/* SPDX-License-Identifier: LGPL-2.1-or-later */ #pragma once #include #include #include #include #include "sd-id128.h" #include "bpf-program.h" #include "cgroup.h" #include "condition.h" #include "emergency-action.h" #include "install.h" #include "list.h" #include "pidref.h" #include "set.h" #include "show-status.h" #include "unit-file.h" typedef struct UnitRef UnitRef; typedef enum KillOperation { KILL_TERMINATE, KILL_TERMINATE_AND_LOG, KILL_RESTART, KILL_KILL, KILL_WATCHDOG, _KILL_OPERATION_MAX, _KILL_OPERATION_INVALID = -EINVAL, } KillOperation; typedef enum CollectMode { COLLECT_INACTIVE, COLLECT_INACTIVE_OR_FAILED, _COLLECT_MODE_MAX, _COLLECT_MODE_INVALID = -EINVAL, } CollectMode; static inline bool UNIT_IS_ACTIVE_OR_RELOADING(UnitActiveState t) { return IN_SET(t, UNIT_ACTIVE, UNIT_RELOADING); } static inline bool UNIT_IS_ACTIVE_OR_ACTIVATING(UnitActiveState t) { return IN_SET(t, UNIT_ACTIVE, UNIT_ACTIVATING, UNIT_RELOADING); } static inline bool UNIT_IS_INACTIVE_OR_DEACTIVATING(UnitActiveState t) { return IN_SET(t, UNIT_INACTIVE, UNIT_FAILED, UNIT_DEACTIVATING); } static inline bool UNIT_IS_INACTIVE_OR_FAILED(UnitActiveState t) { return IN_SET(t, UNIT_INACTIVE, UNIT_FAILED); } static inline bool UNIT_IS_LOAD_COMPLETE(UnitLoadState t) { return t >= 0 && t < _UNIT_LOAD_STATE_MAX && t != UNIT_STUB && t != UNIT_MERGED; } /* Stores the 'reason' a dependency was created as a bit mask, i.e. due to which configuration source it came to be. We * use this so that we can selectively flush out parts of dependencies again. Note that the same dependency might be * created as a result of multiple "reasons", hence the bitmask. */ typedef enum UnitDependencyMask { /* Configured directly by the unit file, .wants/.requires symlink or drop-in, or as an immediate result of a * non-dependency option configured that way. */ UNIT_DEPENDENCY_FILE = 1 << 0, /* As unconditional implicit dependency (not affected by unit configuration — except by the unit name and * type) */ UNIT_DEPENDENCY_IMPLICIT = 1 << 1, /* A dependency effected by DefaultDependencies=yes. Note that dependencies marked this way are conceptually * just a subset of UNIT_DEPENDENCY_FILE, as DefaultDependencies= is itself a unit file setting that can only * be set in unit files. We make this two separate bits only to help debugging how dependencies came to be. */ UNIT_DEPENDENCY_DEFAULT = 1 << 2, /* A dependency created from udev rules */ UNIT_DEPENDENCY_UDEV = 1 << 3, /* A dependency created because of some unit's RequiresMountsFor= setting */ UNIT_DEPENDENCY_PATH = 1 << 4, /* A dependency initially configured from the mount unit file however the dependency will be updated * from /proc/self/mountinfo as soon as the kernel will make the entry for that mount available in * the /proc file */ UNIT_DEPENDENCY_MOUNT_FILE = 1 << 5, /* A dependency created or updated because of data read from /proc/self/mountinfo */ UNIT_DEPENDENCY_MOUNTINFO = 1 << 6, /* A dependency created because of data read from /proc/swaps and no other configuration source */ UNIT_DEPENDENCY_PROC_SWAP = 1 << 7, /* A dependency for units in slices assigned by directly setting Slice= */ UNIT_DEPENDENCY_SLICE_PROPERTY = 1 << 8, _UNIT_DEPENDENCY_MASK_FULL = (1 << 9) - 1, } UnitDependencyMask; /* The Unit's dependencies[] hashmaps use this structure as value. It has the same size as a void pointer, and thus can * be stored directly as hashmap value, without any indirection. Note that this stores two masks, as both the origin * and the destination of a dependency might have created it. */ typedef union UnitDependencyInfo { void *data; struct { UnitDependencyMask origin_mask:16; UnitDependencyMask destination_mask:16; } _packed_; } UnitDependencyInfo; /* Store information about why a unit was activated. * We start with trigger units (.path/.timer), eventually it will be expanded to include more metadata. */ typedef struct ActivationDetails { unsigned n_ref; UnitType trigger_unit_type; char *trigger_unit_name; } ActivationDetails; /* For casting an activation event into the various unit-specific types */ #define DEFINE_ACTIVATION_DETAILS_CAST(UPPERCASE, MixedCase, UNIT_TYPE) \ static inline MixedCase* UPPERCASE(ActivationDetails *a) { \ if (_unlikely_(!a || a->trigger_unit_type != UNIT_##UNIT_TYPE)) \ return NULL; \ \ return (MixedCase*) a; \ } /* For casting the various unit types into a unit */ #define ACTIVATION_DETAILS(u) \ ({ \ typeof(u) _u_ = (u); \ ActivationDetails *_w_ = _u_ ? &(_u_)->meta : NULL; \ _w_; \ }) ActivationDetails *activation_details_new(Unit *trigger_unit); ActivationDetails *activation_details_ref(ActivationDetails *p); ActivationDetails *activation_details_unref(ActivationDetails *p); void activation_details_serialize(ActivationDetails *p, FILE *f); int activation_details_deserialize(const char *key, const char *value, ActivationDetails **info); int activation_details_append_env(ActivationDetails *info, char ***strv); int activation_details_append_pair(ActivationDetails *info, char ***strv); DEFINE_TRIVIAL_CLEANUP_FUNC(ActivationDetails*, activation_details_unref); typedef struct ActivationDetailsVTable { /* How much memory does an object of this activation type need */ size_t object_size; /* This should reset all type-specific variables. This should not allocate memory, and is called * with zero-initialized data. It should hence only initialize variables that need to be set != 0. */ void (*init)(ActivationDetails *info, Unit *trigger_unit); /* This should free all type-specific variables. It