/* SPDX-License-Identifier: LGPL-2.1-or-later */ #include #include #include #include #include #include #include "sd-bus.h" #include "alloc-util.h" #include "build.h" #include "bus-error.h" #include "bus-util.h" #include "cgroup-show.h" #include "cgroup-util.h" #include "fd-util.h" #include "fileio.h" #include "hashmap.h" #include "main-func.h" #include "missing_sched.h" #include "parse-argument.h" #include "parse-util.h" #include "path-util.h" #include "pretty-print.h" #include "process-util.h" #include "procfs-util.h" #include "sort-util.h" #include "stdio-util.h" #include "strv.h" #include "terminal-util.h" #include "unit-name.h" #include "virt.h" typedef struct Group { char *path; bool n_tasks_valid; bool cpu_valid; bool memory_valid; bool io_valid; uint64_t n_tasks; unsigned cpu_iteration; nsec_t cpu_usage; nsec_t cpu_timestamp; double cpu_fraction; uint64_t memory; unsigned io_iteration; uint64_t io_input, io_output; nsec_t io_timestamp; uint64_t io_input_bps, io_output_bps; } Group; /* Counted objects, enum order matters */ typedef enum PidsCount { COUNT_USERSPACE_PROCESSES, /* least */ COUNT_ALL_PROCESSES, COUNT_PIDS, /* most, requires pids controller */ } PidsCount; static unsigned arg_depth = 3; static unsigned arg_iterations = UINT_MAX; static bool arg_batch = false; static bool arg_raw = false; static usec_t arg_delay = 1*USEC_PER_SEC; static char* arg_machine = NULL; static char* arg_root = NULL; static bool arg_recursive = true; static bool arg_recursive_unset = false; static PidsCount arg_count = COUNT_PIDS; static enum { ORDER_PATH, ORDER_TASKS, ORDER_CPU, ORDER_MEMORY, ORDER_IO, } arg_order = ORDER_CPU; static enum { CPU_PERCENT, CPU_TIME, } arg_cpu_type = CPU_PERCENT; static Group *group_free(Group *g) { if (!g) return NULL; free(g->path); return mfree(g); } DEFINE_PRIVATE_HASH_OPS_WITH_VALUE_DESTRUCTOR(group_hash_ops, char, path_hash_func, path_compare, Group, group_free); static const char *maybe_format_timespan(char *buf, size_t l, usec_t t, usec_t accuracy) { if (arg_raw) { (void) snprintf(buf, l, USEC_FMT, t); return buf; } return format_timespan(buf, l, t, accuracy); } #define BUFSIZE1 CONST_MAX(FORMAT_TIMESPAN_MAX, DECIMAL_STR_MAX(usec_t)) #define MAYBE_FORMAT_TIMESPAN(t, accuracy) \ maybe_format_timespan((char[BUFSIZE1]){}, BUFSIZE1, t, accuracy) static const char *maybe_format_bytes(char *buf, size_t l, bool is_valid, uint64_t t) { if (!is_valid) return "-"; if (arg_raw) { (void) snprintf(buf, l, "%" PRIu64, t); return buf; } return format_bytes(buf, l, t); } #define BUFSIZE2 CONST_MAX(FORMAT_BYTES_MAX, DECIMAL_STR_MAX(uint64_t)) #define MAYBE_FORMAT_BYTES(is_valid, t) \ maybe_format_bytes((char[BUFSIZE2]){}, BUFSIZE2, is_valid, t) static bool is_root_cgroup(const char *path) { /* Returns true if the specified path belongs to the root cgroup. The root cgroup is special on cgroup v2 as it * carries only very few attributes in order not to export multiple truth about system state as most * information is available elsewhere in /proc anyway. We need to be able to deal with that, and need to get * our data from different sources in that case. * * There's one extra complication in all of this, though 😣: if the path to the cgroup indicates we are in the * root cgroup this might actually not be the case, because cgroup namespacing might