/* SPDX-License-Identifier: LGPL-2.1-or-later */ #include #include #include "sd-event.h" #include "alloc-util.h" #include "exec-util.h" #include "fd-util.h" #include "fs-util.h" #include "log.h" #include "macro.h" #include "missing_syscall.h" #include "parse-util.h" #include "path-util.h" #include "process-util.h" #include "random-util.h" #include "rm-rf.h" #include "signal-util.h" #include "stdio-util.h" #include "string-util.h" #include "tests.h" #include "tmpfile-util.h" static int prepare_handler(sd_event_source *s, void *userdata) { log_info("preparing %c", PTR_TO_INT(userdata)); return 1; } static bool got_a, got_b, got_c, got_unref; static unsigned got_d; static int unref_handler(sd_event_source *s, int fd, uint32_t revents, void *userdata) { sd_event_source_unref(s); got_unref = true; return 0; } static int io_handler(sd_event_source *s, int fd, uint32_t revents, void *userdata) { log_info("got IO on %c", PTR_TO_INT(userdata)); if (userdata == INT_TO_PTR('a')) { assert_se(sd_event_source_set_enabled(s, SD_EVENT_OFF) >= 0); assert_se(!got_a); got_a = true; } else if (userdata == INT_TO_PTR('b')) { assert_se(!got_b); got_b = true; } else if (userdata == INT_TO_PTR('d')) { got_d++; if (got_d < 2) assert_se(sd_event_source_set_enabled(s, SD_EVENT_ONESHOT) >= 0); else assert_se(sd_event_source_set_enabled(s, SD_EVENT_OFF) >= 0); } else assert_not_reached(); return 1; } static int child_handler(sd_event_source *s, const siginfo_t *si, void *userdata) { assert_se(s); assert_se(si); assert_se(si->si_uid == getuid()); assert_se(si->si_signo == SIGCHLD); assert_se(si->si_code == CLD_EXITED); assert_se(si->si_status == 78); log_info("got child on %c", PTR_TO_INT(userdata)); assert_se(userdata == INT_TO_PTR('f')); assert_se(sd_event_exit(sd_event_source_get_event(s), 0) >= 0); sd_event_source_unref(s); return 1; } static int signal_handler(sd_event_source *s, const struct signalfd_siginfo *si, void *userdata) { sd_event_source *p = NULL; pid_t pid; siginfo_t plain_si; assert_se(s); assert_se(si); log_info("got signal on %c", PTR_TO_INT(userdata)); assert_se(userdata == INT_TO_PTR('e')); assert_se(sigprocmask_many(SIG_BLOCK, NULL, SIGCHLD, SIGUSR2, -1) >= 0); pid = fork(); assert_se(pid >= 0); if (pid == 0) { sigset_t ss; assert_se(sigemptyset(&ss) >= 0); assert_se(sigaddset(&ss, SIGUSR2) >= 0); zero(plain_si); assert_se(sigwaitinfo(&ss, &plain_si) >= 0); assert_se(plain_si.si_signo == SIGUSR2); assert_se(plain_si.si_value.sival_int == 4711); _exit(78); } assert_se(sd_event_add_child(sd_event_source_get_event(s), &p, pid, WEXITED, child_handler, INT_TO_PTR('f')) >= 0); assert_se(sd_event_source_set_enabled(p, SD_EVENT_ONESHOT) >= 0); assert_se(sd_event_source_set_child_process_own(p, true) >= 0); /* We can't use structured initialization here, since the structure contains various unions and these * fields lie in overlapping (carefully aligned) unions that LLVM is allergic to allow assignments * to */ zero(plain_si); plain_si.si_signo = SIGUSR2; plain_si.si_code = SI_QUEUE; plain_si.si_pid = getpid_cached(); plain_si.si_uid = getuid(); plain_si.si_value.sival_int = 4711; assert_se(sd_event_source_send_child_signal(p, SIGUSR2, &plain_si, 0) >= 0); sd_event_source_unref(s); return 1; } static int