/* SPDX-License-Identifier: LGPL-2.1-or-later */ #include #include #include #include #include #include "sd-messages.h" #include "alloc-util.h" #include "async.h" #include "bus-error.h" #include "bus-kernel.h" #include "bus-util.h" #include "chase.h" #include "constants.h" #include "dbus-service.h" #include "dbus-unit.h" #include "devnum-util.h" #include "env-util.h" #include "escape.h" #include "exit-status.h" #include "fd-util.h" #include "fileio.h" #include "format-util.h" #include "io-util.h" #include "load-dropin.h" #include "load-fragment.h" #include "log.h" #include "manager.h" #include "missing_audit.h" #include "open-file.h" #include "parse-util.h" #include "path-util.h" #include "process-util.h" #include "random-util.h" #include "selinux-util.h" #include "serialize.h" #include "service.h" #include "signal-util.h" #include "special.h" #include "stdio-util.h" #include "string-table.h" #include "string-util.h" #include "strv.h" #include "unit-name.h" #include "unit.h" #include "utf8.h" #define service_spawn(...) service_spawn_internal(__func__, __VA_ARGS__) static const UnitActiveState state_translation_table[_SERVICE_STATE_MAX] = { [SERVICE_DEAD] = UNIT_INACTIVE, [SERVICE_CONDITION] = UNIT_ACTIVATING, [SERVICE_START_PRE] = UNIT_ACTIVATING, [SERVICE_START] = UNIT_ACTIVATING, [SERVICE_START_POST] = UNIT_ACTIVATING, [SERVICE_RUNNING] = UNIT_ACTIVE, [SERVICE_EXITED] = UNIT_ACTIVE, [SERVICE_RELOAD] = UNIT_RELOADING, [SERVICE_RELOAD_SIGNAL] = UNIT_RELOADING, [SERVICE_RELOAD_NOTIFY] = UNIT_RELOADING, [SERVICE_STOP] = UNIT_DEACTIVATING, [SERVICE_STOP_WATCHDOG] = UNIT_DEACTIVATING, [SERVICE_STOP_SIGTERM] = UNIT_DEACTIVATING, [SERVICE_STOP_SIGKILL] = UNIT_DEACTIVATING, [SERVICE_STOP_POST] = UNIT_DEACTIVATING, [SERVICE_FINAL_WATCHDOG] = UNIT_DEACTIVATING, [SERVICE_FINAL_SIGTERM] = UNIT_DEACTIVATING, [SERVICE_FINAL_SIGKILL] = UNIT_DEACTIVATING, [SERVICE_FAILED] = UNIT_FAILED, [SERVICE_DEAD_BEFORE_AUTO_RESTART] = UNIT_INACTIVE, [SERVICE_FAILED_BEFORE_AUTO_RESTART] = UNIT_FAILED, [SERVICE_DEAD_RESOURCES_PINNED] = UNIT_INACTIVE, [SERVICE_AUTO_RESTART] = UNIT_ACTIVATING, [SERVICE_AUTO_RESTART_QUEUED] = UNIT_ACTIVATING, [SERVICE_CLEANING] = UNIT_MAINTENANCE, }; /* For Type=idle we never want to delay any other jobs, hence we * consider idle jobs active as soon as we start working on them */ static const UnitActiveState state_translation_table_idle[_SERVICE_STATE_MAX] = { [SERVICE_DEAD] = UNIT_INACTIVE, [SERVICE_CONDITION] = UNIT_ACTIVE, [SERVICE_START_PRE] = UNIT_ACTIVE, [SERVICE_START] = UNIT_ACTIVE, [SERVICE_START_POST] = UNIT_ACTIVE, [SERVICE_RUNNING] = UNIT_ACTIVE, [SERVICE_EXITED] = UNIT_ACTIVE, [SERVICE_RELOAD] = UNIT_RELOADING, [SERVICE_RELOAD_SIGNAL] = UNIT_RELOADING, [SERVICE_RELOAD_NOTIFY] = UNIT_RELOADING, [SERVICE_STOP] = UNIT_DEACTIVATING, [SERVICE_STOP_WATCHDOG] = UNIT_DEACTIVATING, [SERVICE_STOP_SIGTERM] = UNIT_DEACTIVATING, [SERVICE_STOP_SIGKILL] = UNIT_DEACTIVATING, [SERVICE_STOP_POST] = UNIT_DEACTIVATING, [SERVICE_FINAL_WATCHDOG] = UNIT_DEACTIVATING, [SERVICE_FINAL_SIGTERM] = UNIT_DEACTIVATING, [SERVICE_FINAL_SIGKILL] = UNIT_DEACTIVATING, [SERVICE_FAILED] = UNIT_FAILED, [SERVICE_DEAD_BEFORE_AUTO_RESTART] = UNIT_INACTIVE, [SERVICE_FAILED_BEFORE_AUTO_RESTART] = UNIT_FAILED, [SERVICE_DEAD_RESOURCES_PINNED] = UNIT_INACTIVE, [SERVICE_AUTO_RESTART] = UNIT_ACTIVATING, [SERVICE_AUTO_RESTART_QUEUED] = UNIT_ACTIVATING, [SERVICE_CLEANING] = UNIT_MAINTENANCE, }; static int service_dispatch_inotify_io(sd_event_source *source, int fd, uint32_t events, void *userdata); static int service_dispatch_timer(sd_event_source *source, usec_t usec, void *userdata); static int service_dispatch_watchdog(sd_event_source *source, usec_t usec, void *userdata); static int service_dispatch_exec_io(sd_event_source *source, int fd, uint32_t events, void *userdata); static void service_enter_signal(Service *s, ServiceState state, ServiceResult f); static void service_enter_reload_by_notify(Service *s); static bool SERVICE_STATE_WITH_MAIN_PROCESS(ServiceState state) { return IN_SET(state, SERVICE_START, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY, SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST, SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL); } static bool SERVICE_STATE_WITH_CONTROL_PROCESS(ServiceState state) { return IN_SET(state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST, SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY, SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST, SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL, SERVICE_CLEANING); } static void service_init(Unit *u) { Service *s = SERVICE(u); assert(u); assert(u->load_state == UNIT_STUB); s->timeout_start_usec = u->manager->defaults.timeout_start_usec; s->timeout_stop_usec = u->manager->defaults.timeout_stop_usec; s->timeout_abort_usec = u->manager->defaults.timeout_abort_usec; s->timeout_abort_set = u->manager->defaults.timeout_abort_set; s->restart_usec = u->manager->defaults.restart_usec; s->restart_max_delay_usec = USEC_INFINITY; s->runtime_max_usec = USEC_INFINITY; s->type = _SERVICE_TYPE_INVALID; s->socket_fd = -EBADF; s->stdin_fd = s->stdout_fd = s->stderr_fd = -EBADF; s->guess_main_pid = true; s->main_pid = PIDREF_NULL; s->control_pid = PIDREF_NULL; s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID; s->exec_context.keyring_mode = MANAGER_IS_SYSTEM(u->manager) ? EXEC_KEYRING_PRIVATE : EXEC_KEYRING_INHERIT; s->notify_access_override = _NOTIFY_ACCESS_INVALID; s->watchdog_original_usec = USEC_INFINITY; s->oom_policy = _OOM_POLICY_INVALID; s->reload_begin_usec = USEC_INFINITY; s->reload_signal = SIGHUP; s->fd_store_preserve_mode = EXEC_PRESERVE_RESTART; } static void service_unwatch_control_pid(Service *s) { assert(s); unit_unwatch_pidref_done(UNIT(s), &s->control_pid); } static void service_unwatch_main_pid(Service *s) { assert(s); unit_unwatch_pidref_done(UNIT(s), &s->main_pid); } static void service_unwatch_pid_file(Service *s) { assert(s); if (!s->pid_file_pathspec) return; log_unit_debug(UNIT(s), "Stopping watch for PID file %s", s->pid_file_pathspec->path); path_spec_unwatch(s->pid_file_pathspec); path_spec_done(s->pid_file_pathspec); s->pid_file_pathspec = mfree(s->pid_file_pathspec); } static int service_set_main_pidref(Service *s, PidRef pidref_consume, const dual_timestamp *start_timestamp) { _cleanup_(pidref_done) PidRef pidref = pidref_consume; int r; assert(s); /* Takes ownership of the specified pidref on both success and failure. */ if (!pidref_is_set(&pidref)) return -ESRCH; if (pidref.pid <= 1) return -EINVAL; if (pidref_is_self(&pidref)) return -EINVAL; if (s->main_pid_known && pidref_equal(&s->main_pid, &pidref)) return 0; if (!pidref_equal(&s->main_pid, &pidref)) { service_unwatch_main_pid(s); exec_status_start(&s->main_exec_status, pidref.pid, start_timestamp); } s->main_pid = TAKE_PIDREF(pidref); s->main_pid_known = true; r = pidref_is_my_child(&s->main_pid); if (r < 0) log_unit_warning_errno(UNIT(s), r, "Can't determine if process "PID_FMT" is our child, assuming it is not: %m", s->main_pid.pid); else if (r == 0) // FIXME: Supervise through pidfd here log_unit_warning(UNIT(s), "Supervising process "PID_FMT" which is not our child. We'll most likely not notice when it exits.", s->main_pid.pid); s->main_pid_alien = r <= 0; return 0; } void service_release_socket_fd(Service *s) { assert(s); if (s->socket_fd < 0 && !UNIT_ISSET(s->accept_socket) && !s->socket_peer) return; log_unit_debug(UNIT(s), "Closing connection socket."); /* Undo the effect of service_set_socket_fd(). */ s->socket_fd = asynchronous_close(s->socket_fd); if (UNIT_ISSET(s->accept_socket)) { socket_connection_unref(SOCKET(UNIT_DEREF(s->accept_socket))); unit_ref_unset(&s->accept_socket); } s->socket_peer = socket_peer_unref(s->socket_peer); } static void service_override_notify_access(Service *s, NotifyAccess notify_access_override) { assert(s); s->notify_access_override = notify_access_override; log_unit_debug(UNIT(s), "notify_access=%s", notify_access_to_string(s->notify_access)); log_unit_debug(UNIT(s), "notify_access_override=%s", notify_access_to_string(s->notify_access_override)); } static void service_stop_watchdog(Service *s) { assert(s); s->watchdog_event_source = sd_event_source_disable_unref(s->watchdog_event_source); s->watchdog_timestamp = DUAL_TIMESTAMP_NULL; } static void service_start_watchdog(Service *s) { usec_t watchdog_usec; int r; assert(s); watchdog_usec = service_get_watchdog_usec(s); if (!timestamp_is_set(watchdog_usec)) { service_stop_watchdog(s); return; } if (s->watchdog_event_source) { r = sd_event_source_set_time(s->watchdog_event_source, usec_add(s->watchdog_timestamp.monotonic, watchdog_usec)); if (r < 0) { log_unit_warning_errno(UNIT(s), r, "Failed to reset watchdog timer: %m"); return; } r = sd_event_source_set_enabled(s->watchdog_event_source, SD_EVENT_ONESHOT); } else { r = sd_event_add_time( UNIT(s)->manager->event, &s->watchdog_event_source, CLOCK_MONOTONIC, usec_add(s->watchdog_timestamp.monotonic, watchdog_usec), 0, service_dispatch_watchdog, s); if (r < 0) { log_unit_warning_errno(UNIT(s), r, "Failed to add watchdog timer: %m"); return; } (void) sd_event_source_set_description(s->watchdog_event_source, "service-watchdog"); /* Let's process everything else which might be a sign * of living before we consider a service died. */ r = sd_event_source_set_priority(s->watchdog_event_source, EVENT_PRIORITY_SERVICE_WATCHDOG); } if (r < 0) log_unit_warning_errno(UNIT(s), r, "Failed to install watchdog timer: %m"); } usec_t service_restart_usec_next(Service *s) { unsigned n_restarts_next; assert(s); /* When the service state is in SERVICE_*_BEFORE_AUTO_RESTART or SERVICE_AUTO_RESTART, we still need * to add 1 to s->n_restarts manually, because s->n_restarts is not updated until a restart job is * enqueued, i.e. state has transitioned to SERVICE_AUTO_RESTART_QUEUED. */ n_restarts_next = s->n_restarts + (s->state == SERVICE_AUTO_RESTART_QUEUED ? 0 : 1); if (n_restarts_next <= 1 || s->restart_steps == 0 || s->restart_usec == 0 || s->restart_max_delay_usec == USEC_INFINITY || s->restart_usec >= s->restart_max_delay_usec) return s->restart_usec; if (n_restarts_next > s->restart_steps) return s->restart_max_delay_usec; /* Enforced in service_verify() and above */ assert(s->restart_max_delay_usec > s->restart_usec); /* r_i / r_0 = (r_n / r_0) ^ (i / n) * where, * r_0 : initial restart usec (s->restart_usec), * r_i : i-th restart usec (value), * r_n : maximum restart usec (s->restart_max_delay_usec), * i : index of the next step (n_restarts_next - 1) * n : num maximum steps (s->restart_steps) */ return (usec_t) (s->restart_usec * powl((long double) s->restart_max_delay_usec / s->restart_usec, (long double) (n_restarts_next - 1) / s->restart_steps)); } static void service_extend_event_source_timeout(Service *s, sd_event_source *source, usec_t extended) { usec_t current; int r; assert(s); /* Extends the specified event source timer to at least the specified time, unless it is already later * anyway. */ if (!source) return; r = sd_event_source_get_time(source, ¤t); if (r < 0) { const char *desc; (void) sd_event_source_get_description(s->timer_event_source, &desc); log_unit_warning_errno(UNIT(s), r, "Failed to retrieve timeout time for event source '%s', ignoring: %m", strna(desc)); return; } if (current >= extended) /* Current timeout is already longer, ignore this. */ return; r = sd_event_source_set_time(source, extended); if (r < 0) { const char *desc; (void) sd_event_source_get_description(s->timer_event_source, &desc); log_unit_warning_errno(UNIT(s), r, "Failed to set timeout time for event source '%s', ignoring %m", strna(desc)); } } static void service_extend_timeout(Service *s, usec_t extend_timeout_usec) { usec_t extended; assert(s); if (!timestamp_is_set(extend_timeout_usec)) return; extended = usec_add(now(CLOCK_MONOTONIC), extend_timeout_usec); service_extend_event_source_timeout(s, s->timer_event_source, extended); service_extend_event_source_timeout(s, s->watchdog_event_source, extended); } static void service_reset_watchdog(Service *s) { assert(s); dual_timestamp_now(&s->watchdog_timestamp); service_start_watchdog(s); } static void service_override_watchdog_timeout(Service *s, usec_t watchdog_override_usec) { assert(s); s->watchdog_override_enable = true; s->watchdog_override_usec = watchdog_override_usec; service_reset_watchdog(s); log_unit_debug(UNIT(s), "watchdog_usec="USEC_FMT, s->watchdog_usec); log_unit_debug(UNIT(s), "watchdog_override_usec="USEC_FMT, s->watchdog_override_usec); } static ServiceFDStore* service_fd_store_unlink(ServiceFDStore *fs) { if (!fs) return NULL; if (fs->service) { assert(fs->service->n_fd_store > 0); LIST_REMOVE(fd_store, fs->service->fd_store, fs); fs->service->n_fd_store--; } sd_event_source_disable_unref(fs->event_source); free(fs->fdname); asynchronous_close(fs->fd); return mfree(fs); } DEFINE_TRIVIAL_CLEANUP_FUNC(ServiceFDStore*, service_fd_store_unlink); static void service_release_fd_store(Service *s) { assert(s); if (!s->fd_store) return; log_unit_debug(UNIT(s), "Releasing all stored fds"); while (s->fd_store) service_fd_store_unlink(s->fd_store); assert(s->n_fd_store == 0); } static void service_release_stdio_fd(Service *s) { assert(s); if (s->stdin_fd < 0 && s->stdout_fd < 0 && s->stderr_fd < 0) return; log_unit_debug(UNIT(s), "Releasing stdin/stdout/stderr file descriptors."); s->stdin_fd = asynchronous_close(s->stdin_fd); s->stdout_fd = asynchronous_close(s->stdout_fd); s->stderr_fd = asynchronous_close(s->stderr_fd); } static void service_done(Unit *u) { Service *s = ASSERT_PTR(SERVICE(u)); open_file_free_many(&s->open_files); s->pid_file = mfree(s->pid_file); s->status_text = mfree(s->status_text); s->exec_runtime = exec_runtime_free(s->exec_runtime); exec_command_free_array(s->exec_command, _SERVICE_EXEC_COMMAND_MAX); s->control_command = NULL; s->main_command = NULL; exit_status_set_free(&s->restart_prevent_status); exit_status_set_free(&s->restart_force_status); exit_status_set_free(&s->success_status); /* This will leak a process, but at least no memory or any of our resources */ service_unwatch_main_pid(s); service_unwatch_control_pid(s); service_unwatch_pid_file(s); if (s->bus_name) { unit_unwatch_bus_name(u, s->bus_name); s->bus_name = mfree(s->bus_name); } s->bus_name_owner = mfree(s->bus_name_owner); s->usb_function_descriptors = mfree(s->usb_function_descriptors); s->usb_function_strings = mfree(s->usb_function_strings); service_stop_watchdog(s); s->timer_event_source = sd_event_source_disable_unref(s->timer_event_source); s->exec_fd_event_source = sd_event_source_disable_unref(s->exec_fd_event_source); s->bus_name_pid_lookup_slot = sd_bus_slot_unref(s->bus_name_pid_lookup_slot); service_release_socket_fd(s); service_release_stdio_fd(s); service_release_fd_store(s); } static int on_fd_store_io(sd_event_source *e, int fd, uint32_t revents, void *userdata) { ServiceFDStore *fs = ASSERT_PTR(userdata); assert(e); /* If we get either EPOLLHUP or EPOLLERR, it's time to remove this entry from the fd store */ log_unit_debug(UNIT(fs->service), "Received %s on stored fd %d (%s), closing.", revents & EPOLLERR ? "EPOLLERR" : "EPOLLHUP", fs->fd, strna(fs->fdname)); service_fd_store_unlink(fs); return 0; } static int service_add_fd_store(Service *s, int fd_in, const char *name, bool do_poll) { _cleanup_(service_fd_store_unlinkp) ServiceFDStore *fs = NULL; _cleanup_(asynchronous_closep) int fd = ASSERT_FD(fd_in); struct stat st; int r; /* fd is always consumed even if the function fails. */ assert(s); if (fstat(fd, &st) < 0) return -errno; log_unit_debug(UNIT(s), "Trying to stash fd for dev=" DEVNUM_FORMAT_STR "/inode=%" PRIu64, DEVNUM_FORMAT_VAL(st.st_dev), (uint64_t) st.st_ino); if (s->n_fd_store >= s->n_fd_store_max) /* Our store is full. Use this errno rather than E[NM]FILE to distinguish from the case * where systemd itself hits the file limit. */ return log_unit_debug_errno(UNIT(s), SYNTHETIC_ERRNO(EXFULL), "Hit fd store limit."); LIST_FOREACH(fd_store, i, s->fd_store) { r = same_fd(i->fd, fd); if (r < 0) return r; if (r > 0) { log_unit_debug(UNIT(s), "Suppressing duplicate fd %i in fd store.", fd); return 0; /* fd already included */ } } fs = new(ServiceFDStore, 1); if (!fs) return -ENOMEM; *fs = (ServiceFDStore) { .fd = TAKE_FD(fd), .do_poll = do_poll, .fdname = strdup(name ?: "stored"), }; if (!fs->fdname) return -ENOMEM; if (do_poll) { r = sd_event_add_io(UNIT(s)->manager->event, &fs->event_source, fs->fd, 0, on_fd_store_io, fs); if (r < 0 && r != -EPERM) /* EPERM indicates fds that aren't pollable, which is OK */ return r; if (r >= 0) (void) sd_event_source_set_description(fs->event_source, "service-fd-store"); } log_unit_debug(UNIT(s), "Added fd %i (%s) to fd store.", fs->fd, fs->fdname); fs->service = s; LIST_PREPEND(fd_store, s->fd_store, TAKE_PTR(fs)); s->n_fd_store++; return 1; /* fd newly stored */ } static int service_add_fd_store_set(Service *s, FDSet *fds, const char *name, bool do_poll) { int r; assert(s); for (;;) { int fd; fd = fdset_steal_first(fds); if (fd < 0) break; r = service_add_fd_store(s, fd, name, do_poll); if (r == -EXFULL) return log_unit_warning_errno(UNIT(s), r, "Cannot store more fds than FileDescriptorStoreMax=%u, closing remaining.", s->n_fd_store_max); if (r < 0) return log_unit_error_errno(UNIT(s), r, "Failed to add fd to store: %m"); } return 0; } static void service_remove_fd_store(Service *s, const char *name) { assert(s); assert(name); LIST_FOREACH(fd_store, fs, s->fd_store) { if (!streq(fs->fdname, name)) continue; log_unit_debug(UNIT(s), "Got explicit request to remove fd %i (%s), closing.", fs->fd, name); service_fd_store_unlink(fs); } } static usec_t service_running_timeout(Service *s) { usec_t delta = 0; assert(s); if (s->runtime_rand_extra_usec != 0) { delta = random_u64_range(s->runtime_rand_extra_usec); log_unit_debug(UNIT(s), "Adding delta of %s sec to timeout", FORMAT_TIMESPAN(delta, USEC_PER_SEC)); } return usec_add(usec_add(UNIT(s)->active_enter_timestamp.monotonic, s->runtime_max_usec), delta); } static int service_arm_timer(Service *s, bool relative, usec_t usec) { assert(s); return unit_arm_timer(UNIT(s), &s->timer_event_source, relative, usec, service_dispatch_timer); } static int service_verify(Service *s) { assert(s); assert(UNIT(s)->load_state == UNIT_LOADED); for (ServiceExecCommand c = 0; c < _SERVICE_EXEC_COMMAND_MAX; c++) LIST_FOREACH(command, command, s->exec_command[c]) { if (!path_is_absolute(command->path) && !filename_is_valid(command->path)) return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service %s= binary path \"%s\" is neither a valid executable name nor an absolute path. Refusing.", command->path, service_exec_command_to_string(c)); if (strv_isempty(command->argv)) return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has