diff options
Diffstat (limited to 'docs/USERDB_AND_DESKTOPS.md')
-rw-r--r-- | docs/USERDB_AND_DESKTOPS.md | 169 |
1 files changed, 169 insertions, 0 deletions
diff --git a/docs/USERDB_AND_DESKTOPS.md b/docs/USERDB_AND_DESKTOPS.md new file mode 100644 index 0000000..3a3da13 --- /dev/null +++ b/docs/USERDB_AND_DESKTOPS.md @@ -0,0 +1,169 @@ +--- +title: systemd-homed and JSON User/Group Record Support in Desktop Environments +category: Users, Groups and Home Directories +layout: default +SPDX-License-Identifier: LGPL-2.1-or-later +--- + +# `systemd-homed` and JSON User/Group Record Support in Desktop Environments + +Starting with version 245, systemd supports a new subsystem +[`systemd-homed.service`](https://www.freedesktop.org/software/systemd/man/systemd-homed.service.html) +for managing regular ("human") users and their home directories. Along with it +a new concept `userdb` got merged that brings rich, extensible JSON user/group +records, extending the classic UNIX/glibc NSS `struct passwd`/`struct group` +structures. Both additions are added in a fully backwards compatible way, +accessible through `getpwnam()`/`getgrnam()`/… (i.e. libc NSS) and PAM as +usual, meaning that for basic support no changes in the upper layers of the +stack (in particular desktop environments, such as GNOME or KDE) have to be +made. However, for better support a number of changes to desktop environments +are recommended. A few areas where that applies are discussed below. + +Before reading on, please read up on the basic concepts, specifically: + +* [Home Directories](HOME_DIRECTORY) +* [JSON User Records](USER_RECORD) +* [JSON Group Records](GROUP_RECORD) +* [User/Group Record Lookup API via Varlink](USER_GROUP_API) + +## Support for Suspending Home Directory Access during System Suspend + +One key feature of `systemd-homed` managed encrypted home directories is the +ability that access to them can be suspended automatically during system sleep, +removing any cryptographic key material from memory while doing so. This is +important in a world where most laptop users seldom shut down their computers +but most of the time just suspend them instead. Previously, the encryption keys +for the home directories remained in memory during system suspend, so that +sufficiently equipped attackers could read them from there and gain full access +to the device. By removing the key material from memory before suspend, and +re-requesting it on resume this attack vector can be closed down effectively. + +Supporting this mechanism requires support in the desktop environment, since +the encryption keys (i.e. the user's login password) need to be reacquired on +system resume, from a lock screen or similar. This lock screen must run in +system context, and cannot run in the user's own context, since otherwise it +might end up accessing the home directory of the user even though access to it +is temporarily suspended and thus will hang if attempted. + +It is suggested that desktop environments that implement lock screens run them +from system context, for example by switching back to the display manager, and +only revert back to the session after re-authentication via this system lock +screen (re-authentication in this case refers to passing the user's login +credentials to the usual PAM authentication hooks). Or in other words, when +going into system suspend it is recommended that GNOME Shell switches back to +the GNOME Display Manager login screen which now should double as screen lock, +and only switches back to the shell's UI after the user re-authenticated there. + +Note that this change in behavior is a good idea in any case, and does not +create any dependencies on `systemd-homed` or systemd-specific APIs. It's +simply a change of behavior regarding use of existing APIs, not a suggested +hook-up to any new APIs. + +A display manager which supports this kind of out-of-context screen lock +operation needs to inform systemd-homed about this so that systemd-homed knows +that it is safe to suspend the user's home directory on suspend. This is done +via the `suspend=` argument to the +[`pam_systemd_home`](https://www.freedesktop.org/software/systemd/man/pam_systemd_home.html) +PAM module. A display manager should hence change its PAM stack configuration +to set this parameter to on. `systemd-homed` will not suspend home directories +if there's at least one active session of the user that does not support +suspending, as communicated via this parameter. + +## User Management UIs + +The rich user/group records `userdb` and `systemd-homed` support carry various +fields of relevance to UIs that manage the local user database or parts +thereof. In particular, most of the metadata `accounts-daemon` (also see below) +supports is directly available in these JSON records. Hence it makes sense for +any user management UI to expose them directly. + +`systemd-homed` exposes APIs to add, remove and make changes to local users via +D-Bus, with full [polkit](https://www.freedesktop.org/software/polkit/docs/latest/) +hook-up. On the command line this is exposed via the +`homectl` command. A graphical UI that exposes similar functionality would be +very useful, exposing the