);
+}
+
+static void service_enter_condition(Service *s) {
+ int r;
+
+ assert(s);
+
+ service_unwatch_control_pid(s);
+
+ s->control_command = s->exec_command[SERVICE_EXEC_CONDITION];
+ if (s->control_command) {
+
+ r = service_adverse_to_leftover_processes(s);
+ if (r < 0)
+ goto fail;
+
+ s->control_command_id = SERVICE_EXEC_CONDITION;
+ pidref_done(&s->control_pid);
+
+ r = service_spawn(s,
+ s->control_command,
+ s->timeout_start_usec,
+ EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_IS_CONTROL|EXEC_APPLY_TTY_STDIN,
+ &s->control_pid);
+
+ if (r < 0) {
+ log_unit_warning_errno(UNIT(s), r, "Failed to spawn 'exec-condition' task: %m");
+ goto fail;
+ }
+
+ service_set_state(s, SERVICE_CONDITION);
+ } else
+ service_enter_start_pre(s);
+
+ return;
+
+fail:
+ service_enter_dead(s, SERVICE_FAILURE_RESOURCES, /* allow_restart= */ true);
+}
+
+static void service_enter_restart(Service *s) {
+ _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
+ int r;
+
+ assert(s);
+
+ if (unit_has_job_type(UNIT(s), JOB_STOP)) {
+ /* Don't restart things if we are going down anyway */
+ log_unit_info(UNIT(s), "Stop job pending for unit, skipping automatic restart.");
+ return;
+ }
+
+ /* Any units that are bound to this service must also be restarted. We use JOB_START for ourselves
+ * but then set JOB_RESTART_DEPENDENCIES which will enqueue JOB_RESTART for those dependency jobs. */
+ r = manager_add_job(UNIT(s)->manager, JOB_START, UNIT(s), JOB_RESTART_DEPENDENCIES, NULL, &error, NULL);
+ if (r < 0) {
+ log_unit_warning(UNIT(s), "Failed to schedule restart job: %s", bus_error_message(&error, r));
+ service_enter_dead(s, SERVICE_FAILURE_RESOURCES, /* allow_restart= */ false);
+ return;
+ }
+
+ /* Count the jobs we enqueue for restarting. This counter is maintained as long as the unit isn't
+ * fully stopped, i.e. as long as it remains up or remains in auto-start states. The user can reset
+ * the counter explicitly however via the usual "systemctl reset-failure" logic. */
+ s->n_restarts ++;
+ s->flush_n_restarts = false;
+
+ s->notify_access_override = _NOTIFY_ACCESS_INVALID;
+
+ log_unit_struct(UNIT(s), LOG_INFO,
+ "MESSAGE_ID=" SD_MESSAGE_UNIT_RESTART_SCHEDULED_STR,
+ LOG_UNIT_INVOCATION_ID(UNIT(s)),
+ LOG_UNIT_MESSAGE(UNIT(s),
+ "Scheduled restart job, restart counter is at %u.", s->n_restarts),
+ "N_RESTARTS=%u", s->n_restarts);
+
+ service_set_state(s, SERVICE_AUTO_RESTART_QUEUED);
+
+ /* Notify clients about changed restart counter */
+ unit_add_to_dbus_queue(UNIT(s));
+}
+
+static void service_enter_reload_by_notify(Service *s) {
+ _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
+ int r;
+
+ assert(s);
+
+ r = service_arm_timer(s, /* relative= */ true, s->timeout_start_usec);
+ if (r < 0) {
+ log_unit_warning_errno(UNIT(s), r, "Failed to install timer: %m");
+ s->reload_result = SERVICE_FAILURE_RESOURCES;
+ service_enter_running(s, SERVICE_SUCCESS);
+ return;
+ }
+
+ service_set_state(s, SERVICE_RELOAD_NOTIFY);
+
+ /* service_enter_reload_by_notify is never called during a reload, thus no loops are possible. */
+ r = manager_propagate_reload(UNIT(s)->manager, UNIT(s), JOB_FAIL, &error);
+ if (r < 0)
+ log_unit_warning(UNIT(s), "Failed to schedule propagation of reload, ignoring: %s", bus_error_message(&error, r));
+}
+
+static void service_enter_reload(Service *s) {
+ bool killed = false;
+ int r;
+
+ assert(s);
+
+ service_unwatch_control_pid(s);
+ s->reload_result = SERVICE_SUCCESS;
+
+ usec_t ts = now(CLOCK_MONOTONIC);
+
+ if (s->type == SERVICE_NOTIFY_RELOAD && pidref_is_set(&s->main_pid)) {
+ r = pidref_kill_and_sigcont(&s->main_pid, s->reload_signal);
+ if (r < 0) {
+ log_unit_warning_errno(UNIT(s), r, "Failed to send reload signal: %m");
+ goto fail;
+ }
+
+ killed = true;
+ }
+
+ s->control_command = s->exec_command[SERVICE_EXEC_RELOAD];
+ if (s->control_command) {
+ s->control_command_id = SERVICE_EXEC_RELOAD;
+ pidref_done(&s->control_pid);
+
+ r = service_spawn(s,
+ s->control_command,
+ s->timeout_start_usec,
+ EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_IS_CONTROL|EXEC_CONTROL_CGROUP,
+ &s->control_pid);
+ if (r < 0) {
+ log_unit_warning_errno(UNIT(s), r, "Failed to spawn 'reload' task: %m");
+ goto fail;
+ }
+
+ service_set_state(s, SERVICE_RELOAD);
+ } else if (killed) {
+ r = service_arm_timer(s, /* relative= */ true, s->timeout_start_usec);
+ if (r < 0) {
+ log_unit_warning_errno(UNIT(s), r, "Failed to install timer: %m");
+ goto fail;
+ }
+
+ service_set_state(s, SERVICE_RELOAD_SIGNAL);
+ } else {
+ service_enter_running(s, SERVICE_SUCCESS);
+ return;
+ }
+
+ /* Store the timestamp when we started reloading: when reloading via SIGHUP we won't leave the reload
+ * state until we received both RELOADING=1 and READY=1 with MONOTONIC_USEC= set to a value above
+ * this. Thus we know for sure the reload cycle was executed *after* we requested it, and is not one
+ * that was already in progress before. */
+ s->reload_begin_usec = ts;
+ return;
+
+fail:
+ s->reload_result = SERVICE_FAILURE_RESOURCES;
+ service_enter_running(s, SERVICE_SUCCESS);
+}
+
+static void service_run_next_control(Service *s) {
+ usec_t timeout;
+ int r;
+
+ assert(s);
+ assert(s->control_command);
+ assert(s->control_command->command_next);
+
+ assert(s->control_command_id != SERVICE_EXEC_START);
+
+ s->control_command = s->control_command->command_next;
+ service_unwatch_control_pid(s);
+
+ if (IN_SET(s->state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD))
+ timeout = s->timeout_start_usec;
+ else
+ timeout = s->timeout_stop_usec;
+
+ pidref_done(&s->control_pid);
+
+ r = service_spawn(s,
+ s->control_command,
+ timeout,
+ EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_IS_CONTROL|
+ (IN_SET(s->state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD) ? EXEC_WRITE_CREDENTIALS : 0)|
+ (IN_SET(s->control_command_id, SERVICE_EXEC_CONDITION, SERVICE_EXEC_START_PRE, SERVICE_EXEC_STOP_POST) ? EXEC_APPLY_TTY_STDIN : 0)|
+ (IN_SET(s->control_command_id, SERVICE_EXEC_STOP, SERVICE_EXEC_STOP_POST) ? EXEC_SETENV_RESULT : 0)|
+ (IN_SET(s->control_command_id, SERVICE_EXEC_START_PRE, SERVICE_EXEC_START) ? EXEC_SETENV_MONITOR_RESULT : 0)|
+ (IN_SET(s->control_command_id, SERVICE_EXEC_START_POST, SERVICE_EXEC_RELOAD, SERVICE_EXEC_STOP, SERVICE_EXEC_STOP_POST) ? EXEC_CONTROL_CGROUP : 0),
+ &s->control_pid);
+ if (r < 0) {
+ log_unit_warning_errno(UNIT(s), r, "Failed to spawn next control task: %m");
+
+ if (IN_SET(s->state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START_POST, SERVICE_STOP))
+ service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES);
+ else if (s->state == SERVICE_STOP_POST)
+ service_enter_dead(s, SERVICE_FAILURE_RESOURCES, /* allow_restart= */ true);
+ else if (s->state == SERVICE_RELOAD) {
+ s->reload_result = SERVICE_FAILURE_RESOURCES;
+ service_enter_running(s, SERVICE_SUCCESS);
+ } else
+ service_enter_stop(s, SERVICE_FAILURE_RESOURCES);
+ }
+}
+
+static void service_run_next_main(Service *s) {
+ _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL;
+ int r;
+
+ assert(s);
+ assert(s->main_command);
+ assert(s->main_command->command_next);
+ assert(s->type == SERVICE_ONESHOT);
+
+ s->main_command = s->main_command->command_next;
+ service_unwatch_main_pid(s);
+
+ r = service_spawn(s,
+ s->main_command,
+ s->timeout_start_usec,
+ EXEC_PASS_FDS|EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_APPLY_TTY_STDIN|EXEC_SET_WATCHDOG|EXEC_SETENV_MONITOR_RESULT|EXEC_WRITE_CREDENTIALS,
+ &pidref);
+ if (r < 0) {
+ log_unit_warning_errno(UNIT(s), r, "Failed to spawn next main task: %m");
+ service_enter_stop(s, SERVICE_FAILURE_RESOURCES);
+ return;
+ }
+
+ (void) service_set_main_pidref(s, &pidref);
+}
+
+static int service_start(Unit *u) {
+ Service *s = SERVICE(u);
+ int r;
+
+ assert(s);
+
+ /* We cannot fulfill this request right now, try again later
+ * please! */
+ if (IN_SET(s->state,
+ SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST,
+ SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL, SERVICE_CLEANING))
+ return -EAGAIN;
+
+ /* Already on it! */
+ if (IN_SET(s->state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST))
+ return 0;
+
+ /* A service that will be restarted must be stopped first to trigger BindsTo and/or OnFailure
+ * dependencies. If a user does not want to wait for the holdoff time to elapse, the service should
+ * be manually restarted, not started. We simply return EAGAIN here, so that any start jobs stay
+ * queued, and assume that the auto restart timer will eventually trigger the restart. */
+ if (IN_SET(s->state, SERVICE_AUTO_RESTART, SERVICE_DEAD_BEFORE_AUTO_RESTART, SERVICE_FAILED_BEFORE_AUTO_RESTART))
+ return -EAGAIN;
+
+ assert(IN_SET(s->state, SERVICE_DEAD, SERVICE_FAILED, SERVICE_DEAD_RESOURCES_PINNED, SERVICE_AUTO_RESTART_QUEUED));
+
+ r = unit_acquire_invocation_id(u);
+ if (r < 0)
+ return r;
+
+ s->result = SERVICE_SUCCESS;
+ s->reload_result = SERVICE_SUCCESS;
+ s->main_pid_known = false;
+ s->main_pid_alien = false;
+ s->forbid_restart = false;
+
+ s->status_text = mfree(s->status_text);
+ s->status_errno = 0;
+
+ s->notify_access_override = _NOTIFY_ACCESS_INVALID;
+ s->notify_state = NOTIFY_UNKNOWN;
+
+ s->watchdog_original_usec = s->watchdog_usec;
+ s->watchdog_override_enable = false;
+ s->watchdog_override_usec = USEC_INFINITY;
+
+ exec_command_reset_status_list_array(s->exec_command, _SERVICE_EXEC_COMMAND_MAX);
+ exec_status_reset(&s->main_exec_status);
+
+ /* This is not an automatic restart? Flush the restart counter then */
+ if (s->flush_n_restarts) {
+ s->n_restarts = 0;
+ s->flush_n_restarts = false;
+ }
+
+ u->reset_accounting = true;
+
+ service_enter_condition(s);
+ return 1;
+}
+
+static int service_stop(Unit *u) {
+ Service *s = SERVICE(u);
+
+ assert(s);
+
+ /* Don't create restart jobs from manual stops. */
+ s->forbid_restart = true;
+
+ switch (s->state) {
+
+ case SERVICE_STOP:
+ case SERVICE_STOP_SIGTERM:
+ case SERVICE_STOP_SIGKILL:
+ case SERVICE_STOP_POST:
+ case SERVICE_FINAL_WATCHDOG:
+ case SERVICE_FINAL_SIGTERM:
+ case SERVICE_FINAL_SIGKILL:
+ /* Already on it */
+ return 0;
+
+ case SERVICE_AUTO_RESTART:
+ case SERVICE_AUTO_RESTART_QUEUED:
+ /* Give up on the auto restart */
+ service_set_state(s, service_determine_dead_state(s));
+ return 0;
+
+ case SERVICE_CONDITION:
+ case SERVICE_START_PRE:
+ case SERVICE_START:
