/* SPDX-License-Identifier: LGPL-2.1-or-later */ /*** Copyright © 2017 Intel Corporation. All rights reserved. ***/ #include #include #include #include "sd-radv.h" #include "alloc-util.h" #include "dns-domain.h" #include "ether-addr-util.h" #include "event-util.h" #include "fd-util.h" #include "icmp6-util.h" #include "in-addr-util.h" #include "iovec-util.h" #include "macro.h" #include "memory-util.h" #include "network-common.h" #include "radv-internal.h" #include "random-util.h" #include "socket-util.h" #include "string-util.h" #include "strv.h" #include "unaligned.h" int sd_radv_new(sd_radv **ret) { _cleanup_(sd_radv_unrefp) sd_radv *ra = NULL; assert_return(ret, -EINVAL); ra = new(sd_radv, 1); if (!ra) return -ENOMEM; *ra = (sd_radv) { .n_ref = 1, .fd = -EBADF, .lifetime_usec = RADV_DEFAULT_ROUTER_LIFETIME_USEC, }; *ret = TAKE_PTR(ra); return 0; } int sd_radv_attach_event(sd_radv *ra, sd_event *event, int64_t priority) { int r; assert_return(ra, -EINVAL); assert_return(!ra->event, -EBUSY); if (event) ra->event = sd_event_ref(event); else { r = sd_event_default(&ra->event); if (r < 0) return 0; } ra->event_priority = priority; return 0; } int sd_radv_detach_event(sd_radv *ra) { assert_return(ra, -EINVAL); ra->event = sd_event_unref(ra->event); return 0; } sd_event *sd_radv_get_event(sd_radv *ra) { assert_return(ra, NULL); return ra->event; } int sd_radv_is_running(sd_radv *ra) { assert_return(ra, false); return ra->state != RADV_STATE_IDLE; } static void radv_reset(sd_radv *ra) { assert(ra); (void) event_source_disable(ra->timeout_event_source); ra->recv_event_source = sd_event_source_disable_unref(ra->recv_event_source); ra->ra_sent = 0; } static sd_radv *radv_free(sd_radv *ra) { if (!ra) return NULL; LIST_CLEAR(prefix, ra->prefixes, sd_radv_prefix_unref); LIST_CLEAR(prefix, ra->route_prefixes, sd_radv_route_prefix_unref); LIST_CLEAR(prefix, ra->pref64_prefixes, sd_radv_pref64_prefix_unref); free(ra->rdnss); free(ra->dnssl); radv_reset(ra); sd_event_source_unref(ra->timeout_event_source); sd_radv_detach_event(ra); ra->fd = safe_close(ra->fd); free(ra->ifname); return mfree(ra); } DEFINE_PUBLIC_TRIVIAL_REF_UNREF_FUNC(sd_radv, sd_radv, radv_free); static bool router_lifetime_is_valid(usec_t lifetime_usec) { return lifetime_usec == 0 || (lifetime_usec >= RADV_MIN_ROUTER_LIFETIME_USEC && lifetime_usec <= RADV_MAX_ROUTER_LIFETIME_USEC); } static int radv_send(sd_radv *ra, const struct in6_addr *dst, usec_t lifetime_usec) { struct sockaddr_in6 dst_addr = { .sin6_family = AF_INET6, .sin6_addr = IN6ADDR_ALL_NODES_MULTICAST_INIT, }; struct nd_router_advert adv = {}; struct { struct nd_opt_hdr opthdr; struct ether_addr slladdr; } _packed_ opt_mac = { .opthdr = { .nd_opt_type = ND_OPT_SOURCE_LINKADDR, .nd_opt_len = (sizeof(struct nd_opt_hdr) + sizeof(struct ether_addr) - 1) /8 + 1, }, }; struct nd_opt_mtu opt_mtu = { .nd_opt_mtu_type = ND_OPT_MTU, .nd_opt_mtu_len = 1, }; /* Reserve iov space for RA header, linkaddr, MTU, N prefixes, N routes, N pref64 prefixes, RDNSS, * DNSSL, and home agent. */ struct iovec iov[6 + ra->n_prefixes + ra->n_route_prefixes + ra->n_pref64_prefixes]; struct msghdr msg = { .msg_name = &dst_addr, .msg_namelen = sizeof(dst_addr), .msg_iov = iov, }; usec_t time_now; int r; assert(ra); assert(router_lifetime_is_valid(lifetime_usec)); r = sd_event_now(ra->event, CLOCK_BOOTTIME, &time_now); if (r < 0) return r; if (dst && in6_addr_is_set(dst)) dst_addr.sin6_addr = *dst; adv.nd_ra_type = ND_ROUTER_ADVERT; adv.nd_ra_curhoplimit = ra->hop_limit; adv.nd_ra_retransmit = usec_to_be32_msec(ra->retransmit_usec); adv.nd_ra_flags_reserved = ra->flags; assert_cc(RADV_MAX_ROUTER_LIFETIME_USEC <= UINT16_MAX * USEC_PER_SEC); adv.nd_ra_router_lifetime = usec_to_be16_sec(lifetime_usec); iov[msg.msg_iovlen++] = IOVEC_MAKE(&adv, sizeof(adv)); /* MAC address is optional, either because the link does not use L2 addresses or load sharing is desired. See RFC 4861, Section 4.2 */ if (!ether_addr_is_null(&ra->mac_addr)) { opt_mac.slladdr = ra->mac_addr; iov[msg.msg_iovlen++] = IOVEC_MAKE(&opt_mac, sizeof(opt_mac)); } if (ra->mtu > 0) { opt_mtu.nd_opt_mtu_mtu = htobe32(ra->mtu); iov[msg.msg_iovlen++] = IOVEC_MAKE(&opt_mtu, sizeof(opt_mtu)); } LIST_FOREACH(prefix, p, ra->prefixes) { usec_t lifetime_valid_usec, lifetime_preferred_usec; lifetime_valid_usec = MIN(usec_sub_unsigned(p->valid_until, time_now), p->lifetime_valid_usec); lifetime_preferred_usec = MIN3(usec_sub_unsigned(p->preferred_until, time_now), p->lifetime_preferred_usec, lifetime_valid_usec); p->opt.lifetime_valid = usec_to_be32_sec(lifetime_valid_usec); p->opt.lifetime_preferred = usec_to_be32_sec(lifetime_preferred_usec); iov[msg.msg_iovlen++] = IOVEC_MAKE(&p->opt, sizeof(p->opt)); } LIST_FOREACH(prefix, rt, ra->route_prefixes) { rt->opt.lifetime = usec_to_be32_sec(MIN(usec_sub_unsigned(rt->valid_until, time_now), rt->lifetime_usec)); iov[msg.msg_iovlen++] = IOVEC_MAKE(&rt->opt, sizeof(rt->opt)); } LIST_FOREACH(prefix, p, ra->pref64_prefixes) iov[msg.msg_iovlen++] = IOVEC_MAKE(&p->opt, sizeof(p->opt)); if (ra->rdnss) iov[msg.msg_iovlen++] = IOVEC_MAKE(ra->rdnss, ra->rdnss->length * 8); if (ra->dnssl) iov[msg.msg_iovlen++] = IOVEC_MAKE(ra->dnssl, ra->dnssl->length * 8); if (FLAGS_SET(ra->flags, ND_RA_FLAG_HOME_AGENT)) { ra->home_agent.nd_opt_home_agent_info_type = ND_OPT_HOME_AGENT_INFO; ra->home_agent.nd_opt_home_agent_info_len = 1; /* 0 means to place the current Router Lifetime value */ if (ra->home_agent.nd_opt_home_agent_info_lifetime == 0) ra->home_agent.nd_opt_home_agent_info_lifetime = adv.nd_ra_router_lifetime; iov[msg.msg_iovlen++] = IOVEC_MAKE(&ra->home_agent, sizeof(ra->home_agent)); } if (sendmsg(ra->fd, &msg, 0) < 0) return -errno; return 0; } static int radv_recv(sd_event_source *s, int fd, uint32_t revents, void *userdata) { sd_radv *ra = ASSERT_PTR(userdata); struct in6_addr src; triple_timestamp timestamp; int r; assert(s); assert(ra->event); ssize_t buflen = next_datagram_size_fd(fd); if (ERRNO_IS_NEG_TRANSIENT(buflen) || ERRNO_IS_NEG_DISCONNECT(buflen)) return 0; if (buflen < 0) { log_radv_errno(ra, buflen, "Failed to determine datagram size to read, ignoring: %m"); return 0; } _cleanup_free_ char *buf = new0(char, buflen); if (!buf) return -ENOMEM; r = icmp6_receive(fd, buf, buflen, &src, ×tamp); if (ERRNO_IS_NEG_TRANSIENT(r) || ERRNO_IS_NEG_DISCONNECT(r)) return 0; if (r < 0) switch (r) { case -EADDRNOTAVAIL: log_radv(ra, "Received RS from neither link-local nor null address. Ignoring"); return 0; case -EMULTIHOP: log_radv(ra, "Received RS with invalid hop limit. Ignoring."); return 