diff options
Diffstat (limited to 'src/partition/repart.c')
-rw-r--r-- | src/partition/repart.c | 7753 |
1 files changed, 7753 insertions, 0 deletions
diff --git a/src/partition/repart.c b/src/partition/repart.c new file mode 100644 index 0000000..5487aaf --- /dev/null +++ b/src/partition/repart.c @@ -0,0 +1,7753 @@ +/* SPDX-License-Identifier: LGPL-2.1-or-later */ + +#if HAVE_VALGRIND_MEMCHECK_H +#include <valgrind/memcheck.h> +#endif + +#include <fcntl.h> +#include <getopt.h> +#include <linux/fs.h> +#include <linux/loop.h> +#include <sys/file.h> +#include <sys/ioctl.h> +#include <sys/stat.h> + +#include "sd-device.h" +#include "sd-id128.h" + +#include "alloc-util.h" +#include "blkid-util.h" +#include "blockdev-util.h" +#include "btrfs-util.h" +#include "build.h" +#include "chase.h" +#include "conf-files.h" +#include "conf-parser.h" +#include "constants.h" +#include "cryptsetup-util.h" +#include "device-util.h" +#include "devnum-util.h" +#include "dirent-util.h" +#include "efivars.h" +#include "errno-util.h" +#include "fd-util.h" +#include "fdisk-util.h" +#include "fileio.h" +#include "format-table.h" +#include "format-util.h" +#include "fs-util.h" +#include "glyph-util.h" +#include "gpt.h" +#include "hexdecoct.h" +#include "hmac.h" +#include "id128-util.h" +#include "initrd-util.h" +#include "io-util.h" +#include "json.h" +#include "list.h" +#include "loop-util.h" +#include "main-func.h" +#include "mkdir.h" +#include "mkfs-util.h" +#include "mount-util.h" +#include "mountpoint-util.h" +#include "nulstr-util.h" +#include "openssl-util.h" +#include "parse-argument.h" +#include "parse-helpers.h" +#include "pretty-print.h" +#include "proc-cmdline.h" +#include "process-util.h" +#include "random-util.h" +#include "resize-fs.h" +#include "rm-rf.h" +#include "sort-util.h" +#include "specifier.h" +#include "stdio-util.h" +#include "string-table.h" +#include "string-util.h" +#include "strv.h" +#include "sync-util.h" +#include "terminal-util.h" +#include "tmpfile-util.h" +#include "tpm2-pcr.h" +#include "tpm2-util.h" +#include "user-util.h" +#include "utf8.h" + +/* If not configured otherwise use a minimal partition size of 10M */ +#define DEFAULT_MIN_SIZE (10ULL*1024ULL*1024ULL) + +/* Hard lower limit for new partition sizes */ +#define HARD_MIN_SIZE 4096ULL + +/* We know up front we're never going to put more than this in a verity sig partition. */ +#define VERITY_SIG_SIZE (HARD_MIN_SIZE*4ULL) + +/* libfdisk takes off slightly more than 1M of the disk size when creating a GPT disk label */ +#define GPT_METADATA_SIZE (1044ULL*1024ULL) + +/* LUKS2 takes off 16M of the partition size with its metadata by default */ +#define LUKS2_METADATA_SIZE (16ULL*1024ULL*1024ULL) + +/* To do LUKS2 offline encryption, we need to keep some extra free space at the end of the partition. */ +#define LUKS2_METADATA_KEEP_FREE (LUKS2_METADATA_SIZE*2ULL) + +/* LUKS2 volume key size. */ +#define VOLUME_KEY_SIZE (512ULL/8ULL) + +/* Use 4K as the default filesystem sector size because as long as the partitions are aligned to 4K, the + * filesystems will then also be compatible with sector sizes 512, 1024 and 2048. */ +#define DEFAULT_FILESYSTEM_SECTOR_SIZE 4096ULL + +#define APIVFS_TMP_DIRS_NULSTR "proc\0sys\0dev\0tmp\0run\0var/tmp\0" + +/* Note: When growing and placing new partitions we always align to 4K sector size. It's how newer hard disks + * are designed, and if everything is aligned to that performance is best. And for older hard disks with 512B + * sector size devices were generally assumed to have an even number of sectors, hence at the worst we'll + * waste 3K per partition, which is probably fine. */ + +typedef enum EmptyMode { + EMPTY_UNSET, /* no choice has been made yet */ + EMPTY_REFUSE, /* refuse empty disks, never create a partition table */ + EMPTY_ALLOW, /* allow empty disks, create partition table if necessary */ + EMPTY_REQUIRE, /* require an empty disk, create a partition table */ + EMPTY_FORCE, /* make disk empty, erase everything, create a partition table always */ + EMPTY_CREATE, /* create disk as loopback file, create a partition table always */ + _EMPTY_MODE_MAX, + _EMPTY_MODE_INVALID = -EINVAL, +} EmptyMode; + +typedef enum FilterPartitionType { + FILTER_PARTITIONS_NONE, + FILTER_PARTITIONS_EXCLUDE, + FILTER_PARTITIONS_INCLUDE, + _FILTER_PARTITIONS_MAX, + _FILTER_PARTITIONS_INVALID = -EINVAL, +} FilterPartitionsType; + +static EmptyMode arg_empty = EMPTY_UNSET; +static bool arg_dry_run = true; +static const char *arg_node = NULL; +static char *arg_root = NULL; +static char *arg_image = NULL; +static char **arg_definitions = NULL; +static bool arg_discard = true; +static bool arg_can_factory_reset = false; +static int arg_factory_reset = -1; +static sd_id128_t arg_seed = SD_ID128_NULL; +static bool arg_randomize = false; +static int arg_pretty = -1; +static uint64_t arg_size = UINT64_MAX; +static bool arg_size_auto = false; +static JsonFormatFlags arg_json_format_flags = JSON_FORMAT_OFF; +static PagerFlags arg_pager_flags = 0; +static bool arg_legend = true; +static void *arg_key = NULL; +static size_t arg_key_size = 0; +static EVP_PKEY *arg_private_key = NULL; +static X509 *arg_certificate = NULL; +static char *arg_tpm2_device = NULL; +static uint32_t arg_tpm2_seal_key_handle = 0; +static char *arg_tpm2_device_key = NULL; +static Tpm2PCRValue *arg_tpm2_hash_pcr_values = NULL; +static size_t arg_tpm2_n_hash_pcr_values = 0; +static char *arg_tpm2_public_key = NULL; +static uint32_t arg_tpm2_public_key_pcr_mask = 0; +static char *arg_tpm2_pcrlock = NULL; +static bool arg_split = false; +static GptPartitionType *arg_filter_partitions = NULL; +static size_t arg_n_filter_partitions = 0; +static FilterPartitionsType arg_filter_partitions_type = FILTER_PARTITIONS_NONE; +static GptPartitionType *arg_defer_partitions = NULL; +static size_t arg_n_defer_partitions = 0; +static uint64_t arg_sector_size = 0; +static ImagePolicy *arg_image_policy = NULL; +static Architecture arg_architecture = _ARCHITECTURE_INVALID; +static int arg_offline = -1; +static char **arg_copy_from = NULL; +static char *arg_copy_source = NULL; +static char *arg_make_ddi = NULL; + +STATIC_DESTRUCTOR_REGISTER(arg_root, freep); +STATIC_DESTRUCTOR_REGISTER(arg_image, freep); +STATIC_DESTRUCTOR_REGISTER(arg_definitions, strv_freep); +STATIC_DESTRUCTOR_REGISTER(arg_key, erase_and_freep); +STATIC_DESTRUCTOR_REGISTER(arg_private_key, EVP_PKEY_freep); +STATIC_DESTRUCTOR_REGISTER(arg_certificate, X509_freep); +STATIC_DESTRUCTOR_REGISTER(arg_tpm2_device, freep); +STATIC_DESTRUCTOR_REGISTER(arg_tpm2_device_key, freep); +STATIC_DESTRUCTOR_REGISTER(arg_tpm2_hash_pcr_values, freep); +STATIC_DESTRUCTOR_REGISTER(arg_tpm2_public_key, freep); +STATIC_DESTRUCTOR_REGISTER(arg_tpm2_pcrlock, freep); +STATIC_DESTRUCTOR_REGISTER(arg_filter_partitions, freep); +STATIC_DESTRUCTOR_REGISTER(arg_image_policy, image_policy_freep); +STATIC_DESTRUCTOR_REGISTER(arg_copy_from, strv_freep); +STATIC_DESTRUCTOR_REGISTER(arg_copy_source, freep); +STATIC_DESTRUCTOR_REGISTER(arg_make_ddi, freep); + +typedef struct FreeArea FreeArea; + +typedef enum EncryptMode { + ENCRYPT_OFF, + ENCRYPT_KEY_FILE, + ENCRYPT_TPM2, + ENCRYPT_KEY_FILE_TPM2, + _ENCRYPT_MODE_MAX, + _ENCRYPT_MODE_INVALID = -EINVAL, +} EncryptMode; + +typedef enum VerityMode { + VERITY_OFF, + VERITY_DATA, + VERITY_HASH, + VERITY_SIG, + _VERITY_MODE_MAX, + _VERITY_MODE_INVALID = -EINVAL, +} VerityMode; + +typedef enum MinimizeMode { + MINIMIZE_OFF, + MINIMIZE_BEST, + MINIMIZE_GUESS, + _MINIMIZE_MODE_MAX, + _MINIMIZE_MODE_INVALID = -EINVAL, +} MinimizeMode; + +typedef struct Partition { + char *definition_path; + char **drop_in_files; + + GptPartitionType type; + sd_id128_t current_uuid, new_uuid; + bool new_uuid_is_set; + char *current_label, *new_label; + sd_id128_t fs_uuid, luks_uuid, verity_uuid; + uint8_t verity_salt[SHA256_DIGEST_SIZE]; + + bool dropped; + bool factory_reset; + int32_t priority; + + uint32_t weight, padding_weight; + + uint64_t current_size, new_size; + uint64_t size_min, size_max; + + uint64_t current_padding, new_padding; + uint64_t padding_min, padding_max; + + uint64_t partno; + uint64_t offset; + + struct fdisk_partition *current_partition; + struct fdisk_partition *new_partition; + FreeArea *padding_area; + FreeArea *allocated_to_area; + + char *copy_blocks_path; + bool copy_blocks_path_is_our_file; + bool copy_blocks_auto; + const char *copy_blocks_root; + int copy_blocks_fd; + uint64_t copy_blocks_offset; + uint64_t copy_blocks_size; + + char *format; + char **copy_files; + char **exclude_files_source; + char **exclude_files_target; + char **make_directories; + char **subvolumes; + EncryptMode encrypt; + VerityMode verity; + char *verity_match_key; + MinimizeMode minimize; + uint64_t verity_data_block_size; + uint64_t verity_hash_block_size; + + uint64_t gpt_flags; + int no_auto; + int read_only; + int growfs; + + struct iovec roothash; + + char *split_name_format; + char *split_path; + + struct Partition *siblings[_VERITY_MODE_MAX]; + + LIST_FIELDS(struct Partition, partitions); +} Partition; + +#define PARTITION_IS_FOREIGN(p) (!(p)->definition_path) +#define PARTITION_EXISTS(p) (!!(p)->current_partition) + +struct FreeArea { + Partition *after; + uint64_t size; + uint64_t allocated; +}; + +typedef struct Context { + LIST_HEAD(Partition, partitions); + size_t n_partitions; + + FreeArea **free_areas; + size_t n_free_areas; + + uint64_t start, end, total; + + struct fdisk_context *fdisk_context; + uint64_t sector_size, grain_size, fs_sector_size; + + sd_id128_t seed; + + char *node; + bool node_is_our_file; + int backing_fd; + + bool from_scratch; +} Context; + +static const char *empty_mode_table[_EMPTY_MODE_MAX] = { + [EMPTY_UNSET] = "unset", + [EMPTY_REFUSE] = "refuse", + [EMPTY_ALLOW] = "allow", + [EMPTY_REQUIRE] = "require", + [EMPTY_FORCE] = "force", + [EMPTY_CREATE] = "create", +}; + +static const char *encrypt_mode_table[_ENCRYPT_MODE_MAX] = { + [ENCRYPT_OFF] = "off", + [ENCRYPT_KEY_FILE] = "key-file", + [ENCRYPT_TPM2] = "tpm2", + [ENCRYPT_KEY_FILE_TPM2] = "key-file+tpm2", +}; + +static const char *verity_mode_table[_VERITY_MODE_MAX] = { + [VERITY_OFF] = "off", + [VERITY_DATA] = "data", + [VERITY_HASH] = "hash", + [VERITY_SIG] = "signature", +}; + +static const char *minimize_mode_table[_MINIMIZE_MODE_MAX] = { + [MINIMIZE_OFF] = "off", + [MINIMIZE_BEST] = "best", + [MINIMIZE_GUESS] = "guess", +}; + +DEFINE_PRIVATE_STRING_TABLE_LOOKUP(empty_mode, EmptyMode); +DEFINE_PRIVATE_STRING_TABLE_LOOKUP_FROM_STRING_WITH_BOOLEAN(encrypt_mode, EncryptMode, ENCRYPT_KEY_FILE); +DEFINE_PRIVATE_STRING_TABLE_LOOKUP(verity_mode, VerityMode); +DEFINE_PRIVATE_STRING_TABLE_LOOKUP_FROM_STRING_WITH_BOOLEAN(minimize_mode, MinimizeMode, MINIMIZE_BEST); + +static uint64_t round_down_size(uint64_t v, uint64_t p) { + return (v / p) * p; +} + +static uint64_t round_up_size(uint64_t v, uint64_t p) { + + v = DIV_ROUND_UP(v, p); + + if (v > UINT64_MAX / p) + return UINT64_MAX; /* overflow */ + + return v * p; +} + +static Partition *partition_new(void) { + Partition *p; + + p = new(Partition, 1); + if (!p) + return NULL; + + *p = (Partition) { + .weight = 1000, + .padding_weight = 0, + .current_size = UINT64_MAX, + .new_size = UINT64_MAX, + .size_min = UINT64_MAX, + .size_max = UINT64_MAX, + .current_padding = UINT64_MAX, + .new_padding = UINT64_MAX, + .padding_min = UINT64_MAX, + .padding_max = UINT64_MAX, + .partno = UINT64_MAX, + .offset = UINT64_MAX, + .copy_blocks_fd = -EBADF, + .copy_blocks_offset = UINT64_MAX, + .copy_blocks_size = UINT64_MAX, + .no_auto = -1, + .read_only = -1, + .growfs = -1, + .verity_data_block_size = UINT64_MAX, + .verity_hash_block_size = UINT64_MAX, + }; + + return p; +} + +static Partition* partition_free(Partition *p) { + if (!p) + return NULL; + + free(p->current_label); + free(p->new_label); + free(p->definition_path); + strv_free(p->drop_in_files); + + if (p->current_partition) + fdisk_unref_partition(p->current_partition); + if (p->new_partition) + fdisk_unref_partition(p->new_partition); + + if (p->copy_blocks_path_is_our_file) + unlink_and_free(p->copy_blocks_path); + else + free(p->copy_blocks_path); + safe_close(p->copy_blocks_fd); + + free(p->format); + strv_free(p->copy_files); + strv_free(p->exclude_files_source); + strv_free(p->exclude_files_target); + strv_free(p->make_directories); + strv_free(p->subvolumes); + free(p->verity_match_key); + + iovec_done(&p->roothash); + + free(p->split_name_format); + unlink_and_free(p->split_path); + + return mfree(p); +} + +static void partition_foreignize(Partition *p) { + assert(p); + assert(PARTITION_EXISTS(p)); + + /* Reset several parameters set through definition file to make the partition foreign. */ + + p->definition_path = mfree(p->definition_path); + p->drop_in_files = strv_free(p->drop_in_files); + + p->copy_blocks_path = mfree(p->copy_blocks_path); + p->copy_blocks_fd = safe_close(p->copy_blocks_fd); + p->copy_blocks_root = NULL; + + p->format = mfree(p->format); + p->copy_files = strv_free(p->copy_files); + p->exclude_files_source = strv_free(p->exclude_files_source); + p->exclude_files_target = strv_free(p->exclude_files_target); + p->make_directories = strv_free(p->make_directories); + p->subvolumes = strv_free(p->subvolumes); + p->verity_match_key = mfree(p->verity_match_key); + + p->priority = 0; + p->weight = 1000; + p->padding_weight = 0; + p->size_min = UINT64_MAX; + p->size_max = UINT64_MAX; + p->padding_min = UINT64_MAX; + p->padding_max = UINT64_MAX; + p->no_auto = -1; + p->read_only = -1; + p->growfs = -1; + p->verity = VERITY_OFF; +} + +static bool partition_type_exclude(const GptPartitionType *type) { + if (arg_filter_partitions_type == FILTER_PARTITIONS_NONE) + return false; + + for (size_t i = 0; i < arg_n_filter_partitions; i++) + if (sd_id128_equal(type->uuid, arg_filter_partitions[i].uuid)) + return arg_filter_partitions_type == FILTER_PARTITIONS_EXCLUDE; + + return arg_filter_partitions_type == FILTER_PARTITIONS_INCLUDE; +} + +static bool partition_type_defer(const GptPartitionType *type) { + for (size_t i = 0; i < arg_n_defer_partitions; i++) + if (sd_id128_equal(type->uuid, arg_defer_partitions[i].uuid)) + return true; + + return false; +} + +static Partition* partition_unlink_and_free(Context *context, Partition *p) { + if (!p) + return NULL; + + LIST_REMOVE(partitions, context->partitions, p); + + assert(context->n_partitions > 0); + context->n_partitions--; + + return partition_free(p); +} + +DEFINE_TRIVIAL_CLEANUP_FUNC(Partition*, partition_free); + +static Context *context_new(sd_id128_t seed) { + Context *context; + + context = new(Context, 1); + if (!context) + return NULL; + + *context = (Context) { + .start = UINT64_MAX, + .end = UINT64_MAX, + .total = UINT64_MAX, + .seed = seed, + }; + + return context; +} + +static void context_free_free_areas(Context *context) { + assert(context); + + for (size_t i = 0; i < context->n_free_areas; i++) + free(context->free_areas[i]); + + context->free_areas = mfree(context->free_areas); + context->n_free_areas = 0; +} + +static Context *context_free(Context *context) { + if (!context) + return NULL; + + while (context->partitions) + partition_unlink_and_free(context, context->partitions); + assert(context->n_partitions == 0); + + context_free_free_areas(context); + + if (context->fdisk_context) + fdisk_unref_context(context->fdisk_context); + + safe_close(context->backing_fd); + if (context->node_is_our_file) + unlink_and_free(context->node); + else + free(context->node); + + return mfree(context); +} + +DEFINE_TRIVIAL_CLEANUP_FUNC(Context*, context_free); + +static int context_add_free_area( + Context *context, + uint64_t size, + Partition *after) { + + FreeArea *a; + + assert(context); + assert(!after || !after->padding_area); + + if (!GREEDY_REALLOC(context->free_areas, context->n_free_areas + 1)) + return -ENOMEM; + + a = new(FreeArea, 1); + if (!a) + return -ENOMEM; + + *a = (FreeArea) { + .size = size, + .after = after, + }; + + context->free_areas[context->n_free_areas++] = a; + + if (after) + after->padding_area = a; + + return 0; +} + +static void partition_drop_or_foreignize(Partition *p) { + if (!p || p->dropped || PARTITION_IS_FOREIGN(p)) + return; + + if (PARTITION_EXISTS(p)) { + log_info("Can't grow existing partition %s of priority %" PRIi32 ", ignoring.", + strna(p->current_label ?: p->new_label), p->priority); + + /* Handle the partition as foreign. Do not set dropped flag. */ + partition_foreignize(p); + } else { + log_info("Can't fit partition %s of priority %" PRIi32 ", dropping.", + p->definition_path, p->priority); + + p->dropped = true; + p->allocated_to_area = NULL; + } +} + +static bool context_drop_or_foreignize_one_priority(Context *context) { + int32_t priority = 0; + + LIST_FOREACH(partitions, p, context->partitions) { + if (p->dropped) + continue; + + priority = MAX(priority, p->priority); + } + + /* Refuse to drop partitions with 0 or negative priorities or partitions of priorities that have at + * least one existing priority */ + if (priority <= 0) + return false; + + LIST_FOREACH(partitions, p, context->partitions) { + if (p->priority < priority) + continue; + + partition_drop_or_foreignize(p); + + /* We ensure that all verity sibling partitions have the same priority, so it's safe + * to drop all siblings here as well. */ + + for (VerityMode mode = VERITY_OFF + 1; mode < _VERITY_MODE_MAX; mode++) + partition_drop_or_foreignize(p->siblings[mode]); + } + + return true; +} + +static uint64_t partition_min_size(const Context *context, const Partition *p) { + uint64_t sz; + + assert(context); + assert(p); + + /* Calculate the disk space we really need at minimum for this partition. If the partition already + * exists the current size is what we really need. If it doesn't exist yet refuse to allocate less + * than 4K. + * + * DEFAULT_MIN_SIZE is the default SizeMin= we configure if nothing else is specified. */ + + if (PARTITION_IS_FOREIGN(p)) { + /* Don't allow changing size of partitions not managed by us */ + assert(p->current_size != UINT64_MAX); + return p->current_size; + } + + if (p->verity == VERITY_SIG) + return VERITY_SIG_SIZE; + + sz = p->current_size != UINT64_MAX ? p->current_size : HARD_MIN_SIZE; + + if (!PARTITION_EXISTS(p)) { + uint64_t d = 0; + + if (p->encrypt != ENCRYPT_OFF) + d += round_up_size(LUKS2_METADATA_KEEP_FREE, context->grain_size); + + if (p->copy_blocks_size != UINT64_MAX) + d += round_up_size(p->copy_blocks_size, context->grain_size); + else if (p->format || p->encrypt != ENCRYPT_OFF) { + uint64_t f; + + /* If we shall synthesize a file system, take minimal fs size into account (assumed to be 4K if not known) */ + f = p->format ? round_up_size(minimal_size_by_fs_name(p->format), context->grain_size) : UINT64_MAX; + d += f == UINT64_MAX ? context->grain_size : f; + } + + if (d > sz) + sz = d; + } + + return MAX(round_up_size(p->size_min != UINT64_MAX ? p->size_min : DEFAULT_MIN_SIZE, context->grain_size), sz); +} + +static uint64_t partition_max_size(const Context *context, const Partition *p) { + uint64_t sm; + + /* Calculate how large the partition may become at max. This is generally the configured maximum + * size, except when it already exists and is larger than that. In that case it's the existing size, + * since we never want to shrink partitions. */ + + assert(context); + assert(p); + + if (PARTITION_IS_FOREIGN(p)) { + /* Don't allow changing size of partitions not managed by us */ + assert(p->current_size != UINT64_MAX); + return p->current_size; + } + + if (p->verity == VERITY_SIG) + return VERITY_SIG_SIZE; + + if (p->size_max == UINT64_MAX) + return UINT64_MAX; + + sm = round_down_size(p->size_max, context->grain_size); + + if (p->current_size != UINT64_MAX) + sm = MAX(p->current_size, sm); + + return MAX(partition_min_size(context, p), sm); +} + +static uint64_t partition_min_padding(const Partition *p) { + assert(p); + return p->padding_min != UINT64_MAX ? p->padding_min : 0; +} + +static uint64_t partition_max_padding(const Partition *p) { + assert(p); + return p->padding_max; +} + +static uint64_t partition_min_size_with_padding(Context *context, const Partition *p) { + uint64_t sz; + + /* Calculate the disk space we need for this partition plus any free space coming after it. This + * takes user configured padding into account as well as any additional whitespace needed to align + * the next partition to 4K again. */ + + assert(context); + assert(p); + + sz = partition_min_size(context, p) + partition_min_padding(p); + + if (PARTITION_EXISTS(p)) { + /* If the partition wasn't aligned, add extra space so that any we might add will be aligned */ + assert(p->offset != UINT64_MAX); + return round_up_size(p->offset + sz, context->grain_size) - p->offset; + } + + /* If this is a new partition we'll place it aligned, hence we just need to round up the required size here */ + return round_up_size(sz, context->grain_size); +} + +static uint64_t free_area_available(const FreeArea *a) { + assert(a); + + /* Determines how much of this free area is not allocated yet */ + + assert(a->size >= a->allocated); + return a->size - a->allocated; +} + +static uint64_t free_area_current_end(Context *context, const FreeArea *a) { + assert(context); + assert(a); + + if (!a->after) + return free_area_available(a); + + assert(a->after->offset != UINT64_MAX); + assert(a->after->current_size != UINT64_MAX); + + /* Calculate where the free area ends, based on the offset of the partition preceding it. */ + return round_up_size(a->after->offset + a->after->current_size, context->grain_size) + free_area_available(a); +} + +static uint64_t free_area_min_end(Context *context, const FreeArea *a) { + assert(context); + assert(a); + + if (!a->after) + return 0; + + assert(a->after->offset != UINT64_MAX); + assert(a->after->current_size != UINT64_MAX); + + /* Calculate where the partition would end when we give it as much as it needs. */ + return round_up_size(a->after->offset + partition_min_size_with_padding(context, a->after), context->grain_size); +} + +static uint64_t free_area_available_for_new_partitions(Context *context, const FreeArea *a) { + assert(context); + assert(a); + + /* Similar to free_area_available(), but takes into account that the required size and padding of the + * preceding partition is honoured. */ + + return LESS_BY(free_area_current_end(context, a), free_area_min_end(context, a)); +} + +static int free_area_compare(FreeArea *const *a, FreeArea *const*b, Context *context) { + assert(context); + + return CMP(free_area_available_for_new_partitions(context, *a), + free_area_available_for_new_partitions(context, *b)); +} + +static uint64_t charge_size(Context *context, uint64_t total, uint64_t amount) { + assert(context); + /* Subtract the specified amount from total, rounding up to multiple of 4K if there's room */ + assert(amount <= total); + return LESS_BY(total, round_up_size(amount, context->grain_size)); +} + +static uint64_t charge_weight(uint64_t total, uint64_t amount) { + assert(amount <= total); + return total - amount; +} + +static bool context_allocate_partitions(Context *context, uint64_t *ret_largest_free_area) { + assert(context); + + /* This may be called multiple times. Reset previous assignments. */ + for (size_t i = 0; i < context->n_free_areas; i++) + context->free_areas[i]->allocated = 0; + + /* Sort free areas by size, putting smallest first */ + typesafe_qsort_r(context->free_areas, context->n_free_areas, free_area_compare, context); + + /* In any case return size of the largest free area (i.e. not the size of all free areas + * combined!) */ + if (ret_largest_free_area) + *ret_largest_free_area = + context->n_free_areas == 0 ? 0 : + free_area_available_for_new_partitions(context, context->free_areas[context->n_free_areas-1]); + + /* Check that each existing partition can fit its area. */ + for (size_t i = 0; i < context->n_free_areas; i++) + if (free_area_current_end(context, context->free_areas[i]) < + free_area_min_end(context, context->free_areas[i])) + return false; + + /* A simple first-fit algorithm. We return true if we can fit the partitions in, otherwise false. */ + LIST_FOREACH(partitions, p, context->partitions) { + bool fits = false; + uint64_t required; + FreeArea *a = NULL; + + /* Skip partitions we already dropped or that already exist */ + if (p->dropped || PARTITION_EXISTS(p)) + continue; + + /* How much do we need to fit? */ + required = partition_min_size_with_padding(context, p); + assert(required % context->grain_size == 0); + + for (size_t i = 0; i < context->n_free_areas; i++) { + a = context->free_areas[i]; + + if (free_area_available_for_new_partitions(context, a) >= required) { + fits = true; + break; + } + } + + if (!fits) + return false; /* 😢 Oh no! We can't fit this partition into any free area! */ + + /* Assign the partition to this free area */ + p->allocated_to_area = a; + + /* Budget the minimal partition size */ + a->allocated += required; + } + + return true; +} + +static int context_sum_weights(Context *context, FreeArea *a, uint64_t *ret) { + uint64_t weight_sum = 0; + + assert(context); + assert(a); + assert(ret); + + /* Determine the sum of the weights of all partitions placed in or before the specified free area */ + + LIST_FOREACH(partitions, p, context->partitions) { + if (p->padding_area != a && p->allocated_to_area != a) + continue; + + if (p->weight > UINT64_MAX - weight_sum) + goto overflow_sum; + weight_sum += p->weight; + + if (p->padding_weight > UINT64_MAX - weight_sum) + goto overflow_sum; + weight_sum += p->padding_weight; + } + + *ret = weight_sum; + return 0; + +overflow_sum: + return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Combined weight of partition exceeds unsigned 64-bit range, refusing."); +} + +static uint64_t scale_by_weight(uint64_t value, uint64_t weight, uint64_t weight_sum) { + assert(weight_sum >= weight); + + for (;;) { + if (weight == 0) + return 0; + if (weight == weight_sum) + return value; + if (value <= UINT64_MAX / weight) + return value * weight / weight_sum; + + /* Rescale weight and weight_sum to make not the calculation overflow. To satisfy the + * following conditions, 'weight_sum' is rounded up but 'weight' is rounded down: + * - the sum of scale_by_weight() for all weights must not be larger than the input value, + * - scale_by_weight() must not be larger than the ideal value (i.e. calculated with uint128_t). */ + weight_sum = DIV_ROUND_UP(weight_sum, 2); + weight /= 2; + } +} + +typedef enum GrowPartitionPhase { + /* The zeroth phase: do not touch foreign partitions (i.e. those we don't manage). */ + PHASE_FOREIGN, + + /* The first phase: we charge partitions which need more (according to constraints) than their weight-based share. */ + PHASE_OVERCHARGE, + + /* The second phase: we charge partitions which need less (according to constraints) than their weight-based share. */ + PHASE_UNDERCHARGE, + + /* The third phase: we distribute what remains among the remaining partitions, according to the weights */ + PHASE_DISTRIBUTE, + + _GROW_PARTITION_PHASE_MAX, +} GrowPartitionPhase; + +static bool context_grow_partitions_phase( + Context *context, + FreeArea *a, + GrowPartitionPhase phase, + uint64_t *span, + uint64_t *weight_sum) { + + bool try_again = false; + + assert(context); + assert(a); + assert(span); + assert(weight_sum); + + /* Now let's look at the intended weights and adjust them taking the minimum space assignments into + * account. i.e. if a partition has a small weight but a high minimum space value set it should not + * get any additional room from the left-overs. Similar, if two partitions have the same weight they + * should get the same space if possible, even if one has a smaller minimum size than the other. */ + LIST_FOREACH(partitions, p, context->partitions) { + + /* Look only at partitions associated with this free area, i.e. immediately + * preceding it, or allocated into it */ + if (p->allocated_to_area != a && p->padding_area != a) + continue; + + if (p->new_size == UINT64_MAX) { + uint64_t