+ case SERVICE_START_POST:
+ case SERVICE_RELOAD:
+ case SERVICE_RELOAD_SIGNAL:
+ case SERVICE_RELOAD_NOTIFY:
+ case SERVICE_STOP_WATCHDOG:
+ /* If there's already something running we go directly into kill mode. */
+ service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_SUCCESS);
+ return 0;
+
+ case SERVICE_CLEANING:
+ /* If we are currently cleaning, then abort it, brutally. */
+ service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_SUCCESS);
+ return 0;
+
+ case SERVICE_RUNNING:
+ case SERVICE_EXITED:
+ service_enter_stop(s, SERVICE_SUCCESS);
+ return 1;
+
+ case SERVICE_DEAD_BEFORE_AUTO_RESTART:
+ case SERVICE_FAILED_BEFORE_AUTO_RESTART:
+ case SERVICE_DEAD:
+ case SERVICE_FAILED:
+ case SERVICE_DEAD_RESOURCES_PINNED:
+ default:
+ /* Unknown state, or unit_stop() should already have handled these */
+ assert_not_reached();
+ }
+}
+
+static int service_reload(Unit *u) {
+ Service *s = SERVICE(u);
+
+ assert(s);
+
+ assert(IN_SET(s->state, SERVICE_RUNNING, SERVICE_EXITED));
+
+ service_enter_reload(s);
+ return 1;
+}
+
+static bool service_can_reload(Unit *u) {
+ Service *s = SERVICE(u);
+
+ assert(s);
+
+ return s->exec_command[SERVICE_EXEC_RELOAD] ||
+ s->type == SERVICE_NOTIFY_RELOAD;
+}
+
+static unsigned service_exec_command_index(Unit *u, ServiceExecCommand id, const ExecCommand *current) {
+ Service *s = SERVICE(u);
+ unsigned idx = 0;
+
+ assert(s);
+ assert(id >= 0);
+ assert(id < _SERVICE_EXEC_COMMAND_MAX);
+
+ const ExecCommand *first = s->exec_command[id];
+
+ /* Figure out where we are in the list by walking back to the beginning */
+ for (const ExecCommand *c = current; c != first; c = c->command_prev)
+ idx++;
+
+ return idx;
+}
+
+static int service_serialize_exec_command(Unit *u, FILE *f, const ExecCommand *command) {
+ _cleanup_free_ char *args = NULL, *p = NULL;
+ Service *s = SERVICE(u);
+ const char *type, *key;
+ ServiceExecCommand id;
+ size_t length = 0;
+ unsigned idx;
+
+ assert(s);
+ assert(f);
+
+ if (!command)
+ return 0;
+
+ if (command == s->control_command) {
+ type = "control";
+ id = s->control_command_id;
+ } else {
+ type = "main";
+ id = SERVICE_EXEC_START;
+ }
+
+ idx = service_exec_command_index(u, id, command);
+
+ STRV_FOREACH(arg, command->argv) {
+ _cleanup_free_ char *e = NULL;
+ size_t n;
+
+ e = cescape(*arg);
+ if (!e)
+ return log_oom();
+
+ n = strlen(e);
+ if (!GREEDY_REALLOC(args, length + 2 + n + 2))
+ return log_oom();
+
+ if (length > 0)
+ args[length++] = ' ';
+
+ args[length++] = '"';
+ memcpy(args + length, e, n);
+ length += n;
+ args[length++] = '"';
+ }
+
+ if (!GREEDY_REALLOC(args, length + 1))
+ return log_oom();
+
+ args[length++] = 0;
+
+ p = cescape(command->path);
+ if (!p)
+ return log_oom();
+
+ key = strjoina(type, "-command");
+
+ /* We use '+1234' instead of '1234' to mark the last command in a sequence.
+ * This is used in service_deserialize_exec_command(). */
+ (void) serialize_item_format(
+ f, key,
+ "%s %s%u %s %s",
+ service_exec_command_to_string(id),
+ command->command_next ? "" : "+",
+ idx,
+ p, args);
+
+ return 0;
+}
+
+static int service_serialize(Unit *u, FILE *f, FDSet *fds) {
+ Service *s = SERVICE(u);
+ int r;
+
+ assert(u);
+ assert(f);
+ assert(fds);
+
+ (void) serialize_item(f, "state", service_state_to_string(s->state));
+ (void) serialize_item(f, "result", service_result_to_string(s->result));
+ (void) serialize_item(f, "reload-result", service_result_to_string(s->reload_result));
+
+ (void) serialize_pidref(f, fds, "control-pid", &s->control_pid);
+ if (s->main_pid_known)
+ (void) serialize_pidref(f, fds, "main-pid", &s->main_pid);
+
+ (void) serialize_bool(f, "main-pid-known", s->main_pid_known);
+ (void) serialize_bool(f, "bus-name-good", s->bus_name_good);
+ (void) serialize_bool(f, "bus-name-owner", s->bus_name_owner);
+
+ (void) serialize_item_format(f, "n-restarts", "%u", s->n_restarts);
+ (void) serialize_bool(f, "flush-n-restarts", s->flush_n_restarts);
+
+ r = serialize_item_escaped(f, "status-text", s->status_text);
+ if (r < 0)
+ return r;
+
+ service_serialize_exec_command(u, f, s->control_command);
+ service_serialize_exec_command(u, f, s->main_command);
+
+ r = serialize_fd(f, fds, "stdin-fd", s->stdin_fd);
+ if (r < 0)
+ return r;
+ r = serialize_fd(f, fds, "stdout-fd", s->stdout_fd);
+ if (r < 0)
+ return r;
+ r = serialize_fd(f, fds, "stderr-fd", s->stderr_fd);
+ if (r < 0)
+ return r;
+
+ if (s->exec_fd_event_source) {
+ r = serialize_fd(f, fds, "exec-fd", sd_event_source_get_io_fd(s->exec_fd_event_source));
+ if (r < 0)
+ return r;
+
+ (void) serialize_bool(f, "exec-fd-hot", s->exec_fd_hot);
+ }
+
+ if (UNIT_ISSET(s->accept_socket)) {
+ r = serialize_item(f, "accept-socket", UNIT_DEREF(s->accept_socket)->id);
+ if (r < 0)
+ return r;
+ }
+
+ r = serialize_fd(f, fds, "socket-fd", s->socket_fd);
+ if (r < 0)
+ return r;
+
+ LIST_FOREACH(fd_store, fs, s->fd_store) {
+ _cleanup_free_ char *c = NULL;
+ int copy;
+
+ copy = fdset_put_dup(fds, fs->fd);
+ if (copy < 0)
+ return log_error_errno(copy, "Failed to copy file descriptor for serialization: %m");
+
+ c = cescape(fs->fdname);
+ if (!c)
+ return log_oom();
+
+ (void) serialize_item_format(f, "fd-store-fd", "%i \"%s\" %i", copy, c, fs->do_poll);
+ }
+
+ if (s->main_exec_status.pid > 0) {
+ (void) serialize_item_format(f, "main-exec-status-pid", PID_FMT, s->main_exec_status.pid);
+ (void) serialize_dual_timestamp(f, "main-exec-status-start", &s->main_exec_status.start_timestamp);
+ (void) serialize_dual_timestamp(f, "main-exec-status-exit", &s->main_exec_status.exit_timestamp);
+
+ if (dual_timestamp_is_set(&s->main_exec_status.exit_timestamp)) {
+ (void) serialize_item_format(f, "main-exec-status-code", "%i", s->main_exec_status.code);
+ (void) serialize_item_format(f, "main-exec-status-status", "%i", s->main_exec_status.status);
+ }
+ }
+
+ if (s->notify_access_override >= 0)
+ (void) serialize_item(f, "notify-access-override", notify_access_to_string(s->notify_access_override));
+
+ (void) serialize_dual_timestamp(f, "watchdog-timestamp", &s->watchdog_timestamp);
+ (void) serialize_bool(f, "forbid-restart", s->forbid_restart);
+
+ if (s->watchdog_override_enable)
+ (void) serialize_item_format(f, "watchdog-override-usec", USEC_FMT, s->watchdog_override_usec);
+
+ if (s->watchdog_original_usec != USEC_INFINITY)
+ (void) serialize_item_format(f, "watchdog-original-usec", USEC_FMT, s->watchdog_original_usec);
+
+ if (s->reload_begin_usec != USEC_INFINITY)
+ (void) serialize_item_format(f, "reload-begin-usec", USEC_FMT, s->reload_begin_usec);
+
+ return 0;
+}
+
+int service_deserialize_exec_command(
+ Unit *u,
+ const char *key,
+ const char *value) {
+
+ Service *s = SERVICE(u);
+ int r;
+ unsigned idx = 0, i;
+ bool control, found = false, last = false;
+ ServiceExecCommand id = _SERVICE_EXEC_COMMAND_INVALID;
+ ExecCommand *command = NULL;
+ _cleanup_free_ char *path = NULL;
+ _cleanup_strv_free_ char **argv = NULL;
+
+ enum ExecCommandState {
+ STATE_EXEC_COMMAND_TYPE,
+ STATE_EXEC_COMMAND_INDEX,
+ STATE_EXEC_COMMAND_PATH,
+ STATE_EXEC_COMMAND_ARGS,
+ _STATE_EXEC_COMMAND_MAX,
+ _STATE_EXEC_COMMAND_INVALID = -EINVAL,
+ } state;
+
+ assert(s);
+ assert(key);
+ assert(value);
+
+ control = streq(key, "control-command");
+
+ state = STATE_EXEC_COMMAND_TYPE;
+
+ for (;;) {
+ _cleanup_free_ char *arg = NULL;
+
+ r = extract_first_word(&value, &arg, NULL, EXTRACT_CUNESCAPE | EXTRACT_UNQUOTE);
+ if (r < 0)
+ return r;
+ if (r == 0)
+ break;
+
+ switch (state) {
+ case STATE_EXEC_COMMAND_TYPE:
+ id = service_exec_command_from_string(arg);
+ if (id < 0)
+ return id;
+
+ state = STATE_EXEC_COMMAND_INDEX;
+ break;
+ case STATE_EXEC_COMMAND_INDEX:
+ /* PID 1234 is serialized as either '1234' or '+1234'. The second form is used to
+ * mark the last command in a sequence. We warn if the deserialized command doesn't
+ * match what we have loaded from the unit, but we don't need to warn if that is the
+ * last command. */
+
+ r = safe_atou(arg, &idx);
+ if (r < 0)
+ return r;
+ last = arg[0] == '+';
+
+ state = STATE_EXEC_COMMAND_PATH;
+ break;
+ case STATE_EXEC_COMMAND_PATH:
+ path = TAKE_PTR(arg);
+ state = STATE_EXEC_COMMAND_ARGS;
+ break;
+ case STATE_EXEC_COMMAND_ARGS:
+ r = strv_extend(&argv, arg);
+ if (r < 0)
+ return -ENOMEM;
+ break;
+ default:
+ assert_not_reached();
+ }
+ }
+
+ if (state != STATE_EXEC_COMMAND_ARGS)
+ return -EINVAL;
+ if (strv_isempty(argv))
+ return -EINVAL; /* At least argv[0] must be always present. */
+
+ /* Let's check whether exec command on given offset matches data that we just deserialized */
+ for (command = s->exec_command[id], i = 0; command; command = command->command_next, i++) {
+ if (i != idx)
+ continue;
+
+ found = strv_equal(argv, command->argv) && streq(command->path, path);
+ break;
+ }
+
+ if (!found) {
+ /* Command at the index we serialized is different, let's look for command that exactly
+ * matches but is on different index. If there is no such command we will not resume execution. */
+ for (command = s->exec_command[id]; command; command = command->command_next)
+ if (strv_equal(command->argv, argv) && streq(command->path, path))
+ break;
+ }
+
+ if (command && control) {
+ s->control_command = command;
+ s->control_command_id = id;
+ } else if (command)
+ s->main_command = command;
+ else if (last)
+ log_unit_debug(u, "Current command vanished from the unit file.");
+ else
+ log_unit_warning(u, "Current command vanished from the unit file, execution of the command list won't be resumed.");
+
+ return 0;
+}
+
+static int service_deserialize_item(Unit *u, const char *key, const char *value, FDSet *fds) {
+ Service *s = SERVICE(u);
+ int r;
+
+ assert(u);
+ assert(key);
+ assert(value);
+ assert(fds);
+
+ if (streq(key, "state")) {
+ ServiceState state;
+
+ state = service_state_from_string(value);
+ if (state < 0)
+ log_unit_debug(u, "Failed to parse state value: %s", value);
+ else
+ s->deserialized_state = state;
+ } else if (streq(key, "result")) {
+ ServiceResult f;
+
+ f = service_result_from_string(value);
+ if (f < 0)
+ log_unit_debug(u, "Failed to parse result value: %s", value);
+ else if (f != SERVICE_SUCCESS)
+ s->result = f;
+
+ } else if (streq(key, "reload-result")) {
+ ServiceResult f;
+
+ f = service_result_from_string(value);
+ if (f < 0)
+ log_unit_debug(u, "Failed to parse reload result value: %s", value);
+ else if (f != SERVICE_SUCCESS)