an empty argv in %s=. Refusing.", service_exec_command_to_string(c)); } if (!s->exec_command[SERVICE_EXEC_START] && !s->exec_command[SERVICE_EXEC_STOP] && UNIT(s)->success_action == EMERGENCY_ACTION_NONE) /* FailureAction= only makes sense if one of the start or stop commands is specified. * SuccessAction= will be executed unconditionally if no commands are specified. Hence, * either a command or SuccessAction= are required. */ return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has no ExecStart=, ExecStop=, or SuccessAction=. Refusing."); if (s->type != SERVICE_ONESHOT && !s->exec_command[SERVICE_EXEC_START]) return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has no ExecStart= setting, which is only allowed for Type=oneshot services. Refusing."); if (!s->remain_after_exit && !s->exec_command[SERVICE_EXEC_START] && UNIT(s)->success_action == EMERGENCY_ACTION_NONE) return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has no ExecStart= and no SuccessAction= settings and does not have RemainAfterExit=yes set. Refusing."); if (s->type != SERVICE_ONESHOT && s->exec_command[SERVICE_EXEC_START]->command_next) return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has more than one ExecStart= setting, which is only allowed for Type=oneshot services. Refusing."); if (s->type == SERVICE_ONESHOT && IN_SET(s->restart, SERVICE_RESTART_ALWAYS, SERVICE_RESTART_ON_SUCCESS)) return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has Restart= set to either always or on-success, which isn't allowed for Type=oneshot services. Refusing."); if (s->type == SERVICE_ONESHOT && s->exit_type == SERVICE_EXIT_CGROUP) return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has ExitType=cgroup set, which isn't allowed for Type=oneshot services. Refusing."); if (s->type == SERVICE_DBUS && !s->bus_name) return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service is of type D-Bus but no D-Bus service name has been specified. Refusing."); if (s->exec_context.pam_name && !IN_SET(s->kill_context.kill_mode, KILL_CONTROL_GROUP, KILL_MIXED)) return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has PAM enabled. Kill mode must be set to 'control-group' or 'mixed'. Refusing."); if (s->usb_function_descriptors && !s->usb_function_strings) log_unit_warning(UNIT(s), "Service has USBFunctionDescriptors= setting, but no USBFunctionStrings=. Ignoring."); if (!s->usb_function_descriptors && s->usb_function_strings) log_unit_warning(UNIT(s), "Service has USBFunctionStrings= setting, but no USBFunctionDescriptors=. Ignoring."); if (s->runtime_max_usec != USEC_INFINITY && s->type == SERVICE_ONESHOT) log_unit_warning(UNIT(s), "RuntimeMaxSec= has no effect in combination with Type=oneshot. Ignoring."); if (s->runtime_max_usec == USEC_INFINITY && s->runtime_rand_extra_usec != 0) log_unit_warning(UNIT(s), "Service has RuntimeRandomizedExtraSec= setting, but no RuntimeMaxSec=. Ignoring."); if (s->exit_type == SERVICE_EXIT_CGROUP && cg_unified() < CGROUP_UNIFIED_SYSTEMD) log_unit_warning(UNIT(s), "Service has ExitType=cgroup set, but we are running with legacy cgroups v1, which might not work correctly. Continuing."); if (s->restart_max_delay_usec == USEC_INFINITY && s->restart_steps > 0) log_unit_warning(UNIT(s), "Service has RestartSteps= but no RestartMaxDelaySec= setting. Ignoring."); if (s->restart_max_delay_usec != USEC_INFINITY && s->restart_steps == 0) log_unit_warning(UNIT(s), "Service has RestartMaxDelaySec= but no RestartSteps= setting. Ignoring."); if (s->restart_max_delay_usec < s->restart_usec) { log_unit_warning(UNIT(s), "RestartMaxDelaySec= has a value smaller than RestartSec=, resetting RestartSec= to RestartMaxDelaySec=."); s->restart_usec = s->restart_max_delay_usec; } return 0; } static int service_add_default_dependencies(Service *s) { int r; assert(s); if (!UNIT(s)->default_dependencies) return 0; /* Add a number of automatic dependencies useful for the * majority of services. */ if (MANAGER_IS_SYSTEM(UNIT(s)->manager)) { /* First, pull in the really early boot stuff, and * require it, so that we fail if we can't acquire * it. */ r = unit_add_two_dependencies_by_name(UNIT(s), UNIT_AFTER, UNIT_REQUIRES, SPECIAL_SYSINIT_TARGET, true, UNIT_DEPENDENCY_DEFAULT); if (r < 0) return r; } else { /* In the --user instance there's no sysinit.target, * in that case require basic.target instead. */ r = unit_add_dependency_by_name(UNIT(s), UNIT_REQUIRES, SPECIAL_BASIC_TARGET, true, UNIT_DEPENDENCY_DEFAULT); if (r < 0) return r; } /* Second, if the rest of the base system is in the same * transaction, order us after it, but do not pull it in or * even require it. */ r = unit_add_dependency_by_name(UNIT(s), UNIT_AFTER, SPECIAL_BASIC_TARGET, true, UNIT_DEPENDENCY_DEFAULT); if (r < 0) return r; /* Third, add us in for normal shutdown. */ return unit_add_two_dependencies_by_name(UNIT(s), UNIT_BEFORE, UNIT_CONFLICTS, SPECIAL_SHUTDOWN_TARGET, true, UNIT_DEPENDENCY_DEFAULT); } static void service_fix_stdio(Service *s) { assert(s); /* Note that EXEC_INPUT_NULL and EXEC_OUTPUT_INHERIT play a special role here: they are both the * default value that is subject to automatic overriding triggered by other settings and an explicit * choice the user can make. We don't distinguish between these cases currently. */ if (s->exec_context.std_input == EXEC_INPUT_NULL && s->exec_context.stdin_data_size > 0) s->exec_context.std_input = EXEC_INPUT_DATA; if (IN_SET(s->exec_context.std_input, EXEC_INPUT_TTY, EXEC_INPUT_TTY_FORCE, EXEC_INPUT_TTY_FAIL, EXEC_INPUT_SOCKET, EXEC_INPUT_NAMED_FD)) return; /* We assume these listed inputs refer to bidirectional streams, and hence duplicating them from * stdin to stdout/stderr makes sense and hence leaving EXEC_OUTPUT_INHERIT in place makes sense, * too. Outputs such as regular files or sealed data memfds otoh don't really make sense to be * duplicated for both input and output at the same time (since they then would cause a feedback * loop), hence override EXEC_OUTPUT_INHERIT with the default stderr/stdout setting. */ if (s->exec_context.std_error == EXEC_OUTPUT_INHERIT && s->exec_context.std_output == EXEC_OUTPUT_INHERIT) s->exec_context.std_error = UNIT(s)->manager->defaults.std_error; if (s->exec_context.std_output == EXEC_OUTPUT_INHERIT) s->exec_context.std_output = UNIT(s)->manager->defaults.std_output; } static int service_setup_bus_name(Service *s) { int r; assert(s); /* If s->bus_name is not set, then the unit will be refused by service_verify() later. */ if (!s->bus_name) return 0; if (s->type == SERVICE_DBUS) { r = unit_add_dependency_by_name(UNIT(s), UNIT_REQUIRES, SPECIAL_DBUS_SOCKET, true, UNIT_DEPENDENCY_FILE); if (r < 0) return log_unit_error_errno(UNIT(s), r, "Failed to add dependency on " SPECIAL_DBUS_SOCKET ": %m"); /* We always want to be ordered against dbus.socket if both are in the transaction. */ r = unit_add_dependency_by_name(UNIT(s), UNIT_AFTER, SPECIAL_DBUS_SOCKET, true, UNIT_DEPENDENCY_FILE); if (r < 0) return log_unit_error_errno(UNIT(s), r, "Failed to add dependency on " SPECIAL_DBUS_SOCKET ": %m"); } r = unit_watch_bus_name(UNIT(s), s->bus_name); if (r == -EEXIST) return log_unit_error_errno(UNIT(s), r, "Two services allocated for the same bus name %s, refusing operation.", s->bus_name); if (r < 0) return log_unit_error_errno(UNIT(s), r, "Cannot watch bus name %s: %m", s->bus_name); return 0; } static int service_add_extras(Service *s) { int r; assert(s); if (s->type == _SERVICE_TYPE_INVALID) { /* Figure out a type automatically */ if (s->bus_name) s->type = SERVICE_DBUS; else if (s->exec_command[SERVICE_EXEC_START]) s->type = SERVICE_SIMPLE; else s->type = SERVICE_ONESHOT; } /* Oneshot services have disabled start timeout by default */ if (s->type == SERVICE_ONESHOT && !s->start_timeout_defined) s->timeout_start_usec = USEC_INFINITY; service_fix_stdio(s); r = unit_patch_contexts(UNIT(s)); if (r < 0) return r; r = unit_add_exec_dependencies(UNIT(s), &s->exec_context); if (r < 0) return r; r = unit_set_default_slice(UNIT(s)); if (r < 0) return r; /* If the service needs the notify socket, let's enable it automatically. */ if (s->notify_access == NOTIFY_NONE && (IN_SET(s->type, SERVICE_NOTIFY, SERVICE_NOTIFY_RELOAD) || s->watchdog_usec > 0 || s->n_fd_store_max > 0)) s->notify_access = NOTIFY_MAIN; /* If no OOM policy was explicitly set, then default to the configure default OOM policy. Except when * delegation is on, in that case it we assume the payload knows better what to do and can process * things in a more focused way. */ if (s->oom_policy < 0) s->oom_policy = s->cgroup_context.delegate ? OOM_CONTINUE : UNIT(s)->manager->defaults.oom_policy; /* Let the kernel do the killing if that's requested. */ s->cgroup_context.memory_oom_group = s->oom_policy == OOM_KILL; r = service_add_default_dependencies(s); if (r < 0) return r; r = service_setup_bus_name(s); if (r < 0) return r; return 0; } static int service_load(Unit *u) { Service *s = ASSERT_PTR(SERVICE(u)); int r; r = unit_load_fragment_and_dropin(u, true); if (r < 0) return r; if (u->load_state != UNIT_LOADED) return 0; /* This is a new unit? Then let's add in some extras */ r = service_add_extras(s); if (r < 0) return r; return service_verify(s); } static void service_dump_fdstore(Service *s, FILE *f, const char *prefix) { assert(s); assert(f); assert(prefix); LIST_FOREACH(fd_store, i, s->fd_store) { _cleanup_free_ char *path = NULL; struct stat st; int flags; if (fstat(i->fd, &st) < 0) { log_debug_errno(errno, "Failed to stat fdstore entry: %m"); continue; } flags = fcntl(i->fd, F_GETFL); if (flags < 0) { log_debug_errno(errno, "Failed to get fdstore entry flags: %m"); continue; } (void) fd_get_path(i->fd, &path); fprintf(f, "%s%s '%s' (type=%s; dev=" DEVNUM_FORMAT_STR "; inode=%" PRIu64 "; rdev=" DEVNUM_FORMAT_STR "; path=%s; access=%s)\n", prefix, i == s->fd_store ? "File Descriptor Store Entry:" : " ", i->fdname, strna(inode_type_to_string(st.st_mode)), DEVNUM_FORMAT_VAL(st.st_dev), (uint64_t) st.st_ino, DEVNUM_FORMAT_VAL(st.st_rdev), strna(path), strna(accmode_to_string(flags))); } } static void service_dump(Unit *u, FILE *f, const char *prefix) { Service *s = ASSERT_PTR(SERVICE(u)); const char *prefix2; prefix = strempty(prefix); prefix2 = strjoina(prefix, "\t"); fprintf(f, "%sService State: %s\n" "%sResult: %s\n" "%sReload Result: %s\n" "%sClean Result: %s\n" "%sPermissionsStartOnly: %s\n" "%sRootDirectoryStartOnly: %s\n" "%sRemainAfterExit: %s\n" "%sGuessMainPID: %s\n" "%sType: %s\n" "%sRestart: %s\n" "%sNotifyAccess: %s\n" "%sNotifyState: %s\n" "%sOOMPolicy: %s\n" "%sReloadSignal: %s\n", prefix, service_state_to_string(s->state), prefix, service_result_to_string(s->result), prefix, service_result_to_string(s->reload_result), prefix, service_result_to_string(s->clean_result), prefix, yes_no(s->permissions_start_only), prefix, yes_no(s->root_directory_start_only), prefix, yes_no(s->remain_after_exit), prefix, yes_no(s->guess_main_pid), prefix, service_type_to_string(s->type), prefix, service_restart_to_string(s->restart), prefix, notify_access_to_string(service_get_notify_access(s)), prefix, notify_state_to_string(s->notify_state), prefix, oom_policy_to_string(s->oom_policy), prefix, signal_to_string(s->reload_signal)); if (pidref_is_set(&s->control_pid)) fprintf(f, "%sControl PID: "PID_FMT"\n", prefix, s->control_pid.pid); if (pidref_is_set(&s->main_pid)) fprintf(f, "%sMain PID: "PID_FMT"\n" "%sMain PID Known: %s\n" "%sMain PID Alien: %s\n", prefix, s->main_pid.pid, prefix, yes_no(s->main_pid_known), prefix, yes_no(s->main_pid_alien)); if (s->pid_file) fprintf(f, "%sPIDFile: %s\n", prefix, s->pid_file); if (s->bus_name) fprintf(f, "%sBusName: %s\n" "%sBus Name Good: %s\n", prefix, s->bus_name, prefix, yes_no(s->bus_name_good)); if (UNIT_ISSET(s->accept_socket)) fprintf(f, "%sAccept Socket: %s\n", prefix, UNIT_DEREF(s->accept_socket)->id); fprintf(f, "%sRestartSec: %s\n" "%sRestartSteps: %u\n" "%sRestartMaxDelaySec: %s\n" "%sTimeoutStartSec: %s\n" "%sTimeoutStopSec: %s\n" "%sTimeoutStartFailureMode: %s\n" "%sTimeoutStopFailureMode: %s\n", prefix, FORMAT_TIMESPAN(s->restart_usec, USEC_PER_SEC), prefix, s->restart_steps, prefix, FORMAT_TIMESPAN(s->restart_max_delay_usec, USEC_PER_SEC), prefix, FORMAT_TIMESPAN(s->timeout_start_usec, USEC_PER_SEC), prefix, FORMAT_TIMESPAN(s->timeout_stop_usec, USEC_PER_SEC), prefix, service_timeout_failure_mode_to_string(s->timeout_start_failure_mode), prefix, service_timeout_failure_mode_to_string(s->timeout_stop_failure_mode)); if (s->timeout_abort_set) fprintf(f, "%sTimeoutAbortSec: %s\n", prefix, FORMAT_TIMESPAN(s->timeout_abort_usec, USEC_PER_SEC)); fprintf(f, "%sRuntimeMaxSec: %s\n" "%sRuntimeRandomizedExtraSec: %s\n" "%sWatchdogSec: %s\n", prefix, FORMAT_TIMESPAN(s->runtime_max_usec, USEC_PER_SEC), prefix, FORMAT_TIMESPAN(s->runtime_rand_extra_usec, USEC_PER_SEC), prefix, FORMAT_TIMESPAN(s->watchdog_usec, USEC_PER_SEC)); kill_context_dump(&s->kill_context, f, prefix); exec_context_dump(&s->exec_context, f, prefix); for (ServiceExecCommand c = 0; c < _SERVICE_EXEC_COMMAND_MAX; c++) { if (!s->exec_command[c]) continue; fprintf(f, "%s%s %s:\n", prefix, special_glyph(SPECIAL_GLYPH_ARROW_RIGHT), service_exec_command_to_string(c)); exec_command_dump_list(s->exec_command[c], f, prefix2); } if (s->status_text) fprintf(f, "%sStatus Text: %s\n", prefix, s->status_text); if (s->n_fd_store_max > 0) fprintf(f, "%sFile Descriptor Store Max: %u\n" "%sFile Descriptor Store Pin: %s\n" "%sFile Descriptor Store Current: %zu\n", prefix, s->n_fd_store_max, prefix, exec_preserve_mode_to_string(s->fd_store_preserve_mode), prefix, s->n_fd_store); service_dump_fdstore(s, f, prefix); if (s->open_files) LIST_FOREACH(open_files, of, s->open_files) { _cleanup_free_ char *ofs = NULL; int r; r = open_file_to_string(of, &ofs); if (r < 0) { log_debug_errno(r, "Failed to convert OpenFile= setting to string, ignoring: %m"); continue; } fprintf(f, "%sOpen File: %s\n", prefix, ofs); } cgroup_context_dump(UNIT(s), f, prefix); } static int service_is_suitable_main_pid(Service *s, PidRef *pid, int prio) { Unit *owner; int r; assert(s); assert(pidref_is_set(pid)); /* Checks whether the specified PID is suitable as main PID for this service. returns negative if not, 0 if the * PID is questionnable but should be accepted if the source of configuration is trusted. > 0 if the PID is * good */ if (pidref_is_self(pid) || pid->pid == 1) return log_unit_full_errno(UNIT(s), prio, SYNTHETIC_ERRNO(EPERM), "New main PID "PID_FMT" is the manager, refusing.", pid->pid); if (pidref_equal(pid, &s->control_pid)) return log_unit_full_errno(UNIT(s), prio, SYNTHETIC_ERRNO(EPERM), "New main PID "PID_FMT" is the control process, refusing.", pid->pid); r = pidref_is_alive(pid); if (r < 0) return log_unit_full_errno(UNIT(s), prio, r, "Failed to check if main PID "PID_FMT" exists or is a zombie: %m", pid->pid); if (r == 0) return log_unit_full_errno(UNIT(s), prio, SYNTHETIC_ERRNO(ESRCH), "New main PID "PID_FMT" does not exist or is a zombie.", pid->pid); owner = manager_get_unit_by_pidref(UNIT(s)->manager, pid); if (owner == UNIT(s)) { log_unit_debug(UNIT(s), "New main PID "PID_FMT" belongs to service, we are happy.", pid->pid); return 1; /* Yay, it's definitely a good PID */ } return 0; /* Hmm it's a suspicious PID, let's accept it if configuration source is trusted */ } static int service_load_pid_file(Service *s, bool may_warn) { _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL; bool questionable_pid_file = false; _cleanup_free_ char *k = NULL; _cleanup_close_ int fd = -EBADF; int r, prio; assert(s); if (!s->pid_file) return -ENOENT; prio = may_warn ? LOG_INFO : LOG_DEBUG; r = chase(s->pid_file, NULL, CHASE_SAFE, NULL, &fd); if (r == -ENOLINK) { log_unit_debug_errno(UNIT(s), r, "Potentially unsafe symlink chain, will now retry with relaxed checks: %s", s->pid_file); questionable_pid_file = true; r = chase(s->pid_file, NULL, 0, NULL, &fd); } if (r < 0) return log_unit_full_errno(UNIT(s), prio, r, "Can't open PID file %s (yet?) after %s: %m", s->pid_file, service_state_to_string(s->state)); /* Let's read the PID file now that we chased it down. But we need to convert the O_PATH fd * chase() returned us into a proper fd first. */ r = read_one_line_file(FORMAT_PROC_FD_PATH(fd), &k); if (r < 0) return log_unit_error_errno(UNIT(s), r, "Can't convert PID files %s O_PATH file descriptor to proper file descriptor: %m", s->pid_file); r = pidref_set_pidstr(&pidref, k); if (r < 0) return log_unit_full_errno(UNIT(s), prio, r, "Failed to parse PID from file %s: %m", s->pid_file); if (s->main_pid_known && pidref_equal(&pidref, &s->main_pid)) return 0; r = service_is_suitable_main_pid(s, &pidref, prio); if (r < 0) return r; if (r == 0) { struct stat st; if (questionable_pid_file) return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(EPERM), "Refusing to accept PID outside of service control group, acquired through unsafe symlink chain: %s", s->pid_file); /* Hmm, it's not clear if the new main PID is safe. Let's allow this if the PID file is owned by root */ if (fstat(fd, &st) < 0) return log_unit_error_errno(UNIT(s), errno, "Failed to fstat() PID file O_PATH fd: %m"); if (st.st_uid != 0) return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(EPERM), "New main PID "PID_FMT" does not belong to service, and PID file is not owned by root. Refusing.", pidref.pid); log_unit_debug(UNIT(s), "New main PID "PID_FMT" does not belong to service, but we'll accept it since PID file is owned by root.", pidref.pid); } if (s->main_pid_known) { log_unit_debug(UNIT(s), "Main PID changing: "PID_FMT" -> "PID_FMT, s->main_pid.pid, pidref.pid); service_unwatch_main_pid(s); s->main_pid_known = false; } else log_unit_debug(UNIT(s), "Main PID loaded: "PID_FMT, pidref.pid); r = service_set_main_pidref(s, TAKE_PIDREF(pidref), /* start_timestamp = */ NULL); if (r < 0) return r; r = unit_watch_pidref(UNIT(s), &s->main_pid, /* exclusive= */ false); if (r < 0) /* FIXME: we need to do something here */ return log_unit_warning_errno(UNIT(s), r, "Failed to watch PID "PID_FMT" for service: %m", s->main_pid.pid); return 1; } static void service_search_main_pid(Service *s) { _cleanup_(pidref_done) PidRef pid = PIDREF_NULL; int r; assert(s); /* If we know it anyway, don't ever fall back to unreliable heuristics */ if (s->main_pid_known) return; if (!s->guess_main_pid) return; assert(!pidref_is_set(&s->main_pid)); if (unit_search_main_pid(UNIT(s), &pid) < 0) return; log_unit_debug(UNIT(s), "Main PID guessed: "PID_FMT, pid.pid); if (service_set_main_pidref(s, TAKE_PIDREF(pid), /* start_timestamp = */ NULL) < 0) return; r = unit_watch_pidref(UNIT(s), &s->main_pid, /* exclusive= */ false); if (r < 0) /* FIXME: we need to do something here */ log_unit_warning_errno(UNIT(s), r, "Failed