share, rsz, xsz; + bool charge = false; + + /* Calculate how much this space this partition needs if everyone would get + * the weight based share */ + share = scale_by_weight(*span, p->weight, *weight_sum); + + rsz = partition_min_size(context, p); + xsz = partition_max_size(context, p); + + if (phase == PHASE_FOREIGN && PARTITION_IS_FOREIGN(p)) { + /* Never change of foreign partitions (i.e. those we don't manage) */ + + p->new_size = p->current_size; + charge = true; + + } else if (phase == PHASE_OVERCHARGE && rsz > share) { + /* This partition needs more than its calculated share. Let's assign + * it that, and take this partition out of all calculations and start + * again. */ + + p->new_size = rsz; + charge = try_again = true; + + } else if (phase == PHASE_UNDERCHARGE && xsz < share) { + /* This partition accepts less than its calculated + * share. Let's assign it that, and take this partition out + * of all calculations and start again. */ + + p->new_size = xsz; + charge = try_again = true; + + } else if (phase == PHASE_DISTRIBUTE) { + /* This partition can accept its calculated share. Let's + * assign it. There's no need to restart things here since + * assigning this shouldn't impact the shares of the other + * partitions. */ + + assert(share >= rsz); + p->new_size = CLAMP(round_down_size(share, context->grain_size), rsz, xsz); + charge = true; + } + + if (charge) { + *span = charge_size(context, *span, p->new_size); + *weight_sum = charge_weight(*weight_sum, p->weight); + } + } + + if (p->new_padding == UINT64_MAX) { + uint64_t share, rsz, xsz; + bool charge = false; + + share = scale_by_weight(*span, p->padding_weight, *weight_sum); + + rsz = partition_min_padding(p); + xsz = partition_max_padding(p); + + if (phase == PHASE_OVERCHARGE && rsz > share) { + p->new_padding = rsz; + charge = try_again = true; + } else if (phase == PHASE_UNDERCHARGE && xsz < share) { + p->new_padding = xsz; + charge = try_again = true; + } else if (phase == PHASE_DISTRIBUTE) { + assert(share >= rsz); + p->new_padding = CLAMP(round_down_size(share, context->grain_size), rsz, xsz); + charge = true; + } + + if (charge) { + *span = charge_size(context, *span, p->new_padding); + *weight_sum = charge_weight(*weight_sum, p->padding_weight); + } + } + } + + return !try_again; +} + +static void context_grow_partition_one(Context *context, FreeArea *a, Partition *p, uint64_t *span) { + uint64_t m; + + assert(context); + assert(a); + assert(p); + assert(span); + + if (*span == 0) + return; + + if (p->allocated_to_area != a) + return; + + if (PARTITION_IS_FOREIGN(p)) + return; + + assert(p->new_size != UINT64_MAX); + + /* Calculate new size and align. */ + m = round_down_size(p->new_size + *span, context->grain_size); + /* But ensure this doesn't shrink the size. */ + m = MAX(m, p->new_size); + /* And ensure this doesn't exceed the maximum size. */ + m = MIN(m, partition_max_size(context, p)); + + assert(m >= p->new_size); + + *span = charge_size(context, *span, m - p->new_size); + p->new_size = m; +} + +static int context_grow_partitions_on_free_area(Context *context, FreeArea *a) { + uint64_t weight_sum = 0, span; + int r; + + assert(context); + assert(a); + + r = context_sum_weights(context, a, &weight_sum); + if (r < 0) + return r; + + /* Let's calculate the total area covered by this free area and the partition before it */ + span = a->size; + if (a->after) { + assert(a->after->offset != UINT64_MAX); + assert(a->after->current_size != UINT64_MAX); + + span += round_up_size(a->after->offset + a->after->current_size, context->grain_size) - a->after->offset; + } + + for (GrowPartitionPhase phase = 0; phase < _GROW_PARTITION_PHASE_MAX;) + if (context_grow_partitions_phase(context, a, phase, &span, &weight_sum)) + phase++; /* go to the next phase */ + + /* We still have space left over? Donate to preceding partition if we have one */ + if (span > 0 && a->after) + context_grow_partition_one(context, a, a->after, &span); + + /* What? Even still some space left (maybe because there was no preceding partition, or it had a + * size limit), then let's donate it to whoever wants it. */ + if (span > 0) + LIST_FOREACH(partitions, p, context->partitions) { + context_grow_partition_one(context, a, p, &span); + if (span == 0) + break; + } + + /* Yuck, still no one? Then make it padding */ + if (span > 0 && a->after) { + assert(a->after->new_padding != UINT64_MAX); + a->after->new_padding += span; + } + + return 0; +} + +static int context_grow_partitions(Context *context) { + int r; + + assert(context); + + for (size_t i = 0; i < context->n_free_areas; i++) { + r = context_grow_partitions_on_free_area(context, context->free_areas[i]); + if (r < 0) + return r; + } + + /* All existing partitions that have no free space after them can't change size */ + LIST_FOREACH(partitions, p, context->partitions) { + if (p->dropped) + continue; + + if (!PARTITION_EXISTS(p) || p->padding_area) { + /* The algorithm above must have initialized this already */ + assert(p->new_size != UINT64_MAX); + continue; + } + + assert(p->new_size == UINT64_MAX); + p->new_size = p->current_size; + + assert(p->new_padding == UINT64_MAX); + p->new_padding = p->current_padding; + } + + return 0; +} + +static uint64_t find_first_unused_partno(Context *context) { + uint64_t partno = 0; + + assert(context); + + for (partno = 0;; partno++) { + bool found = false; + LIST_FOREACH(partitions, p, context->partitions) + if (p->partno != UINT64_MAX && p->partno == partno) + found = true; + if (!found) + break; + } + + return partno; +} + +static void context_place_partitions(Context *context) { + + assert(context); + + for (size_t i = 0; i < context->n_free_areas; i++) { + FreeArea *a = context->free_areas[i]; + _unused_ uint64_t left; + uint64_t start; + + if (a->after) { + assert(a->after->offset != UINT64_MAX); + assert(a->after->new_size != UINT64_MAX); + assert(a->after->new_padding != UINT64_MAX); + + start = a->after->offset + a->after->new_size + a->after->new_padding; + } else + start = context->start; + + start = round_up_size(start, context->grain_size); + left = a->size; + + LIST_FOREACH(partitions, p, context->partitions) { + if (p->allocated_to_area != a) + continue; + + p->offset = start; + p->partno = find_first_unused_partno(context); + + assert(left >= p->new_size); + start += p->new_size; + left -= p->new_size; + + assert(left >= p->new_padding); + start += p->new_padding; + left -= p->new_padding; + } + } +} + +static int config_parse_type( + const char *unit, + const char *filename, + unsigned line, + const char *section, + unsigned section_line, + const char *lvalue, + int ltype, + const char *rvalue, + void *data, + void *userdata) { + + GptPartitionType *type = ASSERT_PTR(data); + int r; + + assert(rvalue); + + r = gpt_partition_type_from_string(rvalue, type); + if (r < 0) + return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to parse partition type: %s", rvalue); + + if (arg_architecture >= 0) + *type = gpt_partition_type_override_architecture(*type, arg_architecture); + + return 0; +} + +static int config_parse_label( + const char *unit, + const char *filename, + unsigned line, + const char *section, + unsigned section_line, + const char *lvalue, + int ltype, + const char *rvalue, + void *data, + void *userdata) { + + _cleanup_free_ char *resolved = NULL; + char **label = ASSERT_PTR(data); + int r; + + assert(rvalue); + + /* Nota bene: the empty label is a totally valid one. Let's hence not follow our usual rule of + * assigning the empty string to reset to default here, but really accept it as label to set. */ + + r = specifier_printf(rvalue, GPT_LABEL_MAX, system_and_tmp_specifier_table, arg_root, NULL, &resolved); + if (r < 0) { + log_syntax(unit, LOG_WARNING, filename, line, r, + "Failed to expand specifiers in Label=, ignoring: %s", rvalue); + return 0; + } + + if (!utf8_is_valid(resolved)) { + log_syntax(unit, LOG_WARNING, filename, line, 0, + "Partition label not valid UTF-8, ignoring: %s", rvalue); + return 0; + } + + r = gpt_partition_label_valid(resolved); + if (r < 0) { + log_syntax(unit, LOG_WARNING, filename, line, r, + "Failed to check if string is valid as GPT partition label, ignoring: \"%s\" (from \"%s\")", + resolved, rvalue); + return 0; + } + if (!r) { + log_syntax(unit, LOG_WARNING, filename, line, 0, + "Partition label too long for GPT table, ignoring: \"%s\" (from \"%s\")", + resolved, rvalue); + return 0; + } + + free_and_replace(*label, resolved); + return 0; +} + +static int config_parse_weight( + const char *unit, + const char *filename, + unsigned line, + const char *section, + unsigned section_line, + const char *lvalue, + int ltype, + const char *rvalue, + void *data, + void *userdata) { + + uint32_t *w = ASSERT_PTR(data), v; + int r; + + assert(rvalue); + + r = safe_atou32(rvalue, &v); + if (r < 0) { + log_syntax(unit, LOG_WARNING, filename, line, r, + "Failed to parse weight value, ignoring: %s", rvalue); + return 0; + } + + if (v > 1000U*1000U) { + log_syntax(unit, LOG_WARNING, filename, line, 0, + "Weight needs to be in range 0…10000000, ignoring: %" PRIu32, v); + return 0; + } + + *w = v; + return 0; +} + +static int config_parse_size4096( + const char *unit, + const char *filename, + unsigned line, + const char *section, + unsigned section_line, + const char *lvalue, + int ltype, + const char *rvalue, + void *data, + void *userdata) { + + uint64_t *sz = data, parsed; + int r; + + assert(rvalue); + assert(data); + + r = parse_size(rvalue, 1024, &parsed); + if (r < 0) + return log_syntax(unit, LOG_ERR, filename, line, r, + "Failed to parse size value: %s", rvalue); + + if (ltype > 0) + *sz = round_up_size(parsed, 4096); + else if (ltype < 0) + *sz = round_down_size(parsed, 4096); + else + *sz = parsed; + + if (*sz != parsed) + log_syntax(unit, LOG_NOTICE, filename, line, r, "Rounded %s= size %" PRIu64 " %s %" PRIu64 ", a multiple of 4096.", + lvalue, parsed, special_glyph(SPECIAL_GLYPH_ARROW_RIGHT), *sz); + + return 0; +} + +static int config_parse_block_size( + const char *unit, + const char *filename, + unsigned line, + const char *section, + unsigned section_line, + const char *lvalue, + int ltype, + const char *rvalue, + void *data, + void *userdata) { + + uint64_t *blksz = ASSERT_PTR(data), parsed; + int r; + + assert(rvalue); + + r = parse_size(rvalue, 1024, &parsed); + if (r < 0) + return log_syntax(unit, LOG_ERR, filename, line, r, + "Failed to parse size value: %s", rvalue); + + if (parsed < 512 || parsed > 4096) + return log_syntax(unit, LOG_ERR, filename, line, SYNTHETIC_ERRNO(EINVAL), + "Value not between 512 and 4096: %s", rvalue); + + if (!ISPOWEROF2(parsed)) + return log_syntax(unit, LOG_ERR, filename, line, SYNTHETIC_ERRNO(EINVAL), + "Value not a power of 2: %s", rvalue); + + *blksz = parsed; + return 0; +} + +static int config_parse_fstype( + const char *unit, + const char *filename, + unsigned line, + const char *section, + unsigned section_line, + const char *lvalue, + int ltype, + const char *rvalue, + void *data, + void *userdata) { + + char **fstype = ASSERT_PTR(data); + const char *e; + + assert(rvalue); + + /* Let's provide an easy way to override the chosen fstype for file system partitions */ + e = secure_getenv("SYSTEMD_REPART_OVERRIDE_FSTYPE"); + if (e && !streq(rvalue, e)) { + log_syntax(unit, LOG_NOTICE, filename, line, 0, + "Overriding defined file system type '%s' with '%s'.", rvalue, e); + rvalue = e; + } + + if (!filename_is_valid(rvalue)) + return log_syntax(unit, LOG_ERR, filename, line, 0, + "File system type is not valid, refusing: %s", rvalue); + + return free_and_strdup_warn(fstype, rvalue); +} + +static int config_parse_copy_files( + const char *unit, + const char *filename, + unsigned line, + const char *section, + unsigned section_line, + const char *lvalue, + int ltype, + const char *rvalue, + void *data, + void *userdata) { + + _cleanup_free_ char *source = NULL, *buffer = NULL, *resolved_source = NULL, *resolved_target = NULL; + const char *p = rvalue, *target; + char ***copy_files = ASSERT_PTR(data); + int r; + + assert(rvalue); + + r = extract_first_word(&p, &source, ":", EXTRACT_CUNESCAPE|EXTRACT_DONT_COALESCE_SEPARATORS); + if (r < 0) + return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to extract source path: %s", rvalue); + if (r == 0) { + log_syntax(unit, LOG_WARNING, filename, line, 0, "No argument specified: %s", rvalue); + return 0; + } + + r = extract_first_word(&p, &buffer, ":", EXTRACT_CUNESCAPE|EXTRACT_DONT_COALESCE_SEPARATORS); + if (r < 0) + return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to extract target path: %s", rvalue); + if (r == 0) + target = source; /* No target, then it's the same as the source */ + else + target = buffer; + + if (!isempty(p)) + return log_syntax(unit, LOG_ERR, filename, line, SYNTHETIC_ERRNO(EINVAL), "Too many arguments: %s", rvalue); + + r = specifier_printf(source, PATH_MAX-1, system_and_tmp_specifier_table, arg_root, NULL, &resolved_source); + if (r < 0) { + log_syntax(unit, LOG_WARNING, filename, line, r, + "Failed to expand specifiers in CopyFiles= source, ignoring: %s", rvalue); + return 0; + } + + r = path_simplify_and_warn(resolved_source, PATH_CHECK_ABSOLUTE, unit, filename, line, lvalue); + if (r < 0) + return 0; + + r = specifier_printf(target, PATH_MAX-1, system_and_tmp_specifier_table, arg_root, NULL, &resolved_target); + if (r < 0) { + log_syntax(unit, LOG_WARNING, filename, line, r, + "Failed to expand specifiers in CopyFiles= target, ignoring: %s", resolved_target); + return 0; + } + + r = path_simplify_and_warn(resolved_target, PATH_CHECK_ABSOLUTE, unit, filename, line, lvalue); + if (r < 0) + return 0; + + r = strv_consume_pair(copy_files, TAKE_PTR(resolved_source), TAKE_PTR(resolved_target)); + if (r < 0) + return log_oom(); + + return 0; +} + +static int config_parse_exclude_files( + const char *unit, + const char *filename, + unsigned line, + const char *section, + unsigned section_line, + const char *lvalue, + int ltype, + const char *rvalue, + void *data, + void *userdata) { + _cleanup_free_ char *resolved = NULL; + char ***exclude_files = ASSERT_PTR(data); + int r; + + if (isempty(rvalue)) { + *exclude_files = strv_free(*exclude_files); + return 0; + } + + r = specifier_printf(rvalue, PATH_MAX-1, system_and_tmp_specifier_table, arg_root, NULL, &resolved); + if (r < 0) { + log_syntax(unit, LOG_WARNING, filename, line, r, + "Failed to expand specifiers in ExcludeFiles= path, ignoring: %s", rvalue); + return 0; + } + + r = path_simplify_and_warn(resolved, PATH_CHECK_ABSOLUTE|PATH_KEEP_TRAILING_SLASH, unit, filename, line, lvalue); + if (r < 0) + return 0; + + if (strv_consume(exclude_files, TAKE_PTR(resolved)) < 0) + return log_oom(); + + return 0; +} + +static int config_parse_copy_blocks( + const char *unit, + const char *filename, + unsigned line, + const char *section, + unsigned section_line, + const char *lvalue, + int ltype, + const char *rvalue, + void *data, + void *userdata) { + + _cleanup_free_ char *d = NULL; + Partition *partition = ASSERT_PTR(data); + int r; + + assert(rvalue); + + if (isempty(rvalue)) { + partition->copy_blocks_path = mfree(partition->copy_blocks_path); + partition->copy_blocks_auto = false; + return 0; + } + + if (streq(rvalue, "auto")) { + partition->copy_blocks_path = mfree(partition->copy_blocks_path); + partition->copy_blocks_auto = true; + partition->copy_blocks_root = arg_root; + return 0; + } + + r = specifier_printf(rvalue, PATH_MAX-1, system_and_tmp_specifier_table, arg_root, NULL, &d); + if (r < 0) { + log_syntax(unit, LOG_WARNING, filename, line, r, + "Failed to expand specifiers in CopyBlocks= source path, ignoring: %s", rvalue); + return 0; + } + + r = path_simplify_and_warn(d, PATH_CHECK_ABSOLUTE, unit, filename, line, lvalue); + if (r < 0) + return 0; + + free_and_replace(partition->copy_blocks_path, d); + partition->copy_blocks_auto = false; + partition->copy_blocks_root = arg_root; + return 0; +} + +static int config_parse_make_dirs( + const char *unit, + const char *filename, + unsigned line, + const char *section, + unsigned section_line, + const char *lvalue, + int ltype, + const char *rvalue, + void *data, + void *userdata) { + + char ***sv = ASSERT_PTR(data); + const char *p = ASSERT_PTR(rvalue); + int r; + + for (;;) { + _cleanup_free_ char *word = NULL, *d = NULL; + + r = extract_first_word(&p, &word, NULL, EXTRACT_UNQUOTE); + if (r == -ENOMEM) + return log_oom(); + if (r < 0) { + log_syntax(unit, LOG_WARNING, filename, line, r, "Invalid syntax, ignoring: %s", rvalue); + return 0; + } + if (r == 0) + return 0; + + r = specifier_printf(word, PATH_MAX-1, system_and_tmp_specifier_table, arg_root, NULL, &d); + if (r < 0) { + log_syntax(unit, LOG_WARNING, filename, line, r, + "Failed to expand specifiers in MakeDirectories= parameter, ignoring: %s", word); + continue; + } + + r = path_simplify_and_warn(d, PATH_CHECK_ABSOLUTE, unit, filename, line, lvalue); + if (r < 0) + continue; + + r = strv_consume(sv, TAKE_PTR(d)); + if (r < 0) + return log_oom(); + } +} + +static DEFINE_CONFIG_PARSE_ENUM_WITH_DEFAULT(config_parse_encrypt, encrypt_mode, EncryptMode, ENCRYPT_OFF, "Invalid encryption mode"); + +static int config_parse_gpt_flags( + const char *unit, + const char *filename, + unsigned line, + const char *section, + unsigned section_line, + const char *lvalue, + int ltype, + const char *rvalue, + void *data, + void *userdata) { + + uint64_t *gpt_flags = ASSERT_PTR(data); + int r; + + assert(rvalue); + + r = safe_atou64(rvalue, gpt_flags); + if (r < 0) { + log_syntax(unit, LOG_WARNING, filename, line, r, + "Failed to parse Flags= value, ignoring: %s", rvalue); + return 0; + } + + return 0; +} + +static int config_parse_uuid( + const char *unit, + const char *filename, + unsigned line, + const char *section, + unsigned section_line, + const char *lvalue, + int ltype, + const char *rvalue, + void *data, + void *userdata) { + + Partition *partition = ASSERT_PTR(data); + int r; + + if (isempty(rvalue)) { + partition->new_uuid = SD_ID128_NULL; + partition->new_uuid_is_set = false; + return 0; + } + + if (streq(rvalue, "null")) { + partition->new_uuid = SD_ID128_NULL; + partition->new_uuid_is_set = true; + return 0; + } + + r = sd_id128_from_string(rvalue, &partition->new_uuid); + if (r < 0) { + log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to parse 128-bit ID/UUID, ignoring: %s", rvalue); + return 0; + } + + partition->new_uuid_is_set = true; + + return 0; +} + +static DEFINE_CONFIG_PARSE_ENUM_WITH_DEFAULT(config_parse_verity, verity_mode, VerityMode, VERITY_OFF, "Invalid verity mode"); +static DEFINE_CONFIG_PARSE_ENUM_WITH_DEFAULT(config_parse_minimize, minimize_mode, MinimizeMode, MINIMIZE_OFF, "Invalid minimize mode"); + +static int partition_read_definition(Partition *p, const char *path, const char *const *conf_file_dirs) { + + ConfigTableItem table[] = { + { "Partition", "Type", config_parse_type, 0, &p->type }, + { "Partition", "Label", config_parse_label, 0, &p->new_label }, + { "Partition", "UUID", config_parse_uuid, 0, p }, + { "Partition", "Priority", config_parse_int32, 0, &p->priority }, + { "Partition", "Weight", config_parse_weight, 0, &p->weight }, + { "Partition", "PaddingWeight", config_parse_weight, 0, &p->padding_weight }, + { "Partition", "SizeMinBytes", config_parse_size4096, -1, &p->size_min }, + { "Partition", "SizeMaxBytes", config_parse_size4096, 1, &p->size_max }, + { "Partition", "PaddingMinBytes", config_parse_size4096, -1, &p->padding_min }, + { "Partition", "PaddingMaxBytes", config_parse_size4096, 1, &p->padding_max }, + { "Partition", "FactoryReset", config_parse_bool, 0, &p->factory_reset }, + { "Partition", "CopyBlocks", config_parse_copy_blocks, 0, p }, + { "Partition", "Format", config_parse_fstype, 0, &p->format }, + { "Partition", "CopyFiles", config_parse_copy_files, 0, &p->copy_files }, + { "Partition", "ExcludeFiles", config_parse_exclude_files, 0, &p->exclude_files_source }, + { "Partition", "ExcludeFilesTarget", config_parse_exclude_files, 0, &p->exclude_files_target }, + { "Partition", "MakeDirectories", config_parse_make_dirs, 0, &p->make_directories }, + { "Partition", "Encrypt", config_parse_encrypt, 0, &p->encrypt }, + { "Partition", "Verity", config_parse_verity, 0, &p->verity }, + { "Partition", "VerityMatchKey", config_parse_string, 0, &p->verity_match_key }, + { "Partition", "Flags", config_parse_gpt_flags, 0, &p->gpt_flags }, + { "Partition", "ReadOnly", config_parse_tristate, 0, &p->read_only }, + { "Partition", "NoAuto", config_parse_tristate, 0, &p->no_auto }, + { "Partition", "GrowFileSystem", config_parse_tristate, 0, &p->growfs }, + { "Partition", "SplitName", config_parse_string, 0, &p->split_name_format }, + { "Partition", "Minimize", config_parse_minimize, 0, &p->minimize }, + { "Partition", "Subvolumes", config_parse_make_dirs, 0, &p->subvolumes }, + { "Partition", "VerityDataBlockSizeBytes", config_parse_block_size, 0, &p->verity_data_block_size }, + { "Partition", "VerityHashBlockSizeBytes", config_parse_block_size, 0, &p->verity_hash_block_size }, + {} + }; + int r; + _cleanup_free_ char *filename = NULL; + const char* dropin_dirname; + + r = path_extract_filename(path, &filename); + if (r < 0) + return log_error_errno(r, "Failed to extract filename from path '%s': %m", path); + + dropin_dirname = strjoina(filename, ".d"); + + r = config_parse_many( + STRV_MAKE_CONST(path), + conf_file_dirs, + dropin_dirname, + arg_definitions ? NULL : arg_root, + "Partition\0", + config_item_table_lookup, table, + CONFIG_PARSE_WARN, + p, + NULL, + &p->drop_in_files); + if (r < 0) + return r; + + if (partition_type_exclude(&p->type)) + return 0; + + if (p->size_min != UINT64_MAX && p->size_max != UINT64_MAX && p->size_min > p->size_max) + return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), + "SizeMinBytes= larger than SizeMaxBytes=, refusing."); + + if (p->padding_min != UINT64_MAX && p->padding_max != UINT64_MAX && p->padding_min > p->padding_max) + return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), + "PaddingMinBytes= larger than PaddingMaxBytes=, refusing."); + + if (sd_id128_is_null(p->type.uuid)) + return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), + "Type= not defined, refusing."); + + if ((p->copy_blocks_path || p->copy_blocks_auto) && + (p->format || !strv_isempty(p->copy_files) || !strv_isempty(p->make_directories))) + return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), + "Format=/CopyFiles=/MakeDirectories= and CopyBlocks= cannot be combined, refusing."); + + if ((!strv_isempty(p->copy_files) || !strv_isempty(p->make_directories)) && streq_ptr(p->format, "swap")) + return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), + "Format=swap and CopyFiles= cannot be combined, refusing."); + + if (!p->format) { + const char *format = NULL; + + if (!strv_isempty(p->copy_files) || !strv_isempty(p->make_directories) || (p->encrypt != ENCRYPT_OFF && !(p->copy_blocks_path || p->copy_blocks_auto))) + /* Pick "vfat" as file system for esp and xbootldr partitions, otherwise default to "ext4". */ + format = IN_SET(p->type.designator, PARTITION_ESP, PARTITION_XBOOTLDR) ? "vfat" : "ext4"; + else if (p->type.designator == PARTITION_SWAP) + format = "swap"; + + if (format) { + p->format = strdup(format); + if (!p->format) + return log_oom(); + } + } + + if (p->minimize != MINIMIZE_OFF && !p->format && p->verity != VERITY_HASH) + return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), + "Minimize= can only be enabled if Format= or Verity=hash are set"); + + if (p->minimize == MINIMIZE_BEST && (p->format && !fstype_is_ro(p->format)) && p->verity != VERITY_HASH) + return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), + "Minimize=best can only be used with read-only filesystems or Verity=hash"); + + if ((!strv_isempty(p->copy_files) || !strv_isempty(p->make_directories)) && !mkfs_supports_root_option(p->format) && geteuid() != 0) + return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EPERM), + "Need to be root to populate %s filesystems with CopyFiles=/MakeDirectories=", + p->format); + + if (p->format && fstype_is_ro(p->format) && strv_isempty(p->copy_files) && strv_isempty(p->make_directories)) + return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), + "Cannot format %s filesystem without source files, refusing", p->format); + + if (p->verity != VERITY_OFF || p->encrypt != ENCRYPT_OFF) { + r = dlopen_cryptsetup(); + if (r < 0) + return log_syntax(NULL, LOG_ERR, path, 1, r, + "libcryptsetup not found, Verity=/Encrypt= are not supported: %m"); + } + + if (p->verity != VERITY_OFF && !p->verity_match_key) + return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), + "VerityMatchKey= must be set if Verity=%s", verity_mode_to_string(p->verity)); + + if (p->verity == VERITY_OFF && p->verity_match_key) + return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), + "VerityMatchKey= can only be set if Verity= is not \"%s\"", + verity_mode_to_string(p->verity)); + + if (IN_SET(p->verity, VERITY_HASH, VERITY_SIG) && + (p->copy_files || p->copy_blocks_path || p->copy_blocks_auto || p->format || p->make_directories)) + return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), + "CopyBlocks=/CopyFiles=/Format=/MakeDirectories= cannot be used with Verity=%s", + verity_mode_to_string(p->verity)); + + if (p->verity != VERITY_OFF && p->encrypt != ENCRYPT_OFF) + return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), + "Encrypting verity hash/data partitions is not supported"); + + if (p->verity == VERITY_SIG && !arg_private_key) + return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), + "Verity signature partition requested but no private key provided (--private-key=)"); + + if (p->verity == VERITY_SIG && !arg_certificate) + return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), + "Verity signature partition requested but no PEM certificate provided (--certificate=)"); + + if (p->verity == VERITY_SIG && (p->size_min != UINT64_MAX || p->size_max != UINT64_MAX)) + return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), + "SizeMinBytes=/SizeMaxBytes= cannot be used with Verity=%s", + verity_mode_to_string(p->verity)); + + if (!strv_isempty(p->subvolumes) && arg_offline > 0) + return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EOPNOTSUPP), + "Subvolumes= cannot be used with --offline=yes"); + + /* Verity partitions are read only, let's imply the RO flag hence, unless explicitly configured otherwise. */ + if ((IN_SET(p->type.designator, + PARTITION_ROOT_VERITY, + PARTITION_USR_VERITY) || p->verity == VERITY_DATA) && p->read_only < 0) + p->read_only = true; + + /* Default to "growfs" on, unless read-only */ + if (gpt_partition_type_knows_growfs(p->type) && + p->read_only <= 0) + p->growfs = true; + + if (!p->split_name_format) { + char *s = strdup("%t"); + if (!s) + return log_oom(); + + p->split_name_format = s; + } else if (streq(p->split_name_format, "-")) + p->split_name_format = mfree(p->split_name_format); + + return 1; +} + +static int find_verity_sibling(Context *context, Partition *p, VerityMode mode, Partition **ret) { + Partition *s = NULL; + + assert(p); + assert(p->verity != VERITY_OFF); + assert(p->verity_match_key); + assert(mode != VERITY_OFF); + assert(p->verity != mode); + assert(ret); + + /* Try to find the matching sibling partition of the given type for a verity partition. For a data + * partition, this is the corresponding hash partition with the same verity name (and vice versa for + * the hash partition). */ + + LIST_FOREACH(partitions, q, context->partitions) { + if (p == q) + continue; + + if (q->verity != mode) + continue; + + assert(q->verity_match_key); + + if (!streq(p->verity_match_key, q->verity_match_key)) + continue; + + if (s) + return -ENOTUNIQ; + + s = q; + } + + if (!s) + return -ENXIO; + + *ret = s; + + return 0; +} + +static int context_open_and_lock_backing_fd(const char *node, int operation, int *backing_fd) { + _cleanup_close_ int fd = -EBADF; + + assert(node); + assert(backing_fd); + + if (*backing_fd >= 0) + return 0; + + fd = open(node, O_RDONLY|O_CLOEXEC); + if (fd < 0) + return log_error_errno(errno, "Failed to open device '%s': %m", node); + + /* Tell udev not to interfere while we are processing the device */ + if (flock(fd, operation) < 0) + return log_error_errno(errno, "Failed to lock device '%s': %m", node); + + log_debug("Device %s opened and locked.", node); + *backing_fd = TAKE_FD(fd); + return 1; +} + +static int determine_current_padding( + struct fdisk_context *c, + struct fdisk_table *t, + struct fdisk_partition *p, + uint64_t secsz, + uint64_t grainsz, + uint64_t *ret) { + + size_t n_partitions; + uint64_t offset, next = UINT64_MAX; + + assert(c); + assert(t); + assert(p); + assert(ret); + + if (!fdisk_partition_has_end(p)) + return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition has no end!"); + + offset = fdisk_partition_get_end(p); + assert(offset < UINT64_MAX); + offset++; /* The end is one sector before the next partition or padding. */ + assert(offset < UINT64_MAX / secsz); + offset *= secsz; + + n_partitions = fdisk_table_get_nents(t); + for (size_t i = 0; i < n_partitions; i++) { + struct fdisk_partition *q; + uint64_t start; + + q = fdisk_table_get_partition(t, i); + if (!q) + return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m"); + + if (fdisk_partition_is_used(q) <= 0) + continue; + + if (!fdisk_partition_has_start(q)) + continue; + + start = fdisk_partition_get_start(q); + assert(start < UINT64_MAX / secsz); + start *= secsz; + + if (start >= offset && (next == UINT64_MAX || next > start)) + next = start; + } + + if (next == UINT64_MAX) { + /* No later partition? In that case check the end of the usable area */ + next = fdisk_get_last_lba(c); + assert(next < UINT64_MAX); + next++; /* The last LBA is one sector before the end */ + + assert(next < UINT64_MAX / secsz); + next *= secsz; + + if (offset > next) + return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition end beyond disk end."); + } + + assert(next >= offset); + offset = round_up_size(offset, grainsz); + next = round_down_size(next, grainsz); + + *ret = LESS_BY(next, offset); /* Saturated subtraction, rounding might have fucked things up */ + return 0; +} + +static int context_copy_from_one(Context *context, const char *src) { + _cleanup_close_ int fd = -EBADF; + _cleanup_(fdisk_unref_contextp) struct fdisk_context *c = NULL; + _cleanup_(fdisk_unref_tablep) struct fdisk_table *t = NULL; + Partition *last = NULL; + unsigned long secsz, grainsz; + size_t n_partitions; + int r; + + assert(src); + + r = context_open_and_lock_backing_fd(src, LOCK_SH, &fd); + if (r < 0) + return r; + + r = fd_verify_regular(fd); + if (r < 0) + return log_error_errno(r, "%s is not a file: %m", src); + + r = fdisk_new_context_at(fd, /* path = */ NULL, /* read_only = */ true, /* sector_size = */ UINT32_MAX, &c); + if (r < 0) + return log_error_errno(r, "Failed to create fdisk context: %m"); + + secsz = fdisk_get_sector_size(c); + grainsz = fdisk_get_grain_size(c); + + /* Insist on a power of two, and that it's a multiple of 512, i.e. the traditional sector size. */ + if (secsz < 512 || !ISPOWEROF2(secsz)) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Sector size %lu is not a power of two larger than 512? Refusing.", secsz); + + if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT)) + return log_error_errno(SYNTHETIC_ERRNO(EHWPOISON), "Cannot copy from disk %s with no GPT disk label.", src); + + r = fdisk_get_partitions(c, &t); + if (r < 0) + return log_error_errno(r, "Failed to acquire partition table: %m"); + + n_partitions = fdisk_table_get_nents(t); + for (size_t i = 0; i < n_partitions; i++) { + _cleanup_(partition_freep) Partition *np = NULL; + _cleanup_free_ char *label_copy = NULL; + struct fdisk_partition *p; + const char *label; + uint64_t sz, start, padding; + sd_id128_t ptid, id; + GptPartitionType type; + + p = fdisk_table_get_partition(t, i); + if (!p) + return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m"); + + if (fdisk_partition_is_used(p) <= 0) + continue; + + if (fdisk_partition_has_start(p) <= 0 || + fdisk_partition_has_size(p) <= 0 || + fdisk_partition_has_partno(p) <= 0) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Found a partition without a position, size or number."); + + r = fdisk_partition_get_type_as_id128(p, &ptid); + if (r < 0) + return log_error_errno(r, "Failed to query partition type UUID: %m"); + + type = gpt_partition_type_from_uuid(ptid); + + r = fdisk_partition_get_uuid_as_id128(p, &id); + if (r < 0) + return log_error_errno(r, "Failed to query partition UUID: %m"); + + label = fdisk_partition_get_name(p); + if (!isempty(label)) { + label_copy = strdup(label); + if (!label_copy) + return log_oom(); + } + + sz = fdisk_partition_get_size(p); + assert(sz <= UINT64_MAX/secsz); + sz *= secsz; + + start = fdisk_partition_get_start(p); + assert(start <= UINT64_MAX/secsz); + start *= secsz; + + if (partition_type_exclude(&type)) + continue; + + np = partition_new(); + if (!np) + return log_oom(); + + np->type = type; + np->new_uuid = id; + np->new_uuid_is_set = true; + np->size_min = np->size_max = sz; + np->new_label = TAKE_PTR(label_copy); + + np->definition_path = strdup(src); + if (!np->definition_path) + return log_oom(); + + r = determine_current_padding(c, t, p, secsz, grainsz, &padding); + if (r < 0) + return r; + + np->padding_min = np->padding_max = padding; + + np->copy_blocks_path = strdup(src); + if (!np->copy_blocks_path) + return log_oom(); + + np->copy_blocks_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); + if (np->copy_blocks_fd < 0) + return log_error_errno(r, "Failed to duplicate file descriptor of %s: %m", src); + + np->copy_blocks_offset = start; + np->copy_blocks_size = sz; + + r = fdisk_partition_get_attrs_as_uint64(p, &np->gpt_flags); + if (r < 0) + return log_error_errno(r, "Failed to get partition flags: %m"); + + LIST_INSERT_AFTER(partitions, context->partitions, last, np); + last = TAKE_PTR(np); + context->n_partitions++; + } + + return 0; +} + +static int context_copy_from(Context *context) { + int r; + + assert(context); + + STRV_FOREACH(src, arg_copy_from) { + r = context_copy_from_one(context, *src); + if (r < 0) + return r; + } + + return 0; +} + +static int context_read_definitions(Context *context) { + _cleanup_strv_free_ char **files = NULL; + Partition *last = LIST_FIND_TAIL(partitions, context->partitions); + const char *const *dirs; + int r; + + assert(context); + + dirs = (const char* const*) (arg_definitions ?: CONF_PATHS_STRV("repart.d")); + + r = conf_files_list_strv(&files, ".conf", arg_definitions ? NULL : arg_root, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, dirs); + if (r < 0) + return log_error_errno(r, "Failed to enumerate *.conf files: %m"); + + STRV_FOREACH(f, files) { + _cleanup_(partition_freep) Partition *p = NULL; + + p = partition_new(); + if (!p) + return log_oom(); + + p->definition_path = strdup(*f); + if (!p->definition_path) + return log_oom(); + + r = partition_read_definition(p, *f, dirs); + if (r < 0) + return r; + if (r == 0) + continue; + + LIST_INSERT_AFTER(partitions, context->partitions, last, p); + last = TAKE_PTR(p); + context->n_partitions++; + } + + /* Check that each configured verity hash/data partition has a matching verity data/hash partition. */ + + LIST_FOREACH(partitions, p, context->partitions) { + if (p->verity == VERITY_OFF) + continue; + + for (VerityMode mode = VERITY_OFF + 1; mode < _VERITY_MODE_MAX; mode++) { + Partition *q = NULL; + + if (p->verity == mode) + continue; + + if (p->siblings[mode]) + continue; + + r = find_verity_sibling(context, p, mode, &q); + if (r == -ENXIO) { + if (mode != VERITY_SIG) + return log_syntax(NULL, LOG_ERR, p->definition_path, 1, SYNTHETIC_ERRNO(EINVAL), + "Missing verity %s partition for verity %s partition with VerityMatchKey=%s", + verity_mode_to_string(mode), verity_mode_to_string(p->verity), p->verity_match_key); + } else if (r == -ENOTUNIQ) + return log_syntax(NULL, LOG_ERR, p->definition_path, 1, SYNTHETIC_ERRNO(EINVAL), + "Multiple verity %s partitions found for verity %s partition with VerityMatchKey=%s", + verity_mode_to_string(mode), verity_mode_to_string(p->verity), p->verity_match_key); + else if (r < 0) + return log_syntax(NULL, LOG_ERR, p->definition_path, 1, r, + "Failed to find verity %s partition for verity %s partition with VerityMatchKey=%s", + verity_mode_to_string(mode), verity_mode_to_string(p->verity), p->verity_match_key); + + if (q) { + if (q->priority != p->priority) + return log_syntax(NULL, LOG_ERR, p->definition_path, 1, SYNTHETIC_ERRNO(EINVAL), + "Priority mismatch (%i != %i) for verity sibling partitions with VerityMatchKey=%s", + p->priority, q->priority, p->verity_match_key); + + p->siblings[mode] = q; + } + } + } + + LIST_FOREACH(partitions, p, context->partitions) { + Partition *dp; + + if (p->verity != VERITY_HASH) + continue; + + if (p->minimize == MINIMIZE_OFF) + continue; + + assert_se(dp = p->siblings[VERITY_DATA]); + + if (dp->minimize == MINIMIZE_OFF && !(dp->copy_blocks_path || dp->copy_blocks_auto)) + return log_syntax(NULL, LOG_ERR, p->definition_path, 1, SYNTHETIC_ERRNO(EINVAL), + "Minimize= set for verity hash partition but data partition does " + "not set CopyBlocks= or Minimize="); + + } + + return 0; +} + +static int fdisk_ask_cb(struct fdisk_context *c, struct fdisk_ask *ask, void *data) { + _cleanup_free_ char *ids = NULL; + int r; + + if (fdisk_ask_get_type(ask) != FDISK_ASKTYPE_STRING) + return -EINVAL; + + ids = new(char, SD_ID128_UUID_STRING_MAX); + if (!ids) + return -ENOMEM; + + r = fdisk_ask_string_set_result(ask, sd_id128_to_uuid_string(*(sd_id128_t*) data, ids)); + if (r < 0) + return r; + + TAKE_PTR(ids); + return 0; +} + +static int fdisk_set_disklabel_id_by_uuid(struct fdisk_context *c, sd_id128_t id) { + int r; + + r = fdisk_set_ask(c, fdisk_ask_cb, &id); + if (r < 0) + return r; + + r = fdisk_set_disklabel_id(c); + if (r < 0) + return r; + + return fdisk_set_ask(c, NULL, NULL); +} + +static int derive_uuid(sd_id128_t base, const char *token, sd_id128_t *ret) { + union { + uint8_t md[SHA256_DIGEST_SIZE]; + sd_id128_t id; + } result; + + assert(token); + assert(ret); + + /* Derive a new UUID from the specified UUID in a stable and reasonably safe way. Specifically, we + * calculate the HMAC-SHA256 of the specified token string, keyed by the supplied base (typically the + * machine ID). We use the machine ID as key (and not as cleartext!) of the HMAC operation since it's + * the machine ID we don't want to leak. */ + + hmac_sha256(base.bytes, sizeof(base.bytes), token, strlen(token), result.md); + + /* Take the first half, mark it as v4 UUID */ + assert_cc(sizeof(result.md) == sizeof(result.id) * 2); + *ret = id128_make_v4_uuid(result.id); + return 0; +} + +static void derive_salt(sd_id128_t base, const char *token, uint8_t ret[static SHA256_DIGEST_SIZE]) { + assert(token); + + hmac_sha256(base.bytes, sizeof(base.bytes), token, strlen(token), ret); +} + +static int context_load_partition_table(Context *context) { + _cleanup_(fdisk_unref_contextp) struct fdisk_context *c = NULL; + _cleanup_(fdisk_unref_tablep) struct fdisk_table *t = NULL; + uint64_t left_boundary = UINT64_MAX, first_lba, last_lba, nsectors; + _cleanup_free_ char *disk_uuid_string = NULL; + bool from_scratch = false; + sd_id128_t disk_uuid; + size_t n_partitions; + unsigned long secsz; + uint64_t grainsz, fs_secsz = DEFAULT_FILESYSTEM_SECTOR_SIZE; + int r; + + assert(context); + assert(!context->fdisk_context); + assert(!context->free_areas); + assert(context->start == UINT64_MAX); + assert(context->end == UINT64_MAX); + assert(context->total == UINT64_MAX); + + c = fdisk_new_context(); + if (!c) + return log_oom(); + + if (arg_sector_size > 0) { + fs_secsz = arg_sector_size; + r = fdisk_save_user_sector_size(c, /* phy= */ 0, arg_sector_size); + } else { + uint32_t ssz; + struct stat st; + + r = context_open_and_lock_backing_fd( + context->node, + arg_dry_run ? LOCK_SH : LOCK_EX, + &context->backing_fd); + if (r < 0) + return r; + + if (fstat(context->backing_fd, &st) < 0) + return log_error_errno(errno, "Failed to stat %s: %m", context->node); + + if (IN_SET(arg_empty, EMPTY_REQUIRE, EMPTY_FORCE, EMPTY_CREATE) && S_ISREG(st.st_mode)) + /* Don't probe sector size from partition table if we are supposed to strat from an empty disk */ + fs_secsz = ssz = 512; + else { + /* Auto-detect sector size if not specified. */ + r = probe_sector_size_prefer_ioctl(context->backing_fd, &ssz); + if (r < 0) + return log_error_errno(r, "Failed to probe sector size of '%s': %m", context->node); + + /* If we found the sector size and we're operating on a block device, use it as the file + * system sector size as well, as we know its the sector size of the actual block device and + * not just the offset at which we found the GPT header. */ + if (r > 0 && S_ISBLK(st.st_mode)) + fs_secsz = ssz; + } + + r = fdisk_save_user_sector_size(c, /* phy= */ 0, ssz); + } + if (r < 0) + return log_error_errno(r, "Failed to set sector size: %m"); + + /* libfdisk doesn't have an API to operate on arbitrary fds, hence reopen the fd going via the + * /proc/self/fd/ magic path if we have an existing fd. Open the original file otherwise. */ + r = fdisk_assign_device( + c, + context->backing_fd >= 0 ? FORMAT_PROC_FD_PATH(context->backing_fd) : context->node, + arg_dry_run); + if (r == -EINVAL && arg_size_auto) { + struct stat st; + + /* libfdisk returns EINVAL if opening a file of size zero. Let's check for that, and accept + * it if automatic sizing is requested. */ + + if (context->backing_fd < 0) + r = stat(context->node, &st); + else + r = fstat(context->backing_fd, &st); + if (r < 0) + return log_error_errno(errno, "Failed to stat block device '%s': %m", context->node); + + if (S_ISREG(st.st_mode) && st.st_size == 0) { + /* Use the fallback values if we have no better idea */ + context->sector_size = fdisk_get_sector_size(c); + context->fs_sector_size = fs_secsz; + context->grain_size = 4096; + return /* from_scratch = */ true; + } + + r = -EINVAL; + } + if (r < 0) + return log_error_errno(r, "Failed to open device '%s': %m", context->node); + + if (context->backing_fd < 0) { + /* If we have no fd referencing the device yet, make a copy of the fd now, so that we have one */ + r = context_open_and_lock_backing_fd(FORMAT_PROC_FD_PATH(fdisk_get_devfd(c)), + arg_dry_run ? LOCK_SH : LOCK_EX, + &context->backing_fd); + if (r < 0) + return r; + } + + /* The offsets/sizes libfdisk returns to us will be in multiple of the sector size of the + * device. This is typically 512, and sometimes 4096. Let's query libfdisk once for it, and then use + * it for all our needs. Note that the values we use ourselves always are in bytes though, thus mean + * the same thing universally. Also note that regardless what kind of sector size is in use we'll + * place partitions at multiples of 4K. */ + secsz = fdisk_get_sector_size(c); + + /* Insist on a power of two, and that it's a multiple of 512, i.e. the traditional sector size. */ + if (secsz < 512 || !ISPOWEROF2(secsz)) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Sector size %lu is not a power of two larger than 512? Refusing.", secsz); + + /* Use at least 4K, and ensure it's a multiple of the sector size, regardless if that is smaller or + * larger */ + grainsz = secsz < 4096 ? 4096 : secsz; + + log_debug("Sector size of device is %lu bytes. Using grain size of %" PRIu64 ".", secsz, grainsz); + + switch (arg_empty) { + + case EMPTY_REFUSE: + /* Refuse empty disks, insist on an existing GPT partition table */ + if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT)) + return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s has no GPT disk label, not repartitioning.", context->node); + + break; + + case EMPTY_REQUIRE: + /* Require an empty disk, refuse any existing partition table */ + r = fdisk_has_label(c); + if (r < 0) + return log_error_errno(r, "Failed to determine whether disk %s has a disk label: %m", context->node); + if (r > 0) + return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s already has a disk label, refusing.", context->node); + + from_scratch = true; + break; + + case EMPTY_ALLOW: + /* Allow both an empty disk and an existing partition table, but only GPT */ + r = fdisk_has_label(c); + if (r < 0) + return log_error_errno(r, "Failed to determine whether disk %s has a disk label: %m", context->node); + if (r > 0) { + if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT)) + return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s has non-GPT disk label, not repartitioning.", context->node); + } else + from_scratch = true; + + break; + + case EMPTY_FORCE: + case EMPTY_CREATE: + /* Always reinitiaize the disk, don't consider what there was on the disk before */ + from_scratch = true; + break; + + default: + assert_not_reached(); + } + + if (from_scratch) { + r = fdisk_create_disklabel(c, "gpt"); + if (r < 0) + return log_error_errno(r, "Failed to create GPT disk label: %m"); + + r = derive_uuid(context->seed, "disk-uuid", &disk_uuid); + if (r < 0) + return log_error_errno(r, "Failed to acquire disk GPT uuid: %m"); + + r = fdisk_set_disklabel_id_by_uuid(c, disk_uuid); + if (r < 0) + return log_error_errno(r, "Failed to set GPT disk label: %m"); + + goto add_initial_free_area; + } + + r = fdisk_get_disklabel_id(c, &disk_uuid_string); + if (r < 0) + return log_error_errno(r, "Failed to get current GPT disk label UUID: %m"); + + r = id128_from_string_nonzero(disk_uuid_string, &disk_uuid); + if (r == -ENXIO) { + r = derive_uuid(context->seed, "disk-uuid", &disk_uuid); + if (r < 0) + return log_error_errno(r, "Failed to acquire disk GPT uuid: %m"); + + r = fdisk_set_disklabel_id(c); + if (r < 0) + return log_error_errno(r, "Failed to set GPT disk label: %m"); + } else if (r < 0) + return log_error_errno(r, "Failed to parse current GPT disk label UUID: %m"); + + r = fdisk_get_partitions(c, &t); + if (r < 0) + return log_error_errno(r, "Failed to acquire partition table: %m"); + + n_partitions = fdisk_table_get_nents(t); + for (size_t i = 0; i < n_partitions; i++) { + _cleanup_free_ char *label_copy = NULL; + Partition *last = NULL; + struct fdisk_partition *p; + const char *label; + uint64_t sz, start; + bool found = false; + sd_id128_t ptid, id; + size_t partno; + + p = fdisk_table_get_partition(t, i); + if (!p) + return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m"); + + if (fdisk_partition_is_used(p) <= 0) + continue; + + if (fdisk_partition_has_start(p) <= 0 || + fdisk_partition_has_size(p) <= 0 || + fdisk_partition_has_partno(p) <= 0) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Found a partition without a position, size or number."); + + r = fdisk_partition_get_type_as_id128(p, &ptid); + if (r < 0) + return log_error_errno(r, "Failed to query partition type UUID: %m"); + + r = fdisk_partition_get_uuid_as_id128(p, &id); + if (r < 0) + return log_error_errno(r, "Failed to query partition UUID: %m"); + + label = fdisk_partition_get_name(p); + if (!isempty(label)) { + label_copy = strdup(label); + if (!label_copy) + return log_oom(); + } + + sz = fdisk_partition_get_size(p); + assert(sz <= UINT64_MAX/secsz); + sz *= secsz; + + start = fdisk_partition_get_start(p); + assert(start <= UINT64_MAX/secsz); + start *= secsz; + + partno = fdisk_partition_get_partno(p); + + if (left_boundary == UINT64_MAX || left_boundary > start) + left_boundary = start; + + /* Assign this existing partition to the first partition of the right type that doesn't have + * an existing one assigned yet. */ + LIST_FOREACH(partitions, pp, context->partitions) { + last = pp; + + if (!sd_id128_equal(pp->type.uuid, ptid)) + continue; + + if (!pp->current_partition) { + pp->current_uuid = id; + pp->current_size = sz; + pp->offset = start; + pp->partno = partno; + pp->current_label = TAKE_PTR(label_copy); + + pp->current_partition = p; + fdisk_ref_partition(p); + + r = determine_current_padding(c, t, p, secsz, grainsz, &pp->current_padding); + if (r < 0) + return r; + + if (pp->current_padding > 0) { + r = context_add_free_area(context, pp->current_padding, pp); + if (r < 0) + return r; + } + + found = true; + break; + } + } + + /* If we have no matching definition, create a new one. */ + if (!found) { + _cleanup_(partition_freep) Partition *np = NULL; + + np = partition_new(); + if (!np) + return log_oom(); + + np->current_uuid = id; + np->type = gpt_partition_type_from_uuid(ptid); + np->current_size = sz; + np->offset = start; + np->partno = partno; + np->current_label = TAKE_PTR(label_copy); + + np->current_partition = p; + fdisk_ref_partition(p); + + r = determine_current_padding(c, t, p, secsz, grainsz, &np->current_padding); + if (r < 0) + return r; + + if (np->current_padding > 0) { + r = context_add_free_area(context, np->current_padding, np); + if (r < 0) + return r; + } + + LIST_INSERT_AFTER(partitions, context->partitions, last, TAKE_PTR(np)); + context->n_partitions++; + } + } + +add_initial_free_area: + nsectors = fdisk_get_nsectors(c); + assert(nsectors <= UINT64_MAX/secsz); + nsectors *= secsz; + + first_lba = fdisk_get_first_lba(c); + assert(first_lba <= UINT64_MAX/secsz); + first_lba *= secsz; + + last_lba = fdisk_get_last_lba(c); + assert(last_lba < UINT64_MAX); + last_lba++; + assert(last_lba <= UINT64_MAX/secsz); + last_lba *= secsz; + + assert(last_lba >= first_lba); + + if (left_boundary == UINT64_MAX) { + /* No partitions at all? Then the whole disk is up for grabs. */ + + first_lba = round_up_size(first_lba, grainsz); + last_lba = round_down_size(last_lba, grainsz); + + if (last_lba > first_lba) { + r = context_add_free_area(context, last_lba - first_lba, NULL); + if (r < 0) + return r; + } + } else { + /* Add space left of first partition */ + assert(left_boundary >= first_lba); + + first_lba = round_up_size(first_lba, grainsz); + left_boundary = round_down_size(left_boundary, grainsz); + last_lba = round_down_size(last_lba, grainsz); + + if (left_boundary > first_lba) { + r = context_add_free_area(context, left_boundary - first_lba, NULL); + if (r < 0) + return r; + } + } + + context->start = first_lba; + context->end = last_lba; + context->total = nsectors; + context->sector_size = secsz; + context->fs_sector_size = fs_secsz; + context->grain_size = grainsz; + context->fdisk_context = TAKE_PTR(c); + + return from_scratch; +} + +static void context_unload_partition_table(Context *context) { + assert(context); + + LIST_FOREACH(partitions, p, context->partitions) { + + /* Entirely remove partitions that have no configuration */ + if (PARTITION_IS_FOREIGN(p)) { + partition_unlink_and_free(context, p); + continue; + } + + /* Otherwise drop all data we read off the block device and everything we might have + * calculated based on it */ + + p->dropped = false; + p->current_size = UINT64_MAX; + p->new_size = UINT64_MAX; + p->current_padding = UINT64_MAX; + p->new_padding = UINT64_MAX; + p->partno = UINT64_MAX; + p->offset = UINT64_MAX; + + if (p->current_partition) { + fdisk_unref_partition(p->current_partition); + p->current_partition = NULL; + } + + if (p->new_partition) { + fdisk_unref_partition(p->new_partition); + p->new_partition = NULL; + } + + p->padding_area = NULL; + p->allocated_to_area = NULL; + + p->current_uuid = SD_ID128_NULL; + p->current_label = mfree(p->current_label); + } + + context->start = UINT64_MAX; + context->end = UINT64_MAX; + context->total = UINT64_MAX; + + if (context->fdisk_context) { + fdisk_unref_context(context->fdisk_context); + context->fdisk_context = NULL; + } + + context_free_free_areas(context); +} + +static int format_size_change(uint64_t from, uint64_t to, char **ret) { + char *t; + + if (from != UINT64_MAX) { + if (from == to || to == UINT64_MAX) + t = strdup(FORMAT_BYTES(from)); + else + t = strjoin(FORMAT_BYTES(from), " ", special_glyph(SPECIAL_GLYPH_ARROW_RIGHT), " ", FORMAT_BYTES(to)); + } else if (to != UINT64_MAX) + t = strjoin(special_glyph(SPECIAL_GLYPH_ARROW_RIGHT), " ", FORMAT_BYTES(to)); + else { + *ret = NULL; + return 0; + } + + if (!t) + return log_oom(); + + *ret = t; + return 1; +} + +static const char *partition_label(const Partition *p) { + assert(p); + + if (p->new_label) + return p->new_label; + + if (p->current_label) + return p->current_label; + + return gpt_partition_type_uuid_to_string(p->type.uuid); +} + +static int context_dump_partitions(Context *context) { + _cleanup_(table_unrefp) Table *t = NULL; + uint64_t sum_padding = 0, sum_size = 0; + int r; + const size_t roothash_col = 14, dropin_files_col = 15, split_path_col = 16; + bool has_roothash = false, has_dropin_files = false, has_split_path = false; + + if ((arg_json_format_flags & JSON_FORMAT_OFF) && context->n_partitions == 0) { + log_info("Empty partition table."); + return 0; + } + + t = table_new("type", + "label", + "uuid", + "partno", + "file", + "node", + "offset", + "old size", + "raw size", + "size", + "old padding", + "raw padding", + "padding", + "activity", + "roothash", + "drop-in files", + "split path"); + if (!t) + return log_oom(); + + if (!DEBUG_LOGGING) { + if (arg_json_format_flags & JSON_FORMAT_OFF) + (void) table_set_display(t, (size_t) 0, (size_t) 1, (size_t) 2, (size_t) 3, (size_t) 4, + (size_t) 8, (size_t) 9, (size_t) 12, roothash_col, dropin_files_col, + split_path_col); + else + (void) table_set_display(t, (size_t) 0, (size_t) 1, (size_t) 2, (size_t) 3, (size_t) 4, + (size_t) 5, (size_t) 6, (size_t) 7, (size_t) 8, (size_t) 10, + (size_t) 11, (size_t) 13, roothash_col, dropin_files_col, + split_path_col); + } + + (void) table_set_align_percent(t, table_get_cell(t, 0, 5), 100); + (void) table_set_align_percent(t, table_get_cell(t, 0, 6), 100); + (void) table_set_align_percent(t, table_get_cell(t, 0, 7), 100); + (void) table_set_align_percent(t, table_get_cell(t, 0, 8), 100); + (void) table_set_align_percent(t, table_get_cell(t, 0, 9), 100); + (void) table_set_align_percent(t, table_get_cell(t, 0, 10), 100); + (void) table_set_align_percent(t, table_get_cell(t, 0, 11), 100); + + LIST_FOREACH(partitions, p, context->partitions) { + _cleanup_free_ char *size_change = NULL, *padding_change = NULL, *partname = NULL, *rh = NULL; + char uuid_buffer[SD_ID128_UUID_STRING_MAX]; + const char *label, *activity = NULL; + + if (p->dropped) + continue; + + if (p->current_size == UINT64_MAX) + activity = "create"; + else if (p->current_size != p->new_size) + activity = "resize"; + + label = partition_label(p); + partname = p->partno != UINT64_MAX ? fdisk_partname(context->node, p->partno+1) : NULL; + + r = format_size_change(p->current_size, p->new_size, &size_change); + if (r < 0) + return r; + + r = format_size_change(p->current_padding, p->new_padding, &padding_change); + if (r < 0) + return r; + + if (p->new_size != UINT64_MAX) + sum_size += p->new_size; + if (p->new_padding != UINT64_MAX) + sum_padding += p->new_padding; + + if (p->verity != VERITY_OFF) { + Partition *hp = p->verity == VERITY_HASH ? p : p->siblings[VERITY_HASH]; + + rh = iovec_is_set(&hp->roothash) ? hexmem(hp->roothash.iov_base, hp->roothash.iov_len) : strdup("TBD"); + if (!rh) + return log_oom(); + } + + r = table_add_many( + t, + TABLE_STRING, gpt_partition_type_uuid_to_string_harder(p->type.uuid, uuid_buffer), + TABLE_STRING, empty_to_null(label) ?: "-", TABLE_SET_COLOR, empty_to_null(label) ? NULL : ansi_grey(), + TABLE_UUID, p->new_uuid_is_set ? p->new_uuid : p->current_uuid, + TABLE_UINT64, p->partno, + TABLE_PATH_BASENAME, p->definition_path, TABLE_SET_COLOR, p->definition_path ? NULL : ansi_grey(), + TABLE_STRING, partname ?: "-", TABLE_SET_COLOR, partname ? NULL : ansi_highlight(), + TABLE_UINT64, p->offset, + TABLE_UINT64, p->current_size == UINT64_MAX ? 0 : p->current_size, + TABLE_UINT64, p->new_size, + TABLE_STRING, size_change, TABLE_SET_COLOR, !p->partitions_next && sum_size > 0 ? ansi_underline() : NULL, + TABLE_UINT64, p->current_padding == UINT64_MAX ? 