defer_handler(sd_event_source *s, void *userdata) { sd_event_source *p = NULL; assert_se(s); log_info("got defer on %c", PTR_TO_INT(userdata)); assert_se(userdata == INT_TO_PTR('d')); assert_se(sigprocmask_many(SIG_BLOCK, NULL, SIGUSR1, -1) >= 0); assert_se(sd_event_add_signal(sd_event_source_get_event(s), &p, SIGUSR1, signal_handler, INT_TO_PTR('e')) >= 0); assert_se(sd_event_source_set_enabled(p, SD_EVENT_ONESHOT) >= 0); raise(SIGUSR1); sd_event_source_unref(s); return 1; } static bool do_quit; static int time_handler(sd_event_source *s, uint64_t usec, void *userdata) { log_info("got timer on %c", PTR_TO_INT(userdata)); if (userdata == INT_TO_PTR('c')) { if (do_quit) { sd_event_source *p; assert_se(sd_event_add_defer(sd_event_source_get_event(s), &p, defer_handler, INT_TO_PTR('d')) >= 0); assert_se(sd_event_source_set_enabled(p, SD_EVENT_ONESHOT) >= 0); } else { assert_se(!got_c); got_c = true; } } else assert_not_reached(); return 2; } static bool got_exit = false; static int exit_handler(sd_event_source *s, void *userdata) { log_info("got quit handler on %c", PTR_TO_INT(userdata)); got_exit = true; return 3; } static bool got_post = false; static int post_handler(sd_event_source *s, void *userdata) { log_info("got post handler"); got_post = true; return 2; } static void test_basic_one(bool with_pidfd) { sd_event *e = NULL; sd_event_source *w = NULL, *x = NULL, *y = NULL, *z = NULL, *q = NULL, *t = NULL; static const char ch = 'x'; int a[2] = EBADF_PAIR, b[2] = EBADF_PAIR, d[2] = EBADF_PAIR, k[2] = EBADF_PAIR; uint64_t event_now; int64_t priority; log_info("/* %s(pidfd=%s) */", __func__, yes_no(with_pidfd)); assert_se(setenv("SYSTEMD_PIDFD", yes_no(with_pidfd), 1) >= 0); assert_se(pipe(a) >= 0); assert_se(pipe(b) >= 0); assert_se(pipe(d) >= 0); assert_se(pipe(k) >= 0); assert_se(sd_event_default(&e) >= 0); assert_se(sd_event_now(e, CLOCK_MONOTONIC, &event_now) > 0); assert_se(sd_event_set_watchdog(e, true) >= 0); /* Test whether we cleanly can destroy an io event source from its own handler */ got_unref = false; assert_se(sd_event_add_io(e, &t, k[0], EPOLLIN, unref_handler, NULL) >= 0); assert_se(write(k[1], &ch, 1) == 1); assert_se(sd_event_run(e, UINT64_MAX) >= 1); assert_se(got_unref); got_a = false, got_b = false, got_c = false, got_d = 0; /* Add a oneshot handler, trigger it, reenable it, and trigger it again. */ assert_se(sd_event_add_io(e, &w, d[0], EPOLLIN, io_handler, INT_TO_PTR('d')) >= 0); assert_se(sd_event_source_set_enabled(w, SD_EVENT_ONESHOT) >= 0); assert_se(write(d[1], &ch, 1) >= 0); assert_se(sd_event_run(e, UINT64_MAX) >= 1); assert_se(got_d == 1); assert_se(write(d[1], &ch, 1) >= 0); assert_se(sd_event_run(e, UINT64_MAX) >= 1); assert_se(got_d == 2); assert_se(sd_event_add_io(e, &x, a[0], EPOLLIN, io_handler, INT_TO_PTR('a')) >= 0); assert_se(sd_event_add_io(e, &y, b[0], EPOLLIN, io_handler, INT_TO_PTR('b')) >= 0); do_quit = false; assert_se(sd_event_add_time(e, &z, CLOCK_MONOTONIC, 0, 0, time_handler, INT_TO_PTR('c')) >= 0); assert_se(sd_event_add_exit(e, &q, exit_handler, INT_TO_PTR('g')) >= 0); assert_se(sd_event_source_set_priority(x, 99) >= 0); assert_se(sd_event_source_get_priority(x, &priority) >= 0); assert_se(priority == 99); assert_se(sd_event_source_set_enabled(y, SD_EVENT_ONESHOT) >= 