to watch PID "PID_FMT" from: %m", s->main_pid.pid); } static void service_set_state(Service *s, ServiceState state) { ServiceState old_state; const UnitActiveState *table; assert(s); if (s->state != state) bus_unit_send_pending_change_signal(UNIT(s), false); table = s->type == SERVICE_IDLE ? state_translation_table_idle : state_translation_table; old_state = s->state; s->state = state; service_unwatch_pid_file(s); if (!IN_SET(state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY, SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST, SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL, SERVICE_AUTO_RESTART, SERVICE_CLEANING)) s->timer_event_source = sd_event_source_disable_unref(s->timer_event_source); if (!SERVICE_STATE_WITH_MAIN_PROCESS(state)) { service_unwatch_main_pid(s); s->main_command = NULL; } if (!SERVICE_STATE_WITH_CONTROL_PROCESS(state)) { service_unwatch_control_pid(s); s->control_command = NULL; s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID; } if (IN_SET(state, SERVICE_DEAD, SERVICE_FAILED, SERVICE_DEAD_BEFORE_AUTO_RESTART, SERVICE_FAILED_BEFORE_AUTO_RESTART, SERVICE_AUTO_RESTART, SERVICE_AUTO_RESTART_QUEUED, SERVICE_DEAD_RESOURCES_PINNED)) { unit_unwatch_all_pids(UNIT(s)); unit_dequeue_rewatch_pids(UNIT(s)); } if (state != SERVICE_START) s->exec_fd_event_source = sd_event_source_disable_unref(s->exec_fd_event_source); if (!IN_SET(state, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY)) service_stop_watchdog(s); /* For the inactive states unit_notify() will trim the cgroup, * but for exit we have to do that ourselves... */ if (state == SERVICE_EXITED && !MANAGER_IS_RELOADING(UNIT(s)->manager)) unit_prune_cgroup(UNIT(s)); if (old_state != state) log_unit_debug(UNIT(s), "Changed %s -> %s", service_state_to_string(old_state), service_state_to_string(state)); unit_notify(UNIT(s), table[old_state], table[state], s->reload_result == SERVICE_SUCCESS); } static usec_t service_coldplug_timeout(Service *s) { assert(s); switch (s->deserialized_state) { case SERVICE_CONDITION: case SERVICE_START_PRE: case SERVICE_START: case SERVICE_START_POST: case SERVICE_RELOAD: case SERVICE_RELOAD_SIGNAL: case SERVICE_RELOAD_NOTIFY: return usec_add(UNIT(s)->state_change_timestamp.monotonic, s->timeout_start_usec); case SERVICE_RUNNING: return service_running_timeout(s); case SERVICE_STOP: case SERVICE_STOP_SIGTERM: case SERVICE_STOP_SIGKILL: case SERVICE_STOP_POST: case SERVICE_FINAL_SIGTERM: case SERVICE_FINAL_SIGKILL: return usec_add(UNIT(s)->state_change_timestamp.monotonic, s->timeout_stop_usec); case SERVICE_STOP_WATCHDOG: case SERVICE_FINAL_WATCHDOG: return usec_add(UNIT(s)->state_change_timestamp.monotonic, service_timeout_abort_usec(s)); case SERVICE_AUTO_RESTART: return usec_add(UNIT(s)->inactive_enter_timestamp.monotonic, service_restart_usec_next(s)); case SERVICE_CLEANING: return usec_add(UNIT(s)->state_change_timestamp.monotonic, s->exec_context.timeout_clean_usec); default: return USEC_INFINITY; } } static int service_coldplug(Unit *u) { Service *s = SERVICE(u); int r; assert(s); assert(s->state == SERVICE_DEAD); if (s->deserialized_state == s->state) return 0; r = service_arm_timer(s, /* relative= */ false, service_coldplug_timeout(s)); if (r < 0) return r; if (pidref_is_set(&s->main_pid) && pidref_is_unwaited(&s->main_pid) > 0 && SERVICE_STATE_WITH_MAIN_PROCESS(s->deserialized_state)) { r = unit_watch_pidref(UNIT(s), &s->main_pid, /* exclusive= */ false); if (r < 0) return r; } if (pidref_is_set(&s->control_pid) && pidref_is_unwaited(&s->control_pid) > 0 && SERVICE_STATE_WITH_CONTROL_PROCESS(s->deserialized_state)) { r = unit_watch_pidref(UNIT(s), &s->control_pid, /* exclusive= */ false); if (r < 0) return r; } if (!IN_SET(s->deserialized_state, SERVICE_DEAD, SERVICE_FAILED, SERVICE_DEAD_BEFORE_AUTO_RESTART, SERVICE_FAILED_BEFORE_AUTO_RESTART, SERVICE_AUTO_RESTART, SERVICE_AUTO_RESTART_QUEUED, SERVICE_CLEANING, SERVICE_DEAD_RESOURCES_PINNED)) { (void) unit_enqueue_rewatch_pids(u); (void) unit_setup_exec_runtime(u); (void) unit_setup_cgroup_runtime(u); } if (IN_SET(s->deserialized_state, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY)) service_start_watchdog(s); if (UNIT_ISSET(s->accept_socket)) { Socket *socket = SOCKET(UNIT_DEREF(s->accept_socket)); if (socket->max_connections_per_source > 0) { SocketPeer *peer; /* Make a best-effort attempt at bumping the connection count */ if (socket_acquire_peer(socket, s->socket_fd, &peer) > 0) { socket_peer_unref(s->socket_peer); s->socket_peer = peer; } } } service_set_state(s, s->deserialized_state); return 0; } static int service_collect_fds( Service *s, int **fds, char ***fd_names, size_t *n_socket_fds, size_t *n_storage_fds) { _cleanup_strv_free_ char **rfd_names = NULL; _cleanup_free_ int *rfds = NULL; size_t rn_socket_fds = 0, rn_storage_fds = 0; int r; assert(s); assert(fds); assert(fd_names); assert(n_socket_fds); assert(n_storage_fds); if (s->socket_fd >= 0) { /* Pass the per-connection socket */ rfds = newdup(int, &s->socket_fd, 1); if (!rfds) return -ENOMEM; rfd_names = strv_new("connection"); if (!rfd_names) return -ENOMEM; rn_socket_fds = 1; } else { Unit *u; /* Pass all our configured sockets for singleton services */ UNIT_FOREACH_DEPENDENCY(u, UNIT(s), UNIT_ATOM_TRIGGERED_BY) { _cleanup_free_ int *cfds = NULL; int cn_fds; Socket *sock; sock = SOCKET(u); if (!sock) continue; cn_fds = socket_collect_fds(sock, &cfds); if (cn_fds < 0) return cn_fds; if (cn_fds <= 0) continue; if (!rfds) { rfds = TAKE_PTR(cfds); rn_socket_fds = cn_fds; } else if (!GREEDY_REALLOC_APPEND(rfds, rn_socket_fds, cfds, cn_fds)) return -ENOMEM; r = strv_extend_n(&rfd_names, socket_fdname(sock), cn_fds); if (r < 0) return r; } } if (s->n_fd_store > 0) { size_t n_fds; char **nl; int *t; t = reallocarray(rfds, rn_socket_fds + s->n_fd_store, sizeof(int)); if (!t) return -ENOMEM; rfds = t; nl = reallocarray(rfd_names, rn_socket_fds + s->n_fd_store + 1, sizeof(char *)); if (!nl) return -ENOMEM; rfd_names = nl; n_fds = rn_socket_fds; LIST_FOREACH(fd_store, fs, s->fd_store) { rfds[n_fds] = fs->fd; rfd_names[n_fds] = strdup(strempty(fs->fdname)); if (!rfd_names[n_fds]) return -ENOMEM; rn_storage_fds++; n_fds++; } rfd_names[n_fds] = NULL; } *fds = TAKE_PTR(rfds); *fd_names = TAKE_PTR(rfd_names); *n_socket_fds = rn_socket_fds; *n_storage_fds = rn_storage_fds; return 0; } static int service_allocate_exec_fd_event_source( Service *s, int fd, sd_event_source **ret_event_source) { _cleanup_(sd_event_source_unrefp) sd_event_source *source = NULL; int r; assert(s); assert(fd >= 0); assert(ret_event_source); r = sd_event_add_io(UNIT(s)->manager->event, &source, fd, 0, service_dispatch_exec_io, s); if (r < 0) return log_unit_error_errno(UNIT(s), r, "Failed to allocate exec_fd event source: %m"); /* This is a bit higher priority than SIGCHLD, to make sure we don't confuse the case "failed to * start" from the case "succeeded to start, but failed immediately after". */ r = sd_event_source_set_priority(source, EVENT_PRIORITY_EXEC_FD); if (r < 0) return log_unit_error_errno(UNIT(s), r, "Failed to adjust priority of exec_fd event source: %m"); (void) sd_event_source_set_description(source, "service exec_fd"); r = sd_event_source_set_io_fd_own(source, true); if (r < 0) return log_unit_error_errno(UNIT(s), r, "Failed to pass ownership of fd to event source: %m"); *ret_event_source = TAKE_PTR(source); return 0; } static int service_allocate_exec_fd( Service *s, sd_event_source **ret_event_source, int *ret_exec_fd) { _cleanup_close_pair_ int p[] = EBADF_PAIR; int r; assert(s); assert(ret_event_source); assert(ret_exec_fd); if (pipe2(p, O_CLOEXEC|O_NONBLOCK) < 0) return log_unit_error_errno(UNIT(s), errno, "Failed to allocate exec_fd pipe: %m"); r = service_allocate_exec_fd_event_source(s, p[0], ret_event_source); if (r < 0) return r; TAKE_FD(p[0]); *ret_exec_fd = TAKE_FD(p[1]); return 0; } static bool service_exec_needs_notify_socket(Service *s, ExecFlags flags) { assert(s); /* Notifications are accepted depending on the process and * the access setting of the service: * process: \ access: NONE MAIN EXEC ALL * main no yes yes yes * control no no yes yes * other (forked) no no no yes */ if (flags & EXEC_IS_CONTROL) /* A control process */ return IN_SET(service_get_notify_access(s), NOTIFY_EXEC, NOTIFY_ALL); /* We only spawn main processes and control processes, so any * process that is not a control process is a main process */ return service_get_notify_access(s) != NOTIFY_NONE; } static Service *service_get_triggering_service(Service *s) { Unit *candidate = NULL, *other; assert(s); /* Return the service which triggered service 's', this means dependency * types which include the UNIT_ATOM_ON_{FAILURE,SUCCESS}_OF atoms. * * N.B. if there are multiple services which could trigger 's' via OnFailure= * or OnSuccess= then we return NULL. This is since we don't know from which * one to propagate the exit status. */ UNIT_FOREACH_DEPENDENCY(other, UNIT(s), UNIT_ATOM_ON_FAILURE_OF) { if (candidate) goto have_other; candidate = other; } UNIT_FOREACH_DEPENDENCY(other, UNIT(s), UNIT_ATOM_ON_SUCCESS_OF) { if (candidate) goto have_other; candidate = other; } return SERVICE(candidate); have_other: log_unit_warning(UNIT(s), "multiple trigger source candidates for exit status propagation (%s, %s), skipping.", candidate->id, other->id); return NULL; } static ExecFlags service_exec_flags(ServiceExecCommand command_id, ExecFlags cred_flag) { /* All service main/control processes honor sandboxing and namespacing options (except those explicitly excluded in service_spawn()) */ ExecFlags flags = EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT; assert(command_id >= 0); assert(command_id < _SERVICE_EXEC_COMMAND_MAX); assert((cred_flag & ~(EXEC_SETUP_CREDENTIALS_FRESH|EXEC_SETUP_CREDENTIALS)) == 0); assert((cred_flag != 0) == (command_id == SERVICE_EXEC_START)); /* Control processes spawned before main process also get tty access */ if (IN_SET(command_id, SERVICE_EXEC_CONDITION, SERVICE_EXEC_START_PRE, SERVICE_EXEC_START)) flags |= EXEC_APPLY_TTY_STDIN; /* All start phases get access to credentials. ExecStartPre= gets a new credential store upon * every invocation, so that updating credential files through it works. When the first main process * starts, passed creds become stable. Also see 'cred_flag'. */ if (command_id == SERVICE_EXEC_START_PRE) flags |= EXEC_SETUP_CREDENTIALS_FRESH; if (command_id == SERVICE_EXEC_START_POST) flags |= EXEC_SETUP_CREDENTIALS; if (IN_SET(command_id, SERVICE_EXEC_START_PRE, SERVICE_EXEC_START)) flags |= EXEC_SETENV_MONITOR_RESULT; if (command_id == SERVICE_EXEC_START) return flags|cred_flag|EXEC_PASS_FDS|EXEC_SET_WATCHDOG; flags |= EXEC_IS_CONTROL; /* Put control processes spawned later than main process under .control sub-cgroup if appropriate */ if (!IN_SET(command_id, SERVICE_EXEC_CONDITION, SERVICE_EXEC_START_PRE)) flags |= EXEC_CONTROL_CGROUP; if (IN_SET(command_id, SERVICE_EXEC_STOP, SERVICE_EXEC_STOP_POST)) flags |= EXEC_SETENV_RESULT; return flags; } static int service_spawn_internal( const char *caller, Service *s, ExecCommand *c, ExecFlags flags, usec_t timeout, PidRef *ret_pid) { _cleanup_(exec_params_shallow_clear) ExecParameters exec_params = EXEC_PARAMETERS_INIT(flags); _cleanup_(sd_event_source_unrefp) sd_event_source *exec_fd_source = NULL; _cleanup_strv_free_ char **final_env = NULL, **our_env = NULL; _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL; size_t n_env = 0; int r; assert(caller); assert(s); assert(c); assert(ret_pid); log_unit_debug(UNIT(s), "Will spawn child (%s): %s", caller, c->path); r = unit_prepare_exec(UNIT(s)); /* This realizes the cgroup, among other things */ if (r < 0) return r; assert(!s->exec_fd_event_source); if (FLAGS_SET(exec_params.flags, EXEC_IS_CONTROL)) { /* If this is a control process, mask the permissions/chroot application if this is requested. */ if (s->permissions_start_only) exec_params.flags &= ~EXEC_APPLY_SANDBOXING; if (s->root_directory_start_only) exec_params.flags &= ~EXEC_APPLY_CHROOT; } if (FLAGS_SET(exec_params.flags, EXEC_PASS_FDS) || s->exec_context.std_input == EXEC_INPUT_SOCKET || s->exec_context.std_output == EXEC_OUTPUT_SOCKET || s->exec_context.std_error == EXEC_OUTPUT_SOCKET) { r = service_collect_fds(s, &exec_params.fds, &exec_params.fd_names, &exec_params.n_socket_fds, &exec_params.n_storage_fds); if (r < 0) return r; exec_params.open_files = s->open_files; exec_params.flags |= EXEC_PASS_FDS; log_unit_debug(UNIT(s), "Passing %zu fds to service", exec_params.n_socket_fds + exec_params.n_storage_fds); } if (!FLAGS_SET(exec_params.flags, EXEC_IS_CONTROL) && s->type == SERVICE_EXEC) { r = service_allocate_exec_fd(s, &exec_fd_source, &exec_params.exec_fd); if (r < 0) return r; } r = service_arm_timer(s, /* relative= */ true, timeout); if (r < 0) return r; our_env = new0(char*, 13); if (!our_env) return -ENOMEM; if (service_exec_needs_notify_socket(s, exec_params.flags)) { if (asprintf(our_env + n_env++, "NOTIFY_SOCKET=%s", UNIT(s)->manager->notify_socket) < 0) return -ENOMEM; exec_params.notify_socket = UNIT(s)->manager->notify_socket; if (s->n_fd_store_max > 0) if (asprintf(our_env + n_env++, "FDSTORE=%u", s->n_fd_store_max) < 0) return -ENOMEM; } if (pidref_is_set(&s->main_pid)) if (asprintf(our_env + n_env++, "MAINPID="PID_FMT, s->main_pid.pid) < 0) return -ENOMEM; if (MANAGER_IS_USER(UNIT(s)->manager)) if (asprintf(our_env + n_env++, "MANAGERPID="PID_FMT, getpid_cached()) < 0) return -ENOMEM; if (s->pid_file) if (asprintf(our_env + n_env++, "PIDFILE=%s", s->pid_file) < 0) return -ENOMEM; if (s->socket_fd >= 0) { union sockaddr_union sa; socklen_t salen = sizeof(sa); /* If this is a per-connection service instance, let's set $REMOTE_ADDR and $REMOTE_PORT to something * useful. Note that we do this only when we are still connected at this point in time, which we might * very well not be. Hence we ignore all errors when retrieving peer information (as that might result * in ENOTCONN), and just use whate we can use. */ if (getpeername(s->socket_fd, &sa.sa, &salen) >= 0 && IN_SET(sa.sa.sa_family, AF_INET, AF_INET6, AF_VSOCK)) { _cleanup_free_ char *addr = NULL; char *t; unsigned port; r = sockaddr_pretty(&sa.sa, salen, true, false, &addr); if (r < 0) return r; t = strjoin("REMOTE_ADDR=", addr); if (!t) return -ENOMEM; our_env[n_env++] = t; r = sockaddr_port(&sa.sa, &port); if (r < 0) return r; if (asprintf(&t, "REMOTE_PORT=%u", port) < 0) return -ENOMEM; our_env[n_env++] = t; } } Service *env_source = NULL; const char *monitor_prefix; if (FLAGS_SET(exec_params.flags, EXEC_SETENV_RESULT)) { env_source = s; monitor_prefix = ""; } else if (FLAGS_SET(exec_params.flags, EXEC_SETENV_MONITOR_RESULT)) { env_source = service_get_triggering_service(s); monitor_prefix = "MONITOR_"; } if (env_source) { if (asprintf(our_env + n_env++, "%sSERVICE_RESULT=%s", monitor_prefix, service_result_to_string(env_source->result)) < 0) return -ENOMEM; if (env_source->main_exec_status.pid > 0 && dual_timestamp_is_set(&env_source->main_exec_status.exit_timestamp)) { if (asprintf(our_env + n_env++, "%sEXIT_CODE=%s", monitor_prefix, sigchld_code_to_string(env_source->main_exec_status.code)) < 0) return -ENOMEM; if (env_source->main_exec_status.code == CLD_EXITED) r = asprintf(our_env + n_env++, "%sEXIT_STATUS=%i", monitor_prefix, env_source->main_exec_status.status); else r = asprintf(our_env + n_env++, "%sEXIT_STATUS=%s", monitor_prefix, signal_to_string(env_source->main_exec_status.status)); if (r < 0) return -ENOMEM; } if (env_source != s) { if (!sd_id128_is_null(UNIT(env_source)->invocation_id)) if (asprintf(our_env + n_env++, "%sINVOCATION_ID=" SD_ID128_FORMAT_STR, monitor_prefix, SD_ID128_FORMAT_VAL(UNIT(env_source)->invocation_id)) < 0) return -ENOMEM; if (asprintf(our_env + n_env++, "%sUNIT=%s", monitor_prefix, UNIT(env_source)->id) < 0) return -ENOMEM; } } if (UNIT(s)->activation_details) { r = activation_details_append_env(UNIT(s)->activation_details, &our_env); if (r < 0) return r; /* The number of env vars added here can vary, rather than keeping the allocation block in * sync manually, these functions simply use the strv methods to append to it, so we need * to update n_env when we are done in case of future usage. */ n_env += r; } r = unit_set_exec_params(UNIT(s), &exec_params); if (r < 0) return r; final_env = strv_env_merge(exec_params.environment, our_env); if (!final_env) return -ENOMEM; /* System D-Bus needs nss-systemd disabled, so that we don't deadlock */ SET_FLAG(exec_params.flags, EXEC_NSS_DYNAMIC_BYPASS, MANAGER_IS_SYSTEM(UNIT(s)->manager) && unit_has_name(UNIT(s), SPECIAL_DBUS_SERVICE)); strv_free_and_replace(exec_params.environment, final_env); exec_params.watchdog_usec = service_get_watchdog_usec(s); exec_params.selinux_context_net = s->socket_fd_selinux_context_net; if (s->type == SERVICE_IDLE) exec_params.idle_pipe = UNIT(s)->manager->idle_pipe; exec_params.stdin_fd = s->stdin_fd; exec_params.stdout_fd = s->stdout_fd; exec_params.stderr_fd = s->stderr_fd; r = exec_spawn(UNIT(s), c, &s->exec_context, &exec_params, s->exec_runtime, &s->cgroup_context, &pidref); if (r < 0) return r; s->exec_fd_event_source = TAKE_PTR(exec_fd_source); s->exec_fd_hot = false; r = unit_watch_pidref(UNIT(s), &pidref, /* exclusive= */ true); if (r < 0) return r; *ret_pid = TAKE_PIDREF(pidref); return 0; } static int main_pid_good(Service *s) { assert(s); /* Returns 0 if the pid is dead, > 0 if it is good, < 0 if we don't know */ /* If we know the pid file, then let's just check if it is still valid */ if (s->main_pid_known) { /* If it's an alien child let's check if it is still alive ... */ if (s->main_pid_alien && pidref_is_set(&s->main_pid)) return pidref_is_alive(&s->main_pid); /* .. otherwise assume we'll get a SIGCHLD for it, which we really should wait for to collect * exit status and code */ return pidref_is_set(&s->main_pid); } /* We don't know the pid */ return -EAGAIN; } static int control_pid_good(Service *s) { assert(s); /* Returns 0 if the control PID is dead, > 0 if it is good. We never actually return < 0 here, but in order to * make this function as similar as possible to main_pid_good() and cgroup_good(), we pretend that < 0 also * means: we can't figure it out. */ return pidref_is_set(&s->control_pid); } static int cgroup_good(Service *s) { int r; assert(s); /* Returns 0 if the cgroup is empty or doesn't exist, > 0 if it is exists and is populated, < 0 if we can't * figure it out */ if (!s->cgroup_runtime || !s->cgroup_runtime->cgroup_path) return 0; r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, s->cgroup_runtime->cgroup_path); if (r < 0) return r; return r == 0; } static bool service_shall_restart(Service *s, const char **reason) { assert(s); assert(reason); /* Don't restart after manual stops */ if (s->forbid_restart) { *reason = "manual stop"; return false; } /* Never restart if this is configured as special exception */ if (exit_status_set_test(&s->restart_prevent_status, s->main_exec_status.code, s->main_exec_status.status)) { *reason = "prevented by exit status"; return false; } /* Restart if the exit code/status are configured as restart triggers */ if (exit_status_set_test(&s->restart_force_status, s->main_exec_status.code, s->main_exec_status.status)) { /* Don't allow Type=oneshot services to restart on success. Note that Restart=always/on-success * is already rejected in service_verify. */ if (s->type == SERVICE_ONESHOT && s->result == SERVICE_SUCCESS) { *reason = "service type and exit status"; return false; } *reason = "forced by exit status"; return true; } *reason = "restart setting"; switch (s->restart) { case SERVICE_RESTART_NO: return false; case SERVICE_RESTART_ALWAYS: return s->result != SERVICE_SKIP_CONDITION; case SERVICE_RESTART_ON_SUCCESS: return s->result == SERVICE_SUCCESS; case SERVICE_RESTART_ON_FAILURE: return !IN_SET(s->result, SERVICE_SUCCESS, SERVICE_SKIP_CONDITION); case SERVICE_RESTART_ON_ABNORMAL: return !IN_SET(s->result, SERVICE_SUCCESS, SERVICE_FAILURE_EXIT_CODE, SERVICE_SKIP_CONDITION); case SERVICE_RESTART_ON_WATCHDOG: return s->result == SERVICE_FAILURE_WATCHDOG; case SERVICE_RESTART_ON_ABORT: return IN_SET(s->result, SERVICE_FAILURE_SIGNAL, SERVICE_FAILURE_CORE_DUMP); default: assert_not_reached(); } } static bool service_will_restart(Unit *u) { Service *s = SERVICE(u); assert(s); if (IN_SET(s->state, SERVICE_DEAD_BEFORE_AUTO_RESTART, SERVICE_FAILED_BEFORE_AUTO_RESTART, SERVICE_AUTO_RESTART, SERVICE_AUTO_RESTART_QUEUED)) return true; return unit_will_restart_default(u); } static ServiceState service_determine_dead_state(Service *s) { assert(s); return s->fd_store && s->fd_store_preserve_mode == EXEC_PRESERVE_YES ? SERVICE_DEAD_RESOURCES_PINNED : SERVICE_DEAD; } static void service_enter_dead(Service *s, ServiceResult f, bool allow_restart) { ServiceState end_state, restart_state; int r; assert(s); /* If there's a stop job queued before we enter the DEAD state, we shouldn't act on Restart=, in order to not * undo what has already been enqueued. */ if (unit_stop_pending(UNIT(s))) allow_restart = false; if (s->result == SERVICE_SUCCESS) s->result = f; if (s->result == SERVICE_SUCCESS) { unit_log_success(UNIT(s)); end_state = service_determine_dead_state(s); restart_state = SERVICE_DEAD_BEFORE_AUTO_RESTART; } else if (s->result == SERVICE_SKIP_CONDITION) { unit_log_skip(UNIT(s), service_result_to_string(s->result)); end_state = service_determine_dead_state(s); restart_state = _SERVICE_STATE_INVALID; /* Never restart if skipped due to condition failure */ } else { unit_log_failure(UNIT(s), service_result_to_string(s->result)); end_state = SERVICE_FAILED; restart_state = SERVICE_FAILED_BEFORE_AUTO_RESTART; } unit_warn_leftover_processes(UNIT(s), unit_log_leftover_process_stop); if (!allow_restart) log_unit_debug(UNIT(s), "Service restart not allowed."); else { const char *reason; allow_restart = service_shall_restart(s, &reason); log_unit_debug(UNIT(s), "Service will %srestart (%s)", allow_restart ? "" : "not ", reason); } if (allow_restart) { usec_t restart_usec_next; assert(restart_state >= 0 && restart_state < _SERVICE_STATE_MAX); /* We make two state changes here: one that maps to the high-level UNIT_INACTIVE/UNIT_FAILED * state (i.e. a state indicating deactivation), and then one that maps to the * high-level UNIT_STARTING state (i.e. a state indicating activation). We do this so that * external software can watch the state changes and see all service failures, even if they * are only transitionary and followed by an automatic restart. We have fine-grained * low-level states for this though so that software can distinguish the permanent UNIT_INACTIVE * state from this transitionary UNIT_INACTIVE state by looking at the low-level states. */ if (s->restart_mode != SERVICE_RESTART_MODE_DIRECT) service_set_state(s, restart_state); restart_usec_next = service_restart_usec_next(s); r = service_arm_timer(s, /* relative= */ true, restart_usec_next); if (r < 0) { log_unit_warning_errno(UNIT(s), r, "Failed to install restart timer: %m"); return service_enter_dead(s, SERVICE_FAILURE_RESOURCES, /* allow_restart= */ false); } log_unit_debug(UNIT(s), "Next restart interval calculated as: %s", FORMAT_TIMESPAN(restart_usec_next, 0)); service_set_state(s, SERVICE_AUTO_RESTART); } else { service_set_state(s, end_state); /* If we shan't restart, then flush out the restart counter. But don't do that immediately, so that the * user can still introspect the counter. Do so on the next start. */ s->flush_n_restarts = true; } /* The new state is in effect, let's decrease the fd store ref counter again. Let's also re-add us to the GC * queue, so that the fd store is possibly gc'ed again */ unit_add_to_gc_queue(UNIT(s)); /* The next restart might not be a manual stop, hence reset the flag indicating manual stops */ s->forbid_restart = false; /* Reset NotifyAccess override */ s->notify_access_override = _NOTIFY_ACCESS_INVALID; /* We want fresh tmpdirs and ephemeral snapshots in case the service is started again immediately. */ s->exec_runtime = exec_runtime_destroy(s->exec_runtime); /* Also, remove the runtime directory */ unit_destroy_runtime_data(UNIT(s), &s->exec_context); /* Also get rid of the fd store, if that's configured. */ if (s->fd_store_preserve_mode == EXEC_PRESERVE_NO) service_release_fd_store(s); /* Get rid of the IPC bits of the user */ unit_unref_uid_gid(UNIT(s), true); /* Try to delete the pid file. At this point it will be * out-of-date, and some software might be confused by it, so * let's remove it. */ if (s->pid_file) (void) unlink(s->pid_file); /* Reset TTY ownership if necessary */ exec_context_revert_tty(&s->exec_context); } static void service_enter_stop_post(Service *s, ServiceResult f) { int r; assert(s); if (s->result == SERVICE_SUCCESS) s->result = f; service_unwatch_control_pid(s); (void) unit_enqueue_rewatch_pids(UNIT(s)); s->control_command = s->exec_command[SERVICE_EXEC_STOP_POST]; if (s->control_command) { s->control_command_id = SERVICE_EXEC_STOP_POST; pidref_done(&s->control_pid); r = service_spawn(s, s->control_command, service_exec_flags(s->control_command_id, /* cred_flag = */ 0), s->timeout_stop_usec, &s->control_pid); if (r < 0) { log_unit_warning_errno(UNIT(s), r, "Failed to spawn 'stop-post' task: %m"); service_enter_signal(s, SERVICE_FINAL_SIGTERM, SERVICE_FAILURE_RESOURCES); return; } service_set_state(s, SERVICE_STOP_POST); } else service_enter_signal(s, SERVICE_FINAL_SIGTERM, SERVICE_SUCCESS); } static int state_to_kill_operation(Service *s, ServiceState state) { switch (state) { case SERVICE_STOP_WATCHDOG: case SERVICE_FINAL_WATCHDOG: return KILL_WATCHDOG; case SERVICE_STOP_SIGTERM: if (unit_has_job_type(UNIT(s), JOB_RESTART)) return KILL_RESTART; _fallthrough_; case SERVICE_FINAL_SIGTERM: return KILL_TERMINATE; case SERVICE_STOP_SIGKILL: case SERVICE_FINAL_SIGKILL: return KILL_KILL; default: return _KILL_OPERATION_INVALID; } } static void service_enter_signal(Service *s, ServiceState state, ServiceResult f) { int kill_operation, r; assert(s); if (s->result == SERVICE_SUCCESS) s->result = f; /* Before sending any signal, make sure we track all members of this cgroup */ (void) unit_watch_all_pids(UNIT(s)); /* Also, enqueue a job that we recheck all our PIDs a bit later, given that it's likely some processes have * died now */ (void) unit_enqueue_rewatch_pids(UNIT(s)); kill_operation = state_to_kill_operation(s, state); r = unit_kill_context(UNIT(s), kill_operation); if (r < 0) { log_unit_warning_errno(UNIT(s), r, "Failed to kill processes: %m"); goto fail; } if (r > 0) { r = service_arm_timer(s, /* relative= */ true, kill_operation == KILL_WATCHDOG ? service_timeout_abort_usec(s) : s->timeout_stop_usec); if (r < 0) { log_unit_warning_errno(UNIT(s), r, "Failed to install timer: %m"); goto fail; } service_set_state(s, state); } else if (IN_SET(state, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM) && s->kill_context.send_sigkill) service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_SUCCESS); else if (IN_SET(state, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL)) service_enter_stop_post(s, SERVICE_SUCCESS); else if (IN_SET(state, SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM) && s->kill_context.send_sigkill) service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_SUCCESS); else service_enter_dead(s, SERVICE_SUCCESS, /* allow_restart= */ true); return; fail: if (IN_SET(state, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL)) service_enter_stop_post(s, SERVICE_FAILURE_RESOURCES); else service_enter_dead(s, SERVICE_FAILURE_RESOURCES, /* allow_restart= */ true); } static void service_enter_stop_by_notify(Service *s) { int r; assert(s); (void) unit_enqueue_rewatch_pids(UNIT(s)); r = service_arm_timer(s, /* relative= */ true, s->timeout_stop_usec); if (r < 0) { log_unit_warning_errno(UNIT(s), r, "Failed to install timer: %m"); service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES); return; } /* The service told us it's stopping, so it's as if we SIGTERM'd it. */ service_set_state(s, SERVICE_STOP_SIGTERM); } static void service_enter_stop(Service *s, ServiceResult f) { int r; assert(s); if (s->result == SERVICE_SUCCESS) s->result = f; service_unwatch_control_pid(s); (void) unit_enqueue_rewatch_pids(UNIT(s)); s->control_command = s->exec_command[SERVICE_EXEC_STOP]; if (s->control_command) { s->control_command_id = SERVICE_EXEC_STOP; pidref_done(&s->control_pid); r = service_spawn(s, s->control_command, service_exec_flags(s->control_command_id, /* cred_flag = */ 0), s->timeout_stop_usec, &s->control_pid); if (r < 0) { log_unit_warning_errno(UNIT(s), r, "Failed to spawn 'stop' task: %m"); service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES); return; } service_set_state(s, SERVICE_STOP); } else service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_SUCCESS); } static bool service_good(Service *s) { int main_pid_ok; assert(s); if (s->type == SERVICE_DBUS && !s->bus_name_good) return false; main_pid_ok = main_pid_good(s); if (main_pid_ok > 0) /* It's alive */ return true; if (main_pid_ok == 0 && s->exit_type == SERVICE_EXIT_MAIN) /* It's dead */ return false; /* OK, we don't know anything about the main PID, maybe * because there is none. Let's check the control group * instead. */ return cgroup_good(s) != 0; } static void service_enter_running(Service *s, ServiceResult f) { int r; assert(s); if (s->result == SERVICE_SUCCESS) s->result = f; service_unwatch_control_pid(s); if (s->result != SERVICE_SUCCESS) service_enter_signal(s, SERVICE_STOP_SIGTERM, f); else if (service_good(s)) { /* If there are any queued up sd_notify() notifications, process them now */ if (s->notify_state == NOTIFY_RELOADING) service_enter_reload_by_notify(s); else if (s->notify_state == NOTIFY_STOPPING) service_enter_stop_by_notify(s); else { service_set_state(s, SERVICE_RUNNING); r = service_arm_timer(s, /* relative= */ false, service_running_timeout(s)); if (r < 0) { log_unit_warning_errno(UNIT(s), r, "Failed to install timer: %m"); service_enter_running(s, SERVICE_FAILURE_RESOURCES); return; } } } else if (s->remain_after_exit) service_set_state(s, SERVICE_EXITED); else service_enter_stop(s, SERVICE_SUCCESS); } static void service_enter_start_post(Service *s) { int r; assert(s); service_unwatch_control_pid(s); service_reset_watchdog(s); s->control_command = s->exec_command[SERVICE_EXEC_START_POST]; if (s->control_command) { s->control_command_id = SERVICE_EXEC_START_POST; pidref_done(&s->control_pid); r = service_spawn(s, s->control_command, service_exec_flags(s->control_command_id, /* cred_flag = */ 0), s->timeout_start_usec, &s->control_pid); if (r < 0) { log_unit_warning_errno(UNIT(s), r, "Failed to spawn 'start-post' task: %m"); service_enter_stop(s, SERVICE_FAILURE_RESOURCES); return; } service_set_state(s, SERVICE_START_POST); } else service_enter_running(s, SERVICE_SUCCESS); } static void service_kill_control_process(Service *s) { int r; assert(s); if (!pidref_is_set(&s->control_pid)) return; r = pidref_kill_and_sigcont(&s->control_pid, SIGKILL); if (r < 0) { _cleanup_free_ char *comm = NULL; (void) pidref_get_comm(&s->control_pid, &comm); log_unit_debug_errno(UNIT(s), r, "Failed to kill control process " PID_FMT " (%s), ignoring: %m", s->control_pid.pid, strna(comm)); } } static int service_adverse_to_leftover_processes(Service *s) { assert(s); /* KillMode=mixed and control group are used to indicate that all process should be killed off. * SendSIGKILL= is used for services that require a clean shutdown. These are typically database * service where a SigKilled process would result in a lengthy recovery and who's shutdown or startup * time is quite variable (so Timeout settings aren't of use). * * Here we take these two factors and refuse to start a service if there are existing processes * within a control group. Databases, while generally having some protection against multiple * instances running, lets not stress the rigor of these. Also ExecStartPre= parts of the service * aren't as rigoriously written to protect aganst against multiple use. */ if (unit_warn_leftover_processes(UNIT(s), unit_log_leftover_process_start) > 0 && IN_SET(s->kill_context.kill_mode, KILL_MIXED, KILL_CONTROL_GROUP) && !s->kill_context.send_sigkill) return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(EBUSY), "Will not start SendSIGKILL=no service of type KillMode=control-group or mixed while processes exist"); return 0; } static void service_enter_start(Service *s) { _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL; ExecCommand *c; usec_t timeout; int r; assert(s); service_unwatch_control_pid(s); service_unwatch_main_pid(s); r = service_adverse_to_leftover_processes(s); if (r < 0) goto fail; if (s->type == SERVICE_FORKING) { s->control_command_id = SERVICE_EXEC_START; c = s->control_command = s->exec_command[SERVICE_EXEC_START]; s->main_command = NULL; } else { s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID; s->control_command = NULL; c = s->main_command = s->exec_command[SERVICE_EXEC_START]; } if (!c) { if (s->type != SERVICE_ONESHOT) { /* There's no command line configured for the main command? Hmm, that is strange. * This can only happen if the configuration changes at runtime. In this case, * let's enter a failure state. */ r = log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENXIO), "There's no 'start' task anymore we could start."); goto fail; } /* We force a fake state transition here. Otherwise, the unit would go directly from * SERVICE_DEAD to SERVICE_DEAD without SERVICE_ACTIVATING or SERVICE_ACTIVE * in between. This way we can later trigger actions that depend on the state * transition, including SuccessAction=. */ service_set_state(s, SERVICE_START); service_enter_start_post(s); return; } if (IN_SET(s->type, SERVICE_SIMPLE, SERVICE_IDLE)) /* For simple + idle this is the main process. We don't apply any timeout here, but * service_enter_running() will later apply the .runtime_max_usec timeout. */ timeout = USEC_INFINITY; else timeout = s->timeout_start_usec; r = service_spawn(s, c, service_exec_flags(SERVICE_EXEC_START, EXEC_SETUP_CREDENTIALS_FRESH), timeout, &pidref); if (r < 0) { log_unit_warning_errno(UNIT(s), r, "Failed to spawn 'start' task: %m"); goto fail; } assert(pidref.pid == c->exec_status.pid); switch (s->type) { case SERVICE_SIMPLE: case SERVICE_IDLE: /* For simple services we immediately start the START_POST binaries. */ (void) service_set_main_pidref(s, TAKE_PIDREF(pidref), &c->exec_status.start_timestamp); return service_enter_start_post(s); case SERVICE_FORKING: /* For forking services we wait until the start process exited. */ pidref_done(&s->control_pid); s->control_pid = TAKE_PIDREF(pidref); return service_set_state(s, SERVICE_START); case SERVICE_ONESHOT: /* For oneshot services we wait until the start process exited, too, but it is our main process. */ case SERVICE_EXEC: case SERVICE_DBUS: case SERVICE_NOTIFY: case SERVICE_NOTIFY_RELOAD: /* For D-Bus services we know the main pid right away, but wait for the bus name to appear * on the bus. 