0; case -EPFNOSUPPORT: log_radv(ra, "Received invalid source address from ICMPv6 socket. Ignoring."); return 0; default: log_radv_errno(ra, r, "Unexpected error receiving from ICMPv6 socket, ignoring: %m"); return 0; } if ((size_t) buflen < sizeof(struct nd_router_solicit)) { log_radv(ra, "Too short packet received, ignoring"); return 0; } /* TODO: if the sender address is null, check that the message does not have the source link-layer * address option. See RFC 4861 Section 6.1.1. */ const char *addr = IN6_ADDR_TO_STRING(&src); r = radv_send(ra, &src, ra->lifetime_usec); if (r < 0) log_radv_errno(ra, r, "Unable to send solicited Router Advertisement to %s, ignoring: %m", addr); else log_radv(ra, "Sent solicited Router Advertisement to %s", addr); return 0; } static int radv_timeout(sd_event_source *s, uint64_t usec, void *userdata) { usec_t min_timeout, max_timeout, time_now, timeout; sd_radv *ra = ASSERT_PTR(userdata); int r; assert(s); assert(ra->event); assert(router_lifetime_is_valid(ra->lifetime_usec)); r = sd_event_now(ra->event, CLOCK_BOOTTIME, &time_now); if (r < 0) goto fail; r = radv_send(ra, NULL, ra->lifetime_usec); if (r < 0) log_radv_errno(ra, r, "Unable to send Router Advertisement, ignoring: %m"); /* RFC 4861, Section 6.2.4, sending initial Router Advertisements */ if (ra->ra_sent < RADV_MAX_INITIAL_RTR_ADVERTISEMENTS) max_timeout = RADV_MAX_INITIAL_RTR_ADVERT_INTERVAL_USEC; else max_timeout = RADV_DEFAULT_MAX_TIMEOUT_USEC; /* RFC 4861, Section 6.2.1, lifetime must be at least MaxRtrAdvInterval, * so lower the interval here */ if (ra->lifetime_usec > 0) max_timeout = MIN(max_timeout, ra->lifetime_usec); if (max_timeout >= 9 * USEC_PER_SEC) min_timeout = max_timeout / 3; else min_timeout = max_timeout * 3 / 4; /* RFC 4861, Section 6.2.1. * MaxRtrAdvInterval MUST be no less than 4 seconds and no greater than 1800 seconds. * MinRtrAdvInterval MUST be no less than 3 seconds and no greater than .75 * MaxRtrAdvInterval. */ assert(max_timeout >= RADV_MIN_MAX_TIMEOUT_USEC); assert(max_timeout <= RADV_MAX_MAX_TIMEOUT_USEC); assert(min_timeout >= RADV_MIN_MIN_TIMEOUT_USEC); assert(min_timeout <= max_timeout * 3 / 4); timeout = min_timeout + random_u64_range(max_timeout - min_timeout); log_radv(ra, "Next Router Advertisement in %s", FORMAT_TIMESPAN(timeout, USEC_PER_SEC)); r = event_reset_time(ra->event, &ra->timeout_event_source, CLOCK_BOOTTIME, usec_add(time_now, timeout), MSEC_PER_SEC, radv_timeout, ra, ra->event_priority, "radv-timeout", true); if (r < 0) goto fail; ra->ra_sent++; return 0; fail: sd_radv_stop(ra); return 0; } int sd_radv_stop(sd_radv *ra) { int r; if (!ra) return 0; if (ra->state == RADV_STATE_IDLE) return 0; log_radv(ra, "Stopping IPv6 Router Advertisement daemon"); /* RFC 4861, Section 6.2.5, send at least one Router Advertisement with zero lifetime */ r = radv_send(ra, NULL, 0); if (r < 0) log_radv_errno(ra, r, "Unable to send last Router Advertisement with router lifetime set to zero, ignoring: %m"); radv_reset(ra); ra->fd = safe_close(ra->fd); ra->state = RADV_STATE_IDLE; return 0; } int sd_radv_start(sd_radv *ra) { int r; assert_return(ra, -EINVAL); assert_return(ra->event, -EINVAL); assert_return(ra->ifindex > 0, -EINVAL); if (ra->state != RADV_STATE_IDLE) return 0; r = event_reset_time(ra->event, &ra->timeout_event_source, CLOCK_BOOTTIME, 0, 0, radv_timeout, ra, ra->event_priority, "radv-timeout", true); if (r < 0) goto fail; r = icmp6_bind_router_advertisement(ra->ifindex); if (r < 0) goto fail; ra->fd = r; r = sd_event_add_io(ra->event, &ra->recv_event_source, ra->fd, EPOLLIN, radv_recv, ra); if (r < 0) goto fail; r = sd_event_source_set_priority(ra->recv_event_source, ra->event_priority); if (r < 0) goto fail; (void) sd_event_source_set_description(ra->recv_event_source, "radv-receive-message"); ra->state = RADV_STATE_ADVERTISING; log_radv(ra, "Started IPv6 Router Advertisement daemon"); return 0; fail: radv_reset(ra); return r; } int sd_radv_set_ifindex(sd_radv *ra, int ifindex) { assert_return(ra, -EINVAL); assert_return(ifindex > 0, -EINVAL); if (ra->state != RADV_STATE_IDLE) return -EBUSY; ra->ifindex = ifindex; return 0; } int sd_radv_set_ifname(sd_radv *ra, const char *ifname) { assert_return(ra, -EINVAL); assert_return(ifname, -EINVAL); if (!ifname_valid_full(ifname, IFNAME_VALID_ALTERNATIVE)) return -EINVAL; return free_and_strdup(&ra->ifname, ifname); } int sd_radv_get_ifname(sd_radv *ra, const char **ret) { int r; assert_return(ra, -EINVAL); r = get_ifname(ra->ifindex, &ra->ifname); if (r < 0) return r; if (ret) *ret = ra->ifname; return 0; } int sd_radv_set_mac(sd_radv *ra, const struct ether_addr *mac_addr) { assert_return(ra, -EINVAL); if (ra->state != RADV_STATE_IDLE) return -EBUSY; if (mac_addr) ra->mac_addr = *mac_addr; else zero(ra->mac_addr); return 0; } int sd_radv_set_mtu(sd_radv *ra, uint32_t mtu) { assert_return(ra, -EINVAL); assert_return(mtu >= 1280, -EINVAL); ra->mtu = mtu; return 0; } int sd_radv_set_hop_limit(sd_radv *ra, uint8_t hop_limit) { assert_return(ra, -EINVAL); if (ra->state != RADV_STATE_IDLE) return -EBUSY; ra->hop_limit = hop_limit; return 0; } int sd_radv_set_retransmit(sd_radv *ra, uint64_t usec) { assert_return(ra, -EINVAL); if (ra->state != RADV_STATE_IDLE) return -EBUSY; if (usec > RADV_MAX_RETRANSMIT_USEC) return -EINVAL; ra->retransmit_usec = usec; return 0; } int sd_radv_set_router_lifetime(sd_radv *ra, uint64_t usec) { assert_return(ra, -EINVAL); if (ra->state != RADV_STATE_IDLE) return -EBUSY; if (!router_lifetime_is_valid(usec)) return -EINVAL; /* RFC 4191, Section 2.2, "...If the Router Lifetime is zero, the preference value MUST be set * to (00) by the sender..." */ if (usec == 0 && (ra->flags & (0x3 << 3)) != (SD_NDISC_PREFERENCE_MEDIUM << 3)) return -EINVAL; ra->lifetime_usec = usec; return 0; } int sd_radv_set_managed_information(sd_radv *ra, int managed) { assert_return(ra, -EINVAL); if (ra->state != RADV_STATE_IDLE) return -EBUSY; SET_FLAG(ra->flags, ND_RA_FLAG_MANAGED, managed); return 0; } int sd_radv_set_other_information(sd_radv *ra, int other) { assert_return(ra, -EINVAL); if (ra->state != RADV_STATE_IDLE) return -EBUSY; SET_FLAG(ra->flags, ND_RA_FLAG_OTHER, other); return 0; } int sd_radv_set_preference(sd_radv *ra, unsigned preference) { assert_return(ra, -EINVAL); assert_return(IN_SET(preference, SD_NDISC_PREFERENCE_LOW, SD_NDISC_PREFERENCE_MEDIUM, SD_NDISC_PREFERENCE_HIGH), -EINVAL); /* RFC 4191, Section 2.2, "...If the Router Lifetime is zero, the preference value MUST be set * to (00) by the sender..." */ if (ra->lifetime_usec == 0 && preference != SD_NDISC_PREFERENCE_MEDIUM) return -EINVAL; ra->flags = (ra->flags & ~(0x3 << 3)) | (preference << 3); return 0; } int sd_radv_set_home_agent_information(sd_radv *ra, int home_agent) { assert_return(ra, -EINVAL); if (ra->state != RADV_STATE_IDLE) return -EBUSY; SET_FLAG(ra->flags, ND_RA_FLAG_HOME_AGENT, home_agent); return 0; } int sd_radv_set_home_agent_preference(sd_radv *ra, uint16_t preference) { assert_return(ra, -EINVAL); if (ra->state != RADV_STATE_IDLE) return -EBUSY; ra->home_agent.nd_opt_home_agent_info_preference = htobe16(preference); return 0; } int sd_radv_set_home_agent_lifetime(sd_radv *ra, uint64_t lifetime_usec) { assert_return(ra, -EINVAL); if (ra->state != RADV_STATE_IDLE) return -EBUSY; if (lifetime_usec > RADV_HOME_AGENT_MAX_LIFETIME_USEC) return -EINVAL; ra->home_agent.nd_opt_home_agent_info_lifetime = usec_to_be16_sec(lifetime_usec); return 0; } int sd_radv_add_prefix(sd_radv *ra, sd_radv_prefix *p) { sd_radv_prefix *found = NULL; int r; assert_return(ra, -EINVAL); assert_return(p, -EINVAL); /* Refuse prefixes that don't have a prefix set */ if (in6_addr_is_null(&p->opt.in6_addr)) return -ENOEXEC; const char *addr_p = IN6_ADDR_PREFIX_TO_STRING(&p->opt.in6_addr, p->opt.prefixlen); LIST_FOREACH(prefix, cur, ra->prefixes) { r = in_addr_prefix_intersect(AF_INET6, (const union in_addr_union*) &cur->opt.in6_addr, cur->opt.prefixlen, (const union in_addr_union*) &p->opt.in6_addr, p->opt.prefixlen); if (r < 0) return r; if (r == 0) continue; if (cur->opt.prefixlen == p->opt.prefixlen) { found = cur; break; } return log_radv_errno(ra, SYNTHETIC_ERRNO(EEXIST), "IPv6 prefix %s conflicts with %s, ignoring.", addr_p, IN6_ADDR_PREFIX_TO_STRING(&cur->opt.in6_addr, cur->opt.prefixlen)); } if (found) { /* p and cur may be equivalent. First increment the reference counter. */ sd_radv_prefix_ref(p); /* Then, remove the old entry. */ LIST_REMOVE(prefix, ra->prefixes, found); sd_radv_prefix_unref(found); /* Finally, add the new entry. */ LIST_APPEND(prefix, ra->prefixes, p); log_radv(ra, "Updated/replaced IPv6 prefix %s (preferred: %s, valid: %s)", addr_p, FORMAT_TIMESPAN(p->lifetime_preferred_usec, USEC_PER_SEC), FORMAT_TIMESPAN(p->lifetime_valid_usec, USEC_PER_SEC)); } else { /* The prefix is new. Let's simply add it. */ sd_radv_prefix_ref(p); LIST_APPEND(prefix, ra->prefixes, p); ra->n_prefixes++; log_radv(ra, "Added prefix %s", addr_p); } if (ra->state == RADV_STATE_IDLE) return 0; if (ra->ra_sent == 0) return 0; /* If RAs have already been sent, send an RA immediately to announce the newly-added prefix */ r = radv_send(ra, NULL, ra->lifetime_usec); if (r < 0) log_radv_errno(ra, r, "Unable to send Router Advertisement for added prefix %s, ignoring: %m", addr_p); else log_radv(ra, "Sent Router Advertisement for added/updated prefix %s.", addr_p); return 0; } void sd_radv_remove_prefix( sd_radv *ra, const struct in6_addr *prefix, unsigned char prefixlen) { if (!ra) return; if (!prefix) return; LIST_FOREACH(prefix, cur, ra->prefixes) { if (prefixlen != cur->opt.prefixlen) continue; if (!in6_addr_equal(prefix, &cur->opt.in6_addr)) continue; LIST_REMOVE(prefix, ra->prefixes, cur); ra->n_prefixes--; sd_radv_prefix_unref(cur); return; } } int sd_radv_add_route_prefix(sd_radv *ra, sd_radv_route_prefix *p) { sd_radv_route_prefix *found = NULL; int