+ s->reload_result = f;
+
+ } else if (streq(key, "control-pid")) {
+ pidref_done(&s->control_pid);
+
+ (void) deserialize_pidref(fds, value, &s->control_pid);
+
+ } else if (streq(key, "main-pid")) {
+ _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL;
+
+ if (deserialize_pidref(fds, value, &pidref) >= 0)
+ (void) service_set_main_pidref(s, &pidref);
+
+ } else if (streq(key, "main-pid-known")) {
+ int b;
+
+ b = parse_boolean(value);
+ if (b < 0)
+ log_unit_debug(u, "Failed to parse main-pid-known value: %s", value);
+ else
+ s->main_pid_known = b;
+ } else if (streq(key, "bus-name-good")) {
+ int b;
+
+ b = parse_boolean(value);
+ if (b < 0)
+ log_unit_debug(u, "Failed to parse bus-name-good value: %s", value);
+ else
+ s->bus_name_good = b;
+ } else if (streq(key, "bus-name-owner")) {
+ r = free_and_strdup(&s->bus_name_owner, value);
+ if (r < 0)
+ log_unit_error_errno(u, r, "Unable to deserialize current bus owner %s: %m", value);
+ } else if (streq(key, "status-text")) {
+ char *t;
+ ssize_t l;
+
+ l = cunescape(value, 0, &t);
+ if (l < 0)
+ log_unit_debug_errno(u, l, "Failed to unescape status text '%s': %m", value);
+ else
+ free_and_replace(s->status_text, t);
+
+ } else if (streq(key, "accept-socket")) {
+ Unit *socket;
+
+ if (u->type != UNIT_SOCKET) {
+ log_unit_debug(u, "Failed to deserialize accept-socket: unit is not a socket");
+ return 0;
+ }
+
+ r = manager_load_unit(u->manager, value, NULL, NULL, &socket);
+ if (r < 0)
+ log_unit_debug_errno(u, r, "Failed to load accept-socket unit '%s': %m", value);
+ else {
+ unit_ref_set(&s->accept_socket, u, socket);
+ SOCKET(socket)->n_connections++;
+ }
+
+ } else if (streq(key, "socket-fd")) {
+ asynchronous_close(s->socket_fd);
+ s->socket_fd = deserialize_fd(fds, value);
+
+ } else if (streq(key, "fd-store-fd")) {
+ _cleanup_free_ char *fdv = NULL, *fdn = NULL, *fdp = NULL;
+ _cleanup_close_ int fd = -EBADF;
+ int do_poll;
+
+ r = extract_first_word(&value, &fdv, NULL, 0);
+ if (r <= 0) {
+ log_unit_debug(u, "Failed to parse fd-store-fd value, ignoring: %s", value);
+ return 0;
+ }
+
+ fd = deserialize_fd(fds, fdv);
+ if (fd < 0)
+ return 0;
+
+ r = extract_first_word(&value, &fdn, NULL, EXTRACT_CUNESCAPE | EXTRACT_UNQUOTE);
+ if (r <= 0) {
+ log_unit_debug(u, "Failed to parse fd-store-fd value, ignoring: %s", value);
+ return 0;
+ }
+
+ r = extract_first_word(&value, &fdp, NULL, 0);
+ if (r == 0) {
+ /* If the value is not present, we assume the default */
+ do_poll = 1;
+ } else if (r < 0 || (r = safe_atoi(fdp, &do_poll)) < 0) {
+ log_unit_debug_errno(u, r, "Failed to parse fd-store-fd value \"%s\", ignoring: %m", value);
+ return 0;
+ }
+
+ r = service_add_fd_store(s, fd, fdn, do_poll);
+ if (r < 0) {
+ log_unit_debug_errno(u, r, "Failed to store deserialized fd %i, ignoring: %m", fd);
+ return 0;
+ }
+
+ TAKE_FD(fd);
+ } else if (streq(key, "main-exec-status-pid")) {
+ pid_t pid;
+
+ if (parse_pid(value, &pid) < 0)
+ log_unit_debug(u, "Failed to parse main-exec-status-pid value: %s", value);
+ else
+ s->main_exec_status.pid = pid;
+ } else if (streq(key, "main-exec-status-code")) {
+ int i;
+
+ if (safe_atoi(value, &i) < 0)
+ log_unit_debug(u, "Failed to parse main-exec-status-code value: %s", value);
+ else
+ s->main_exec_status.code = i;
+ } else if (streq(key, "main-exec-status-status")) {
+ int i;
+
+ if (safe_atoi(value, &i) < 0)
+ log_unit_debug(u, "Failed to parse main-exec-status-status value: %s", value);
+ else
+ s->main_exec_status.status = i;
+ } else if (streq(key, "main-exec-status-start"))
+ deserialize_dual_timestamp(value, &s->main_exec_status.start_timestamp);
+ else if (streq(key, "main-exec-status-exit"))
+ deserialize_dual_timestamp(value, &s->main_exec_status.exit_timestamp);
+ else if (streq(key, "notify-access-override")) {
+ NotifyAccess notify_access;
+
+ notify_access = notify_access_from_string(value);
+ if (notify_access < 0)
+ log_unit_debug(u, "Failed to parse notify-access-override value: %s", value);
+ else
+ s->notify_access_override = notify_access;
+ } else if (streq(key, "watchdog-timestamp"))
+ deserialize_dual_timestamp(value, &s->watchdog_timestamp);
+ else if (streq(key, "forbid-restart")) {
+ int b;
+
+ b = parse_boolean(value);
+ if (b < 0)
+ log_unit_debug(u, "Failed to parse forbid-restart value: %s", value);
+ else
+ s->forbid_restart = b;
+ } else if (streq(key, "stdin-fd")) {
+
+ asynchronous_close(s->stdin_fd);
+ s->stdin_fd = deserialize_fd(fds, value);
+ if (s->stdin_fd >= 0)
+ s->exec_context.stdio_as_fds = true;
+
+ } else if (streq(key, "stdout-fd")) {
+
+ asynchronous_close(s->stdout_fd);
+ s->stdout_fd = deserialize_fd(fds, value);
+ if (s->stdout_fd >= 0)
+ s->exec_context.stdio_as_fds = true;
+
+ } else if (streq(key, "stderr-fd")) {
+
+ asynchronous_close(s->stderr_fd);
+ s->stderr_fd = deserialize_fd(fds, value);
+ if (s->stderr_fd >= 0)
+ s->exec_context.stdio_as_fds = true;
+
+ } else if (streq(key, "exec-fd")) {
+ _cleanup_close_ int fd = -EBADF;
+
+ fd = deserialize_fd(fds, value);
+ if (fd >= 0) {
+ s->exec_fd_event_source = sd_event_source_disable_unref(s->exec_fd_event_source);
+
+ if (service_allocate_exec_fd_event_source(s, fd, &s->exec_fd_event_source) >= 0)
+ TAKE_FD(fd);
+ }
+
+ } else if (streq(key, "watchdog-override-usec")) {
+ if (deserialize_usec(value, &s->watchdog_override_usec) < 0)
+ log_unit_debug(u, "Failed to parse watchdog_override_usec value: %s", value);
+ else
+ s->watchdog_override_enable = true;
+
+ } else if (streq(key, "watchdog-original-usec")) {
+ if (deserialize_usec(value, &s->watchdog_original_usec) < 0)
+ log_unit_debug(u, "Failed to parse watchdog_original_usec value: %s", value);
+
+ } else if (STR_IN_SET(key, "main-command", "control-command")) {
+ r = service_deserialize_exec_command(u, key, value);
+ if (r < 0)
+ log_unit_debug_errno(u, r, "Failed to parse serialized command \"%s\": %m", value);
+
+ } else if (streq(key, "n-restarts")) {
+ r = safe_atou(value, &s->n_restarts);
+ if (r < 0)
+ log_unit_debug_errno(u, r, "Failed to parse serialized restart counter '%s': %m", value);
+
+ } else if (streq(key, "flush-n-restarts")) {
+ r = parse_boolean(value);
+ if (r < 0)
+ log_unit_debug_errno(u, r, "Failed to parse serialized flush restart counter setting '%s': %m", value);
+ else
+ s->flush_n_restarts = r;
+ } else if (streq(key, "reload-begin-usec")) {
+ r = deserialize_usec(value, &s->reload_begin_usec);
+ if (r < 0)
+ log_unit_debug_errno(u, r, "Failed to parse serialized reload begin timestamp '%s', ignoring: %m", value);
+ } else
+ log_unit_debug(u, "Unknown serialization key: %s", key);
+
+ return 0;
+}
+
+static UnitActiveState service_active_state(Unit *u) {
+ const UnitActiveState *table;
+
+ assert(u);
+
+ table = SERVICE(u)->type == SERVICE_IDLE ? state_translation_table_idle : state_translation_table;
+
+ return table[SERVICE(u)->state];
+}
+
+static const char *service_sub_state_to_string(Unit *u) {
+ assert(u);
+
+ return service_state_to_string(SERVICE(u)->state);
+}
+
+static bool service_may_gc(Unit *u) {
+ Service *s = SERVICE(u);
+
+ assert(s);
+
+ /* Never clean up services that still have a process around, even if the service is formally dead. Note that
+ * unit_may_gc() already checked our cgroup for us, we just check our two additional PIDs, too, in case they
+ * have moved outside of the cgroup. */
+
+ if (main_pid_good(s) > 0 ||
+ control_pid_good(s) > 0)
+ return false;
+
+ /* Only allow collection of actually dead services, i.e. not those that are in the transitionary
+ * SERVICE_DEAD_BEFORE_AUTO_RESTART/SERVICE_FAILED_BEFORE_AUTO_RESTART states. */
+ if (!IN_SET(s->state, SERVICE_DEAD, SERVICE_FAILED, SERVICE_DEAD_RESOURCES_PINNED))
+ return false;
+
+ return true;
+}
+
+static int service_retry_pid_file(Service *s) {
+ int r;
+
+ assert(s->pid_file);
+ assert(IN_SET(s->state, SERVICE_START, SERVICE_START_POST));
+
+ r = service_load_pid_file(s, false);
+ if (r < 0)
+ return r;
+
+ service_unwatch_pid_file(s);
+
+ service_enter_running(s, SERVICE_SUCCESS);
+ return 0;
+}
+
+static int service_watch_pid_file(Service *s) {
+ int r;
+
+ log_unit_debug(UNIT(s), "Setting watch for PID file %s", s->pid_file_pathspec->path);
+
+ r = path_spec_watch(s->pid_file_pathspec, service_dispatch_inotify_io);
+ if (r < 0) {
+ log_unit_error_errno(UNIT(s), r, "Failed to set a watch for PID file %s: %m", s->pid_file_pathspec->path);
+ service_unwatch_pid_file(s);
+ return r;
+ }
+
+ /* the pidfile might have appeared just before we set the watch */
+ log_unit_debug(UNIT(s), "Trying to read PID file %s in case it changed", s->pid_file_pathspec->path);
+ service_retry_pid_file(s);
+
+ return 0;
+}
+
+static int service_demand_pid_file(Service *s) {
+ _cleanup_free_ PathSpec *ps = NULL;
+
+ assert(s->pid_file);
+ assert(!s->pid_file_pathspec);
+
+ ps = new(PathSpec, 1);
+ if (!ps)
+ return -ENOMEM;
+
+ *ps = (PathSpec) {
+ .unit = UNIT(s),
+ .path = strdup(s->pid_file),
+ /* PATH_CHANGED would not be enough. There are daemons (sendmail) that keep their PID file
+ * open all the time. */
+ .type = PATH_MODIFIED,
+ .inotify_fd = -EBADF,
+ };
+
+ if (!ps->path)
+ return -ENOMEM;
+
+ path_simplify(ps->path);
+
+ s->pid_file_pathspec = TAKE_PTR(ps);
+
+ return service_watch_pid_file(s);
+}
+
+static int service_dispatch_inotify_io(sd_event_source *source, int fd, uint32_t events, void *userdata) {
+ PathSpec *p = ASSERT_PTR(userdata);
+ Service *s;
+
+ s = SERVICE(p->unit);
+
+ assert(s);
+ assert(fd >= 0);
+ assert(IN_SET(s->state, SERVICE_START, SERVICE_START_POST));
+ assert(s->pid_file_pathspec);
+ assert(path_spec_owns_inotify_fd(s->pid_file_pathspec, fd));
+
+ log_unit_debug(UNIT(s), "inotify event");
+
+ if (path_spec_fd_event(p, events) < 0)
+ goto fail;
+
+ if (service_retry_pid_file(s) == 0)
+ return 0;
+
+ if (service_watch_pid_file(s) < 0)
+ goto fail;
+
+ return 0;
+
+fail:
+ service_unwatch_pid_file(s);
+ service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES);
+ return 0;
+}
+
+static int service_dispatch_exec_io(sd_event_source *source, int fd, uint32_t events, void *userdata) {
+ Service *s = SERVICE(userdata);
+
+ assert(s);
+
+ log_unit_debug(UNIT(s), "got exec-fd event");
+
+ /* If Type=exec is set, we'll consider a service started successfully the instant we invoked execve()
+ * successfully for it. We implement this through a pipe() towards the child, which the kernel automatically