should be idempotent. */ void (*done)(ActivationDetails *info); /* This should serialize all type-specific variables. */ void (*serialize)(ActivationDetails *info, FILE *f); /* This should deserialize all type-specific variables, one at a time. */ int (*deserialize)(const char *key, const char *value, ActivationDetails **info); /* This should format the type-specific variables for the env block of the spawned service, * and return the number of added items. */ int (*append_env)(ActivationDetails *info, char ***strv); /* This should append type-specific variables as key/value pairs for the D-Bus property of the job, * and return the number of added pairs. */ int (*append_pair)(ActivationDetails *info, char ***strv); } ActivationDetailsVTable; extern const ActivationDetailsVTable * const activation_details_vtable[_UNIT_TYPE_MAX]; static inline const ActivationDetailsVTable* ACTIVATION_DETAILS_VTABLE(const ActivationDetails *a) { assert(a); assert(a->trigger_unit_type < _UNIT_TYPE_MAX); return activation_details_vtable[a->trigger_unit_type]; } /* Newer LLVM versions don't like implicit casts from large pointer types to smaller enums, hence let's add * explicit type-safe helpers for that. */ static inline UnitDependency UNIT_DEPENDENCY_FROM_PTR(const void *p) { return PTR_TO_INT(p); } static inline void* UNIT_DEPENDENCY_TO_PTR(UnitDependency d) { return INT_TO_PTR(d); } #include "job.h" struct UnitRef { /* Keeps tracks of references to a unit. This is useful so * that we can merge two units if necessary and correct all * references to them */ Unit *source, *target; LIST_FIELDS(UnitRef, refs_by_target); }; typedef struct Unit { Manager *manager; UnitType type; UnitLoadState load_state; Unit *merged_into; char *id; /* The one special name that we use for identification */ char *instance; Set *aliases; /* All the other names. */ /* For each dependency type we can look up another Hashmap with this, whose key is a Unit* object, * and whose value encodes why the dependency exists, using the UnitDependencyInfo type. i.e. a * Hashmap(UnitDependency → Hashmap(Unit* → UnitDependencyInfo)) */ Hashmap *dependencies; /* Similar, for RequiresMountsFor= path dependencies. The key is the path, the value the * UnitDependencyInfo type */ Hashmap *requires_mounts_for; char *description; char **documentation; /* The SELinux context used for checking access to this unit read off the unit file at load time (do * not confuse with the selinux_context field in ExecContext which is the SELinux context we'll set * for processes) */ char *access_selinux_context; char *fragment_path; /* if loaded from a config file this is the primary path to it */ char *source_path; /* if converted, the source file */ char **dropin_paths; usec_t fragment_not_found_timestamp_hash; usec_t fragment_mtime; usec_t source_mtime; usec_t dropin_mtime; /* If this is a transient unit we are currently writing, this is where we are writing it to */ FILE *transient_file; /* Freezer state */ sd_bus_message *pending_freezer_invocation; FreezerState freezer_state; /* Job timeout and action to take */ EmergencyAction job_timeout_action; usec_t job_timeout; usec_t job_running_timeout; char *job_timeout_reboot_arg; /* If there is something to do with this unit, then this is the installed job for it */ Job *job; /* JOB_NOP jobs are special and can be installed without disturbing the real job. */ Job *nop_job; /* The slot used for watching NameOwnerChanged signals */ sd_bus_slot *match_bus_slot; sd_bus_slot *get_name_owner_slot; /* References to this unit from clients */ sd_bus_track *bus_track; char **deserialized_refs; /* References to this */ LIST_HEAD(UnitRef, refs_by_target); /* Conditions to check */ LIST_HEAD(Condition, conditions); LIST_HEAD(Condition, asserts); dual_timestamp condition_timestamp; dual_timestamp assert_timestamp; /* Updated whenever the low-level state changes */ dual_timestamp state_change_timestamp; /* Updated whenever the (high-level) active state enters or leaves the active or inactive states */ dual_timestamp inactive_exit_timestamp; dual_timestamp active_enter_timestamp; dual_timestamp active_exit_timestamp; dual_timestamp inactive_enter_timestamp; /* Per type list */ LIST_FIELDS(Unit, units_by_type); /* Load queue */ LIST_FIELDS(Unit, load_queue); /* D-Bus queue */ LIST_FIELDS(Unit, dbus_queue); /* Cleanup queue */ LIST_FIELDS(Unit, cleanup_queue); /* GC queue */ LIST_FIELDS(Unit, gc_queue); /* CGroup realize members queue */ LIST_FIELDS(Unit, cgroup_realize_queue); /* cgroup empty queue */ LIST_FIELDS(Unit, cgroup_empty_queue); /* cgroup OOM queue */ LIST_FIELDS(Unit, cgroup_oom_queue); /* Target dependencies queue */ LIST_FIELDS(Unit, target_deps_queue); /* Queue of units with StopWhenUnneeded= set that shall be checked for clean-up. */ LIST_FIELDS(Unit, stop_when_unneeded_queue); /* Queue of units that have an Uphold= dependency from some other unit, and should be checked for starting */ LIST_FIELDS(Unit, start_when_upheld_queue); /* Queue of units that have a BindTo= dependency on some other unit, and should possibly be shut down */ LIST_FIELDS(Unit, stop_when_bound_queue); /* Queue of units that should be checked if they can release resources now */ LIST_FIELDS(Unit, release_resources_queue); /* PIDs we keep an eye on. Note that a unit might have many more, but these are the ones we care * enough about to process SIGCHLD for */ Set *pids; /* → PidRef* */ /* Used in SIGCHLD and sd_notify() message event invocation logic to avoid that we dispatch