0); assert_se(sd_event_source_set_prepare(x, prepare_handler) >= 0); assert_se(sd_event_source_set_priority(z, 50) >= 0); assert_se(sd_event_source_set_enabled(z, SD_EVENT_ONESHOT) >= 0); assert_se(sd_event_source_set_prepare(z, prepare_handler) >= 0); /* Test for floating event sources */ assert_se(sigprocmask_many(SIG_BLOCK, NULL, SIGRTMIN+1, -1) >= 0); assert_se(sd_event_add_signal(e, NULL, SIGRTMIN+1, NULL, NULL) >= 0); assert_se(write(a[1], &ch, 1) >= 0); assert_se(write(b[1], &ch, 1) >= 0); assert_se(!got_a && !got_b && !got_c); assert_se(sd_event_run(e, UINT64_MAX) >= 1); assert_se(!got_a && got_b && !got_c); assert_se(sd_event_run(e, UINT64_MAX) >= 1); assert_se(!got_a && got_b && got_c); assert_se(sd_event_run(e, UINT64_MAX) >= 1); assert_se(got_a && got_b && got_c); sd_event_source_unref(x); sd_event_source_unref(y); do_quit = true; assert_se(sd_event_add_post(e, NULL, post_handler, NULL) >= 0); assert_se(sd_event_now(e, CLOCK_MONOTONIC, &event_now) == 0); assert_se(sd_event_source_set_time(z, event_now + 200 * USEC_PER_MSEC) >= 0); assert_se(sd_event_source_set_enabled(z, SD_EVENT_ONESHOT) >= 0); assert_se(sd_event_loop(e) >= 0); assert_se(got_post); assert_se(got_exit); sd_event_source_unref(z); sd_event_source_unref(q); sd_event_source_unref(w); sd_event_unref(e); safe_close_pair(a); safe_close_pair(b); safe_close_pair(d); safe_close_pair(k); assert_se(unsetenv("SYSTEMD_PIDFD") >= 0); } TEST(basic) { test_basic_one(true); /* test with pidfd */ test_basic_one(false); /* test without pidfd */ } TEST(sd_event_now) { _cleanup_(sd_event_unrefp) sd_event *e = NULL; uint64_t event_now; assert_se(sd_event_new(&e) >= 0); assert_se(sd_event_now(e, CLOCK_MONOTONIC, &event_now) > 0); assert_se(sd_event_now(e, CLOCK_REALTIME, &event_now) > 0); assert_se(sd_event_now(e, CLOCK_REALTIME_ALARM, &event_now) > 0); assert_se(sd_event_now(e, CLOCK_BOOTTIME, &event_now) > 0); assert_se(sd_event_now(e, CLOCK_BOOTTIME_ALARM, &event_now) > 0); assert_se(sd_event_now(e, -1, &event_now) == -EOPNOTSUPP); assert_se(sd_event_now(e, 900 /* arbitrary big number */, &event_now) == -EOPNOTSUPP); assert_se(sd_event_run(e, 0) == 0); assert_se(sd_event_now(e, CLOCK_MONOTONIC, &event_now) == 0); assert_se(sd_event_now(e, CLOCK_REALTIME, &event_now) == 0); assert_se(sd_event_now(e, CLOCK_REALTIME_ALARM, &event_now) == 0); assert_se(sd_event_now(e, CLOCK_BOOTTIME, &event_now) == 0); assert_se(sd_event_now(e, CLOCK_BOOTTIME_ALARM, &event_now) == 0); assert_se(sd_event_now(e, -1, &event_now) == -EOPNOTSUPP); assert_se(sd_event_now(e, 900 /* arbitrary big number */, &event_now) == -EOPNOTSUPP); } static int last_rtqueue_sigval = 0; static int n_rtqueue = 0; static int rtqueue_handler(sd_event_source *s, const struct signalfd_siginfo *si, void *userdata) { last_rtqueue_sigval = si->ssi_int; n_rtqueue++; return 0; } TEST(rtqueue) { sd_event_source *u = NULL, *v = NULL, *s = NULL; sd_event *e = NULL; assert_se(sd_event_default(&e) >= 0); assert_se(sigprocmask_many(SIG_BLOCK, NULL, SIGRTMIN+2, SIGRTMIN+3, SIGUSR2, -1) >= 0); assert_se(sd_event_add_signal(e, &u, SIGRTMIN+2, rtqueue_handler, NULL) >= 0); assert_se(sd_event_add_signal(e, &v, SIGRTMIN+3, rtqueue_handler, NULL) >= 0); assert_se(sd_event_add_signal(e, &s, SIGUSR2, rtqueue_handler, NULL) >= 