+ * closes for us due to O_CLOEXEC on execve() in the child, which then triggers EOF on the pipe in the
+ * parent. We need to be careful however, as there are other reasons that we might cause the child's side of
+ * the pipe to be closed (for example, a simple exit()). To deal with that we'll ignore EOFs on the pipe unless
+ * the child signalled us first that it is about to call the execve(). It does so by sending us a simple
+ * non-zero byte via the pipe. We also provide the child with a way to inform us in case execve() failed: if it
+ * sends a zero byte we'll ignore POLLHUP on the fd again. */
+
+ for (;;) {
+ uint8_t x;
+ ssize_t n;
+
+ n = read(fd, &x, sizeof(x));
+ if (n < 0) {
+ if (errno == EAGAIN) /* O_NONBLOCK in effect → everything queued has now been processed. */
+ return 0;
+
+ return log_unit_error_errno(UNIT(s), errno, "Failed to read from exec_fd: %m");
+ }
+ if (n == 0) { /* EOF → the event we are waiting for */
+
+ s->exec_fd_event_source = sd_event_source_disable_unref(s->exec_fd_event_source);
+
+ if (s->exec_fd_hot) { /* Did the child tell us to expect EOF now? */
+ log_unit_debug(UNIT(s), "Got EOF on exec-fd");
+
+ s->exec_fd_hot = false;
+
+ /* Nice! This is what we have been waiting for. Transition to next state. */
+ if (s->type == SERVICE_EXEC && s->state == SERVICE_START)
+ service_enter_start_post(s);
+ } else
+ log_unit_debug(UNIT(s), "Got EOF on exec-fd while it was disabled, ignoring.");
+
+ return 0;
+ }
+
+ /* A byte was read → this turns on/off the exec fd logic */
+ assert(n == sizeof(x));
+ s->exec_fd_hot = x;
+ }
+
+ return 0;
+}
+
+static void service_notify_cgroup_empty_event(Unit *u) {
+ Service *s = SERVICE(u);
+
+ assert(u);
+
+ log_unit_debug(u, "Control group is empty.");
+
+ switch (s->state) {
+
+ /* Waiting for SIGCHLD is usually more interesting, because it includes return
+ * codes/signals. Which is why we ignore the cgroup events for most cases, except when we
+ * don't know pid which to expect the SIGCHLD for. */
+
+ case SERVICE_START:
+ if (IN_SET(s->type, SERVICE_NOTIFY, SERVICE_NOTIFY_RELOAD) &&
+ main_pid_good(s) == 0 &&
+ control_pid_good(s) == 0) {
+ /* No chance of getting a ready notification anymore */
+ service_enter_stop_post(s, SERVICE_FAILURE_PROTOCOL);
+ break;
+ }
+
+ if (s->exit_type == SERVICE_EXIT_CGROUP && main_pid_good(s) <= 0)
+ service_enter_start_post(s);
+
+ _fallthrough_;
+ case SERVICE_START_POST:
+ if (s->pid_file_pathspec &&
+ main_pid_good(s) == 0 &&
+ control_pid_good(s) == 0) {
+
+ /* Give up hoping for the daemon to write its PID file */
+ log_unit_warning(u, "Daemon never wrote its PID file. Failing.");
+
+ service_unwatch_pid_file(s);
+ if (s->state == SERVICE_START)
+ service_enter_stop_post(s, SERVICE_FAILURE_PROTOCOL);
+ else
+ service_enter_stop(s, SERVICE_FAILURE_PROTOCOL);
+ }
+ break;
+
+ case SERVICE_RUNNING:
+ /* service_enter_running() will figure out what to do */
+ service_enter_running(s, SERVICE_SUCCESS);
+ break;
+
+ case SERVICE_STOP_WATCHDOG:
+ case SERVICE_STOP_SIGTERM:
+ case SERVICE_STOP_SIGKILL:
+
+ if (main_pid_good(s) <= 0 && control_pid_good(s) <= 0)
+ service_enter_stop_post(s, SERVICE_SUCCESS);
+
+ break;
+
+ case SERVICE_STOP_POST:
+ case SERVICE_FINAL_WATCHDOG:
+ case SERVICE_FINAL_SIGTERM:
+ case SERVICE_FINAL_SIGKILL:
+ if (main_pid_good(s) <= 0 && control_pid_good(s) <= 0)
+ service_enter_dead(s, SERVICE_SUCCESS, true);
+
+ break;
+
+ /* If the cgroup empty notification comes when the unit is not active, we must have failed to clean
+ * up the cgroup earlier and should do it now. */
+ case SERVICE_AUTO_RESTART:
+ case SERVICE_AUTO_RESTART_QUEUED:
+ unit_prune_cgroup(u);
+ break;
+
+ default:
+ ;
+ }
+}
+
+static void service_notify_cgroup_oom_event(Unit *u, bool managed_oom) {
+ Service *s = SERVICE(u);
+
+ if (managed_oom)
+ log_unit_debug(u, "Process(es) of control group were killed by systemd-oomd.");
+ else
+ log_unit_debug(u, "Process of control group was killed by the OOM killer.");
+
+ if (s->oom_policy == OOM_CONTINUE)
+ return;
+
+ switch (s->state) {
+
+ case SERVICE_CONDITION:
+ case SERVICE_START_PRE:
+ case SERVICE_START:
+ case SERVICE_START_POST:
+ case SERVICE_STOP:
+ if (s->oom_policy == OOM_STOP)
+ service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_OOM_KILL);
+ else if (s->oom_policy == OOM_KILL)
+ service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_OOM_KILL);
+
+ break;
+
+ case SERVICE_EXITED:
+ case SERVICE_RUNNING:
+ if (s->oom_policy == OOM_STOP)
+ service_enter_stop(s, SERVICE_FAILURE_OOM_KILL);
+ else if (s->oom_policy == OOM_KILL)
+ service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_OOM_KILL);
+
+ break;
+
+ case SERVICE_STOP_WATCHDOG:
+ case SERVICE_STOP_SIGTERM:
+ service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_OOM_KILL);
+ break;
+
+ case SERVICE_STOP_SIGKILL:
+ case SERVICE_FINAL_SIGKILL:
+ if (s->result == SERVICE_SUCCESS)
+ s->result = SERVICE_FAILURE_OOM_KILL;
+ break;
+
+ case SERVICE_STOP_POST:
+ case SERVICE_FINAL_SIGTERM:
+ service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_FAILURE_OOM_KILL);
+ break;
+
+ default:
+ ;
+ }
+}
+
+static void service_sigchld_event(Unit *u, pid_t pid, int code, int status) {
+ bool notify_dbus = true;
+ Service *s = SERVICE(u);
+ ServiceResult f;
+ ExitClean clean_mode;
+
+ assert(s);
+ assert(pid >= 0);
+
+ /* Oneshot services and non-SERVICE_EXEC_START commands should not be
+ * considered daemons as they are typically not long running. */
+ if (s->type == SERVICE_ONESHOT || (s->control_pid.pid == pid && s->control_command_id != SERVICE_EXEC_START))
+ clean_mode = EXIT_CLEAN_COMMAND;
+ else
+ clean_mode = EXIT_CLEAN_DAEMON;
+
+ if (is_clean_exit(code, status, clean_mode, &s->success_status))
+ f = SERVICE_SUCCESS;
+ else if (code == CLD_EXITED)
+ f = SERVICE_FAILURE_EXIT_CODE;
+ else if (code == CLD_KILLED)
+ f = SERVICE_FAILURE_SIGNAL;
+ else if (code == CLD_DUMPED)
+ f = SERVICE_FAILURE_CORE_DUMP;
+ else
+ assert_not_reached();
+
+ if (s->main_pid.pid == pid) {
+ /* Clean up the exec_fd event source. We want to do this here, not later in
+ * service_set_state(), because service_enter_stop_post() calls service_spawn().
+ * The source owns its end of the pipe, so this will close that too. */
+ s->exec_fd_event_source = sd_event_source_disable_unref(s->exec_fd_event_source);
+
+ /* Forking services may occasionally move to a new PID.
+ * As long as they update the PID file before exiting the old
+ * PID, they're fine. */
+ if (service_load_pid_file(s, false) > 0)
+ return;
+
+ pidref_done(&s->main_pid);
+ exec_status_exit(&s->main_exec_status, &s->exec_context, pid, code, status);
+
+ if (s->main_command) {
+ /* If this is not a forking service than the
+ * main process got started and hence we copy
+ * the exit status so that it is recorded both
+ * as main and as control process exit
+ * status */
+
+ s->main_command->exec_status = s->main_exec_status;
+
+ if (s->main_command->flags & EXEC_COMMAND_IGNORE_FAILURE)
+ f = SERVICE_SUCCESS;
+ } else if (s->exec_command[SERVICE_EXEC_START]) {
+
+ /* If this is a forked process, then we should
+ * ignore the return value if this was
+ * configured for the starter process */
+
+ if (s->exec_command[SERVICE_EXEC_START]->flags & EXEC_COMMAND_IGNORE_FAILURE)
+ f = SERVICE_SUCCESS;
+ }
+
+ unit_log_process_exit(
+ u,
+ "Main process",
+ service_exec_command_to_string(SERVICE_EXEC_START),
+ f == SERVICE_SUCCESS,
+ code, status);
+
+ if (s->result == SERVICE_SUCCESS)
+ s->result = f;
+
+ if (s->main_command &&
+ s->main_command->command_next &&
+ s->type == SERVICE_ONESHOT &&
+ f == SERVICE_SUCCESS) {
+
+ /* There is another command to execute, so let's do that. */
+
+ log_unit_debug(u, "Running next main command for state %s.", service_state_to_string(s->state));
+ service_run_next_main(s);
+
+ } else {
+ s->main_command = NULL;
+
+ /* Services with ExitType=cgroup do not act on main PID exiting, unless the cgroup is
+ * already empty */
+ if (s->exit_type == SERVICE_EXIT_MAIN || cgroup_good(s) <= 0) {
+ /* The service exited, so the service is officially gone. */
+ switch (s->state) {
+
+ case SERVICE_START_POST:
+ case SERVICE_RELOAD:
+ case SERVICE_RELOAD_SIGNAL:
+ case SERVICE_RELOAD_NOTIFY:
+ /* If neither main nor control processes are running then the current
+ * state can never exit cleanly, hence immediately terminate the
+ * service. */
+ if (control_pid_good(s) <= 0)
+ service_enter_stop(s, f);
+
+ /* Otherwise need to wait until the operation is done. */
+ break;
+
+ case SERVICE_STOP:
+ /* Need to wait until the operation is done. */
+ break;
+
+ case SERVICE_START:
+ if (s->type == SERVICE_ONESHOT) {
+ /* This was our main goal, so let's go on */
+ if (f == SERVICE_SUCCESS)
+ service_enter_start_post(s);
+ else
+ service_enter_signal(s, SERVICE_STOP_SIGTERM, f);
+ break;
+ } else if (IN_SET(s->type, SERVICE_NOTIFY, SERVICE_NOTIFY_RELOAD)) {
+ /* Only enter running through a notification, so that the
+ * SERVICE_START state signifies that no ready notification
+ * has been received */
+ if (f != SERVICE_SUCCESS)
+ service_enter_signal(s, SERVICE_STOP_SIGTERM, f);
+ else if (!s->remain_after_exit || service_get_notify_access(s) == NOTIFY_MAIN)
+ /* The service has never been and will never be active */
+ service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_PROTOCOL);
+ break;
+ }
+
+ _fallthrough_;
+ case SERVICE_RUNNING:
+ service_enter_running(s, f);
+ break;
+
+ case SERVICE_STOP_WATCHDOG:
+ case SERVICE_STOP_SIGTERM:
+ case SERVICE_STOP_SIGKILL:
+
+ if (control_pid_good(s) <= 0)
+ service_enter_stop_post(s, f);
+
+ /* If there is still a control process, wait for that first */
+ break;
+
+ case SERVICE_STOP_POST:
+
+ if (control_pid_good(s) <= 0)
+ service_enter_signal(s, SERVICE_FINAL_SIGTERM, f);
+
+ break;
+
+ case SERVICE_FINAL_WATCHDOG:
+ case SERVICE_FINAL_SIGTERM:
+ case SERVICE_FINAL_SIGKILL:
+
+ if (control_pid_good(s) <= 0)
+ service_enter_dead(s, f, true);
+ break;
+
+ default:
+ assert_not_reached();
+ }
+ } else if (s->exit_type == SERVICE_EXIT_CGROUP && s->state == SERVICE_START)
+ /* If a main process exits very quickly, this function might be executed
+ * before service_dispatch_exec_io(). Since this function disabled IO events
+ * to monitor the main process above, we need to update the state here too.