0 : p->current_padding, + TABLE_UINT64, p->new_padding, + TABLE_STRING, padding_change, TABLE_SET_COLOR, !p->partitions_next && sum_padding > 0 ? ansi_underline() : NULL, + TABLE_STRING, activity ?: "unchanged", + TABLE_STRING, rh, + TABLE_STRV, p->drop_in_files, + TABLE_STRING, empty_to_null(p->split_path) ?: "-"); + if (r < 0) + return table_log_add_error(r); + + has_roothash = has_roothash || !isempty(rh); + has_dropin_files = has_dropin_files || !strv_isempty(p->drop_in_files); + has_split_path = has_split_path || !isempty(p->split_path); + } + + if ((arg_json_format_flags & JSON_FORMAT_OFF) && (sum_padding > 0 || sum_size > 0)) { + const char *a, *b; + + a = strjoina(special_glyph(SPECIAL_GLYPH_SIGMA), " = ", FORMAT_BYTES(sum_size)); + b = strjoina(special_glyph(SPECIAL_GLYPH_SIGMA), " = ", FORMAT_BYTES(sum_padding)); + + r = table_add_many( + t, + TABLE_EMPTY, + TABLE_EMPTY, + TABLE_EMPTY, + TABLE_EMPTY, + TABLE_EMPTY, + TABLE_EMPTY, + TABLE_EMPTY, + TABLE_EMPTY, + TABLE_EMPTY, + TABLE_STRING, a, + TABLE_EMPTY, + TABLE_EMPTY, + TABLE_STRING, b, + TABLE_EMPTY, + TABLE_EMPTY, + TABLE_EMPTY, + TABLE_EMPTY); + if (r < 0) + return table_log_add_error(r); + } + + if (!has_roothash) { + r = table_hide_column_from_display(t, roothash_col); + if (r < 0) + return log_error_errno(r, "Failed to set columns to display: %m"); + } + + if (!has_dropin_files) { + r = table_hide_column_from_display(t, dropin_files_col); + if (r < 0) + return log_error_errno(r, "Failed to set columns to display: %m"); + } + + if (!has_split_path) { + r = table_hide_column_from_display(t, split_path_col); + if (r < 0) + return log_error_errno(r, "Failed to set columns to display: %m"); + } + + return table_print_with_pager(t, arg_json_format_flags, arg_pager_flags, arg_legend); +} + +static int context_bar_char_process_partition( + Context *context, + Partition *bar[], + size_t n, + Partition *p, + size_t **start_array, + size_t *n_start_array) { + + uint64_t from, to, total; + size_t x, y; + + assert(context); + assert(bar); + assert(n > 0); + assert(p); + assert(start_array); + assert(n_start_array); + + if (p->dropped) + return 0; + + assert(p->offset != UINT64_MAX); + assert(p->new_size != UINT64_MAX); + + from = p->offset; + to = from + p->new_size; + + assert(context->total > 0); + total = context->total; + + assert(from <= total); + x = from * n / total; + + assert(to <= total); + y = to * n / total; + + assert(x <= y); + assert(y <= n); + + for (size_t i = x; i < y; i++) + bar[i] = p; + + if (!GREEDY_REALLOC_APPEND(*start_array, *n_start_array, &x, 1)) + return log_oom(); + + return 1; +} + +static int partition_hint(const Partition *p, const char *node, char **ret) { + _cleanup_free_ char *buf = NULL; + const char *label; + sd_id128_t id; + + /* Tries really hard to find a suitable description for this partition */ + + if (p->definition_path) + return path_extract_filename(p->definition_path, ret); + + label = partition_label(p); + if (!isempty(label)) { + buf = strdup(label); + goto done; + } + + if (p->partno != UINT64_MAX) { + buf = fdisk_partname(node, p->partno+1); + goto done; + } + + if (p->new_uuid_is_set) + id = p->new_uuid; + else if (!sd_id128_is_null(p->current_uuid)) + id = p->current_uuid; + else + id = p->type.uuid; + + buf = strdup(SD_ID128_TO_UUID_STRING(id)); + +done: + if (!buf) + return -ENOMEM; + + *ret = TAKE_PTR(buf); + return 0; +} + +static int context_dump_partition_bar(Context *context) { + _cleanup_free_ Partition **bar = NULL; + _cleanup_free_ size_t *start_array = NULL; + size_t n_start_array = 0; + Partition *last = NULL; + bool z = false; + size_t c, j = 0; + int r; + + assert_se((c = columns()) >= 2); + c -= 2; /* We do not use the leftmost and rightmost character cell */ + + bar = new0(Partition*, c); + if (!bar) + return log_oom(); + + LIST_FOREACH(partitions, p, context->partitions) { + r = context_bar_char_process_partition(context, bar, c, p, &start_array, &n_start_array); + if (r < 0) + return r; + } + + putc(' ', stdout); + + for (size_t i = 0; i < c; i++) { + if (bar[i]) { + if (last != bar[i]) + z = !z; + + fputs(z ? ansi_green() : ansi_yellow(), stdout); + fputs(special_glyph(SPECIAL_GLYPH_DARK_SHADE), stdout); + } else { + fputs(ansi_normal(), stdout); + fputs(special_glyph(SPECIAL_GLYPH_LIGHT_SHADE), stdout); + } + + last = bar[i]; + } + + fputs(ansi_normal(), stdout); + putc('\n', stdout); + + for (size_t i = 0; i < n_start_array; i++) { + _cleanup_free_ char **line = NULL; + + line = new0(char*, c); + if (!line) + return log_oom(); + + j = 0; + LIST_FOREACH(partitions, p, context->partitions) { + _cleanup_free_ char *d = NULL; + + if (p->dropped) + continue; + + j++; + + if (i < n_start_array - j) { + + if (line[start_array[j-1]]) { + const char *e; + + /* Upgrade final corner to the right with a branch to the right */ + e = startswith(line[start_array[j-1]], special_glyph(SPECIAL_GLYPH_TREE_RIGHT)); + if (e) { + d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_BRANCH), e); + if (!d) + return log_oom(); + } + } + + if (!d) { + d = strdup(special_glyph(SPECIAL_GLYPH_TREE_VERTICAL)); + if (!d) + return log_oom(); + } + + } else if (i == n_start_array - j) { + _cleanup_free_ char *hint = NULL; + + (void) partition_hint(p, context->node, &hint); + + if (streq_ptr(line[start_array[j-1]], special_glyph(SPECIAL_GLYPH_TREE_VERTICAL))) + d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_BRANCH), " ", strna(hint)); + else + d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_RIGHT), " ", strna(hint)); + + if (!d) + return log_oom(); + } + + if (d) + free_and_replace(line[start_array[j-1]], d); + } + + putc(' ', stdout); + + j = 0; + while (j < c) { + if (line[j]) { + fputs(line[j], stdout); + j += utf8_console_width(line[j]); + } else { + putc(' ', stdout); + j++; + } + } + + putc('\n', stdout); + + for (j = 0; j < c; j++) + free(line[j]); + } + + return 0; +} + +static bool context_has_roothash(Context *context) { + LIST_FOREACH(partitions, p, context->partitions) + if (iovec_is_set(&p->roothash)) + return true; + + return false; +} + +static int context_dump(Context *context, bool late) { + int r; + + assert(context); + + if (arg_pretty == 0 && FLAGS_SET(arg_json_format_flags, JSON_FORMAT_OFF)) + return 0; + + /* If we're outputting JSON, only dump after doing all operations so we can include the roothashes + * in the output. */ + if (!late && !FLAGS_SET(arg_json_format_flags, JSON_FORMAT_OFF)) + return 0; + + /* If we're not outputting JSON, only dump again after doing all operations if there are any + * roothashes that we need to communicate to the user. */ + if (late && FLAGS_SET(arg_json_format_flags, JSON_FORMAT_OFF) && !context_has_roothash(context)) + return 0; + + r = context_dump_partitions(context); + if (r < 0) + return r; + + /* Make sure we only write the partition bar once, even if we're writing the partition table twice to + * communicate roothashes. */ + if (FLAGS_SET(arg_json_format_flags, JSON_FORMAT_OFF) && !late) { + putc('\n', stdout); + + r = context_dump_partition_bar(context); + if (r < 0) + return r; + + putc('\n', stdout); + } + + fflush(stdout); + + return 0; +} + + +static bool context_changed(const Context *context) { + assert(context); + + LIST_FOREACH(partitions, p, context->partitions) { + if (p->dropped) + continue; + + if (p->allocated_to_area) + return true; + + if (p->new_size != p->current_size) + return true; + } + + return false; +} + +static int context_wipe_range(Context *context, uint64_t offset, uint64_t size) { + _cleanup_(blkid_free_probep) blkid_probe probe = NULL; + int r; + + assert(context); + assert(offset != UINT64_MAX); + assert(size != UINT64_MAX); + + probe = blkid_new_probe(); + if (!probe) + return log_oom(); + + errno = 0; + r = blkid_probe_set_device(probe, fdisk_get_devfd(context->fdisk_context), offset, size); + if (r < 0) + return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to allocate device probe for wiping."); + + errno = 0; + if (blkid_probe_enable_superblocks(probe, true) < 0 || + blkid_probe_set_superblocks_flags(probe, BLKID_SUBLKS_MAGIC|BLKID_SUBLKS_BADCSUM) < 0 || + blkid_probe_enable_partitions(probe, true) < 0 || + blkid_probe_set_partitions_flags(probe, BLKID_PARTS_MAGIC) < 0) + return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to enable superblock and partition probing."); + + for (;;) { + errno = 0; + r = blkid_do_probe(probe); + if (r < 0) + return log_error_errno(errno_or_else(EIO), "Failed to probe for file systems."); + if (r > 0) + break; + + errno = 0; + if (blkid_do_wipe(probe, false) < 0) + return log_error_errno(errno_or_else(EIO), "Failed to wipe file system signature."); + } + + return 0; +} + +static int context_wipe_partition(Context *context, Partition *p) { + int r; + + assert(context); + assert(p); + assert(!PARTITION_EXISTS(p)); /* Safety check: never wipe existing partitions */ + + assert(p->offset != UINT64_MAX); + assert(p->new_size != UINT64_MAX); + + r = context_wipe_range(context, p->offset, p->new_size); + if (r < 0) + return r; + + log_info("Successfully wiped file system signatures from future partition %" PRIu64 ".", p->partno); + return 0; +} + +static int context_discard_range( + Context *context, + uint64_t offset, + uint64_t size) { + + struct stat st; + int fd; + + assert(context); + assert(offset != UINT64_MAX); + assert(size != UINT64_MAX); + + if (size <= 0) + return 0; + + assert_se((fd = fdisk_get_devfd(context->fdisk_context)) >= 0); + + if (fstat(fd, &st) < 0) + return -errno; + + if (S_ISREG(st.st_mode)) { + if (fallocate(fd, FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE, offset, size) < 0) { + if (ERRNO_IS_NOT_SUPPORTED(errno)) + return -EOPNOTSUPP; + + return -errno; + } + + return 1; + } + + if (S_ISBLK(st.st_mode)) { + uint64_t range[2], end; + + range[0] = round_up_size(offset, context->sector_size); + + if (offset > UINT64_MAX - size) + return -ERANGE; + + end = offset + size; + if (end <= range[0]) + return 0; + + range[1] = round_down_size(end - range[0], context->sector_size); + if (range[1] <= 0) + return 0; + + if (ioctl(fd, BLKDISCARD, range) < 0) { + if (ERRNO_IS_NOT_SUPPORTED(errno)) + return -EOPNOTSUPP; + + return -errno; + } + + return 1; + } + + return -EOPNOTSUPP; +} + +static int context_discard_partition(Context *context, Partition *p) { + int r; + + assert(context); + assert(p); + + assert(p->offset != UINT64_MAX); + assert(p->new_size != UINT64_MAX); + assert(!PARTITION_EXISTS(p)); /* Safety check: never discard existing partitions */ + + if (!arg_discard) + return 0; + + r = context_discard_range(context, p->offset, p->new_size); + if (r == -EOPNOTSUPP) { + log_info("Storage does not support discard, not discarding data in future partition %" PRIu64 ".", p->partno); + return 0; + } + if (r == -EBUSY) { + /* Let's handle this gracefully: https://bugzilla.kernel.org/show_bug.cgi?id=211167 */ + log_info("Block device is busy, not discarding partition %" PRIu64 " because it probably is mounted.", p->partno); + return 0; + } + if (r == 0) { + log_info("Partition %" PRIu64 " too short for discard, skipping.", p->partno); + return 0; + } + if (r < 0) + return log_error_errno(r, "Failed to discard data for future partition %" PRIu64 ".", p->partno); + + log_info("Successfully discarded data from future partition %" PRIu64 ".", p->partno); + return 1; +} + +static int context_discard_gap_after(Context *context, Partition *p) { + uint64_t gap, next = UINT64_MAX; + int r; + + assert(context); + assert(!p || (p->offset != UINT64_MAX && p->new_size != UINT64_MAX)); + + if (!arg_discard) + return 0; + + if (p) + gap = p->offset + p->new_size; + else + /* The context start gets rounded up to grain_size, however + * existing partitions may be before that so ensure the gap + * starts at the first actually usable lba + */ + gap = fdisk_get_first_lba(context->fdisk_context) * context->sector_size; + + LIST_FOREACH(partitions, q, context->partitions) { + if (q->dropped) + continue; + + assert(q->offset != UINT64_MAX); + assert(q->new_size != UINT64_MAX); + + if (q->offset < gap) + continue; + + if (next == UINT64_MAX || q->offset < next) + next = q->offset; + } + + if (next == UINT64_MAX) { + next = (fdisk_get_last_lba(context->fdisk_context) + 1) * context->sector_size; + if (gap > next) + return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition end beyond disk end."); + } + + assert(next >= gap); + r = context_discard_range(context, gap, next - gap); + if (r == -EOPNOTSUPP) { + if (p) + log_info("Storage does not support discard, not discarding gap after partition %" PRIu64 ".", p->partno); + else + log_info("Storage does not support discard, not discarding gap at beginning of disk."); + return 0; + } + if (r == 0) /* Too short */ + return 0; + if (r < 0) { + if (p) + return log_error_errno(r, "Failed to discard gap after partition %" PRIu64 ".", p->partno); + else + return log_error_errno(r, "Failed to discard gap at beginning of disk."); + } + + if (p) + log_info("Successfully discarded gap after partition %" PRIu64 ".", p->partno); + else + log_info("Successfully discarded gap at beginning of disk."); + + return 0; +} + +static int context_wipe_and_discard(Context *context) { + int r; + + assert(context); + + if (arg_empty == EMPTY_CREATE) /* If we just created the image, no need to wipe */ + return 0; + + /* Wipe and discard the contents of all partitions we are about to create. We skip the discarding if + * we were supposed to start from scratch anyway, as in that case we just discard the whole block + * device in one go early on. */ + + LIST_FOREACH(partitions, p, context->partitions) { + + if (!p->allocated_to_area) + continue; + + if (partition_type_defer(&p->type)) + continue; + + r = context_wipe_partition(context, p); + if (r < 0) + return r; + + if (!context->from_scratch) { + r = context_discard_partition(context, p); + if (r < 0) + return r; + + r = context_discard_gap_after(context, p); + if (r < 0) + return r; + } + } + + if (!context->from_scratch) { + r = context_discard_gap_after(context, NULL); + if (r < 0) + return r; + } + + return 0; +} + +typedef struct DecryptedPartitionTarget { + int fd; + char *dm_name; + char *volume; + struct crypt_device *device; +} DecryptedPartitionTarget; + +static DecryptedPartitionTarget* decrypted_partition_target_free(DecryptedPartitionTarget *t) { +#if HAVE_LIBCRYPTSETUP + int r; + + if (!t) + return NULL; + + safe_close(t->fd); + + /* udev or so might access out block device in the background while we are done. Let's hence + * force detach the volume. We sync'ed before, hence this should be safe. */ + r = sym_crypt_deactivate_by_name(t->device, t->dm_name, CRYPT_DEACTIVATE_FORCE); + if (r < 0) + log_warning_errno(r, "Failed to deactivate LUKS device, ignoring: %m"); + + sym_crypt_free(t->device); + free(t->dm_name); + free(t->volume); + free(t); +#endif + return NULL; +} + +typedef struct { + LoopDevice *loop; + int fd; + char *path; + int whole_fd; + DecryptedPartitionTarget *decrypted; +} PartitionTarget; + +static int partition_target_fd(PartitionTarget *t) { + assert(t); + assert(t->loop || t->fd >= 0 || t->whole_fd >= 0); + + if (t->decrypted) + return t->decrypted->fd; + + if (t->loop) + return t->loop->fd; + + if (t->fd >= 0) + return t->fd; + + return t->whole_fd; +} + +static const char* partition_target_path(PartitionTarget *t) { + assert(t); + assert(t->loop || t->path); + + if (t->decrypted) + return t->decrypted->volume; + + if (t->loop) + return t->loop->node; + + return t->path; +} + +static PartitionTarget *partition_target_free(PartitionTarget *t) { + if (!t) + return NULL; + + decrypted_partition_target_free(t->decrypted); + loop_device_unref(t->loop); + safe_close(t->fd); + unlink_and_free(t->path); + + return mfree(t); +} + +DEFINE_TRIVIAL_CLEANUP_FUNC(PartitionTarget*, partition_target_free); + +static int prepare_temporary_file(PartitionTarget *t, uint64_t size) { + _cleanup_(unlink_and_freep) char *temp = NULL; + _cleanup_close_ int fd = -EBADF; + const char *vt; + int r; + + assert(t); + + r = var_tmp_dir(&vt); + if (r < 0) + return log_error_errno(r, "Could not determine temporary directory: %m"); + + temp = path_join(vt, "repart-XXXXXX"); + if (!temp) + return log_oom(); + + fd = mkostemp_safe(temp); + if (fd < 0) + return log_error_errno(fd, "Failed to create temporary file: %m"); + + if (ftruncate(fd, size) < 0) + return log_error_errno(errno, "Failed to truncate temporary file to %s: %m", + FORMAT_BYTES(size)); + + t->fd = TAKE_FD(fd); + t->path = TAKE_PTR(temp); + + return 0; +} + +static int partition_target_prepare( + Context *context, + Partition *p, + uint64_t size, + bool need_path, + PartitionTarget **ret) { + + _cleanup_(partition_target_freep) PartitionTarget *t = NULL; + _cleanup_(loop_device_unrefp) LoopDevice *d = NULL; + int whole_fd, r; + + assert(context); + assert(p); + assert(ret); + + assert_se((whole_fd = fdisk_get_devfd(context->fdisk_context)) >= 0); + + t = new(PartitionTarget, 1); + if (!t) + return log_oom(); + *t = (PartitionTarget) { + .fd = -EBADF, + .whole_fd = -EBADF, + }; + + if (!need_path) { + if (lseek(whole_fd, p->offset, SEEK_SET) < 0) + return log_error_errno(errno, "Failed to seek to partition offset: %m"); + + t->whole_fd = whole_fd; + *ret = TAKE_PTR(t); + return 0; + } + + /* Loopback block devices are not only useful to turn regular files into block devices, but + * also to cut out sections of block devices into new block devices. */ + + if (arg_offline <= 0) { + r = loop_device_make(whole_fd, O_RDWR, p->offset, size, context->sector_size, 0, LOCK_EX, &d); + if (r < 0 && (arg_offline == 0 || (r != -ENOENT && !ERRNO_IS_PRIVILEGE(r)) || !strv_isempty(p->subvolumes))) + return log_error_errno(r, "Failed to make loopback device of future partition %" PRIu64 ": %m", p->partno); + if (r >= 0) { + t->loop = TAKE_PTR(d); + *ret = TAKE_PTR(t); + return 0; + } + + log_debug_errno(r, "No access to loop devices, falling back to a regular file"); + } + + /* If we can't allocate a loop device, let's write to a regular file that we copy into the final + * image so we can run in containers and without needing root privileges. On filesystems with + * reflinking support, we can take advantage of this and just reflink the result into the image. + */ + + r = prepare_temporary_file(t, size); + if (r < 0) + return r; + + *ret = TAKE_PTR(t); + + return 0; +} + +static int partition_target_grow(PartitionTarget *t, uint64_t size) { + int r; + + assert(t); + assert(!t->decrypted); + + if (t->loop) { + r = loop_device_refresh_size(t->loop, UINT64_MAX, size); + if (r < 0) + return log_error_errno(r, "Failed to refresh loopback device size: %m"); + } else if (t->fd >= 0) { + if (ftruncate(t->fd, size) < 0) + return log_error_errno(errno, "Failed to grow '%s' to %s by truncation: %m", + t->path, FORMAT_BYTES(size)); + } + + return 0; +} + +static int partition_target_sync(Context *context, Partition *p, PartitionTarget *t) { + int whole_fd, r; + + assert(context); + assert(p); + assert(t); + + assert_se((whole_fd = fdisk_get_devfd(context->fdisk_context)) >= 0); + + if (t->decrypted && fsync(t->decrypted->fd) < 0) + return log_error_errno(errno, "Failed to sync changes to '%s': %m", t->decrypted->volume); + + if (t->loop) { + r = loop_device_sync(t->loop); + if (r < 0) + return log_error_errno(r, "Failed to sync loopback device: %m"); + } else if (t->fd >= 0) { + struct stat st; + + if (lseek(whole_fd, p->offset, SEEK_SET) < 0) + return log_error_errno(errno, "Failed to seek to partition offset: %m"); + + if (lseek(t->fd, 0, SEEK_SET) < 0) + return log_error_errno(errno, "Failed to seek to start of temporary file: %m"); + + if (fstat(t->fd, &st) < 0) + return log_error_errno(errno, "Failed to stat temporary file: %m"); + + if (st.st_size > (off_t) p->new_size) + return log_error_errno(SYNTHETIC_ERRNO(ENOSPC), + "Partition %" PRIu64 "'s contents (%s) don't fit in the partition (%s)", + p->partno, FORMAT_BYTES(st.st_size), FORMAT_BYTES(p->new_size)); + + r = copy_bytes(t->fd, whole_fd, UINT64_MAX, COPY_REFLINK|COPY_HOLES|COPY_FSYNC); + if (r < 0) + return log_error_errno(r, "Failed to copy bytes to partition: %m"); + } else { + if (fsync(t->whole_fd) < 0) + return log_error_errno(errno, "Failed to sync changes: %m"); + } + + return 0; +} + +static int partition_encrypt(Context *context, Partition *p, PartitionTarget *target, bool offline) { +#if HAVE_LIBCRYPTSETUP && HAVE_CRYPT_SET_DATA_OFFSET && HAVE_CRYPT_REENCRYPT_INIT_BY_PASSPHRASE && HAVE_CRYPT_REENCRYPT + const char *node = partition_target_path(target); + struct crypt_params_luks2 luks_params = { + .label = strempty(ASSERT_PTR(p)->new_label), + .sector_size = ASSERT_PTR(context)->fs_sector_size, + .data_device = offline ? node : NULL, + }; + struct crypt_params_reencrypt reencrypt_params = { + .mode = CRYPT_REENCRYPT_ENCRYPT, + .direction = CRYPT_REENCRYPT_BACKWARD, + .resilience = "datashift", + .data_shift = LUKS2_METADATA_SIZE / 512, + .luks2 = &luks_params, + .flags = CRYPT_REENCRYPT_INITIALIZE_ONLY|CRYPT_REENCRYPT_MOVE_FIRST_SEGMENT, + }; + _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL; + _cleanup_(erase_and_freep) char *base64_encoded = NULL; + _cleanup_fclose_ FILE *h = NULL; + _cleanup_free_ char *hp = NULL, *vol = NULL, *dm_name = NULL; + const char *passphrase = NULL; + size_t passphrase_size = 0; + const char *vt; + int r; + + assert(context); + assert(p); + assert(p->encrypt != ENCRYPT_OFF); + + r = dlopen_cryptsetup(); + if (r < 0) + return log_error_errno(r, "libcryptsetup not found, cannot encrypt: %m"); + + log_info("Encrypting future partition %" PRIu64 "...", p->partno); + + if (offline) { + r = var_tmp_dir(&vt); + if (r < 0) + return log_error_errno(r, "Failed to determine temporary files directory: %m"); + + r = fopen_temporary_child(vt, &h, &hp); + if (r < 0) + return log_error_errno(r, "Failed to create temporary LUKS header file: %m"); + + /* Weird cryptsetup requirement which requires the header file to be the size of at least one + * sector. */ + if (ftruncate(fileno(h), luks_params.sector_size) < 0) + return log_error_errno(errno, "Failed to grow temporary LUKS header file: %m"); + } else { + if (asprintf(&dm_name, "luks-repart-%08" PRIx64, random_u64()) < 0) + return log_oom(); + + vol = path_join("/dev/mapper/", dm_name); + if (!vol) + return log_oom(); + } + + r = sym_crypt_init(&cd, offline ? hp : node); + if (r < 0) + return log_error_errno(r, "Failed to allocate libcryptsetup context for %s: %m", hp); + + cryptsetup_enable_logging(cd); + + if (offline) { + /* Disable kernel keyring usage by libcryptsetup as a workaround for + * https://gitlab.com/cryptsetup/cryptsetup/-/merge_requests/273. This makes sure that we can + * do offline encryption even when repart is running in a container. */ + r = sym_crypt_volume_key_keyring(cd, false); + if (r < 0) + return log_error_errno(r, "Failed to disable kernel keyring: %m"); + + r = sym_crypt_metadata_locking(cd, false); + if (r < 0) + return log_error_errno(r, "Failed to disable metadata locking: %m"); + + r = sym_crypt_set_data_offset(cd, LUKS2_METADATA_SIZE / 512); + if (r < 0) + return log_error_errno(r, "Failed to set data offset: %m"); + } + + r = sym_crypt_format( + cd, + CRYPT_LUKS2, + "aes", + "xts-plain64", + SD_ID128_TO_UUID_STRING(p->luks_uuid), + NULL, + VOLUME_KEY_SIZE, + &luks_params); + if (r < 0) + return log_error_errno(r, "Failed to LUKS2 format future partition: %m"); + + if (IN_SET(p->encrypt, ENCRYPT_KEY_FILE, ENCRYPT_KEY_FILE_TPM2)) { + r = sym_crypt_keyslot_add_by_volume_key( + cd, + CRYPT_ANY_SLOT, + NULL, + VOLUME_KEY_SIZE, + strempty(arg_key), + arg_key_size); + if (r < 0) + return log_error_errno(r, "Failed to add LUKS2 key: %m"); + + passphrase = strempty(arg_key); + passphrase_size = arg_key_size; + } + + if (IN_SET(p->encrypt, ENCRYPT_TPM2, ENCRYPT_KEY_FILE_TPM2)) { +#if HAVE_TPM2 + _cleanup_(json_variant_unrefp) JsonVariant *v = NULL; + _cleanup_(erase_and_freep) void *secret = NULL; + _cleanup_free_ void *pubkey = NULL; + _cleanup_free_ void *blob = NULL, *srk_buf = NULL; + size_t secret_size, blob_size, pubkey_size = 0, srk_buf_size = 0; + ssize_t base64_encoded_size; + int keyslot; + TPM2Flags flags = 0; + + if (arg_tpm2_public_key_pcr_mask != 0) { + r = tpm2_load_pcr_public_key(arg_tpm2_public_key, &pubkey, &pubkey_size); + if (r < 0) { + if (arg_tpm2_public_key || r != -ENOENT) + return log_error_errno(r, "Failed to read TPM PCR public key: %m"); + + log_debug_errno(r, "Failed to read TPM2 PCR public key, proceeding without: %m"); + arg_tpm2_public_key_pcr_mask = 0; + } + } + + TPM2B_PUBLIC public; + if (pubkey) { + r = tpm2_tpm2b_public_from_pem(pubkey, pubkey_size, &public); + if (r < 0) + return log_error_errno(r, "Could not convert public key to TPM2B_PUBLIC: %m"); + } + + _cleanup_(tpm2_pcrlock_policy_done) Tpm2PCRLockPolicy pcrlock_policy = {}; + if (arg_tpm2_pcrlock) { + r = tpm2_pcrlock_policy_load(arg_tpm2_pcrlock, &pcrlock_policy); + if (r < 0) + return r; + + flags |= TPM2_FLAGS_USE_PCRLOCK; + } + + _cleanup_(tpm2_context_unrefp) Tpm2Context *tpm2_context = NULL; + TPM2B_PUBLIC device_key_public = {}; + if (arg_tpm2_device_key) { + r = tpm2_load_public_key_file(arg_tpm2_device_key, &device_key_public); + if (r < 0) + return r; + + if (!tpm2_pcr_values_has_all_values(arg_tpm2_hash_pcr_values, arg_tpm2_n_hash_pcr_values)) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), + "Must provide all PCR values when using TPM2 device key."); + } else { + r = tpm2_context_new(arg_tpm2_device, &tpm2_context); + if (r < 0) + return log_error_errno(r, "Failed to create TPM2 context: %m"); + + if (!tpm2_pcr_values_has_all_values(arg_tpm2_hash_pcr_values, arg_tpm2_n_hash_pcr_values)) { + r = tpm2_pcr_read_missing_values(tpm2_context, arg_tpm2_hash_pcr_values, arg_tpm2_n_hash_pcr_values); + if (r < 0) + return log_error_errno(r, "Could not read pcr values: %m"); + } + } + + uint16_t hash_pcr_bank = 0; + uint32_t hash_pcr_mask = 0; + if (arg_tpm2_n_hash_pcr_values > 0) { + size_t hash_count; + r = tpm2_pcr_values_hash_count(arg_tpm2_hash_pcr_values, arg_tpm2_n_hash_pcr_values, &hash_count); + if (r < 0) + return log_error_errno(r, "Could not get hash count: %m"); + + if (hash_count > 1) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Multiple PCR banks selected."); + + hash_pcr_bank = arg_tpm2_hash_pcr_values[0].hash; + r = tpm2_pcr_values_to_mask(arg_tpm2_hash_pcr_values, arg_tpm2_n_hash_pcr_values, hash_pcr_bank, &hash_pcr_mask); + if (r < 0) + return log_error_errno(r, "Could not get hash mask: %m"); + } + + TPM2B_DIGEST policy = TPM2B_DIGEST_MAKE(NULL, TPM2_SHA256_DIGEST_SIZE); + r = tpm2_calculate_sealing_policy( + arg_tpm2_hash_pcr_values, + arg_tpm2_n_hash_pcr_values, + pubkey ? &public : NULL, + /* use_pin= */ false, + arg_tpm2_pcrlock ? &pcrlock_policy : NULL, + &policy); + if (r < 0) + return log_error_errno(r, "Could not calculate sealing policy digest: %m"); + + if (arg_tpm2_device_key) + r = tpm2_calculate_seal( + arg_tpm2_seal_key_handle, + &device_key_public, + /* attributes= */ NULL, + /* secret= */ NULL, /* secret_size= */ 0, + &policy, + /* pin= */ NULL, + &secret, &secret_size, + &blob, &blob_size, + &srk_buf, &srk_buf_size); + else + r = tpm2_seal(tpm2_context, + arg_tpm2_seal_key_handle, + &policy, + /* pin= */ NULL, + &secret, &secret_size, + &blob, &blob_size, + /* ret_primary_alg= */ NULL, + &srk_buf, &srk_buf_size); + if (r < 0) + return log_error_errno(r, "Failed to seal to TPM2: %m"); + + base64_encoded_size = base64mem(secret, secret_size, &base64_encoded); + if (base64_encoded_size < 0) + return log_error_errno(base64_encoded_size, "Failed to base64 encode secret key: %m"); + + r = cryptsetup_set_minimal_pbkdf(cd); + if (r < 0) + return log_error_errno(r, "Failed to set minimal PBKDF: %m"); + + keyslot = sym_crypt_keyslot_add_by_volume_key( + cd, + CRYPT_ANY_SLOT, + /* volume_key= */ NULL, + /* volume_key_size= */ VOLUME_KEY_SIZE, + base64_encoded, + base64_encoded_size); + if (keyslot < 0) + return log_error_errno(keyslot, "Failed to add new TPM2 key: %m"); + + r = tpm2_make_luks2_json( + keyslot, + hash_pcr_mask, + hash_pcr_bank, + pubkey, pubkey_size, + arg_tpm2_public_key_pcr_mask, + /* primary_alg= */ 0, + blob, blob_size, + policy.buffer, policy.size, + NULL, 0, /* no salt because tpm2_seal has no pin */ + srk_buf, srk_buf_size, + flags, + &v); + if (r < 0) + return log_error_errno(r, "Failed to prepare TPM2 JSON token object: %m"); + + r = cryptsetup_add_token_json(cd, v); + if (r < 0) + return log_error_errno(r, "Failed to add TPM2 JSON token to LUKS2 header: %m"); + + passphrase = base64_encoded; + passphrase_size = strlen(base64_encoded); +#else + return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), + "Support for TPM2 enrollment not enabled."); +#endif + } + + if (offline) { + r = sym_crypt_reencrypt_init_by_passphrase( + cd, + NULL, + passphrase, + passphrase_size, + CRYPT_ANY_SLOT, + 0, + sym_crypt_get_cipher(cd), + sym_crypt_get_cipher_mode(cd), + &reencrypt_params); + if (r < 0) + return log_error_errno(r, "Failed to prepare for reencryption: %m"); + + /* crypt_reencrypt_init_by_passphrase() doesn't actually put the LUKS header at the front, we + * have to do that ourselves. */ + + sym_crypt_free(cd); + cd = NULL; + + r = sym_crypt_init(&cd, node); + if (r < 0) + return log_error_errno(r, "Failed to allocate libcryptsetup context for %s: %m", node); + + r = sym_crypt_header_restore(cd, CRYPT_LUKS2, hp); + if (r < 0) + return log_error_errno(r, "Failed to place new LUKS header at head of %s: %m", node); + + reencrypt_params.flags &= ~CRYPT_REENCRYPT_INITIALIZE_ONLY; + + r = sym_crypt_reencrypt_init_by_passphrase( + cd, + NULL, + passphrase, + passphrase_size, + CRYPT_ANY_SLOT, + 0, + NULL, + NULL, + &reencrypt_params); + if (r < 0) + return log_error_errno(r, "Failed to load reencryption context: %m"); + + r = sym_crypt_reencrypt(cd, NULL); + if (r < 0) + return log_error_errno(r, "Failed to encrypt %s: %m", node); + } else { + _cleanup_free_ DecryptedPartitionTarget *t = NULL; + _cleanup_close_ int dev_fd = -1; + + r = sym_crypt_activate_by_volume_key( + cd, + dm_name, + NULL, + VOLUME_KEY_SIZE, + arg_discard ? CRYPT_ACTIVATE_ALLOW_DISCARDS : 0); + if (r < 0) + return log_error_errno(r, "Failed to activate LUKS superblock: %m"); + + dev_fd = open(vol, O_RDWR|O_CLOEXEC|O_NOCTTY); + if (dev_fd < 0) + return log_error_errno(errno, "Failed to open LUKS volume '%s': %m", vol); + + if (flock(dev_fd, LOCK_EX) < 0) + return log_error_errno(errno, "Failed to lock '%s': %m", vol); + + t = new(DecryptedPartitionTarget, 1); + if (!t) + return log_oom(); + + *t = (DecryptedPartitionTarget) { + .fd = TAKE_FD(dev_fd), + .dm_name = TAKE_PTR(dm_name), + .volume = TAKE_PTR(vol), + .device = TAKE_PTR(cd), + }; + + target->decrypted = TAKE_PTR(t); + } + + log_info("Successfully encrypted future partition %" PRIu64 ".", p->partno); + + return 0; +#else + return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), + "libcryptsetup is not supported or is missing required symbols, cannot encrypt: %m"); +#endif +} + +static int partition_format_verity_hash( + Context *context, + Partition *p, + const char *node, + const char *data_node) { + +#if HAVE_LIBCRYPTSETUP + Partition *dp; + _cleanup_(partition_target_freep) PartitionTarget *t = NULL; + _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL; + _cleanup_free_ char *hint = NULL; + int r; + + assert(context); + assert(p); + assert(p->verity == VERITY_HASH); + assert(data_node); + + if (p->dropped) + return 0; + + if (PARTITION_EXISTS(p)) /* Never format existing partitions */ + return 0; + + /* Minimized partitions will use the copy blocks logic so let's make sure to skip those here. */ + if (p->copy_blocks_fd >= 0) + return 0; + + assert_se(dp = p->siblings[VERITY_DATA]); + assert(!dp->dropped); + + (void) partition_hint(p, node, &hint); + + r = dlopen_cryptsetup(); + if (r < 0) + return log_error_errno(r, "libcryptsetup not found, cannot setup verity: %m"); + + if (!node) { + r = partition_target_prepare(context, p, p->new_size, /*need_path=*/ true, &t); + if (r < 0) + return r; + + node = partition_target_path(t); + } + + if (p->verity_data_block_size == UINT64_MAX) + p->verity_data_block_size = context->fs_sector_size; + if (p->verity_hash_block_size == UINT64_MAX) + p->verity_hash_block_size = context->fs_sector_size; + + r = sym_crypt_init(&cd, node); + if (r < 0) + return log_error_errno(r, "Failed to allocate libcryptsetup context for %s: %m", node); + + cryptsetup_enable_logging(cd); + + r = sym_crypt_format( + cd, CRYPT_VERITY, NULL, NULL, SD_ID128_TO_UUID_STRING(p->verity_uuid), NULL, 0, + &(struct crypt_params_verity){ + .data_device = data_node, + .flags = CRYPT_VERITY_CREATE_HASH, + .hash_name = "sha256", + .hash_type = 1, + .data_block_size = p->verity_data_block_size, + .hash_block_size = p->verity_hash_block_size, + .salt_size = sizeof(p->verity_salt), + .salt = (const char*)p->verity_salt, + }); + if (r < 0) { + /* libcryptsetup reports non-descriptive EIO errors for every I/O failure. Luckily, it + * doesn't clobber errno so let's check for ENOSPC so we can report a better error if the + * partition is too small. */ + if (r == -EIO && errno == ENOSPC) + return log_error_errno(errno, + "Verity hash data does not fit in partition %s with size %s", + strna(hint), FORMAT_BYTES(p->new_size)); + + return log_error_errno(r, "Failed to setup verity hash data of partition %s: %m", strna(hint)); + } + + if (t) { + r = partition_target_sync(context, p, t); + if (r < 0) + return r; + } + + r = sym_crypt_get_volume_key_size(cd); + if (r < 0) + return log_error_errno(r, "Failed to determine verity root hash size of partition %s: %m", strna(hint)); + + _cleanup_(iovec_done) struct iovec rh = { + .iov_base = malloc(r), + .iov_len = r, + }; + if (!rh.iov_base) + return log_oom(); + + r = sym_crypt_volume_key_get(cd, CRYPT_ANY_SLOT, (char *) rh.iov_base, &rh.iov_len, NULL, 0); + if (r < 0) + return log_error_errno(r, "Failed to get verity root hash of partition %s: %m", strna(hint)); + + assert(rh.iov_len >= sizeof(sd_id128_t) * 2); + + if (!dp->new_uuid_is_set) { + memcpy_safe(dp->new_uuid.bytes, rh.iov_base, sizeof(sd_id128_t)); + dp->new_uuid_is_set = true; + } + + if (!p->new_uuid_is_set) { + memcpy_safe(p->new_uuid.bytes, (uint8_t*) rh.iov_base + (rh.iov_len - sizeof(sd_id128_t)), sizeof(sd_id128_t)); + p->new_uuid_is_set = true; + } + + p->roothash = TAKE_STRUCT(rh); + + return 0; +#else + return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "libcryptsetup is not supported, cannot setup verity hashes: %m"); +#endif +} + +static int sign_verity_roothash( + const struct iovec *roothash, + struct iovec *ret_signature) { + +#if HAVE_OPENSSL + _cleanup_(BIO_freep) BIO *rb = NULL; + _cleanup_(PKCS7_freep) PKCS7 *p7 = NULL; + _cleanup_free_ char *hex = NULL; + _cleanup_free_ uint8_t *sig = NULL; + int sigsz; + + assert(roothash); + assert(iovec_is_set(roothash)); + assert(ret_signature); + + hex = hexmem(roothash->iov_base, roothash->iov_len); + if (!hex) + return log_oom(); + + rb = BIO_new_mem_buf(hex, -1); + if (!rb) + return log_oom(); + + p7 = PKCS7_sign(arg_certificate, arg_private_key, NULL, rb, PKCS7_DETACHED|PKCS7_NOATTR|PKCS7_BINARY); + if (!p7) + return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to calculate PKCS7 signature: %s", + ERR_error_string(ERR_get_error(), NULL)); + + sigsz = i2d_PKCS7(p7, &sig); + if (sigsz < 0) + return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to convert PKCS7 signature to DER: %s", + ERR_error_string(ERR_get_error(), NULL)); + + ret_signature->iov_base = TAKE_PTR(sig); + ret_signature->iov_len = sigsz; + + return 0; +#else + return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "OpenSSL is not supported, cannot setup verity signature: %m"); +#endif +} + +static int partition_format_verity_sig(Context *context, Partition *p) { + _cleanup_(json_variant_unrefp) JsonVariant *v = NULL; + _cleanup_(iovec_done) struct iovec sig = {}; + _cleanup_free_ char *text = NULL, *hint = NULL; + Partition *hp; + uint8_t fp[X509_FINGERPRINT_SIZE]; + int whole_fd, r; + + assert(p->verity == VERITY_SIG); + + if (p->dropped) + return 0; + + if (PARTITION_EXISTS(p)) + return 0; + + (void) partition_hint(p, context->node, &hint); + + assert_se(hp = p->siblings[VERITY_HASH]); + assert(!hp->dropped); + + assert(arg_certificate); + + assert_se((whole_fd = fdisk_get_devfd(context->fdisk_context)) >= 0); + + r = sign_verity_roothash(&hp->roothash, &sig); + if (r < 0) + return r; + + r = x509_fingerprint(arg_certificate, fp); + if (r < 0) + return log_error_errno(r, "Unable to calculate X509 certificate fingerprint: %m"); + + r = json_build(&v, + JSON_BUILD_OBJECT( + JSON_BUILD_PAIR("rootHash", JSON_BUILD_HEX(hp->roothash.iov_base, hp->roothash.iov_len)), + JSON_BUILD_PAIR( + "certificateFingerprint", + JSON_BUILD_HEX(fp, sizeof(fp)) + ), + JSON_BUILD_PAIR("signature", JSON_BUILD_IOVEC_BASE64(&sig)) + ) + ); + if (r < 0) + return log_error_errno(r, "Failed to build verity signature JSON object: %m"); + + r = json_variant_format(v, 0, &text); + if (r < 0) + return log_error_errno(r, "Failed to format verity signature JSON object: %m"); + + if (strlen(text)+1 > p->new_size) + return log_error_errno(SYNTHETIC_ERRNO(E2BIG), "Verity signature too long for partition: %m"); + + r = strgrowpad0(&text, p->new_size); + if (r < 0) + return log_error_errno(r, "Failed to pad string to %s", FORMAT_BYTES(p->new_size)); + + if (lseek(whole_fd, p->offset, SEEK_SET) < 0) + return log_error_errno(errno, "Failed to seek to partition %s offset: %m", strna(hint)); + + r = loop_write(whole_fd, text, p->new_size); + if (r < 0) + return log_error_errno(r, "Failed to write verity signature to partition %s: %m", strna(hint)); + + if (fsync(whole_fd) < 0) + return log_error_errno(errno, "Failed to synchronize partition %s: %m", strna(hint)); + + return 0; +} + +static int context_copy_blocks(Context *context) { + int r; + + assert(context); + + /* Copy in file systems on the block level */ + + LIST_FOREACH(partitions, p, context->partitions) { + _cleanup_(partition_target_freep) PartitionTarget *t = NULL; + + if (p->copy_blocks_fd < 0) + continue; + + if (p->dropped) + continue; + + if (PARTITION_EXISTS(p)) /* Never copy over existing partitions */ + continue; + + if (partition_type_defer(&p->type)) + continue; + + assert(p->new_size != UINT64_MAX); + assert(p->copy_blocks_size != UINT64_MAX); + assert(p->new_size >= p->copy_blocks_size + (p->encrypt != ENCRYPT_OFF ? LUKS2_METADATA_KEEP_FREE : 0)); + + usec_t start_timestamp = now(CLOCK_MONOTONIC); + + r = partition_target_prepare(context, p, p->new_size, + /*need_path=*/ p->encrypt != ENCRYPT_OFF || p->siblings[VERITY_HASH], + &t); + if (r < 0) + return r; + + if (p->encrypt != ENCRYPT_OFF && t->loop) { + r = partition_encrypt(context, p, t, /* offline = */ false); + if (r < 0) + return r; + } + + if (p->copy_blocks_offset == UINT64_MAX) + log_info("Copying in '%s' (%s) on block level into future partition %" PRIu64 ".", + p->copy_blocks_path, FORMAT_BYTES(p->copy_blocks_size), p->partno); + else { + log_info("Copying in '%s' @ %" PRIu64 " (%s) on block level into future partition %" PRIu64 ".", + p->copy_blocks_path, p->copy_blocks_offset, FORMAT_BYTES(p->copy_blocks_size), p->partno); + + if (lseek(p->copy_blocks_fd, p->copy_blocks_offset, SEEK_SET) < 0) + return log_error_errno(errno, "Failed to seek to copy blocks offset in %s: %m", p->copy_blocks_path); + } + + r = copy_bytes(p->copy_blocks_fd, partition_target_fd(t), p->copy_blocks_size, COPY_REFLINK); + if (r < 0) + return log_error_errno(r, "Failed to copy in data from '%s': %m", p->copy_blocks_path); + + log_info("Copying in of '%s' on block level completed.", p->copy_blocks_path); + + if (p->encrypt != ENCRYPT_OFF && !t->loop) { + r = partition_encrypt(context, p, t, /* offline = */ true); + if (r < 0) + return r; + } + + r = partition_target_sync(context, p, t); + if (r < 0) + return r; + + usec_t time_spent = usec_sub_unsigned(now(CLOCK_MONOTONIC), start_timestamp); + if (time_spent > 250 * USEC_PER_MSEC) /* Show throughput, but not if we spent too little time on it, since it's just noise then */ + log_info("Block level copying and synchronization of partition %" PRIu64 " complete in %s (%s/s).", + p->partno, FORMAT_TIMESPAN(time_spent, 0), FORMAT_BYTES((uint64_t) ((double) p->copy_blocks_size / time_spent * USEC_PER_SEC))); + else + log_info("Block level copying and synchronization of partition %" PRIu64 " complete in %s.", + p->partno, FORMAT_TIMESPAN(time_spent, 0)); + + if (p->siblings[VERITY_HASH] && !partition_type_defer(&p->siblings[VERITY_HASH]->type)) { + r = partition_format_verity_hash(context, p->siblings[VERITY_HASH], + /* node = */ NULL, partition_target_path(t)); + if (r < 0) + return r; + } + + if (p->siblings[VERITY_SIG] && !partition_type_defer(&p->siblings[VERITY_SIG]->type)) { + r = partition_format_verity_sig(context, p->siblings[VERITY_SIG]); + if (r < 0) + return r; + } + } + + return 0; +} + +static int add_exclude_path(const char *path, Hashmap **denylist, DenyType type) { + _cleanup_free_ struct stat *st = NULL; + int r; + + assert(path); + assert(denylist); + + st = new(struct stat, 1); + if (!st) + return log_oom(); + + r = chase_and_stat(path, arg_copy_source, CHASE_PREFIX_ROOT, NULL, st); + if (r == -ENOENT) + return 0; + if (r < 0) + return log_error_errno(r, "Failed to stat source file '%s/%s': %m", strempty(arg_copy_source), path); + + r = hashmap_ensure_put(denylist, &inode_hash_ops, st, INT_TO_PTR(type)); + if (r == -EEXIST) + return 0; + if (r < 0) + return log_oom(); + if (r > 0) + TAKE_PTR(st); + + return 0; +} + +static int make_copy_files_denylist( + Context *context, + const Partition *p, + const char *source, + const char *target, + Hashmap **ret) { + + _cleanup_hashmap_free_ Hashmap *denylist = NULL; + int r; + + assert(context); + assert(p); + assert(source); + assert(target); + assert(ret); + + /* Always exclude the top level APIVFS and temporary directories since the contents of these + * directories are almost certainly not intended to end up in an image. */ + + NULSTR_FOREACH(s, APIVFS_TMP_DIRS_NULSTR) { + r = add_exclude_path(s, &denylist, DENY_CONTENTS); + if (r < 0) + return r; + } + + /* Add the user configured excludes. */ + + STRV_FOREACH(e, p->exclude_files_source) { + r = add_exclude_path(*e, &denylist, endswith(*e, "/") ? DENY_CONTENTS : DENY_INODE); + if (r < 0) + return r; + } + + STRV_FOREACH(e, p->exclude_files_target) { + _cleanup_free_ char *path = NULL; + + const char *s = path_startswith(*e, target); + if (!s) + continue; + + path = path_join(source, s); + if (!path) + return log_oom(); + + r = add_exclude_path(path, &denylist, endswith(*e, "/") ? DENY_CONTENTS : DENY_INODE); + if (r < 0) + return r; + } + + /* If we're populating a root partition, we don't want any files to end up under the APIVFS mount + * points. While we already exclude <source>/proc, users could still do something such as + * "CopyFiles=/abc:/". Now, if /abc has a proc subdirectory with files in it, those will end up in + * the top level proc directory in the root partition, which we want to avoid. To deal with these + * cases, whenever we're populating a root partition and the target of CopyFiles= is the root + * directory of the root partition, we exclude all directories under the source that are named after + * APIVFS directories or named after mount points of other partitions that are also going to be part + * of the image. */ + + if (p->type.designator == PARTITION_ROOT && empty_or_root(target)) { + LIST_FOREACH(partitions, q, context->partitions) { + if (q->type.designator == PARTITION_ROOT) + continue; + + const char *sources = gpt_partition_type_mountpoint_nulstr(q->type); + if (!sources) + continue; + + NULSTR_FOREACH(s, sources) { + _cleanup_free_ char *path = NULL; + + /* Exclude only the children of partition mount points so that the nested + * partition mount point itself still ends up in the upper partition. */ + + path = path_join(source, s); + if (!path) + return -ENOMEM; + + r = add_exclude_path(path, &denylist, DENY_CONTENTS); + if (r < 0) + return r; + } + } + + NULSTR_FOREACH(s, APIVFS_TMP_DIRS_NULSTR) { + _cleanup_free_ char *path = NULL; + + path = path_join(source, s); + if (!path) + return -ENOMEM; + + r = add_exclude_path(path, &denylist, DENY_CONTENTS); + if (r < 0) + return r; + } + } + + *ret = TAKE_PTR(denylist); + return 0; +} + +static int add_subvolume_path(const char *path, Set **subvolumes) { + _cleanup_free_ struct stat *st = NULL; + int r; + + assert(path); + assert(subvolumes); + + st = new(struct stat, 1); + if (!st) + return log_oom(); + + r = chase_and_stat(path, arg_copy_source, CHASE_PREFIX_ROOT, NULL, st); + if (r == -ENOENT) + return 0; + if (r < 0) + return log_error_errno(r, "Failed to stat source file '%s/%s': %m", strempty(arg_copy_source), path); + + r = set_ensure_consume(subvolumes, &inode_hash_ops, TAKE_PTR(st)); + if (r < 0) + return log_oom(); + + return 0; +} + +static int make_subvolumes_set( + Context *context, + const Partition *p, + const char *source, + const char *target, + Set **ret) { + _cleanup_set_free_ Set *subvolumes = NULL; + int r; + + assert(context); + assert(p); + assert(target); + assert(ret); + + STRV_FOREACH(subvolume, p->subvolumes) { + _cleanup_free_ char *path = NULL; + + const char *s = path_startswith(*subvolume, target); + if (!s) + continue; + + path = path_join(source, s); + if (!path) + return log_oom(); + + r = add_subvolume_path(path, &subvolumes); + if (r < 0) + return r; + } + + *ret = TAKE_PTR(subvolumes); + return 0; +} + +static int do_copy_files(Context *context, Partition *p, const char *root) { + int r; + + assert(p); + assert(root); + + /* copy_tree_at() automatically copies the permissions of source directories to target directories if + * it created them. However, the root directory is created by us, so we have to manually take care + * that it is initialized. We use the first source directory targeting "/" as the metadata source for + * the root directory. */ + STRV_FOREACH_PAIR(source, target, p->copy_files) { + _cleanup_close_ int rfd = -EBADF, sfd = -EBADF; + + if (!path_equal(*target, "/")) + continue; + + rfd = open(root, O_DIRECTORY|O_CLOEXEC|O_NOFOLLOW); + if (rfd < 0) + return -errno; + + sfd = chase_and_open(*source, arg_copy_source, CHASE_PREFIX_ROOT, O_PATH|O_DIRECTORY|O_CLOEXEC|O_NOCTTY, NULL); + if (sfd < 0) + return log_error_errno(sfd, "Failed to open source file '%s%s': %m", strempty(arg_copy_source), *source); + + (void) copy_xattr(sfd, NULL, rfd, NULL, COPY_ALL_XATTRS); + (void) copy_access(sfd, rfd); + (void) copy_times(sfd, rfd, 0); + + break; + } + + STRV_FOREACH_PAIR(source, target, p->copy_files) { + _cleanup_hashmap_free_ Hashmap *denylist = NULL; + _cleanup_set_free_ Set *subvolumes_by_source_inode = NULL; + _cleanup_close_ int sfd = -EBADF, pfd = -EBADF, tfd = -EBADF; + + r = make_copy_files_denylist(context, p, *source, *target, &denylist); + if (r < 0) + return r; + + r = make_subvolumes_set(context, p, *source, *target, &subvolumes_by_source_inode); + if (r < 0) + return r; + + sfd = chase_and_open(*source, arg_copy_source, CHASE_PREFIX_ROOT, O_CLOEXEC|O_NOCTTY, NULL); + if (sfd == -ENOENT) { + log_notice_errno(sfd, "Failed to open source file '%s%s', skipping: %m", strempty(arg_copy_source), *source); + continue; + } + if (sfd < 0) + return log_error_errno(sfd, "Failed to open source file '%s%s': %m", strempty(arg_copy_source), *source); + + r = fd_verify_regular(sfd); + if (r < 0) { + if (r != -EISDIR) + return log_error_errno(r, "Failed to check type of source file '%s': %m", *source); + + /* We are looking at a directory */ + tfd = chase_and_open(*target, root, CHASE_PREFIX_ROOT, O_RDONLY|O_DIRECTORY|O_CLOEXEC, NULL); + if (tfd < 0) { + _cleanup_free_ char *dn = NULL, *fn = NULL; + + if (tfd != -ENOENT) + return log_error_errno(tfd, "Failed to open target directory '%s': %m", *target); + + r = path_extract_filename(*target, &fn); + if (r < 0) + return log_error_errno(r, "Failed to extract filename from '%s': %m", *target); + + r = path_extract_directory(*target, &dn); + if (r < 0) + return log_error_errno(r, "Failed to extract directory from '%s': %m", *target); + + r = mkdir_p_root(root, dn, UID_INVALID, GID_INVALID, 0755, p->subvolumes); + if (r < 0) + return log_error_errno(r, "Failed to create parent directory '%s': %m", dn); + + pfd = chase_and_open(dn, root, CHASE_PREFIX_ROOT, O_RDONLY|O_DIRECTORY|O_CLOEXEC, NULL); + if (pfd < 0) + return log_error_errno(pfd, "Failed to open parent directory of target: %m"); + + r = copy_tree_at( + sfd, ".", + pfd, fn, + UID_INVALID, GID_INVALID, + COPY_REFLINK|COPY_HOLES|COPY_MERGE|COPY_REPLACE|COPY_SIGINT|COPY_HARDLINKS|COPY_ALL_XATTRS|COPY_GRACEFUL_WARN|COPY_TRUNCATE, + denylist, subvolumes_by_source_inode); + } else + r = copy_tree_at( + sfd, ".", + tfd, ".", + UID_INVALID, GID_INVALID, + COPY_REFLINK|COPY_HOLES|COPY_MERGE|COPY_REPLACE|COPY_SIGINT|COPY_HARDLINKS|COPY_ALL_XATTRS|COPY_GRACEFUL_WARN|COPY_TRUNCATE, + denylist, subvolumes_by_source_inode); + if (r < 0) + return log_error_errno(r, "Failed to copy '%s%s' to '%s%s': %m", + strempty(arg_copy_source), *source, strempty(root), *target); + } else { + _cleanup_free_ char *dn = NULL, *fn = NULL; + + /* We are looking at a regular file */ + + r = path_extract_filename(*target, &fn); + if (r == -EADDRNOTAVAIL || r == O_DIRECTORY) + return log_error_errno(SYNTHETIC_ERRNO(EISDIR), + "Target path '%s' refers to a directory, but source path '%s' refers to regular file, can't copy.", *target, *source); + if (r < 0) + return log_error_errno(r, "Failed to extract filename from '%s': %m", *target); + + r = path_extract_directory(*target, &dn); + if (r < 0) + return log_error_errno(r, "Failed to extract directory from '%s': %m", *target); + + r = mkdir_p_root(root, dn, UID_INVALID, GID_INVALID, 0755, p->subvolumes); + if (r < 0) + return log_error_errno(r, "Failed to create parent directory: %m"); + + pfd = chase_and_open(dn, root, CHASE_PREFIX_ROOT, O_RDONLY|O_DIRECTORY|O_CLOEXEC, NULL); + if (pfd < 0) + return log_error_errno(pfd, "Failed to open parent directory of target: %m"); + + tfd = openat(pfd, fn, O_CREAT|O_EXCL|O_WRONLY|O_CLOEXEC, 0700); + if (tfd < 0) + return log_error_errno(errno, "Failed to create target file '%s': %m", *target); + + r = copy_bytes(sfd, tfd, UINT64_MAX, COPY_REFLINK|COPY_HOLES|COPY_SIGINT|COPY_TRUNCATE); + if (r < 0) + return log_error_errno(r, "Failed to copy '%s' to '%s%s': %m", *source, strempty(arg_copy_source), *target); + + (void) copy_xattr(sfd, NULL, tfd, NULL, COPY_ALL_XATTRS); + (void) copy_access(sfd, tfd); + (void) copy_times(sfd, tfd, 0); + } + } + + return 0; +} + +static int do_make_directories(Partition *p, const char *root) { + int r; + + assert(p); + assert(root); + + STRV_FOREACH(d, p->make_directories) { + r = mkdir_p_root(root, *d, UID_INVALID, GID_INVALID, 0755, p->subvolumes); + if (r < 0) + return log_error_errno(r, "Failed to create directory '%s' in file system: %m", *d); + } + + return 0; +} + +static bool partition_needs_populate(Partition *p) { + assert(p); + return !strv_isempty(p->copy_files) || !strv_isempty(p->make_directories); +} + +static int partition_populate_directory(Context *context, Partition *p, char **ret) { + _cleanup_(rm_rf_physical_and_freep) char *root = NULL; + const char *vt; + int r; + + assert(ret); + + log_info("Populating %s filesystem.", p->format); + + r = var_tmp_dir(&vt); + if (r < 0) + return log_error_errno(r, "Could not determine temporary directory: %m"); + + r = tempfn_random_child(vt, "repart", &root); + if (r < 0) + return log_error_errno(r, "Failed to generate temporary directory: %m"); + + r = mkdir(root, 0755); + if (r < 0) + return log_error_errno(errno, "Failed to create temporary directory: %m"); + + r = do_copy_files(context, p, root); + if (r < 0) + return r; + + r = do_make_directories(p, root); + if (r < 0) + return r; + + log_info("Successfully populated %s filesystem.", p->format); + + *ret = TAKE_PTR(root); + return 0; +} + +static int partition_populate_filesystem(Context *context, Partition *p, const char *node) { + int r; + + assert(p); + assert(node); + + log_info("Populating %s filesystem.", p->format); + + /* We copy in a child process, since we have to mount the fs for that, and we don't want that fs to + * appear in the host namespace. Hence we fork a child that has its own file system namespace and + * detached mount propagation. */ + + r = safe_fork("(sd-copy)", FORK_DEATHSIG_SIGTERM|FORK_LOG|FORK_WAIT|FORK_NEW_MOUNTNS|FORK_MOUNTNS_SLAVE, NULL); + if (r < 0) + return r; + if (r == 0) { + static const char fs[] = "/run/systemd/mount-root"; + /* This is a child process with its own mount namespace and propagation to host turned off */ + + r = mkdir_p(fs, 0700); + if (r < 0) { + log_error_errno(r, "Failed to create mount point: %m"); + _exit(EXIT_FAILURE); + } + + if (mount_nofollow_verbose(LOG_ERR, node, fs, p->format, MS_NOATIME|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL) < 0) + _exit(EXIT_FAILURE); + + if (do_copy_files(context, p, fs) < 0) + _exit(EXIT_FAILURE); + + if (do_make_directories(p, fs) < 0) + _exit(EXIT_FAILURE); + + r = syncfs_path(AT_FDCWD, fs); + if (r < 0) { + log_error_errno(r, "Failed to synchronize written files: %m"); + _exit(EXIT_FAILURE); + } + + _exit(EXIT_SUCCESS); + } + + log_info("Successfully populated %s filesystem.", p->format); + return 0; +} + +static int context_mkfs(Context *context) { + int r; + + assert(context); + + /* Make a file system */ + + LIST_FOREACH(partitions, p, context->partitions) { + _cleanup_(rm_rf_physical_and_freep) char *root = NULL; + _cleanup_(partition_target_freep) PartitionTarget *t = NULL; + _cleanup_strv_free_ char **extra_mkfs_options = NULL; + + if (p->dropped) + continue; + + if (PARTITION_EXISTS(p)) /* Never format existing partitions */ + continue; + + if (!p->format) + continue; + + /* Minimized partitions will use the copy blocks logic so let's make sure to skip those here. */ + if (p->copy_blocks_fd >= 0) + continue; + + if (partition_type_defer(&p->type)) + continue; + + assert(p->offset != UINT64_MAX); + assert(p->new_size != UINT64_MAX); + assert(p->new_size >= (p->encrypt != ENCRYPT_OFF ? LUKS2_METADATA_KEEP_FREE : 0)); + + /* If we're doing encryption, we make sure we keep free space at the end which is required + * for cryptsetup's offline encryption. */ + r = partition_target_prepare(context, p, + p->new_size - (p->encrypt != ENCRYPT_OFF ? LUKS2_METADATA_KEEP_FREE : 0), + /*need_path=*/ true, + &t); + if (r < 0) + return r; + + if (p->encrypt != ENCRYPT_OFF && t->loop) { + r = partition_target_grow(t, p->new_size); + if (r < 0) + return r; + + r = partition_encrypt(context, p, t, /* offline = */ false); + if (r < 0) + return log_error_errno(r, "Failed to encrypt device: %m"); + } + + log_info("Formatting future partition %" PRIu64 ".", p->partno); + + /* If we're not writing to a loop device or if we're populating a read-only filesystem, we + * have to populate using the filesystem's mkfs's --root (or equivalent) option. To do that, + * we need to set up the final directory tree beforehand. */ + + if (partition_needs_populate(p) && (!t->loop || fstype_is_ro(p->format))) { + if (!mkfs_supports_root_option(p->format)) + return log_error_errno(SYNTHETIC_ERRNO(ENODEV), + "Loop device access is required to populate %s filesystems.", + p->format); + + r = partition_populate_directory(context, p, &root); + if (r < 0) + return r; + } + + r = mkfs_options_from_env("REPART", p->format, &extra_mkfs_options); + if (r < 0) + return log_error_errno(r, + "Failed to determine mkfs command line options for '%s': %m", + p->format); + + r = make_filesystem(partition_target_path(t), p->format, strempty(p->new_label), root, + p->fs_uuid, arg_discard, /* quiet = */ false, + context->fs_sector_size, extra_mkfs_options); + if (r < 0) + return r; + + /* The mkfs binary we invoked might have removed our temporary file when we're not operating + * on a loop device, so let's make sure we open