r; assert_return(ra, -EINVAL); assert_return(p, -EINVAL); const char *addr_p = IN6_ADDR_PREFIX_TO_STRING(&p->opt.in6_addr, p->opt.prefixlen); LIST_FOREACH(prefix, cur, ra->route_prefixes) { r = in_addr_prefix_intersect(AF_INET6, (const union in_addr_union*) &cur->opt.in6_addr, cur->opt.prefixlen, (const union in_addr_union*) &p->opt.in6_addr, p->opt.prefixlen); if (r < 0) return r; if (r == 0) continue; if (cur->opt.prefixlen == p->opt.prefixlen) { found = cur; break; } return log_radv_errno(ra, SYNTHETIC_ERRNO(EEXIST), "IPv6 route prefix %s conflicts with %s, ignoring.", addr_p, IN6_ADDR_PREFIX_TO_STRING(&cur->opt.in6_addr, cur->opt.prefixlen)); } if (found) { /* p and cur may be equivalent. First increment the reference counter. */ sd_radv_route_prefix_ref(p); /* Then, remove the old entry. */ LIST_REMOVE(prefix, ra->route_prefixes, found); sd_radv_route_prefix_unref(found); /* Finally, add the new entry. */ LIST_APPEND(prefix, ra->route_prefixes, p); log_radv(ra, "Updated/replaced IPv6 route prefix %s (lifetime: %s)", strna(addr_p), FORMAT_TIMESPAN(p->lifetime_usec, USEC_PER_SEC)); } else { /* The route prefix is new. Let's simply add it. */ sd_radv_route_prefix_ref(p); LIST_APPEND(prefix, ra->route_prefixes, p); ra->n_route_prefixes++; log_radv(ra, "Added route prefix %s", strna(addr_p)); } if (ra->state == RADV_STATE_IDLE) return 0; if (ra->ra_sent == 0) return 0; /* If RAs have already been sent, send an RA immediately to announce the newly-added route prefix */ r = radv_send(ra, NULL, ra->lifetime_usec); if (r < 0) log_radv_errno(ra, r, "Unable to send Router Advertisement for added route prefix %s, ignoring: %m", strna(addr_p)); else log_radv(ra, "Sent Router Advertisement for added route prefix %s.", strna(addr_p)); return 0; } int sd_radv_add_pref64_prefix(sd_radv *ra, sd_radv_pref64_prefix *p) { sd_radv_pref64_prefix *found = NULL; int r; assert_return(ra, -EINVAL); assert_return(p, -EINVAL); const char *addr_p = IN6_ADDR_PREFIX_TO_STRING(&p->in6_addr, p->prefixlen); LIST_FOREACH(prefix, cur, ra->pref64_prefixes) { r = in_addr_prefix_intersect(AF_INET6, (const union in_addr_union*) &cur->in6_addr, cur->prefixlen, (const union in_addr_union*) &p->in6_addr, p->prefixlen); if (r < 0) return r; if (r == 0) continue; if (cur->prefixlen == p->prefixlen) { found = cur; break; } return log_radv_errno(ra, SYNTHETIC_ERRNO(EEXIST), "IPv6 PREF64 prefix %s conflicts with %s, ignoring.", addr_p, IN6_ADDR_PREFIX_TO_STRING(&cur->in6_addr, cur->prefixlen)); } if (found) { /* p and cur may be equivalent. First increment the reference counter. */ sd_radv_pref64_prefix_ref(p); /* Then, remove the old entry. */ LIST_REMOVE(prefix, ra->pref64_prefixes, found); sd_radv_pref64_prefix_unref(found); /* Finally, add the new entry. */ LIST_APPEND(prefix, ra->pref64_prefixes, p); log_radv(ra, "Updated/replaced IPv6 PREF64 prefix %s (lifetime: %s)", strna(addr_p), FORMAT_TIMESPAN(p->lifetime_usec, USEC_PER_SEC)); } else { /* The route prefix is new. Let's simply add it. */ sd_radv_pref64_prefix_ref(p); LIST_APPEND(prefix, ra->pref64_prefixes, p); ra->n_pref64_prefixes++; log_radv(ra, "Added PREF64 prefix %s", strna(addr_p)); } if (ra->state == RADV_STATE_IDLE) return 0; if (ra->ra_sent == 0) return 0; /* If RAs have already been sent, send an RA