+ * Let's consider the process is successfully launched and exited. */
+ service_enter_start_post(s);
+ }
+
+ } else if (s->control_pid.pid == pid) {
+ const char *kind;
+ bool success;
+
+ pidref_done(&s->control_pid);
+
+ if (s->control_command) {
+ exec_status_exit(&s->control_command->exec_status, &s->exec_context, pid, code, status);
+
+ if (s->control_command->flags & EXEC_COMMAND_IGNORE_FAILURE)
+ f = SERVICE_SUCCESS;
+ }
+
+ /* ExecCondition= calls that exit with (0, 254] should invoke skip-like behavior instead of failing */
+ if (s->state == SERVICE_CONDITION) {
+ if (f == SERVICE_FAILURE_EXIT_CODE && status < 255) {
+ UNIT(s)->condition_result = false;
+ f = SERVICE_SKIP_CONDITION;
+ success = true;
+ } else if (f == SERVICE_SUCCESS) {
+ UNIT(s)->condition_result = true;
+ success = true;
+ } else
+ success = false;
+
+ kind = "Condition check process";
+ } else {
+ kind = "Control process";
+ success = f == SERVICE_SUCCESS;
+ }
+
+ unit_log_process_exit(
+ u,
+ kind,
+ service_exec_command_to_string(s->control_command_id),
+ success,
+ code, status);
+
+ if (s->state != SERVICE_RELOAD && s->result == SERVICE_SUCCESS)
+ s->result = f;
+
+ if (s->control_command &&
+ s->control_command->command_next &&
+ f == SERVICE_SUCCESS) {
+
+ /* There is another command to * execute, so let's do that. */
+
+ log_unit_debug(u, "Running next control command for state %s.", service_state_to_string(s->state));
+ service_run_next_control(s);
+
+ } else {
+ /* No further commands for this step, so let's figure out what to do next */
+
+ s->control_command = NULL;
+ s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID;
+
+ log_unit_debug(u, "Got final SIGCHLD for state %s.", service_state_to_string(s->state));
+
+ switch (s->state) {
+
+ case SERVICE_CONDITION:
+ if (f == SERVICE_SUCCESS)
+ service_enter_start_pre(s);
+ else
+ service_enter_signal(s, SERVICE_STOP_SIGTERM, f);
+ break;
+
+ case SERVICE_START_PRE:
+ if (f == SERVICE_SUCCESS)
+ service_enter_start(s);
+ else
+ service_enter_signal(s, SERVICE_STOP_SIGTERM, f);
+ break;
+
+ case SERVICE_START:
+ if (s->type != SERVICE_FORKING)
+ /* Maybe spurious event due to a reload that changed the type? */
+ break;
+
+ if (f != SERVICE_SUCCESS) {
+ service_enter_signal(s, SERVICE_STOP_SIGTERM, f);
+ break;
+ }
+
+ if (s->pid_file) {
+ bool has_start_post;
+ int r;
+
+ /* Let's try to load the pid file here if we can.
+ * The PID file might actually be created by a START_POST
+ * script. In that case don't worry if the loading fails. */
+
+ has_start_post = s->exec_command[SERVICE_EXEC_START_POST];
+ r = service_load_pid_file(s, !has_start_post);
+ if (!has_start_post && r < 0) {
+ r = service_demand_pid_file(s);
+ if (r < 0 || cgroup_good(s) == 0)
+ service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_PROTOCOL);
+ break;
+ }
+ } else
+ service_search_main_pid(s);
+
+ service_enter_start_post(s);
+ break;
+
+ case SERVICE_START_POST:
+ if (f != SERVICE_SUCCESS) {
+ service_enter_signal(s, SERVICE_STOP_SIGTERM, f);
+ break;
+ }
+
+ if (s->pid_file) {
+ int r;
+
+ r = service_load_pid_file(s, true);
+ if (r < 0) {
+ r = service_demand_pid_file(s);
+ if (r < 0 || cgroup_good(s) == 0)
+ service_enter_stop(s, SERVICE_FAILURE_PROTOCOL);
+ break;
+ }
+ } else
+ service_search_main_pid(s);
+
+ service_enter_running(s, SERVICE_SUCCESS);
+ break;
+
+ case SERVICE_RELOAD:
+ case SERVICE_RELOAD_SIGNAL:
+ case SERVICE_RELOAD_NOTIFY:
+ if (f == SERVICE_SUCCESS)
+ if (service_load_pid_file(s, true) < 0)
+ service_search_main_pid(s);
+
+ s->reload_result = f;
+
+ /* If the last notification we received from the service process indicates
+ * we are still reloading, then don't leave reloading state just yet, just
+ * transition into SERVICE_RELOAD_NOTIFY, to wait for the READY=1 coming,
+ * too. */
+ if (s->notify_state == NOTIFY_RELOADING)
+ service_set_state(s, SERVICE_RELOAD_NOTIFY);
+ else
+ service_enter_running(s, SERVICE_SUCCESS);
+ break;
+
+ case SERVICE_STOP:
+ service_enter_signal(s, SERVICE_STOP_SIGTERM, f);
+ break;
+
+ case SERVICE_STOP_WATCHDOG:
+ case SERVICE_STOP_SIGTERM:
+ case SERVICE_STOP_SIGKILL:
+ if (main_pid_good(s) <= 0)
+ service_enter_stop_post(s, f);
+
+ /* If there is still a service process around, wait until
+ * that one quit, too */
+ break;
+
+ case SERVICE_STOP_POST:
+ if (main_pid_good(s) <= 0)
+ service_enter_signal(s, SERVICE_FINAL_SIGTERM, f);
+ break;
+
+ case SERVICE_FINAL_WATCHDOG:
+ case SERVICE_FINAL_SIGTERM:
+ case SERVICE_FINAL_SIGKILL:
+ if (main_pid_good(s) <= 0)
+ service_enter_dead(s, f, true);
+ break;
+
+ case SERVICE_CLEANING:
+
+ if (s->clean_result == SERVICE_SUCCESS)
+ s->clean_result = f;
+
+ service_enter_dead(s, SERVICE_SUCCESS, false);
+ break;
+
+ default:
+ assert_not_reached();
+ }
+ }
+ } else /* Neither control nor main PID? If so, don't notify about anything */
+ notify_dbus = false;
+
+ /* Notify clients about changed exit status */
+ if (notify_dbus)
+ unit_add_to_dbus_queue(u);
+
+ /* We watch the main/control process otherwise we can't retrieve the unit they
+ * belong to with cgroupv1. But if they are not our direct child, we won't get a
+ * SIGCHLD for them. Therefore we need to look for others to watch so we can
+ * detect when the cgroup becomes empty. Note that the control process is always
+ * our child so it's pointless to watch all other processes. */
+ if (!control_pid_good(s))
+ if (!s->main_pid_known || s->main_pid_alien)
+ (void) unit_enqueue_rewatch_pids(u);
+}
+
+static int service_dispatch_timer(sd_event_source *source, usec_t usec, void *userdata) {
+ Service *s = SERVICE(userdata);
+
+ assert(s);
+ assert(source == s->timer_event_source);
+
+ switch (s->state) {
+
+ case SERVICE_CONDITION:
+ case SERVICE_START_PRE:
+ case SERVICE_START:
+ case SERVICE_START_POST:
+ switch (s->timeout_start_failure_mode) {
+
+ case SERVICE_TIMEOUT_TERMINATE:
+ log_unit_warning(UNIT(s), "%s operation timed out. Terminating.", service_state_to_string(s->state));
+ service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_TIMEOUT);
+ break;
+
+ case SERVICE_TIMEOUT_ABORT:
+ log_unit_warning(UNIT(s), "%s operation timed out. Aborting.", service_state_to_string(s->state));
+ service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_TIMEOUT);
+ break;
+
+ case SERVICE_TIMEOUT_KILL:
+ if (s->kill_context.send_sigkill) {
+ log_unit_warning(UNIT(s), "%s operation timed out. Killing.", service_state_to_string(s->state));
+ service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_TIMEOUT);
+ } else {
+ log_unit_warning(UNIT(s), "%s operation timed out. Skipping SIGKILL.", service_state_to_string(s->state));
+ service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT);
+ }
+ break;
+
+ default:
+ assert_not_reached();
+ }
+ break;
+
+ case SERVICE_RUNNING:
+ log_unit_warning(UNIT(s), "Service reached runtime time limit. Stopping.");
+ service_enter_stop(s, SERVICE_FAILURE_TIMEOUT);
+ break;
+
+ case SERVICE_RELOAD:
+ case SERVICE_RELOAD_SIGNAL:
+ case SERVICE_RELOAD_NOTIFY:
+ log_unit_warning(UNIT(s), "Reload operation timed out. Killing reload process.");
+ service_kill_control_process(s);
+ s->reload_result = SERVICE_FAILURE_TIMEOUT;
+ service_enter_running(s, SERVICE_SUCCESS);
+ break;
+
+ case SERVICE_STOP:
+ switch (s->timeout_stop_failure_mode) {
+
+ case SERVICE_TIMEOUT_TERMINATE:
+ log_unit_warning(UNIT(s), "Stopping timed out. Terminating.");
+ service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_TIMEOUT);
+ break;
+
+ case SERVICE_TIMEOUT_ABORT:
+ log_unit_warning(UNIT(s), "Stopping timed out. Aborting.");
+ service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_TIMEOUT);
+ break;
+
+ case SERVICE_TIMEOUT_KILL:
+ if (s->kill_context.send_sigkill) {
+ log_unit_warning(UNIT(s), "Stopping timed out. Killing.");
+ service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_TIMEOUT);
+ } else {
+ log_unit_warning(UNIT(s), "Stopping timed out. Skipping SIGKILL.");
+ service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT);
+ }
+ break;
+
+ default:
+ assert_not_reached();
+ }
+ break;
+
+ case SERVICE_STOP_WATCHDOG:
+ if (s->kill_context.send_sigkill) {
+ log_unit_warning(UNIT(s), "State 'stop-watchdog' timed out. Killing.");
+ service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_TIMEOUT);
+ } else {
+ log_unit_warning(UNIT(s), "State 'stop-watchdog' timed out. Skipping SIGKILL.");
+ service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT);
+ }
+ break;
+
+ case SERVICE_STOP_SIGTERM:
+ if (s->timeout_stop_failure_mode == SERVICE_TIMEOUT_ABORT) {
+ log_unit_warning(UNIT(s), "State 'stop-sigterm' timed out. Aborting.");
+ service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_TIMEOUT);
+ } else if (s->kill_context.send_sigkill) {
+ log_unit_warning(UNIT(s), "State 'stop-sigterm' timed out. Killing.");
+ service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_TIMEOUT);
+ } else {
+ log_unit_warning(UNIT(s), "State 'stop-sigterm' timed out. Skipping SIGKILL.");
+ service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT);
+ }
+
+ break;
+
+ case SERVICE_STOP_SIGKILL:
+ /* Uh, we sent a SIGKILL and it is still not gone?
