/* SPDX-License-Identifier: LGPL-2.1-or-later */ #include #include #include #include #include #include #include #include #include #include #include "sd-event.h" #include "alloc-util.h" #include "chattr-util.h" #include "compress.h" #include "env-util.h" #include "fd-util.h" #include "format-util.h" #include "fs-util.h" #include "gcrypt-util.h" #include "id128-util.h" #include "journal-authenticate.h" #include "journal-def.h" #include "journal-file.h" #include "journal-internal.h" #include "lookup3.h" #include "memory-util.h" #include "missing_threads.h" #include "path-util.h" #include "prioq.h" #include "random-util.h" #include "set.h" #include "sort-util.h" #include "stat-util.h" #include "string-table.h" #include "string-util.h" #include "strv.h" #include "sync-util.h" #include "user-util.h" #include "xattr-util.h" #define DEFAULT_DATA_HASH_TABLE_SIZE (2047ULL*sizeof(HashItem)) #define DEFAULT_FIELD_HASH_TABLE_SIZE (333ULL*sizeof(HashItem)) #define DEFAULT_COMPRESS_THRESHOLD (512ULL) #define MIN_COMPRESS_THRESHOLD (8ULL) /* This is the minimum journal file size */ #define JOURNAL_FILE_SIZE_MIN (512 * U64_KB) /* 512 KiB */ #define JOURNAL_COMPACT_SIZE_MAX ((uint64_t) UINT32_MAX) /* 4 GiB */ /* These are the lower and upper bounds if we deduce the max_use value from the file system size */ #define MAX_USE_LOWER (1 * U64_MB) /* 1 MiB */ #define MAX_USE_UPPER (4 * U64_GB) /* 4 GiB */ /* Those are the lower and upper bounds for the minimal use limit, * i.e. how much we'll use even if keep_free suggests otherwise. */ #define MIN_USE_LOW (1 * U64_MB) /* 1 MiB */ #define MIN_USE_HIGH (16 * U64_MB) /* 16 MiB */ /* This is the upper bound if we deduce max_size from max_use */ #define MAX_SIZE_UPPER (128 * U64_MB) /* 128 MiB */ /* This is the upper bound if we deduce the keep_free value from the file system size */ #define KEEP_FREE_UPPER (4 * U64_GB) /* 4 GiB */ /* This is the keep_free value when we can't determine the system size */ #define DEFAULT_KEEP_FREE (1 * U64_MB) /* 1 MB */ /* This is the default maximum number of journal files to keep around. */ #define DEFAULT_N_MAX_FILES 100 /* n_data was the first entry we added after the initial file format design */ #define HEADER_SIZE_MIN ALIGN64(offsetof(Header, n_data)) /* How many entries to keep in the entry array chain cache at max */ #define CHAIN_CACHE_MAX 20 /* How much to increase the journal file size at once each time we allocate something new. */ #define FILE_SIZE_INCREASE (8 * U64_MB) /* 8MB */ /* Reread fstat() of the file for detecting deletions at least this often */ #define LAST_STAT_REFRESH_USEC (5*USEC_PER_SEC) /* Longest hash chain to rotate after */ #define HASH_CHAIN_DEPTH_MAX 100 #ifdef __clang__ # pragma GCC diagnostic ignored "-Waddress-of-packed-member" #endif static int mmap_prot_from_open_flags(int flags) { switch (flags & O_ACCMODE) { case O_RDONLY: return PROT_READ; case O_WRONLY: return PROT_WRITE; case O_RDWR: return PROT_READ|PROT_WRITE; default: assert_not_reached(); } } int journal_file_tail_end_by_pread(JournalFile *f, uint64_t *ret_offset) { uint64_t p; int r; assert(f); assert(f->header); assert(ret_offset); /* Same as journal_file_tail_end_by_mmap() below, but operates with pread() to avoid the mmap cache * (and thus is thread safe) */ p = le64toh(f->header->tail_object_offset); if (p == 0) p = le64toh(f->header->header_size); else { Object tail; uint64_t sz; r = journal_file_read_object_header(f, OBJECT_UNUSED, p, &tail); if (r < 0) return r; sz = le64toh(tail.object.size); if (sz > UINT64_MAX - sizeof(uint64_t) + 1) return -EBADMSG; sz = ALIGN64(sz); if (p > UINT64_MAX - sz) return -EBADMSG; p += sz; } *ret_offset = p; return 0; } int journal_file_tail_end_by_mmap(JournalFile *f, uint64_t *ret_offset) { uint64_t p; int r; assert(f); assert(f->header); assert(ret_offset); /* Same as journal_file_tail_end_by_pread() above, but operates with the usual mmap logic */ p = le64toh(f->header->tail_object_offset); if (p == 0) p = le64toh(f->header->header_size); else { Object *tail; uint64_t sz; r = journal_file_move_to_object(f, OBJECT_UNUSED, p, &tail); if (r < 0) return r; sz = le64toh(READ_NOW(tail->object.size)); if (sz > UINT64_MAX - sizeof(uint64_t) + 1) return -EBADMSG; sz = ALIGN64(sz); if (p > UINT64_MAX - sz) return -EBADMSG; p += sz; } *ret_offset = p; return 0; } int journal_file_set_offline_thread_join(JournalFile *f) { int r; assert(f); if (f->offline_state == OFFLINE_JOINED) return 0; r = pthread_join(f->offline_thread, NULL); if (r) return -r; f->offline_state = OFFLINE_JOINED; if (mmap_cache_fd_got_sigbus(f->cache_fd)) return -EIO; return 0; } static int journal_file_set_online(JournalFile *f) { bool wait = true; assert(f); if (!journal_file_writable(f)) return -EPERM; if (f->fd < 0 || !f->header) return -EINVAL; while (wait) { switch (f->offline_state) { case OFFLINE_JOINED: /* No offline thread, no need to wait. */ wait = false; break; case OFFLINE_SYNCING: { OfflineState tmp_state = OFFLINE_SYNCING; if (!__atomic_compare_exchange_n(&f->offline_state, &tmp_state, OFFLINE_CANCEL, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) continue; } /* Canceled syncing prior to offlining, no need to wait. */ wait = false; break; case OFFLINE_AGAIN_FROM_SYNCING: { OfflineState tmp_state = OFFLINE_AGAIN_FROM_SYNCING; if (!__atomic_compare_exchange_n(&f->offline_state, &tmp_state, OFFLINE_CANCEL, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) continue; } /* Canceled restart from syncing, no need to wait. */ wait = false; break; case OFFLINE_AGAIN_FROM_OFFLINING: { OfflineState tmp_state = OFFLINE_AGAIN_FROM_OFFLINING; if (!__atomic_compare_exchange_n(&f->offline_state, &tmp_state, OFFLINE_CANCEL, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) continue; } /* Canceled restart from offlining, must wait for offlining to complete however. */ _fallthrough_; default: { int r; r = journal_file_set_offline_thread_join(f); if (r < 0) return r; wait = false; break; } } } if (mmap_cache_fd_got_sigbus(f->cache_fd)) return -EIO; switch (f->header->state) { case STATE_ONLINE: return 0; case STATE_OFFLINE: f->header->state = STATE_ONLINE; (void) fsync(f->fd); return 0; default: return -EINVAL; } } JournalFile* journal_file_close(JournalFile *f) { if (!f) return NULL; assert(f->newest_boot_id_prioq_idx == PRIOQ_IDX_NULL); sd_event_source_disable_unref(f->post_change_timer); if (f->cache_fd) mmap_cache_fd_free(f->cache_fd); if (f->close_fd) safe_close(f->fd); free(f->path); ordered_hashmap_free_free(f->chain_cache); #if HAVE_COMPRESSION free(f->compress_buffer); #endif #if HAVE_GCRYPT if (f->fss_file) { size_t sz = PAGE_ALIGN(f->fss_file_size); assert(sz < SIZE_MAX); munmap(f->fss_file, sz); } else free(f->fsprg_state); free(f->fsprg_seed); if (f->hmac) sym_gcry_md_close(f->hmac); #endif return mfree(f); } static bool keyed_hash_requested(void) { static thread_local int cached = -1; int r; if (cached < 0) { r = getenv_bool("SYSTEMD_JOURNAL_KEYED_HASH"); if (r < 0) { if (r != -ENXIO) log_debug_errno(r, "Failed to parse $SYSTEMD_JOURNAL_KEYED_HASH environment variable, ignoring: %m"); cached = true; } else cached = r; } return cached; } static bool compact_mode_requested(void) { static thread_local int cached = -1; int r; if (cached < 0) { r = getenv_bool("SYSTEMD_JOURNAL_COMPACT"); if (r < 0) { if (r != -ENXIO) log_debug_errno(r, "Failed to parse $SYSTEMD_JOURNAL_COMPACT environment variable, ignoring: %m"); cached = true; } else cached = r; } return cached; } #if HAVE_COMPRESSION static Compression getenv_compression(void) { Compression c; const char *e; int r; e = getenv("SYSTEMD_JOURNAL_COMPRESS"); if (!e) return DEFAULT_COMPRESSION; r = parse_boolean(e); if (r >= 0) return r ? DEFAULT_COMPRESSION : COMPRESSION_NONE; c = compression_from_string(e); if (c < 0) { log_debug_errno(c, "Failed to parse SYSTEMD_JOURNAL_COMPRESS value, ignoring: %s", e); return DEFAULT_COMPRESSION; } if (!compression_supported(c)) { log_debug("Unsupported compression algorithm specified, ignoring: %s", e); return DEFAULT_COMPRESSION; } return c; } #endif static Compression compression_requested(void) { #if HAVE_COMPRESSION static thread_local Compression cached = _COMPRESSION_INVALID; if (cached < 0) cached = getenv_compression(); return cached; #else return COMPRESSION_NONE; #endif } static int journal_file_init_header( JournalFile *f, JournalFileFlags file_flags, JournalFile *template) { bool seal = false; ssize_t k; int r; assert(f); #if HAVE_GCRYPT /* Try to load the FSPRG state, and if we can't, then just don't do sealing */ seal = FLAGS_SET(file_flags, JOURNAL_SEAL) && journal_file_fss_load(f) >= 0; #endif Header h = { .header_size = htole64(ALIGN64(sizeof(h))), .incompatible_flags = htole32( FLAGS_SET(file_flags, JOURNAL_COMPRESS) * COMPRESSION_TO_HEADER_INCOMPATIBLE_FLAG(compression_requested()) | keyed_hash_requested() * HEADER_INCOMPATIBLE_KEYED_HASH | compact_mode_requested() * HEADER_INCOMPATIBLE_COMPACT), .compatible_flags = htole32( (seal * (HEADER_COMPATIBLE_SEALED | HEADER_COMPATIBLE_SEALED_CONTINUOUS) ) | HEADER_COMPATIBLE_TAIL_ENTRY_BOOT_ID), }; assert_cc(sizeof(h.signature) == sizeof(HEADER_SIGNATURE)); memcpy(h.signature, HEADER_SIGNATURE, sizeof(HEADER_SIGNATURE)); r = sd_id128_randomize(&h.file_id); if (r < 0) return r; r = sd_id128_get_machine(&h.machine_id); if (r < 0 && !ERRNO_IS_MACHINE_ID_UNSET(r)) return r; /* If we have no valid machine ID (test environment?), let's simply leave the * machine ID field all zeroes. */ if (template) { h.seqnum_id = template->header->seqnum_id; h.tail_entry_seqnum = template->header->tail_entry_seqnum; } else h.seqnum_id = h.file_id; k = pwrite(f->fd, &h, sizeof(h), 0); if (k < 0) return -errno; if (k != sizeof(h)) return -EIO; return 0; } static int journal_file_refresh_header(JournalFile *f) { int r; assert(f); assert(f->header); /* We used to update the header's boot ID field here, but we don't do that anymore, as per * HEADER_COMPATIBLE_TAIL_ENTRY_BOOT_ID */ r = journal_file_set_online(f); /* Sync the online state to disk; likely just created a new file, also sync the directory this file * is located in. */ (void) fsync_full(f->fd); return r; } static bool warn_wrong_flags(const JournalFile *f, bool compatible) { const uint32_t any = compatible ? HEADER_COMPATIBLE_ANY : HEADER_INCOMPATIBLE_ANY, supported = compatible ? HEADER_COMPATIBLE_SUPPORTED : HEADER_INCOMPATIBLE_SUPPORTED; const char *type = compatible ? "compatible" : "incompatible"; uint32_t flags; assert(f); assert(f->header); flags = le32toh(compatible ? f->header->compatible_flags : f->header->incompatible_flags); if (flags & ~supported) { if (flags & ~any) log_debug("Journal file %s has unknown %s flags 0x%"PRIx32, f->path, type, flags & ~any); flags = (flags & any) & ~supported; if (flags) { const char* strv[6]; size_t n = 0; _cleanup_free_ char *t = NULL; if (compatible) { if (flags & HEADER_COMPATIBLE_SEALED) strv[n++] = "sealed"; if (flags & HEADER_COMPATIBLE_SEALED_CONTINUOUS) strv[n++] = "sealed-continuous"; } else { if (flags & HEADER_INCOMPATIBLE_COMPRESSED_XZ) strv[n++] = "xz-compressed"; if (flags & HEADER_INCOMPATIBLE_COMPRESSED_LZ4) strv[n++] = "lz4-compressed"; if (flags & HEADER_INCOMPATIBLE_COMPRESSED_ZSTD) strv[n++] = "zstd-compressed"; if (flags & HEADER_INCOMPATIBLE_KEYED_HASH) strv[n++] = "keyed-hash"; if (flags & HEADER_INCOMPATIBLE_COMPACT) strv[n++] = "compact"; } strv[n] = NULL; assert(n < ELEMENTSOF(strv)); t = strv_join((char**) strv, ", "); log_debug("Journal file %s uses %s %s %s disabled at compilation time.", f->path, type, n > 1 ? "flags" : "flag", strnull(t)); } return true; } return false; } static bool offset_is_valid(uint64_t offset, uint64_t header_size, uint64_t tail_object_offset) { if (offset == 0) return true; if (!VALID64(offset)) return false; if (offset < header_size) return false; if (offset > tail_object_offset) return false; return true; } static bool hash_table_is_valid(uint64_t offset, uint64_t size, uint64_t header_size, uint64_t arena_size, uint64_t tail_object_offset) { if ((offset == 0) != (size == 0)) return false; if (offset == 0) return true; if (offset <= offsetof(Object, hash_table.items)) return false; offset -= offsetof(Object, hash_table.items); if (!offset_is_valid(offset, header_size, tail_object_offset)) return false; assert(offset <= header_size + arena_size); if (size > header_size + arena_size - offset) return false; return true; } static int journal_file_verify_header(JournalFile *f) { uint64_t arena_size, header_size; assert(f); assert(f->header); if (memcmp(f->header->signature, HEADER_SIGNATURE, 8)) return -EBADMSG; /* In both read and write mode we refuse to open files with incompatible * flags we don't know. */ if (warn_wrong_flags(f, false)) return -EPROTONOSUPPORT; /* When open for writing we refuse to open files with compatible flags, too. */ if (journal_file_writable(f) && warn_wrong_flags(f, true)) return -EPROTONOSUPPORT; if (f->header->state >= _STATE_MAX) return -EBADMSG; header_size = le64toh(READ_NOW(f->header->header_size)); /* The first addition was n_data, so check that we are at least this large */ if (header_size < HEADER_SIZE_MIN) return -EBADMSG; /* When open for writing we refuse to open files with a mismatch of the header size, i.e. writing to * files implementing older or new header structures. */ if (journal_file_writable(f) && header_size != sizeof(Header)) return -EPROTONOSUPPORT; /* Don't write to journal files without the new boot ID update behavior guarantee. */ if (journal_file_writable(f) && !JOURNAL_HEADER_TAIL_ENTRY_BOOT_ID(f->header)) return -EPROTONOSUPPORT; if (JOURNAL_HEADER_SEALED(f->header) && !JOURNAL_HEADER_CONTAINS(f->header, n_entry_arrays)) return -EBADMSG; arena_size = le64toh(READ_NOW(f->header->arena_size)); if (UINT64_MAX - header_size < arena_size || header_size + arena_size > (uint64_t) f->last_stat.st_size) return -ENODATA; uint64_t tail_object_offset = le64toh(f->header->tail_object_offset); if (!offset_is_valid(tail_object_offset, header_size, UINT64_MAX)) return -ENODATA; if (header_size + arena_size < tail_object_offset) return -ENODATA; if (header_size + arena_size - tail_object_offset < sizeof(ObjectHeader)) return -ENODATA; if (!hash_table_is_valid(le64toh(f->header->data_hash_table_offset), le64toh(f->header->data_hash_table_size), header_size, arena_size, tail_object_offset)) return -ENODATA; if (!hash_table_is_valid(le64toh(f->header->field_hash_table_offset), le64toh(f->header->field_hash_table_size), header_size, arena_size, tail_object_offset)) return -ENODATA; uint64_t entry_array_offset = le64toh(f->header->entry_array_offset); if (!offset_is_valid(entry_array_offset, header_size, tail_object_offset)) return -ENODATA; if (JOURNAL_HEADER_CONTAINS(f->header, tail_entry_array_offset)) { uint32_t offset = le32toh(f->header->tail_entry_array_offset); uint32_t n = le32toh(f->header->tail_entry_array_n_entries); if (!offset_is_valid(offset, header_size, tail_object_offset)) return -ENODATA; if (entry_array_offset > offset) return -ENODATA; if (entry_array_offset == 0 && offset != 0) return -ENODATA; if ((offset == 0) != (n == 0)) return -ENODATA; assert(offset <= header_size + arena_size); if ((uint64_t) n * journal_file_entry_array_item_size(f) > header_size + arena_size - offset) return -ENODATA; } if (JOURNAL_HEADER_CONTAINS(f->header, tail_entry_offset)) { uint64_t offset = le64toh(f->header->tail_entry_offset); if (!offset_is_valid(offset, header_size, tail_object_offset)) return -ENODATA; if (offset > 0) { /* When there is an entry object, then these fields must be filled. */ if (sd_id128_is_null(f->header->tail_entry_boot_id)) return -ENODATA; if (!VALID_REALTIME(le64toh(f->header->head_entry_realtime))) return -ENODATA; if (!VALID_REALTIME(le64toh(f->header->tail_entry_realtime))) return -ENODATA; if (!VALID_MONOTONIC(le64toh(f->header->tail_entry_monotonic))) return -ENODATA; } else { /* Otherwise, the fields must be zero. */ if (JOURNAL_HEADER_TAIL_ENTRY_BOOT_ID(f->header) && !sd_id128_is_null(f->header->tail_entry_boot_id)) return -ENODATA; if (f->header->head_entry_realtime != 0) return -ENODATA; if (f->header->tail_entry_realtime != 0) return -ENODATA; if (f->header->tail_entry_monotonic != 0) return -ENODATA; } } /* Verify number of objects */ uint64_t n_objects = le64toh(f->header->n_objects); if (n_objects > arena_size / sizeof(ObjectHeader)) return -ENODATA; uint64_t n_entries = le64toh(f->header->n_entries); if (n_entries > n_objects) return -ENODATA; if (JOURNAL_HEADER_CONTAINS(f->header, n_data) && le64toh(f->header->n_data) > n_objects) return -ENODATA; if (JOURNAL_HEADER_CONTAINS(f->header, n_fields) && le64toh(f->header->n_fields) > n_objects) return -ENODATA; if (JOURNAL_HEADER_CONTAINS(f->header, n_tags) && le64toh(f->header->n_tags) > n_objects) return -ENODATA; if (JOURNAL_HEADER_CONTAINS(f->header, n_entry_arrays) && le64toh(f->header->n_entry_arrays) > n_objects) return -ENODATA; if (JOURNAL_HEADER_CONTAINS(f->header, tail_entry_array_n_entries) && le32toh(f->header->tail_entry_array_n_entries) > n_entries) return -ENODATA; if (journal_file_writable(f)) { sd_id128_t machine_id; uint8_t state; int r; r = sd_id128_get_machine(&machine_id); if (ERRNO_IS_NEG_MACHINE_ID_UNSET(r)) /* Gracefully handle the machine ID not being initialized yet */ machine_id = SD_ID128_NULL; else if (r < 0) return r; if (!sd_id128_equal(machine_id, f->header->machine_id)) return log_debug_errno(SYNTHETIC_ERRNO(EHOSTDOWN), "Trying to open journal file from different host for writing, refusing."); state = f->header->state; if (state == STATE_ARCHIVED) return -ESHUTDOWN; /* Already archived */ if (state == STATE_ONLINE) return log_debug_errno(SYNTHETIC_ERRNO(EBUSY), "Journal file %s is already online. Assuming unclean closing.", f->path); if (state != STATE_OFFLINE) return log_debug_errno(SYNTHETIC_ERRNO(EBUSY), "Journal file %s has unknown state %i.", f->path, state); if (f->header->field_hash_table_size == 0 || f->header->data_hash_table_size == 0) return -EBADMSG; } return 0; } int journal_file_fstat(JournalFile *f) { int r; assert(f); assert(f->fd >= 0); if (fstat(f->fd, &f->last_stat) < 0) return -errno; f->last_stat_usec = now(CLOCK_MONOTONIC); /* Refuse dealing with files that aren't regular */ r = stat_verify_regular(&f->last_stat); if (r < 0) return r; /* Refuse appending to files that are already deleted */ r = stat_verify_linked(&f->last_stat); if (r < 0) return r; return 0; } static int journal_file_allocate(JournalFile *f, uint64_t offset, uint64_t size) { uint64_t old_size, new_size, old_header_size, old_arena_size; int r; assert(f); assert(f->header); /* We assume that this file is not sparse, and we know that for sure, since we always call * posix_fallocate() ourselves */ if (size > PAGE_ALIGN_DOWN_U64(UINT64_MAX) - offset) return -EINVAL; if (mmap_cache_fd_got_sigbus(f->cache_fd)) return -EIO; old_header_size = le64toh(READ_NOW(f->header->header_size)); old_arena_size = le64toh(READ_NOW(f->header->arena_size)); if (old_arena_size > PAGE_ALIGN_DOWN_U64(UINT64_MAX) - old_header_size) return -EBADMSG; old_size = old_header_size + old_arena_size; new_size = MAX(PAGE_ALIGN_U64(offset + size), old_header_size); if (new_size <= old_size) { /* We already pre-allocated enough space, but before * we write to it, let's check with fstat() if the * file got deleted, in order make sure we don't throw * away the data immediately. Don't check fstat() for * all writes though, but only once ever 10s. */ if (f->last_stat_usec + LAST_STAT_REFRESH_USEC > now(CLOCK_MONOTONIC)) return 0; return journal_file_fstat(f); } /* Allocate more space. */ if (f->metrics.max_size > 0 && new_size > f->metrics.max_size) return -E2BIG; /* Refuse to go over 4G in compact mode so offsets can be stored in 32-bit. */ if (JOURNAL_HEADER_COMPACT(f->header) && new_size > UINT32_MAX) return -E2BIG; if (new_size > f->metrics.min_size && f->metrics.keep_free > 0) { struct statvfs svfs; if (fstatvfs(f->fd, &svfs) >= 0) { uint64_t available; available = LESS_BY(u64_multiply_safe(svfs.f_bfree, svfs.f_bsize), f->metrics.keep_free); if (new_size - old_size > available) return -E2BIG; } } /* Increase by larger blocks at once */ new_size = ROUND_UP(new_size, FILE_SIZE_INCREASE); if (f->metrics.max_size > 0 && new_size > f->metrics.max_size) new_size = f->metrics.max_size; /* Note that the glibc fallocate() fallback is very inefficient, hence we try to minimize the allocation area as we can. */ r = posix_fallocate_loop(f->fd, old_size, new_size - old_size); if (r < 0) return r; f->header->arena_size = htole64(new_size - old_header_size); return journal_file_fstat(f); } static int journal_file_move_to( JournalFile *f, ObjectType type, bool keep_always, uint64_t offset, uint64_t size, void **ret) { int r; assert(f); assert(ret); /* This function may clear, overwrite, or alter previously cached entries with the same type. After * this function has been called, all previously read objects with the same type may be invalidated, * hence must be re-read before use. */ if (size <= 0) return -EINVAL; if (size > UINT64_MAX - offset) return -EBADMSG; /* Avoid SIGBUS on invalid accesses */ if (offset + size > (uint64_t) f->last_stat.st_size) { /* Hmm, out of range? Let's refresh the fstat() data * first, before we trust that check. */ r = journal_file_fstat(f); if (r < 0) return r; if (offset + size > (uint64_t) f->last_stat.st_size) return -EADDRNOTAVAIL; } return mmap_cache_fd_get(f->cache_fd, type_to_category(type), keep_always, offset, size, &f->last_stat, ret); } static uint64_t minimum_header_size(JournalFile *f, Object *o) { static const uint64_t table[] = { [OBJECT_DATA] = sizeof(DataObject), [OBJECT_FIELD] = sizeof(FieldObject), [OBJECT_ENTRY] = sizeof(EntryObject), [OBJECT_DATA_HASH_TABLE] = sizeof(HashTableObject), [OBJECT_FIELD_HASH_TABLE] = sizeof(HashTableObject), [OBJECT_ENTRY_ARRAY] = sizeof(EntryArrayObject), [OBJECT_TAG] = sizeof(TagObject), }; assert(f); assert(o); if (o->object.type == OBJECT_DATA) return journal_file_data_payload_offset(f); if (o->object.type >= ELEMENTSOF(table) || table[o->object.type] <= 0) return sizeof(ObjectHeader); return table[o->object.type]; } static int check_object_header(JournalFile *f, Object *o, ObjectType type, uint64_t offset) { uint64_t s; assert(f); assert(o); s = le64toh(READ_NOW(o->object.size)); if (s == 0) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to move to uninitialized object: %" PRIu64, offset); if (s < sizeof(ObjectHeader)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to move to overly short object with size %"PRIu64": %" PRIu64, s, offset); if (o->object.type <= OBJECT_UNUSED || o->object.type >= _OBJECT_TYPE_MAX) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to move to object with invalid type (%u): %" PRIu64, o->object.type, offset); if (type > OBJECT_UNUSED && o->object.type != type) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Found %s object while expecting %s object: %" PRIu64, journal_object_type_to_string(o->object.type), journal_object_type_to_string(type), offset); if (s < minimum_header_size(f, o)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Size of %s object (%"PRIu64") is smaller than the minimum object size (%"PRIu64"): %" PRIu64, journal_object_type_to_string(o->object.type), s, minimum_header_size(f, o), offset); return 0; } /* Lightweight object checks. We want this to be fast, so that we won't * slowdown every journal_file_move_to_object() call too much. */ static int check_object(JournalFile *f, Object *o, uint64_t offset) { assert(f); assert(o); switch (o->object.type) { case OBJECT_DATA: if ((le64toh(o->data.entry_offset) == 0) ^ (le64toh(o->data.n_entries) == 0)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Bad data n_entries: %" PRIu64 ": %" PRIu64, le64toh(o->data.n_entries), offset); if (le64toh(o->object.size) <= journal_file_data_payload_offset(f)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Bad data size (<= %zu): %" PRIu64 ": %" PRIu64, journal_file_data_payload_offset(f), le64toh(o->object.size), offset); if (!VALID64(le64toh(o->data.next_hash_offset)) || !VALID64(le64toh(o->data.next_field_offset)) || !VALID64(le64toh(o->data.entry_offset)) || !VALID64(le64toh(o->data.entry_array_offset))) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid offset, next_hash_offset=" OFSfmt ", next_field_offset=" OFSfmt ", entry_offset=" OFSfmt ", entry_array_offset=" OFSfmt ": %" PRIu64, le64toh(o->data.next_hash_offset), le64toh(o->data.next_field_offset), le64toh(o->data.entry_offset), le64toh(o->data.entry_array_offset), offset); break; case OBJECT_FIELD: if (le64toh(o->object.size) <= offsetof(Object, field.payload)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Bad field size (<= %zu): %" PRIu64 ": %" PRIu64, offsetof(Object, field.payload), le64toh(o->object.size), offset); if (!VALID64(le64toh(o->field.next_hash_offset)) || !VALID64(le64toh(o->field.head_data_offset))) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid offset, next_hash_offset=" OFSfmt ", head_data_offset=" OFSfmt ": %" PRIu64, le64toh(o->field.next_hash_offset), le64toh(o->field.head_data_offset), offset); break; case OBJECT_ENTRY: { uint64_t sz; sz = le64toh(READ_NOW(o->object.size)); if (sz < offsetof(Object, entry.items) || (sz - offsetof(Object, entry.items)) % journal_file_entry_item_size(f) != 0) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Bad entry size (<= %zu): %" PRIu64 ": %" PRIu64, offsetof(Object, entry.items), sz, offset); if ((sz - offsetof(Object, entry.items)) / journal_file_entry_item_size(f) <= 0) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid number items in entry: %" PRIu64 ": %" PRIu64, (sz - offsetof(Object, entry.items)) / journal_file_entry_item_size(f), offset); if (le64toh(o->entry.seqnum) <= 0) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid entry seqnum: %" PRIx64 ": %" PRIu64, le64toh(o->entry.seqnum), offset); if (!VALID_REALTIME(le64toh(o->entry.realtime))) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid entry realtime timestamp: %" PRIu64 ": %" PRIu64, le64toh(o->entry.realtime), offset); if (!VALID_MONOTONIC(le64toh(o->entry.monotonic))) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid entry monotonic timestamp: %" PRIu64 ": %" PRIu64, le64toh(o->entry.monotonic), offset); if (sd_id128_is_null(o->entry.boot_id)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid object entry with an empty boot ID: %" PRIu64, offset); break; } case OBJECT_DATA_HASH_TABLE: case OBJECT_FIELD_HASH_TABLE: { uint64_t sz; sz = le64toh(READ_NOW(o->object.size)); if (sz < offsetof(Object, hash_table.items) || (sz - offsetof(Object, hash_table.items)) % sizeof(HashItem) != 0 || (sz - offsetof(Object, hash_table.items)) / sizeof(HashItem) <= 0) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid %s hash table size: %" PRIu64 ": %" PRIu64, journal_object_type_to_string(o->object.type), sz, offset); break; } case OBJECT_ENTRY_ARRAY: { uint64_t sz, next; sz = le64toh(READ_NOW(o->object.size)); if (sz < offsetof(Object, entry_array.items) || (sz - offsetof(Object, entry_array.items)) % journal_file_entry_array_item_size(f) != 0 || (sz - offsetof(Object, entry_array.items)) / journal_file_entry_array_item_size(f) <= 0) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid object entry array size: %" PRIu64 ": %" PRIu64, sz, offset); /* Here, we request that the offset of each entry array object is in strictly increasing order. */ next = le64toh(o->entry_array.next_entry_array_offset); if (!VALID64(next) || (next > 0 && next <= offset)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid object entry array next_entry_array_offset: %" PRIu64 ": %" PRIu64, next, offset); break; } case OBJECT_TAG: if (le64toh(o->object.size) != sizeof(TagObject)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid object tag size: %" PRIu64 ": %" PRIu64, le64toh(o->object.size), offset); if (!VALID_EPOCH(le64toh(o->tag.epoch))) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid object tag epoch: %" PRIu64 ": %" PRIu64, le64toh(o->tag.epoch), offset); break; } return 0; } int journal_file_move_to_object(JournalFile *f, ObjectType type, uint64_t offset, Object **ret) { int r; Object *o; assert(f); /* Even if this function fails, it may clear, overwrite, or alter previously cached entries with the * same type. After this function has been called, all previously read objects with the same type may * be invalidated, hence must be re-read before use. */ /* Objects may only be located at multiple of 64 bit */ if (!VALID64(offset)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to move to %s object at non-64-bit boundary: %" PRIu64, journal_object_type_to_string(type), offset); /* Object may not be located in the file header */ if (offset < le64toh(f->header->header_size)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to move to %s object located in file header: %" PRIu64, journal_object_type_to_string(type), offset); r = journal_file_move_to(f, type, false, offset, sizeof(ObjectHeader), (void**) &o); if (r < 0) return r; r = check_object_header(f, o, type, offset); if (r < 0) return r; r = journal_file_move_to(f, type, false, offset, le64toh(READ_NOW(o->object.size)), (void**) &o); if (r < 0) return r; r = check_object_header(f, o, type, offset); if (r < 0) return r; r = check_object(f, o, offset); if (r < 0) return r; if (ret) *ret = o; return 0; } int journal_file_pin_object(JournalFile *f, Object *o) { assert(f); assert(o); /* This attaches the mmap window that provides the object to the 'pinning' category. So, reading * another object with the same type will not invalidate the object, until this function is called * for another object. */ return mmap_cache_fd_pin(f->cache_fd, type_to_category(o->object.type), o, le64toh(o->object.size)); } int journal_file_read_object_header(JournalFile *f, ObjectType type, uint64_t offset, Object *ret) { ssize_t n; Object o; int r; assert(f); /* Objects may only be located at multiple of 64 bit */ if (!VALID64(offset)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to read %s object at non-64-bit boundary: %" PRIu64, journal_object_type_to_string(type), offset); /* Object may not be located in the file header */ if (offset < le64toh(f->header->header_size)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to read %s object located in file header: %" PRIu64, journal_object_type_to_string(type), offset); /* This will likely read too much data but it avoids having to call pread() twice. */ n = pread(f->fd, &o, sizeof(o), offset); if (n < 0) return log_debug_errno(errno, "Failed to read journal %s object at offset: %" PRIu64, journal_object_type_to_string(type), offset); if ((size_t) n < sizeof(o.object)) return log_debug_errno(SYNTHETIC_ERRNO(EIO), "Failed to read short %s object at offset: %" PRIu64, journal_object_type_to_string(type), offset); r = check_object_header(f, &o, type, offset); if (r < 0) return r; if ((size_t) n < minimum_header_size(f, &o)) return log_debug_errno(SYNTHETIC_ERRNO(EIO), "Short read while reading %s object: %" PRIu64, journal_object_type_to_string(type), offset); r = check_object(f, &o, offset); if (r < 0) return r; if (ret) *ret = o; return 0; } static uint64_t inc_seqnum(uint64_t seqnum) { if (seqnum < UINT64_MAX-1) return seqnum + 1; return 1; /* skip over UINT64_MAX and 0 when we run out of seqnums and start again */ } static uint64_t journal_file_entry_seqnum( JournalFile *f, uint64_t *seqnum) { uint64_t next_seqnum; assert(f); assert(f->header); /* Picks a new sequence number for the entry we are about to add and returns it. */ next_seqnum = inc_seqnum(le64toh(f->header->tail_entry_seqnum)); /* If an external seqnum counter was passed, we update both the local and the external one, and set * it to the maximum of both */ if (seqnum) *seqnum = next_seqnum = MAX(inc_seqnum(*seqnum), next_seqnum); f->header->tail_entry_seqnum = htole64(next_seqnum); if (f->header->head_entry_seqnum == 0) f->header->head_entry_seqnum = htole64(next_seqnum); return next_seqnum; } int journal_file_append_object( JournalFile *f, ObjectType type, uint64_t size, Object **ret_object, uint64_t *ret_offset) { int r; uint64_t p; Object *o; assert(f); assert(f->header); assert(type > OBJECT_UNUSED && type < _OBJECT_TYPE_MAX); assert(size >= sizeof(ObjectHeader)); r = journal_file_set_online(f); if (r < 0) return r; r = journal_file_tail_end_by_mmap(f, &p); if (r < 0) return r; r = journal_file_allocate(f, p, size); if (r < 0) return r; r = journal_file_move_to(f, type, false, p, size, (void**) &o); if (r < 0) return r; o->object = (ObjectHeader) { .type = type, .size = htole64(size), }; f->header->tail_object_offset = htole64(p); f->header->n_objects = htole64(le64toh(f->header->n_objects) + 1); if (ret_object) *ret_object = o; if (ret_offset) *ret_offset = p; return 0; } static int journal_file_setup_data_hash_table(JournalFile *f) { uint64_t s, p; Object *o; int r; assert(f); assert(f->header); /* We estimate that we need 1 hash table entry per 768 bytes of journal file and we want to make sure we never get beyond 75% fill level. Calculate the hash table size for the maximum file size based on these metrics. */ s = (f->metrics.max_size * 4 / 768 / 3) * sizeof(HashItem); if (s < DEFAULT_DATA_HASH_TABLE_SIZE) s = DEFAULT_DATA_HASH_TABLE_SIZE; log_debug("Reserving %"PRIu64" entries in data hash table.", s / sizeof(HashItem)); r = journal_file_append_object(f, OBJECT_DATA_HASH_TABLE, offsetof(Object, hash_table.items) + s, &o, &p); if (r < 0) return r; memzero(o->hash_table.items, s); f->header->data_hash_table_offset = htole64(p + offsetof(Object, hash_table.items)); f->header->data_hash_table_size = htole64(s); return 0; } static int journal_file_setup_field_hash_table(JournalFile *f) { uint64_t s, p; Object *o; int r; assert(f); assert(f->header); /* We use a fixed size hash table for the fields as this * number should grow very slowly only */ s = DEFAULT_FIELD_HASH_TABLE_SIZE; log_debug("Reserving %"PRIu64" entries in field hash table.", s / sizeof(HashItem)); r = journal_file_append_object(f, OBJECT_FIELD_HASH_TABLE, offsetof(Object, hash_table.items) + s, &o, &p); if (r < 0) return r; memzero(o->hash_table.items, s); f->header->field_hash_table_offset = htole64(p + offsetof(Object, hash_table.items)); f->header->field_hash_table_size = htole64(s); return 0; } int journal_file_map_data_hash_table(JournalFile *f) { uint64_t s, p; void *t; int r; assert(f); assert(f->header); if (f->data_hash_table) return 0; p = le64toh(f->header->data_hash_table_offset); s = le64toh(f->header->data_hash_table_size); r = journal_file_move_to(f, OBJECT_DATA_HASH_TABLE, true, p, s, &t); if (r < 0) return r; f->data_hash_table = t; return 0; } int journal_file_map_field_hash_table(JournalFile *f) { uint64_t s, p; void *t; int r; assert(f); assert(f->header); if (f->field_hash_table) return 0; p = le64toh(f->header->field_hash_table_offset); s = le64toh(f->header->field_hash_table_size); r = journal_file_move_to(f, OBJECT_FIELD_HASH_TABLE, true, p, s, &t); if (r < 0) return r; f->field_hash_table = t; return 0; } static int journal_file_link_field( JournalFile *f, Object *o, uint64_t offset, uint64_t hash) { uint64_t p, h, m; int r; assert(f); assert(f->header); assert(f->field_hash_table); assert(o); assert(offset > 0); if (o->object.type != OBJECT_FIELD) return -EINVAL; m = le64toh(READ_NOW(f->header->field_hash_table_size)) / sizeof(HashItem); if (m <= 0) return -EBADMSG; /* This might alter the window we are looking at */ o->field.next_hash_offset = o->field.head_data_offset = 0; h = hash % m; p = le64toh(f->field_hash_table[h].tail_hash_offset); if (p == 0) f->field_hash_table[h].head_hash_offset = htole64(offset); else { r = journal_file_move_to_object(f, OBJECT_FIELD, p, &o); if (r < 0) return r; o->field.next_hash_offset = htole64(offset); } f->field_hash_table[h].tail_hash_offset = htole64(offset); if (JOURNAL_HEADER_CONTAINS(f->header, n_fields)) f->header->n_fields = htole64(le64toh(f->header->n_fields) + 1); return 0; } static int journal_file_link_data( JournalFile *f, Object *o, uint64_t offset, uint64_t hash) { uint64_t p, h, m; int r; assert(f); assert(f->header); assert(f->data_hash_table); assert(o); assert(offset > 0); if (o->object.type != OBJECT_DATA) return -EINVAL; m = le64toh(READ_NOW(f->header->data_hash_table_size)) / sizeof(HashItem); if (m <= 0) return -EBADMSG; /* This might alter the window we are looking at */ o->data.next_hash_offset = o->data.next_field_offset = 0; o->data.entry_offset = o->data.entry_array_offset = 0; o->data.n_entries = 0; h = hash % m; p = le64toh(f->data_hash_table[h].tail_hash_offset); if (p == 0) /* Only entry in the hash table is easy */ f->data_hash_table[h].head_hash_offset = htole64(offset); else { /* Move back to the previous data object, to patch in * pointer */ r = journal_file_move_to_object(f, OBJECT_DATA, p, &o); if (r < 0) return r; o->data.next_hash_offset = htole64(offset); } f->data_hash_table[h].tail_hash_offset = htole64(offset); if (JOURNAL_HEADER_CONTAINS(f->header, n_data)) f->header->n_data = htole64(le64toh(f->header->n_data) + 1); return 0; } static int get_next_hash_offset( JournalFile *f, uint64_t *p, le64_t *next_hash_offset, uint64_t *depth, le64_t *header_max_depth) { uint64_t nextp; assert(f); assert(p); assert(next_hash_offset); assert(depth); nextp = le64toh(READ_NOW(*next_hash_offset)); if (nextp > 0) { if (nextp <= *p) /* Refuse going in loops */ return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Detected hash item loop in %s, refusing.", f->path); (*depth)++; /* If the depth of this hash chain is larger than all others we have seen so far, record it */ if (header_max_depth && journal_file_writable(f)) *header_max_depth = htole64(MAX(*depth, le64toh(*header_max_depth))); } *p = nextp; return 0; } int journal_file_find_field_object_with_hash( JournalFile *f, const void *field, uint64_t size, uint64_t hash, Object **ret_object, uint64_t *ret_offset) { uint64_t p, osize, h, m, depth = 0; int r; assert(f); assert(f->header); assert(field); assert(size > 0); /* If the field hash table is empty, we can't find anything */ if (le64toh(f->header->field_hash_table_size) <= 0) return 0; /* Map the field hash table, if it isn't mapped yet. */ r = journal_file_map_field_hash_table(f); if (r < 0) return r; osize = offsetof(Object, field.payload) + size; m = le64toh(READ_NOW(f->header->field_hash_table_size)) / sizeof(HashItem); if (m <= 0) return -EBADMSG; h = hash % m; p = le64toh(f->field_hash_table[h].head_hash_offset); while (p > 0) { Object *o; r = journal_file_move_to_object(f, OBJECT_FIELD, p, &o); if (r < 0) return r; if (le64toh(o->field.hash) == hash && le64toh(o->object.size) == osize && memcmp(o->field.payload, field, size) == 0) { if (ret_object) *ret_object = o; if (ret_offset) *ret_offset = p; return 1; } r = get_next_hash_offset( f, &p, &o->field.next_hash_offset, &depth, JOURNAL_HEADER_CONTAINS(f->header, field_hash_chain_depth) ? &f->header->field_hash_chain_depth : NULL); if (r < 0) return r; } return 0; } uint64_t journal_file_hash_data( JournalFile *f, const void *data, size_t sz) { assert(f); assert(f->header); assert(data || sz == 0); /* We try to unify our codebase on siphash, hence new-styled journal files utilizing the keyed hash * function use siphash. Old journal files use the Jenkins hash. */ if (JOURNAL_HEADER_KEYED_HASH(f->header)) return siphash24(data, sz, f->header->file_id.bytes); return jenkins_hash64(data, sz); } int journal_file_find_field_object( JournalFile *f, const void *field, uint64_t size, Object **ret_object, uint64_t *ret_offset) { assert(f); assert(field); assert(size > 0); return journal_file_find_field_object_with_hash( f, field, size, journal_file_hash_data(f, field, size), ret_object, ret_offset); } int journal_file_find_data_object_with_hash( JournalFile *f, const void *data, uint64_t size, uint64_t hash, Object **ret_object, uint64_t *ret_offset) { uint64_t p, h, m, depth = 0; int r; assert(f); assert(f->header); assert(data || size == 0); /* If there's no data hash table, then there's no entry. */ if (le64toh(f->header->data_hash_table_size) <= 0) return 0; /* Map the data hash table, if it isn't mapped yet. */ r = journal_file_map_data_hash_table(f); if (r < 0) return r; m = le64toh(READ_NOW(f->header->data_hash_table_size)) / sizeof(HashItem); if (m <= 0) return -EBADMSG; h = hash % m; p = le64toh(f->data_hash_table[h].head_hash_offset); while (p > 0) { Object *o; void *d; size_t rsize; r = journal_file_move_to_object(f, OBJECT_DATA, p, &o); if (r < 0) return r; if (le64toh(o->data.hash) != hash) goto next; r = journal_file_data_payload(f, o, p, NULL, 0, 0, &d, &rsize); if (r < 0) return r; assert(r > 0); /* journal_file_data_payload() always returns > 0 if no field is provided. */ if (memcmp_nn(data, size, d, rsize) == 0) { if (ret_object) *ret_object = o; if (ret_offset) *ret_offset = p; return 1; } next: r = get_next_hash_offset( f, &p, &o->data.next_hash_offset, &depth, JOURNAL_HEADER_CONTAINS(f->header, data_hash_chain_depth) ? &f->header->data_hash_chain_depth : NULL); if (r < 0) return r; } return 0; } int journal_file_find_data_object( JournalFile *f, const void *data, uint64_t size, Object **ret_object, uint64_t *ret_offset) { assert(f); assert(data || size == 0); return journal_file_find_data_object_with_hash( f, data, size, journal_file_hash_data(f, data, size), ret_object, ret_offset); } bool journal_field_valid(const char *p, size_t l, bool allow_protected) { /* We kinda enforce POSIX syntax recommendations for environment variables here, but make a couple of additional requirements. http://pubs.opengroup.org/onlinepubs/000095399/basedefs/xbd_chap08.html */ assert(p); if (l == SIZE_MAX) l = strlen(p); /* No empty field names */ if (l <= 0) return false; /* Don't allow names longer than 64 chars */ if (l > 