the same event * multiple times on the same unit. */ unsigned sigchldgen; unsigned notifygen; /* Used during GC sweeps */ unsigned gc_marker; /* Error code when we didn't manage to load the unit (negative) */ int load_error; /* Put a ratelimit on unit starting */ RateLimit start_ratelimit; EmergencyAction start_limit_action; /* The unit has been marked for reload, restart, etc. Stored as 1u << marker1 | 1u << marker2. */ unsigned markers; /* What to do on failure or success */ EmergencyAction success_action, failure_action; int success_action_exit_status, failure_action_exit_status; char *reboot_arg; /* Make sure we never enter endless loops with the StopWhenUnneeded=, BindsTo=, Uphold= logic */ RateLimit auto_start_stop_ratelimit; sd_event_source *auto_start_stop_event_source; /* Reference to a specific UID/GID */ uid_t ref_uid; gid_t ref_gid; /* Cached unit file state and preset */ UnitFileState unit_file_state; PresetAction unit_file_preset; /* Where the cpu.stat or cpuacct.usage was at the time the unit was started */ nsec_t cpu_usage_base; nsec_t cpu_usage_last; /* the most recently read value */ /* Most recently read value of memory accounting metrics */ uint64_t memory_accounting_last[_CGROUP_MEMORY_ACCOUNTING_METRIC_CACHED_LAST + 1]; /* The current counter of OOM kills initiated by systemd-oomd */ uint64_t managed_oom_kill_last; /* The current counter of the oom_kill field in the memory.events cgroup attribute */ uint64_t oom_kill_last; /* Where the io.stat data was at the time the unit was started */ uint64_t io_accounting_base[_CGROUP_IO_ACCOUNTING_METRIC_MAX]; uint64_t io_accounting_last[_CGROUP_IO_ACCOUNTING_METRIC_MAX]; /* the most recently read value */ /* Counterparts in the cgroup filesystem */ char *cgroup_path; uint64_t cgroup_id; CGroupMask cgroup_realized_mask; /* In which hierarchies does this unit's cgroup exist? (only relevant on cgroup v1) */ CGroupMask cgroup_enabled_mask; /* Which controllers are enabled (or more correctly: enabled for the children) for this unit's cgroup? (only relevant on cgroup v2) */ CGroupMask cgroup_invalidated_mask; /* A mask specifying controllers which shall be considered invalidated, and require re-realization */ CGroupMask cgroup_members_mask; /* A cache for the controllers required by all children of this cgroup (only relevant for slice units) */ /* Inotify watch descriptors for watching cgroup.events and memory.events on cgroupv2 */ int cgroup_control_inotify_wd; int cgroup_memory_inotify_wd; /* Device Controller BPF program */ BPFProgram *bpf_device_control_installed; /* IP BPF Firewalling/accounting */ int ip_accounting_ingress_map_fd; int ip_accounting_egress_map_fd; uint64_t ip_accounting_extra[_CGROUP_IP_ACCOUNTING_METRIC_MAX]; int ipv4_allow_map_fd; int ipv6_allow_map_fd; int ipv4_deny_map_fd; int ipv6_deny_map_fd; BPFProgram *ip_bpf_ingress, *ip_bpf_ingress_installed; BPFProgram *ip_bpf_egress, *ip_bpf_egress_installed; Set *ip_bpf_custom_ingress; Set *ip_bpf_custom_ingress_installed; Set *ip_bpf_custom_egress; Set *ip_bpf_custom_egress_installed; /* BPF programs managed (e.g. loaded to kernel) by an entity external to systemd, * attached to unit cgroup by provided program fd and attach type. */ Hashmap *bpf_foreign_by_key; FDSet *initial_socket_bind_link_fds; #if BPF_FRAMEWORK /* BPF links to BPF programs attached to cgroup/bind{4|6} hooks and * responsible for allowing or denying a unit to bind(2) to a socket * address. */ struct bpf_link *ipv4_socket_bind_link; struct bpf_link *ipv6_socket_bind_link; #endif FDSet *initial_restric_ifaces_link_fds; #if BPF_FRAMEWORK struct bpf_link *restrict_ifaces_ingress_bpf_link; struct bpf_link *restrict_ifaces_egress_bpf_link; #endif /* Low-priority event source which is used to remove watched PIDs that have gone away, and subscribe to any new * ones which might have appeared. */ sd_event_source *rewatch_pids_event_source; /* How to start OnSuccess=/OnFailure= units */ JobMode on_success_job_mode; JobMode on_failure_job_mode; /* If the job had a specific trigger that needs to be advertised (eg: a path unit), store it. */ ActivationDetails *activation_details; /* Tweaking the GC logic */ CollectMode collect_mode; /* The current invocation ID */ sd_id128_t invocation_id; char invocation_id_string[SD_ID128_STRING_MAX]; /* useful when logging */ /* Garbage collect us we nobody wants or requires us anymore */ bool stop_when_unneeded; /* Create default dependencies */ bool default_dependencies; /* Configure so that the unit survives a system transition without stopping/starting. */ bool survive_final_kill_signal; /* Refuse manual starting, allow starting only indirectly via dependency. */ bool refuse_manual_start; /* Don't allow the user to stop this unit manually, allow stopping only indirectly via dependency. */ bool refuse_manual_stop; /* Allow isolation requests */ bool allow_isolate; /* Ignore this unit when isolating */ bool ignore_on_isolate; /* Did the last condition check succeed? */ bool condition_result; bool assert_result; /* Is this a transient unit? */ bool transient; /* Is this a unit that is always running and cannot be stopped? */ bool perpetual; /* Booleans indicating membership of this unit in the various queues */ bool in_load_queue:1; bool in_dbus_queue:1; bool in_cleanup_queue:1; bool in_gc_queue:1; bool in_cgroup_realize_queue:1; bool in_cgroup_empty_queue:1; bool in_cgroup_oom_queue:1; bool in_target_deps_queue:1; bool in_stop_when_unneeded_queue:1; bool in_start_when_upheld_queue:1; bool