+ * Must be something we cannot kill, so let's just be
+ * weirded out and continue */
+
+ log_unit_warning(UNIT(s), "Processes still around after SIGKILL. Ignoring.");
+ service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT);
+ break;
+
+ case SERVICE_STOP_POST:
+ switch (s->timeout_stop_failure_mode) {
+
+ case SERVICE_TIMEOUT_TERMINATE:
+ log_unit_warning(UNIT(s), "State 'stop-post' timed out. Terminating.");
+ service_enter_signal(s, SERVICE_FINAL_SIGTERM, SERVICE_FAILURE_TIMEOUT);
+ break;
+
+ case SERVICE_TIMEOUT_ABORT:
+ log_unit_warning(UNIT(s), "State 'stop-post' timed out. Aborting.");
+ service_enter_signal(s, SERVICE_FINAL_WATCHDOG, SERVICE_FAILURE_TIMEOUT);
+ break;
+
+ case SERVICE_TIMEOUT_KILL:
+ if (s->kill_context.send_sigkill) {
+ log_unit_warning(UNIT(s), "State 'stop-post' timed out. Killing.");
+ service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_FAILURE_TIMEOUT);
+ } else {
+ log_unit_warning(UNIT(s), "State 'stop-post' timed out. Skipping SIGKILL. Entering failed mode.");
+ service_enter_dead(s, SERVICE_FAILURE_TIMEOUT, false);
+ }
+ break;
+
+ default:
+ assert_not_reached();
+ }
+ break;
+
+ case SERVICE_FINAL_WATCHDOG:
+ if (s->kill_context.send_sigkill) {
+ log_unit_warning(UNIT(s), "State 'final-watchdog' timed out. Killing.");
+ service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_FAILURE_TIMEOUT);
+ } else {
+ log_unit_warning(UNIT(s), "State 'final-watchdog' timed out. Skipping SIGKILL. Entering failed mode.");
+ service_enter_dead(s, SERVICE_FAILURE_TIMEOUT, false);
+ }
+ break;
+
+ case SERVICE_FINAL_SIGTERM:
+ if (s->timeout_stop_failure_mode == SERVICE_TIMEOUT_ABORT) {
+ log_unit_warning(UNIT(s), "State 'final-sigterm' timed out. Aborting.");
+ service_enter_signal(s, SERVICE_FINAL_WATCHDOG, SERVICE_FAILURE_TIMEOUT);
+ } else if (s->kill_context.send_sigkill) {
+ log_unit_warning(UNIT(s), "State 'final-sigterm' timed out. Killing.");
+ service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_FAILURE_TIMEOUT);
+ } else {
+ log_unit_warning(UNIT(s), "State 'final-sigterm' timed out. Skipping SIGKILL. Entering failed mode.");
+ service_enter_dead(s, SERVICE_FAILURE_TIMEOUT, false);
+ }
+
+ break;
+
+ case SERVICE_FINAL_SIGKILL:
+ log_unit_warning(UNIT(s), "Processes still around after final SIGKILL. Entering failed mode.");
+ service_enter_dead(s, SERVICE_FAILURE_TIMEOUT, true);
+ break;
+
+ case SERVICE_AUTO_RESTART:
+ if (s->restart_usec > 0)
+ log_unit_debug(UNIT(s),
+ "Service restart interval %s expired, scheduling restart.",
+ FORMAT_TIMESPAN(service_restart_usec_next(s), USEC_PER_SEC));
+ else
+ log_unit_debug(UNIT(s),
+ "Service has no hold-off time (RestartSec=0), scheduling restart.");
+
+ service_enter_restart(s);
+ break;
+
+ case SERVICE_CLEANING:
+ log_unit_warning(UNIT(s), "Cleaning timed out. killing.");
+
+ if (s->clean_result == SERVICE_SUCCESS)
+ s->clean_result = SERVICE_FAILURE_TIMEOUT;
+
+ service_enter_signal(s, SERVICE_FINAL_SIGKILL, 0);
+ break;
+
+ default:
+ assert_not_reached();
+ }
+
+ return 0;
+}
+
+static int service_dispatch_watchdog(sd_event_source *source, usec_t usec, void *userdata) {
+ Service *s = SERVICE(userdata);
+ usec_t watchdog_usec;
+
+ assert(s);
+ assert(source == s->watchdog_event_source);
+
+ watchdog_usec = service_get_watchdog_usec(s);
+
+ if (UNIT(s)->manager->service_watchdogs) {
+ log_unit_error(UNIT(s), "Watchdog timeout (limit %s)!",
+ FORMAT_TIMESPAN(watchdog_usec, 1));
+
+ service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_WATCHDOG);
+ } else
+ log_unit_warning(UNIT(s), "Watchdog disabled! Ignoring watchdog timeout (limit %s)!",
+ FORMAT_TIMESPAN(watchdog_usec, 1));
+
+ return 0;
+}
+
+static bool service_notify_message_authorized(Service *s, pid_t pid, FDSet *fds) {
+ assert(s);
+
+ NotifyAccess notify_access = service_get_notify_access(s);
+
+ if (notify_access == NOTIFY_NONE) {
+ log_unit_warning(UNIT(s), "Got notification message from PID "PID_FMT", but reception is disabled.", pid);
+ return false;
+ }
+
+ if (notify_access == NOTIFY_MAIN && pid != s->main_pid.pid) {
+ if (pidref_is_set(&s->main_pid))
+ log_unit_warning(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID "PID_FMT, pid, s->main_pid.pid);
+ else
+ log_unit_warning(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID which is currently not known", pid);
+
+ return false;
+ }
+
+ if (notify_access == NOTIFY_EXEC && pid != s->main_pid.pid && pid != s->control_pid.pid) {
+ if (pidref_is_set(&s->main_pid) && pidref_is_set(&s->control_pid))
+ log_unit_warning(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID "PID_FMT" and control PID "PID_FMT,
+ pid, s->main_pid.pid, s->control_pid.pid);
+ else if (pidref_is_set(&s->main_pid))
+ log_unit_warning(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID "PID_FMT, pid, s->main_pid.pid);
+ else if (pidref_is_set(&s->control_pid))
+ log_unit_warning(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for control PID "PID_FMT, pid, s->control_pid.pid);
+ else
+ log_unit_warning(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID and control PID which are currently not known", pid);
+
+ return false;
+ }
+
+ return true;
+}
+
+static void service_force_watchdog(Service *s) {
+ if (!UNIT(s)->manager->service_watchdogs)
+ return;
+
+ log_unit_error(UNIT(s), "Watchdog request (last status: %s)!",
+ s->status_text ?: "<unset>");
+
+ service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_WATCHDOG);
+}
+
+static void service_notify_message(
+ Unit *u,
+ const struct ucred *ucred,
+ char * const *tags,
+ FDSet *fds) {
+
+ Service *s = SERVICE(u);
+ bool notify_dbus = false;
+ usec_t monotonic_usec = USEC_INFINITY;
+ const char *e;
+ int r;
+
+ assert(u);
+ assert(ucred);
+
+ if (!service_notify_message_authorized(s, ucred->pid, fds))
+ return;
+
+ if (DEBUG_LOGGING) {
+ _cleanup_free_ char *cc = NULL;
+
+ cc = strv_join(tags, ", ");
+ log_unit_debug(u, "Got notification message from PID "PID_FMT" (%s)", ucred->pid, empty_to_na(cc));
+ }
+
+ /* Interpret MAINPID= */
+ e = strv_find_startswith(tags, "MAINPID=");
+ if (e && IN_SET(s->state, SERVICE_START, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY)) {
+ _cleanup_(pidref_done) PidRef new_main_pid = PIDREF_NULL;
+
+ r = pidref_set_pidstr(&new_main_pid, e);
+ if (r < 0)
+ log_unit_warning_errno(u, r, "Failed to parse MAINPID=%s field in notification message, ignoring: %m", e);
+ else if (!s->main_pid_known || !pidref_equal(&new_main_pid, &s->main_pid)) {
+
+ r = service_is_suitable_main_pid(s, &new_main_pid, LOG_WARNING);
+ if (r == 0) {
+ /* The new main PID is a bit suspicious, which is OK if the sender is privileged. */
+
+ if (ucred->uid == 0) {
+ log_unit_debug(u, "New main PID "PID_FMT" does not belong to service, but we'll accept it as the request to change it came from a privileged process.", new_main_pid.pid);
+ r = 1;
+ } else
+ log_unit_debug(u, "New main PID "PID_FMT" does not belong to service, refusing.", new_main_pid.pid);
+ }
+ if (r > 0) {
+ (void) service_set_main_pidref(s, &new_main_pid);
+
+ r = unit_watch_pidref(UNIT(s), &s->main_pid, /* exclusive= */ false);
+ if (r < 0)
+ log_unit_warning_errno(UNIT(s), r, "Failed to watch new main PID "PID_FMT" for service: %m", s->main_pid.pid);
+
+ notify_dbus = true;
+ }
+ }
+ }
+
+ /* Parse MONOTONIC_USEC= */
+ e = strv_find_startswith(tags, "MONOTONIC_USEC=");
+ if (e) {
+ r = safe_atou64(e, &monotonic_usec);
+ if (r < 0)
+ log_unit_warning_errno(u, r, "Failed to parse MONOTONIC_USEC= field in notification message, ignoring: %s", e);
+ }
+
+ /* Interpret READY=/STOPPING=/RELOADING=. STOPPING= wins over the others, and READY= over RELOADING= */
+ if (strv_contains(tags, "STOPPING=1")) {
+ s->notify_state = NOTIFY_STOPPING;
+
+ if (IN_SET(s->state, SERVICE_RUNNING, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY))
+ service_enter_stop_by_notify(s);
+
+ notify_dbus = true;
+
+ } else if (strv_contains(tags, "READY=1")) {
+
+ s->notify_state = NOTIFY_READY;
+
+ /* Type=notify services inform us about completed initialization with READY=1 */
+ if (IN_SET(s->type, SERVICE_NOTIFY, SERVICE_NOTIFY_RELOAD) &&
+ s->state == SERVICE_START)
+ service_enter_start_post(s);
+
+ /* Sending READY=1 while we are reloading informs us that the reloading is complete. */
+ if (s->state == SERVICE_RELOAD_NOTIFY)
+ service_enter_running(s, SERVICE_SUCCESS);
+
+ /* Combined RELOADING=1 and READY=1? Then this is indication that the service started and
+ * immediately finished reloading. */
+ if (s->state == SERVICE_RELOAD_SIGNAL &&
+ strv_contains(tags, "RELOADING=1") &&
+ monotonic_usec != USEC_INFINITY &&
+ monotonic_usec >= s->reload_begin_usec) {
+ _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
+
+ /* Propagate a reload explicitly */
+ r = manager_propagate_reload(UNIT(s)->manager, UNIT(s), JOB_FAIL, &error);
+ if (r < 0)
+ log_unit_warning(UNIT(s), "Failed to schedule propagation of reload, ignoring: %s", bus_error_message(&error, r));
+
+ service_enter_running(s, SERVICE_SUCCESS);
+ }
+
+ notify_dbus = true;
+
+ } else if (strv_contains(tags, "RELOADING=1")) {
+
+ s->notify_state = NOTIFY_RELOADING;
+
+ /* Sending RELOADING=1 after we send SIGHUP to request a reload will transition
+ * things to "reload-notify" state, where we'll wait for READY=1 to let us know the
+ * reload is done. Note that we insist on a timestamp being sent along here, so that
+ * we know for sure this is a reload cycle initiated *after* we sent the signal */
+ if (s->state == SERVICE_RELOAD_SIGNAL &&
+ monotonic_usec != USEC_INFINITY &&
+ monotonic_usec >= s->reload_begin_usec)
+ /* Note, we don't call service_enter_reload_by_notify() here, because we
+ * don't need reload propagation nor do we want to restart the time-out. */