64) return false; /* Variables starting with an underscore are protected */ if (!allow_protected && p[0] == '_') return false; /* Don't allow digits as first character */ if (ascii_isdigit(p[0])) return false; /* Only allow A-Z0-9 and '_' */ for (const char *a = p; a < p + l; a++) if ((*a < 'A' || *a > 'Z') && !ascii_isdigit(*a) && *a != '_') return false; return true; } static int journal_file_append_field( JournalFile *f, const void *field, uint64_t size, Object **ret_object, uint64_t *ret_offset) { uint64_t hash, p; uint64_t osize; Object *o; int r; assert(f); assert(field); assert(size > 0); if (!journal_field_valid(field, size, true)) return -EBADMSG; hash = journal_file_hash_data(f, field, size); r = journal_file_find_field_object_with_hash(f, field, size, hash, ret_object, ret_offset); if (r < 0) return r; if (r > 0) return 0; osize = offsetof(Object, field.payload) + size; r = journal_file_append_object(f, OBJECT_FIELD, osize, &o, &p); if (r < 0) return r; o->field.hash = htole64(hash); memcpy(o->field.payload, field, size); r = journal_file_link_field(f, o, p, hash); if (r < 0) return r; /* The linking might have altered the window, so let's only pass the offset to hmac which will * move to the object again if needed. */ #if HAVE_GCRYPT r = journal_file_hmac_put_object(f, OBJECT_FIELD, NULL, p); if (r < 0) return r; #endif if (ret_object) { r = journal_file_move_to_object(f, OBJECT_FIELD, p, ret_object); if (r < 0) return r; } if (ret_offset) *ret_offset = p; return 0; } static int maybe_compress_payload(JournalFile *f, uint8_t *dst, const uint8_t *src, uint64_t size, size_t *rsize) { assert(f); assert(f->header); #if HAVE_COMPRESSION Compression c; int r; c = JOURNAL_FILE_COMPRESSION(f); if (c == COMPRESSION_NONE || size < f->compress_threshold_bytes) return 0; r = compress_blob(c, src, size, dst, size - 1, rsize); if (r < 0) return log_debug_errno(r, "Failed to compress data object using %s, ignoring: %m", compression_to_string(c)); log_debug("Compressed data object %"PRIu64" -> %zu using %s", size, *rsize, compression_to_string(c)); return 1; /* compressed */ #else return 0; #endif } static int journal_file_append_data( JournalFile *f, const void *data, uint64_t size, Object **ret_object, uint64_t *ret_offset) { uint64_t hash, p, osize; Object *o, *fo; size_t rsize = 0; const void *eq; int r; assert(f); if (!data || size == 0) return -EINVAL; hash = journal_file_hash_data(f, data, size); r = journal_file_find_data_object_with_hash(f, data, size, hash, ret_object, ret_offset); if (r < 0) return r; if (r > 0) return 0; eq = memchr(data, '=', size); if (!eq) return -EINVAL; osize = journal_file_data_payload_offset(f) + size; r = journal_file_append_object(f, OBJECT_DATA, osize, &o, &p); if (r < 0) return r; o->data.hash = htole64(hash); r = maybe_compress_payload(f, journal_file_data_payload_field(f, o), data, size, &rsize); if (r <= 0) /* We don't really care failures, let's continue without compression */ memcpy_safe(journal_file_data_payload_field(f, o), data, size); else { Compression c = JOURNAL_FILE_COMPRESSION(f); assert(c >= 0 && c < _COMPRESSION_MAX && c != COMPRESSION_NONE); o->object.size = htole64(journal_file_data_payload_offset(f) + rsize); o->object.flags |= COMPRESSION_TO_OBJECT_FLAG(c); } r = journal_file_link_data(f, o, p, hash); if (r < 0) return r; /* The linking might have altered the window, so let's refresh our pointer. */ r = journal_file_move_to_object(f, OBJECT_DATA, p, &o); if (r < 0) return r; #if HAVE_GCRYPT r = journal_file_hmac_put_object(f, OBJECT_DATA, o, p); if (r < 0) return r; #endif /* Create field object ... */ r = journal_file_append_field(f, data, (uint8_t*) eq - (uint8_t*) data, &fo, NULL); if (r < 0) return r; /* ... and link it in. */ o->data.next_field_offset = fo->field.head_data_offset; fo->field.head_data_offset = le64toh(p); if (ret_object) *ret_object = o; if (ret_offset) *ret_offset = p; return 0; } static int maybe_decompress_payload( JournalFile *f, uint8_t *payload, uint64_t size, Compression compression, const char *field, size_t field_length, size_t data_threshold, void **ret_data, size_t *ret_size) { assert(f); /* We can't read objects larger than 4G on a 32-bit machine */ if ((uint64_t) (size_t) size != size) return -E2BIG; if (compression != COMPRESSION_NONE) { #if HAVE_COMPRESSION size_t rsize; int r; if (field) { r = decompress_startswith(compression, payload, size, &f->compress_buffer, field, field_length, '='); if (r < 0) return log_debug_errno(r, "Cannot decompress %s object of length %" PRIu64 ": %m", compression_to_string(compression), size); if (r == 0) { if (ret_data) *ret_data = NULL; if (ret_size) *ret_size = 0; return 0; } } r = decompress_blob(compression, payload, size, &f->compress_buffer, &rsize, 0); if (r < 0) return r; if (ret_data) *ret_data = f->compress_buffer; if (ret_size) *ret_size = rsize; #else return -EPROTONOSUPPORT; #endif } else { if (field && (size < field_length + 1 || memcmp(payload, field, field_length) != 0 || payload[field_length] != '=')) { if (ret_data) *ret_data = NULL; if (ret_size) *ret_size = 0; return 0; } if (ret_data) *ret_data = payload; if (ret_size) *ret_size = (size_t) size; } return 1; } int journal_file_data_payload( JournalFile *f, Object *o, uint64_t offset, const char *field, size_t field_length, size_t data_threshold, void **ret_data, size_t *ret_size) { uint64_t size; Compression c; int r; assert(f); assert(!field == (field_length == 0)); /* These must be specified together. */ if (!o) { r = journal_file_move_to_object(f, OBJECT_DATA, offset, &o); if (r < 0) return r; } size = le64toh(READ_NOW(o->object.size)); if (size < journal_file_data_payload_offset(f)) return -EBADMSG; size -= journal_file_data_payload_offset(f); c = COMPRESSION_FROM_OBJECT(o); if (c < 0) return -EPROTONOSUPPORT; return maybe_decompress_payload(f, journal_file_data_payload_field(f, o), size, c, field, field_length, data_threshold, ret_data, ret_size); } uint64_t journal_file_entry_n_items(JournalFile *f, Object *o) { uint64_t sz; assert(f); assert(o); if (o->object.type != OBJECT_ENTRY) return 0; sz = le64toh(READ_NOW(o->object.size)); if (sz < offsetof(Object, entry.items)) return 0; return (sz - offsetof(Object, entry.items)) / journal_file_entry_item_size(f); } uint64_t journal_file_entry_array_n_items(JournalFile *f, Object *o) { uint64_t sz; assert(f); assert(o); if (o->object.type != OBJECT_ENTRY_ARRAY) return 0; sz = le64toh(READ_NOW(o->object.size)); if (sz < offsetof(Object, entry_array.items)) return 0; return (sz - offsetof(Object, entry_array.items)) / journal_file_entry_array_item_size(f); } uint64_t journal_file_hash_table_n_items(Object *o) { uint64_t sz; assert(o); if (!IN_SET(o->object.type, OBJECT_DATA_HASH_TABLE, OBJECT_FIELD_HASH_TABLE)) return 0; sz = le64toh(READ_NOW(o->object.size)); if (sz < offsetof(Object, hash_table.items)) return 0; return (sz - offsetof(Object, hash_table.items)) / sizeof(HashItem); } static void write_entry_array_item(JournalFile *f, Object *o, uint64_t i, uint64_t p) { assert(f); assert(o); if (JOURNAL_HEADER_COMPACT(f->header)) { assert(p <= UINT32_MAX); o->entry_array.items.compact[i] = htole32(p); } else o->entry_array.items.regular[i] = htole64(p); } static int link_entry_into_array( JournalFile *f, le64_t *first, le64_t *idx, le32_t *tail, le32_t *tidx, uint64_t p) { uint64_t n = 0, ap = 0, q, i, a, hidx; Object *o; int r; assert(f); assert(f->header); assert(first); assert(idx); assert(p > 0); a = tail ? le32toh(*tail) : le64toh(*first); hidx = le64toh(READ_NOW(*idx)); i = tidx ? le32toh(READ_NOW(*tidx)) : hidx; while (a > 0) { r = journal_file_move_to_object(f, OBJECT_ENTRY_ARRAY, a, &o); if (r < 0) return r; n = journal_file_entry_array_n_items(f, o); if (i < n) { write_entry_array_item(f, o, i, p); *idx = htole64(hidx + 1); if (tidx) *tidx = htole32(le32toh(*tidx) + 1); return 0; } i -= n; ap = a; a = le64toh(o->entry_array.next_entry_array_offset); } if (hidx > n) n = (hidx+1) * 2; else n = n * 2; if (n < 4) n = 4; r = journal_file_append_object(f, OBJECT_ENTRY_ARRAY, offsetof(Object, entry_array.items) + n * journal_file_entry_array_item_size(f), &o, &q); if (r < 0) return r; #if HAVE_GCRYPT r = journal_file_hmac_put_object(f, OBJECT_ENTRY_ARRAY, o, q); if (r < 0) return r; #endif write_entry_array_item(f, o, i, p); if (ap == 0) *first = htole64(q); else { r = journal_file_move_to_object(f, OBJECT_ENTRY_ARRAY, ap, &o); if (r < 0) return r; o->entry_array.next_entry_array_offset = htole64(q); } if (tail) *tail = htole32(q); if (JOURNAL_HEADER_CONTAINS(f->header, n_entry_arrays)) f->header->n_entry_arrays = htole64(le64toh(f->header->n_entry_arrays) + 1); *idx = htole64(hidx + 1); if (tidx) *tidx = htole32(1); return 0; } static int link_entry_into_array_plus_one( JournalFile *f, le64_t *extra, le64_t *first, le64_t *idx, le32_t *tail, le32_t *tidx, uint64_t p) { uint64_t hidx; int r; assert(f); assert(extra); assert(first); assert(idx); assert(p > 0); hidx = le64toh(READ_NOW(*idx)); if (hidx == UINT64_MAX) return -EBADMSG; if (hidx == 0) *extra = htole64(p); else { le64_t i; i = htole64(hidx - 1); r = link_entry_into_array(f, first, &i, tail, tidx, p); if (r < 0) return r; } *idx = htole64(hidx + 1); return 0; } static int journal_file_link_entry_item(JournalFile *f, uint64_t offset, uint64_t p) { Object *o; int r; assert(f); assert(offset > 0); r = journal_file_move_to_object(f, OBJECT_DATA, p, &o); if (r < 0) return r; return link_entry_into_array_plus_one(f, &o->data.entry_offset, &o->data.entry_array_offset, &o->data.n_entries, JOURNAL_HEADER_COMPACT(f->header) ? &o->data.compact.tail_entry_array_offset : NULL, JOURNAL_HEADER_COMPACT(f->header) ? &o->data.compact.tail_entry_array_n_entries : NULL, offset); } static int journal_file_link_entry( JournalFile *f, Object *o, uint64_t offset, const EntryItem items[], size_t n_items) { int r; assert(f); assert(f->header); assert(o); assert(offset > 0); if (o->object.type != OBJECT_ENTRY) return -EINVAL; __atomic_thread_fence(__ATOMIC_SEQ_CST); /* Link up the entry itself */ r = link_entry_into_array(f, &f->header->entry_array_offset, &f->header->n_entries, JOURNAL_HEADER_CONTAINS(f->header, tail_entry_array_offset) ? &f->header->tail_entry_array_offset : NULL, JOURNAL_HEADER_CONTAINS(f->header, tail_entry_array_n_entries) ? &f->header->tail_entry_array_n_entries : NULL, offset); if (r < 0) return r; /* log_debug("=> %s seqnr=%"PRIu64" n_entries=%"PRIu64, f->path, o->entry.seqnum, f->header->n_entries); */ if (f->header->head_entry_realtime == 0) f->header->head_entry_realtime = o->entry.realtime; f->header->tail_entry_realtime = o->entry.realtime; f->header->tail_entry_monotonic = o->entry.monotonic; if (JOURNAL_HEADER_CONTAINS(f->header, tail_entry_offset)) f->header->tail_entry_offset = htole64(offset); /* Link up the items */ for (uint64_t i = 0; i < n_items; i++) { int k; /* If we fail to link an entry item because we can't allocate a new entry array, don't fail * immediately but try to link the other entry items since it might still be possible to link * those if they don't require a new entry array to be allocated. */ k = journal_file_link_entry_item(f, offset, items[i].object_offset); if (k == -E2BIG) r = k; else if (k < 0) return k; } return r; } static void write_entry_item(JournalFile *f, Object *o, uint64_t i, const EntryItem *item) { assert(f); assert(o); assert(item); if (JOURNAL_HEADER_COMPACT(f->header)) { assert(item->object_offset <= UINT32_MAX); o->entry.items.compact[i].object_offset = htole32(item->object_offset); } else { o->entry.items.regular[i].object_offset = htole64(item->object_offset); o->entry.items.regular[i].hash = htole64(item->hash); } } static int journal_file_append_entry_internal( JournalFile *f, const dual_timestamp *ts, const sd_id128_t *boot_id, const sd_id128_t *machine_id, uint64_t xor_hash, const EntryItem items[], size_t n_items, uint64_t *seqnum, sd_id128_t *seqnum_id, Object **ret_object, uint64_t *ret_offset) { uint64_t np; uint64_t osize; Object *o; int r; assert(f); assert(f->header); assert(ts); assert(boot_id); assert(!sd_id128_is_null(*boot_id)); assert(items || n_items == 0); if (f->strict_order) { /* If requested be stricter with ordering in this journal file, to make searching via * bisection fully deterministic. This is an optional feature, so that if desired journal * files can be written where the ordering is not strictly enforced (in which case bisection * will yield *a* result, but not the *only* result, when searching for points in * time). Strict ordering mode is enabled when journald originally writes the files, but * might not necessarily be if other tools (the remoting tools for example) write journal * files from combined sources. * * Typically, if any of the errors generated here are seen journald will just rotate the * journal files and start anew. */ if (ts->realtime < le64toh(f->header->tail_entry_realtime)) return log_debug_errno(SYNTHETIC_ERRNO(EREMCHG), "Realtime timestamp %" PRIu64 " smaller than previous realtime " "timestamp %" PRIu64 ", refusing entry.", ts->realtime, le64toh(f->header->tail_entry_realtime)); if (sd_id128_equal(*boot_id, f->header->tail_entry_boot_id) && ts->monotonic < le64toh(f->header->tail_entry_monotonic)) return log_debug_errno( SYNTHETIC_ERRNO(ENOTNAM), "Monotonic timestamp %" PRIu64 " smaller than previous monotonic timestamp %" PRIu64 " while having the same boot ID, refusing entry.", ts->monotonic, le64toh(f->header->tail_entry_monotonic)); } if (seqnum_id) { /* Settle the passed in sequence number ID */ if (sd_id128_is_null(*seqnum_id)) *seqnum_id = f->header->seqnum_id; /* Caller has none assigned, then copy the one from the file */ else if (!sd_id128_equal(*seqnum_id, f->header->seqnum_id)) { /* Different seqnum IDs? We can't allow entries from multiple IDs end up in the same journal.