be in effect * (CLONE_NEWCGROUP). Since there's no nice way to distinguish a real cgroup root from a fake namespaced one we * do an explicit container check here, under the assumption that CLONE_NEWCGROUP is generally used when * container managers are used too. * * Note that checking for a container environment is kinda ugly, since in theory people could use cgtop from * inside a container where cgroup namespacing is turned off to watch the host system. However, that's mostly a * theoretic use case, and if people actually try all they'll lose is accounting for the top-level cgroup. Which * isn't too bad. */ if (detect_container() > 0) return false; return empty_or_root(path); } static int process( const char *controller, const char *path, Hashmap *a, Hashmap *b, unsigned iteration, Group **ret) { Group *g; int r, all_unified; assert(controller); assert(path); assert(a); all_unified = cg_all_unified(); if (all_unified < 0) return all_unified; g = hashmap_get(a, path); if (!g) { g = hashmap_get(b, path); if (!g) { g = new0(Group, 1); if (!g) return -ENOMEM; g->path = strdup(path); if (!g->path) { group_free(g); return -ENOMEM; } r = hashmap_put(a, g->path, g); if (r < 0) { group_free(g); return r; } } else { r = hashmap_move_one(a, b, path); if (r < 0) return r; g->cpu_valid = g->memory_valid = g->io_valid = g->n_tasks_valid = false; } } if (streq(controller, SYSTEMD_CGROUP_CONTROLLER) && IN_SET(arg_count, COUNT_ALL_PROCESSES, COUNT_USERSPACE_PROCESSES)) { _cleanup_fclose_ FILE *f = NULL; pid_t pid; r = cg_enumerate_processes(controller, path, &f); if (r == -ENOENT) return 0; if (r < 0) return r; g->n_tasks = 0; while (cg_read_pid(f, &pid, CGROUP_DONT_SKIP_UNMAPPED) > 0) { if (arg_count == COUNT_USERSPACE_PROCESSES && pid_is_kernel_thread(pid) > 0) continue; g->n_tasks++; } if (g->n_tasks > 0) g->n_tasks_valid = true; } else if (streq(controller, "pids") && arg_count == COUNT_PIDS) { if (is_root_cgroup(path)) { r = procfs_tasks_get_current(&g->n_tasks); if (r < 0) return r; } else { _cleanup_free_ char *p = NULL, *v = NULL; r = cg_get_path(controller, path, "pids.current", &p); if (r < 0) return r; r = read_one_line_file(p, &v); if (r == -ENOENT) return 0; if (r < 0) return r; r = safe_atou64(v, &g->n_tasks); if (r < 0) return r; } if (g->n_tasks > 0) g->n_tasks_valid = true; } else if (streq(controller, "memory")) { if (is_root_cgroup(path)) { r = procfs_memory_get_used(&g->memory); if (r < 0) return r; } else { _cleanup_free_ char *p = NULL, *v = NULL; if (all_unified) r = cg_get_path(controller, path, "memory.current", &p); else r = cg_get_path(controller, path, "memory.usage_in_bytes", &p); if (r < 0) return r; r = read_one_line_file(p, &v); if (r == -ENOENT) return 0; if (r < 0) return r; r = safe_atou64(v, &g->memory); if (r < 0) return r; } if (g->memory > 0) g->memory_valid = true; } else if ((streq(controller, "io") && all_unified) || (streq(controller, "blkio") && !all_unified)) { _cleanup_fclose_ FILE *f = NULL; _cleanup_free_ char *p = NULL; uint64_t wr = 0, rd = 0; nsec_t timestamp; r = cg_get_path(controller, path, all_unified ? "io.stat" : "blkio.io_service_bytes", &p); if (r < 0) return r; f = fopen(p, "re"); if (!f) { if (errno == ENOENT) return 0; return -errno; } for (;;) { _cleanup_free_ char *line = NULL; uint64_t k, *q; char *l; r = read_stripped_line(f, LONG_LINE_MAX, &line); if (r < 0) return r; if (r == 0) break; /* Skip the device */ l = line + strcspn(line, WHITESPACE); l += strspn(l, WHITESPACE); if (all_unified) { while (!isempty(l)) { if (sscanf(l, "rbytes=%" SCNu64, &k) == 1) rd += k; else if (sscanf(l, "wbytes=%" SCNu64, &k) == 1) wr += k; l += strcspn(l, WHITESPACE); l += strspn(l, WHITESPACE); } } else { if (first_word(l, "Read")) { l += 4; q = &rd; } else if (first_word(l, "Write")) { l += 5; q = ≀ } else continue; l += strspn(l, WHITESPACE); r = safe_atou64(l, &k); if (r < 0) continue; *q += k; } } timestamp = now_nsec(CLOCK_MONOTONIC); if (g->io_iteration == iteration - 1) { uint64_t x, yr, yw; x = (uint64_t) (timestamp - g->io_timestamp); if (x < 1) x = 1; if (rd > g->io_input) yr = rd - g->io_input; else yr = 0; if (wr > g->io_output) yw = wr - g->io_output; else yw = 0; if (yr > 0 || yw > 0) { g->io_input_bps = (yr * 1000000000ULL) / x; g->io_output_bps = (yw * 1000000000ULL) / x; g->io_valid = true; } } g->io_input = rd; g->io_output = wr; g->io_timestamp = timestamp; g->io_iteration = iteration; } else if (STR_IN_SET(controller, "cpu", "cpuacct") || cpu_accounting_is_cheap()) { _cleanup_free_ char *p = NULL, *v = NULL; uint64_t new_usage; nsec_t timestamp; if (is_root_cgroup(path)) { r = procfs_cpu_get_usage(&new_usage); if (r < 0) return r; } else if (all_unified) { _cleanup_free_ char *val = NULL; if (!streq(controller, "cpu")) return 0; r = cg_get_keyed_attribute("cpu", path, "cpu.stat", STRV_MAKE("usage_usec"), &val); if (IN_SET(r, -ENOENT, -ENXIO)) return 0; if (r < 0) return r; r = safe_atou64(val, &new_usage); if (r < 0) return r; new_usage *= NSEC_PER_USEC; } else { if (!streq(controller, "cpuacct")) return 0; r = cg_get_path(controller, path, "cpuacct.usage", &p); if (r < 0) return r; r = read_one_line_file(p, &v); if (r == -ENOENT) return 0; if (r < 0) return r; r = safe_atou64(v, &new_usage); if (r < 0) return r; } timestamp = now_nsec(CLOCK_MONOTONIC); if (g->cpu_iteration == iteration - 1 && (nsec_t) new_usage > g->cpu_usage) { nsec_t x, y; x = timestamp - g->cpu_timestamp; if (x < 1) x = 1; y = (nsec_t) new_usage - g->cpu_usage; g->cpu_fraction = (double) y / (double) x; g->cpu_valid = true; } g->cpu_usage = (nsec_t) new_usage; g->cpu_timestamp = timestamp; g->cpu_iteration = iteration; } if (ret) *ret = g; return 0; } static int refresh_one( const char *controller, const char *path, Hashmap *a, Hashmap *b, unsigned iteration, unsigned depth, Group **ret) { _cleanup_closedir_ DIR *d = NULL; Group *ours = NULL; int r; assert(controller); assert(path); assert(a); if (depth > arg_depth) return 0; r = process(controller, path, a, b, iteration, &ours); if (r < 0) return r; r = cg_enumerate_subgroups(controller, path, &d); if (r == -ENOENT) return 0; if (r < 0) return r; for (;;) { _cleanup_free_ char *fn = NULL, *p = NULL; Group *child = NULL; r = cg_read_subgroup(d, &fn); if (r < 0) return r; if (r == 0) break; p = path_join(path, fn); if (!p) return -ENOMEM; path_simplify(p); r = refresh_one(controller, p, a, b, iteration, depth + 1, &child); if (r < 0) return r; if (arg_recursive && IN_SET(arg_count, COUNT_ALL_PROCESSES, COUNT_USERSPACE_PROCESSES) && child && child->n_tasks_valid && streq(controller, SYSTEMD_CGROUP_CONTROLLER)) { /* Recursively sum