0); assert_se(sd_event_source_set_priority(v, -10) >= 0); assert_se(sigqueue(getpid_cached(), SIGRTMIN+2, (union sigval) { .sival_int = 1 }) >= 0); assert_se(sigqueue(getpid_cached(), SIGRTMIN+3, (union sigval) { .sival_int = 2 }) >= 0); assert_se(sigqueue(getpid_cached(), SIGUSR2, (union sigval) { .sival_int = 3 }) >= 0); assert_se(sigqueue(getpid_cached(), SIGRTMIN+3, (union sigval) { .sival_int = 4 }) >= 0); assert_se(sigqueue(getpid_cached(), SIGUSR2, (union sigval) { .sival_int = 5 }) >= 0); assert_se(n_rtqueue == 0); assert_se(last_rtqueue_sigval == 0); assert_se(sd_event_run(e, UINT64_MAX) >= 1); assert_se(n_rtqueue == 1); assert_se(last_rtqueue_sigval == 2); /* first SIGRTMIN+3 */ assert_se(sd_event_run(e, UINT64_MAX) >= 1); assert_se(n_rtqueue == 2); assert_se(last_rtqueue_sigval == 4); /* second SIGRTMIN+3 */ assert_se(sd_event_run(e, UINT64_MAX) >= 1); assert_se(n_rtqueue == 3); assert_se(last_rtqueue_sigval == 3); /* first SIGUSR2 */ assert_se(sd_event_run(e, UINT64_MAX) >= 1); assert_se(n_rtqueue == 4); assert_se(last_rtqueue_sigval == 1); /* SIGRTMIN+2 */ assert_se(sd_event_run(e, 0) == 0); /* the other SIGUSR2 is dropped, because the first one was still queued */ assert_se(n_rtqueue == 4); assert_se(last_rtqueue_sigval == 1); sd_event_source_unref(u); sd_event_source_unref(v); sd_event_source_unref(s); sd_event_unref(e); } #define CREATE_EVENTS_MAX (70000U) struct inotify_context { bool delete_self_handler_called; unsigned create_called[CREATE_EVENTS_MAX]; unsigned create_overflow; unsigned n_create_events; }; static void maybe_exit(sd_event_source *s, struct inotify_context *c) { unsigned n; assert_se(s); assert_se(c); if (!c->delete_self_handler_called) return; for (n = 0; n < 3; n++) { unsigned i; if (c->create_overflow & (1U << n)) continue; for (i = 0; i < c->n_create_events; i++) if (!(c->create_called[i] & (1U << n))) return; } sd_event_exit(sd_event_source_get_event(s), 0); } static int inotify_handler(sd_event_source *s, const struct inotify_event *ev, void *userdata) { struct inotify_context *c = userdata; const char *description; unsigned bit, n; assert_se(sd_event_source_get_description(s, &description) >= 0); assert_se(safe_atou(description, &n) >= 0); assert_se(n <= 3); bit = 1U << n; if (ev->mask & IN_Q_OVERFLOW) { log_info("inotify-handler <%s>: overflow", description); c->create_overflow |= bit; } else if (ev->mask & IN_CREATE) { if (streq(ev->name, "sub")) log_debug("inotify-handler <%s>: create on %s", description, ev->name); else { unsigned i; assert_se(safe_atou(ev->name, &i) >= 0); assert_se(i < c->n_create_events); c->create_called[i] |= bit; } } else if (ev->mask & IN_DELETE) { log_info("inotify-handler <%s>: delete of %s", description, ev->name); assert_se(streq(ev->name, "sub")); } else assert_not_reached(); maybe_exit(s, c); return 1; } static int delete_self_handler(sd_event_source *s, const struct inotify_event *ev, void *userdata) { struct inotify_context *c = userdata; if (ev->mask & IN_Q_OVERFLOW) { log_info("delete-self-handler: overflow"); c->delete_self_handler_called = true; } else if (ev->mask & IN_DELETE_SELF) { log_info("delete-self-handler: delete-self"); c->delete_self_handler_called = true; } else if (ev->mask & IN_IGNORED) { log_info("delete-self-handler: ignore"); } else assert_not_reached(); maybe_exit(s, c); return 1; } static void test_inotify_one(unsigned n_create_events) { _cleanup_(rm_rf_physical_and_freep) char *p = NULL; sd_event_source *a = NULL, *b = NULL, *c = NULL, *d = NULL; struct inotify_context context = { .n_create_events = n_create_events, }; sd_event *e = NULL; const char *q; unsigned i; log_info("/* %s(%u) */", __func__, n_create_events); assert_se(sd_event_default(&e) >= 0); assert_se(mkdtemp_malloc("/tmp/test-inotify-XXXXXX", &p) >= 0); assert_se(sd_event_add_inotify(e, &a, p, IN_CREATE|IN_ONLYDIR, inotify_handler, &context) >= 0); assert_se(sd_event_add_inotify(e, &b, p, IN_CREATE|IN_DELETE|IN_DONT_FOLLOW, inotify_handler, &context) >= 0); assert_se(sd_event_source_set_priority(b, SD_EVENT_PRIORITY_IDLE) >= 0); assert_se(sd_event_source_set_priority(b, SD_EVENT_PRIORITY_NORMAL) >= 0); assert_se(sd_event_add_inotify(e, &c, p, IN_CREATE|IN_DELETE|IN_EXCL_UNLINK, inotify_handler, &context) >= 0); assert_se(sd_event_source_set_priority(c, SD_EVENT_PRIORITY_IDLE) >= 0); assert_se(sd_event_source_set_description(a, "0") >= 0); assert_se(sd_event_source_set_description(b, "1") >= 0); assert_se(sd_event_source_set_description(c, "2") >= 0); q = strjoina(p, "/sub"); assert_se(touch(q) >= 0); assert_se(sd_event_add_inotify(e, &d, q, IN_DELETE_SELF, delete_self_handler, &context) >= 0); for (i = 0; i < n_create_events; i++) { char buf[DECIMAL_STR_MAX(unsigned)+1]; _cleanup_free_ char *z = NULL; xsprintf(buf, "%u", i); assert_se(z = path_join(p, buf)); assert_se(touch(z) >= 0); } assert_se(unlink(q) >= 0); assert_se(sd_event_loop(e) >= 0); sd_event_source_unref(a); sd_event_source_unref(b); sd_event_source_unref(c); sd_event_source_unref(d); sd_event_unref(e); } TEST(inotify) { test_inotify_one(100); /* should work without overflow */ test_inotify_one(33000); /* should trigger a q overflow */ } static int pidfd_handler(sd_event_source *s, const siginfo_t *si, void *userdata) { assert_se(s); assert_se(si); assert_se(si->si_uid == getuid()); assert_se(si->si_signo == SIGCHLD); assert_se(si->si_code == CLD_EXITED); assert_se(si->si_status == 66); log_info("got pidfd on %c", PTR_TO_INT(userdata)); assert_se(userdata == INT_TO_PTR('p')); assert_se(sd_event_exit(sd_event_source_get_event(s), 0) >= 0); sd_event_source_unref(s); return 0; } TEST(pidfd) { sd_event_source *s = NULL, *t = NULL; sd_event *e = NULL; int pidfd; pid_t pid, pid2; assert_se(sigprocmask_many(SIG_BLOCK, NULL, SIGCHLD, -1) >= 0); pid = fork(); if (pid == 0) /* child */ _exit(66); assert_se(pid > 1); pidfd = pidfd_open(pid, 0); if (pidfd < 0) { /* No pidfd_open() supported or blocked? */ assert_se(ERRNO_IS_NOT_SUPPORTED(errno) || ERRNO_IS_PRIVILEGE(errno)); (void) wait_for_terminate(pid, NULL); return; } pid2 = fork(); if (pid2 == 0) freeze(); assert_se(pid > 2); assert_se(sd_event_default(&e) >= 0); assert_se(sd_event_add_child_pidfd(e, &s, pidfd, WEXITED, pidfd_handler, INT_TO_PTR('p')) >= 0); assert_se(sd_event_source_set_child_pidfd_own(s, true) >= 0); /* This one should never trigger, since our second child lives forever */ assert_se(sd_event_add_child(e, &t, pid2, WEXITED, pidfd_handler, INT_TO_PTR('q')) >= 0); assert_se(sd_event_source_set_child_process_own(t, true) >= 