in_stop_when_bound_queue:1; bool in_release_resources_queue:1; bool sent_dbus_new_signal:1; bool job_running_timeout_set:1; bool in_audit:1; bool on_console:1; bool cgroup_realized:1; bool cgroup_members_mask_valid:1; /* Reset cgroup accounting next time we fork something off */ bool reset_accounting:1; bool start_limit_hit:1; /* Did we already invoke unit_coldplug() for this unit? */ bool coldplugged:1; /* For transient units: whether to add a bus track reference after creating the unit */ bool bus_track_add:1; /* Remember which unit state files we created */ bool exported_invocation_id:1; bool exported_log_level_max:1; bool exported_log_extra_fields:1; bool exported_log_ratelimit_interval:1; bool exported_log_ratelimit_burst:1; /* Whether we warned about clamping the CPU quota period */ bool warned_clamping_cpu_quota_period:1; /* When writing transient unit files, stores which section we stored last. If < 0, we didn't write any yet. If * == 0 we are in the [Unit] section, if > 0 we are in the unit type-specific section. */ signed int last_section_private:2; } Unit; typedef struct UnitStatusMessageFormats { const char *starting_stopping[2]; const char *finished_start_job[_JOB_RESULT_MAX]; const char *finished_stop_job[_JOB_RESULT_MAX]; /* If this entry is present, it'll be called to provide a context-dependent format string, * or NULL to fall back to finished_{start,stop}_job; if those are NULL too, fall back to generic. */ const char *(*finished_job)(Unit *u, JobType t, JobResult result); } UnitStatusMessageFormats; /* Flags used when writing drop-in files or transient unit files */ typedef enum UnitWriteFlags { /* Write a runtime unit file or drop-in (i.e. one below /run) */ UNIT_RUNTIME = 1 << 0, /* Write a persistent drop-in (i.e. one below /etc) */ UNIT_PERSISTENT = 1 << 1, /* Place this item in the per-unit-type private section, instead of [Unit] */ UNIT_PRIVATE = 1 << 2, /* Apply specifier escaping */ UNIT_ESCAPE_SPECIFIERS = 1 << 3, /* Escape elements of ExecStart= syntax, incl. prevention of variable expansion */ UNIT_ESCAPE_EXEC_SYNTAX_ENV = 1 << 4, /* Escape elements of ExecStart=: syntax (no variable expansion) */ UNIT_ESCAPE_EXEC_SYNTAX = 1 << 5, /* Apply C escaping before writing */ UNIT_ESCAPE_C = 1 << 6, } UnitWriteFlags; /* Returns true if neither persistent, nor runtime storage is requested, i.e. this is a check invocation only */ static inline bool UNIT_WRITE_FLAGS_NOOP(UnitWriteFlags flags) { return (flags & (UNIT_RUNTIME|UNIT_PERSISTENT)) == 0; } #include "kill.h" typedef struct UnitVTable { /* How much memory does an object of this unit type need */ size_t object_size; /* If greater than 0, the offset into the object where * ExecContext is found, if the unit type has that */ size_t exec_context_offset; /* If greater than 0, the offset into the object where * CGroupContext is found, if the unit type has that */ size_t cgroup_context_offset; /* If greater than 0, the offset into the object where * KillContext is found, if the unit type has that */ size_t kill_context_offset; /* If greater than 0, the offset into the object where the * pointer to ExecSharedRuntime is found, if the unit type has * that */ size_t exec_runtime_offset; /* The name of the configuration file section with the private settings of this unit */ const char *private_section; /* Config file sections this unit type understands, separated * by NUL chars */ const char *sections; /* This should reset all type-specific variables. This should * not allocate memory, and is called with zero-initialized * data. It should hence only initialize variables that need * to be set != 0. */ void (*init)(Unit *u); /* This should free all type-specific variables. It should be * idempotent. */ void (*done)(Unit *u); /* Actually load data from disk. This may fail, and should set * load_state to UNIT_LOADED, UNIT_MERGED or leave it at * UNIT_STUB if no configuration could be found. */ int (*load)(Unit *u); /* During deserialization we only record the intended state to return to. With coldplug() we actually put the * deserialized state in effect. This is where unit_notify() should be called to start things up. Note that * this callback is invoked *before* we leave the reloading state of the manager, i.e. *before* we consider the * reloading to be complete. Thus, this callback should just restore the exact same state for any unit that was * in effect before the reload, i.e. units should not catch up with changes happened during the reload. That's * what catchup() below is for. */ int (*coldplug)(Unit *u); /* This is called shortly after all units' coldplug() call was invoked, and *after* the manager left the * reloading state. It's supposed to catch up with state changes due to external events we missed so far (for * example because they took place while we were reloading/reexecing) */ void (*catchup)(Unit *u); void (*dump)(Unit *u, FILE *f, const char *prefix); int (*start)(Unit *u); int (*stop)(Unit *u); int (*reload)(Unit *u); /* Clear out the various runtime/state/cache/logs/configuration data */ int (*clean)(Unit *u, ExecCleanMask m); /* Freeze the unit */ int (*freeze)(Unit *u); int (*thaw)(Unit *u); bool (*can_freeze)(Unit *u); /* Return which kind of data can be cleaned */ int (*can_clean)(Unit *u, ExecCleanMask *ret); bool (*can_reload)(Unit *u); /* Serialize state and file descriptors that should be carried over into the new * instance after reexecution. */ int (*serialize)(Unit *u, FILE *f, FDSet *fds); /* Restore one item from the serialization */ int (*deserialize_item)(Unit *u, const char *key, const char *data, FDSet *fds); /* Try to match up fds with what we need for this unit */ void (*distribute_fds)(Unit *u, FDSet *fds); /* Boils down the more complex internal state of this unit to * a simpler one that the engine can understand */ UnitActiveState (*active_state)(Unit *u); /* Returns the substate specific to this unit type as * string. This is purely information so that we can give the * user a more fine grained explanation in which actual state a * unit is in. */ const char* (*sub_state_to_string)(Unit *u); /* Additionally to UnitActiveState determine whether unit is to be restarted. */ bool (*will_restart)(Unit *u); /* Return false when there is a reason to prevent this unit from being gc'ed * even though nothing references it and it isn't active in any way. */ bool (*may_gc)(Unit *u); /* Return true when the unit is not controlled by the manager (e.g. extrinsic mounts). */ bool (*is_extrinsic)(Unit *u); /* When the unit is not running and no job for it queued we shall release its runtime resources */ void (*release_resources)(Unit *u); /* Invoked on every child that died */ void (*sigchld_event)(Unit *u, pid_t pid, int code, int status); /* Reset failed state if we are in failed state */ void (*reset_failed)(Unit *u); /* Called whenever any of the cgroups this unit watches for ran empty */ void (*notify_cgroup_empty)(Unit *u); /* Called whenever an OOM kill event on this unit was seen */ void (*notify_cgroup_oom)(Unit *u, bool managed_oom); /* Called whenever a process of this unit sends us a message */ void (*notify_message)(Unit *u, const struct ucred *ucred, char * const *tags, FDSet *fds); /* Called whenever a name this Unit registered for comes or goes away. */ void (*bus_name_owner_change)(Unit *u, const char *new_owner); /* Called for each property that is being set */ int (*bus_set_property)(Unit *u, const char *name, sd_bus_message *message, UnitWriteFlags flags, sd_bus_error *error); /* Called after at least one property got changed to apply the necessary change */ int (*bus_commit_properties)(Unit *u); /* Return the unit this unit is following */ Unit *(*following)(Unit *u); /* Return the set of units that are following each other */ int (*following_set)(Unit *u, Set **s); /* Invoked each time a unit this unit is triggering changes * state or gains/loses a job */ void (*trigger_notify)(Unit *u, Unit *trigger); /* Called whenever CLOCK_REALTIME made a jump */ void (*time_change)(Unit *u); /* Called whenever /etc/localtime was modified */ void (*timezone_change)(Unit *u); /* Returns the next timeout of a unit */ int (*get_timeout)(Unit *u, usec_t *timeout); /* Returns the start timeout of a unit */ usec_t (*get_timeout_start_usec)(Unit *u); /* Returns the main PID if there is any defined, or 0. */ PidRef* (*main_pid)(Unit *u); /* Returns the control PID if there is any defined, or 0. */ PidRef* (*control_pid)(Unit *u); /* Returns true if the unit currently needs access to the console */ bool (*needs_console)(Unit *u); /* Returns the exit status to propagate in case of FailureAction=exit/SuccessAction=exit; usually returns the * exit code of the "main" process of the service or similar. */ int (*exit_status)(Unit *u); /* Return a copy of the status string pointer. */ const char* (*status_text)(Unit *u); /* Like the enumerate() callback further down, but only enumerates the perpetual units, i.e. all units that * unconditionally exist and are always active. The main reason to keep both enumeration functions separate is * philosophical: the state of perpetual units should be put in place by coldplug(), while the state of those * discovered through regular enumeration should be put in place by catchup(), see below. */ void (*enumerate_perpetual)(Manager *m); /* This is called for each unit type and should be used to enumerate units already existing in the system * internally and load them. However, everything that is loaded here should still stay in inactive state. It is * the job of the catchup() call above to put the units into the discovered state. */ void (*enumerate)(Manager *m); /* Type specific cleanups. */ void (*shutdown)(Manager *m); /* If this function is set and returns false all jobs for units * of this type will immediately fail. */ bool (*supported)(void); /* If this function is set, it's invoked first as part of starting a unit to allow start rate * limiting checks to occur before we do anything else. */ int (*can_start)(Unit *u); /* Returns > 0 if the whole subsystem is ratelimited, and new start operations should not be started * for this unit type right now. */ int (*subsystem_ratelimited)(Manager *m); /* The strings to print in status messages */ UnitStatusMessageFormats status_message_formats; /* True if transient units of this type are OK */ bool can_transient; /* True if cgroup delegation is permissible */ bool can_delegate; /* True if the unit type triggers other units, i.e. can have a UNIT_TRIGGERS dependency */ bool can_trigger; /* True if the unit type knows a failure state, and thus can be source of an OnFailure= dependency */ bool can_fail; /* True if units of this type shall be startable only once and then never again */ bool once_only; /* Do not serialize this unit when preparing for root switch */ bool exclude_from_switch_root_serialization; /* True if queued jobs of this type should be GC'ed if no other job needs them anymore */ bool gc_jobs; /* True if systemd-oomd can monitor and act on this unit's