*/ if (le64toh(f->header->n_entries) == 0) f->header->seqnum_id = *seqnum_id; /* Caller has one, and file so far has no entries, then copy the one from the caller */ else return log_debug_errno(SYNTHETIC_ERRNO(EILSEQ), "Sequence number IDs don't match, refusing entry."); } } if (machine_id && sd_id128_is_null(f->header->machine_id)) /* Initialize machine ID when not set yet */ f->header->machine_id = *machine_id; osize = offsetof(Object, entry.items) + (n_items * journal_file_entry_item_size(f)); r = journal_file_append_object(f, OBJECT_ENTRY, osize, &o, &np); if (r < 0) return r; o->entry.seqnum = htole64(journal_file_entry_seqnum(f, seqnum)); o->entry.realtime = htole64(ts->realtime); o->entry.monotonic = htole64(ts->monotonic); o->entry.xor_hash = htole64(xor_hash); o->entry.boot_id = f->header->tail_entry_boot_id = *boot_id; for (size_t i = 0; i < n_items; i++) write_entry_item(f, o, i, &items[i]); #if HAVE_GCRYPT r = journal_file_hmac_put_object(f, OBJECT_ENTRY, o, np); if (r < 0) return r; #endif r = journal_file_link_entry(f, o, np, items, n_items); if (r < 0) return r; if (ret_object) *ret_object = o; if (ret_offset) *ret_offset = np; return r; } void journal_file_post_change(JournalFile *f) { assert(f); if (f->fd < 0) return; /* inotify() does not receive IN_MODIFY events from file * accesses done via mmap(). After each access we hence * trigger IN_MODIFY by truncating the journal file to its * current size which triggers IN_MODIFY. */ __atomic_thread_fence(__ATOMIC_SEQ_CST); if (ftruncate(f->fd, f->last_stat.st_size) < 0) log_debug_errno(errno, "Failed to truncate file to its own size: %m"); } static int post_change_thunk(sd_event_source *timer, uint64_t usec, void *userdata) { assert(userdata); journal_file_post_change(userdata); return 1; } static void schedule_post_change(JournalFile *f) { sd_event *e; int r; assert(f); assert(f->post_change_timer); assert_se(e = sd_event_source_get_event(f->post_change_timer)); /* If we are already going down, post the change immediately. */ if (IN_SET(sd_event_get_state(e), SD_EVENT_EXITING, SD_EVENT_FINISHED)) goto fail; r = sd_event_source_get_enabled(f->post_change_timer, NULL); if (r < 0) { log_debug_errno(r, "Failed to get ftruncate timer state: %m"); goto fail; } if (r > 0) return; r = sd_event_source_set_time_relative(f->post_change_timer, f->post_change_timer_period); if (r < 0) { log_debug_errno(r, "Failed to set time for scheduling ftruncate: %m"); goto fail; } r = sd_event_source_set_enabled(f->post_change_timer, SD_EVENT_ONESHOT); if (r < 0) { log_debug_errno(r, "Failed to enable scheduled ftruncate: %m"); goto fail; } return; fail: /* On failure, let's simply post the change immediately. */ journal_file_post_change(f); } /* Enable coalesced change posting in a timer on the provided sd_event instance */ int journal_file_enable_post_change_timer(JournalFile *f, sd_event *e, usec_t t) { _cleanup_(sd_event_source_unrefp) sd_event_source *timer = NULL; int r; assert(f); assert_return(!f->post_change_timer, -EINVAL); assert(e); assert(t); /* If we are already going down, we cannot install the timer. * In such case, the caller needs to call journal_file_post_change() explicitly. */ if (IN_SET(sd_event_get_state(e), SD_EVENT_EXITING, SD_EVENT_FINISHED)) return 0; r = sd_event_add_time(e, &timer, CLOCK_MONOTONIC, 0, 0, post_change_thunk, f); if (r < 0) return r; r = sd_event_source_set_enabled(timer, SD_EVENT_OFF); if (r < 0) return r; f->post_change_timer = TAKE_PTR(timer); f->post_change_timer_period = t; return 1; } static int entry_item_cmp(const EntryItem *a, const EntryItem *b) { return CMP(ASSERT_PTR(a)->object_offset, ASSERT_PTR(b)->object_offset); } static size_t remove_duplicate_entry_items(EntryItem items[], size_t n) { size_t j = 1; assert(items || n == 0); if (n <= 1) return n; for (size_t i = 1; i < n; i++) if (items[i].object_offset != items[j - 1].object_offset) items[j++] = items[i]; return j; } int journal_file_append_entry( JournalFile *f, const dual_timestamp *ts, const sd_id128_t *boot_id, const struct iovec iovec[], size_t n_iovec, uint64_t *seqnum, sd_id128_t *seqnum_id, Object **ret_object, uint64_t *ret_offset) { _cleanup_free_ EntryItem *items_alloc = NULL; EntryItem *items; uint64_t xor_hash = 0; struct dual_timestamp _ts; sd_id128_t _boot_id, _machine_id, *machine_id; int r; assert(f); assert(f->header); assert(iovec); assert(n_iovec > 0); if (ts) { if (!VALID_REALTIME(ts->realtime)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid realtime timestamp %" PRIu64 ", refusing entry.", ts->realtime); if (!VALID_MONOTONIC(ts->monotonic)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid monotonic timestamp %" PRIu64 ", refusing entry.", ts->monotonic); } else { dual_timestamp_now(&_ts); ts = &_ts; } if (boot_id) { if (sd_id128_is_null(*boot_id)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Empty boot ID, refusing entry."); } else { r = sd_id128_get_boot(&_boot_id); if (r < 0) return r; boot_id = &_boot_id; } r = sd_id128_get_machine(&_machine_id); if (ERRNO_IS_NEG_MACHINE_ID_UNSET(r)) /* Gracefully handle the machine ID not being initialized yet */ machine_id = NULL; else if (r < 0) return r; else machine_id = &_machine_id; #if HAVE_GCRYPT r = journal_file_maybe_append_tag(f, ts->realtime); if (r < 0) return r; #endif if (n_iovec < ALLOCA_MAX / sizeof(EntryItem) / 2) items = newa(EntryItem, n_iovec); else { items_alloc = new(EntryItem, n_iovec); if (!items_alloc) return -ENOMEM; items = items_alloc; } for (size_t i = 0; i < n_iovec; i++) { uint64_t p; Object *o; r = journal_file_append_data(f, iovec[i].iov_base, iovec[i].iov_len, &o, &p); if (r < 0) return r; /* When calculating the XOR hash field, we need to take special care if the "keyed-hash" * journal file flag is on. We use the XOR hash field to quickly determine the identity of a * specific record, and give records with otherwise identical position (i.e. match in seqno, * timestamp, …) a stable ordering. But for that we can't have it that the hash of the * objects in each file is different since they are keyed. Hence let's calculate the Jenkins * hash here for that. This also has the benefit that cursors for old and new journal files * are completely identical (they include the XOR hash after all). For classic Jenkins-hash * files things are easier, we can just take the value from the stored record directly. */ if (JOURNAL_HEADER_KEYED_HASH(f->header)) xor_hash ^= jenkins_hash64(iovec[i].iov_base, iovec[i].iov_len); else xor_hash ^= le64toh(o->data.hash); items[i] = (EntryItem) { .object_offset = p, .hash = le64toh(o->data.hash), }; } /* Order by the position on disk, in order to improve seek * times for rotating media. */ typesafe_qsort(items, n_iovec, entry_item_cmp); n_iovec = remove_duplicate_entry_items(items, n_iovec); r = journal_file_append_entry_internal( f, ts, boot_id, machine_id, xor_hash, items, n_iovec, seqnum, seqnum_id, ret_object, ret_offset); /* If the memory mapping triggered a SIGBUS then we return an * IO error and ignore the error code passed down to us, since * it is very likely just an effect of a nullified replacement * mapping page */ if (mmap_cache_fd_got_sigbus(f->cache_fd)) r = -EIO; if (f->post_change_timer) schedule_post_change(f); else journal_file_post_change(f); return r; } typedef struct ChainCacheItem { uint64_t first; /* The offset of the entry array object at the beginning of the chain, * i.e., le64toh(f->header->entry_array_offset), or le64toh(o->data.entry_offset). */ uint64_t array; /* The offset of the cached entry array object. */ uint64_t begin; /* The offset of the first item in the cached array. */ uint64_t total; /* The total number of items in all arrays before the cached one in the chain. */ uint64_t last_index; /* The last index we looked at in the cached array, to optimize locality when bisecting. */ } ChainCacheItem; static void chain_cache_put( OrderedHashmap *h, ChainCacheItem *ci, uint64_t first, uint64_t array, uint64_t begin, uint64_t total, uint64_t last_index) { assert(h); if (!ci) { /* If the chain item to cache for this chain is the * first one it's not worth caching anything */ if (array == first) return; if (ordered_hashmap_size(h) >= CHAIN_CACHE_MAX) { ci = ordered_hashmap_steal_first(h); assert(ci); } else { ci = new(ChainCacheItem, 1); if (!ci) return; } ci->first = first; if (ordered_hashmap_put(h, &ci->first, ci) < 0) { free(ci); return; } } else assert(ci->first == first); ci->array = array; ci->begin = begin; ci->total = total; ci->last_index = last_index; } static int bump_array_index(uint64_t *i, direction_t direction, uint64_t n) { assert(i); /* Increase or decrease the specified index, in the right direction. */ if (direction == DIRECTION_DOWN) { if (*i >= n - 1) return 0; (*i)++; } else { if (*i <= 0) return 0; (*i)--; } return 1; } static int bump_entry_array( JournalFile *f, Object *o, /* the current entry array object. */ uint64_t offset, /* the offset of the entry array object. */ uint64_t first, /* The offset of the first entry array object in the chain. */ direction_t direction, uint64_t *ret) { int r; assert(f); assert(ret); if (direction == DIRECTION_DOWN) { assert(o); assert(o->object.type == OBJECT_ENTRY_ARRAY); *ret = le64toh(o->entry_array.next_entry_array_offset); } else { /* Entry array chains are a singly linked list, so to find the previous array in the chain, we have * to start iterating from the top. */ assert(offset > 0); uint64_t p = first, q = 0; while (p > 0 && p != offset) { r = journal_file_move_to_object(f, OBJECT_ENTRY_ARRAY, p, &o); if (r < 0) return r; q = p; p = le64toh(o->entry_array.next_entry_array_offset); } /* If we can't find the previous entry array in the entry array chain, we're likely dealing with a * corrupted journal file. */ if (p == 0) return -EBADMSG; *ret = q; } return *ret > 0; } static int generic_array_get( JournalFile *f, uint64_t first, /* The offset of the first entry array object in the chain. */ uint64_t i, /* The index of the target object counted from the beginning of the entry array chain. */ direction_t direction, Object **ret_object, /* The found object. */ uint64_t *ret_offset) { /* The offset of the found object. */ uint64_t a, t = 0, k = 0; /* Explicit initialization of k to appease gcc */ ChainCacheItem *ci; Object *o = NULL; int r; assert(f); /* FIXME: fix return value assignment on success. */ a = first; /* Try the chain cache first */ ci = ordered_hashmap_get(f->chain_cache, &first); if (ci && i > ci->total) { a = ci->array; i -= ci->total; t = ci->total; } while (a > 0) { r = journal_file_move_to_object(f, OBJECT_ENTRY_ARRAY, a, &o); if (IN_SET(r, -EBADMSG, -EADDRNOTAVAIL)) { /* If there's corruption and we're going downwards, let's pretend we reached the * final entry in the entry array chain. */ if (direction == DIRECTION_DOWN) return 0; /* If there's corruption and we're going upwards, move back to the previous entry * array and start iterating entries from there. */ i = UINT64_MAX; break; } if (r < 0) return r; k = journal_file_entry_array_n_items(f, o); if (k == 0) return 0; if (i < k) break; /* The index is larger than the number of elements in the array. Let's move to the next array. */ i -= k; t += k; a = le64toh(o->entry_array.next_entry_array_offset); } /* If we've found the right location, now look for the first non-corrupt entry object (in the right * direction). */ while (a > 0) { if (i == UINT64_MAX) { r = bump_entry_array(f, o, a, first, direction, &a); if (r <= 0) return r; r = journal_file_move_to_object(f, OBJECT_ENTRY_ARRAY, a, &o); if (r < 0) return r; k = journal_file_entry_array_n_items(f, o); if (k == 0) break; if (direction == DIRECTION_DOWN) i = 0; else { /* We moved to the previous array. The total must be decreased. */ if (t < k) return -EBADMSG; /* chain cache is broken ? */ i = k - 1; t -= k; } } do { uint64_t p; p = journal_file_entry_array_item(f, o, i); r = journal_file_move_to_object(f, OBJECT_ENTRY, p, ret_object); if (r >= 0) { /* Let's cache this item for the next invocation */ chain_cache_put(f->chain_cache, ci, first, a, journal_file_entry_array_item(f, o, 0), t, i); if (ret_offset) *ret_offset = p; return 1; } if (!IN_SET(r, -EADDRNOTAVAIL, -EBADMSG)) return r; /* OK, so this entry is borked. Most likely some entry didn't get synced to * disk properly, let's see if the next one might work for us instead. */ log_debug_errno(r, "Entry item %" PRIu64 " is bad, skipping over it.", i); } while (bump_array_index(&i, direction, k) > 0); /* All entries tried in the above do-while loop are broken. Let's move to the next (or previous) array. */ if (direction == DIRECTION_DOWN) /* We are going to the next array, the total must be incremented. */ t += k; i = UINT64_MAX; } return 0; } enum { TEST_FOUND, /* The current object passes the test. */ TEST_LEFT, /* The current object is in an earlier position, and the object we are looking * for should exist in a later position. */ TEST_RIGHT, /* The current object is in a later position, and the object we are looking for * should exist in an earlier position. */ TEST_GOTO_NEXT, /* No matching object exists in this array and earlier arrays, go to the next array. */ TEST_GOTO_PREVIOUS, /* No matching object exists in this array and later arrays, go to the previous array. */ }; static int generic_array_bisect_step( JournalFile *f, Object *array, /* entry array object */ uint64_t i, /* index of the entry item in the array we will test. */ uint64_t needle, int (*test_object)(JournalFile *f, uint64_t p, uint64_t needle), direction_t direction, uint64_t *m, /* The maximum number of the entries we will check in the array. */ uint64_t *left, /* The index of the left boundary in the array. */ uint64_t *right) { /* The index of the right boundary in the array. */ uint64_t p; int r; assert(f); assert(array); assert(test_object); assert(m); assert(left); assert(right); assert(*left <= i); assert(i <= *right); assert(*right < *m); p = journal_file_entry_array_item(f, array, i); if (p <= 0) r = -EBADMSG; else r = test_object(f, p, needle); if (IN_SET(r, -EBADMSG, -EADDRNOTAVAIL)) { log_debug_errno(r, "Encountered