the file again to make sure our file + * descriptor points to any potential new file. */ + + if (t->fd >= 0 && t->path && !t->loop) { + safe_close(t->fd); + t->fd = open(t->path, O_RDWR|O_CLOEXEC); + if (t->fd < 0) + return log_error_errno(errno, "Failed to reopen temporary file: %m"); + } + + log_info("Successfully formatted future partition %" PRIu64 ".", p->partno); + + /* If we're writing to a loop device, we can now mount the empty filesystem and populate it. */ + if (partition_needs_populate(p) && !root) { + assert(t->loop); + + r = partition_populate_filesystem(context, p, partition_target_path(t)); + if (r < 0) + return r; + } + + if (p->encrypt != ENCRYPT_OFF && !t->loop) { + r = partition_target_grow(t, p->new_size); + if (r < 0) + return r; + + r = partition_encrypt(context, p, t, /* offline = */ true); + if (r < 0) + return log_error_errno(r, "Failed to encrypt device: %m"); + } + + /* Note that we always sync explicitly here, since mkfs.fat doesn't do that on its own, and + * if we don't sync before detaching a block device the in-flight sectors possibly won't hit + * the disk. */ + + r = partition_target_sync(context, p, t); + if (r < 0) + return r; + + if (p->siblings[VERITY_HASH] && !partition_type_defer(&p->siblings[VERITY_HASH]->type)) { + r = partition_format_verity_hash(context, p->siblings[VERITY_HASH], + /* node = */ NULL, partition_target_path(t)); + if (r < 0) + return r; + } + + if (p->siblings[VERITY_SIG] && !partition_type_defer(&p->siblings[VERITY_SIG]->type)) { + r = partition_format_verity_sig(context, p->siblings[VERITY_SIG]); + if (r < 0) + return r; + } + } + + return 0; +} + +static int parse_x509_certificate(const char *certificate, size_t certificate_size, X509 **ret) { +#if HAVE_OPENSSL + _cleanup_(X509_freep) X509 *cert = NULL; + _cleanup_(BIO_freep) BIO *cb = NULL; + + assert(certificate); + assert(certificate_size > 0); + assert(ret); + + cb = BIO_new_mem_buf(certificate, certificate_size); + if (!cb) + return log_oom(); + + cert = PEM_read_bio_X509(cb, NULL, NULL, NULL); + if (!cert) + return log_error_errno(SYNTHETIC_ERRNO(EBADMSG), "Failed to parse X.509 certificate: %s", + ERR_error_string(ERR_get_error(), NULL)); + + if (ret) + *ret = TAKE_PTR(cert); + + return 0; +#else + return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "OpenSSL is not supported, cannot parse X509 certificate."); +#endif +} + +static int parse_private_key(const char *key, size_t key_size, EVP_PKEY **ret) { +#if HAVE_OPENSSL + _cleanup_(BIO_freep) BIO *kb = NULL; + _cleanup_(EVP_PKEY_freep) EVP_PKEY *pk = NULL; + + assert(key); + assert(key_size > 0); + assert(ret); + + kb = BIO_new_mem_buf(key, key_size); + if (!kb) + return log_oom(); + + pk = PEM_read_bio_PrivateKey(kb, NULL, NULL, NULL); + if (!pk) + return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to parse PEM private key: %s", + ERR_error_string(ERR_get_error(), NULL)); + + if (ret) + *ret = TAKE_PTR(pk); + + return 0; +#else + return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "OpenSSL is not supported, cannot parse private key."); +#endif +} + +static int partition_acquire_uuid(Context *context, Partition *p, sd_id128_t *ret) { + struct { + sd_id128_t type_uuid; + uint64_t counter; + } _packed_ plaintext = {}; + union { + uint8_t md[SHA256_DIGEST_SIZE]; + sd_id128_t id; + } result; + + uint64_t k = 0; + int r; + + assert(context); + assert(p); + assert(ret); + + /* Calculate a good UUID for the indicated partition. We want a certain degree of reproducibility, + * hence we won't generate the UUIDs randomly. Instead we use a cryptographic hash (precisely: + * HMAC-SHA256) to derive them from a single seed. The seed is generally the machine ID of the + * installation we are processing, but if random behaviour is desired can be random, too. We use the + * seed value as key for the HMAC (since the machine ID is something we generally don't want to leak) + * and the partition type as plaintext. The partition type is suffixed with a counter (only for the + * second and later partition of the same type) if we have more than one partition of the same + * time. Or in other words: + * + * With: + * SEED := /etc/machine-id + * + * If first partition instance of type TYPE_UUID: + * PARTITION_UUID := HMAC-SHA256(SEED, TYPE_UUID) + * + * For all later partition instances of type TYPE_UUID with INSTANCE being the LE64 encoded instance number: + * PARTITION_UUID := HMAC-SHA256(SEED, TYPE_UUID || INSTANCE) + */ + + LIST_FOREACH(partitions, q, context->partitions) { + if (p == q) + break; + + if (!sd_id128_equal(p->type.uuid, q->type.uuid)) + continue; + + k++; + } + + plaintext.type_uuid = p->type.uuid; + plaintext.counter = htole64(k); + + hmac_sha256(context->seed.bytes, sizeof(context->seed.bytes), + &plaintext, + k == 0 ? sizeof(sd_id128_t) : sizeof(plaintext), + result.md); + + /* Take the first half, mark it as v4 UUID */ + assert_cc(sizeof(result.md) == sizeof(result.id) * 2); + result.id = id128_make_v4_uuid(result.id); + + /* Ensure this partition UUID is actually unique, and there's no remaining partition from an earlier run? */ + LIST_FOREACH(partitions, q, context->partitions) { + if (p == q) + continue; + + if (sd_id128_in_set(result.id, q->current_uuid, q->new_uuid)) { + log_warning("Partition UUID calculated from seed for partition %" PRIu64 " already used, reverting to randomized UUID.", p->partno); + + r = sd_id128_randomize(&result.id); + if (r < 0) + return log_error_errno(r, "Failed to generate randomized UUID: %m"); + + break; + } + } + + *ret = result.id; + return 0; +} + +static int partition_acquire_label(Context *context, Partition *p, char **ret) { + _cleanup_free_ char *label = NULL; + const char *prefix; + unsigned k = 1; + + assert(context); + assert(p); + assert(ret); + + prefix = gpt_partition_type_uuid_to_string(p->type.uuid); + if (!prefix) + prefix = "linux"; + + for (;;) { + const char *ll = label ?: prefix; + bool retry = false; + + LIST_FOREACH(partitions, q, context->partitions) { + if (p == q) + break; + + if (streq_ptr(ll, q->current_label) || + streq_ptr(ll, q->new_label)) { + retry = true; + break; + } + } + + if (!retry) + break; + + label = mfree(label); + if (asprintf(&label, "%s-%u", prefix, ++k) < 0) + return log_oom(); + } + + if (!label) { + label = strdup(prefix); + if (!label) + return log_oom(); + } + + *ret = TAKE_PTR(label); + return 0; +} + +static int context_acquire_partition_uuids_and_labels(Context *context) { + int r; + + assert(context); + + LIST_FOREACH(partitions, p, context->partitions) { + sd_id128_t uuid; + + /* Never touch foreign partitions */ + if (PARTITION_IS_FOREIGN(p)) { + p->new_uuid = p->current_uuid; + + if (p->current_label) { + r = free_and_strdup_warn(&p->new_label, strempty(p->current_label)); + if (r < 0) + return r; + } + + continue; + } + + if (!sd_id128_is_null(p->current_uuid)) + p->new_uuid = uuid = p->current_uuid; /* Never change initialized UUIDs */ + else if (p->new_uuid_is_set) + uuid = p->new_uuid; + else { + /* Not explicitly set by user! */ + r = partition_acquire_uuid(context, p, &uuid); + if (r < 0) + return r; + + /* The final verity hash/data UUIDs can only be determined after formatting the + * verity hash partition. However, we still want to use the generated partition UUID + * to derive other UUIDs to keep things unique and reproducible, so we always + * generate a UUID if none is set, but we only use it as the actual partition UUID if + * verity is not configured. */ + if (!IN_SET(p->verity, VERITY_DATA, VERITY_HASH)) { + p->new_uuid = uuid; + p->new_uuid_is_set = true; + } + } + + /* Calculate the UUID for the file system as HMAC-SHA256 of the string "file-system-uuid", + * keyed off the partition UUID. */ + r = derive_uuid(uuid, "file-system-uuid", &p->fs_uuid); + if (r < 0) + return r; + + if (p->encrypt != ENCRYPT_OFF) { + r = derive_uuid(uuid, "luks-uuid", &p->luks_uuid); + if (r < 0) + return r; + } + + /* Derive the verity salt and verity superblock UUID from the seed to keep them reproducible */ + if (p->verity == VERITY_HASH) { + derive_salt(context->seed, "verity-salt", p->verity_salt); + + r = derive_uuid(context->seed, "verity-uuid", &p->verity_uuid); + if (r < 0) + return log_error_errno(r, "Failed to acquire verity uuid: %m"); + } + + if (!isempty(p->current_label)) { + /* never change initialized labels */ + r = free_and_strdup_warn(&p->new_label, p->current_label); + if (r < 0) + return r; + } else if (!p->new_label) { + /* Not explicitly set by user! */ + + r = partition_acquire_label(context, p, &p->new_label); + if (r < 0) + return r; + } + } + + return 0; +} + +static int set_gpt_flags(struct fdisk_partition *q, uint64_t flags) { + _cleanup_free_ char *a = NULL; + + for (unsigned i = 0; i < sizeof(flags) * 8; i++) { + uint64_t bit = UINT64_C(1) << i; + char buf[DECIMAL_STR_MAX(unsigned)+1]; + + if (!FLAGS_SET(flags, bit)) + continue; + + xsprintf(buf, "%u", i); + if (!strextend_with_separator(&a, ",", buf)) + return -ENOMEM; + } + + return fdisk_partition_set_attrs(q, a); +} + +static uint64_t partition_merge_flags(Partition *p) { + uint64_t f; + + assert(p); + + f = p->gpt_flags; + + if (p->no_auto >= 0) { + if (gpt_partition_type_knows_no_auto(p->type)) + SET_FLAG(f, SD_GPT_FLAG_NO_AUTO, p->no_auto); + else { + char buffer[SD_ID128_UUID_STRING_MAX]; + log_warning("Configured NoAuto=%s for partition type '%s' that doesn't support it, ignoring.", + yes_no(p->no_auto), + gpt_partition_type_uuid_to_string_harder(p->type.uuid, buffer)); + } + } + + if (p->read_only >= 0) { + if (gpt_partition_type_knows_read_only(p->type)) + SET_FLAG(f, SD_GPT_FLAG_READ_ONLY, p->read_only); + else { + char buffer[SD_ID128_UUID_STRING_MAX]; + log_warning("Configured ReadOnly=%s for partition type '%s' that doesn't support it, ignoring.", + yes_no(p->read_only), + gpt_partition_type_uuid_to_string_harder(p->type.uuid, buffer)); + } + } + + if (p->growfs >= 0) { + if (gpt_partition_type_knows_growfs(p->type)) + SET_FLAG(f, SD_GPT_FLAG_GROWFS, p->growfs); + else { + char buffer[SD_ID128_UUID_STRING_MAX]; + log_warning("Configured GrowFileSystem=%s for partition type '%s' that doesn't support it, ignoring.", + yes_no(p->growfs), + gpt_partition_type_uuid_to_string_harder(p->type.uuid, buffer)); + } + } + + return f; +} + +static int context_mangle_partitions(Context *context) { + int r; + + assert(context); + + LIST_FOREACH(partitions, p, context->partitions) { + if (p->dropped) + continue; + + if (partition_type_defer(&p->type)) + continue; + + assert(p->new_size != UINT64_MAX); + assert(p->offset != UINT64_MAX); + assert(p->partno != UINT64_MAX); + + if (PARTITION_EXISTS(p)) { + bool changed = false; + + assert(p->current_partition); + + if (p->new_size != p->current_size) { + assert(p->new_size >= p->current_size); + assert(p->new_size % context->sector_size == 0); + + r = fdisk_partition_size_explicit(p->current_partition, true); + if (r < 0) + return log_error_errno(r, "Failed to enable explicit sizing: %m"); + + r = fdisk_partition_set_size(p->current_partition, p->new_size / context->sector_size); + if (r < 0) + return log_error_errno(r, "Failed to grow partition: %m"); + + log_info("Growing existing partition %" PRIu64 ".", p->partno); + changed = true; + } + + if (!sd_id128_equal(p->new_uuid, p->current_uuid)) { + r = fdisk_partition_set_uuid(p->current_partition, SD_ID128_TO_UUID_STRING(p->new_uuid)); + if (r < 0) + return log_error_errno(r, "Failed to set partition UUID: %m"); + + log_info("Initializing UUID of existing partition %" PRIu64 ".", p->partno); + changed = true; + } + + if (!streq_ptr(p->new_label, p->current_label)) { + r = fdisk_partition_set_name(p->current_partition, strempty(p->new_label)); + if (r < 0) + return log_error_errno(r, "Failed to set partition label: %m"); + + log_info("Setting partition label of existing partition %" PRIu64 ".", p->partno); + changed = true; + } + + if (changed) { + assert(!PARTITION_IS_FOREIGN(p)); /* never touch foreign partitions */ + + r = fdisk_set_partition(context->fdisk_context, p->partno, p->current_partition); + if (r < 0) + return log_error_errno(r, "Failed to update partition: %m"); + } + } else { + _cleanup_(fdisk_unref_partitionp) struct fdisk_partition *q = NULL; + _cleanup_(fdisk_unref_parttypep) struct fdisk_parttype *t = NULL; + + assert(!p->new_partition); + assert(p->offset % context->sector_size == 0); + assert(p->new_size % context->sector_size == 0); + assert(p->new_label); + + t = fdisk_new_parttype(); + if (!t) + return log_oom(); + + r = fdisk_parttype_set_typestr(t, SD_ID128_TO_UUID_STRING(p->type.uuid)); + if (r < 0) + return log_error_errno(r, "Failed to initialize partition type: %m"); + + q = fdisk_new_partition(); + if (!q) + return log_oom(); + + r = fdisk_partition_set_type(q, t); + if (r < 0) + return log_error_errno(r, "Failed to set partition type: %m"); + + r = fdisk_partition_size_explicit(q, true); + if (r < 0) + return log_error_errno(r, "Failed to enable explicit sizing: %m"); + + r = fdisk_partition_set_start(q, p->offset / context->sector_size); + if (r < 0) + return log_error_errno(r, "Failed to position partition: %m"); + + r = fdisk_partition_set_size(q, p->new_size / context->sector_size); + if (r < 0) + return log_error_errno(r, "Failed to grow partition: %m"); + + r = fdisk_partition_set_partno(q, p->partno); + if (r < 0) + return log_error_errno(r, "Failed to set partition number: %m"); + + r = fdisk_partition_set_uuid(q, SD_ID128_TO_UUID_STRING(p->new_uuid)); + if (r < 0) + return log_error_errno(r, "Failed to set partition UUID: %m"); + + r = fdisk_partition_set_name(q, strempty(p->new_label)); + if (r < 0) + return log_error_errno(r, "Failed to set partition label: %m"); + + /* Merge the no auto + read only + growfs setting with the literal flags, and set them for the partition */ + r = set_gpt_flags(q, partition_merge_flags(p)); + if (r < 0) + return log_error_errno(r, "Failed to set GPT partition flags: %m"); + + log_info("Adding new partition %" PRIu64 " to partition table.", p->partno); + + r = fdisk_add_partition(context->fdisk_context, q, NULL); + if (r < 0) + return log_error_errno(r, "Failed to add partition: %m"); + + assert(!p->new_partition); + p->new_partition = TAKE_PTR(q); + } + } + + return 0; +} + +static int split_name_printf(Partition *p, char **ret) { + assert(p); + + const Specifier table[] = { + { 't', specifier_string, GPT_PARTITION_TYPE_UUID_TO_STRING_HARDER(p->type.uuid) }, + { 'T', specifier_id128, &p->type.uuid }, + { 'U', specifier_id128, &p->new_uuid }, + { 'n', specifier_uint64, &p->partno }, + + COMMON_SYSTEM_SPECIFIERS, + {} + }; + + return specifier_printf(p->split_name_format, NAME_MAX, table, arg_root, p, ret); +} + +static int split_node(const char *node, char **ret_base, char **ret_ext) { + _cleanup_free_ char *base = NULL, *ext = NULL; + char *e; + int r; + + assert(node); + assert(ret_base); + assert(ret_ext); + + r = path_extract_filename(node, &base); + if (r == O_DIRECTORY || r == -EADDRNOTAVAIL) + return log_error_errno(r, "Device node %s cannot be a directory", node); + if (r < 0) + return log_error_errno(r, "Failed to extract filename from %s: %m", node); + + e = endswith(base, ".raw"); + if (e) { + ext = strdup(e); + if (!ext) + return log_oom(); + + *e = 0; + } + + *ret_base = TAKE_PTR(base); + *ret_ext = TAKE_PTR(ext); + + return 0; +} + +static int split_name_resolve(Context *context) { + _cleanup_free_ char *parent = NULL, *base = NULL, *ext = NULL; + int r; + + assert(context); + + r = path_extract_directory(context->node, &parent); + if (r < 0 && r != -EDESTADDRREQ) + return log_error_errno(r, "Failed to extract directory from %s: %m", context->node); + + r = split_node(context->node, &base, &ext); + if (r < 0) + return r; + + LIST_FOREACH(partitions, p, context->partitions) { + _cleanup_free_ char *resolved = NULL; + + if (p->dropped) + continue; + + if (!p->split_name_format) + continue; + + r = split_name_printf(p, &resolved); + if (r < 0) + return log_error_errno(r, "Failed to resolve specifiers in %s: %m", p->split_name_format); + + if (parent) + p->split_path = strjoin(parent, "/", base, ".", resolved, ext); + else + p->split_path = strjoin(base, ".", resolved, ext); + if (!p->split_path) + return log_oom(); + } + + LIST_FOREACH(partitions, p, context->partitions) { + if (!p->split_path) + continue; + + LIST_FOREACH(partitions, q, context->partitions) { + if (p == q) + continue; + + if (!q->split_path) + continue; + + if (!streq(p->split_path, q->split_path)) + continue; + + return log_error_errno(SYNTHETIC_ERRNO(ENOTUNIQ), + "%s and %s have the same resolved split name \"%s\", refusing", + p->definition_path, q->definition_path, p->split_path); + } + } + + return 0; +} + +static int context_split(Context *context) { + int fd = -EBADF, r; + + if (!arg_split) + return 0; + + assert(context); + + /* We can't do resolution earlier because the partition UUIDs for verity partitions are only filled + * in after they've been generated. */ + + r = split_name_resolve(context); + if (r < 0) + return r; + + LIST_FOREACH(partitions, p, context->partitions) { + _cleanup_close_ int fdt = -EBADF; + + if (p->dropped) + continue; + + if (!p->split_path) + continue; + + if (partition_type_defer(&p->type)) + continue; + + fdt = open(p->split_path, O_WRONLY|O_NOCTTY|O_CLOEXEC|O_NOFOLLOW|O_CREAT|O_EXCL, 0666); + if (fdt < 0) + return log_error_errno(fdt, "Failed to open split partition file %s: %m", p->split_path); + + if (fd < 0) + assert_se((fd = fdisk_get_devfd(context->fdisk_context)) >= 0); + + if (lseek(fd, p->offset, SEEK_SET) < 0) + return log_error_errno(errno, "Failed to seek to partition offset: %m"); + + r = copy_bytes(fd, fdt, p->new_size, COPY_REFLINK|COPY_HOLES|COPY_TRUNCATE); + if (r < 0) + return log_error_errno(r, "Failed to copy to split partition %s: %m", p->split_path); + } + + return 0; +} + +static int context_write_partition_table(Context *context) { + _cleanup_(fdisk_unref_tablep) struct fdisk_table *original_table = NULL; + int capable, r; + + assert(context); + + if (!context->from_scratch && !context_changed(context)) { + log_info("No changes."); + return 0; + } + + if (arg_dry_run) { + log_notice("Refusing to repartition, please re-run with --dry-run=no."); + return 0; + } + + log_info("Applying changes to %s.", context->node); + + if (context->from_scratch && arg_empty != EMPTY_CREATE) { + /* Erase everything if we operate from scratch, except if the image was just created anyway, and thus is definitely empty. */ + r = context_wipe_range(context, 0, context->total); + if (r < 0) + return r; + + log_info("Wiped block device."); + + if (arg_discard) { + r = context_discard_range(context, 0, context->total); + if (r == -EOPNOTSUPP) + log_info("Storage does not support discard, not discarding entire block device data."); + else if (r < 0) + return log_error_errno(r, "Failed to discard entire block device: %m"); + else if (r > 0) + log_info("Discarded entire block device."); + } + } + + r = fdisk_get_partitions(context->fdisk_context, &original_table); + if (r < 0) + return log_error_errno(r, "Failed to acquire partition table: %m"); + + /* Wipe fs signatures and discard sectors where the new partitions are going to be placed and in the + * gaps between partitions, just to be sure. */ + r = context_wipe_and_discard(context); + if (r < 0) + return r; + + r = context_copy_blocks(context); + if (r < 0) + return r; + + r = context_mkfs(context); + if (r < 0) + return r; + + r = context_mangle_partitions(context); + if (r < 0) + return r; + + log_info("Writing new partition table."); + + r = fdisk_write_disklabel(context->fdisk_context); + if (r < 0) + return log_error_errno(r, "Failed to write partition table: %m"); + + capable = blockdev_partscan_enabled(fdisk_get_devfd(context->fdisk_context)); + if (capable == -ENOTBLK) + log_debug("Not telling kernel to reread partition table, since we are not operating on a block device."); + else if (capable < 0) + return log_error_errno(capable, "Failed to check if block device supports partition scanning: %m"); + else if (capable > 0) { + log_info("Telling kernel to reread partition table."); + + if (context->from_scratch) + r = fdisk_reread_partition_table(context->fdisk_context); + else + r = fdisk_reread_changes(context->fdisk_context, original_table); + if (r < 0) + return log_error_errno(r, "Failed to reread partition table: %m"); + } else + log_notice("Not telling kernel to reread partition table, because selected image does not support kernel partition block devices."); + + log_info("All done."); + + return 0; +} + +static int context_read_seed(Context *context, const char *root) { + int r; + + assert(context); + + if (!sd_id128_is_null(context->seed)) + return 0; + + if (!arg_randomize) { + r = id128_get_machine(root, &context->seed); + if (r >= 0) + return 0; + + if (!ERRNO_IS_MACHINE_ID_UNSET(r)) + return log_error_errno(r, "Failed to parse machine ID of image: %m"); + + log_info("No machine ID set, using randomized partition UUIDs."); + } + + r = sd_id128_randomize(&context->seed); + if (r < 0) + return log_error_errno(r, "Failed to generate randomized seed: %m"); + + return 0; +} + +static int context_factory_reset(Context *context) { + size_t n = 0; + int r; + + assert(context); + + if (arg_factory_reset <= 0) + return 0; + + if (context->from_scratch) /* Nothing to reset if we start from scratch */ + return 0; + + if (arg_dry_run) { + log_notice("Refusing to factory reset, please re-run with --dry-run=no."); + return 0; + } + + log_info("Applying factory reset."); + + LIST_FOREACH(partitions, p, context->partitions) { + + if (!p->factory_reset || !PARTITION_EXISTS(p)) + continue; + + assert(p->partno != UINT64_MAX); + + log_info("Removing partition %" PRIu64 " for factory reset.", p->partno); + + r = fdisk_delete_partition(context->fdisk_context, p->partno); + if (r < 0) + return log_error_errno(r, "Failed to remove partition %" PRIu64 ": %m", p->partno); + + n++; + } + + if (n == 0) { + log_info("Factory reset requested, but no partitions to delete found."); + return 0; + } + + r = fdisk_write_disklabel(context->fdisk_context); + if (r < 0) + return log_error_errno(r, "Failed to write disk label: %m"); + + log_info("Successfully deleted %zu partitions.", n); + return 1; +} + +static int context_can_factory_reset(Context *context) { + assert(context); + + LIST_FOREACH(partitions, p, context->partitions) + if (p->factory_reset && PARTITION_EXISTS(p)) + return true; + + return false; +} + +static int resolve_copy_blocks_auto_candidate( + dev_t partition_devno, + GptPartitionType partition_type, + dev_t restrict_devno, + sd_id128_t *ret_uuid) { + + _cleanup_(blkid_free_probep) blkid_probe b = NULL; + _cleanup_close_ int fd = -EBADF; + _cleanup_free_ char *p = NULL; + const char *pttype, *t; + sd_id128_t pt_parsed, u; + blkid_partition pp; + dev_t whole_devno; + blkid_partlist pl; + int r; + + /* Checks if the specified partition has the specified GPT type UUID, and is located on the specified + * 'restrict_devno' device. The type check is particularly relevant if we have Verity volume which is + * backed by two separate partitions: the data and the hash partitions, and we need to find the right + * one of the two. */ + + r = block_get_whole_disk(partition_devno, &whole_devno); + if (r < 0) + return log_error_errno( + r, + "Unable to determine containing block device of partition %u:%u: %m", + major(partition_devno), minor(partition_devno)); + + if (restrict_devno != (dev_t) -1 && + restrict_devno != whole_devno) + return log_error_errno( + SYNTHETIC_ERRNO(EPERM), + "Partition %u:%u is located outside of block device %u:%u, refusing.", + major(partition_devno), minor(partition_devno), + major(restrict_devno), minor(restrict_devno)); + + fd = r = device_open_from_devnum(S_IFBLK, whole_devno, O_RDONLY|O_CLOEXEC|O_NONBLOCK, &p); + if (r < 0) + return log_error_errno(r, "Failed to open block device " DEVNUM_FORMAT_STR ": %m", + DEVNUM_FORMAT_VAL(whole_devno)); + + b = blkid_new_probe(); + if (!b) + return log_oom(); + + errno = 0; + r = blkid_probe_set_device(b, fd, 0, 0); + if (r != 0) + return log_error_errno(errno_or_else(ENOMEM), "Failed to open block device '%s': %m", p); + + (void) blkid_probe_enable_partitions(b, 1); + (void) blkid_probe_set_partitions_flags(b, BLKID_PARTS_ENTRY_DETAILS); + + errno = 0; + r = blkid_do_safeprobe(b); + if (r == _BLKID_SAFEPROBE_ERROR) + return log_error_errno(errno_or_else(EIO), "Unable to probe for partition table of '%s': %m", p); + if (IN_SET(r, _BLKID_SAFEPROBE_AMBIGUOUS, _BLKID_SAFEPROBE_NOT_FOUND)) { + log_debug("Didn't find partition table on block device '%s'.", p); + return false; + } + + assert(r == _BLKID_SAFEPROBE_FOUND); + + (void) blkid_probe_lookup_value(b, "PTTYPE", &pttype, NULL); + if (!streq_ptr(pttype, "gpt")) { + log_debug("Didn't find a GPT partition table on '%s'.", p); + return false; + } + + errno = 0; + pl = blkid_probe_get_partitions(b); + if (!pl) + return log_error_errno(errno_or_else(EIO), "Unable read partition table of '%s': %m", p); + + pp = blkid_partlist_devno_to_partition(pl, partition_devno); + if (!pp) { + log_debug("Partition %u:%u has no matching partition table entry on '%s'.", + major(partition_devno), minor(partition_devno), p); + return false; + } + + t = blkid_partition_get_type_string(pp); + if (isempty(t)) { + log_debug("Partition %u:%u has no type on '%s'.", + major(partition_devno), minor(partition_devno), p); + return false; + } + + r = sd_id128_from_string(t, &pt_parsed); + if (r < 0) { + log_debug_errno(r, "Failed to parse partition type \"%s\": %m", t); + return false; + } + + if (!sd_id128_equal(pt_parsed, partition_type.uuid)) { + log_debug("Partition %u:%u has non-matching partition type " SD_ID128_FORMAT_STR " (needed: " SD_ID128_FORMAT_STR "), ignoring.", + major(partition_devno), minor(partition_devno), + SD_ID128_FORMAT_VAL(pt_parsed), SD_ID128_FORMAT_VAL(partition_type.uuid)); + return false; + } + + r = blkid_partition_get_uuid_id128(pp, &u); + if (r == -ENXIO) { + log_debug_errno(r, "Partition " DEVNUM_FORMAT_STR " has no UUID.", DEVNUM_FORMAT_VAL(partition_devno)); + return false; + } + if (r < 0) { + log_debug_errno(r, "Failed to read partition UUID of " DEVNUM_FORMAT_STR ": %m", DEVNUM_FORMAT_VAL(partition_devno)); + return false; + } + + log_debug("Automatically found partition " DEVNUM_FORMAT_STR " of right type " SD_ID128_FORMAT_STR ".", + DEVNUM_FORMAT_VAL(partition_devno), + SD_ID128_FORMAT_VAL(pt_parsed)); + + if (ret_uuid) + *ret_uuid = u; + + return true; +} + +static int find_backing_devno( + const char *path, + const char *root, + dev_t *ret) { + + _cleanup_free_ char *resolved = NULL; + int r; + + assert(path); + + r = chase(path, root, CHASE_PREFIX_ROOT, &resolved, NULL); + if (r < 0) + return r; + + r = path_is_mount_point(resolved, NULL, 0); + if (r < 0) + return r; + if (r == 0) /* Not a mount point, then it's not a partition of its own, let's not automatically use it. */ + return -ENOENT; + + r = get_block_device(resolved, ret); + if (r < 0) + return r; + if (r == 0) /* Not backed by physical file system, we can't use this */ + return -ENOENT; + + return 0; +} + +static int resolve_copy_blocks_auto( + GptPartitionType type, + const char *root, + dev_t restrict_devno, + dev_t *ret_devno, + sd_id128_t *ret_uuid) { + + const char *try1 = NULL, *try2 = NULL; + char p[SYS_BLOCK_PATH_MAX("/slaves")]; + _cleanup_closedir_ DIR *d = NULL; + sd_id128_t found_uuid = SD_ID128_NULL; + dev_t devno, found = 0; + int r; + + /* Enforce some security restrictions: CopyBlocks=auto should not be an avenue to get outside of the + * --root=/--image= confinement. Specifically, refuse CopyBlocks= in combination with --root= at all, + * and restrict block device references in the --image= case to loopback block device we set up. + * + * restrict_devno contain the dev_t of the loop back device we operate on in case of --image=, and + * thus declares which device (and its partition subdevices) we shall limit access to. If + * restrict_devno