up processes */ if (ours->n_tasks_valid) ours->n_tasks += child->n_tasks; else { ours->n_tasks = child->n_tasks; ours->n_tasks_valid = true; } } } if (ret) *ret = ours; return 1; } static int refresh(const char *root, Hashmap *a, Hashmap *b, unsigned iteration) { int r; FOREACH_STRING(c, SYSTEMD_CGROUP_CONTROLLER, "cpu", "cpuacct", "memory", "io", "blkio", "pids") { r = refresh_one(c, root, a, b, iteration, 0, NULL); if (r < 0) return r; } return 0; } static int group_compare(Group * const *a, Group * const *b) { const Group *x = *a, *y = *b; int r; if (arg_order != ORDER_TASKS || arg_recursive) { /* Let's make sure that the parent is always before * the child. Except when ordering by tasks and * recursive summing is off, since that is actually * not accumulative for all children. */ if (path_startswith(empty_to_root(y->path), empty_to_root(x->path))) return -1; if (path_startswith(empty_to_root(x->path), empty_to_root(y->path))) return 1; } switch (arg_order) { case ORDER_PATH: break; case ORDER_CPU: if (arg_cpu_type == CPU_PERCENT) { if (x->cpu_valid && y->cpu_valid) { r = CMP(y->cpu_fraction, x->cpu_fraction); if (r != 0) return r; } else if (x->cpu_valid) return -1; else if (y->cpu_valid) return 1; } else { r = CMP(y->cpu_usage, x->cpu_usage); if (r != 0) return r; } break; case ORDER_TASKS: if (x->n_tasks_valid && y->n_tasks_valid) { r = CMP(y->n_tasks, x->n_tasks); if (r != 0) return r; } else if (x->n_tasks_valid) return -1; else if (y->n_tasks_valid) return 1; break; case ORDER_MEMORY: if (x->memory_valid && y->memory_valid) { r = CMP(y->memory, x->memory); if (r != 0) return r; } else if (x->memory_valid) return -1; else if (y->memory_valid) return 1; break; case ORDER_IO: if (x->io_valid && y->io_valid) { r = CMP(y->io_input_bps + y->io_output_bps, x->io_input_bps + x->io_output_bps); if (r != 0) return r; } else if (x->io_valid) return -1; else if (y->io_valid) return 1; } return path_compare(x->path, y->path); } static void display(Hashmap *a) { Group *g; Group **array; signed path_columns; unsigned rows, n = 0, maxtcpu = 0, maxtpath = 3; /* 3 for ellipsize() to work properly */ assert(a); if (!terminal_is_dumb()) fputs(ANSI_HOME_CLEAR, stdout); array = newa(Group*, hashmap_size(a)); HASHMAP_FOREACH(g, a) if (g->n_tasks_valid || g->cpu_valid || g->memory_valid || g->io_valid) array[n++] = g; typesafe_qsort(array, n, group_compare); /* Find the longest names in one run */ for (unsigned j = 0; j < n; j++) { maxtcpu = MAX(maxtcpu, strlen(MAYBE_FORMAT_TIMESPAN((usec_t) (array[j]->cpu_usage / NSEC_PER_USEC), 0))); maxtpath = MAX(maxtpath, strlen(array[j]->path)); } rows = lines(); if (rows <= 10) rows = 10; if (on_tty()) { const char *on, *off; int cpu_len = arg_cpu_type == CPU_PERCENT ? 6 : maxtcpu; path_columns = columns() - 36 - cpu_len; if (path_columns < 10) path_columns = 10; on = ansi_highlight_underline(); off = ansi_underline(); printf("%s%s%-*s%s %s%7s%s %s%*s%s %s%8s%s %s%8s%s %s%8s%s%s\n", ansi_underline(), arg_order == ORDER_PATH ? on : "", path_columns, "CGroup", arg_order == ORDER_PATH ? off : "", arg_order == ORDER_TASKS ? on : "", arg_count == COUNT_PIDS ? "Tasks" : arg_count == COUNT_USERSPACE_PROCESSES ? "Procs" : "Proc+", arg_order == ORDER_TASKS ? off : "", arg_order == ORDER_CPU ? on : "", cpu_len, arg_cpu_type == CPU_PERCENT ? "%CPU" : "CPU Time", arg_order == ORDER_CPU ? off : "", arg_order == ORDER_MEMORY ? on : "", "Memory", arg_order == ORDER_MEMORY ? off : "", arg_order == ORDER_IO ? on : "", "Input/s", arg_order == ORDER_IO ? off : "", arg_order == ORDER_IO ? on : "", "Output/s", arg_order == ORDER_IO ? off : "", ansi_normal()); } else path_columns = maxtpath; for (unsigned j = 0; j < n; j++) { _cleanup_free_ char *ellipsized = NULL; const char *path; if (on_tty() && j + 6 > rows) break; g = array[j]; path = empty_to_root(g->path); ellipsized = ellipsize(path, path_columns, 33); printf("%-*s", path_columns, ellipsized ?: path); if (g->n_tasks_valid) printf(" %7" PRIu64, g->n_tasks); else fputs(" -", stdout); if (arg_cpu_type == CPU_PERCENT) { if (g->cpu_valid) printf(" %6.1f", g->cpu_fraction*100); else fputs(" -", stdout); } else printf(" %*s", (int) maxtcpu, MAYBE_FORMAT_TIMESPAN((usec_t) (g->cpu_usage / NSEC_PER_USEC), 0)); printf(" %8s", MAYBE_FORMAT_BYTES(g->memory_valid, g->memory)); printf(" %8s", MAYBE_FORMAT_BYTES(g->io_valid, g->io_input_bps)); printf(" %8s", MAYBE_FORMAT_BYTES(g->io_valid, g->io_output_bps)); putchar('\n'); } } static int help(void) { _cleanup_free_ char *link = NULL; int r; r = terminal_urlify_man("systemd-cgtop", "1", &link); if (r < 0) return log_oom(); printf("%s [OPTIONS...] [CGROUP]\n\n" "Show top control groups by their resource usage.\n\n" " -h --help Show this help\n" " --version Show package version\n" " -p --order=path Order by path\n" " -t --order=tasks Order by number of tasks/processes\n" " -c --order=cpu Order by CPU load (default)\n" " -m --order=memory Order by memory load\n" " -i --order=io Order by IO load\n" " -r --raw Provide raw (not human-readable) numbers\n" " --cpu=percentage Show CPU usage as percentage (default)\n" " --cpu=time Show CPU usage as time\n" " -P Count userspace processes instead of tasks (excl. kernel)\n" " -k Count all processes instead of tasks (incl. kernel)\n" " --recursive=BOOL Sum up process count recursively\n" " -d --delay=DELAY Delay between updates\n" " -n --iterations=N Run for N iterations before exiting\n" " -1 Shortcut for --iterations=1\n" " -b --batch Run in batch mode, accepting no input\n" " --depth=DEPTH Maximum traversal depth (default: %u)\n" " -M --machine= Show container\n" "\nSee the %s for details.\n", program_invocation_short_name, arg_depth, link); return 0; } static int parse_argv(int argc, char *argv[]) { enum { ARG_VERSION = 0x100, ARG_DEPTH, ARG_CPU_TYPE, ARG_ORDER, ARG_RECURSIVE, }; static const struct option options[] = { { "help", no_argument, NULL, 'h' }, { "version", no_argument, NULL, ARG_VERSION }, { "delay", required_argument, NULL, 'd' }, { "iterations", required_argument, NULL, 'n' }, { "batch", no_argument, NULL, 'b' }, { "raw", no_argument, NULL, 'r' }, { "depth", required_argument, NULL, ARG_DEPTH }, { "cpu", optional_argument, NULL, ARG_CPU_TYPE }, { "order", required_argument, NULL, ARG_ORDER }, { "recursive", required_argument, NULL, ARG_RECURSIVE }, { "machine", required_argument, NULL, 'M' }, {} }; int c, r; assert(argc >= 1); assert(argv); while ((c = getopt_long(argc, argv, "hptcmin:brd:kPM:1", options, NULL)) >= 0) switch (c) { case 'h': return help(); case ARG_VERSION: return version(); case ARG_CPU_TYPE: if (optarg) { if (streq(optarg, "time")) arg_cpu_type = CPU_TIME; else if (streq(optarg, "percentage")) arg_cpu_type = CPU_PERCENT; else return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Unknown argument to --cpu=: %s", optarg); } else arg_cpu_type = CPU_TIME; break; case ARG_DEPTH: r = safe_atou(optarg, &arg_depth); if (r < 0) return log_error_errno(r, "Failed to parse depth parameter '%s': %m", optarg); break; case 'd': r = parse_sec(optarg, &arg_delay); if (r < 0) return log_error_errno(r, "Failed to parse delay parameter '%s': %m", optarg); if (arg_delay <= 0) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Invalid delay parameter '%s'", optarg); break; case 'n': r = safe_atou(optarg, &arg_iterations); if (r < 0) return log_error_errno(r, "Failed to parse iterations parameter '%s': %m", optarg); break; case '1': arg_iterations = 1; break; case 'b': arg_batch = true; break; case 'r': arg_raw = true; break; case 'p': arg_order = ORDER_PATH; break; case 't': arg_order = ORDER_TASKS; break; case 'c': arg_order = ORDER_CPU; break; case 'm': arg_order = ORDER_MEMORY; break; case 'i': arg_order = ORDER_IO; break; case ARG_ORDER: if (streq(optarg, "path")) arg_order = ORDER_PATH; else if (streq(optarg, "tasks")) arg_order = ORDER_TASKS; else if (streq(optarg, "cpu")) arg_order = ORDER_CPU; else if (streq(optarg, "memory")) arg_order = ORDER_MEMORY; else if (streq(optarg, "io")) arg_order = ORDER_IO; else return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Invalid argument to --order=: %s", optarg); break; case 'k': arg_count = COUNT_ALL_PROCESSES; break; case 'P': arg_count = COUNT_USERSPACE_PROCESSES; break; case ARG_RECURSIVE: r = parse_boolean_argument("--recursive=", optarg, &arg_recursive); if (r < 0) return r; arg_recursive_unset = !r; break; case 'M': arg_machine = optarg; break; case '?': return -EINVAL; default: assert_not_reached(); } if (optind == argc - 1) arg_root = argv[optind]; else if (optind < argc) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Too many arguments."); return 1; } static const char* counting_what(void) { if (arg_count == COUNT_PIDS) return "tasks"; else if (arg_count == COUNT_ALL_PROCESSES) return "all processes (incl. kernel)"; else return "userspace processes (excl. kernel)"; } static int loop(const char *root) { _cleanup_hashmap_free_ Hashmap *a = NULL, *b = NULL; unsigned iteration = 0; usec_t last_refresh = 0; bool immediate_refresh = false; int r; a = hashmap_new(&group_hash_ops); b = hashmap_new(&group_hash_ops); if (!a || !b) return log_oom(); for (;;) { usec_t t; char key; t = now(CLOCK_MONOTONIC); if (t >= usec_add(last_refresh, arg_delay) || immediate_refresh) { r = refresh(root, a, b, iteration++); if (r < 0) return log_error_errno(r, "Failed to refresh: %m"); hashmap_clear(b); SWAP_TWO(a, b); last_refresh = t; immediate_refresh = false; } display(b); if (arg_iterations && iteration >= arg_iterations) return 0; if (!on_tty()) /* non-TTY: Empty newline as delimiter between polls */ fputs("\n", stdout); fflush(stdout); if (arg_batch) (void) usleep_safe(usec_add(usec_sub_unsigned(last_refresh, t), arg_delay)); else { r = read_one_char(stdin, &key, usec_add(usec_sub_unsigned(last_refresh, t), arg_delay), NULL); if (r == -ETIMEDOUT) continue; if (r < 0) return log_error_errno(r, "Couldn't read key: %m"); } if (on_tty()) { /* TTY: Clear