invalid entry while bisecting, cutting algorithm short."); if (i == *left) { /* This happens on two situations: * * a) i == 0 (hence, *left == 0): * The first entry in the array is corrupted, let's go back to the previous array. * * b) *right == *left or *left + 1, and we are going to downwards: * In that case, the (i-1)-th object has been already tested in the previous call, * which returned TEST_LEFT. See below. So, there is no matching entry in this * array nor in the whole entry array chain. */ assert(i == 0 || (*right - *left <= 1 && direction == DIRECTION_DOWN)); return TEST_GOTO_PREVIOUS; } /* Otherwise, cutting the array short. So, here we limit the number of elements we will see * in this array, and set the right boundary to the last possibly non-corrupted object. */ *m = i; *right = i - 1; return TEST_RIGHT; } if (r < 0) return r; if (r == TEST_FOUND) /* There may be multiple entries that match with the needle. When the direction is down, we * need to find the first matching entry, hence the right boundary can be moved, but the left * one cannot. Similarly, when the direction is up, we need to find the last matching entry, * hence the left boundary can be moved, but the right one cannot. */ r = direction == DIRECTION_DOWN ? TEST_RIGHT : TEST_LEFT; if (r == TEST_RIGHT) { /* Currently, left --- needle --- i --- right, hence we can move the right boundary to i. */ if (direction == DIRECTION_DOWN) *right = i; else { if (i == 0) return TEST_GOTO_PREVIOUS; *right = i - 1; } } else { /* Currently, left --- i --- needle --- right, hence we can move the left boundary to i. */ if (direction == DIRECTION_DOWN) { /* Note, here *m is always positive, as by the assertions at the beginning, we have * 0 <= *left <= i <= *right < m */ if (i == *m - 1) return TEST_GOTO_NEXT; *left = i + 1; } else *left = i; } return r; } static int generic_array_bisect( JournalFile *f, uint64_t first, /* The offset of the first entry array object in the chain. */ uint64_t n, /* The total number of elements in the chain of the entry array. */ uint64_t needle, /* The target value (e.g. seqnum, monotonic, realtime, ...). */ int (*test_object)(JournalFile *f, uint64_t p, /* the offset of the (data or entry) object that will be tested. */ uint64_t needle), direction_t direction, Object **ret_object, /* The found object. */ uint64_t *ret_offset, /* The offset of the found object. */ uint64_t *ret_idx) { /* The index of the found object counted from the beginning of the entry array chain. */ /* Given an entry array chain, this function finds the object "closest" to the given needle in the * chain, taking into account the provided direction. A function can be provided to determine how * an object is matched against the given needle. * * Given a journal file, the offset of an object and the needle, the test_object() function should * return TEST_RIGHT if the needle is located earlier in the entry array chain, TEST_LEFT if the * needle is located later in the entry array chain, and TEST_FOUND if the object matches the needle. * If test_object() returns TEST_FOUND for a specific object, that object's information will be used * to populate the return values of this function. If test_object() never returns TEST_FOUND, the * return values are populated with the details of one of the objects closest to the needle. If the * direction is DIRECTION_UP, the earlier object is used. Otherwise, the later object is used. * If there are multiple objects that test_object() return TEST_FOUND for, then the first matching * object returned when direction is DIRECTION_DOWN. Otherwise the last object is returned. */ uint64_t a, p, t = 0, i, last_index = UINT64_MAX; ChainCacheItem *ci; Object *array; int r; assert(f); assert(test_object); if (n <= 0) return 0; /* Start with the first array in the chain */ a = first; ci = ordered_hashmap_get(f->chain_cache, &first); if (ci && n > ci->total && ci->begin != 0) { /* Ah, we have iterated this bisection array chain previously! Let's see if we can skip ahead * in the chain, as far as the last time. But we can't jump backwards in the chain, so let's * check that first. */ r = test_object(f, ci->begin, needle); if (IN_SET(r, -EBADMSG, -EADDRNOTAVAIL)) log_debug_errno(r, "Cached entry is corrupted, ignoring: %m"); else if (r < 0) return r; else if (r == TEST_LEFT) { /* OK, what we are looking for is right of the begin of this EntryArray, so let's * jump straight to previously cached array in the chain */ a = ci->array; n -= ci->total; t = ci->total; last_index = ci->last_index; } } while (a > 0) { uint64_t left, right, k, m, m_original; r = journal_file_move_to_object(f, OBJECT_ENTRY_ARRAY, a, &array); if (r < 0) return r; k = journal_file_entry_array_n_items(f, array); m = m_original = MIN(k, n); if (m <= 0) return 0; left = 0; right = m - 1; if (direction == DIRECTION_UP && left < right) { /* If we're going upwards, the last entry of the previous array may pass the test, * and the first entry of the current array may not pass. In that case, the last * entry of the previous array must be returned. Hence, we need to test the first * entry of the current array. */ r = generic_array_bisect_step(f, array, 0, needle, test_object, direction, &m, &left, &right); if (r < 0) return r; if (r == TEST_GOTO_PREVIOUS) goto previous; } /* Test the last entry of this array, to determine if we should go to the next array. */ r = generic_array_bisect_step(f, array, right, needle, test_object, direction, &m, &left, &right); if (r < 0) return r; if (r == TEST_GOTO_PREVIOUS) goto previous; /* The expected entry should be in this array, (or the last entry of the previous array). */ if (r == TEST_RIGHT) { /* If we cached the last index we looked at, let's try to not to jump too wildly * around and see if we can limit the range to look at early to the immediate * neighbors of the last index we looked at. */ if (last_index > 0 && left < last_index - 1 && last_index - 1 < right) { r = generic_array_bisect_step(f, array, last_index - 1, needle, test_object, direction, &m, &left, &right); if (r < 0) return r; if (r == TEST_GOTO_PREVIOUS) goto previous; } if (last_index < UINT64_MAX && left < last_index + 1 && last_index + 1 < right) { r = generic_array_bisect_step(f, array, last_index + 1, needle, test_object, direction, &m, &left, &right); if (r < 0) return r; if (r == TEST_GOTO_PREVIOUS) goto previous; } for (;;) { if (left == right) { /* We found one or more corrupted entries in generic_array_bisect_step(). * In that case, the entry pointed by 'right' may not be tested. * * When we are going to downwards, the entry object pointed by 'left' * has not been tested yet, Hence, even if left == right, we still * have to check the final entry to see if it actually matches. * * On the other hand, when we are going to upwards, the entry pointed * by 'left' is always tested, So, it is not necessary to test the * final entry again. */ if (m != m_original && direction == DIRECTION_DOWN) { r = generic_array_bisect_step(f, array, left, needle, test_object, direction, &m, &left, &right); if (r < 0) return r; if (IN_SET(r, TEST_GOTO_PREVIOUS, TEST_GOTO_NEXT)) return 0; /* The entry does not pass the test, or is corrupted */ assert(TEST_RIGHT); assert(left == right); } i = left; goto found; } assert(left < right); i = (left + right + (direction == DIRECTION_UP)) / 2; r = generic_array_bisect_step(f, array, i, needle, test_object, direction, &m, &left, &right); if (r < 0) return r; if (r == TEST_GOTO_PREVIOUS) goto previous; if (r == TEST_GOTO_NEXT) return 0; /* Found a corrupt entry, and the array was cut short. */ } } /* Not found in this array (or the last entry of this array should be returned), go to the next array. */ assert(r == (direction == DIRECTION_DOWN ? TEST_GOTO_NEXT : TEST_LEFT)); if (k >= n) { if (direction == DIRECTION_UP) { assert(n > 0); i = n - 1; goto found; } return 0; } n -= k; t += k; last_index = UINT64_MAX; a = le64toh(array->entry_array.next_entry_array_offset); } return 0; previous: /* Not found in the current array, return the last entry of the previous array. */ assert(r == TEST_GOTO_PREVIOUS); /* The current array is the first in the chain. no previous array. */ if (t == 0) return 0; /* When we are going downwards, there is no matching entries in the previous array. */ if (direction == DIRECTION_DOWN) return 0; /* Get the last entry of the previous array. */ r = bump_entry_array(f, NULL, a, first, DIRECTION_UP, &a); if (r <= 0) return r; r = journal_file_move_to_object(f, OBJECT_ENTRY_ARRAY, a, &array); if (r < 0) return r; p = journal_file_entry_array_n_items(f, array); if (p == 0 || t < p) return -EBADMSG; t -= p; i = p - 1; found: p = journal_file_entry_array_item(f, array, 0); if (p <= 0) return -EBADMSG; /* Let's cache this item for the next invocation */ chain_cache_put(f->chain_cache, ci, first, a, p, t, i); p = journal_file_entry_array_item(f, array, i); if (p == 0) return -EBADMSG; if (ret_object) { r = journal_file_move_to_object(f, OBJECT_ENTRY, p, ret_object); if (r < 0) return r; } if (ret_offset) *ret_offset = p; if (ret_idx) *ret_idx = t + i; return 1; } static int generic_array_bisect_for_data( JournalFile *f, Object *d, uint64_t needle, int (*test_object)(JournalFile *f, uint64_t p, uint64_t needle), direction_t direction, Object **ret_object, uint64_t *ret_offset) { uint64_t extra, first, n; int r; assert(f); assert(d); assert(d->object.type == OBJECT_DATA); assert(test_object); n = le64toh(d->data.n_entries); if (n <= 0) return 0; n--; /* n_entries is the number of entries linked to the data object, including the 'extra' entry. */ extra = le64toh(d->data.entry_offset); first = le64toh(d->data.entry_array_offset); /* This bisects the array in object 'first', but first checks an extra. */ r = test_object(f, extra, needle); if (r < 0) return r; if (direction == DIRECTION_DOWN) { /* If we are going downwards, then we need to return the first object that passes the test. * When there is no object that passes the test, we need to return the first object that * test_object() returns TEST_RIGHT for. */ if (IN_SET(r, TEST_FOUND, /* The 'extra' object passes the test. Hence, this is the first * object that passes the test. */ TEST_RIGHT)) /* The 'extra' object is the first object that test_object() returns * TEST_RIGHT for, and no object exists even in the chained arrays * that passes the test. */ goto use_extra; /* The 'extra' object is exactly the one we are looking for. It is * not necessary to bisect the chained arrays. */ /* Otherwise, the 'extra' object is not the one we are looking for. Search in the arrays. */ } else { /* If we are going upwards, then we need to return the last object that passes the test. * When there is no object that passes the test, we need to return the last object that * test_object() returns TEST_LEFT for. */ if (r == TEST_RIGHT) return 0; /* Not only the 'extra' object, but also all objects in the chained arrays * will never get TEST_FOUND or TEST_LEFT. The object we are looking for * does not exist. */ /* Even if the 'extra' object passes the test, there may be multiple objects in the arrays * that also pass the test. Hence, we need to bisect the arrays for finding the last matching * object. */ } r = generic_array_bisect(f, first, n, needle, test_object, direction, ret_object, ret_offset, NULL); if (r != 0) return r; /* When > 0, the found object is the first (or last, when DIRECTION_UP) object. * Hence, return the found object now. */ /* No matching object found in the chained arrays. * DIRECTION_DOWN : the 'extra' object neither matches the condition. There is no matching object. * DIRECTION_UP : the 'extra' object matches the condition. So, return it. */ if (direction == DIRECTION_DOWN) return 0; use_extra: if (ret_object) { r = journal_file_move_to_object(f, OBJECT_ENTRY, extra, ret_object); if (r < 0) return r; } if (ret_offset) *ret_offset = extra; return 1; } static int test_object_offset(JournalFile *f, uint64_t p, uint64_t needle) { assert(f); assert(p > 0); if (p == needle) return TEST_FOUND; else if (p < needle) return TEST_LEFT; else return TEST_RIGHT; } int journal_file_move_to_entry_by_offset( JournalFile *f, uint64_t p, direction_t direction, Object **ret_object, uint64_t *ret_offset) { assert(f); assert(f->header); return generic_array_bisect( f, le64toh(f->header->entry_array_offset), le64toh(f->header->n_entries), p, test_object_offset, direction, ret_object, ret_offset, NULL); } static int test_object_seqnum(JournalFile *f, uint64_t p, uint64_t needle) { uint64_t sq; Object *o; int r; assert(f); assert(p > 0); r = journal_file_move_to_object(f, OBJECT_ENTRY, p, &o); if (r < 0) return r; sq = le64toh(READ_NOW(o->entry.seqnum)); if (sq == needle) return TEST_FOUND; else if (sq < needle) return TEST_LEFT; else return TEST_RIGHT; } int journal_file_move_to_entry_by_seqnum( JournalFile *f, uint64_t seqnum, direction_t direction, Object **ret_object, uint64_t *ret_offset) { assert(f); assert(f->header); return generic_array_bisect( f, le64toh(f->header->entry_array_offset), le64toh(f->header->n_entries), seqnum, test_object_seqnum, direction, ret_object, ret_offset, NULL); } static int test_object_realtime(JournalFile *f, uint64_t p, uint64_t needle) { Object *o; uint64_t rt; int r; assert(f); assert(p > 0); r = journal_file_move_to_object(f, OBJECT_ENTRY, p, &o); if (r < 0) return r; rt = le64toh(READ_NOW(o->entry.realtime)); if (rt == needle) return TEST_FOUND; else if (rt < needle) return TEST_LEFT; else return TEST_RIGHT; } int journal_file_move_to_entry_by_realtime( JournalFile *f, uint64_t realtime, direction_t direction, Object **ret_object, uint64_t *ret_offset) { assert(f); assert(f->header); return generic_array_bisect( f, le64toh(f->header->entry_array_offset), le64toh(f->header->n_entries), realtime, test_object_realtime, direction, ret_object, ret_offset, NULL); } static int test_object_monotonic(JournalFile *f, uint64_t