0); assert_se(sd_event_loop(e) >= 0); /* Child should still be alive */ assert_se(kill(pid2, 0) >= 0); t = sd_event_source_unref(t); /* Child should now be dead, since we dropped the ref */ assert_se(kill(pid2, 0) < 0 && errno == ESRCH); sd_event_unref(e); } static int ratelimit_io_handler(sd_event_source *s, int fd, uint32_t revents, void *userdata) { unsigned *c = (unsigned*) userdata; *c += 1; return 0; } static int ratelimit_time_handler(sd_event_source *s, uint64_t usec, void *userdata) { int r; r = sd_event_source_set_enabled(s, SD_EVENT_ON); if (r < 0) log_warning_errno(r, "Failed to turn on notify event source: %m"); r = sd_event_source_set_time(s, usec + 1000); if (r < 0) log_error_errno(r, "Failed to restart watchdog event source: %m"); unsigned *c = (unsigned*) userdata; *c += 1; return 0; } static int expired = -1; static int ratelimit_expired(sd_event_source *s, void *userdata) { return ++expired; } TEST(ratelimit) { _cleanup_close_pair_ int p[2] = EBADF_PAIR; _cleanup_(sd_event_unrefp) sd_event *e = NULL; _cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL; uint64_t interval; unsigned count, burst; assert_se(sd_event_default(&e) >= 0); assert_se(pipe2(p, O_CLOEXEC|O_NONBLOCK) >= 0); assert_se(sd_event_add_io(e, &s, p[0], EPOLLIN, ratelimit_io_handler, &count) >= 0); assert_se(sd_event_source_set_description(s, "test-ratelimit-io") >= 0); assert_se(sd_event_source_set_ratelimit(s, 1 * USEC_PER_SEC, 5) >= 0); assert_se(sd_event_source_get_ratelimit(s, &interval, &burst) >= 0); assert_se(interval == 1 * USEC_PER_SEC && burst == 5); assert_se(write(p[1], "1", 1) == 1); count = 0; for (unsigned i = 0; i < 10; i++) { log_debug("slow loop iteration %u", i); assert_se(sd_event_run(e, UINT64_MAX) >= 0); assert_se(usleep_safe(250 * USEC_PER_MSEC) >= 0); } assert_se(sd_event_source_is_ratelimited(s) == 0); assert_se(count == 10); log_info("ratelimit_io_handler: called %u times, event source not ratelimited", count); assert_se(sd_event_source_set_ratelimit(s, 0, 0) >= 0); assert_se(sd_event_source_set_ratelimit(s, 1 * USEC_PER_SEC, 5) >= 0); count = 0; for (unsigned i = 0; i < 10; i++) { log_debug("fast event loop iteration %u", i); assert_se(sd_event_run(e, UINT64_MAX) >= 0); assert_se(usleep_safe(10) >= 0); } log_info("ratelimit_io_handler: called %u times, event source got ratelimited", count); assert_se(count < 10); s = sd_event_source_unref(s); safe_close_pair(p); count = 0; assert_se(sd_event_add_time_relative(e, &s, CLOCK_MONOTONIC, 1000, 1, ratelimit_time_handler, &count) >= 0); assert_se(sd_event_source_set_ratelimit(s, 1 * USEC_PER_SEC, 10) == 0); do { assert_se(sd_event_run(e, UINT64_MAX) >= 0); } while (!sd_event_source_is_ratelimited(s)); log_info("ratelimit_time_handler: called %u times, event source got ratelimited", count); assert_se(count == 10); /* In order to get rid of active rate limit client needs to disable it explicitly */ assert_se(sd_event_source_set_ratelimit(s, 0, 0) >= 0); assert_se(!sd_event_source_is_ratelimited(s)); assert_se(sd_event_source_set_ratelimit(s, 1 * USEC_PER_SEC, 10) >= 0); /* Set callback that will be invoked when we leave rate limited state. */ assert_se(sd_event_source_set_ratelimit_expire_callback(s, ratelimit_expired) >= 