various new account settings, and in particular +providing a stream-lined UI for enrolling new-style authentication tokens such +as PKCS#11/YubiKey-style devices. (Ideally, if the user plugs in an +uninitialized YubiKey during operation it might be nice if the Desktop would +automatically ask if a key pair shall be written to it and the local account be +bound to it, `systemd-homed` provides enough YubiKey/PKCS#11 support to make +this a reality today; except that it will not take care of token +initialization). + +A strong point of `systemd-homed` is per-user resource management. In +particular disk space assignments are something that most likely should be +exposed in a user management UI. Various metadata fields are supplied allowing +exposure of disk space assignment "slider" UI. Note however that the file system +back-ends of `systemd-homed.service` have different feature sets. Specifically, +only btrfs has online file system shrinking support, ext4 only offline file +system shrinking support, and xfs no shrinking support at all (all three file +systems support online file system growing however). This means if the LUKS +back-end is used, disk space assignment cannot be instant for logged in users, +unless btrfs is used. + +Note that only `systemd-homed` provides an API for modifying/creating/deleting +users. The generic `userdb` subsystem (which might have other back-ends, besides +`systemd-homed`, for example LDAP or Windows) exclusively provides a read-only +interface. (This is unlikely to change, as the other back-ends might have very +different concepts of adding or modifying users, i.e. might not even have any +local concept for that at all). This means any user management UI that intends +to change (and not just view) user accounts should talk directly to +`systemd-homed` to make use of its features; there's no abstraction available +to support other back-ends under the same API. + +Unfortunately there's currently no documentation for the `systemd-homed` D-Bus +API. Consider using the `homectl` sources as guidelines for implementing a user +management UI. The JSON user/records are well documented however, see above, +and the D-Bus API provides limited introspection. + +## Relationship to `accounts-daemon` + +For a long time `accounts-daemon` has been included in Linux distributions +providing richer user accounts. The functionality of this daemon overlaps in +many areas with the functionality of `systemd-homed` or `userdb`, but there are +systematic differences, which means that `systemd-homed` cannot replace +`accounts-daemon` fully. Most importantly: `accounts-daemon` provides +"side-car" metadata for *any* type of user account, while `systemd-homed` only +provides additional metadata for the users it defines itself. In other words: +`accounts-daemon` will augment foreign accounts; `systemd-homed` cannot be used +to augment users defined elsewhere, for example in LDAP or as classic +`/etc/passwd` records. + +This probably means that for the time being, a user management UI (or other UI) +that wants to support rich user records with compatibility with the status quo +ante should probably talk to both `systemd-homed` and `accounts-daemon` at the +same time, and ignore `accounts-daemon`'s records if `systemd-homed` defines +them. While I (Lennart) personally believe in the long run `systemd-homed` is +the way to go for rich user records, any UI that wants to manage and support +rich records for classic records has to support `accounts-daemon` in parallel +for the time being. + +In the short term, it might make sense to also expose the `userdb` provided +records via `accounts-daemon`, so that clients of the latter can consume them +without changes. However, I think in the long run `accounts-daemon` should +probably be removed from the general stack, hence this sounds like a temporary +solution only. + +In case you wonder, there's no automatic mechanism for converting existing +users registered in `/etc/passwd` or LDAP to users managed by +`systemd-homed`. There's documentation for doing this manually though, see +[Converting Existing Users to systemd-homed managed Users](CONVERTING_TO_HOMED). + +## Future Additions + +JSON user/group records are extensible, hence we can easily add any additional +fields desktop environments require. For example, pattern-based authentication +is likely very useful on touch-based devices, and the user records should hence +learn them natively. Fields for other authentication mechanisms, such as +fingerprint authentication should be provided as well, eventually. + +It is planned to extend the `userdb` Varlink API to support look-ups by partial +user name and real name (GECOS) data, so that log-in screens can optionally +implement simple complete-as-you-type login screens. + +It is planned to extend the `systemd-homed` D-Bus API to instantly inform clients +about hardware associated with a specific user being plugged in, to which login +screens can listen in order to initiate authentication. Specifically, any +YubiKey-like security token plugged in that is associated with a local user +record should initiate authentication for that user, making typing in of the +username unnecessary. |