is zero no device probing access shall be allowed at all (used for --root=) and if + * it is (dev_t) -1 then free access shall be allowed (if neither switch is used). */ + + if (restrict_devno == 0) + return log_error_errno(SYNTHETIC_ERRNO(EPERM), + "Automatic discovery of backing block devices not permitted in --root= mode, refusing."); + + /* Handles CopyBlocks=auto, and finds the right source partition to copy from. We look for matching + * partitions in the host, using the appropriate directory as key and ensuring that the partition + * type matches. */ + + if (type.designator == PARTITION_ROOT) + try1 = "/"; + else if (type.designator == PARTITION_USR) + try1 = "/usr/"; + else if (type.designator == PARTITION_ROOT_VERITY) + try1 = "/"; + else if (type.designator == PARTITION_USR_VERITY) + try1 = "/usr/"; + else if (type.designator == PARTITION_ESP) { + try1 = "/efi/"; + try2 = "/boot/"; + } else if (type.designator == PARTITION_XBOOTLDR) + try1 = "/boot/"; + else + return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), + "Partition type " SD_ID128_FORMAT_STR " not supported from automatic source block device discovery.", + SD_ID128_FORMAT_VAL(type.uuid)); + + r = find_backing_devno(try1, root, &devno); + if (r == -ENOENT && try2) + r = find_backing_devno(try2, root, &devno); + if (r < 0) + return log_error_errno(r, "Failed to resolve automatic CopyBlocks= path for partition type " SD_ID128_FORMAT_STR ", sorry: %m", + SD_ID128_FORMAT_VAL(type.uuid)); + + xsprintf_sys_block_path(p, "/slaves", devno); + d = opendir(p); + if (d) { + struct dirent *de; + + for (;;) { + _cleanup_free_ char *q = NULL, *t = NULL; + sd_id128_t u; + dev_t sl; + + errno = 0; + de = readdir_no_dot(d); + if (!de) { + if (errno != 0) + return log_error_errno(errno, "Failed to read directory '%s': %m", p); + + break; + } + + if (!IN_SET(de->d_type, DT_LNK, DT_UNKNOWN)) + continue; + + q = path_join(p, de->d_name, "/dev"); + if (!q) + return log_oom(); + + r = read_one_line_file(q, &t); + if (r < 0) + return log_error_errno(r, "Failed to read %s: %m", q); + + r = parse_devnum(t, &sl); + if (r < 0) { + log_debug_errno(r, "Failed to parse %s, ignoring: %m", q); + continue; + } + if (major(sl) == 0) { + log_debug("Device backing %s is special, ignoring.", q); + continue; + } + + r = resolve_copy_blocks_auto_candidate(sl, type, restrict_devno, &u); + if (r < 0) + return r; + if (r > 0) { + /* We found a matching one! */ + if (found != 0) + return log_error_errno(SYNTHETIC_ERRNO(ENOTUNIQ), + "Multiple matching partitions found, refusing."); + + found = sl; + found_uuid = u; + } + } + } else if (errno != ENOENT) + return log_error_errno(errno, "Failed open %s: %m", p); + else { + r = resolve_copy_blocks_auto_candidate(devno, type, restrict_devno, &found_uuid); + if (r < 0) + return r; + if (r > 0) + found = devno; + } + + if (found == 0) + return log_error_errno(SYNTHETIC_ERRNO(ENXIO), + "Unable to automatically discover suitable partition to copy blocks from."); + + if (ret_devno) + *ret_devno = found; + + if (ret_uuid) + *ret_uuid = found_uuid; + + return 0; +} + +static int context_open_copy_block_paths( + Context *context, + dev_t restrict_devno) { + + int r; + + assert(context); + + LIST_FOREACH(partitions, p, context->partitions) { + _cleanup_close_ int source_fd = -EBADF; + _cleanup_free_ char *opened = NULL; + sd_id128_t uuid = SD_ID128_NULL; + uint64_t size; + struct stat st; + + if (p->copy_blocks_fd >= 0) + continue; + + assert(p->copy_blocks_size == UINT64_MAX); + + if (PARTITION_EXISTS(p)) /* Never copy over partitions that already exist! */ + continue; + + if (p->copy_blocks_path) { + + source_fd = chase_and_open(p->copy_blocks_path, p->copy_blocks_root, CHASE_PREFIX_ROOT, O_RDONLY|O_CLOEXEC|O_NONBLOCK, &opened); + if (source_fd < 0) + return log_error_errno(source_fd, "Failed to open '%s': %m", p->copy_blocks_path); + + if (fstat(source_fd, &st) < 0) + return log_error_errno(errno, "Failed to stat block copy file '%s': %m", opened); + + if (!S_ISREG(st.st_mode) && restrict_devno != (dev_t) -1) + return log_error_errno(SYNTHETIC_ERRNO(EPERM), + "Copying from block device node is not permitted in --image=/--root= mode, refusing."); + + } else if (p->copy_blocks_auto) { + dev_t devno = 0; /* Fake initialization to appease gcc. */ + + r = resolve_copy_blocks_auto(p->type, p->copy_blocks_root, restrict_devno, &devno, &uuid); + if (r < 0) + return r; + assert(devno != 0); + + source_fd = r = device_open_from_devnum(S_IFBLK, devno, O_RDONLY|O_CLOEXEC|O_NONBLOCK, &opened); + if (r < 0) + return log_error_errno(r, "Failed to open automatically determined source block copy device " DEVNUM_FORMAT_STR ": %m", + DEVNUM_FORMAT_VAL(devno)); + + if (fstat(source_fd, &st) < 0) + return log_error_errno(errno, "Failed to stat block copy file '%s': %m", opened); + } else + continue; + + if (S_ISDIR(st.st_mode)) { + _cleanup_free_ char *bdev = NULL; + dev_t devt; + + /* If the file is a directory, automatically find the backing block device */ + + if (major(st.st_dev) != 0) + devt = st.st_dev; + else { + /* Special support for btrfs */ + r = btrfs_get_block_device_fd(source_fd, &devt); + if (r == -EUCLEAN) + return btrfs_log_dev_root(LOG_ERR, r, opened); + if (r < 0) + return log_error_errno(r, "Unable to determine backing block device of '%s': %m", opened); + } + + safe_close(source_fd); + + source_fd = r = device_open_from_devnum(S_IFBLK, devt, O_RDONLY|O_CLOEXEC|O_NONBLOCK, &bdev); + if (r < 0) + return log_error_errno(r, "Failed to open block device backing '%s': %m", opened); + + if (fstat(source_fd, &st) < 0) + return log_error_errno(errno, "Failed to stat block device '%s': %m", bdev); + } + + if (S_ISREG(st.st_mode)) + size = st.st_size; + else if (S_ISBLK(st.st_mode)) { + if (ioctl(source_fd, BLKGETSIZE64, &size) != 0) + return log_error_errno(errno, "Failed to determine size of block device to copy from: %m"); + } else + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Specified path to copy blocks from '%s' is not a regular file, block device or directory, refusing: %m", opened); + + if (size <= 0) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "File to copy bytes from '%s' has zero size, refusing.", opened); + if (size % 512 != 0) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "File to copy bytes from '%s' has size that is not multiple of 512, refusing.", opened); + + p->copy_blocks_fd = TAKE_FD(source_fd); + p->copy_blocks_size = size; + + free_and_replace(p->copy_blocks_path, opened); + + /* When copying from an existing partition copy that partitions UUID if none is configured explicitly */ + if (!p->new_uuid_is_set && !sd_id128_is_null(uuid)) { + p->new_uuid = uuid; + p->new_uuid_is_set = true; + } + } + + return 0; +} + +static int fd_apparent_size(int fd, uint64_t *ret) { + off_t initial = 0; + uint64_t size = 0; + + assert(fd >= 0); + assert(ret); + + initial = lseek(fd, 0, SEEK_CUR); + if (initial < 0) + return log_error_errno(errno, "Failed to get file offset: %m"); + + for (off_t off = 0;;) { + off_t r; + + r = lseek(fd, off, SEEK_DATA); + if (r < 0 && errno == ENXIO) + /* If errno == ENXIO, that means we've reached the final hole of the file and + * that hole isn't followed by more data. */ + break; + if (r < 0) + return log_error_errno(errno, "Failed to seek data in file from offset %"PRIi64": %m", off); + + off = r; /* Set the offset to the start of the data segment. */ + + /* After copying a potential hole, find the end of the data segment by looking for + * the next hole. If we get ENXIO, we're at EOF. */ + r = lseek(fd, off, SEEK_HOLE); + if (r < 0) { + if (errno == ENXIO) + break; + return log_error_errno(errno, "Failed to seek hole in file from offset %"PRIi64": %m", off); + } + + size += r - off; + off = r; + } + + if (lseek(fd, initial, SEEK_SET) < 0) + return log_error_errno(errno, "Failed to reset file offset: %m"); + + *ret = size; + + return 0; +} + +static int context_minimize(Context *context) { + const char *vt = NULL; + int r; + + assert(context); + + LIST_FOREACH(partitions, p, context->partitions) { + _cleanup_(rm_rf_physical_and_freep) char *root = NULL; + _cleanup_(unlink_and_freep) char *temp = NULL; + _cleanup_(loop_device_unrefp) LoopDevice *d = NULL; + _cleanup_strv_free_ char **extra_mkfs_options = NULL; + _cleanup_close_ int fd = -EBADF; + _cleanup_free_ char *hint = NULL; + sd_id128_t fs_uuid; + struct stat st; + uint64_t fsz; + + if (p->dropped) + continue; + + if (PARTITION_EXISTS(p)) /* Never format existing partitions */ + continue; + + if (!p->format) + continue; + + if (p->copy_blocks_fd >= 0) + continue; + + if (p->minimize == MINIMIZE_OFF) + continue; + + if (!partition_needs_populate(p)) + continue; + + assert(!p->copy_blocks_path); + + (void) partition_hint(p, context->node, &hint); + + log_info("Pre-populating %s filesystem of partition %s twice to calculate minimal partition size", + p->format, strna(hint)); + + if (!vt) { + r = var_tmp_dir(&vt); + if (r < 0) + return log_error_errno(r, "Could not determine temporary directory: %m"); + } + + r = tempfn_random_child(vt, "repart", &temp); + if (r < 0) + return log_error_errno(r, "Failed to generate temporary file path: %m"); + + if (fstype_is_ro(p->format)) + fs_uuid = p->fs_uuid; + else { + fd = open(temp, O_CREAT|O_EXCL|O_CLOEXEC|O_RDWR|O_NOCTTY, 0600); + if (fd < 0) + return log_error_errno(errno, "Failed to open temporary file %s: %m", temp); + + /* This may seem huge but it will be created sparse so it doesn't take up any space + * on disk until written to. */ + if (ftruncate(fd, 1024ULL * 1024ULL * 1024ULL * 1024ULL) < 0) + return log_error_errno(errno, "Failed to truncate temporary file to %s: %m", + FORMAT_BYTES(1024ULL * 1024ULL * 1024ULL * 1024ULL)); + + if (arg_offline <= 0) { + r = loop_device_make(fd, O_RDWR, 0, UINT64_MAX, context->sector_size, 0, LOCK_EX, &d); + if (r < 0 && (arg_offline == 0 || (r != -ENOENT && !ERRNO_IS_PRIVILEGE(r)) || !strv_isempty(p->subvolumes))) + return log_error_errno(r, "Failed to make loopback device of %s: %m", temp); + } + + /* We're going to populate this filesystem twice so use a random UUID the first time + * to avoid UUID conflicts. */ + r = sd_id128_randomize(&fs_uuid); + if (r < 0) + return r; + } + + if (!d || fstype_is_ro(p->format)) { + if (!mkfs_supports_root_option(p->format)) + return log_error_errno(SYNTHETIC_ERRNO(ENODEV), + "Loop device access is required to populate %s filesystems", + p->format); + + r = partition_populate_directory(context, p, &root); + if (r < 0) + return r; + } + + r = mkfs_options_from_env("REPART", p->format, &extra_mkfs_options); + if (r < 0) + return log_error_errno(r, + "Failed to determine mkfs command line options for '%s': %m", + p->format); + + r = make_filesystem(d ? d->node : temp, + p->format, + strempty(p->new_label), + root, + fs_uuid, + arg_discard, /* quiet = */ false, + context->fs_sector_size, + extra_mkfs_options); + if (r < 0) + return r; + + /* Read-only filesystems are minimal from the first try because they create and size the + * loopback file for us. */ + if (fstype_is_ro(p->format)) { + assert(fd < 0); + + fd = open(temp, O_RDONLY|O_CLOEXEC|O_NONBLOCK); + if (fd < 0) + return log_error_errno(errno, "Failed to open temporary file %s: %m", temp); + + if (fstat(fd, &st) < 0) + return log_error_errno(errno, "Failed to stat temporary file: %m"); + + log_info("Minimal partition size of %s filesystem of partition %s is %s", + p->format, strna(hint), FORMAT_BYTES(st.st_size)); + + p->copy_blocks_path = TAKE_PTR(temp); + p->copy_blocks_path_is_our_file = true; + p->copy_blocks_fd = TAKE_FD(fd); + p->copy_blocks_size = st.st_size; + continue; + } + + if (!root) { + assert(d); + + r = partition_populate_filesystem(context, p, d->node); + if (r < 0) + return r; + } + + /* Other filesystems need to be provided with a pre-sized loopback file and will adapt to + * fully occupy it. Because we gave the filesystem a 1T sparse file, we need to shrink the + * filesystem down to a reasonable size again to fit it in the disk image. While there are + * some filesystems that support shrinking, it doesn't always work properly (e.g. shrinking + * btrfs gives us a 2.0G filesystem regardless of what we put in it). Instead, let's populate + * the filesystem again, but this time, instead of providing the filesystem with a 1T sparse + * loopback file, let's size the loopback file based on the actual data used by the + * filesystem in the sparse file after the first attempt. This should be a good guess of the + * minimal amount of space needed in the filesystem to fit all the required data. + */ + r = fd_apparent_size(fd, &fsz); + if (r < 0) + return r; + + /* Massage the size a bit because just going by actual data used in the sparse file isn't + * fool-proof. */ + uint64_t heuristic = streq(p->format, "xfs") ? fsz : fsz / 2; + fsz = round_up_size(fsz + heuristic, context->grain_size); + if (minimal_size_by_fs_name(p->format) != UINT64_MAX) + fsz = MAX(minimal_size_by_fs_name(p->format), fsz); + + log_info("Minimal partition size of %s filesystem of partition %s is %s", + p->format, strna(hint), FORMAT_BYTES(fsz)); + + d = loop_device_unref(d); + + /* Erase the previous filesystem first. */ + if (ftruncate(fd, 0)) + return log_error_errno(errno, "Failed to erase temporary file: %m"); + + if (ftruncate(fd, fsz)) + return log_error_errno(errno, "Failed to truncate temporary file to %s: %m", FORMAT_BYTES(fsz)); + + if (arg_offline <= 0) { + r = loop_device_make(fd, O_RDWR, 0, UINT64_MAX, context->sector_size, 0, LOCK_EX, &d); + if (r < 0 && (arg_offline == 0 || (r != -ENOENT && !ERRNO_IS_PRIVILEGE(r)) || !strv_isempty(p->subvolumes))) + return log_error_errno(r, "Failed to make loopback device of %s: %m", temp); + } + + r = make_filesystem(d ? d->node : temp, + p->format, + strempty(p->new_label), + root, + p->fs_uuid, + arg_discard, + /* quiet = */ false, + context->fs_sector_size, + extra_mkfs_options); + if (r < 0) + return r; + + if (!root) { + assert(d); + + r = partition_populate_filesystem(context, p, d->node); + if (r < 0) + return r; + } + + if (fstat(fd, &st) < 0) + return log_error_errno(errno, "Failed to stat temporary file: %m"); + + p->copy_blocks_path = TAKE_PTR(temp); + p->copy_blocks_path_is_our_file = true; + p->copy_blocks_fd = TAKE_FD(fd); + p->copy_blocks_size = st.st_size; + } + + /* Now that we've done the data partitions, do the verity hash partitions. We do these in a separate + * step because they might depend on data generated in the previous step. */ + + LIST_FOREACH(partitions, p, context->partitions) { + _cleanup_(unlink_and_freep) char *temp = NULL; + _cleanup_free_ char *hint = NULL; + _cleanup_close_ int fd = -EBADF; + struct stat st; + Partition *dp; + + if (p->dropped) + continue; + + if (PARTITION_EXISTS(p)) /* Never format existing partitions */ + continue; + + if (p->minimize == MINIMIZE_OFF) + continue; + + if (p->verity != VERITY_HASH) + continue; + + assert_se(dp = p->siblings[VERITY_DATA]); + assert(!dp->dropped); + assert(dp->copy_blocks_path); + + (void) partition_hint(p, context->node, &hint); + + log_info("Pre-populating verity hash data of partition %s to calculate minimal partition size", + strna(hint)); + + if (!vt) { + r = var_tmp_dir(&vt); + if (r < 0) + return log_error_errno(r, "Could not determine temporary directory: %m"); + } + + r = tempfn_random_child(vt, "repart", &temp); + if (r < 0) + return log_error_errno(r, "Failed to generate temporary file path: %m"); + + r = touch(temp); + if (r < 0) + return log_error_errno(r, "Failed to create temporary file: %m"); + + r = partition_format_verity_hash(context, p, temp, dp->copy_blocks_path); + if (r < 0) + return r; + + fd = open(temp, O_RDONLY|O_CLOEXEC|O_NONBLOCK); + if (fd < 0) + return log_error_errno(errno, "Failed to open temporary file %s: %m", temp); + + if (fstat(fd, &st) < 0) + return log_error_errno(errno, "Failed to stat temporary file: %m"); + + log_info("Minimal partition size of verity hash partition %s is %s", + strna(hint), FORMAT_BYTES(st.st_size)); + + p->copy_blocks_path = TAKE_PTR(temp); + p->copy_blocks_path_is_our_file = true; + p->copy_blocks_fd = TAKE_FD(fd); + p->copy_blocks_size = st.st_size; + } + + return 0; +} + +static int parse_partition_types(const char *p, GptPartitionType **partitions, size_t *n_partitions) { + int r; + + assert(partitions); + assert(n_partitions); + + for (;;) { + _cleanup_free_ char *name = NULL; + GptPartitionType type; + + r = extract_first_word(&p, &name, ",", EXTRACT_CUNESCAPE|EXTRACT_DONT_COALESCE_SEPARATORS); + if (r == 0) + break; + if (r < 0) + return log_error_errno(r, "Failed to extract partition type identifier or GUID: %s", p); + + r = gpt_partition_type_from_string(name, &type); + if (r < 0) + return log_error_errno(r, "'%s' is not a valid partition type identifier or GUID", name); + + if (!GREEDY_REALLOC(*partitions, *n_partitions + 1)) + return log_oom(); + + (*partitions)[(*n_partitions)++] = type; + } + + return 0; +} + +static int help(void) { + _cleanup_free_ char *link = NULL; + int r; + + r = terminal_urlify_man("systemd-repart", "8", &link); + if (r < 0) + return log_oom(); + + printf("%s [OPTIONS...] [DEVICE]\n" + "\n%sGrow and add partitions to partition table.%s\n\n" + " -h --help Show this help\n" + " --version Show package version\n" + " --no-pager Do not pipe output into a pager\n" + " --no-legend Do not show the headers and footers\n" + " --dry-run=BOOL Whether to run dry-run operation\n" + " --empty=MODE One of refuse, allow, require, force, create; controls\n" + " how to handle empty disks lacking partition tables\n" + " --discard=BOOL Whether to discard backing blocks for new partitions\n" + " --pretty=BOOL Whether to show pretty summary before doing changes\n" + " --factory-reset=BOOL Whether to remove data partitions before recreating\n" + " them\n" + " --can-factory-reset Test whether factory reset is defined\n" + " --root=PATH Operate relative to root path\n" + " --image=PATH Operate relative to image file\n" + " --image-policy=POLICY\n" + " Specify disk image dissection policy\n" + " --definitions=DIR Find partition definitions in specified directory\n" + " --key-file=PATH Key to use when encrypting partitions\n" + " --private-key=PATH Private key to use when generating verity roothash\n" + " signatures\n" + " --certificate=PATH PEM certificate to use when generating verity\n" + " roothash signatures\n" + " --tpm2-device=PATH Path to TPM2 device node to use\n" + " --tpm2-device-key=PATH\n" + " Enroll a TPM2 device using its public key\n" + " --tpm2-seal-key-handle=HANDLE\n" + " Specify handle of key to use for sealing\n" + " --tpm2-pcrs=PCR1+PCR2+PCR3+…\n" + " TPM2 PCR indexes to use for TPM2 enrollment\n" + " --tpm2-public-key=PATH\n" + " Enroll signed TPM2 PCR policy against PEM public key\n" + " --tpm2-public-key-pcrs=PCR1+PCR2+PCR3+…\n" + " Enroll signed TPM2 PCR policy for specified TPM2 PCRs\n" + " --tpm2-pcrlock=PATH\n" + " Specify pcrlock policy to lock against\n" + " --seed=UUID 128-bit seed UUID to derive all UUIDs from\n" + " --size=BYTES Grow loopback file to specified size\n" + " --json=pretty|short|off\n" + " Generate JSON output\n" + " --split=BOOL Whether to generate split artifacts\n" + " --include-partitions=PARTITION1,PARTITION2,PARTITION3,…\n" + " Ignore partitions not of the specified types\n" + " --exclude-partitions=PARTITION1,PARTITION2,PARTITION3,…\n" + " Ignore partitions of the specified types\n" + " --defer-partitions=PARTITION1,PARTITION2,PARTITION3,…\n" + " Take partitions of the specified types into account\n" + " but don't populate them yet\n" + " --sector-size=SIZE Set the logical sector size for the image\n" + " --architecture=ARCH Set the generic architecture for the image\n" + " --offline=BOOL Whether to build the image offline\n" + " -s --copy-source=PATH Specify the primary source tree to copy files from\n" + " --copy-from=IMAGE Copy partitions from the given image(s)\n" + " -S --make-ddi=sysext Make a system extension DDI\n" + " -C --make-ddi=confext Make a configuration extension DDI\n" + " -P --make-ddi=portable Make a portable service DDI\n" + "\nSee the %s for details.\n", + program_invocation_short_name, + ansi_highlight(), + ansi_normal(), + link); + + return 0; +} + +static int parse_argv(int argc, char *argv[]) { + + enum { + ARG_VERSION = 0x100, + ARG_NO_PAGER, + ARG_NO_LEGEND, + ARG_DRY_RUN, + ARG_EMPTY, + ARG_DISCARD, + ARG_FACTORY_RESET, + ARG_CAN_FACTORY_RESET, + ARG_ROOT, + ARG_IMAGE, + ARG_IMAGE_POLICY, + ARG_SEED, + ARG_PRETTY, + ARG_DEFINITIONS, + ARG_SIZE, + ARG_JSON, + ARG_KEY_FILE, + ARG_PRIVATE_KEY, + ARG_CERTIFICATE, + ARG_TPM2_DEVICE, + ARG_TPM2_DEVICE_KEY, + ARG_TPM2_SEAL_KEY_HANDLE, + ARG_TPM2_PCRS, + ARG_TPM2_PUBLIC_KEY, + ARG_TPM2_PUBLIC_KEY_PCRS, + ARG_TPM2_PCRLOCK, + ARG_SPLIT, + ARG_INCLUDE_PARTITIONS, + ARG_EXCLUDE_PARTITIONS, + ARG_DEFER_PARTITIONS, + ARG_SECTOR_SIZE, + ARG_SKIP_PARTITIONS, + ARG_ARCHITECTURE, + ARG_OFFLINE, + ARG_COPY_FROM, + ARG_MAKE_DDI, + }; + + static const struct option options[] = { + { "help", no_argument, NULL, 'h' }, + { "version", no_argument, NULL, ARG_VERSION }, + { "no-pager", no_argument, NULL, ARG_NO_PAGER }, + { "no-legend", no_argument, NULL, ARG_NO_LEGEND }, + { "dry-run", required_argument, NULL, ARG_DRY_RUN }, + { "empty", required_argument, NULL, ARG_EMPTY }, + { "discard", required_argument, NULL, ARG_DISCARD }, + { "factory-reset", required_argument, NULL, ARG_FACTORY_RESET }, + { "can-factory-reset", no_argument, NULL, ARG_CAN_FACTORY_RESET }, + { "root", required_argument, NULL, ARG_ROOT }, + { "image", required_argument, NULL, ARG_IMAGE }, + { "image-policy", required_argument, NULL, ARG_IMAGE_POLICY }, + { "seed", required_argument, NULL, ARG_SEED }, + { "pretty", required_argument, NULL, ARG_PRETTY }, + { "definitions", required_argument, NULL, ARG_DEFINITIONS }, + { "size", required_argument, NULL, ARG_SIZE }, + { "json", required_argument, NULL, ARG_JSON }, + { "key-file", required_argument, NULL, ARG_KEY_FILE }, + { "private-key", required_argument, NULL, ARG_PRIVATE_KEY }, + { "certificate", required_argument, NULL, ARG_CERTIFICATE }, + { "tpm2-device", required_argument, NULL, ARG_TPM2_DEVICE }, + { "tpm2-device-key", required_argument, NULL, ARG_TPM2_DEVICE_KEY }, + { "tpm2-seal-key-handle", required_argument, NULL, ARG_TPM2_SEAL_KEY_HANDLE }, + { "tpm2-pcrs", required_argument, NULL, ARG_TPM2_PCRS }, + { "tpm2-public-key", required_argument, NULL, ARG_TPM2_PUBLIC_KEY }, + { "tpm2-public-key-pcrs", required_argument, NULL, ARG_TPM2_PUBLIC_KEY_PCRS }, + { "tpm2-pcrlock", required_argument, NULL, ARG_TPM2_PCRLOCK }, + { "split", required_argument, NULL, ARG_SPLIT }, + { "include-partitions", required_argument, NULL, ARG_INCLUDE_PARTITIONS }, + { "exclude-partitions", required_argument, NULL, ARG_EXCLUDE_PARTITIONS }, + { "defer-partitions", required_argument, NULL, ARG_DEFER_PARTITIONS }, + { "sector-size", required_argument, NULL, ARG_SECTOR_SIZE }, + { "architecture", required_argument, NULL, ARG_ARCHITECTURE }, + { "offline", required_argument, NULL, ARG_OFFLINE }, + { "copy-from", required_argument, NULL, ARG_COPY_FROM }, + { "copy-source", required_argument, NULL, 's' }, + { "make-ddi", required_argument, NULL, ARG_MAKE_DDI }, + {} + }; + + bool auto_hash_pcr_values = true, auto_public_key_pcr_mask = true, auto_pcrlock = true; + int c, r; + + assert(argc >= 0); + assert(argv); + + while ((c = getopt_long(argc, argv, "hs:SCP", options, NULL)) >= 0) + + switch (c) { + + case 'h': + return help(); + + case ARG_VERSION: + return version(); + + case ARG_NO_PAGER: + arg_pager_flags |= PAGER_DISABLE; + break; + + case ARG_NO_LEGEND: + arg_legend = false; + break; + + case ARG_DRY_RUN: + r = parse_boolean_argument("--dry-run=", optarg, &arg_dry_run); + if (r < 0) + return r; + break; + + case ARG_EMPTY: + if (isempty(optarg)) { + arg_empty = EMPTY_UNSET; + break; + } + + arg_empty = empty_mode_from_string(optarg); + if (arg_empty < 0) + return log_error_errno(arg_empty, "Failed to parse --empty= parameter: %s", optarg); + + break; + + case ARG_DISCARD: + r = parse_boolean_argument("--discard=", optarg, &arg_discard); + if (r < 0) + return r; + break; + + case ARG_FACTORY_RESET: + r = parse_boolean_argument("--factory-reset=", optarg, NULL); + if (r < 0) + return r; + arg_factory_reset = r; + break; + + case ARG_CAN_FACTORY_RESET: + arg_can_factory_reset = true; + break; + + case ARG_ROOT: + r = parse_path_argument(optarg, /* suppress_root= */ false, &arg_root); + if (r < 0) + return r; + break; + + case ARG_IMAGE: + r = parse_path_argument(optarg, /* suppress_root= */ false, &arg_image); + if (r < 0) + return r; + break; + + case ARG_IMAGE_POLICY: + r = parse_image_policy_argument(optarg, &arg_image_policy); + if (r < 0) + return r; + break; + + case ARG_SEED: + if (isempty(optarg)) { + arg_seed = SD_ID128_NULL; + arg_randomize = false; + } else if (streq(optarg, "random")) + arg_randomize = true; + else { + r = sd_id128_from_string(optarg, &arg_seed); + if (r < 0) + return log_error_errno(r, "Failed to parse seed: %s", optarg); + + arg_randomize = false; + } + + break; + + case ARG_PRETTY: + r = parse_boolean_argument("--pretty=", optarg, NULL); + if (r < 0) + return r; + arg_pretty = r; + break; + + case ARG_DEFINITIONS: { + _cleanup_free_ char *path = NULL; + r = parse_path_argument(optarg, false, &path); + if (r < 0) + return r; + if (strv_consume(&arg_definitions, TAKE_PTR(path)) < 0) + return log_oom(); + break; + } + + case ARG_SIZE: { + uint64_t parsed, rounded; + + if (streq(optarg, "auto")) { + arg_size = UINT64_MAX; + arg_size_auto = true; + break; + } + + r = parse_size(optarg, 1024, &parsed); + if (r < 0) + return log_error_errno(r, "Failed to parse --size= parameter: %s", optarg); + + rounded = round_up_size(parsed, 4096); + if (rounded == 0) + return log_error_errno(SYNTHETIC_ERRNO(ERANGE), "Specified image size too small, refusing."); + if (rounded == UINT64_MAX) + return log_error_errno(SYNTHETIC_ERRNO(ERANGE), "Specified image size too large, refusing."); + + if (rounded != parsed) + log_warning("Specified size is not a multiple of 4096, rounding up automatically. (%" PRIu64 " %s %" PRIu64 ")", + parsed, special_glyph(SPECIAL_GLYPH_ARROW_RIGHT), rounded); + + arg_size = rounded; + arg_size_auto = false; + break; + } + + case ARG_JSON: + r = parse_json_argument(optarg, &arg_json_format_flags); + if (r <= 0) + return r; + + break; + + case ARG_KEY_FILE: { + _cleanup_(erase_and_freep) char *k = NULL; + size_t n = 0; + + r = read_full_file_full( + AT_FDCWD, optarg, UINT64_MAX, SIZE_MAX, + READ_FULL_FILE_SECURE|READ_FULL_FILE_WARN_WORLD_READABLE|READ_FULL_FILE_CONNECT_SOCKET, + NULL, + &k, &n); + if (r < 0) + return log_error_errno(r, "Failed to read key file '%s': %m", optarg); + + erase_and_free(arg_key); + arg_key = TAKE_PTR(k); + arg_key_size = n; + break; + } + + case ARG_PRIVATE_KEY: { + _cleanup_(erase_and_freep) char *k = NULL; + size_t n = 0; + + r = read_full_file_full( + AT_FDCWD, optarg, UINT64_MAX, SIZE_MAX, + READ_FULL_FILE_SECURE|READ_FULL_FILE_WARN_WORLD_READABLE|READ_FULL_FILE_CONNECT_SOCKET, + NULL, + &k, &n); + if (r < 0) + return log_error_errno(r, "Failed to read key file '%s': %m", optarg); + + EVP_PKEY_free(arg_private_key); + arg_private_key = NULL; + r = parse_private_key(k, n, &arg_private_key); + if (r < 0) + return r; + break; + } + + case ARG_CERTIFICATE: { + _cleanup_free_ char *cert = NULL; + size_t n = 0; + + r = read_full_file_full( + AT_FDCWD, optarg, UINT64_MAX, SIZE_MAX, + READ_FULL_FILE_CONNECT_SOCKET, + NULL, + &cert, &n); + if (r < 0) + return log_error_errno(r, "Failed to read certificate file '%s': %m", optarg); + + X509_free(arg_certificate); + arg_certificate = NULL; + r = parse_x509_certificate(cert, n, &arg_certificate); + if (r < 0) + return r; + break; + } + + case ARG_TPM2_DEVICE: { + _cleanup_free_ char *device = NULL; + + if (streq(optarg, "list")) + return tpm2_list_devices(); + + if (!streq(optarg, "auto")) { + device = strdup(optarg); + if (!device) + return