immediately to announce the newly-added route prefix */ r = radv_send(ra, NULL, ra->lifetime_usec); if (r < 0) log_radv_errno(ra, r, "Unable to send Router Advertisement for added PREF64 prefix %s, ignoring: %m", strna(addr_p)); else log_radv(ra, "Sent Router Advertisement for added PREF64 prefix %s.", strna(addr_p)); return 0; } int sd_radv_set_rdnss( sd_radv *ra, uint64_t lifetime_usec, const struct in6_addr *dns, size_t n_dns) { _cleanup_free_ struct sd_radv_opt_dns *opt_rdnss = NULL; size_t len; assert_return(ra, -EINVAL); assert_return(n_dns < 128, -EINVAL); if (lifetime_usec > RADV_RDNSS_MAX_LIFETIME_USEC) return -EINVAL; if (!dns || n_dns == 0) { ra->rdnss = mfree(ra->rdnss); ra->n_rdnss = 0; return 0; } len = sizeof(struct sd_radv_opt_dns) + sizeof(struct in6_addr) * n_dns; opt_rdnss = malloc0(len); if (!opt_rdnss) return -ENOMEM; opt_rdnss->type = RADV_OPT_RDNSS; opt_rdnss->length = len / 8; opt_rdnss->lifetime = usec_to_be32_sec(lifetime_usec); memcpy(opt_rdnss + 1, dns, n_dns * sizeof(struct in6_addr)); free_and_replace(ra->rdnss, opt_rdnss); ra->n_rdnss = n_dns; return 0; } int sd_radv_set_dnssl( sd_radv *ra, uint64_t lifetime_usec, char **search_list) { _cleanup_free_ struct sd_radv_opt_dns *opt_dnssl = NULL; size_t len = 0; uint8_t *p; assert_return(ra, -EINVAL); if (lifetime_usec > RADV_DNSSL_MAX_LIFETIME_USEC) return -EINVAL; if (strv_isempty(search_list)) { ra->dnssl = mfree(ra->dnssl); return 0; } STRV_FOREACH(s, search_list) len += strlen(*s) + 2; len = (sizeof(struct sd_radv_opt_dns) + len + 7) & ~0x7; opt_dnssl = malloc0(len); if (!opt_dnssl) return -ENOMEM; opt_dnssl->type = RADV_OPT_DNSSL; opt_dnssl->length = len / 8; opt_dnssl->lifetime = usec_to_be32_sec(lifetime_usec); p = (uint8_t *)(opt_dnssl + 1); len -= sizeof(struct sd_radv_opt_dns); STRV_FOREACH(s, search_list) { int r; r = dns_name_to_wire_format(*s, p, len, false); if (r < 0) return r; if (len < (size_t)r) return -ENOBUFS; p += r; len -= r; } free_and_replace(ra->dnssl, opt_dnssl); return 0; } int sd_radv_prefix_new(sd_radv_prefix **ret) { sd_radv_prefix *p; assert_return(ret, -EINVAL); p = new(sd_radv_prefix, 1); if (!p) return -ENOMEM; *p = (sd_radv_prefix) { .n_ref = 1, .opt.type = ND_OPT_PREFIX_INFORMATION, .opt.length = (sizeof(p->opt) - 1)/8 + 1, .opt.prefixlen = 64, /* RFC 4861, Section 6.2.1 */ .opt.flags = ND_OPT_PI_FLAG_ONLINK|ND_OPT_PI_FLAG_AUTO, .lifetime_valid_usec = RADV_DEFAULT_VALID_LIFETIME_USEC, .lifetime_preferred_usec = RADV_DEFAULT_PREFERRED_LIFETIME_USEC, .valid_until = USEC_INFINITY, .preferred_until = USEC_INFINITY, }; *ret = p; return 0; } DEFINE_PUBLIC_TRIVIAL_REF_UNREF_FUNC(sd_radv_prefix, sd_radv_prefix, mfree); int sd_radv_prefix_set_prefix( sd_radv_prefix *p, const struct in6_addr *in6_addr, unsigned char prefixlen) { assert_return(p, -EINVAL); assert_return(in6_addr, -EINVAL); if (prefixlen < 3 || prefixlen > 128) return -EINVAL; if (prefixlen > 64) /* unusual but allowed, log it */ log_radv(NULL, "Unusual prefix length %d greater than 64", prefixlen); p->opt.in6_addr = *in6_addr; p->opt.prefixlen = prefixlen; return 0; } int sd_radv_prefix_get_prefix( sd_radv_prefix *p, struct in6_addr *ret_in6_addr, unsigned char *ret_prefixlen) { assert_return(p, -EINVAL); assert_return(ret_in6_addr, -EINVAL); assert_return(ret_prefixlen, -EINVAL); *ret_in6_addr = p->opt.in6_addr; *ret_prefixlen = p->opt.prefixlen; return 0; } int sd_radv_prefix_set_onlink(sd_radv_prefix *p, int onlink) { assert_return(p, -EINVAL); SET_FLAG(p->opt.flags, ND_OPT_PI_FLAG_ONLINK, onlink); return 0; } int sd_radv_prefix_set_address_autoconfiguration(sd_radv_prefix *p, int address_autoconfiguration) { assert_return(p, -EINVAL); SET_FLAG(p->opt.flags, ND_OPT_PI_FLAG_AUTO, address_autoconfiguration); return 0; } int sd_radv_prefix_set_valid_lifetime(sd_radv_prefix *p, uint64_t lifetime_usec, uint64_t valid_until) { assert_return(p, -EINVAL); p->lifetime_valid_usec = lifetime_usec; p->valid_until = valid_until; return 0; } int sd_radv_prefix_set_preferred_lifetime(sd_radv_prefix *p, uint64_t lifetime_usec, uint64_t valid_until) { assert_return(p, -EINVAL); p->lifetime_preferred_usec = lifetime_usec; p->preferred_until = valid_until; return 0; } int sd_radv_route_prefix_new(sd_radv_route_prefix **ret) { sd_radv_route_prefix *p; assert_return(ret, -EINVAL); p = new(sd_radv_route_prefix, 1); if (!p) return -ENOMEM; *p = (sd_radv_route_prefix) { .n_ref = 1, .opt.type = RADV_OPT_ROUTE_INFORMATION, .opt.length = DIV_ROUND_UP(sizeof(p->opt), 8), .opt.prefixlen = 64, .lifetime_usec = RADV_DEFAULT_VALID_LIFETIME_USEC, .valid_until = USEC_INFINITY, }; *ret = p; return 0; } DEFINE_PUBLIC_TRIVIAL_REF_UNREF_FUNC(sd_radv_route_prefix, sd_radv_route_prefix, mfree); int sd_radv_route_prefix_set_prefix( sd_radv_route_prefix *p, const struct in6_addr *in6_addr, unsigned char prefixlen) { assert_return(p, -EINVAL); assert_return(in6_addr, -EINVAL); if (prefixlen > 128) return -EINVAL; if (prefixlen > 64) /* unusual but allowed, log it */ log_radv(NULL, "Unusual prefix length %u greater than 64", prefixlen); p->opt.in6_addr = *in6_addr; p->opt.prefixlen = prefixlen; return 0; } int sd_radv_route_prefix_set_lifetime(sd_radv_route_prefix *p, uint64_t lifetime_usec, uint64_t valid_until) { assert_return(p, -EINVAL); p->lifetime_usec = lifetime_usec; p->valid_until = valid_until; return 0; } int sd_radv_pref64_prefix_new(sd_radv_pref64_prefix **ret) { sd_radv_pref64_prefix *p; assert_return(ret, -EINVAL); p = new(sd_radv_pref64_prefix, 1); if (!p) return -ENOMEM; *p = (sd_radv_pref64_prefix) { .n_ref = 1, .opt.type = RADV_OPT_PREF64, .opt.length = 2, }; *ret = p; return 0; } DEFINE_PUBLIC_TRIVIAL_REF_UNREF_FUNC(sd_radv_pref64_prefix, sd_radv_pref64_prefix, mfree); int sd_radv_pref64_prefix_set_prefix( sd_radv_pref64_prefix *p, const struct in6_addr *prefix, uint8_t prefixlen, uint64_t lifetime_usec) { uint16_t pref64_lifetime; uint8_t prefixlen_code; int r; assert_return(p, -EINVAL); assert_return(prefix, -EINVAL); r = pref64_prefix_length_to_plc(prefixlen, &prefixlen_code); if (r < 0) return log_radv_errno(NULL, r, "Unsupported PREF64 prefix length %u. Valid lengths are 32, 40, 48, 56, 64 and 96", prefixlen); if (lifetime_usec > PREF64_MAX_LIFETIME_USEC) return -EINVAL; /* RFC 8781 - 4.1 rounding up lifetime to multiply of 8 */ pref64_lifetime = DIV_ROUND_UP(lifetime_usec, 8 * USEC_PER_SEC) << 3; pref64_lifetime |= prefixlen_code; unaligned_write_be16(&p->opt.lifetime_and_plc, pref64_lifetime); memcpy(&p->opt.prefix, prefix, sizeof(p->opt.prefix)); p->in6_addr = *prefix; p->prefixlen = prefixlen; return 0; }