recursive children's cgroups */ bool can_set_managed_oom; /* If true, we'll notify plymouth about this unit */ bool notify_plymouth; /* The audit events to generate on start + stop (or 0 if none shall be generated) */ int audit_start_message_type; int audit_stop_message_type; } UnitVTable; extern const UnitVTable * const unit_vtable[_UNIT_TYPE_MAX]; static inline const UnitVTable* UNIT_VTABLE(const Unit *u) { return unit_vtable[u->type]; } /* For casting a unit into the various unit types */ #define DEFINE_CAST(UPPERCASE, MixedCase) \ static inline MixedCase* UPPERCASE(Unit *u) { \ if (_unlikely_(!u || u->type != UNIT_##UPPERCASE)) \ return NULL; \ \ return (MixedCase*) u; \ } /* For casting the various unit types into a unit */ #define UNIT(u) \ ({ \ typeof(u) _u_ = (u); \ Unit *_w_ = _u_ ? &(_u_)->meta : NULL; \ _w_; \ }) #define UNIT_HAS_EXEC_CONTEXT(u) (UNIT_VTABLE(u)->exec_context_offset > 0) #define UNIT_HAS_CGROUP_CONTEXT(u) (UNIT_VTABLE(u)->cgroup_context_offset > 0) #define UNIT_HAS_KILL_CONTEXT(u) (UNIT_VTABLE(u)->kill_context_offset > 0) Unit* unit_has_dependency(const Unit *u, UnitDependencyAtom atom, Unit *other); int unit_get_dependency_array(const Unit *u, UnitDependencyAtom atom, Unit ***ret_array); int unit_get_transitive_dependency_set(Unit *u, UnitDependencyAtom atom, Set **ret); static inline Hashmap* unit_get_dependencies(Unit *u, UnitDependency d) { return hashmap_get(u->dependencies, UNIT_DEPENDENCY_TO_PTR(d)); } static inline Unit* UNIT_TRIGGER(Unit *u) { return unit_has_dependency(u, UNIT_ATOM_TRIGGERS, NULL); } static inline Unit* UNIT_GET_SLICE(const Unit *u) { return unit_has_dependency(u, UNIT_ATOM_IN_SLICE, NULL); } Unit* unit_new(Manager *m, size_t size); Unit* unit_free(Unit *u); DEFINE_TRIVIAL_CLEANUP_FUNC(Unit *, unit_free); int unit_new_for_name(Manager *m, size_t size, const char *name, Unit **ret); int unit_add_name(Unit *u, const char *name); int unit_add_dependency(Unit *u, UnitDependency d, Unit *other, bool add_reference, UnitDependencyMask mask); int unit_add_two_dependencies(Unit *u, UnitDependency d, UnitDependency e, Unit *other, bool add_reference, UnitDependencyMask mask); int unit_add_dependency_by_name(Unit *u, UnitDependency d, const char *name, bool add_reference, UnitDependencyMask mask); int unit_add_two_dependencies_by_name(Unit *u, UnitDependency d, UnitDependency e, const char *name, bool add_reference, UnitDependencyMask mask); int unit_add_exec_dependencies(Unit *u, ExecContext *c); int unit_choose_id(Unit *u, const char *name); int unit_set_description(Unit *u, const char *description); void unit_release_resources(Unit *u); bool unit_may_gc(Unit *u); static inline bool unit_is_extrinsic(Unit *u) { return u->perpetual || (UNIT_VTABLE(u)->is_extrinsic && UNIT_VTABLE(u)->is_extrinsic(u)); } static inline const char* unit_status_text(Unit *u) { if (u && UNIT_VTABLE(u)->status_text) return UNIT_VTABLE(u)->status_text(u); return NULL; } void unit_add_to_load_queue(Unit *u); void unit_add_to_dbus_queue(Unit *u); void unit_add_to_cleanup_queue(Unit *u); void unit_add_to_gc_queue(Unit *u); void unit_add_to_target_deps_queue(Unit *u); void unit_submit_to_stop_when_unneeded_queue(Unit *u); void unit_submit_to_start_when_upheld_queue(Unit *u); void unit_submit_to_stop_when_bound_queue(Unit *u); void unit_submit_to_release_resources_queue(Unit *u); int unit_merge(Unit *u, Unit *other); int unit_merge_by_name(Unit *u, const char *other); Unit *unit_follow_merge(Unit *u) _pure_; int unit_load_fragment_and_dropin(Unit *u, bool fragment_required); int unit_load(Unit *unit); int unit_set_slice(Unit *u, Unit *slice); int unit_set_default_slice(Unit *u); const char *unit_description(Unit *u) _pure_; const char *unit_status_string(Unit *u, char **combined); bool unit_has_name(const Unit *u, const char *name); UnitActiveState unit_active_state(Unit *u); FreezerState unit_freezer_state(Unit *u); int unit_freezer_state_kernel(Unit *u, FreezerState *ret); const char* unit_sub_state_to_string(Unit *u); bool unit_can_reload(Unit *u) _pure_; bool unit_can_start(Unit *u) _pure_; bool unit_can_stop(Unit *u) _pure_; bool unit_can_isolate(Unit *u) _pure_; int unit_start(Unit *u, ActivationDetails *details); int unit_stop(Unit *u); int unit_reload(Unit *u); int unit_kill(Unit *u, KillWho w, int signo, int code, int value, sd_bus_error *error); void unit_notify_cgroup_oom(Unit *u, bool managed_oom); void unit_notify(Unit *u, UnitActiveState os, UnitActiveState ns, bool reload_success); int unit_watch_pidref(Unit *u, PidRef *pid, bool exclusive); int unit_watch_pid(Unit *u, pid_t pid, bool exclusive); void unit_unwatch_pidref(Unit *u, PidRef *pid); void unit_unwatch_pid(Unit *u, pid_t pid); void unit_unwatch_all_pids(Unit *u); int unit_enqueue_rewatch_pids(Unit *u); void unit_dequeue_rewatch_pids(Unit *u); int unit_install_bus_match(Unit *u, sd_bus *bus, const char *name); int unit_watch_bus_name(Unit *u, const char *name); void unit_unwatch_bus_name(Unit *u, const char *name); bool unit_job_is_applicable(Unit *u, JobType j); int set_unit_path(const char *p); char *unit_dbus_path(Unit *u); char *unit_dbus_path_invocation_id(Unit *u); int unit_load_related_unit(Unit *u, const char *type, Unit **_found); int unit_add_node_dependency(Unit *u, const char *what, UnitDependency d, UnitDependencyMask mask); int unit_add_blockdev_dependency(Unit *u, const char *what, UnitDependencyMask mask); int unit_coldplug(Unit *u); void unit_catchup(Unit *u); void unit_status_printf(Unit *u, StatusType status_type, const