p, uint64_t needle) { Object *o; uint64_t m; int r; assert(f); assert(p > 0); r = journal_file_move_to_object(f, OBJECT_ENTRY, p, &o); if (r < 0) return r; m = le64toh(READ_NOW(o->entry.monotonic)); if (m == needle) return TEST_FOUND; else if (m < needle) return TEST_LEFT; else return TEST_RIGHT; } static int find_data_object_by_boot_id( JournalFile *f, sd_id128_t boot_id, Object **ret_object, uint64_t *ret_offset) { char t[STRLEN("_BOOT_ID=") + 32 + 1] = "_BOOT_ID="; assert(f); sd_id128_to_string(boot_id, t + 9); return journal_file_find_data_object(f, t, sizeof(t) - 1, ret_object, ret_offset); } int journal_file_move_to_entry_by_monotonic( JournalFile *f, sd_id128_t boot_id, uint64_t monotonic, direction_t direction, Object **ret_object, uint64_t *ret_offset) { Object *o; int r; assert(f); r = find_data_object_by_boot_id(f, boot_id, &o, NULL); if (r <= 0) return r; return generic_array_bisect_for_data( f, o, monotonic, test_object_monotonic, direction, ret_object, ret_offset); } void journal_file_reset_location(JournalFile *f) { assert(f); f->location_type = LOCATION_HEAD; f->current_offset = 0; f->current_seqnum = 0; f->current_realtime = 0; f->current_monotonic = 0; zero(f->current_boot_id); f->current_xor_hash = 0; /* Also reset the previous reading direction. Otherwise, next_beyond_location() may wrongly handle we * already hit EOF. See issue #29216. */ f->last_direction = _DIRECTION_INVALID; } void journal_file_save_location(JournalFile *f, Object *o, uint64_t offset) { assert(f); assert(o); f->location_type = LOCATION_SEEK; f->current_offset = offset; f->current_seqnum = le64toh(o->entry.seqnum); f->current_realtime = le64toh(o->entry.realtime); f->current_monotonic = le64toh(o->entry.monotonic); f->current_boot_id = o->entry.boot_id; f->current_xor_hash = le64toh(o->entry.xor_hash); } static bool check_properly_ordered(uint64_t new_offset, uint64_t old_offset, direction_t direction) { /* Consider it an error if any of the two offsets is uninitialized */ if (old_offset == 0 || new_offset == 0) return false; /* If we go down, the new offset must be larger than the old one. */ return direction == DIRECTION_DOWN ? new_offset > old_offset : new_offset < old_offset; } int journal_file_next_entry( JournalFile *f, uint64_t p, direction_t direction, Object **ret_object, uint64_t *ret_offset) { uint64_t i, n, q; Object *o; int r; assert(f); assert(f->header); /* FIXME: fix return value assignment. */ n = le64toh(READ_NOW(f->header->n_entries)); if (n <= 0) return 0; /* When the input offset 'p' is zero, return the first (or last on DIRECTION_UP) entry. */ if (p == 0) return generic_array_get(f, le64toh(f->header->entry_array_offset), direction == DIRECTION_DOWN ? 0 : n - 1, direction, ret_object, ret_offset); /* Otherwise, first find the nearest entry object. */ r = generic_array_bisect(f, le64toh(f->header->entry_array_offset), le64toh(f->header->n_entries), p, test_object_offset, direction, NULL, &q, &i); /* Here, do not read entry object, as the result object * may not be the one we want, and it may be broken. */ if (r <= 0) return r; assert(direction == DIRECTION_DOWN ? p <= q : q <= p); /* If the input offset 'p' points to an entry object, generic_array_bisect() should provides * the same offset, and the index needs to be shifted. Otherwise, use the found object as is, * as it is the nearest entry object from the input offset 'p'. */ if (p == q) { r = bump_array_index(&i, direction, n); if (r <= 0) return r; } /* And jump to it */ r = generic_array_get(f, le64toh(f->header->entry_array_offset), i, direction, ret_object ? &o : NULL, &q); if (r <= 0) return r; /* Ensure our array is properly ordered. */ if (!check_properly_ordered(q, p, direction)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "%s: entry array not properly ordered at entry index %" PRIu64, f->path, i); if (ret_object) *ret_object = o; if (ret_offset) *ret_offset = q; return 1; } int journal_file_move_to_entry_for_data( JournalFile *f, Object *d, direction_t direction, Object **ret_object, uint64_t *ret_offset) { uint64_t extra, first, n; int r = 0; assert(f); assert(d); assert(d->object.type == OBJECT_DATA); assert(IN_SET(direction, DIRECTION_DOWN, DIRECTION_UP)); /* FIXME: fix return value assignment. */ /* This returns the first (when the direction is down, otherwise the last) entry linked to the * specified data object. */ n = le64toh(d->data.n_entries); if (n <= 0) return 0; n--; /* n_entries is the number of entries linked to the data object, including the 'extra' entry. */ extra = le64toh(d->data.entry_offset); first = le64toh(d->data.entry_array_offset); if (direction == DIRECTION_DOWN && extra > 0) { /* When we are going downwards, first try to read the extra entry. */ r = journal_file_move_to_object(f, OBJECT_ENTRY, extra, ret_object); if (r >= 0) goto use_extra; if (!IN_SET(r, -EADDRNOTAVAIL, -EBADMSG)) return r; } if (n > 0) { /* DIRECTION_DOWN : The extra entry is broken, falling back to the entries in the array. * DIRECTION_UP : Try to find a valid entry in the array from the tail. */ r = generic_array_get(f, first, direction == DIRECTION_DOWN ? 0 : n - 1, direction, ret_object, ret_offset); if (!IN_SET(r, 0, -EADDRNOTAVAIL, -EBADMSG)) return r; /* found or critical error. */ } if (direction == DIRECTION_UP && extra > 0) { /* No valid entry exists in the chained array, falling back to the extra entry. */ r = journal_file_move_to_object(f, OBJECT_ENTRY, extra, ret_object); if (r >= 0) goto use_extra; } return r; use_extra: if (ret_offset) *ret_offset = extra; return 1; } int journal_file_move_to_entry_by_offset_for_data( JournalFile *f, Object *d, uint64_t p, direction_t direction, Object **ret, uint64_t *ret_offset) { assert(f); assert(d); assert(d->object.type == OBJECT_DATA); return generic_array_bisect_for_data( f, d, p, test_object_offset, direction, ret, ret_offset); } int journal_file_move_to_entry_by_monotonic_for_data( JournalFile *f, Object *d, sd_id128_t boot_id, uint64_t monotonic, direction_t direction, Object **ret_object, uint64_t *ret_offset) { Object *o, *entry; uint64_t z; int r; assert(f); assert(d); assert(d->object.type == OBJECT_DATA); /* First, pin the given data object, before reading the _BOOT_ID= data object below. */ r = journal_file_pin_object(f, d); if (r < 0) return r; /* Then, read a data object for _BOOT_ID= and seek by time. */ r = find_data_object_by_boot_id(f, boot_id, &o, NULL); if (r <= 0) return r; r = generic_array_bisect_for_data(f, o, monotonic, test_object_monotonic, direction, NULL, &z); if (r <= 0) return r; /* And now, continue seeking until we find an entry that exists in both bisection arrays. */ for (;;) { uint64_t p; /* The journal entry found by the above bisect_plus_one() may not have the specified data, * that is, it may not be linked in the data object. So, we need to check that. */ r = journal_file_move_to_entry_by_offset_for_data( f, d, z, direction, ret_object ? &entry : NULL, &p); if (r <= 0) return r; if (p == z) break; /* The journal entry has the specified data. Yay! */ /* If the entry does not have the data, then move to the next (or previous, depends on the * 'direction') entry linked to the data object. But, the next entry may be in another boot. * So, we need to check that the entry has the matching boot ID. */ r = journal_file_move_to_entry_by_offset_for_data( f, o, p, direction, ret_object ? &entry : NULL, &z); if (r <= 0) return r; if (p == z) break; /* The journal entry has the specified boot ID. Yay! */ /* If not, let's try to the next entry... */ } if (ret_object) *ret_object = entry; if (ret_offset) *ret_offset = z; return 1; } int journal_file_move_to_entry_by_seqnum_for_data( JournalFile *f, Object *d, uint64_t seqnum, direction_t direction, Object **ret_object, uint64_t *ret_offset) { assert(f); assert(d); assert(d->object.type == OBJECT_DATA); return generic_array_bisect_for_data( f, d, seqnum, test_object_seqnum, direction, ret_object, ret_offset); } int journal_file_move_to_entry_by_realtime_for_data( JournalFile *f, Object *d, uint64_t realtime, direction_t direction, Object **ret, uint64_t *ret_offset) { assert(f); assert(d); assert(d->object.type == OBJECT_DATA); return generic_array_bisect_for_data( f, d, realtime, test_object_realtime, direction, ret, ret_offset); } void journal_file_dump(JournalFile *f) { Object *o; uint64_t p; int r; assert(f); assert(f->header); journal_file_print_header(f); p = le64toh(READ_NOW(f->header->header_size)); while (p != 0) { const char *s; Compression c; r = journal_file_move_to_object(f, OBJECT_UNUSED, p, &o); if (r < 0) goto fail; s = journal_object_type_to_string(o->object.type); switch (o->object.type) { case OBJECT_ENTRY: assert(s); log_info("Type: %s seqnum=%"PRIu64" monotonic=%"PRIu64" realtime=%"PRIu64"\n", s, le64toh(o->entry.seqnum), le64toh(o->entry.monotonic), le64toh(o->entry.realtime)); break; case OBJECT_TAG: assert(s); log_info("Type: %s seqnum=%"PRIu64" epoch=%"PRIu64"\n", s, le64toh(o->tag.seqnum), le64toh(o->tag.epoch)); break; default: if (s) log_info("Type: %s \n", s); else log_info("Type: unknown (%i)", o->object.type); break; } c = COMPRESSION_FROM_OBJECT(o); if (c > COMPRESSION_NONE) log_info("Flags: %s\n", compression_to_string(c)); if (p == le64toh(f->header->tail_object_offset)) p = 0; else p += ALIGN64(le64toh(o->object.size)); } return; fail: log_error("File corrupt"); } /* Note: the lifetime of the compound literal is the immediately surrounding block. */ #define FORMAT_TIMESTAMP_SAFE(t) (FORMAT_TIMESTAMP(t) ?: " --- ") void journal_file_print_header(JournalFile *f) { struct stat st; assert(f); assert(f->header); printf("File path: %s\n" "File ID: %s\n" "Machine ID: %s\n" "Boot ID: %s\n" "Sequential number ID: %s\n" "State: %s\n" "Compatible flags:%s%s%s%s\n" "Incompatible flags:%s%s%s%s%s%s\n" "Header size: %"PRIu64"\n" "Arena size: %"PRIu64"\n" "Data hash table size: %"PRIu64"\n" "Field hash table size: %"PRIu64"\n" "Rotate suggested: %s\n" "Head sequential number: %"PRIu64" (%"PRIx64")\n" "Tail sequential number: %"PRIu64" (%"PRIx64")\n" "Head realtime timestamp: %s (%"PRIx64")\n" "Tail realtime timestamp: %s (%"PRIx64")\n" "Tail monotonic timestamp: %s (%"PRIx64")\n" "Objects: %"PRIu64"\n" "Entry objects: %"PRIu64"\n", f->path, SD_ID128_TO_STRING(f->header->file_id), SD_ID128_TO_STRING(f->header->machine_id), SD_ID128_TO_STRING(f->header->tail_entry_boot_id), SD_ID128_TO_STRING(f->header->seqnum_id), f->header->state == STATE_OFFLINE ? "OFFLINE" : f->header->state == STATE_ONLINE ? "ONLINE" : f->header->state == STATE_ARCHIVED ? "ARCHIVED" : "UNKNOWN", JOURNAL_HEADER_SEALED(f->header) ? " SEALED" : "", JOURNAL_HEADER_SEALED_CONTINUOUS(f->header) ? " SEALED_CONTINUOUS" : "", JOURNAL_HEADER_TAIL_ENTRY_BOOT_ID(f->header) ? " TAIL_ENTRY_BOOT_ID" : "", (le32toh(f->header->compatible_flags) & ~HEADER_COMPATIBLE_ANY) ? " ???" : "", JOURNAL_HEADER_COMPRESSED_XZ(f->header) ? " COMPRESSED-XZ" : "", JOURNAL_HEADER_COMPRESSED_LZ4(f->header) ? " COMPRESSED-LZ4" : "", JOURNAL_HEADER_COMPRESSED_ZSTD(f->header) ? " COMPRESSED-ZSTD" : "", JOURNAL_HEADER_KEYED_HASH(f->header) ? " KEYED-HASH" : "", JOURNAL_HEADER_COMPACT(f->header) ? " COMPACT" : "", (le32toh(f->header->incompatible_flags) & ~HEADER_INCOMPATIBLE_ANY) ? " ???" : "", le64toh(f->header->header_size), le64toh(f->header->arena_size), le64toh(f->header->data_hash_table_size) / sizeof(HashItem), le64toh(f->header->field_hash_table_size) / sizeof(HashItem), yes_no(journal_file_rotate_suggested(f, 0, LOG_DEBUG)), le64toh(f->header->head_entry_seqnum), le64toh(f->header->head_entry_seqnum), le64toh(f->header->tail_entry_seqnum), le64toh(f->header->tail_entry_seqnum), FORMAT_TIMESTAMP_SAFE(le64toh(f->header->head_entry_realtime)), le64toh(f->header->head_entry_realtime), FORMAT_TIMESTAMP_SAFE(le64toh(f->header->tail_entry_realtime)), le64toh(f->header->tail_entry_realtime), FORMAT_TIMESPAN(le64toh(f->header->tail_entry_monotonic), USEC_PER_MSEC), le64toh(f->header->tail_entry_monotonic), le64toh(f->header->n_objects), le64toh(f->header->n_entries)); if (JOURNAL_HEADER_CONTAINS(f->header, n_data)) printf("Data objects: %"PRIu64"\n" "Data hash table fill: %.1f%%\n", le64toh(f->header->n_data), 100.0 * (double) le64toh(f->header->n_data) / ((double) (le64toh(f->header->data_hash_table_size) / sizeof(HashItem)))); if (JOURNAL_HEADER_CONTAINS(f->header, n_fields)) printf("Field objects: %"PRIu64"\n" "Field hash table fill: %.1f%%\n", le64toh(f->header->n_fields), 100.0 * (double) le64toh(f->header->n_fields) / ((double) (le64toh(f->header->field_hash_table_size) / sizeof(HashItem)))); if (JOURNAL_HEADER_CONTAINS(f->header, n_tags)) printf("Tag objects: %"PRIu64"\n", le64toh(f->header->n_tags)); if (JOURNAL_HEADER_CONTAINS(f->header, n_entry_arrays)) printf("Entry array objects: %"PRIu64"\n", le64toh(f->header->n_entry_arrays)); if (JOURNAL_HEADER_CONTAINS(f->header, field_hash_chain_depth)) printf("Deepest field hash chain: %" PRIu64"\n", f->header->field_hash_chain_depth); if (JOURNAL_HEADER_CONTAINS(f->header, data_hash_chain_depth)) printf("Deepest data hash chain: %" PRIu64"\n", f->header->data_hash_chain_depth); if (fstat(f->fd, &st) >= 0) printf("Disk usage: %s\n", FORMAT_BYTES((uint64_t) st.st_blocks * 512ULL)); } static int journal_file_warn_btrfs(JournalFile *f) { unsigned attrs; int r; assert(f); /* Before we write anything, check if the COW logic is turned * off on btrfs. Given our write pattern that is quite * unfriendly to COW file systems this should greatly improve * performance on COW file systems, such as btrfs, at the * expense of data integrity features (which shouldn't be too * bad, given that we do our own checksumming). */ r = fd_is_fs_type(f->fd, BTRFS_SUPER_MAGIC); if (r < 0) return log_ratelimit_warning_errno(r, JOURNAL_LOG_RATELIMIT, "Failed to determine if journal is on btrfs: %m"); if (r == 0) return 0; r = read_attr_fd(f->fd, &attrs); if (r < 0) return log_ratelimit_warning_errno(r, JOURNAL_LOG_RATELIMIT, "Failed