+ service_set_state(s, SERVICE_RELOAD_NOTIFY);
+
+ if (s->state == SERVICE_RUNNING)
+ service_enter_reload_by_notify(s);
+
+ notify_dbus = true;
+ }
+
+ /* Interpret STATUS= */
+ e = strv_find_startswith(tags, "STATUS=");
+ if (e) {
+ _cleanup_free_ char *t = NULL;
+
+ if (!isempty(e)) {
+ /* Note that this size limit check is mostly paranoia: since the datagram size we are willing
+ * to process is already limited to NOTIFY_BUFFER_MAX, this limit here should never be hit. */
+ if (strlen(e) > STATUS_TEXT_MAX)
+ log_unit_warning(u, "Status message overly long (%zu > %u), ignoring.", strlen(e), STATUS_TEXT_MAX);
+ else if (!utf8_is_valid(e))
+ log_unit_warning(u, "Status message in notification message is not UTF-8 clean, ignoring.");
+ else {
+ t = strdup(e);
+ if (!t)
+ log_oom();
+ }
+ }
+
+ if (!streq_ptr(s->status_text, t)) {
+ free_and_replace(s->status_text, t);
+ notify_dbus = true;
+ }
+ }
+
+ /* Interpret NOTIFYACCESS= */
+ e = strv_find_startswith(tags, "NOTIFYACCESS=");
+ if (e) {
+ NotifyAccess notify_access;
+
+ notify_access = notify_access_from_string(e);
+ if (notify_access < 0)
+ log_unit_warning_errno(u, notify_access,
+ "Failed to parse NOTIFYACCESS= field value '%s' in notification message, ignoring: %m", e);
+
+ /* We don't need to check whether the new access mode is more strict than what is
+ * already in use, since only the privileged process is allowed to change it
+ * in the first place. */
+ if (service_get_notify_access(s) != notify_access) {
+ service_override_notify_access(s, notify_access);
+ notify_dbus = true;
+ }
+ }
+
+ /* Interpret ERRNO= */
+ e = strv_find_startswith(tags, "ERRNO=");
+ if (e) {
+ int status_errno;
+
+ status_errno = parse_errno(e);
+ if (status_errno < 0)
+ log_unit_warning_errno(u, status_errno,
+ "Failed to parse ERRNO= field value '%s' in notification message: %m", e);
+ else if (s->status_errno != status_errno) {
+ s->status_errno = status_errno;
+ notify_dbus = true;
+ }
+ }
+
+ /* Interpret EXTEND_TIMEOUT= */
+ e = strv_find_startswith(tags, "EXTEND_TIMEOUT_USEC=");
+ if (e) {
+ usec_t extend_timeout_usec;
+ if (safe_atou64(e, &extend_timeout_usec) < 0)
+ log_unit_warning(u, "Failed to parse EXTEND_TIMEOUT_USEC=%s", e);
+ else
+ service_extend_timeout(s, extend_timeout_usec);
+ }
+
+ /* Interpret WATCHDOG= */
+ e = strv_find_startswith(tags, "WATCHDOG=");
+ if (e) {
+ if (streq(e, "1"))
+ service_reset_watchdog(s);
+ else if (streq(e, "trigger"))
+ service_force_watchdog(s);
+ else
+ log_unit_warning(u, "Passed WATCHDOG= field is invalid, ignoring.");
+ }
+
+ e = strv_find_startswith(tags, "WATCHDOG_USEC=");
+ if (e) {
+ usec_t watchdog_override_usec;
+ if (safe_atou64(e, &watchdog_override_usec) < 0)
+ log_unit_warning(u, "Failed to parse WATCHDOG_USEC=%s", e);
+ else
+ service_override_watchdog_timeout(s, watchdog_override_usec);
+ }
+
+ /* Process FD store messages. Either FDSTOREREMOVE=1 for removal, or FDSTORE=1 for addition. In both cases,
+ * process FDNAME= for picking the file descriptor name to use. Note that FDNAME= is required when removing
+ * fds, but optional when pushing in new fds, for compatibility reasons. */
+ if (strv_contains(tags, "FDSTOREREMOVE=1")) {
+ const char *name;
+
+ name = strv_find_startswith(tags, "FDNAME=");
+ if (!name || !fdname_is_valid(name))
+ log_unit_warning(u, "FDSTOREREMOVE=1 requested, but no valid file descriptor name passed, ignoring.");
+ else
+ service_remove_fd_store(s, name);
+
+ } else if (strv_contains(tags, "FDSTORE=1")) {
+ const char *name;
+
+ name = strv_find_startswith(tags, "FDNAME=");
+ if (name && !fdname_is_valid(name)) {
+ log_unit_warning(u, "Passed FDNAME= name is invalid, ignoring.");
+ name = NULL;
+ }
+
+ (void) service_add_fd_store_set(s, fds, name, !strv_contains(tags, "FDPOLL=0"));
+ }
+
+ /* Notify clients about changed status or main pid */
+ if (notify_dbus)
+ unit_add_to_dbus_queue(u);
+}
+
+static int service_get_timeout(Unit *u, usec_t *timeout) {
+ Service *s = SERVICE(u);
+ uint64_t t;
+ int r;
+
+ if (!s->timer_event_source)
+ return 0;
+
+ r = sd_event_source_get_time(s->timer_event_source, &t);
+ if (r < 0)
+ return r;
+ if (t == USEC_INFINITY)
+ return 0;
+
+ *timeout = t;
+ return 1;
+}
+
+static usec_t service_get_timeout_start_usec(Unit *u) {
+ Service *s = SERVICE(ASSERT_PTR(u));
+ return s->timeout_start_usec;
+}
+
+static bool pick_up_pid_from_bus_name(Service *s) {
+ assert(s);
+
+ /* If the service is running but we have no main PID yet, get it from the owner of the D-Bus name */
+
+ return !pidref_is_set(&s->main_pid) &&
+ IN_SET(s->state,
+ SERVICE_START,
+ SERVICE_START_POST,
+ SERVICE_RUNNING,
+ SERVICE_RELOAD,
+ SERVICE_RELOAD_SIGNAL,
+ SERVICE_RELOAD_NOTIFY);
+}
+
+static int bus_name_pid_lookup_callback(sd_bus_message *reply, void *userdata, sd_bus_error *ret_error) {
+ _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL;
+ const sd_bus_error *e;
+ Unit *u = ASSERT_PTR(userdata);
+ uint32_t pid;
+ Service *s;
+ int r;
+
+ assert(reply);
+
+ s = SERVICE(u);
+ s->bus_name_pid_lookup_slot = sd_bus_slot_unref(s->bus_name_pid_lookup_slot);
+
+ if (!s->bus_name || !pick_up_pid_from_bus_name(s))
+ return 1;
+
+ e = sd_bus_message_get_error(reply);
+ if (e) {
+ r = sd_bus_error_get_errno(e);
+ log_warning_errno(r, "GetConnectionUnixProcessID() failed: %s", bus_error_message(e, r));
+ return 1;
+ }
+
+ r = sd_bus_message_read(reply, "u", &pid);
+ if (r < 0) {
+ bus_log_parse_error(r);
+ return 1;
+ }
+
+ r = pidref_set_pid(&pidref, pid);
+ if (r < 0) {
+ log_debug_errno(r, "GetConnectionUnixProcessID() returned invalid PID: %m");
+ return 1;
+ }
+
+ log_unit_debug(u, "D-Bus name %s is now owned by process " PID_FMT, s->bus_name, pidref.pid);
+
+ (void) service_set_main_pidref(s, &pidref);
+ (void) unit_watch_pidref(UNIT(s), &s->main_pid, /* exclusive= */ false);
+ return 1;
+}
+
+static void service_bus_name_owner_change(Unit *u, const char *new_owner) {
+
+ Service *s = SERVICE(u);
+ int r;
+
+ assert(s);
+
+ if (new_owner)
+ log_unit_debug(u, "D-Bus name %s now owned by %s", s->bus_name, new_owner);
+ else
+ log_unit_debug(u, "D-Bus name %s now not owned by anyone.", s->bus_name);
+
+ s->bus_name_good = new_owner;
+
+ /* Track the current owner, so we can reconstruct changes after a daemon reload */
+ r = free_and_strdup(&s->bus_name_owner, new_owner);
+ if (r < 0) {
+ log_unit_error_errno(u, r, "Unable to set new bus name owner %s: %m", new_owner);
+ return;
+ }
+
+ if (s->type == SERVICE_DBUS) {
+
+ /* service_enter_running() will figure out what to
+ * do */
+ if (s->state == SERVICE_RUNNING)
+ service_enter_running(s, SERVICE_SUCCESS);
+ else if (s->state == SERVICE_START && new_owner)
+ service_enter_start_post(s);
+
+ } else if (new_owner && pick_up_pid_from_bus_name(s)) {
+
+ /* Try to acquire PID from bus service */
+
+ s->bus_name_pid_lookup_slot = sd_bus_slot_unref(s->bus_name_pid_lookup_slot);
+
+ r = sd_bus_call_method_async(
+ u->manager->api_bus,
+ &s->bus_name_pid_lookup_slot,
+ "org.freedesktop.DBus",
+ "/org/freedesktop/DBus",
+ "org.freedesktop.DBus",
+ "GetConnectionUnixProcessID",
+ bus_name_pid_lookup_callback,
+ s,
+ "s",
+ s->bus_name);
+ if (r < 0)
+ log_debug_errno(r, "Failed to request owner PID of service name, ignoring: %m");
+ }
+}
+
+int service_set_socket_fd(
+ Service *s,
+ int fd,
+ Socket *sock,
+ SocketPeer *peer,
+ bool selinux_context_net) {
+
+ _cleanup_free_ char *peer_text = NULL;
+ int r;
+
+ assert(s);
+ assert(fd >= 0);
+
+ /* This is called by the socket code when instantiating a new service for a stream socket and the socket needs
+ * to be configured. We take ownership of the passed fd on success. */
+
+ if (UNIT(s)->load_state != UNIT_LOADED)
+ return -EINVAL;
+
+ if (s->socket_fd >= 0)
+ return -EBUSY;
+
+ assert(!s->socket_peer);
+
+ if (!IN_SET(s->state, SERVICE_DEAD, SERVICE_DEAD_RESOURCES_PINNED))
+ return -EAGAIN;
+
+ if (getpeername_pretty(fd, true, &peer_text) >= 0) {
+
+ if (UNIT(s)->description) {
+ _cleanup_free_ char *a = NULL;
+
+ a = strjoin(UNIT(s)->description, " (", peer_text, ")");
+ if (!a)
+ return -ENOMEM;
+
+ r = unit_set_description(UNIT(s), a);
+ } else
+ r = unit_set_description(UNIT(s), peer_text);
+ if (r < 0)
+ return r;
+ }
+
+ r = unit_add_two_dependencies(UNIT(sock), UNIT_BEFORE, UNIT_TRIGGERS, UNIT(s), false, UNIT_DEPENDENCY_IMPLICIT);
+ if (r < 0)
+ return r;
+
+ s->socket_fd = fd;
+ s->socket_peer = socket_peer_ref(peer);
+ s->socket_fd_selinux_context_net = selinux_context_net;
+
+ unit_ref_set(&s->accept_socket, UNIT(s), UNIT(sock));
+ return 0;
+}
+
+static void service_reset_failed(Unit *u) {
+ Service *s = SERVICE(u);
+
+ assert(s);
+
+ if (s->state == SERVICE_FAILED)
+ service_set_state(s, service_determine_dead_state(s));
+
+ s->result = SERVICE_SUCCESS;
+ s->reload_result = SERVICE_SUCCESS;
+ s->clean_result = SERVICE_SUCCESS;
+ s->n_restarts = 0;
+ s->flush_n_restarts = false;
+}
+
+static PidRef* service_main_pid(Unit *u) {
+ return &ASSERT_PTR(SERVICE(u))->main_pid;
+}
+
+static PidRef* service_control_pid(Unit *u) {
+ return &ASSERT_PTR(SERVICE(u))->control_pid;
+}
+
+static bool service_needs_console(Unit *u) {
+ Service *s = SERVICE(u);
+
+ assert(s);
+
+ /* We provide our own implementation of this here, instead of relying of the generic implementation
+ * unit_needs_console() provides, since we want to return false if we are in SERVICE_EXITED state. */
+
+ if (!exec_context_may_touch_console(&s->exec_context))
+ return false;
+
+ return IN_SET(s->state,
+ SERVICE_CONDITION,
+ SERVICE_START_PRE,
+ SERVICE_START,
+ SERVICE_START_POST,
+ SERVICE_RUNNING,
+ SERVICE_RELOAD,
+ SERVICE_RELOAD_SIGNAL,
+ SERVICE_RELOAD_NOTIFY,
+ SERVICE_STOP,
+ SERVICE_STOP_WATCHDOG,
+ SERVICE_STOP_SIGTERM,
+ SERVICE_STOP_SIGKILL,
+ SERVICE_STOP_POST,
+ SERVICE_FINAL_WATCHDOG,