any user keystroke */ fputs("\r \r", stdout); fflush(stdout); } if (arg_batch) continue; switch (key) { case ' ': immediate_refresh = true; break; case 'q': return 0; case 'p': arg_order = ORDER_PATH; break; case 't': arg_order = ORDER_TASKS; break; case 'c': arg_order = ORDER_CPU; break; case 'm': arg_order = ORDER_MEMORY; break; case 'i': arg_order = ORDER_IO; break; case '%': arg_cpu_type = arg_cpu_type == CPU_TIME ? CPU_PERCENT : CPU_TIME; break; case 'k': arg_count = arg_count != COUNT_ALL_PROCESSES ? COUNT_ALL_PROCESSES : COUNT_PIDS; fprintf(stdout, "\nCounting: %s.", counting_what()); fflush(stdout); sleep(1); break; case 'P': arg_count = arg_count != COUNT_USERSPACE_PROCESSES ? COUNT_USERSPACE_PROCESSES : COUNT_PIDS; fprintf(stdout, "\nCounting: %s.", counting_what()); fflush(stdout); sleep(1); break; case 'r': if (arg_count == COUNT_PIDS) fprintf(stdout, "\n\aCannot toggle recursive counting, not available in task counting mode."); else { arg_recursive = !arg_recursive; fprintf(stdout, "\nRecursive process counting: %s", yes_no(arg_recursive)); } fflush(stdout); sleep(1); break; case '+': arg_delay = usec_add(arg_delay, arg_delay < USEC_PER_SEC ? USEC_PER_MSEC * 250 : USEC_PER_SEC); fprintf(stdout, "\nIncreased delay to %s.", FORMAT_TIMESPAN(arg_delay, 0)); fflush(stdout); sleep(1); break; case '-': if (arg_delay <= USEC_PER_MSEC*500) arg_delay = USEC_PER_MSEC*250; else arg_delay = usec_sub_unsigned(arg_delay, arg_delay < USEC_PER_MSEC * 1250 ? USEC_PER_MSEC * 250 : USEC_PER_SEC); fprintf(stdout, "\nDecreased delay to %s.", FORMAT_TIMESPAN(arg_delay, 0)); fflush(stdout); sleep(1); break; case '?': case 'h': fprintf(stdout, "\t<%1$sp%2$s> By path; <%1$st%2$s> By tasks/procs; <%1$sc%2$s> By CPU; <%1$sm%2$s> By memory; <%1$si%2$s> By I/O\n" "\t<%1$s+%2$s> Inc. delay; <%1$s-%2$s> Dec. delay; <%1$s%%%2$s> Toggle time; <%1$sSPACE%2$s> Refresh\n" "\t<%1$sP%2$s> Toggle count userspace processes; <%1$sk%2$s> Toggle count all processes\n" "\t<%1$sr%2$s> Count processes recursively; <%1$sq%2$s> Quit", ansi_highlight(), ansi_normal()); fflush(stdout); sleep(3); break; default: if (key < ' ') fprintf(stdout, "\nUnknown key '\\x%x'. Ignoring.", (unsigned) key); else fprintf(stdout, "\nUnknown key '%c'. Ignoring.", key); fflush(stdout); sleep(1); break; } } } static int run(int argc, char *argv[]) { _cleanup_free_ char *root = NULL; CGroupMask mask; int r; log_setup(); r = parse_argv(argc, argv); if (r <= 0) return r; r = cg_mask_supported(&mask); if (r < 0) return log_error_errno(r, "Failed to determine supported controllers: %m"); /* honor user selection unless pids controller is unavailable */ PidsCount possible_count = (mask & CGROUP_MASK_PIDS) ? COUNT_PIDS : COUNT_ALL_PROCESSES; arg_count = MIN(possible_count, arg_count); if (arg_recursive_unset && arg_count == COUNT_PIDS) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Non-recursive counting is only supported when counting processes, not tasks. Use -P or -k."); r = show_cgroup_get_path_and_warn(arg_machine, arg_root, &root); if (r < 0) return log_error_errno(r, "Failed to get root control group path: %m"); log_debug("CGroup path: %s", root); signal(SIGWINCH, columns_lines_cache_reset); if (arg_iterations == UINT_MAX) arg_iterations = on_tty() ? 0 : 1; return loop(root); } DEFINE_MAIN_FUNCTION(run);