char *status, const char *format, const char *ident) _printf_(4, 0); bool unit_need_daemon_reload(Unit *u); void unit_reset_failed(Unit *u); Unit *unit_following(Unit *u); int unit_following_set(Unit *u, Set **s); const char *unit_slice_name(Unit *u); bool unit_stop_pending(Unit *u) _pure_; bool unit_inactive_or_pending(Unit *u) _pure_; bool unit_active_or_pending(Unit *u); bool unit_will_restart_default(Unit *u); bool unit_will_restart(Unit *u); int unit_add_default_target_dependency(Unit *u, Unit *target); void unit_start_on_failure(Unit *u, const char *dependency_name, UnitDependencyAtom atom, JobMode job_mode); void unit_trigger_notify(Unit *u); UnitFileState unit_get_unit_file_state(Unit *u); PresetAction unit_get_unit_file_preset(Unit *u); Unit* unit_ref_set(UnitRef *ref, Unit *source, Unit *target); void unit_ref_unset(UnitRef *ref); #define UNIT_DEREF(ref) ((ref).target) #define UNIT_ISSET(ref) (!!(ref).target) int unit_patch_contexts(Unit *u); ExecContext *unit_get_exec_context(const Unit *u) _pure_; KillContext *unit_get_kill_context(Unit *u) _pure_; CGroupContext *unit_get_cgroup_context(Unit *u) _pure_; ExecRuntime *unit_get_exec_runtime(Unit *u) _pure_; int unit_setup_exec_runtime(Unit *u); const char* unit_escape_setting(const char *s, UnitWriteFlags flags, char **buf); char* unit_concat_strv(char **l, UnitWriteFlags flags); int unit_write_setting(Unit *u, UnitWriteFlags flags, const char *name, const char *data); int unit_write_settingf(Unit *u, UnitWriteFlags mode, const char *name, const char *format, ...) _printf_(4,5); int unit_kill_context(Unit *u, KillContext *c, KillOperation k, PidRef *main_pid, PidRef *control_pid, bool main_pid_alien); int unit_make_transient(Unit *u); int unit_require_mounts_for(Unit *u, const char *path, UnitDependencyMask mask); bool unit_type_supported(UnitType t); bool unit_is_pristine(Unit *u); bool unit_is_unneeded(Unit *u); bool unit_is_upheld_by_active(Unit *u, Unit **ret_culprit); bool unit_is_bound_by_inactive(Unit *u, Unit **ret_culprit); PidRef* unit_control_pid(Unit *u); PidRef* unit_main_pid(Unit *u); void unit_warn_if_dir_nonempty(Unit *u, const char* where); int unit_fail_if_noncanonical(Unit *u, const char* where); int unit_test_start_limit(Unit *u); int unit_ref_uid_gid(Unit *u, uid_t uid, gid_t gid); void unit_unref_uid_gid(Unit *u, bool destroy_now); void unit_notify_user_lookup(Unit *u, uid_t uid, gid_t gid); int unit_set_invocation_id(Unit *u, sd_id128_t id); int unit_acquire_invocation_id(Unit *u); int unit_set_exec_params(Unit *s, ExecParameters *p); int unit_fork_helper_process(Unit *u, const char *name, PidRef *ret); int unit_fork_and_watch_rm_rf(Unit *u, char **paths, PidRef *ret); void unit_remove_dependencies(Unit *u, UnitDependencyMask mask); void unit_export_state_files(Unit *u); void unit_unlink_state_files(Unit *u); int unit_prepare_exec(Unit *u); int unit_log_leftover_process_start(const PidRef* pid, int sig, void *userdata); int unit_log_leftover_process_stop(const PidRef* pid, int sig, void *userdata); int unit_warn_leftover_processes(Unit *u, cg_kill_log_func_t log_func); bool unit_needs_console(Unit *u); int unit_pid_attachable(Unit *unit, PidRef *pid, sd_bus_error *error); static inline bool unit_has_job_type(Unit *u, JobType type) { return u && u->job && u->job->type == type; } static inline bool unit_log_level_test(const Unit *u, int level) { ExecContext *ec = unit_get_exec_context(u); return !ec || ec->log_level_max < 0 || ec->log_level_max >= LOG_PRI(level); } /* unit_log_skip is for cases like ExecCondition= where a unit is considered "done" * after some execution, rather than succeeded or failed. */ void unit_log_skip(Unit *u, const char *result); void unit_log_success(Unit *u); void unit_log_failure(Unit *u, const char *result); static inline void unit_log_result(Unit *u, bool success, const char *result) { if (success) unit_log_success(u); else unit_log_failure(u, result); } void unit_log_process_exit(Unit *u, const char *kind, const char *command, bool success, int code, int status); int unit_exit_status(Unit *u); int unit_success_action_exit_status(Unit *u); int unit_failure_action_exit_status(Unit *u); int unit_test_trigger_loaded(Unit *u); void unit_destroy_runtime_data(Unit *u, const ExecContext *context); int unit_clean(Unit *u, ExecCleanMask mask); int unit_can_clean(Unit *u, ExecCleanMask *ret_mask); bool unit_can_start_refuse_manual(Unit *u); bool unit_can_stop_refuse_manual(Unit *u); bool unit_can_isolate_refuse_manual(Unit *u); bool unit_can_freeze(Unit *u); int unit_freeze(Unit *u); void unit_frozen(Unit *u); int unit_thaw(Unit *u); void unit_thawed(Unit *u); int unit_freeze_vtable_common(Unit *u); int unit_thaw_vtable_common(Unit *u); Condition *unit_find_failed_condition(Unit *u); int unit_arm_timer(Unit *u, sd_event_source **source, bool relative, usec_t usec, sd_event_time_handler_t handler); int unit_compare_priority(Unit *a, Unit *b); /* Macros which append UNIT= or USER_UNIT= to the message */ #define log_unit_full_errno_zerook(unit, level, error, ...) \ ({ \ const Unit *_u = (unit); \ const int _l = (level); \ bool _do_log = !(log_get_max_level() < LOG_PRI(_l) || \ (_u && !unit_log_level_test(_u, _l))); \ const ExecContext *_c = _do_log && _u ? \ unit_get_exec_context(_u) : NULL; \ LOG_CONTEXT_PUSH_IOV(_c ? _c->log_extra_fields : NULL, \ _c ? _c->n_log_extra_fields : 0); \ !