+ SERVICE_FINAL_SIGTERM,
+ SERVICE_FINAL_SIGKILL);
+}
+
+static int service_exit_status(Unit *u) {
+ Service *s = SERVICE(u);
+
+ assert(u);
+
+ if (s->main_exec_status.pid <= 0 ||
+ !dual_timestamp_is_set(&s->main_exec_status.exit_timestamp))
+ return -ENODATA;
+
+ if (s->main_exec_status.code != CLD_EXITED)
+ return -EBADE;
+
+ return s->main_exec_status.status;
+}
+
+static const char* service_status_text(Unit *u) {
+ Service *s = SERVICE(u);
+
+ assert(s);
+
+ return s->status_text;
+}
+
+static int service_clean(Unit *u, ExecCleanMask mask) {
+ _cleanup_strv_free_ char **l = NULL;
+ bool may_clean_fdstore = false;
+ Service *s = SERVICE(u);
+ int r;
+
+ assert(s);
+ assert(mask != 0);
+
+ if (!IN_SET(s->state, SERVICE_DEAD, SERVICE_DEAD_RESOURCES_PINNED))
+ return -EBUSY;
+
+ /* Determine if there's anything we could potentially clean */
+ r = exec_context_get_clean_directories(&s->exec_context, u->manager->prefix, mask, &l);
+ if (r < 0)
+ return r;
+
+ if (mask & EXEC_CLEAN_FDSTORE)
+ may_clean_fdstore = s->n_fd_store > 0 || s->n_fd_store_max > 0;
+
+ if (strv_isempty(l) && !may_clean_fdstore)
+ return -EUNATCH; /* Nothing to potentially clean */
+
+ /* Let's clean the stuff we can clean quickly */
+ if (may_clean_fdstore)
+ service_release_fd_store(s);
+
+ /* If we are done, leave quickly */
+ if (strv_isempty(l)) {
+ if (s->state == SERVICE_DEAD_RESOURCES_PINNED && !s->fd_store)
+ service_set_state(s, SERVICE_DEAD);
+ return 0;
+ }
+
+ /* We need to clean disk stuff. This is slow, hence do it out of process, and change state */
+ service_unwatch_control_pid(s);
+ s->clean_result = SERVICE_SUCCESS;
+ s->control_command = NULL;
+ s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID;
+
+ r = service_arm_timer(s, /* relative= */ true, s->exec_context.timeout_clean_usec);
+ if (r < 0) {
+ log_unit_warning_errno(u, r, "Failed to install timer: %m");
+ goto fail;
+ }
+
+ r = unit_fork_and_watch_rm_rf(u, l, &s->control_pid);
+ if (r < 0) {
+ log_unit_warning_errno(u, r, "Failed to spawn cleaning task: %m");
+ goto fail;
+ }
+
+ service_set_state(s, SERVICE_CLEANING);
+ return 0;
+
+fail:
+ s->clean_result = SERVICE_FAILURE_RESOURCES;
+ s->timer_event_source = sd_event_source_disable_unref(s->timer_event_source);
+ return r;
+}
+
+static int service_can_clean(Unit *u, ExecCleanMask *ret) {
+ Service *s = SERVICE(u);
+ ExecCleanMask mask = 0;
+ int r;
+
+ assert(s);
+ assert(ret);
+
+ r = exec_context_get_clean_mask(&s->exec_context, &mask);
+ if (r < 0)
+ return r;
+
+ if (s->n_fd_store_max > 0)
+ mask |= EXEC_CLEAN_FDSTORE;
+
+ *ret = mask;
+ return 0;
+}
+
+static const char *service_finished_job(Unit *u, JobType t, JobResult result) {
+ if (t == JOB_START &&
+ result == JOB_DONE &&
+ SERVICE(u)->type == SERVICE_ONESHOT)
+ return "Finished %s.";
+
+ /* Fall back to generic */
+ return NULL;
+}
+
+static int service_can_start(Unit *u) {
+ Service *s = SERVICE(u);
+ int r;
+
+ assert(s);
+
+ /* Make sure we don't enter a busy loop of some kind. */
+ r = unit_test_start_limit(u);
+ if (r < 0) {
+ service_enter_dead(s, SERVICE_FAILURE_START_LIMIT_HIT, false);
+ return r;
+ }
+
+ return 1;
+}
+
+static void service_release_resources(Unit *u) {
+ Service *s = SERVICE(ASSERT_PTR(u));
+
+ /* Invoked by the unit state engine, whenever it realizes that unit is dead and there's no job
+ * anymore for it, and it hence is a good idea to release resources */
+
+ /* Don't release resources if this is a transitionary failed/dead state
+ * (i.e. SERVICE_DEAD_BEFORE_AUTO_RESTART/SERVICE_FAILED_BEFORE_AUTO_RESTART), insist on a permanent
+ * failure state. */
+ if (!IN_SET(s->state, SERVICE_DEAD, SERVICE_FAILED, SERVICE_DEAD_RESOURCES_PINNED))
+ return;
+
+ log_unit_debug(u, "Releasing resources...");
+
+ service_release_socket_fd(s);
+ service_release_stdio_fd(s);
+
+ if (s->fd_store_preserve_mode != EXEC_PRESERVE_YES)
+ service_release_fd_store(s);
+
+ if (s->state == SERVICE_DEAD_RESOURCES_PINNED && !s->fd_store)
+ service_set_state(s, SERVICE_DEAD);
+}
+
+static const char* const service_restart_table[_SERVICE_RESTART_MAX] = {
+ [SERVICE_RESTART_NO] = "no",
+ [SERVICE_RESTART_ON_SUCCESS] = "on-success",
+ [SERVICE_RESTART_ON_FAILURE] = "on-failure",
+ [SERVICE_RESTART_ON_ABNORMAL] = "on-abnormal",
+ [SERVICE_RESTART_ON_WATCHDOG] = "on-watchdog",
+ [SERVICE_RESTART_ON_ABORT] = "on-abort",
+ [SERVICE_RESTART_ALWAYS] = "always",
+};
+
+DEFINE_STRING_TABLE_LOOKUP(service_restart, ServiceRestart);
+
+static const char* const service_restart_mode_table[_SERVICE_RESTART_MODE_MAX] = {
+ [SERVICE_RESTART_MODE_NORMAL] = "normal",
+ [SERVICE_RESTART_MODE_DIRECT] = "direct",
+};
+
+DEFINE_STRING_TABLE_LOOKUP(service_restart_mode, ServiceRestartMode);
+
+static const char* const service_type_table[_SERVICE_TYPE_MAX] = {
+ [SERVICE_SIMPLE] = "simple",
+ [SERVICE_FORKING] = "forking",
+ [SERVICE_ONESHOT] = "oneshot",
+ [SERVICE_DBUS] = "dbus",
+ [SERVICE_NOTIFY] = "notify",
+ [SERVICE_NOTIFY_RELOAD] = "notify-reload",
+ [SERVICE_IDLE] = "idle",
+ [SERVICE_EXEC] = "exec",
+};
+
+DEFINE_STRING_TABLE_LOOKUP(service_type, ServiceType);
+
+static const char* const service_exit_type_table[_SERVICE_EXIT_TYPE_MAX] = {
+ [SERVICE_EXIT_MAIN] = "main",
+ [SERVICE_EXIT_CGROUP] = "cgroup",
+};
+
+DEFINE_STRING_TABLE_LOOKUP(service_exit_type, ServiceExitType);
+
+static const char* const service_exec_command_table[_SERVICE_EXEC_COMMAND_MAX] = {
+ [SERVICE_EXEC_CONDITION] = "ExecCondition",
+ [SERVICE_EXEC_START_PRE] = "ExecStartPre",
+ [SERVICE_EXEC_START] = "ExecStart",
+ [SERVICE_EXEC_START_POST] = "ExecStartPost",
+ [SERVICE_EXEC_RELOAD] = "ExecReload",
+ [SERVICE_EXEC_STOP] = "ExecStop",
+ [SERVICE_EXEC_STOP_POST] = "ExecStopPost",
+};
+
+DEFINE_STRING_TABLE_LOOKUP(service_exec_command, ServiceExecCommand);
+
+static const char* const service_exec_ex_command_table[_SERVICE_EXEC_COMMAND_MAX] = {
+ [SERVICE_EXEC_CONDITION] = "ExecConditionEx",
+ [SERVICE_EXEC_START_PRE] = "ExecStartPreEx",
+ [SERVICE_EXEC_START] = "ExecStartEx",
+ [SERVICE_EXEC_START_POST] = "ExecStartPostEx",
+ [SERVICE_EXEC_RELOAD] = "ExecReloadEx",
+ [SERVICE_EXEC_STOP] = "ExecStopEx",
+ [SERVICE_EXEC_STOP_POST] = "ExecStopPostEx",
+};
+
+DEFINE_STRING_TABLE_LOOKUP(service_exec_ex_command, ServiceExecCommand);
+
+static const char* const notify_state_table[_NOTIFY_STATE_MAX] = {
+ [NOTIFY_UNKNOWN] = "unknown",
+ [NOTIFY_READY] = "ready",
+ [NOTIFY_RELOADING] = "reloading",
+ [NOTIFY_STOPPING] = "stopping",
+};
+
+DEFINE_STRING_TABLE_LOOKUP(notify_state, NotifyState);
+
+static const char* const service_result_table[_SERVICE_RESULT_MAX] = {
+ [SERVICE_SUCCESS] = "success",
+ [SERVICE_FAILURE_RESOURCES] = "resources",
+ [SERVICE_FAILURE_PROTOCOL] = "protocol",
+ [SERVICE_FAILURE_TIMEOUT] = "timeout",
+ [SERVICE_FAILURE_EXIT_CODE] = "exit-code",
+ [SERVICE_FAILURE_SIGNAL] = "signal",
+ [SERVICE_FAILURE_CORE_DUMP] = "core-dump",
+ [SERVICE_FAILURE_WATCHDOG] = "watchdog",
+ [SERVICE_FAILURE_START_LIMIT_HIT] = "start-limit-hit",
+ [SERVICE_FAILURE_OOM_KILL] = "oom-kill",
+ [SERVICE_SKIP_CONDITION] = "exec-condition",
+};
+
+DEFINE_STRING_TABLE_LOOKUP(service_result, ServiceResult);
+
+static const char* const service_timeout_failure_mode_table[_SERVICE_TIMEOUT_FAILURE_MODE_MAX] = {
+ [SERVICE_TIMEOUT_TERMINATE] = "terminate",
+ [SERVICE_TIMEOUT_ABORT] = "abort",
+ [SERVICE_TIMEOUT_KILL] = "kill",
+};
+
+DEFINE_STRING_TABLE_LOOKUP(service_timeout_failure_mode, ServiceTimeoutFailureMode);
+
+const UnitVTable service_vtable = {
+ .object_size = sizeof(Service),
+ .exec_context_offset = offsetof(Service, exec_context),
+ .cgroup_context_offset = offsetof(Service, cgroup_context),
+ .kill_context_offset = offsetof(Service, kill_context),
+ .exec_runtime_offset = offsetof(Service, exec_runtime),
+
+ .sections =
+ "Unit\0"
+ "Service\0"
+ "Install\0",
+ .private_section = "Service",
+
+ .can_transient = true,
+ .can_delegate = true,
+ .can_fail = true,
+ .can_set_managed_oom = true,
+
+ .init = service_init,
+ .done = service_done,
+ .load = service_load,
+ .release_resources = service_release_resources,
+
+ .coldplug = service_coldplug,
+
+ .dump = service_dump,
+
+ .start = service_start,
+ .stop = service_stop,
+ .reload = service_reload,
+
+ .can_reload = service_can_reload,
+
+ .clean = service_clean,
+ .can_clean = service_can_clean,
+
+ .freeze = unit_freeze_vtable_common,
+ .thaw = unit_thaw_vtable_common,
+
+ .serialize = service_serialize,
+ .deserialize_item = service_deserialize_item,
+
+ .active_state = service_active_state,
+ .sub_state_to_string = service_sub_state_to_string,
+
+ .will_restart = service_will_restart,
+
+ .may_gc = service_may_gc,
+
+ .sigchld_event = service_sigchld_event,
+
+ .reset_failed = service_reset_failed,
+
+ .notify_cgroup_empty = service_notify_cgroup_empty_event,
+ .notify_cgroup_oom = service_notify_cgroup_oom_event,
+ .notify_message = service_notify_message,
+
+ .main_pid = service_main_pid,
+ .control_pid = service_control_pid,
+
+ .bus_name_owner_change = service_bus_name_owner_change,
+
+ .bus_set_property = bus_service_set_property,
+ .bus_commit_properties = bus_service_commit_properties,
+
+ .get_timeout = service_get_timeout,
+ .get_timeout_start_usec = service_get_timeout_start_usec,
+ .needs_console = service_needs_console,
+ .exit_status = service_exit_status,
+ .status_text = service_status_text,
+
+ .status_message_formats = {
+ .finished_start_job = {
+ [JOB_FAILED] = "Failed to start %s.",
+ },
+ .finished_stop_job = {
+ [JOB_DONE] = "Stopped %s.",
+ [JOB_FAILED] = "Stopped (with error) %s.",
+ },
+ .finished_job = service_finished_job,
+ },
+
+ .can_start = service_can_start,
+
+ .notify_plymouth = true,
+
+ .audit_start_message_type = AUDIT_SERVICE_START,
+ .audit_stop_message_type = AUDIT_SERVICE_STOP,
+};