'notify' and 'exec' services wait for readiness notification and EOF * on exec_fd, respectively. */ (void) service_set_main_pidref(s, TAKE_PIDREF(pidref), &c->exec_status.start_timestamp); return service_set_state(s, SERVICE_START); default: assert_not_reached(); } fail: service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES); } static void service_enter_start_pre(Service *s) { int r; assert(s); service_unwatch_control_pid(s); s->control_command = s->exec_command[SERVICE_EXEC_START_PRE]; if (s->control_command) { r = service_adverse_to_leftover_processes(s); if (r < 0) goto fail; s->control_command_id = SERVICE_EXEC_START_PRE; r = service_spawn(s, s->control_command, service_exec_flags(s->control_command_id, /* cred_flag = */ 0), s->timeout_start_usec, &s->control_pid); if (r < 0) { log_unit_warning_errno(UNIT(s), r, "Failed to spawn 'start-pre' task: %m"); goto fail; } service_set_state(s, SERVICE_START_PRE); } else service_enter_start(s); return; fail: service_enter_dead(s, SERVICE_FAILURE_RESOURCES, /* allow_restart= */ true); } static void service_enter_condition(Service *s) { int r; assert(s); service_unwatch_control_pid(s); s->control_command = s->exec_command[SERVICE_EXEC_CONDITION]; if (s->control_command) { r = service_adverse_to_leftover_processes(s); if (r < 0) goto fail; s->control_command_id = SERVICE_EXEC_CONDITION; pidref_done(&s->control_pid); r = service_spawn(s, s->control_command, service_exec_flags(s->control_command_id, /* cred_flag = */ 0), s->timeout_start_usec, &s->control_pid); if (r < 0) { log_unit_warning_errno(UNIT(s), r, "Failed to spawn 'exec-condition' task: %m"); goto fail; } service_set_state(s, SERVICE_CONDITION); } else service_enter_start_pre(s); return; fail: service_enter_dead(s, SERVICE_FAILURE_RESOURCES, /* allow_restart= */ true); } static void service_enter_restart(Service *s) { _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL; int r; assert(s); if (unit_has_job_type(UNIT(s), JOB_STOP)) { /* Don't restart things if we are going down anyway */ log_unit_info(UNIT(s), "Stop job pending for unit, skipping automatic restart."); return; } /* Any units that are bound to this service must also be restarted. We use JOB_START for ourselves * but then set JOB_RESTART_DEPENDENCIES which will enqueue JOB_RESTART for those dependency jobs. */ r = manager_add_job(UNIT(s)->manager, JOB_START, UNIT(s), JOB_RESTART_DEPENDENCIES, NULL, &error, NULL); if (r < 0) { log_unit_warning(UNIT(s), "Failed to schedule restart job: %s", bus_error_message(&error, r)); service_enter_dead(s, SERVICE_FAILURE_RESOURCES, /* allow_restart= */ false); return; } /* Count the jobs we enqueue for restarting. This counter is maintained as long as the unit isn't * fully stopped, i.e. as long as it remains up or remains in auto-start states. The user can reset * the counter explicitly however via the usual "systemctl reset-failure" logic. */ s->n_restarts++; s->flush_n_restarts = false; log_unit_struct(UNIT(s), LOG_INFO, "MESSAGE_ID=" SD_MESSAGE_UNIT_RESTART_SCHEDULED_STR, LOG_UNIT_INVOCATION_ID(UNIT(s)), LOG_UNIT_MESSAGE(UNIT(s), "Scheduled restart job, restart counter is at %u.", s->n_restarts), "N_RESTARTS=%u", s->n_restarts); service_set_state(s, SERVICE_AUTO_RESTART_QUEUED); /* Notify clients about changed restart counter */ unit_add_to_dbus_queue(UNIT(s)); } static void service_enter_reload_by_notify(Service *s) { _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL; int r; assert(s); r = service_arm_timer(s, /* relative= */ true, s->timeout_start_usec); if (r < 0) { log_unit_warning_errno(UNIT(s), r, "Failed to install timer: %m"); s->reload_result = SERVICE_FAILURE_RESOURCES; service_enter_running(s, SERVICE_SUCCESS); return; } service_set_state(s, SERVICE_RELOAD_NOTIFY); /* service_enter_reload_by_notify is never called during a reload, thus no loops are possible. */ r = manager_propagate_reload(UNIT(s)->manager, UNIT(s), JOB_FAIL, &error); if (r < 0) log_unit_warning(UNIT(s), "Failed to schedule propagation of reload, ignoring: %s", bus_error_message(&error, r)); } static void service_enter_reload(Service *s) { bool killed = false; int r; assert(s); service_unwatch_control_pid(s); s->reload_result = SERVICE_SUCCESS; usec_t ts = now(CLOCK_MONOTONIC); if (s->type == SERVICE_NOTIFY_RELOAD && pidref_is_set(&s->main_pid)) { r = pidref_kill_and_sigcont(&s->main_pid, s->reload_signal); if (r < 0) { log_unit_warning_errno(UNIT(s), r, "Failed to send reload signal: %m"); goto fail; } killed = true; } s->control_command = s->exec_command[SERVICE_EXEC_RELOAD]; if (s->control_command) { s->control_command_id = SERVICE_EXEC_RELOAD; pidref_done(&s->control_pid); r = service_spawn(s, s->control_command, service_exec_flags(s->control_command_id, /* cred_flag = */ 0), s->timeout_start_usec, &s->control_pid); if (r < 0) { log_unit_warning_errno(UNIT(s), r, "Failed to spawn 'reload' task: %m"); goto fail; } service_set_state(s, SERVICE_RELOAD); } else if (killed) { r = service_arm_timer(s, /* relative= */ true, s->timeout_start_usec); if (r < 0) { log_unit_warning_errno(UNIT(s), r, "Failed to install timer: %m"); goto fail; } service_set_state(s, SERVICE_RELOAD_SIGNAL); } else { service_enter_running(s, SERVICE_SUCCESS); return; } /* Store the timestamp when we started reloading: when reloading via SIGHUP we won't leave the reload * state until we received both RELOADING=1 and READY=1 with MONOTONIC_USEC= set to a value above * this. Thus we know for sure the reload cycle was executed *after* we requested it, and is not one * that was already in progress before. */ s->reload_begin_usec = ts; return; fail: s->reload_result = SERVICE_FAILURE_RESOURCES; service_enter_running(s, SERVICE_SUCCESS); } static void service_run_next_control(Service *s) { usec_t timeout; int r; assert(s); assert(s->control_command); assert(s->control_command->command_next); assert(s->control_command_id != SERVICE_EXEC_START); s->control_command = s->control_command->command_next; service_unwatch_control_pid(s); if (IN_SET(s->state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD)) timeout = s->timeout_start_usec; else timeout = s->timeout_stop_usec; pidref_done(&s->control_pid); r = service_spawn(s, s->control_command, service_exec_flags(s->control_command_id, /* cred_flag = */ 0), timeout, &s->control_pid); if (r < 0) { log_unit_warning_errno(UNIT(s), r, "Failed to spawn next control task: %m"); if (IN_SET(s->state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START_POST, SERVICE_STOP)) service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES); else if (s->state == SERVICE_STOP_POST) service_enter_dead(s, SERVICE_FAILURE_RESOURCES, /* allow_restart= */ true); else if (s->state == SERVICE_RELOAD) { s->reload_result = SERVICE_FAILURE_RESOURCES; service_enter_running(s, SERVICE_SUCCESS); } else service_enter_stop(s, SERVICE_FAILURE_RESOURCES); } } static void service_run_next_main(Service *s) { _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL; int r; assert(s); assert(s->main_command); assert(s->main_command->command_next); assert(s->type == SERVICE_ONESHOT); s->main_command = s->main_command->command_next; service_unwatch_main_pid(s); r = service_spawn(s, s->main_command, service_exec_flags(SERVICE_EXEC_START, EXEC_SETUP_CREDENTIALS), s->timeout_start_usec, &pidref); if (r < 0) { log_unit_warning_errno(UNIT(s), r, "Failed to spawn next main task: %m"); service_enter_stop(s, SERVICE_FAILURE_RESOURCES); return; } (void) service_set_main_pidref(s, TAKE_PIDREF(pidref), &s->main_command->exec_status.start_timestamp); } static int service_start(Unit *u) { Service *s = SERVICE(u); int r; assert(s); /* We cannot fulfill this request right now, try again later * please! */ if (IN_SET(s->state, SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST, SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL, SERVICE_CLEANING)) return -EAGAIN; /* Already on it! */ if (IN_SET(s->state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST)) return 0; /* A service that will be restarted must be stopped first to trigger BindsTo and/or OnFailure * dependencies. If a user does not want to wait for the holdoff time to elapse, the service should * be manually restarted, not started. We simply return EAGAIN here, so that any start jobs stay * queued, and assume that the auto restart timer will eventually trigger the restart. */ if (IN_SET(s->state, SERVICE_AUTO_RESTART, SERVICE_DEAD_BEFORE_AUTO_RESTART, SERVICE_FAILED_BEFORE_AUTO_RESTART)) return -EAGAIN; assert(IN_SET(s->state, SERVICE_DEAD, SERVICE_FAILED, SERVICE_DEAD_RESOURCES_PINNED, SERVICE_AUTO_RESTART_QUEUED)); r = unit_acquire_invocation_id(u); if (r < 0) return r; s->result = SERVICE_SUCCESS; s->reload_result = SERVICE_SUCCESS; s->main_pid_known = false; s->main_pid_alien = false; s->forbid_restart = false; s->status_text = mfree(s->status_text); s->status_errno = 0; s->notify_access_override = _NOTIFY_ACCESS_INVALID; s->notify_state = NOTIFY_UNKNOWN; s->watchdog_original_usec = s->watchdog_usec; s->watchdog_override_enable = false; s->watchdog_override_usec = USEC_INFINITY; exec_command_reset_status_list_array(s->exec_command, _SERVICE_EXEC_COMMAND_MAX); exec_status_reset(&s->main_exec_status); /* This is not an automatic restart? Flush the restart counter then */ if (s->flush_n_restarts) { s->n_restarts = 0; s->flush_n_restarts = false; } CGroupRuntime *crt = unit_get_cgroup_runtime(u); if (crt) crt->reset_accounting = true; service_enter_condition(s); return 1; } static int service_stop(Unit *u) { Service *s = ASSERT_PTR(SERVICE(u)); /* Don't create restart jobs from manual stops. */ s->forbid_restart = true; switch (s->state) { case SERVICE_STOP: case SERVICE_STOP_SIGTERM: case SERVICE_STOP_SIGKILL: case SERVICE_STOP_POST: case SERVICE_FINAL_WATCHDOG: case SERVICE_FINAL_SIGTERM: case SERVICE_FINAL_SIGKILL: /* Already on it */ return 0; case SERVICE_AUTO_RESTART: case SERVICE_AUTO_RESTART_QUEUED: /* Give up on the auto restart */ service_set_state(s, service_determine_dead_state(s)); return 0; case SERVICE_CONDITION: case SERVICE_START_PRE: case SERVICE_START: case SERVICE_START_POST: case SERVICE_RELOAD: case SERVICE_RELOAD_SIGNAL: case SERVICE_RELOAD_NOTIFY: case SERVICE_STOP_WATCHDOG: /* If there's already something running we go directly into kill mode. */ service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_SUCCESS); return 0; case SERVICE_CLEANING: /* If we are currently cleaning, then abort it, brutally. */ service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_SUCCESS); return 0; case SERVICE_RUNNING: case SERVICE_EXITED: service_enter_stop(s, SERVICE_SUCCESS); return 1; case SERVICE_DEAD_BEFORE_AUTO_RESTART: case SERVICE_FAILED_BEFORE_AUTO_RESTART: case SERVICE_DEAD: case SERVICE_FAILED: case SERVICE_DEAD_RESOURCES_PINNED: default: /* Unknown state, or unit_stop() should already have handled these */ assert_not_reached(); } } static int service_reload(Unit *u) { Service *s = ASSERT_PTR(SERVICE(u)); assert(IN_SET(s->state, SERVICE_RUNNING, SERVICE_EXITED)); service_enter_reload(s); return 1; } static bool service_can_reload(Unit *u) { Service *s = ASSERT_PTR(SERVICE(u)); return s->exec_command[SERVICE_EXEC_RELOAD] || s->type == SERVICE_NOTIFY_RELOAD; } static unsigned service_exec_command_index(Unit *u, ServiceExecCommand id, const ExecCommand *current) { Service *s = SERVICE(u); unsigned idx = 0; assert(s); assert(id >= 0); assert(id < _SERVICE_EXEC_COMMAND_MAX); const ExecCommand *first = s->exec_command[id]; /* Figure out where we are in the list by walking back to the beginning */ for (const ExecCommand *c = current; c != first; c = c->command_prev) idx++; return idx; } static int service_serialize_exec_command(Unit *u, FILE *f, const ExecCommand *command) { Service *s = ASSERT_PTR(SERVICE(u)); _cleanup_free_ char *args = NULL, *p = NULL; const char *type, *key; ServiceExecCommand id; size_t length = 0; unsigned idx; assert(f); if (!command) return 0; if (command == s->control_command) { type = "control"; id = s->control_command_id; } else { type = "main"; id = SERVICE_EXEC_START; } idx = service_exec_command_index(u, id, command); STRV_FOREACH(arg, command->argv) { _cleanup_free_ char *e = NULL; size_t n; e = cescape(*arg); if (!e) return log_oom(); n = strlen(e); if (!GREEDY_REALLOC(args, length + 2 + n + 2)) return log_oom(); if (length > 0) args[length++] = ' '; args[length++] = '"'; memcpy(args + length, e, n); length += n; args[length++] = '"'; } if (!GREEDY_REALLOC(args, length + 1)) return log_oom(); args[length++] = 0; p = cescape(command->path); if (!p) return log_oom(); key = strjoina(type, "-command"); /* We use '+1234' instead of '1234' to mark the last command in a sequence. * This is used in service_deserialize_exec_command(). */ (void) serialize_item_format( f, key, "%s %s%u %s %s", service_exec_command_to_string(id), command->command_next ? "" : "+", idx, p, args); return 0; } static int service_serialize(Unit *u, FILE *f, FDSet *fds) { Service *s = ASSERT_PTR(SERVICE(u)); int r; assert(f); assert(fds); (void) serialize_item(f, "state", service_state_to_string(s->state)); (void) serialize_item(f, "result", service_result_to_string(s->result)); (void) serialize_item(f, "reload-result", service_result_to_string(s->reload_result)); (void) serialize_pidref(f, fds, "control-pid", &s->control_pid); if (s->main_pid_known) (void) serialize_pidref(f, fds, "main-pid", &s->main_pid); (void) serialize_bool(f, "main-pid-known", s->main_pid_known); (void) serialize_bool(f, "bus-name-good", s->bus_name_good); (void) serialize_bool(f, "bus-name-owner", s->bus_name_owner); (void) serialize_item_format(f, "n-restarts", "%u", s->n_restarts); (void) serialize_bool(f, "flush-n-restarts", s->flush_n_restarts); r = serialize_item_escaped(f, "status-text", s->status_text); if (r < 0) return r; service_serialize_exec_command(u, f, s->control_command); service_serialize_exec_command(u, f, s->main_command); r = serialize_fd(f, fds, "stdin-fd", s->stdin_fd); if (r < 0) return r; r = serialize_fd(f, fds, "stdout-fd", s->stdout_fd); if (r < 0) return r; r = serialize_fd(f, fds, "stderr-fd", s->stderr_fd); if (r < 0) return r; if (s->exec_fd_event_source) { r = serialize_fd(f, fds, "exec-fd", sd_event_source_get_io_fd(s->exec_fd_event_source)); if (r < 0) return r; (void) serialize_bool(f, "exec-fd-hot", s->exec_fd_hot); } if (UNIT_ISSET(s->accept_socket)) { r = serialize_item(f, "accept-socket", UNIT_DEREF(s->accept_socket)->id); if (r < 0) return r; } r = serialize_fd(f, fds, "socket-fd", s->socket_fd); if (r < 0) return r; LIST_FOREACH(fd_store, fs, s->fd_store) { _cleanup_free_ char *c = NULL; int copy; copy = fdset_put_dup(fds, fs->fd); if (copy < 0) return log_error_errno(copy, "Failed to copy file descriptor for serialization: %m"); c = cescape(fs->fdname); if (!c) return log_oom(); (void) serialize_item_format(f, "fd-store-fd", "%i \"%s\" %s", copy, c, one_zero(fs->do_poll)); } if (s->main_exec_status.pid > 0) { (void) serialize_item_format(f, "main-exec-status-pid", PID_FMT, s->main_exec_status.pid); (void) serialize_dual_timestamp(f, "main-exec-status-start", &s->main_exec_status.start_timestamp); (void) serialize_dual_timestamp(f, "main-exec-status-exit", &s->main_exec_status.exit_timestamp); (void) serialize_dual_timestamp(f, "main-exec-status-handoff", &s->main_exec_status.handoff_timestamp); if (dual_timestamp_is_set(&s->main_exec_status.exit_timestamp)) { (void) serialize_item_format(f, "main-exec-status-code", "%i", s->main_exec_status.code); (void) serialize_item_format(f, "main-exec-status-status", "%i", s->main_exec_status.status); } } if (s->notify_access_override >= 0) (void) serialize_item(f, "notify-access-override", notify_access_to_string(s->notify_access_override)); (void) serialize_dual_timestamp(f, "watchdog-timestamp", &s->watchdog_timestamp); (void) serialize_bool(f, "forbid-restart", s->forbid_restart); if (s->watchdog_override_enable) (void) serialize_item_format(f, "watchdog-override-usec", USEC_FMT, s->watchdog_override_usec); if (s->watchdog_original_usec != USEC_INFINITY) (void) serialize_item_format(f, "watchdog-original-usec", USEC_FMT, s->watchdog_original_usec); if (s->reload_begin_usec != USEC_INFINITY) (void) serialize_item_format(f, "reload-begin-usec", USEC_FMT, s->reload_begin_usec); return 0; } int service_deserialize_exec_command( Unit *u, const char *key, const char *value) { Service *s = ASSERT_PTR(SERVICE(u)); ExecCommand *command = NULL; ServiceExecCommand id = _SERVICE_EXEC_COMMAND_INVALID; _cleanup_free_ char *path = NULL; _cleanup_strv_free_ char **argv = NULL; unsigned idx = 0, i; bool control, found = false, last = false; int r; enum ExecCommandState { STATE_EXEC_COMMAND_TYPE, STATE_EXEC_COMMAND_INDEX, STATE_EXEC_COMMAND_PATH, STATE_EXEC_COMMAND_ARGS, _STATE_EXEC_COMMAND_MAX, _STATE_EXEC_COMMAND_INVALID = -EINVAL, } state; assert(key); assert(value); control = streq(key, "control-command"); state = STATE_EXEC_COMMAND_TYPE; for (;;) { _cleanup_free_ char *arg = NULL; r = extract_first_word(&value, &arg, NULL, EXTRACT_CUNESCAPE | EXTRACT_UNQUOTE); if (r < 0) return r; if (r == 0) break; switch (state) { case STATE_EXEC_COMMAND_TYPE: id = service_exec_command_from_string(arg); if (id < 0) return id; state = STATE_EXEC_COMMAND_INDEX; break; case STATE_EXEC_COMMAND_INDEX: /* PID 1234 is serialized as either '1234' or '+1234'. The second form is used to * mark the last command in a sequence. We warn if the deserialized command doesn't * match what we have loaded from the unit, but we don't need to warn if that is the * last command. */ r = safe_atou(arg, &idx); if (r < 0) return r; last = arg[0] == '+'; state = STATE_EXEC_COMMAND_PATH; break; case STATE_EXEC_COMMAND_PATH: path = TAKE_PTR(arg); state = STATE_EXEC_COMMAND_ARGS; break; case STATE_EXEC_COMMAND_ARGS: r = strv_extend(&argv, arg); if (r < 0) return r; break; default: assert_not_reached(); } } if (state != STATE_EXEC_COMMAND_ARGS) return -EINVAL; if (strv_isempty(argv)) return -EINVAL; /* At least argv[0] must be always present. */ /* Let's check whether exec command on given offset matches data that we just deserialized */ for (command = s->exec_command[id], i = 0; command; command = command->command_next, i++) { if (i != idx) continue; found = strv_equal(argv, command->argv) && streq(command->path, path); break; } if (!found) { /* Command at the index we serialized is different, let's look for command that exactly * matches but is on different index. If there is no such command we will not resume execution. */ for (command = s->exec_command[id]; command; command = command->command_next) if (strv_equal(command->argv, argv) && streq(command->path, path)) break; } if (command && control) { s->control_command = command; s->control_command_id = id; } else if (command) s->main_command = command; else if (last) log_unit_debug(u, "Current command vanished from the unit file."); else log_unit_warning(u, "Current command vanished from the unit file, execution of the command list won't be resumed."); return 0; } static int service_deserialize_item(Unit *u, const char *key, const char *value, FDSet *fds) { Service *s = ASSERT_PTR(SERVICE(u)); int r; assert(key); assert(value); assert(fds); if (streq(key, "state")) { ServiceState state; state = service_state_from_string(value); if (state < 0) log_unit_debug(u, "Failed to parse state value: %s", value); else s->deserialized_state = state; } else if (streq(key, "result")) { ServiceResult f; f = service_result_from_string(value); if (f < 0) log_unit_debug(u, "Failed to parse result value: %s", value); else if (f != SERVICE_SUCCESS) s->result = f; } else if (streq(key, "reload-result")) { ServiceResult f; f = service_result_from_string(value); if (f < 0) log_unit_debug(u, "Failed to parse reload result value: %s", value); else if (f != SERVICE_SUCCESS) s->reload_result = f; } else if (streq(key, "control-pid")) { if (!pidref_is_set(&s->control_pid)) (void) deserialize_pidref(fds, value, &s->control_pid); } else if (streq(key, "main-pid")) { PidRef pidref; if (!pidref_is_set(&s->main_pid) && deserialize_pidref(fds, value, &pidref) >= 0) (void) service_set_main_pidref(s, pidref, /* start_timestamp = */ NULL); } else if (streq(key, "main-pid-known")) { int b; b = parse_boolean(value); if (b < 0) log_unit_debug(u, "Failed to parse main-pid-known value: %s", value); else s->main_pid_known = b; } else if (streq(key, "bus-name-good")) { int b; b = parse_boolean(value); if (b < 0) log_unit_debug(u, "Failed to parse bus-name-good value: %s", value); else s->bus_name_good = b; } else if (streq(key, "bus-name-owner")) { r = free_and_strdup(&s->bus_name_owner, value); if (r < 0) log_unit_error_errno(u, r, "Unable to deserialize current bus owner %s: %m", value); } else if (streq(key, "status-text")) { char *t; ssize_t l; l = cunescape(value, 0, &t); if (l < 0) log_unit_debug_errno(u, l, "Failed to unescape status text '%s': %m", value); else free_and_replace(s->status_text, t); } else if (streq(key, "accept-socket")) { Unit *socket; if (unit_name_to_type(value) != UNIT_SOCKET) { log_unit_debug(u, "Deserialized accept-socket is not a socket unit, ignoring: %s", value); return 0; } r = manager_load_unit(u->manager, value, NULL, NULL, &socket); if (r < 0) log_unit_debug_errno(u, r, "Failed to load accept-socket unit '%s': %m", value); else { unit_ref_set(&s->accept_socket, u, socket); ASSERT_PTR(SOCKET(socket))->n_connections++; } } else if (streq(key, "socket-fd")) { asynchronous_close(s->socket_fd); s->socket_fd = deserialize_fd(fds, value); } else if (streq(key, "fd-store-fd")) { _cleanup_free_ char *fdv = NULL, *fdn = NULL, *fdp = NULL; _cleanup_close_ int fd = -EBADF; int do_poll; r = extract_many_words(&value, " ", EXTRACT_CUNESCAPE|EXTRACT_UNQUOTE, &fdv, &fdn, &fdp); if (r < 2 || r > 3) { log_unit_debug(u, "Failed to deserialize fd-store-fd, ignoring: %s", value); return 0; } fd = deserialize_fd(fds, fdv); if (fd < 0) return 0; do_poll = r == 3 ? parse_boolean(fdp) : true; if (do_poll < 0) { log_unit_debug_errno(u, do_poll, "Failed to deserialize fd-store-fd do_poll, ignoring: %s", fdp); return 0; } r = service_add_fd_store(s, fd, fdn, do_poll); if (r < 0) { log_unit_debug_errno(u, r, "Failed to store deserialized fd '%s', ignoring: %m", fdn); return 0; } TAKE_FD(fd); } else if (streq(key, "main-exec-status-pid")) { pid_t pid; if (parse_pid(value, &pid) < 0) log_unit_debug(u, "Failed to parse main-exec-status-pid value: %s", value); else s->main_exec_status.pid = pid; } else if (streq(key, "main-exec-status-code")) { int i; if (safe_atoi(value, &i) < 0) log_unit_debug(u, "Failed to parse main-exec-status-code value: %s", value); else s->main_exec_status.code = i; } else if (streq(key, "main-exec-status-status")) { int i; if (safe_atoi(value, &i) < 0) log_unit_debug(u, "Failed to parse main-exec-status-status value: %s", value); else s->main_exec_status.status = i; } else if (streq(key, "main-exec-status-start")) deserialize_dual_timestamp(value, &s->main_exec_status.start_timestamp); else if (streq(key, "main-exec-status-exit")) deserialize_dual_timestamp(value, &s->main_exec_status.exit_timestamp); else if (streq(key, "main-exec-status-handoff")) deserialize_dual_timestamp(value, &s->main_exec_status.handoff_timestamp); else if (streq(key, "notify-access-override")) { NotifyAccess notify_access; notify_access = notify_access_from_string(value); if (notify_access < 0) log_unit_debug(u, "Failed to parse notify-access-override value: %s", value); else s->notify_access_override = notify_access; } else if (streq(key, "watchdog-timestamp")) deserialize_dual_timestamp(value, &s->watchdog_timestamp); else if (streq(key, "forbid-restart")) { int b; b = parse_boolean(value); if (b < 0) log_unit_debug(u, "Failed to parse forbid-restart value: %s", value); else s->forbid_restart = b; } else if (streq(key, "stdin-fd")) { asynchronous_close(s->stdin_fd); s->stdin_fd = deserialize_fd(fds, value); if (s->stdin_fd >= 0) s->exec_context.stdio_as_fds = true; } else if (streq(key, "stdout-fd")) { asynchronous_close(s->stdout_fd); s->stdout_fd = deserialize_fd(fds, value); if (s->stdout_fd >= 0) s->exec_context.stdio_as_fds = true; } else if (streq(key, "stderr-fd")) { asynchronous_close(s->stderr_fd); s->stderr_fd = deserialize_fd(fds, value); if (s->stderr_fd >= 0) s->exec_context.stdio_as_fds = true; } else if (streq(key, "exec-fd")) { _cleanup_close_ int fd = -EBADF; fd = deserialize_fd(fds, value); if (fd >= 0) { s->exec_fd_event_source = sd_event_source_disable_unref(s->exec_fd_event_source); if (service_allocate_exec_fd_event_source(s, fd, &s->exec_fd_event_source) >= 0) TAKE_FD(fd); } } else if (streq(key, "watchdog-override-usec")) { if (deserialize_usec(value, &s->watchdog_override_usec) < 0) log_unit_debug(u, "Failed to parse watchdog_override_usec value: %s", value); else s->watchdog_override_enable = true; } else if (streq(key, "watchdog-original-usec")) { if (deserialize_usec(value, &s->watchdog_original_usec) < 0) log_unit_debug(u, "Failed to parse watchdog_original_usec value: %s", value); } else if (STR_IN_SET(key, "main-command", "control-command")) { r = service_deserialize_exec_command(u, key, value); if (r < 0) log_unit_debug_errno(u, r, "Failed to parse serialized command \"%s\": %m", value); } else if (streq(key, "n-restarts")) { r = safe_atou(value, &s->n_restarts); if (r < 0) log_unit_debug_errno(u, r, "Failed to parse serialized restart counter '%s': %m", value); } else if (streq(key, "flush-n-restarts")) { r = parse_boolean(value); if (r < 0) log_unit_debug_errno(u, r, "Failed to parse serialized flush restart counter setting '%s': %m", value); else s->flush_n_restarts = r; } else if (streq(key, "reload-begin-usec")) { r = deserialize_usec(value, &s->reload_begin_usec); if (r < 0) log_unit_debug_errno(u, r, "Failed to parse serialized reload begin timestamp '%s', ignoring: %m", value); } else log_unit_debug(u, "Unknown serialization key: %s", key); return 0; } static UnitActiveState service_active_state(Unit *u) { Service *s = ASSERT_PTR(SERVICE(u)); const UnitActiveState *table; table = s->type == SERVICE_IDLE ? state_translation_table_idle : state_translation_table; return table[s->state]; } static const char *service_sub_state_to_string(Unit *u) { assert(u); return service_state_to_string(SERVICE(u)->state); } static bool service_may_gc(Unit *u) { Service *s = ASSERT_PTR(SERVICE(u)); /* Never clean up services that still have a process around, even if the service is formally dead. Note that * unit_may_gc() already checked our cgroup for us, we just check our two additional PIDs, too, in case they * have moved outside of the cgroup. */ if (main_pid_good(s) > 0 || control_pid_good(s) > 0) return false; /* Only allow collection of actually dead services, i.e. not those that are in the transitionary * SERVICE_DEAD_BEFORE_AUTO_RESTART/SERVICE_FAILED_BEFORE_AUTO_RESTART states. */ if (!IN_SET(s->state, SERVICE_DEAD, SERVICE_FAILED, SERVICE_DEAD_RESOURCES_PINNED)) return false; return true; } static int service_retry_pid_file(Service *s) { int r; assert(s); assert(s->pid_file); assert(IN_SET(s->state, SERVICE_START, SERVICE_START_POST)); r = service_load_pid_file(s, false); if (r < 0) return r; service_unwatch_pid_file(s); service_enter_running(s, SERVICE_SUCCESS); return 0; } static int service_watch_pid_file(Service *s) { int r; assert(s); log_unit_debug(UNIT(s), "Setting watch for PID file %s", s->pid_file_pathspec->path); r = path_spec_watch(s->pid_file_pathspec, service_dispatch_inotify_io); if (r < 0) { log_unit_error_errno(UNIT(s), r, "Failed to set a watch for PID file %s: %m", s->pid_file_pathspec->path); service_unwatch_pid_file(s); return r; } /* the pidfile might have appeared just before we set the watch */ log_unit_debug(UNIT(s), "Trying to read PID file %s in case it changed", s->pid_file_pathspec->path); service_retry_pid_file(s); return 0; } static int service_demand_pid_file(Service *s) { _cleanup_free_ PathSpec *ps = NULL; assert(s); assert(s->pid_file); assert(!s->pid_file_pathspec); ps = new(PathSpec, 1); if (!ps) return -ENOMEM; *ps = (PathSpec) { .unit = UNIT(s), .path = strdup(s->pid_file), /* PATH_CHANGED would not be enough. There are daemons (sendmail) that keep their PID file * open all the time. */ .type = PATH_MODIFIED, .inotify_fd = -EBADF, }; if (!ps->path) return -ENOMEM; path_simplify(ps->path); s->pid_file_pathspec = TAKE_PTR(ps); return service_watch_pid_file(s); } static int service_dispatch_inotify_io(sd_event_source *source, int fd, uint32_t events, void *userdata) { PathSpec *p = ASSERT_PTR(userdata); Service *s = ASSERT_PTR(SERVICE(p->unit)); assert(fd >= 0); assert(IN_SET(s->state, SERVICE_START, SERVICE_START_POST)); assert(s->pid_file_pathspec); assert(path_spec_owns_inotify_fd(s->pid_file_pathspec, fd)); log_unit_debug(UNIT(s), "inotify event"); if (path_spec_fd_event(p, events) < 0) goto fail; if (service_retry_pid_file(s) == 0) return 0; if (service_watch_pid_file(s) < 0) goto fail; return 0; fail: service_unwatch_pid_file(s); service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES); return 0; } static int service_dispatch_exec_io(sd_event_source *source, int fd, uint32_t events, void *userdata) { Service *s = ASSERT_PTR(SERVICE(userdata)); log_unit_debug(UNIT(s), "got exec-fd event"); /* If Type=exec is set, we'll consider a service started successfully the instant we invoked execve() * successfully for it. We implement this through a pipe() towards the child, which the kernel * automatically closes for us due to O_CLOEXEC on execve() in the child, which then triggers EOF on * the pipe in the parent. We need to be careful however, as there are other reasons that we might * cause the child's side of the pipe to be closed (for example, a simple exit()). To deal with that * we'll ignore EOFs on the pipe unless the child signalled us first that it is about to call the * execve(). It does so by sending us a simple non-zero byte via the pipe. We also provide the child * with a way to inform us in case execve() failed: if it sends a zero byte we'll ignore POLLHUP on * the fd again. */ for (;;) { uint8_t x; ssize_t n; n = read(fd, &x, sizeof(x)); if (n < 0) { if (errno == EAGAIN) /* O_NONBLOCK in effect → everything queued has now been processed. */ return 0; return log_unit_error_errno(UNIT(s), errno, "Failed to read from exec_fd: %m"); } if (n == 0) { /* EOF → the event we are waiting for in case of Type=exec */ s->exec_fd_event_source = sd_event_source_disable_unref(s->exec_fd_event_source); if (s->exec_fd_hot) { /* Did the child tell us to expect EOF now? */ log_unit_debug(UNIT(s), "Got EOF on exec-fd"); s->exec_fd_hot = false; /* Nice! This is what we have been waiting for. Transition to next state. */ if (s->type == SERVICE_EXEC && s->state == SERVICE_START) service_enter_start_post(s); } else log_unit_debug(UNIT(s), "Got EOF on exec-fd while it was disabled, ignoring."); return 0; } /* A byte was read → this turns on/off the exec fd logic */ assert(n == sizeof(x)); s->exec_fd_hot = x; } } static void service_notify_cgroup_empty_event(Unit *u) { Service *s = ASSERT_PTR(SERVICE(u)); log_unit_debug(u, "Control group is empty."); switch (s->state) { /* Waiting for SIGCHLD is usually more interesting, because it includes return * codes/signals. Which is why we ignore the cgroup events for most cases, except when we * don't know pid which to expect the SIGCHLD for. */ case SERVICE_START: if (IN_SET(s->type, SERVICE_NOTIFY, SERVICE_NOTIFY_RELOAD) && main_pid_good(s) == 0 && control_pid_good(s) == 0) { /* No chance of getting a ready notification anymore */ service_enter_stop_post(s, SERVICE_FAILURE_PROTOCOL); break; } if (s->exit_type == SERVICE_EXIT_CGROUP && main_pid_good(s) <= 0) { service_enter_stop_post(s, SERVICE_SUCCESS); break; } _fallthrough_; case SERVICE_START_POST: if (s->pid_file_pathspec && main_pid_good(s) == 0 && control_pid_good(s) == 0) { /* Give up hoping for the daemon to write its PID file */ log_unit_warning(u, "Daemon never wrote its PID file. Failing."); service_unwatch_pid_file(s); if (s->state == SERVICE_START) service_enter_stop_post(s, SERVICE_FAILURE_PROTOCOL); else service_enter_stop(s, SERVICE_FAILURE_PROTOCOL); } break; case SERVICE_RUNNING: /* service_enter_running() will figure out what to do */ service_enter_running(s, SERVICE_SUCCESS); break; case SERVICE_STOP_WATCHDOG: case SERVICE_STOP_SIGTERM: case SERVICE_STOP_SIGKILL: if (main_pid_good(s) <= 0 && control_pid_good(s) <= 0) service_enter_stop_post(s, SERVICE_SUCCESS); break; case SERVICE_STOP_POST: case SERVICE_FINAL_WATCHDOG: case SERVICE_FINAL_SIGTERM: case SERVICE_FINAL_SIGKILL: if (main_pid_good(s) <= 0 && control_pid_good(s) <= 0) service_enter_dead(s, SERVICE_SUCCESS, true); break; /* If the cgroup empty notification comes when the unit is not active, we must have failed to clean * up the cgroup earlier and should do it now. */ case SERVICE_AUTO_RESTART: case SERVICE_AUTO_RESTART_QUEUED: unit_prune_cgroup(u); break; default: ; } } static void service_notify_cgroup_oom_event(Unit *u, bool managed_oom) { Service *s = ASSERT_PTR(SERVICE(u)); if (managed_oom) log_unit_debug(u, "Process(es) of control group were killed by systemd-oomd."); else log_unit_debug(u, "Process of control group was killed by the OOM killer."); if (s->oom_policy == OOM_CONTINUE) return; switch (s->state) { case SERVICE_CONDITION: case SERVICE_START_PRE: case SERVICE_START: case SERVICE_START_POST: case SERVICE_STOP: if (s->oom_policy == OOM_STOP) service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_OOM_KILL); else if (s->oom_policy == OOM_KILL) service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_OOM_KILL); break; case SERVICE_EXITED: case SERVICE_RUNNING: if (s->oom_policy == OOM_STOP) service_enter_stop(s, SERVICE_FAILURE_OOM_KILL); else if (s->oom_policy == OOM_KILL) service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_OOM_KILL); break; case SERVICE_STOP_WATCHDOG: case SERVICE_STOP_SIGTERM: service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_OOM_KILL); break; case SERVICE_STOP_SIGKILL: case SERVICE_FINAL_SIGKILL: if (s->result == SERVICE_SUCCESS) s->result = SERVICE_FAILURE_OOM_KILL; break; case SERVICE_STOP_POST: case SERVICE_FINAL_SIGTERM: service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_FAILURE_OOM_KILL); break; default: ; } } static void service_sigchld_event(Unit *u, pid_t pid, int code, int status) { Service *s = ASSERT_PTR(SERVICE(u)); bool notify_dbus = true; ServiceResult f; ExitClean clean_mode; int r; assert(pid >= 0); /* Oneshot services and non-SERVICE_EXEC_START commands should not be * considered daemons as they are typically not long running. */ if (s->type == SERVICE_ONESHOT || (s->control_pid.pid == pid && s->control_command_id != SERVICE_EXEC_START)) clean_mode = EXIT_CLEAN_COMMAND; else clean_mode = EXIT_CLEAN_DAEMON; if (is_clean_exit(code, status, clean_mode, &s->success_status)) f = SERVICE_SUCCESS; else if (code == CLD_EXITED) f = SERVICE_FAILURE_EXIT_CODE; else if (code == CLD_KILLED) f = SERVICE_FAILURE_SIGNAL; else if (code == CLD_DUMPED) f = SERVICE_FAILURE_CORE_DUMP; else assert_not_reached(); if (s->main_pid.pid == pid) { /* Clean up the exec_fd event source. We want to do this here, not later in * service_set_state(), because service_enter_stop_post() calls service_spawn(). * The source owns its end of the pipe, so this will close that too. */ s->exec_fd_event_source = sd_event_source_disable_unref(s->exec_fd_event_source); /* Forking services may occasionally move to a new PID. * As long as they update the PID file before exiting the old * PID, they're fine. */ if (service_load_pid_file(s, false) > 0) return; pidref_done(&s->main_pid); exec_status_exit(&s->main_exec_status, &s->exec_context, pid, code, status); if (s->main_command) { /* If this is not a forking service than the * main process got started and hence we copy * the exit status so that it is recorded both * as main and as control process exit * status */ s->main_command->exec_status = s->main_exec_status; if (s->main_command->flags & EXEC_COMMAND_IGNORE_FAILURE) f = SERVICE_SUCCESS; } else if (s->exec_command[SERVICE_EXEC_START]) { /* If this is a forked process, then we should * ignore the return value if this was * configured for the starter process */ if (s->exec_command[SERVICE_EXEC_START]->flags & EXEC_COMMAND_IGNORE_FAILURE) f = SERVICE_SUCCESS; } unit_log_process_exit( u, "Main process", service_exec_command_to_string(SERVICE_EXEC_START), f == SERVICE_SUCCESS, code, status); if (s->result == SERVICE_SUCCESS) s->result = f; if (s->main_command && s->main_command->command_next && s->type == SERVICE_ONESHOT && f == SERVICE_SUCCESS) { /* There is another command to execute, so let's do that. */ log_unit_debug(u, "Running next main command for state %s.", service_state_to_string(s->state)); service_run_next_main(s); } else { s->main_command = NULL; /* Services with ExitType=cgroup do not act on main PID exiting, unless the cgroup is * already empty */ if (s->exit_type == SERVICE_EXIT_MAIN || cgroup_good(s) <= 0) { /* The service exited, so the service is officially gone. */ switch (s->state) { case SERVICE_START_POST: case SERVICE_RELOAD: case SERVICE_RELOAD_SIGNAL: case SERVICE_RELOAD_NOTIFY: /* If neither main nor control processes are running then the current * state can never exit cleanly, hence immediately terminate the * service. */ if (control_pid_good(s) <= 0) service_enter_stop(s, f); /* Otherwise need to wait until the operation is done. */ break; case SERVICE_STOP: /* Need to wait until the operation is done. */ break; case SERVICE_START: if (s->type == SERVICE_ONESHOT) { /* This was our main goal, so let's go on */ if (f == SERVICE_SUCCESS) service_enter_start_post(s); else service_enter_signal(s, SERVICE_STOP_SIGTERM, f); break; } else if (IN_SET(s->type, SERVICE_NOTIFY, SERVICE_NOTIFY_RELOAD)) { /* Only enter running through a notification, so that the * SERVICE_START state signifies that no ready notification * has been received */ if (f != SERVICE_SUCCESS) service_enter_signal(s, SERVICE_STOP_SIGTERM, f); else if (!s->remain_after_exit || service_get_notify_access(s) == NOTIFY_MAIN) /* The service has never been and will never be active */ service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_PROTOCOL); break; } _fallthrough_; case SERVICE_RUNNING: service_enter_running(s, f); break; case SERVICE_STOP_WATCHDOG: case SERVICE_STOP_SIGTERM: case SERVICE_STOP_SIGKILL: if (control_pid_good(s) <= 0) service_enter_stop_post(s, f); /* If there is still a control process, wait for that first */ break; case SERVICE_STOP_POST: if (control_pid_good(s) <= 0) service_enter_signal(s, SERVICE_FINAL_SIGTERM, f); break; case SERVICE_FINAL_WATCHDOG: case SERVICE_FINAL_SIGTERM: case SERVICE_FINAL_SIGKILL: if (control_pid_good(s) <= 0) service_enter_dead(s, f, true); break; default: assert_not_reached(); } } else if (s->exit_type == SERVICE_EXIT_CGROUP && s->state == SERVICE_START && !IN_SET(s->type, SERVICE_NOTIFY, SERVICE_NOTIFY_RELOAD, SERVICE_DBUS)) /* If a main process exits very quickly, this function might be executed * before service_dispatch_exec_io(). Since this function disabled IO events * to monitor the main process above, we need to update the state here too. * Let's consider the process is successfully launched and exited, but * only when we're not expecting a readiness notification or dbus name. */ service_enter_start_post(s); } } else if (s->control_pid.pid == pid) { const char *kind; bool success; pidref_done(&s->control_pid); if (s->control_command) { exec_status_exit(&s->control_command->exec_status, &s->exec_context, pid, code, status); if (s->control_command->flags & EXEC_COMMAND_IGNORE_FAILURE) f = SERVICE_SUCCESS; } /* ExecCondition= calls that exit with (0, 254] should invoke skip-like behavior instead of failing */ if (s->state == SERVICE_CONDITION) { if (f == SERVICE_FAILURE_EXIT_CODE && status < 255) { UNIT(s)->condition_result = false; f = SERVICE_SKIP_CONDITION; success = true; } else if (f == SERVICE_SUCCESS) { UNIT(s)->condition_result = true; success = true; } else success = false; kind = "Condition check process"; } else { kind = "Control process"; success = f == SERVICE_SUCCESS; } unit_log_process_exit( u, kind, service_exec_command_to_string(s->control_command_id), success, code, status); if (s->state != SERVICE_RELOAD && s->result == SERVICE_SUCCESS) s->result = f; if (s->control_command && s->control_command->command_next && f == SERVICE_SUCCESS) { /* There is another command to execute, so let's do that. */ log_unit_debug(u, "Running next control command for state %s.", service_state_to_string(s->state)); service_run_next_control(s); } else { /* No further commands for this step, so let's figure out what to do next */ s->control_command = NULL; s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID; log_unit_debug(u, "Got final SIGCHLD for state %s.", service_state_to_string(s->state)); switch (s->state) { case SERVICE_CONDITION: if (f == SERVICE_SUCCESS) service_enter_start_pre(s); else service_enter_signal(s, SERVICE_STOP_SIGTERM, f); break; case SERVICE_START_PRE: if (f == SERVICE_SUCCESS) service_enter_start(s); else service_enter_signal(s, SERVICE_STOP_SIGTERM, f); break; case SERVICE_START: if (s->type != SERVICE_FORKING) /* Maybe spurious event due to a reload that changed the type? */ break; if (f != SERVICE_SUCCESS) { service_enter_signal(s, SERVICE_STOP_SIGTERM, f); break; } if (s->pid_file) { bool has_start_post; /* Let's try to load the pid file here if we can. * The PID file might actually be created by a START_POST * script. In that case don't worry if the loading fails. */ has_start_post = s->exec_command[SERVICE_EXEC_START_POST]; r = service_load_pid_file(s, !has_start_post); if (!has_start_post && r < 0) { r = service_demand_pid_file(s); if (r < 0 || cgroup_good(s) == 0) service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_PROTOCOL); break; } } else service_search_main_pid(s); service_enter_start_post(s); break; case SERVICE_START_POST: if (f != SERVICE_SUCCESS) { service_enter_signal(s, SERVICE_STOP_SIGTERM, f); break; } if (s->pid_file) { r = service_load_pid_file(s, true); if (r < 0) { r = service_demand_pid_file(s); if (r < 0 || cgroup_good(s) == 0) service_enter_stop(s, SERVICE_FAILURE_PROTOCOL); break; } } else service_search_main_pid(s); service_enter_running(s, SERVICE_SUCCESS); break; case SERVICE_RELOAD: case SERVICE_RELOAD_SIGNAL: case SERVICE_RELOAD_NOTIFY: if (f == SERVICE_SUCCESS) if (service_load_pid_file(s, true) < 0) service_search_main_pid(s); s->reload_result = f; /* If the last notification we received from the service process indicates * we are still reloading, then don't leave reloading state just yet, just * transition into SERVICE_RELOAD_NOTIFY, to wait for the READY=1 coming, * too. */ if (s->notify_state == NOTIFY_RELOADING) service_set_state(s, SERVICE_RELOAD_NOTIFY); else service_enter_running(s, SERVICE_SUCCESS); break; case SERVICE_STOP: service_enter_signal(s, SERVICE_STOP_SIGTERM, f); break; case SERVICE_STOP_WATCHDOG: case SERVICE_STOP_SIGTERM: case SERVICE_STOP_SIGKILL: if (main_pid_good(s) <= 0) service_enter_stop_post(s, f); /* If there is still a service process around, wait until * that one quit, too */ break; case SERVICE_STOP_POST: if (main_pid_good(s) <= 0) service_enter_signal(s, SERVICE_FINAL_SIGTERM, f); break; case SERVICE_FINAL_WATCHDOG: case SERVICE_FINAL_SIGTERM: case SERVICE_FINAL_SIGKILL: if (main_pid_good(s) <= 0) service_enter_dead(s, f, true); break; case SERVICE_CLEANING: if (s->clean_result == SERVICE_SUCCESS) s->clean_result = f; service_enter_dead(s, SERVICE_SUCCESS, false); break; default: assert_not_reached(); } } } else /* Neither control nor main PID? If so, don't notify about anything */ notify_dbus = false; /* Notify clients about changed exit status */ if (notify_dbus) unit_add_to_dbus_queue(u); /* We watch the main/control process otherwise we can't retrieve the unit they * belong to with cgroupv1. But if they are not our direct child, we won't get a * SIGCHLD for them. Therefore we need to look for others to watch so we can * detect when the cgroup becomes empty. Note that the control process is always * our child so it's pointless to watch all other processes. */ if (!control_pid_good(s)) if (!s->main_pid_known || s->main_pid_alien) (void) unit_enqueue_rewatch_pids(u); } static int service_dispatch_timer(sd_event_source *source, usec_t usec, void *userdata) { Service *s = ASSERT_PTR(SERVICE(userdata)); assert(source == s->timer_event_source); switch (s->state) { case SERVICE_CONDITION: case SERVICE_START_PRE: case SERVICE_START: case SERVICE_START_POST: switch (s->timeout_start_failure_mode) { case SERVICE_TIMEOUT_TERMINATE: log_unit_warning(UNIT(s), "%s operation timed out. Terminating.", service_state_to_string(s->state)); service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_TIMEOUT); break; case SERVICE_TIMEOUT_ABORT: log_unit_warning(UNIT(s), "%s operation timed out. Aborting.", service_state_to_string(s->state)); service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_TIMEOUT); break; case SERVICE_TIMEOUT_KILL: if (s->kill_context.send_sigkill) { log_unit_warning(UNIT(s), "%s operation timed out. Killing.", service_state_to_string(s->state)); service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_TIMEOUT); } else { log_unit_warning(UNIT(s), "%s operation timed out. Skipping SIGKILL.", service_state_to_string(s->state)); service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT); } break; default: assert_not_reached(); } break; case SERVICE_RUNNING: log_unit_warning(UNIT(s), "Service reached runtime time limit. Stopping."); service_enter_stop(s, SERVICE_FAILURE_TIMEOUT); break; case SERVICE_RELOAD: case SERVICE_RELOAD_SIGNAL: case SERVICE_RELOAD_NOTIFY: log_unit_warning(UNIT(s), "Reload operation timed out. Killing reload process."); service_kill_control_process(s); s->reload_result = SERVICE_FAILURE_TIMEOUT; service_enter_running(s, SERVICE_SUCCESS); break; case SERVICE_STOP: switch (s->timeout_stop_failure_mode) { case SERVICE_TIMEOUT_TERMINATE: log_unit_warning(UNIT(s), "Stopping timed out. Terminating."); service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_TIMEOUT); break; case SERVICE_TIMEOUT_ABORT: log_unit_warning(UNIT(s), "Stopping timed out. Aborting."); service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_TIMEOUT); break; case SERVICE_TIMEOUT_KILL: if (s->kill_context.send_sigkill) { log_unit_warning(UNIT(s), "Stopping timed out. Killing."); service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_TIMEOUT); } else { log_unit_warning(UNIT(s), "Stopping timed out. Skipping SIGKILL."); service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT); } break; default: assert_not_reached(); } break; case SERVICE_STOP_WATCHDOG: if (s->kill_context.send_sigkill) { log_unit_warning(UNIT(s), "State 'stop-watchdog' timed out. Killing."); service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_TIMEOUT); } else { log_unit_warning(UNIT(s), "State 'stop-watchdog' timed out. Skipping SIGKILL."); service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT); } break; case SERVICE_STOP_SIGTERM: if (s->timeout_stop_failure_mode == SERVICE_TIMEOUT_ABORT) { log_unit_warning(UNIT(s), "State 'stop-sigterm' timed out. Aborting."); service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_TIMEOUT); } else if (s->kill_context.send_sigkill) { log_unit_warning(UNIT(s), "State 'stop-sigterm' timed out. Killing."); service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_TIMEOUT); } else { log_unit_warning(UNIT(s), "State 'stop-sigterm' timed out. Skipping SIGKILL."); service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT); } break; case SERVICE_STOP_SIGKILL: /* Uh, we sent a SIGKILL and it is still not gone? * Must be something we cannot kill, so let's just be * weirded out and continue */ log_unit_warning(UNIT(s), "Processes still around after SIGKILL. Ignoring."); service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT); break; case SERVICE_STOP_POST: switch (s->timeout_stop_failure_mode) { case SERVICE_TIMEOUT_TERMINATE: log_unit_warning(UNIT(s), "State 'stop-post' timed out. Terminating."); service_enter_signal(s, SERVICE_FINAL_SIGTERM, SERVICE_FAILURE_TIMEOUT); break; case SERVICE_TIMEOUT_ABORT: log_unit_warning(UNIT(s), "State 'stop-post' timed out. Aborting."); service_enter_signal(s, SERVICE_FINAL_WATCHDOG, SERVICE_FAILURE_TIMEOUT); break; case SERVICE_TIMEOUT_KILL: if (s->kill_context.send_sigkill) { log_unit_warning(UNIT(s), "State 'stop-post' timed out. Killing."); service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_FAILURE_TIMEOUT); } else { log_unit_warning(UNIT(s), "State 'stop-post' timed out. Skipping SIGKILL. Entering failed mode."); service_enter_dead(s, SERVICE_FAILURE_TIMEOUT, false); } break; default: assert_not_reached(); } break; case SERVICE_FINAL_WATCHDOG: if (s->kill_context.send_sigkill) { log_unit_warning(UNIT(s), "State 'final-watchdog' timed out. Killing."); service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_FAILURE_TIMEOUT); } else { log_unit_warning(UNIT(s), "State 'final-watchdog' timed out. Skipping SIGKILL. Entering failed mode."); service_enter_dead(s, SERVICE_FAILURE_TIMEOUT, false); } break; case SERVICE_FINAL_SIGTERM: if (s->timeout_stop_failure_mode == SERVICE_TIMEOUT_ABORT) { log_unit_warning(UNIT(s), "State 'final-sigterm' timed out. Aborting."); service_enter_signal(s, SERVICE_FINAL_WATCHDOG, SERVICE_FAILURE_TIMEOUT); } else if (s->kill_context.send_sigkill) { log_unit_warning(UNIT(s), "State 'final-sigterm' timed out. Killing."); service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_FAILURE_TIMEOUT); } else { log_unit_warning(UNIT(s), "State 'final-sigterm' timed out. Skipping SIGKILL. Entering failed mode."); service_enter_dead(s, SERVICE_FAILURE_TIMEOUT, false); } break; case SERVICE_FINAL_SIGKILL: log_unit_warning(UNIT(s), "Processes still around after final SIGKILL. Entering failed mode."); service_enter_dead(s, SERVICE_FAILURE_TIMEOUT, true); break; case SERVICE_AUTO_RESTART: if (s->restart_usec > 0) log_unit_debug(UNIT(s), "Service restart interval %s expired, scheduling restart.", FORMAT_TIMESPAN(service_restart_usec_next(s), USEC_PER_SEC)); else log_unit_debug(UNIT(s), "Service has no hold-off time (RestartSec=0), scheduling restart."); service_enter_restart(s); break; case SERVICE_CLEANING: log_unit_warning(UNIT(s), "Cleaning timed out. killing."); if (s->clean_result == SERVICE_SUCCESS) s->clean_result = SERVICE_FAILURE_TIMEOUT; service_enter_signal(s, SERVICE_FINAL_SIGKILL, 0); break; default: assert_not_reached(); } return 0; } static int service_dispatch_watchdog(sd_event_source *source, usec_t usec, void *userdata) { Service *s = ASSERT_PTR(SERVICE(userdata)); usec_t watchdog_usec; assert(source == s->watchdog_event_source); watchdog_usec = service_get_watchdog_usec(s); if (UNIT(s)->manager->service_watchdogs) { log_unit_error(UNIT(s), "Watchdog timeout (limit %s)!", FORMAT_TIMESPAN(watchdog_usec, 1)); service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_WATCHDOG); } else log_unit_warning(UNIT(s), "Watchdog disabled! Ignoring watchdog timeout (limit %s)!", FORMAT_TIMESPAN(watchdog_usec, 1)); return 0; } static void service_force_watchdog(Service *s) { assert(s); if (!UNIT(s)->manager->service_watchdogs) return; log_unit_error(UNIT(s), "Watchdog request (last status: %s)!", s->status_text ?: ""); service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_WATCHDOG); } static bool service_notify_message_authorized(Service *s, pid_t pid) { assert(s); assert(pid_is_valid(pid)); NotifyAccess notify_access = service_get_notify_access(s); if (notify_access == NOTIFY_NONE) { /* Warn level only if no notifications are expected */ log_unit_warning(UNIT(s), "Got notification message from PID "PID_FMT", but reception is disabled", pid); return false; } if (notify_access == NOTIFY_MAIN && pid != s->main_pid.pid) { if (pidref_is_set(&s->main_pid)) log_unit_debug(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID "PID_FMT, pid, s->main_pid.pid); else log_unit_debug(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID which is currently not known", pid); return false; } if (notify_access == NOTIFY_EXEC && pid != s->main_pid.pid && pid != s->control_pid.pid) { if (pidref_is_set(&s->main_pid) && pidref_is_set(&s->control_pid)) log_unit_debug(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID "PID_FMT" and control PID "PID_FMT, pid, s->main_pid.pid, s->control_pid.pid); else if (pidref_is_set(&s->main_pid)) log_unit_debug(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID "PID_FMT, pid, s->main_pid.pid); else if (pidref_is_set(&s->control_pid)) log_unit_debug(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for control PID "PID_FMT, pid, s->control_pid.pid); else log_unit_debug(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID and control PID which are currently not known", pid); return false; } return true; } static void service_notify_message( Unit *u, const struct ucred *ucred, char * const *tags, FDSet *fds) { Service *s = ASSERT_PTR(SERVICE(u)); int r; assert(ucred); if (!service_notify_message_authorized(s, ucred->pid)) return; if (DEBUG_LOGGING) { _cleanup_free_ char *cc = strv_join(tags, ", "); log_unit_debug(u, "Got notification message from PID "PID_FMT" (%s)", ucred->pid, empty_to_na(cc)); } usec_t monotonic_usec = USEC_INFINITY; bool notify_dbus = false; const char *e; /* Interpret MAINPID= */ e = strv_find_startswith(tags, "MAINPID="); if (e && IN_SET(s->state, SERVICE_START, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY, SERVICE_STOP, SERVICE_STOP_SIGTERM)) { _cleanup_(pidref_done) PidRef new_main_pid = PIDREF_NULL; r = pidref_set_pidstr(&new_main_pid, e); if (r < 0) log_unit_warning_errno(u, r, "Failed to parse MAINPID=%s field in notification message, ignoring: %m", e); else if (!s->main_pid_known || !pidref_equal(&new_main_pid, &s->main_pid)) { r = service_is_suitable_main_pid(s, &new_main_pid, LOG_WARNING); if (r == 0) { /* The new main PID is a bit suspicious, which is OK if the sender is privileged. */ if (ucred->uid == 0) { log_unit_debug(u, "New main PID "PID_FMT" does not belong to service, but we'll accept it as the request to change it came from a privileged process.", new_main_pid.pid); r = 1; } else log_unit_warning(u, "New main PID "PID_FMT" does not belong to service, refusing.", new_main_pid.pid); } if (r > 0) { (void) service_set_main_pidref(s, TAKE_PIDREF(new_main_pid), /* start_timestamp = */ NULL); r = unit_watch_pidref(UNIT(s), &s->main_pid, /* exclusive= */ false); if (r < 0) log_unit_warning_errno(UNIT(s), r, "Failed to watch new main PID "PID_FMT" for service: %m", s->main_pid.pid); notify_dbus = true; } } } /* Parse MONOTONIC_USEC= */ e = strv_find_startswith(tags, "MONOTONIC_USEC="); if (e) { r = safe_atou64(e, &monotonic_usec); if (r < 0) log_unit_warning_errno(u, r, "Failed to parse MONOTONIC_USEC= field in notification message, ignoring: %s", e); } /* Interpret READY=/STOPPING=/RELOADING=. STOPPING= wins over the others, and READY= over RELOADING= */ if (strv_contains(tags, "STOPPING=1")) { s->notify_state = NOTIFY_STOPPING; if (IN_SET(s->state, SERVICE_RUNNING, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY)) service_enter_stop_by_notify(s); notify_dbus = true; } else if (strv_contains(tags, "READY=1")) { s->notify_state = NOTIFY_READY; /* Type=notify services inform us about completed initialization with READY=1 */ if (IN_SET(s->type, SERVICE_NOTIFY, SERVICE_NOTIFY_RELOAD) && s->state == SERVICE_START) service_enter_start_post(s); /* Sending READY=1 while we are reloading informs us that the reloading is complete. */ if (s->state == SERVICE_RELOAD_NOTIFY) service_enter_running(s, SERVICE_SUCCESS); /* Combined RELOADING=1 and READY=1? Then this is indication that the service started and * immediately finished reloading. */ if (s->state == SERVICE_RELOAD_SIGNAL && strv_contains(tags, "RELOADING=1") && monotonic_usec != USEC_INFINITY && monotonic_usec >= s->reload_begin_usec) { _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL; /* Propagate a reload explicitly */ r = manager_propagate_reload(UNIT(s)->manager, UNIT(s), JOB_FAIL, &error); if (r < 0) log_unit_warning(UNIT(s), "Failed to schedule propagation of reload, ignoring: %s", bus_error_message(&error, r)); service_enter_running(s, SERVICE_SUCCESS); } notify_dbus = true; } else if (strv_contains(tags, "RELOADING=1")) { s->notify_state = NOTIFY_RELOADING; /* Sending RELOADING=1 after we send SIGHUP to request a reload will transition * things to "reload-notify" state, where we'll wait for READY=1 to let us know the * reload is done. Note that we insist on a timestamp being sent along here, so that * we know for sure this is a reload cycle initiated *after* we sent the signal */ if (s->state == SERVICE_RELOAD_SIGNAL && monotonic_usec != USEC_INFINITY && monotonic_usec >= s->reload_begin_usec) /* Note, we don't call service_enter_reload_by_notify() here, because we * don't need reload propagation nor do we want to restart the time-out. */ service_set_state(s, SERVICE_RELOAD_NOTIFY); if (s->state == SERVICE_RUNNING) service_enter_reload_by_notify(s); notify_dbus = true; } /* Interpret STATUS= */ e = strv_find_startswith(tags, "STATUS="); if (e) { _cleanup_free_ char *t = NULL; if (!isempty(e)) { /* Note that this size limit check is mostly paranoia: since the datagram size we are willing * to process is already limited to NOTIFY_BUFFER_MAX, this limit here should never be hit. */ if (strlen(e) > STATUS_TEXT_MAX) log_unit_warning(u, "Status message overly long (%zu > %u), ignoring.", strlen(e), STATUS_TEXT_MAX); else if (!utf8_is_valid(e)) log_unit_warning(u, "Status message in notification message is not UTF-8 clean, ignoring."); else { t = strdup(e); if (!t) log_oom(); } } if (!streq_ptr(s->status_text, t)) { free_and_replace(s->status_text, t); notify_dbus = true; } } /* Interpret NOTIFYACCESS= */ e = strv_find_startswith(tags, "NOTIFYACCESS="); if (e) { NotifyAccess notify_access; notify_access = notify_access_from_string(e); if (notify_access < 0) log_unit_warning_errno(u, notify_access, "Failed to parse NOTIFYACCESS= field value '%s' in notification message, ignoring: %m", e); /* We don't need to check whether the new access mode is more strict than what is * already in use, since only the privileged process is allowed to change it * in the first place. */ if (service_get_notify_access(s) != notify_access) { service_override_notify_access(s, notify_access); notify_dbus = true; } } /* Interpret ERRNO= */ e = strv_find_startswith(tags, "ERRNO="); if (e) { int status_errno; status_errno = parse_errno(e); if (status_errno < 0) log_unit_warning_errno(u, status_errno, "Failed to parse ERRNO= field value '%s' in notification message: %m", e); else if (s->status_errno != status_errno) { s->status_errno = status_errno; notify_dbus = true; } } /* Interpret EXTEND_TIMEOUT= */ e = strv_find_startswith(tags, "EXTEND_TIMEOUT_USEC="); if (e) { usec_t extend_timeout_usec; if (safe_atou64(e, &extend_timeout_usec) < 0) log_unit_warning(u, "Failed to parse EXTEND_TIMEOUT_USEC=%s", e); else service_extend_timeout(s, extend_timeout_usec); } /* Interpret WATCHDOG= */ e = strv_find_startswith(tags, "WATCHDOG="); if (e) { if (streq(e, "1")) service_reset_watchdog(s); else if (streq(e, "trigger")) service_force_watchdog(s); else log_unit_warning(u, "Passed WATCHDOG= field is invalid, ignoring."); } e = strv_find_startswith(tags, "WATCHDOG_USEC="); if (e) { usec_t watchdog_override_usec; if (safe_atou64(e, &watchdog_override_usec) < 0) log_unit_warning(u, "Failed to parse WATCHDOG_USEC=%s", e); else service_override_watchdog_timeout(s, watchdog_override_usec); } /* Process FD store messages. Either FDSTOREREMOVE=1 for removal, or FDSTORE=1 for addition. In both cases, * process FDNAME= for picking the file descriptor name to use. Note that FDNAME= is required when removing * fds, but optional when pushing in new fds, for compatibility reasons. */ if (strv_contains(tags, "FDSTOREREMOVE=1")) { const char *name; name = strv_find_startswith(tags, "FDNAME="); if (!name || !fdname_is_valid(name)) log_unit_warning(u, "FDSTOREREMOVE=1 requested, but no valid file descriptor name passed, ignoring."); else service_remove_fd_store(s, name); } else if (strv_contains(tags, "FDSTORE=1")) { const char *name; name = strv_find_startswith(tags, "FDNAME="); if (name && !fdname_is_valid(name)) { log_unit_warning(u, "Passed FDNAME= name is invalid, ignoring."); name = NULL; } (void) service_add_fd_store_set(s, fds, name, !strv_contains(tags, "FDPOLL=0")); } /* Notify clients about changed status or main pid */ if (notify_dbus) unit_add_to_dbus_queue(u); } static void service_handoff_timestamp( Unit *u, const struct ucred *ucred, const dual_timestamp *ts) { Service *s = ASSERT_PTR(SERVICE(u)); assert(ucred); assert(ts); if (s->main_pid.pid == ucred->pid) { if (s->main_command) exec_status_handoff(&s->main_command->exec_status, ucred, ts); exec_status_handoff(&s->main_exec_status, ucred, ts); } else if (s->control_pid.pid == ucred->pid && s->control_command) exec_status_handoff(&s->control_command->exec_status, ucred, ts); else return; unit_add_to_dbus_queue(u); } static int service_get_timeout(Unit *u, usec_t *timeout) { Service *s = ASSERT_PTR(SERVICE(u)); uint64_t t; int r; assert(timeout); if (!s->timer_event_source) return 0; r = sd_event_source_get_time(s->timer_event_source, &t); if (r < 0) return r; if (t == USEC_INFINITY) return 0; *timeout = t; return 1; } static usec_t service_get_timeout_start_usec(Unit *u) { Service *s = ASSERT_PTR(SERVICE(u)); return s->timeout_start_usec; } static bool pick_up_pid_from_bus_name(Service *s) { assert(s); /* If the service is running but we have no main PID yet, get it from the owner of the D-Bus name */ return !pidref_is_set(&s->main_pid) && IN_SET(s->state, SERVICE_START, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY); } static int bus_name_pid_lookup_callback(sd_bus_message *reply, void *userdata, sd_bus_error *ret_error) { Service *s = ASSERT_PTR(SERVICE(userdata)); _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL; const sd_bus_error *e; uint32_t pid; int r; assert(reply); s->bus_name_pid_lookup_slot = sd_bus_slot_unref(s->bus_name_pid_lookup_slot); if (!s->bus_name || !pick_up_pid_from_bus_name(s)) return 1; e = sd_bus_message_get_error(reply); if (e) { r = sd_bus_error_get_errno(e); log_warning_errno(r, "GetConnectionUnixProcessID() failed: %s", bus_error_message(e, r)); return 1; } r = sd_bus_message_read(reply, "u", &pid); if (r < 0) { bus_log_parse_error(r); return 1; } r = pidref_set_pid(&pidref, pid); if (r < 0) { log_debug_errno(r, "GetConnectionUnixProcessID() returned invalid PID: %m"); return 1; } log_unit_debug(UNIT(s), "D-Bus name %s is now owned by process " PID_FMT, s->bus_name, pidref.pid); (void) service_set_main_pidref(s, TAKE_PIDREF(pidref), /* start_timestamp = */ NULL); (void) unit_watch_pidref(UNIT(s), &s->main_pid, /* exclusive= */ false); return 1; } static void service_bus_name_owner_change(Unit *u, const char *new_owner) { Service *s = ASSERT_PTR(SERVICE(u)); int r; if (new_owner) log_unit_debug(u, "D-Bus name %s now owned by %s", s->bus_name, new_owner); else log_unit_debug(u, "D-Bus name %s now not owned by anyone.", s->bus_name); s->bus_name_good = new_owner; /* Track the current owner, so we can reconstruct changes after a daemon reload */ r = free_and_strdup(&s->bus_name_owner, new_owner); if (r < 0) { log_unit_error_errno(u, r, "Unable to set new bus name owner %s: %m", new_owner); return; } if (s->type == SERVICE_DBUS) { /* service_enter_running() will figure out what to * do */ if (s->state == SERVICE_RUNNING) service_enter_running(s, SERVICE_SUCCESS); else if (s->state == SERVICE_START && new_owner) service_enter_start_post(s); } else if (new_owner && pick_up_pid_from_bus_name(s)) { /* Try to acquire PID from bus service */ s->bus_name_pid_lookup_slot = sd_bus_slot_unref(s->bus_name_pid_lookup_slot); r = sd_bus_call_method_async( u->manager->api_bus, &s->bus_name_pid_lookup_slot, "org.freedesktop.DBus", "/org/freedesktop/DBus", "org.freedesktop.DBus", "GetConnectionUnixProcessID", bus_name_pid_lookup_callback, s, "s", s->bus_name); if (r < 0) log_debug_errno(r, "Failed to request owner PID of service name, ignoring: %m"); } } int service_set_socket_fd( Service *s, int fd, Socket *sock, SocketPeer *peer, /* reference to object is donated to us on success */ bool selinux_context_net) { _cleanup_free_ char *peer_text = NULL; int r; assert(s); assert(fd >= 0); assert(sock); /* This is called by the socket code when instantiating a new service for a stream socket and the socket needs * to be configured. We take ownership of the passed fd on success. */ if (UNIT(s)->load_state != UNIT_LOADED) return -EINVAL; if (s->socket_fd >= 0) return -EBUSY; assert(!s->socket_peer); if (!IN_SET(s->state, SERVICE_DEAD, SERVICE_DEAD_RESOURCES_PINNED)) return -EAGAIN; if (getpeername_pretty(fd, true, &peer_text) >= 0) { if (UNIT(s)->description) { _cleanup_free_ char *a = NULL; a = strjoin(UNIT(s)->description, " (", peer_text, ")"); if (!a) return -ENOMEM; r = unit_set_description(UNIT(s), a); } else r = unit_set_description(UNIT(s), peer_text); if (r < 0) return r; } r = unit_add_two_dependencies(UNIT(s), UNIT_AFTER, UNIT_TRIGGERED_BY, UNIT(sock), false, UNIT_DEPENDENCY_IMPLICIT); if (r < 0) return log_unit_debug_errno(UNIT(s), r, "Failed to add After=/TriggeredBy= dependencies on socket unit: %m"); s->socket_fd = fd; s->socket_peer = peer; s->socket_fd_selinux_context_net = selinux_context_net; unit_ref_set(&s->accept_socket, UNIT(s), UNIT(sock)); return 0; } static void service_reset_failed(Unit *u) { Service *s = ASSERT_PTR(SERVICE(u)); if (s->state == SERVICE_FAILED) service_set_state(s, service_determine_dead_state(s)); s->result = SERVICE_SUCCESS; s->reload_result = SERVICE_SUCCESS; s->clean_result = SERVICE_SUCCESS; s->n_restarts = 0; s->flush_n_restarts = false; } static PidRef* service_main_pid(Unit *u, bool *ret_is_alien) { Service *s = ASSERT_PTR(SERVICE(u)); if (ret_is_alien) *ret_is_alien = s->main_pid_alien; return &s->main_pid; } static PidRef* service_control_pid(Unit *u) { return &ASSERT_PTR(SERVICE(u))->control_pid; } static bool service_needs_console(Unit *u) { Service *s = ASSERT_PTR(SERVICE(u)); /* We provide our own implementation of this here, instead of relying of the generic implementation * unit_needs_console() provides, since we want to return false if we are in SERVICE_EXITED state. */ if (!exec_context_may_touch_console(&s->exec_context)) return false; return IN_SET(s->state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY, SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST, SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL); } static int service_exit_status(Unit *u) { Service *s = ASSERT_PTR(SERVICE(u)); if (s->main_exec_status.pid <= 0 || !dual_timestamp_is_set(&s->main_exec_status.exit_timestamp)) return -ENODATA; if (s->main_exec_status.code != CLD_EXITED) return -EBADE; return s->main_exec_status.status; } static const char* service_status_text(Unit *u) { Service *s = ASSERT_PTR(SERVICE(u)); return s->status_text; } static int service_clean(Unit *u, ExecCleanMask mask) { Service *s = ASSERT_PTR(SERVICE(u)); _cleanup_strv_free_ char **l = NULL; bool may_clean_fdstore = false; int r; assert(mask != 0); if (!IN_SET(s->state, SERVICE_DEAD, SERVICE_DEAD_RESOURCES_PINNED)) return -EBUSY; /* Determine if there's anything we could potentially clean */ r = exec_context_get_clean_directories(&s->exec_context, u->manager->prefix, mask, &l); if (r < 0) return r; if (mask & EXEC_CLEAN_FDSTORE) may_clean_fdstore = s->n_fd_store > 0 || s->n_fd_store_max > 0; if (strv_isempty(l) && !may_clean_fdstore) return -EUNATCH; /* Nothing to potentially clean */ /* Let's clean the stuff we can clean quickly */ if (may_clean_fdstore) service_release_fd_store(s); /* If we are done, leave quickly */ if (strv_isempty(l)) { if (s->state == SERVICE_DEAD_RESOURCES_PINNED && !s->fd_store) service_set_state(s, SERVICE_DEAD); return 0; } /* We need to clean disk stuff. This is slow, hence do it out of process, and change state */ service_unwatch_control_pid(s); s->clean_result = SERVICE_SUCCESS; s->control_command = NULL; s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID; r = service_arm_timer(s, /* relative= */ true, s->exec_context.timeout_clean_usec); if (r < 0) { log_unit_warning_errno(u, r, "Failed to install timer: %m"); goto fail; } r = unit_fork_and_watch_rm_rf(u, l, &s->control_pid); if (r < 0) { log_unit_warning_errno(u, r, "Failed to spawn cleaning task: %m"); goto fail; } service_set_state(s, SERVICE_CLEANING); return 0; fail: s->clean_result = SERVICE_FAILURE_RESOURCES; s->timer_event_source = sd_event_source_disable_unref(s->timer_event_source); return r; } static int service_can_clean(Unit *u, ExecCleanMask *ret) { Service *s = ASSERT_PTR(SERVICE(u)); ExecCleanMask mask = 0; int r; assert(ret); r = exec_context_get_clean_mask(&s->exec_context, &mask); if (r < 0) return r; if (s->n_fd_store_max > 0) mask |= EXEC_CLEAN_FDSTORE; *ret = mask; return 0; } static const char* service_finished_job(Unit *u, JobType t, JobResult result) { Service *s = ASSERT_PTR(SERVICE(u)); if (t == JOB_START && result == JOB_DONE && s->type == SERVICE_ONESHOT) return "Finished %s."; /* Fall back to generic */ return NULL; } static int service_can_start(Unit *u) { Service *s = ASSERT_PTR(SERVICE(u)); int r; /* Make sure we don't enter a busy loop of some kind. */ r = unit_test_start_limit(u); if (r < 0) { service_enter_dead(s, SERVICE_FAILURE_START_LIMIT_HIT, false); return r; } return 1; } static void service_release_resources(Unit *u) { Service *s = ASSERT_PTR(SERVICE(u)); /* Invoked by the unit state engine, whenever it realizes that unit is dead and there's no job * anymore for it, and it hence is a good idea to release resources */ /* Don't release resources if this is a transitionary failed/dead state * (i.e. SERVICE_DEAD_BEFORE_AUTO_RESTART/SERVICE_FAILED_BEFORE_AUTO_RESTART), insist on a permanent * failure state. */ if (!IN_SET(s->state, SERVICE_DEAD, SERVICE_FAILED, SERVICE_DEAD_RESOURCES_PINNED)) return; log_unit_debug(u, "Releasing resources..."); service_release_socket_fd(s); service_release_stdio_fd(s); if (s->fd_store_preserve_mode != EXEC_PRESERVE_YES) service_release_fd_store(s); if (s->state == SERVICE_DEAD_RESOURCES_PINNED && !s->fd_store) service_set_state(s, SERVICE_DEAD); } int service_determine_exec_selinux_label(Service *s, char **ret) { int r; assert(s); assert(ret); if (!mac_selinux_use()) return -ENODATA; /* Returns the SELinux label used for execution of the main service binary */ if (s->exec_context.selinux_context) /* Prefer the explicitly configured label if there is one */ return strdup_to(ret, s->exec_context.selinux_context); if (s->exec_context.root_image || s->exec_context.n_extension_images > 0 || !strv_isempty(s->exec_context.extension_directories)) /* We cannot chase paths through images */ return log_unit_debug_errno(UNIT(s), SYNTHETIC_ERRNO(ENODATA), "Service with RootImage=, ExtensionImages= or ExtensionDirectories= set, cannot determine socket SELinux label before activation, ignoring."); ExecCommand *c = s->exec_command[SERVICE_EXEC_START]; if (!c) return -ENODATA; _cleanup_free_ char *path = NULL; r = chase(c->path, s->exec_context.root_directory, CHASE_PREFIX_ROOT, &path, NULL); if (r < 0) { log_unit_debug_errno(UNIT(s), r, "Failed to resolve service binary '%s', ignoring.", c->path); return -ENODATA; } r = mac_selinux_get_create_label_from_exe(path, ret); if (ERRNO_IS_NEG_NOT_SUPPORTED(r)) { log_unit_debug_errno(UNIT(s), r, "Reading SELinux label off binary '%s' is not supported, ignoring.", path); return -ENODATA; } if (ERRNO_IS_NEG_PRIVILEGE(r)) { log_unit_debug_errno(UNIT(s), r, "Can't read SELinux label off binary '%s', due to privileges, ignoring.", path); return -ENODATA; } if (r < 0) return log_unit_debug_errno(UNIT(s), r, "Failed to read SELinux label off binary '%s': %m", path); return 0; } static const char* const service_restart_table[_SERVICE_RESTART_MAX] = { [SERVICE_RESTART_NO] = "no", [SERVICE_RESTART_ON_SUCCESS] = "on-success", [SERVICE_RESTART_ON_FAILURE] = "on-failure", [SERVICE_RESTART_ON_ABNORMAL] = "on-abnormal", [SERVICE_RESTART_ON_WATCHDOG] = "on-watchdog", [SERVICE_RESTART_ON_ABORT] = "on-abort", [SERVICE_RESTART_ALWAYS] = "always", }; DEFINE_STRING_TABLE_LOOKUP(service_restart, ServiceRestart); static const char* const service_restart_mode_table[_SERVICE_RESTART_MODE_MAX] = { [SERVICE_RESTART_MODE_NORMAL] = "normal", [SERVICE_RESTART_MODE_DIRECT] = "direct", }; DEFINE_STRING_TABLE_LOOKUP(service_restart_mode, ServiceRestartMode); static const char* const service_type_table[_SERVICE_TYPE_MAX] = { [SERVICE_SIMPLE] = "simple", [SERVICE_FORKING] = "forking", [SERVICE_ONESHOT] = "oneshot", [SERVICE_DBUS] = "dbus", [SERVICE_NOTIFY] = "notify", [SERVICE_NOTIFY_RELOAD] = "notify-reload", [SERVICE_IDLE] = "idle", [SERVICE_EXEC] = "exec", }; DEFINE_STRING_TABLE_LOOKUP(service_type, ServiceType); static const char* const service_exit_type_table[_SERVICE_EXIT_TYPE_MAX] = { [SERVICE_EXIT_MAIN] = "main", [SERVICE_EXIT_CGROUP] = "cgroup", }; DEFINE_STRING_TABLE_LOOKUP(service_exit_type, ServiceExitType); static const char* const service_exec_command_table[_SERVICE_EXEC_COMMAND_MAX] = { [SERVICE_EXEC_CONDITION] = "ExecCondition", [SERVICE_EXEC_START_PRE] = "ExecStartPre", [SERVICE_EXEC_START] = "ExecStart", [SERVICE_EXEC_START_POST] = "ExecStartPost", [SERVICE_EXEC_RELOAD] = "ExecReload", [SERVICE_EXEC_STOP] = "ExecStop", [SERVICE_EXEC_STOP_POST] = "ExecStopPost", }; DEFINE_STRING_TABLE_LOOKUP(service_exec_command, ServiceExecCommand); static const char* const service_exec_ex_command_table[_SERVICE_EXEC_COMMAND_MAX] = { [SERVICE_EXEC_CONDITION] = "ExecConditionEx", [SERVICE_EXEC_START_PRE] = "ExecStartPreEx", [SERVICE_EXEC_START] = "ExecStartEx", [SERVICE_EXEC_START_POST] = "ExecStartPostEx", [SERVICE_EXEC_RELOAD] = "ExecReloadEx", [SERVICE_EXEC_STOP] = "ExecStopEx", [SERVICE_EXEC_STOP_POST] = "ExecStopPostEx", }; DEFINE_STRING_TABLE_LOOKUP(service_exec_ex_command, ServiceExecCommand); static const char* const notify_state_table[_NOTIFY_STATE_MAX] = { [NOTIFY_UNKNOWN] = "unknown", [NOTIFY_READY] = "ready", [NOTIFY_RELOADING] = "reloading", [NOTIFY_STOPPING] = "stopping", }; DEFINE_STRING_TABLE_LOOKUP(notify_state, NotifyState); static const char* const service_result_table[_SERVICE_RESULT_MAX] = { [SERVICE_SUCCESS] = "success", [SERVICE_FAILURE_RESOURCES] = "resources", [SERVICE_FAILURE_PROTOCOL] = "protocol", [SERVICE_FAILURE_TIMEOUT] = "timeout", [SERVICE_FAILURE_EXIT_CODE] = "exit-code", [SERVICE_FAILURE_SIGNAL] = "signal", [SERVICE_FAILURE_CORE_DUMP] = "core-dump", [SERVICE_FAILURE_WATCHDOG] = "watchdog", [SERVICE_FAILURE_START_LIMIT_HIT] = "start-limit-hit", [SERVICE_FAILURE_OOM_KILL] = "oom-kill", [SERVICE_SKIP_CONDITION] = "exec-condition", }; DEFINE_STRING_TABLE_LOOKUP(service_result, ServiceResult); static const char* const service_timeout_failure_mode_table[_SERVICE_TIMEOUT_FAILURE_MODE_MAX] = { [SERVICE_TIMEOUT_TERMINATE] = "terminate", [SERVICE_TIMEOUT_ABORT] = "abort", [SERVICE_TIMEOUT_KILL] = "kill", }; DEFINE_STRING_TABLE_LOOKUP(service_timeout_failure_mode, ServiceTimeoutFailureMode); const UnitVTable service_vtable = { .object_size = sizeof(Service), .exec_context_offset = offsetof(Service, exec_context), .cgroup_context_offset = offsetof(Service, cgroup_context), .kill_context_offset = offsetof(Service, kill_context), .exec_runtime_offset = offsetof(Service, exec_runtime), .cgroup_runtime_offset = offsetof(Service, cgroup_runtime), .sections = "Unit\0" "Service\0" "Install\0", .private_section = "Service", .can_transient = true, .can_delegate = true, .can_fail = true, .can_set_managed_oom = true, .init = service_init, .done = service_done, .load = service_load, .release_resources = service_release_resources, .coldplug = service_coldplug, .dump = service_dump, .start = service_start, .stop = service_stop, .reload = service_reload, .can_reload = service_can_reload, .clean = service_clean, .can_clean = service_can_clean, .freezer_action = unit_cgroup_freezer_action, .serialize = service_serialize, .deserialize_item = service_deserialize_item, .active_state = service_active_state, .sub_state_to_string = service_sub_state_to_string, .will_restart = service_will_restart, .may_gc = service_may_gc, .sigchld_event = service_sigchld_event, .reset_failed = service_reset_failed, .notify_cgroup_empty = service_notify_cgroup_empty_event, .notify_cgroup_oom = service_notify_cgroup_oom_event, .notify_message = service_notify_message, .notify_handoff_timestamp = service_handoff_timestamp, .main_pid = service_main_pid, .control_pid = service_control_pid, .bus_name_owner_change = service_bus_name_owner_change, .bus_set_property = bus_service_set_property, .bus_commit_properties = bus_service_commit_properties, .get_timeout = service_get_timeout, .get_timeout_start_usec = service_get_timeout_start_usec, .needs_console = service_needs_console, .exit_status = service_exit_status, .status_text = service_status_text, .status_message_formats = { .finished_start_job = { [JOB_FAILED] = "Failed to start %s.", }, .finished_stop_job = { [JOB_DONE] = "Stopped %s.", [JOB_FAILED] = "Stopped (with error) %s.", }, .finished_job = service_finished_job, }, .can_start = service_can_start, .notify_plymouth = true, .audit_start_message_type = AUDIT_SERVICE_START, .audit_stop_message_type = AUDIT_SERVICE_STOP, };