0); do { assert_se(sd_event_run(e, UINT64_MAX) >= 0); } while (!sd_event_source_is_ratelimited(s)); log_info("ratelimit_time_handler: called 10 more times, event source got ratelimited"); assert_se(count == 20); /* Dispatch the event loop once more and check that ratelimit expiration callback got called */ assert_se(sd_event_run(e, UINT64_MAX) >= 0); assert_se(expired == 0); } TEST(simple_timeout) { _cleanup_(sd_event_unrefp) sd_event *e = NULL; usec_t f, t, some_time; some_time = random_u64_range(2 * USEC_PER_SEC); assert_se(sd_event_default(&e) >= 0); assert_se(sd_event_prepare(e) == 0); f = now(CLOCK_MONOTONIC); assert_se(sd_event_wait(e, some_time) >= 0); t = now(CLOCK_MONOTONIC); /* The event loop may sleep longer than the specified time (timer accuracy, scheduling latencies, …), * but never shorter. Let's check that. */ assert_se(t >= usec_add(f, some_time)); } static int inotify_self_destroy_handler(sd_event_source *s, const struct inotify_event *ev, void *userdata) { sd_event_source **p = userdata; assert_se(ev); assert_se(p); assert_se(*p == s); assert_se(FLAGS_SET(ev->mask, IN_ATTRIB)); assert_se(sd_event_exit(sd_event_source_get_event(s), 0) >= 0); *p = sd_event_source_unref(*p); /* here's what we actually intend to test: we destroy the event * source from inside the event source handler */ return 1; } TEST(inotify_self_destroy) { _cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL; _cleanup_(sd_event_unrefp) sd_event *e = NULL; char path[] = "/tmp/inotifyXXXXXX"; _cleanup_close_ int fd = -EBADF; /* Tests that destroying an inotify event source from its own handler is safe */ assert_se(sd_event_default(&e) >= 0); fd = mkostemp_safe(path); assert_se(fd >= 0); assert_se(sd_event_add_inotify_fd(e, &s, fd, IN_ATTRIB, inotify_self_destroy_handler, &s) >= 0); fd = safe_close(fd); assert_se(unlink(path) >= 0); /* This will trigger IN_ATTRIB because link count goes to zero */ assert_se(sd_event_loop(e) >= 0); } struct inotify_process_buffered_data_context { const char *path[2]; unsigned i; }; static int inotify_process_buffered_data_handler(sd_event_source *s, const struct inotify_event *ev, void *userdata) { struct inotify_process_buffered_data_context *c = ASSERT_PTR(userdata); const char *description; assert_se(sd_event_source_get_description(s, &description) >= 0); assert_se(c->i < 2); assert_se(streq(c->path[c->i], description)); c->i++; return 1; } TEST(inotify_process_buffered_data) { _cleanup_(rm_rf_physical_and_freep) char *p = NULL, *q = NULL; _cleanup_(sd_event_source_unrefp) sd_event_source *a = NULL, *b = NULL; _cleanup_(sd_event_unrefp) sd_event *e = NULL; _cleanup_free_ char *z = NULL; /* For issue #23826 */ assert_se(sd_event_default(&e) >= 0); assert_se(mkdtemp_malloc("/tmp/test-inotify-XXXXXX", &p) >= 0); assert_se(mkdtemp_malloc("/tmp/test-inotify-XXXXXX", &q) >= 0); struct inotify_process_buffered_data_context context = { .path = { p, q }, }; assert_se(sd_event_add_inotify(e, &a, p, IN_CREATE, inotify_process_buffered_data_handler, &context) >= 0); assert_se(sd_event_add_inotify(e, &b, q, IN_CREATE, inotify_process_buffered_data_handler, &context) >= 0); assert_se(z = path_join(p, "aaa")); assert_se(touch(z) >= 0); z = mfree(z); assert_se(z = path_join(q, "bbb")); assert_se(touch(z) >= 