log_oom(); + } + + free(arg_tpm2_device); + arg_tpm2_device = TAKE_PTR(device); + break; + } + + case ARG_TPM2_DEVICE_KEY: + r = parse_path_argument(optarg, /* suppress_root= */ false, &arg_tpm2_device_key); + if (r < 0) + return r; + + break; + + case ARG_TPM2_SEAL_KEY_HANDLE: + r = safe_atou32_full(optarg, 16, &arg_tpm2_seal_key_handle); + if (r < 0) + return log_error_errno(r, "Could not parse TPM2 seal key handle index '%s': %m", optarg); + + break; + + case ARG_TPM2_PCRS: + auto_hash_pcr_values = false; + r = tpm2_parse_pcr_argument_append(optarg, &arg_tpm2_hash_pcr_values, &arg_tpm2_n_hash_pcr_values); + if (r < 0) + return r; + + break; + + case ARG_TPM2_PUBLIC_KEY: + r = parse_path_argument(optarg, /* suppress_root= */ false, &arg_tpm2_public_key); + if (r < 0) + return r; + + break; + + case ARG_TPM2_PUBLIC_KEY_PCRS: + auto_public_key_pcr_mask = false; + r = tpm2_parse_pcr_argument_to_mask(optarg, &arg_tpm2_public_key_pcr_mask); + if (r < 0) + return r; + + break; + + case ARG_TPM2_PCRLOCK: + r = parse_path_argument(optarg, /* suppress_root= */ false, &arg_tpm2_pcrlock); + if (r < 0) + return r; + + auto_pcrlock = false; + break; + + case ARG_SPLIT: + r = parse_boolean_argument("--split=", optarg, NULL); + if (r < 0) + return r; + + arg_split = r; + break; + + case ARG_INCLUDE_PARTITIONS: + if (arg_filter_partitions_type == FILTER_PARTITIONS_EXCLUDE) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), + "Combination of --include-partitions= and --exclude-partitions= is invalid."); + + r = parse_partition_types(optarg, &arg_filter_partitions, &arg_n_filter_partitions); + if (r < 0) + return r; + + arg_filter_partitions_type = FILTER_PARTITIONS_INCLUDE; + + break; + + case ARG_EXCLUDE_PARTITIONS: + if (arg_filter_partitions_type == FILTER_PARTITIONS_INCLUDE) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), + "Combination of --include-partitions= and --exclude-partitions= is invalid."); + + r = parse_partition_types(optarg, &arg_filter_partitions, &arg_n_filter_partitions); + if (r < 0) + return r; + + arg_filter_partitions_type = FILTER_PARTITIONS_EXCLUDE; + + break; + + case ARG_DEFER_PARTITIONS: + r = parse_partition_types(optarg, &arg_defer_partitions, &arg_n_defer_partitions); + if (r < 0) + return r; + + break; + + case ARG_SECTOR_SIZE: + r = parse_sector_size(optarg, &arg_sector_size); + if (r < 0) + return r; + + break; + + case ARG_ARCHITECTURE: + r = architecture_from_string(optarg); + if (r < 0) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Invalid architecture '%s'", optarg); + + arg_architecture = r; + break; + + case ARG_OFFLINE: + if (streq(optarg, "auto")) + arg_offline = -1; + else { + r = parse_boolean_argument("--offline=", optarg, NULL); + if (r < 0) + return r; + + arg_offline = r; + } + + break; + + case ARG_COPY_FROM: { + _cleanup_free_ char *p = NULL; + + r = parse_path_argument(optarg, /* suppress_root= */ false, &p); + if (r < 0) + return r; + + if (strv_consume(&arg_copy_from, TAKE_PTR(p)) < 0) + return log_oom(); + + break; + } + + case 's': + r = parse_path_argument(optarg, /* suppress_root= */ false, &arg_copy_source); + if (r < 0) + return r; + break; + + case ARG_MAKE_DDI: + if (!filename_is_valid(optarg)) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Invalid DDI type: %s", optarg); + + r = free_and_strdup_warn(&arg_make_ddi, optarg); + if (r < 0) + return r; + break; + + case 'S': + r = free_and_strdup_warn(&arg_make_ddi, "sysext"); + if (r < 0) + return r; + break; + + case 'C': + r = free_and_strdup_warn(&arg_make_ddi, "confext"); + if (r < 0) + return r; + break; + + case 'P': + r = free_and_strdup_warn(&arg_make_ddi, "portable"); + if (r < 0) + return r; + break; + + case '?': + return -EINVAL; + + default: + assert_not_reached(); + } + + if (argc - optind > 1) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), + "Expected at most one argument, the path to the block device or image file."); + + if (arg_make_ddi) { + if (arg_definitions) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Combination of --make-ddi= and --definitions= is not supported."); + if (!IN_SET(arg_empty, EMPTY_UNSET, EMPTY_CREATE)) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Combination of --make-ddi= and --empty=%s is not supported.", empty_mode_to_string(arg_empty)); + + /* Imply automatic sizing in DDI mode */ + if (arg_size == UINT64_MAX) + arg_size_auto = true; + + if (!arg_copy_source) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "No --copy-source= specified, refusing."); + + r = dir_is_empty(arg_copy_source, /* ignore_hidden_or_backup= */ false); + if (r < 0) + return log_error_errno(r, "Failed to determine if '%s' is empty: %m", arg_copy_source); + if (r > 0) + return log_error_errno(SYNTHETIC_ERRNO(ENOENT), "Source directory '%s' is empty, refusing to create empty image.", arg_copy_source); + + if (sd_id128_is_null(arg_seed) && !arg_randomize) { + /* We don't want that /etc/machine-id leaks into any image built this way, hence + * let's randomize the seed if not specified explicitly */ + log_notice("No seed value specified, randomizing generated UUIDs, resulting image will not be reproducible."); + arg_randomize = true; + } + + arg_empty = EMPTY_CREATE; + } + + if (arg_empty == EMPTY_UNSET) /* default to refuse mode, if not otherwise specified */ + arg_empty = EMPTY_REFUSE; + + if (arg_factory_reset > 0 && IN_SET(arg_empty, EMPTY_FORCE, EMPTY_REQUIRE, EMPTY_CREATE)) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), + "Combination of --factory-reset=yes and --empty=force/--empty=require/--empty=create is invalid."); + + if (arg_can_factory_reset) + arg_dry_run = true; /* When --can-factory-reset is specified we don't make changes, hence + * non-dry-run mode makes no sense. Thus, imply dry run mode so that we + * open things strictly read-only. */ + else if (arg_empty == EMPTY_CREATE) + arg_dry_run = false; /* Imply --dry-run=no if we create the loopback file anew. After all we + * cannot really break anyone's partition tables that way. */ + + /* Disable pager once we are not just reviewing, but doing things. */ + if (!arg_dry_run) + arg_pager_flags |= PAGER_DISABLE; + + if (arg_empty == EMPTY_CREATE && arg_size == UINT64_MAX && !arg_size_auto) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), + "If --empty=create is specified, --size= must be specified, too."); + + if (arg_image && arg_root) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Please specify either --root= or --image=, the combination of both is not supported."); + else if (!arg_image && !arg_root && in_initrd()) { + + /* By default operate on /sysusr/ or /sysroot/ when invoked in the initrd. We prefer the + * former, if it is mounted, so that we have deterministic behaviour on systems where /usr/ + * is vendor-supplied but the root fs formatted on first boot. */ + r = path_is_mount_point("/sysusr/usr", NULL, 0); + if (r <= 0) { + if (r < 0 && r != -ENOENT) + log_debug_errno(r, "Unable to determine whether /sysusr/usr is a mount point, assuming it is not: %m"); + + arg_root = strdup("/sysroot"); + } else + arg_root = strdup("/sysusr"); + if (!arg_root) + return log_oom(); + } + + arg_node = argc > optind ? argv[optind] : NULL; + + if (IN_SET(arg_empty, EMPTY_FORCE, EMPTY_REQUIRE, EMPTY_CREATE) && !arg_node && !arg_image) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), + "A path to a device node or image file must be specified when --make-ddi=, --empty=force, --empty=require or --empty=create are used."); + + if (arg_split && !arg_node) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), + "A path to an image file must be specified when --split is used."); + + if (auto_pcrlock) { + assert(!arg_tpm2_pcrlock); + + r = tpm2_pcrlock_search_file(NULL, NULL, &arg_tpm2_pcrlock); + if (r < 0) { + if (r != -ENOENT) + log_warning_errno(r, "Search for pcrlock.json failed, assuming it does not exist: %m"); + } else + log_debug("Automatically using pcrlock policy '%s'.", arg_tpm2_pcrlock); + } + + if (auto_public_key_pcr_mask) { + assert(arg_tpm2_public_key_pcr_mask == 0); + arg_tpm2_public_key_pcr_mask = INDEX_TO_MASK(uint32_t, TPM2_PCR_KERNEL_BOOT); + } + + if (auto_hash_pcr_values && !arg_tpm2_pcrlock) { /* Only lock to PCR 7 if no pcr policy is specified. */ + assert(arg_tpm2_n_hash_pcr_values == 0); + + if (!GREEDY_REALLOC_APPEND( + arg_tpm2_hash_pcr_values, + arg_tpm2_n_hash_pcr_values, + &TPM2_PCR_VALUE_MAKE(TPM2_PCR_INDEX_DEFAULT, /* hash= */ 0, /* value= */ {}), + 1)) + return log_oom(); + } + + if (arg_pretty < 0 && isatty(STDOUT_FILENO)) + arg_pretty = true; + + if (arg_architecture >= 0) { + FOREACH_ARRAY(p, arg_filter_partitions, arg_n_filter_partitions) + *p = gpt_partition_type_override_architecture(*p, arg_architecture); + + FOREACH_ARRAY(p, arg_defer_partitions, arg_n_defer_partitions) + *p = gpt_partition_type_override_architecture(*p, arg_architecture); + } + + return 1; +} + +static int parse_proc_cmdline_factory_reset(void) { + bool b; + int r; + + if (arg_factory_reset >= 0) /* Never override what is specified on the process command line */ + return 0; + + if (!in_initrd()) /* Never honour kernel command line factory reset request outside of the initrd */ + return 0; + + r = proc_cmdline_get_bool("systemd.factory_reset", /* flags = */ 0, &b); + if (r < 0) + return log_error_errno(r, "Failed to parse systemd.factory_reset kernel command line argument: %m"); + if (r > 0) { + arg_factory_reset = b; + + if (b) + log_notice("Honouring factory reset requested via kernel command line."); + } + + return 0; +} + +static int parse_efi_variable_factory_reset(void) { + _cleanup_free_ char *value = NULL; + int r; + + if (arg_factory_reset >= 0) /* Never override what is specified on the process command line */ + return 0; + + if (!in_initrd()) /* Never honour EFI variable factory reset request outside of the initrd */ + return 0; + + r = efi_get_variable_string(EFI_SYSTEMD_VARIABLE(FactoryReset), &value); + if (r < 0) { + if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r)) + return 0; + return log_error_errno(r, "Failed to read EFI variable FactoryReset: %m"); + } + + r = parse_boolean(value); + if (r < 0) + return log_error_errno(r, "Failed to parse EFI variable FactoryReset: %m"); + + arg_factory_reset = r; + if (r) + log_notice("Factory reset requested via EFI variable FactoryReset."); + + return 0; +} + +static int remove_efi_variable_factory_reset(void) { + int r; + + r = efi_set_variable(EFI_SYSTEMD_VARIABLE(FactoryReset), NULL, 0); + if (r < 0) { + if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r)) + return 0; + return log_error_errno(r, "Failed to remove EFI variable FactoryReset: %m"); + } + + log_info("Successfully unset EFI variable FactoryReset."); + return 0; +} + +static int acquire_root_devno( + const char *p, + const char *root, + int mode, + char **ret, + int *ret_fd) { + + _cleanup_free_ char *found_path = NULL, *node = NULL; + dev_t devno, fd_devno = MODE_INVALID; + _cleanup_close_ int fd = -EBADF; + struct stat st; + int r; + + assert(p); + assert(ret); + assert(ret_fd); + + fd = chase_and_open(p, root, CHASE_PREFIX_ROOT, mode, &found_path); + if (fd < 0) + return fd; + + if (fstat(fd, &st) < 0) + return -errno; + + if (S_ISREG(st.st_mode)) { + *ret = TAKE_PTR(found_path); + *ret_fd = TAKE_FD(fd); + return 0; + } + + if (S_ISBLK(st.st_mode)) { + /* Refuse referencing explicit block devices if a root dir is specified, after all we should + * not be able to leave the image the root path constrains us to. */ + if (root) + return -EPERM; + + fd_devno = devno = st.st_rdev; + } else if (S_ISDIR(st.st_mode)) { + + devno = st.st_dev; + if (major(devno) == 0) { + r = btrfs_get_block_device_fd(fd, &devno); + if (r == -ENOTTY) /* not btrfs */ + return -ENODEV; + if (r < 0) + return r; + } + } else + return -ENOTBLK; + + /* From dm-crypt to backing partition */ + r = block_get_originating(devno, &devno); + if (r == -ENOENT) + log_debug_errno(r, "Device '%s' has no dm-crypt/dm-verity device, no need to look for underlying block device.", p); + else if (r < 0) + log_debug_errno(r, "Failed to find underlying block device for '%s', ignoring: %m", p); + + /* From partition to whole disk containing it */ + r = block_get_whole_disk(devno, &devno); + if (r < 0) + log_debug_errno(r, "Failed to find whole disk block device for '%s', ignoring: %m", p); + + r = devname_from_devnum(S_IFBLK, devno, &node); + if (r < 0) + return log_debug_errno(r, "Failed to determine canonical path for '%s': %m", p); + + /* Only if we still look at the same block device we can reuse the fd. Otherwise return an + * invalidated fd. */ + if (fd_devno != MODE_INVALID && fd_devno == devno) { + /* Tell udev not to interfere while we are processing the device */ + if (flock(fd, arg_dry_run ? LOCK_SH : LOCK_EX) < 0) + return log_error_errno(errno, "Failed to lock device '%s': %m", node); + + *ret_fd = TAKE_FD(fd); + } else + *ret_fd = -EBADF; + + *ret = TAKE_PTR(node); + return 0; +} + +static int find_root(Context *context) { + _cleanup_free_ char *device = NULL; + int r; + + assert(context); + + if (arg_node) { + if (arg_empty == EMPTY_CREATE) { + _cleanup_close_ int fd = -EBADF; + _cleanup_free_ char *s = NULL; + + s = strdup(arg_node); + if (!s) + return log_oom(); + + fd = open(arg_node, O_RDONLY|O_CREAT|O_EXCL|O_CLOEXEC|O_NOFOLLOW, 0666); + if (fd < 0) + return log_error_errno(errno, "Failed to create '%s': %m", arg_node); + + context->node = TAKE_PTR(s); + context->node_is_our_file = true; + context->backing_fd = TAKE_FD(fd); + return 0; + } + + /* Note that we don't specify a root argument here: if the user explicitly configured a node + * we'll take it relative to the host, not the image */ + r = acquire_root_devno(arg_node, NULL, O_RDONLY|O_CLOEXEC, &context->node, &context->backing_fd); + if (r == -EUCLEAN) + return btrfs_log_dev_root(LOG_ERR, r, arg_node); + if (r < 0) + return log_error_errno(r, "Failed to open file or determine backing device of %s: %m", arg_node); + + return 0; + } + + assert(IN_SET(arg_empty, EMPTY_REFUSE, EMPTY_ALLOW)); + + /* If the root mount has been replaced by some form of volatile file system (overlayfs), the + * original root block device node is symlinked in /run/systemd/volatile-root. Let's read that + * here. */ + r = readlink_malloc("/run/systemd/volatile-root", &device); + if (r == -ENOENT) { /* volatile-root not found */ + /* Let's search for the root device. We look for two cases here: first in /, and then in /usr. The + * latter we check for cases where / is a tmpfs and only /usr is an actual persistent block device + * (think: volatile setups) */ + + FOREACH_STRING(p, "/", "/usr") { + + r = acquire_root_devno(p, arg_root, O_RDONLY|O_DIRECTORY|O_CLOEXEC, &context->node, + &context->backing_fd); + if (r < 0) { + if (r == -EUCLEAN) + return btrfs_log_dev_root(LOG_ERR, r, p); + if (r != -ENODEV) + return log_error_errno(r, "Failed to determine backing device of %s: %m", p); + } else + return 0; + } + } else if (r < 0) + return log_error_errno(r, "Failed to read symlink /run/systemd/volatile-root: %m"); + else { + r = acquire_root_devno(device, NULL, O_RDONLY|O_CLOEXEC, &context->node, &context->backing_fd); + if (r == -EUCLEAN) + return btrfs_log_dev_root(LOG_ERR, r, device); + if (r < 0) + return log_error_errno(r, "Failed to open file or determine backing device of %s: %m", device); + + return 0; + } + + return log_error_errno(SYNTHETIC_ERRNO(ENODEV), "Failed to discover root block device."); +} + +static int resize_pt(int fd, uint64_t sector_size) { + _cleanup_(fdisk_unref_contextp) struct fdisk_context *c = NULL; + int r; + + /* After resizing the backing file we need to resize the partition table itself too, so that it takes + * possession of the enlarged backing file. For this it suffices to open the device with libfdisk and + * immediately write it again, with no changes. */ + + r = fdisk_new_context_at(fd, /* path= */ NULL, /* read_only= */ false, sector_size, &c); + if (r < 0) + return log_error_errno(r, "Failed to open device '%s': %m", FORMAT_PROC_FD_PATH(fd)); + + r = fdisk_has_label(c); + if (r < 0) + return log_error_errno(r, "Failed to determine whether disk '%s' has a disk label: %m", FORMAT_PROC_FD_PATH(fd)); + if (r == 0) { + log_debug("Not resizing partition table, as there currently is none."); + return 0; + } + + r = fdisk_write_disklabel(c); + if (r < 0) + return log_error_errno(r, "Failed to write resized partition table: %m"); + + log_info("Resized partition table."); + return 1; +} + +static int resize_backing_fd( + const char *node, /* The primary way we access the disk image to operate on */ + int *fd, /* An O_RDONLY fd referring to that inode */ + const char *backing_file, /* If the above refers to a loopback device, the backing regular file for that, which we can grow */ + LoopDevice *loop_device, + uint64_t sector_size) { + + _cleanup_close_ int writable_fd = -EBADF; + uint64_t current_size; + struct stat st; + int r; + + assert(node); + assert(fd); + + if (arg_size == UINT64_MAX) /* Nothing to do */ + return 0; + + if (*fd < 0) { + /* Open the file if we haven't opened it yet. Note that we open it read-only here, just to + * keep a reference to the file we can pass around. */ + *fd = open(node, O_RDONLY|O_CLOEXEC); + if (*fd < 0) + return log_error_errno(errno, "Failed to open '%s' in order to adjust size: %m", node); + } + + if (fstat(*fd, &st) < 0) + return log_error_errno(errno, "Failed to stat '%s': %m", node); + + if (S_ISBLK(st.st_mode)) { + if (!backing_file) + return log_error_errno(SYNTHETIC_ERRNO(EBADF), "Cannot resize block device '%s'.", node); + + assert(loop_device); + + if (ioctl(*fd, BLKGETSIZE64, ¤t_size) < 0) + return log_error_errno(errno, "Failed to determine size of block device %s: %m", node); + } else { + r = stat_verify_regular(&st); + if (r < 0) + return log_error_errno(r, "Specified path '%s' is not a regular file or loopback block device, cannot resize: %m", node); + + assert(!backing_file); + assert(!loop_device); + current_size = st.st_size; + } + + if (current_size >= arg_size) { + log_info("File '%s' already is of requested size or larger, not growing. (%s >= %s)", + node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size)); + return 0; + } + + if (S_ISBLK(st.st_mode)) { + assert(backing_file); + + /* This is a loopback device. We can't really grow those directly, but we can grow the + * backing file, hence let's do that. */ + + writable_fd = open(backing_file, O_WRONLY|O_CLOEXEC|O_NONBLOCK); + if (writable_fd < 0) + return log_error_errno(errno, "Failed to open backing file '%s': %m", backing_file); + + if (fstat(writable_fd, &st) < 0) + return log_error_errno(errno, "Failed to stat() backing file '%s': %m", backing_file); + + r = stat_verify_regular(&st); + if (r < 0) + return log_error_errno(r, "Backing file '%s' of block device is not a regular file: %m", backing_file); + + if ((uint64_t) st.st_size != current_size) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), + "Size of backing file '%s' of loopback block device '%s' don't match, refusing.", + node, backing_file); + } else { + assert(S_ISREG(st.st_mode)); + assert(!backing_file); + + /* The file descriptor is read-only. In order to grow the file we need to have a writable fd. We + * reopen the file for that temporarily. We keep the writable fd only open for this operation though, + * as fdisk can't accept it anyway. */ + + writable_fd = fd_reopen(*fd, O_WRONLY|O_CLOEXEC); + if (writable_fd < 0) + return log_error_errno(writable_fd, "Failed to reopen backing file '%s' writable: %m", node); + } + + if (!arg_discard) { + if (fallocate(writable_fd, 0, 0, arg_size) < 0) { + if (!ERRNO_IS_NOT_SUPPORTED(errno)) + return log_error_errno(errno, "Failed to grow '%s' from %s to %s by allocation: %m", + node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size)); + + /* Fallback to truncation, if fallocate() is not supported. */ + log_debug("Backing file system does not support fallocate(), falling back to ftruncate()."); + } else { + if (current_size == 0) /* Likely regular file just created by us */ + log_info("Allocated %s for '%s'.", FORMAT_BYTES(arg_size), node); + else + log_info("File '%s' grown from %s to %s by allocation.", + node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size)); + + goto done; + } + } + + if (ftruncate(writable_fd, arg_size) < 0) + return log_error_errno(errno, "Failed to grow '%s' from %s to %s by truncation: %m", + node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size)); + + if (current_size == 0) /* Likely regular file just created by us */ + log_info("Sized '%s' to %s.", node, FORMAT_BYTES(arg_size)); + else + log_info("File '%s' grown from %s to %s by truncation.", + node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size)); + +done: + r = resize_pt(writable_fd, sector_size); + if (r < 0) + return r; + + if (loop_device) { + r = loop_device_refresh_size(loop_device, UINT64_MAX, arg_size); + if (r < 0) + return log_error_errno(r, "Failed to update loop device size: %m"); + } + + return 1; +} + +static int determine_auto_size(Context *c) { + uint64_t sum; + + assert(c); + + sum = round_up_size(GPT_METADATA_SIZE, 4096); + + LIST_FOREACH(partitions, p, c->partitions) { + uint64_t m; + + if (p->dropped) + continue; + + m = partition_min_size_with_padding(c, p); + if (m > UINT64_MAX - sum) + return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Image would grow too large, refusing."); + + sum += m; + } + + if (c->total != UINT64_MAX) + /* Image already allocated? Then show its size. */ + log_info("Automatically determined minimal disk image size as %s, current image size is %s.", + FORMAT_BYTES(sum), FORMAT_BYTES(c->total)); + else + /* If the image is being created right now, then it has no previous size, suppress any comment about it hence. */ + log_info("Automatically determined minimal disk image size as %s.", + FORMAT_BYTES(sum)); + + arg_size = sum; + return 0; +} + +static int run(int argc, char *argv[]) { + _cleanup_(loop_device_unrefp) LoopDevice *loop_device = NULL; + _cleanup_(umount_and_freep) char *mounted_dir = NULL; + _cleanup_(context_freep) Context* context = NULL; + bool node_is_our_loop = false; + int r; + + log_show_color(true); + log_parse_environment(); + log_open(); + + r = parse_argv(argc, argv); + if (r <= 0) + return r; + + r = parse_proc_cmdline_factory_reset(); + if (r < 0) + return r; + + r = parse_efi_variable_factory_reset(); + if (r < 0) + return r; + +#if HAVE_LIBCRYPTSETUP + cryptsetup_enable_logging(NULL); +#endif + + if (arg_image) { + assert(!arg_root); + + /* Mount this strictly read-only: we shall modify the partition table, not the file + * systems */ + r = mount_image_privately_interactively( + arg_image, + arg_image_policy, + DISSECT_IMAGE_MOUNT_READ_ONLY | + (arg_node ? DISSECT_IMAGE_DEVICE_READ_ONLY : 0) | /* If a different node to make changes to is specified let's open the device in read-only mode) */ + DISSECT_IMAGE_GPT_ONLY | + DISSECT_IMAGE_RELAX_VAR_CHECK | + DISSECT_IMAGE_USR_NO_ROOT | + DISSECT_IMAGE_REQUIRE_ROOT, + &mounted_dir, + /* ret_dir_fd= */ NULL, + &loop_device); + if (r < 0) + return r; + + arg_root = strdup(mounted_dir); + if (!arg_root) + return log_oom(); + + if (!arg_node) { + arg_node = strdup(loop_device->node); + if (!arg_node) + return log_oom(); + + /* Remember that the device we are about to manipulate is actually the one we + * allocated here, and thus to increase its backing file we know what to do */ + node_is_our_loop = true; + } + } + + if (!arg_copy_source && arg_root) { + /* If no explicit copy source is specified, then use --root=/--image= */ + arg_copy_source = strdup(arg_root); + if (!arg_copy_source) + return log_oom(); + } + + context = context_new(arg_seed); + if (!context) + return log_oom(); + + r = context_copy_from(context); + if (r < 0) + return r; + + if (arg_make_ddi) { + _cleanup_free_ char *d = NULL, *dp = NULL; + assert(!arg_definitions); + + d = strjoin(arg_make_ddi, ".repart.d/"); + if (!d) + return log_oom(); + + r = search_and_access(d, F_OK, arg_root, CONF_PATHS_USR_STRV("systemd/repart/definitions"), &dp); + if (r < 0) + return log_error_errno(r, "DDI type '%s' is not defined: %m", arg_make_ddi); + + if (strv_consume(&arg_definitions, TAKE_PTR(dp)) < 0) + return log_oom(); + } else + strv_uniq(arg_definitions); + + r = context_read_definitions(context); + if (r < 0) + return r; + + r = find_root(context); + if (r == -ENODEV) + return 76; /* Special return value which means "Root block device not found, so not doing + * anything". This isn't really an error when called at boot. */ + if (r < 0) + return r; + + if (arg_size != UINT64_MAX) { + r = resize_backing_fd( + context->node, + &context->backing_fd, + node_is_our_loop ? arg_image : NULL, + node_is_our_loop ? loop_device : NULL, + context->sector_size); + if (r < 0) + return r; + } + + r = context_load_partition_table(context); + if (r == -EHWPOISON) + return 77; /* Special return value which means "Not GPT, so not doing anything". This isn't + * really an error when called at boot. */ + if (r < 0) + return r; + context->from_scratch = r > 0; /* Starting from scratch */ + + if (arg_can_factory_reset) { + r = context_can_factory_reset(context); + if (r < 0) + return r; + if (r == 0) + return EXIT_FAILURE; + + return 0; + } + + r = context_factory_reset(context); + if (r < 0) + return r; + if (r > 0) { + /* We actually did a factory reset! */ + r = remove_efi_variable_factory_reset(); + if (r < 0) + return r; + + /* Reload the reduced partition table */ + context_unload_partition_table(context); + r = context_load_partition_table(context); + if (r < 0) + return r; + } + + r = context_read_seed(context, arg_root); + if (r < 0) + return r; + + /* Make sure each partition has a unique UUID and unique label */ + r = context_acquire_partition_uuids_and_labels(context); + if (r < 0) + return r; + + /* Open all files to copy blocks from now, since we want to take their size into consideration */ + r = context_open_copy_block_paths( + context, + loop_device ? loop_device->devno : /* if --image= is specified, only allow partitions on the loopback device */ + arg_root && !arg_image ? 0 : /* if --root= is specified, don't accept any block device */ + (dev_t) -1); /* if neither is specified, make no restrictions */ + if (r < 0) + return r; + + r = context_minimize(context); + if (r < 0) + return r; + + if (arg_size_auto) { + r = determine_auto_size(context); + if (r < 0) + return r; + + /* Flush out everything again, and let's grow the file first, then start fresh */ + context_unload_partition_table(context); + + assert(arg_size != UINT64_MAX); + r = resize_backing_fd( + context->node, + &context->backing_fd, + node_is_our_loop ? arg_image : NULL, + node_is_our_loop ? loop_device : NULL, + context->sector_size); + if (r < 0) + return r; + + r = context_load_partition_table(context); + if (r < 0) + return r; + } + + /* First try to fit new partitions in, dropping by priority until it fits */ + for (;;) { + uint64_t largest_free_area; + + if (context_allocate_partitions(context, &largest_free_area)) + break; /* Success! */ + + if (!context_drop_or_foreignize_one_priority(context)) { + r = log_error_errno(SYNTHETIC_ERRNO(ENOSPC), + "Can't fit requested partitions into available free space (%s), refusing.", + FORMAT_BYTES(largest_free_area)); + determine_auto_size(context); + return r; + } + } + + /* Now assign free space according to the weight logic */ + r = context_grow_partitions(context); + if (r < 0) + return r; + + /* Now calculate where each new partition gets placed */ + context_place_partitions(context); + + (void) context_dump(context, /*late=*/ false); + + r = context_write_partition_table(context); + if (r < 0) + return r; + + r = context_split(context); + if (r < 0) + return r; + + (void) context_dump(context, /*late=*/ true); + + context->node = mfree(context->node); + + LIST_FOREACH(partitions, p, context->partitions) + p->split_path = mfree(p->split_path); + + return 0; +} + +DEFINE_MAIN_FUNCTION_WITH_POSITIVE_FAILURE(run); |