_do_log ? -ERRNO_VALUE(error) : \ _u ? log_object_internal(_l, error, PROJECT_FILE, __LINE__, __func__, _u->manager->unit_log_field, _u->id, _u->manager->invocation_log_field, _u->invocation_id_string, ##__VA_ARGS__) : \ log_internal(_l, error, PROJECT_FILE, __LINE__, __func__, ##__VA_ARGS__); \ }) #define log_unit_full_errno(unit, level, error, ...) \ ({ \ int _error = (error); \ ASSERT_NON_ZERO(_error); \ log_unit_full_errno_zerook(unit, level, _error, ##__VA_ARGS__); \ }) #define log_unit_full(unit, level, ...) (void) log_unit_full_errno_zerook(unit, level, 0, __VA_ARGS__) #define log_unit_debug(unit, ...) log_unit_full(unit, LOG_DEBUG, __VA_ARGS__) #define log_unit_info(unit, ...) log_unit_full(unit, LOG_INFO, __VA_ARGS__) #define log_unit_notice(unit, ...) log_unit_full(unit, LOG_NOTICE, __VA_ARGS__) #define log_unit_warning(unit, ...) log_unit_full(unit, LOG_WARNING, __VA_ARGS__) #define log_unit_error(unit, ...) log_unit_full(unit, LOG_ERR, __VA_ARGS__) #define log_unit_debug_errno(unit, error, ...) log_unit_full_errno(unit, LOG_DEBUG, error, __VA_ARGS__) #define log_unit_info_errno(unit, error, ...) log_unit_full_errno(unit, LOG_INFO, error, __VA_ARGS__) #define log_unit_notice_errno(unit, error, ...) log_unit_full_errno(unit, LOG_NOTICE, error, __VA_ARGS__) #define log_unit_warning_errno(unit, error, ...) log_unit_full_errno(unit, LOG_WARNING, error, __VA_ARGS__) #define log_unit_error_errno(unit, error, ...) log_unit_full_errno(unit, LOG_ERR, error, __VA_ARGS__) #if LOG_TRACE # define log_unit_trace(...) log_unit_debug(__VA_ARGS__) # define log_unit_trace_errno(...) log_unit_debug_errno(__VA_ARGS__) #else # define log_unit_trace(...) do {} while (0) # define log_unit_trace_errno(e, ...) (-ERRNO_VALUE(e)) #endif #define log_unit_struct_errno(unit, level, error, ...) \ ({ \ const Unit *_u = (unit); \ const int _l = (level); \ bool _do_log = unit_log_level_test(_u, _l); \ const ExecContext *_c = _do_log && _u ? \ unit_get_exec_context(_u) : NULL; \ LOG_CONTEXT_PUSH_IOV(_c ? _c->log_extra_fields : NULL, \ _c ? _c->n_log_extra_fields : 0); \ _do_log ? \ log_struct_errno(_l, error, __VA_ARGS__, LOG_UNIT_ID(_u)) : \ -ERRNO_VALUE(error); \ }) #define log_unit_struct(unit, level, ...) log_unit_struct_errno(unit, level, 0, __VA_ARGS__) #define log_unit_struct_iovec_errno(unit, level, error, iovec, n_iovec) \ ({ \ const Unit *_u = (unit); \ const int _l = (level); \ bool _do_log = unit_log_level_test(_u, _l); \ const ExecContext *_c = _do_log && _u ? \ unit_get_exec_context(_u) : NULL; \ LOG_CONTEXT_PUSH_IOV(_c ? _c->log_extra_fields : NULL, \ _c ? _c->n_log_extra_fields : 0); \ _do_log ? \ log_struct_iovec_errno(_l, error, iovec, n_iovec) : \ -ERRNO_VALUE(error); \ }) #define log_unit_struct_iovec(unit, level, iovec, n_iovec) log_unit_struct_iovec_errno(unit, level, 0, iovec, n_iovec) /* Like LOG_MESSAGE(), but with the unit name prefixed. */ #define LOG_UNIT_MESSAGE(unit, fmt, ...) LOG_MESSAGE("%s: " fmt, (unit)->id, ##__VA_ARGS__) #define LOG_UNIT_ID(unit) (unit)->manager->unit_log_format_string, (unit)->id #define LOG_UNIT_INVOCATION_ID(unit) (unit)->manager->invocation_log_format_string, (unit)->invocation_id_string const char* collect_mode_to_string(CollectMode m) _const_; CollectMode collect_mode_from_string(const char *s) _pure_; typedef struct UnitForEachDependencyData { /* Stores state for the FOREACH macro below for iterating through all deps that have any of the * specified dependency atom bits set */ UnitDependencyAtom match_atom; Hashmap *by_type, *by_unit; void *current_type; Iterator by_type_iterator, by_unit_iterator; Unit **current_unit; } UnitForEachDependencyData; /* Iterates through all dependencies that have a specific atom in the dependency type set. This tries to be * smart: if the atom is unique, we'll directly go to right entry. Otherwise we'll iterate through the * per-dependency type hashmap and match all dep that have the right atom set. */ #define _UNIT_FOREACH_DEPENDENCY(other, u, ma, data) \ for (UnitForEachDependencyData data = { \ .match_atom = (ma), \ .by_type = (u)->dependencies, \ .by_type_iterator = ITERATOR_FIRST, \ .current_unit = &(other), \ }; \ ({ \ UnitDependency _dt = _UNIT_DEPENDENCY_INVALID; \ bool _found; \ \ if (data.by_type && ITERATOR_IS_FIRST(data.by_type_iterator)) { \ _dt = unit_dependency_from_unique_atom(data.match_atom); \ if (_dt >= 0) { \ data.by_unit = hashmap_get(data.by_type, UNIT_DEPENDENCY_TO_PTR(_dt)); \ data.current_type = UNIT_DEPENDENCY_TO_PTR(_dt); \ data.by_type = NULL; \ _found = !!data.by_unit; \ } \ } \ if (_dt < 0) \ _found = hashmap_iterate(data.by_type, \ &data.by_type_iterator, \ (void**)&(data.by_unit), \ (const void**) &(data.current_type)); \ _found; \ }); ) \ if ((unit_dependency_to_atom(UNIT_DEPENDENCY_FROM_PTR(data.current_type)) & data.match_atom) != 0) \ for (data.by_unit_iterator = ITERATOR_FIRST; \ hashmap_iterate(data.by_unit, \ &data.by_unit_iterator, \ NULL, \ (const void**) data.current_unit); ) /* Note: this matches deps that have *any* of the atoms specified in match_atom set */ #define UNIT_FOREACH_DEPENDENCY(other, u, match_atom) \ _UNIT_FOREACH_DEPENDENCY(other, u, match_atom, UNIQ_T(data, UNIQ)) #define _LOG_CONTEXT_PUSH_UNIT(unit, u, c) \ const Unit *u = (unit); \ const ExecContext *c = unit_get_exec_context(u); \ LOG_CONTEXT_PUSH_KEY_VALUE(u->manager->unit_log_field, u->id); \ LOG_CONTEXT_PUSH_KEY_VALUE(u->manager->invocation_log_field, u->invocation_id_string); \ LOG_CONTEXT_PUSH_IOV(c ? c->log_extra_fields : NULL, c ? c->n_log_extra_fields : 0) #define LOG_CONTEXT_PUSH_UNIT(unit) \ _LOG_CONTEXT_PUSH_UNIT(unit, UNIQ_T(u, UNIQ), UNIQ_T(c, UNIQ))