0); z = mfree(z); assert_se(sd_event_run(e, 10 * USEC_PER_SEC) > 0); assert_se(sd_event_prepare(e) > 0); /* issue #23826: this was 0. */ assert_se(sd_event_dispatch(e) > 0); assert_se(sd_event_prepare(e) == 0); assert_se(sd_event_wait(e, 0) == 0); } TEST(fork) { _cleanup_(sd_event_unrefp) sd_event *e = NULL; int r; assert_se(sd_event_default(&e) >= 0); assert_se(sd_event_prepare(e) == 0); /* Check that after a fork the cleanup functions return NULL */ r = safe_fork("(bus-fork-test)", FORK_WAIT|FORK_LOG, NULL); if (r == 0) { assert_se(e); assert_se(sd_event_ref(e) == NULL); assert_se(sd_event_unref(e) == NULL); _exit(EXIT_SUCCESS); } assert_se(r >= 0); } TEST(sd_event_source_set_io_fd) { _cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL; _cleanup_(sd_event_unrefp) sd_event *e = NULL; _cleanup_close_pair_ int pfd_a[2] = EBADF_PAIR, pfd_b[2] = EBADF_PAIR; assert_se(sd_event_default(&e) >= 0); assert_se(pipe2(pfd_a, O_CLOEXEC) >= 0); assert_se(pipe2(pfd_b, O_CLOEXEC) >= 0); assert_se(sd_event_add_io(e, &s, pfd_a[0], EPOLLIN, NULL, INT_TO_PTR(-ENOANO)) >= 0); assert_se(sd_event_source_set_io_fd_own(s, true) >= 0); TAKE_FD(pfd_a[0]); assert_se(sd_event_source_set_io_fd(s, pfd_b[0]) >= 0); TAKE_FD(pfd_b[0]); } static int hup_callback(sd_event_source *s, int fd, uint32_t revents, void *userdata) { unsigned *c = userdata; assert_se(revents == EPOLLHUP); (*c)++; return 0; } TEST(leave_ratelimit) { bool expect_ratelimit = false, manually_left_ratelimit = false; _cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL; _cleanup_(sd_event_unrefp) sd_event *e = NULL; _cleanup_close_pair_ int pfd[2] = EBADF_PAIR; unsigned c = 0; int r; assert_se(sd_event_default(&e) >= 0); /* Create an event source that will continuously fire by creating a pipe whose write side is closed, * and which hence will only see EOF and constant EPOLLHUP */ assert_se(pipe2(pfd, O_CLOEXEC) >= 0); assert_se(sd_event_add_io(e, &s, pfd[0], EPOLLIN, hup_callback, &c) >= 0); assert_se(sd_event_source_set_io_fd_own(s, true) >= 0); assert_se(sd_event_source_set_ratelimit(s, 5*USEC_PER_MINUTE, 5) >= 0); pfd[0] = -EBADF; pfd[1] = safe_close(pfd[1]); /* Trigger continuous EOF */ for (;;) { r = sd_event_prepare(e); assert_se(r >= 0); if (r == 0) { r = sd_event_wait(e, UINT64_MAX); assert_se(r > 0); } r = sd_event_dispatch(e); assert_se(r > 0); r = sd_event_source_is_ratelimited(s); assert_se(r >= 0); if (c < 5) /* First four dispatches should just work */ assert_se(!r); else if (c == 5) { /* The fifth dispatch should still work, but we now expect the ratelimit to be hit subsequently */ if (!expect_ratelimit) { assert_se(!r); assert_se(sd_event_source_leave_ratelimit(s) == 0); /* this should be a NOP, and return 0 hence */ expect_ratelimit = true; } else { /* We expected the ratelimit, let's leave it manually, and verify it */ assert_se(r); assert_se(sd_event_source_leave_ratelimit(s) > 0); /* we are ratelimited, hence should return > 0 */ assert_se(sd_event_source_is_ratelimited(s) == 0); manually_left_ratelimit = true; } } else if (c == 6) /* On the sixth iteration let's just exit */ break; } /* Verify we definitely hit the ratelimit and left it manually again */ assert_se(manually_left_ratelimit); } DEFINE_TEST_MAIN(LOG_DEBUG);