to read file attributes: %m"); if (attrs & FS_NOCOW_FL) { log_debug("Detected btrfs file system with copy-on-write disabled, all is good."); return 0; } log_ratelimit_notice(JOURNAL_LOG_RATELIMIT, "Creating journal file %s on a btrfs file system, and copy-on-write is enabled. " "This is likely to slow down journal access substantially, please consider turning " "off the copy-on-write file attribute on the journal directory, using chattr +C.", f->path); return 1; } static void journal_default_metrics(JournalMetrics *m, int fd, bool compact) { struct statvfs ss; uint64_t fs_size = 0; assert(m); assert(fd >= 0); if (fstatvfs(fd, &ss) >= 0) fs_size = u64_multiply_safe(ss.f_frsize, ss.f_blocks); else log_debug_errno(errno, "Failed to determine disk size: %m"); if (m->max_use == UINT64_MAX) { if (fs_size > 0) m->max_use = CLAMP(PAGE_ALIGN_U64(fs_size / 10), /* 10% of file system size */ MAX_USE_LOWER, MAX_USE_UPPER); else m->max_use = MAX_USE_LOWER; } else { m->max_use = PAGE_ALIGN_U64(m->max_use); if (m->max_use != 0 && m->max_use < JOURNAL_FILE_SIZE_MIN*2) m->max_use = JOURNAL_FILE_SIZE_MIN*2; } if (m->min_use == UINT64_MAX) { if (fs_size > 0) m->min_use = CLAMP(PAGE_ALIGN_U64(fs_size / 50), /* 2% of file system size */ MIN_USE_LOW, MIN_USE_HIGH); else m->min_use = MIN_USE_LOW; } if (m->min_use > m->max_use) m->min_use = m->max_use; if (m->max_size == UINT64_MAX) m->max_size = MIN(PAGE_ALIGN_U64(m->max_use / 8), /* 8 chunks */ MAX_SIZE_UPPER); else m->max_size = PAGE_ALIGN_U64(m->max_size); if (compact && m->max_size > JOURNAL_COMPACT_SIZE_MAX) m->max_size = JOURNAL_COMPACT_SIZE_MAX; if (m->max_size != 0) { if (m->max_size < JOURNAL_FILE_SIZE_MIN) m->max_size = JOURNAL_FILE_SIZE_MIN; if (m->max_use != 0 && m->max_size*2 > m->max_use) m->max_use = m->max_size*2; } if (m->min_size == UINT64_MAX) m->min_size = JOURNAL_FILE_SIZE_MIN; else m->min_size = CLAMP(PAGE_ALIGN_U64(m->min_size), JOURNAL_FILE_SIZE_MIN, m->max_size ?: UINT64_MAX); if (m->keep_free == UINT64_MAX) { if (fs_size > 0) m->keep_free = MIN(PAGE_ALIGN_U64(fs_size / 20), /* 5% of file system size */ KEEP_FREE_UPPER); else m->keep_free = DEFAULT_KEEP_FREE; } if (m->n_max_files == UINT64_MAX) m->n_max_files = DEFAULT_N_MAX_FILES; log_debug("Fixed min_use=%s max_use=%s max_size=%s min_size=%s keep_free=%s n_max_files=%" PRIu64, FORMAT_BYTES(m->min_use), FORMAT_BYTES(m->max_use), FORMAT_BYTES(m->max_size), FORMAT_BYTES(m->min_size), FORMAT_BYTES(m->keep_free), m->n_max_files); } int journal_file_open( int fd, const char *fname, int open_flags, JournalFileFlags file_flags, mode_t mode, uint64_t compress_threshold_bytes, JournalMetrics *metrics, MMapCache *mmap_cache, JournalFile *template, JournalFile **ret) { bool newly_created = false; JournalFile *f; void *h; int r; assert(fd >= 0 || fname); assert(file_flags >= 0); assert(file_flags <= _JOURNAL_FILE_FLAGS_MAX); assert(mmap_cache); assert(ret); if (!IN_SET((open_flags & O_ACCMODE), O_RDONLY, O_RDWR)) return -EINVAL; if ((open_flags & O_ACCMODE) == O_RDONLY && FLAGS_SET(open_flags, O_CREAT)) return -EINVAL; if (fname && (open_flags & O_CREAT) && !endswith(fname, ".journal")) return -EINVAL; f = new(JournalFile, 1); if (!f) return -ENOMEM; *f = (JournalFile) { .fd = fd, .mode = mode, .open_flags = open_flags, .compress_threshold_bytes = compress_threshold_bytes == UINT64_MAX ? DEFAULT_COMPRESS_THRESHOLD : MAX(MIN_COMPRESS_THRESHOLD, compress_threshold_bytes), .strict_order = FLAGS_SET(file_flags, JOURNAL_STRICT_ORDER), .newest_boot_id_prioq_idx = PRIOQ_IDX_NULL, .last_direction = _DIRECTION_INVALID, }; if (fname) { f->path = strdup(fname); if (!f->path) { r = -ENOMEM; goto fail; } } else { assert(fd >= 0); /* If we don't know the path, fill in something explanatory and vaguely useful */ if (asprintf(&f->path, "/proc/self/%i", fd) < 0) { r = -ENOMEM; goto fail; } } f->chain_cache = ordered_hashmap_new(&uint64_hash_ops); if (!f->chain_cache) { r = -ENOMEM; goto fail; } if (f->fd < 0) { /* We pass O_NONBLOCK here, so that in case somebody pointed us to some character device node or FIFO * or so, we likely fail quickly than block for long. For regular files O_NONBLOCK has no effect, hence * it doesn't hurt in that case. */ f->fd = openat_report_new(AT_FDCWD, f->path, f->open_flags|O_CLOEXEC|O_NONBLOCK, f->mode, &newly_created); if (f->fd < 0) { r = f->fd; goto fail; } /* fds we opened here by us should also be closed by us. */ f->close_fd = true; r = fd_nonblock(f->fd, false); if (r < 0) goto fail; if (!newly_created) { r = journal_file_fstat(f); if (r < 0) goto fail; } } else { r = journal_file_fstat(f); if (r < 0) goto fail; /* If we just got the fd passed in, we don't really know if we created the file anew */ newly_created = f->last_stat.st_size == 0 && journal_file_writable(f); } r = mmap_cache_add_fd(mmap_cache, f->fd, mmap_prot_from_open_flags(open_flags), &f->cache_fd); if (r < 0) goto fail; if (newly_created) { (void) journal_file_warn_btrfs(f); /* Let's attach the creation time to the journal file, so that the vacuuming code knows the age of this * file even if the file might end up corrupted one day... Ideally we'd just use the creation time many * file systems maintain for each file, but the API to query this is very new, hence let's emulate this * via extended attributes. If extended attributes are not supported we'll just skip this, and rely * solely on mtime/atime/ctime of the file. */ (void) fd_setcrtime(f->fd, 0); r = journal_file_init_header(f, file_flags, template); if (r < 0) goto fail; r = journal_file_fstat(f); if (r < 0) goto fail; } if (f->last_stat.st_size < (off_t) HEADER_SIZE_MIN) { r = -ENODATA; goto fail; } r = mmap_cache_fd_get(f->cache_fd, MMAP_CACHE_CATEGORY_HEADER, true, 0, PAGE_ALIGN(sizeof(Header)), &f->last_stat, &h); if (r == -EINVAL) { /* Some file systems (jffs2 or p9fs) don't support mmap() properly (or only read-only * mmap()), and return EINVAL in that case. Let's propagate that as a more recognizable error * code. */ r = -EAFNOSUPPORT; goto fail; } if (r < 0) goto fail; f->header = h; if (!newly_created) { r = journal_file_verify_header(f); if (r < 0) goto fail; } #if HAVE_GCRYPT if (!newly_created && journal_file_writable(f) && JOURNAL_HEADER_SEALED(f->header)) { r = journal_file_fss_load(f); if (r < 0) goto fail; } #endif if (journal_file_writable(f)) { if (metrics) { journal_default_metrics(metrics, f->fd, JOURNAL_HEADER_COMPACT(f->header)); f->metrics = *metrics; } else if (template) f->metrics = template->metrics; r = journal_file_refresh_header(f); if (r < 0) goto fail; } #if HAVE_GCRYPT r = journal_file_hmac_setup(f); if (r < 0) goto fail; #endif if (newly_created) { r = journal_file_setup_field_hash_table(f); if (r < 0) goto fail; r = journal_file_setup_data_hash_table(f); if (r < 0) goto fail; #if HAVE_GCRYPT r = journal_file_append_first_tag(f); if (r < 0) goto fail; #endif } if (mmap_cache_fd_got_sigbus(f->cache_fd)) { r = -EIO; goto fail; } if (template && template->post_change_timer) { r = journal_file_enable_post_change_timer( f, sd_event_source_get_event(template->post_change_timer), template->post_change_timer_period); if (r < 0) goto fail; } /* The file is opened now successfully, thus we take possession of any passed in fd. */ f->close_fd = true; if (DEBUG_LOGGING) { static int last_seal = -1, last_keyed_hash = -1; static Compression last_compression = _COMPRESSION_INVALID; static uint64_t last_bytes = UINT64_MAX; if (last_seal != JOURNAL_HEADER_SEALED(f->header) || last_keyed_hash != JOURNAL_HEADER_KEYED_HASH(f->header) || last_compression != JOURNAL_FILE_COMPRESSION(f) || last_bytes != f->compress_threshold_bytes) { log_debug("Journal effective settings seal=%s keyed_hash=%s compress=%s compress_threshold_bytes=%s", yes_no(JOURNAL_HEADER_SEALED(f->header)), yes_no(JOURNAL_HEADER_KEYED_HASH(f->header)), compression_to_string(JOURNAL_FILE_COMPRESSION(f)), FORMAT_BYTES(f->compress_threshold_bytes)); last_seal = JOURNAL_HEADER_SEALED(f->header); last_keyed_hash = JOURNAL_HEADER_KEYED_HASH(f->header); last_compression = JOURNAL_FILE_COMPRESSION(f); last_bytes = f->compress_threshold_bytes; } } *ret = f; return 0; fail: if (f->cache_fd && mmap_cache_fd_got_sigbus(f->cache_fd)) r = -EIO; (void) journal_file_close(f); if (newly_created && fd < 0) (void) unlink(fname); return r; } int journal_file_parse_uid_from_filename(const char *path, uid_t *ret_uid) { _cleanup_free_ char *buf = NULL, *p = NULL; const char *a, *b, *at; int r; /* This helper returns -EREMOTE when the filename doesn't match user online/offline journal * pattern. Hence it currently doesn't parse archived or disposed user journals. */ assert(path); assert(ret_uid); r = path_extract_filename(path, &p); if (r < 0) return r; if (r == O_DIRECTORY) return -EISDIR; a = startswith(p, "user-"); if (!a) return -EREMOTE; b = endswith(p, ".journal"); if (!b) return -EREMOTE; at = strchr(a, '@'); if (at) return -EREMOTE; buf = strndup(a, b-a); if (!buf) return -ENOMEM; return parse_uid(buf, ret_uid); } int journal_file_archive(JournalFile *f, char **ret_previous_path) { _cleanup_free_ char *p = NULL; assert(f); if (!journal_file_writable(f)) return -EINVAL; /* Is this a journal file that was passed to us as fd? If so, we synthesized a path name for it, and we refuse * rotation, since we don't know the actual path, and couldn't rename the file hence. */ if (path_startswith(f->path, "/proc/self/fd")) return -EINVAL; if (!endswith(f->path, ".journal")) return -EINVAL; if (asprintf(&p, "%.*s@" SD_ID128_FORMAT_STR "-%016"PRIx64"-%016"PRIx64".journal", (int) strlen(f->path) - 8, f->path, SD_ID128_FORMAT_VAL(f->header->seqnum_id), le64toh(f->header->head_entry_seqnum), le64toh(f->header->head_entry_realtime)) < 0) return -ENOMEM; /* Try to rename the file to the archived version. If the file already was deleted, we'll get ENOENT, let's * ignore that case. */ if (rename(f->path, p) < 0 && errno != ENOENT) return -errno; /* Sync the rename to disk */ (void) fsync_directory_of_file(f->fd); if (ret_previous_path) *ret_previous_path = TAKE_PTR(f->path); free_and_replace(f->path, p); /* Set as archive so offlining commits w/state=STATE_ARCHIVED. Previously we would set old_file->header->state * to STATE_ARCHIVED directly here, but journal_file_set_offline() short-circuits when state != STATE_ONLINE, * which would result in the rotated journal never getting fsync() called before closing. Now we simply queue * the archive state by setting an archive bit, leaving the state as STATE_ONLINE so proper offlining * occurs. */ f->archive = true; return 0; } int journal_file_dispose(int dir_fd, const char *fname) { _cleanup_free_ char *p = NULL; assert(fname); /* Renames a journal file to *.journal~, i.e. to mark it as corrupted or otherwise uncleanly shutdown. Note that * this is done without looking into the file or changing any of its contents. The idea is that this is called * whenever something is suspicious and we want to move the file away and make clear that it is not accessed * for writing anymore. */ if (!endswith(fname, ".journal")) return -EINVAL; if (asprintf(&p, "%.*s@%016" PRIx64 "-%016" PRIx64 ".journal~", (int) strlen(fname) - 8, fname, now(CLOCK_REALTIME), random_u64()) < 0) return -ENOMEM; if (renameat(dir_fd, fname, dir_fd, p) < 0) return -errno; return 0; } int journal_file_copy_entry( JournalFile *from, JournalFile *to, Object *o, uint64_t p, uint64_t *seqnum, sd_id128_t *seqnum_id) { _cleanup_free_ EntryItem *items_alloc = NULL; EntryItem *items; uint64_t n, m = 0, xor_hash = 0; sd_id128_t boot_id; dual_timestamp ts; int r; assert(from); assert(to); assert(o); assert(p > 0); if (!journal_file_writable(to)) return -EPERM; ts = (dual_timestamp) { .monotonic = le64toh(o->entry.monotonic), .realtime = le64toh(o->entry.realtime), }; boot_id = o->entry.boot_id; n = journal_file_entry_n_items(from, o); if (n == 0) return 0; if (n < ALLOCA_MAX / sizeof(EntryItem) / 2) items = newa(EntryItem, n); else { items_alloc = new(EntryItem, n); if (!items_alloc) return -ENOMEM; items = items_alloc; } for (uint64_t i = 0; i < n; i++) { uint64_t h, q; void *data; size_t l; Object *u; q = journal_file_entry_item_object_offset(from, o, i); r = journal_file_data_payload(from, NULL, q, NULL, 0, 0, &data, &l); if (IN_SET(r, -EADDRNOTAVAIL, -EBADMSG)) { log_debug_errno(r, "Entry item %"PRIu64" data object is bad, skipping over it: %m", i); continue; } if (r < 0) return r; assert(r > 0); if (l == 0) return -EBADMSG; r = journal_file_append_data(to, data, l, &u, &h); if (r < 0) return r; if (JOURNAL_HEADER_KEYED_HASH(to->header)) xor_hash ^= jenkins_hash64(data, l); else xor_hash ^= le64toh(u->data.hash); items[m++] = (EntryItem) { .object_offset = h, .hash = le64toh(u->data.hash), }; } if (m == 0) return 0; r = journal_file_append_entry_internal( to, &ts, &boot_id, &from->header->machine_id, xor_hash, items, m, seqnum, seqnum_id, /* ret_object= */ NULL, /* ret_offset= */ NULL); if (mmap_cache_fd_got_sigbus(to->cache_fd)) return -EIO; return r; } void journal_reset_metrics(JournalMetrics *m) { assert(m); /* Set everything to "pick automatic values". */ *m = (JournalMetrics) { .min_use = UINT64_MAX, .max_use = UINT64_MAX, .min_size = UINT64_MAX, .max_size = UINT64_MAX, .keep_free = UINT64_MAX, .n_max_files = UINT64_MAX, }; } int journal_file_get_cutoff_realtime_usec(JournalFile *f, usec_t *ret_from, usec_t *ret_to) { assert(f); assert(f->header); assert(ret_from || ret_to); if (ret_from) { if (f->header->head_entry_realtime == 0) return -ENOENT; *ret_from = le64toh(f->header->head_entry_realtime); } if (ret_to) { if (f->header->tail_entry_realtime == 0) return -ENOENT; *ret_to = le64toh(f->header->tail_entry_realtime); } return 1; } int journal_file_get_cutoff_monotonic_usec(JournalFile *f, sd_id128_t boot_id, usec_t *ret_from, usec_t *ret_to) { Object *o; uint64_t p; int r; assert(f); assert(ret_from || ret_to); /* FIXME: fix return value assignment on success with 0. */ r = find_data_object_by_boot_id(f, boot_id, &o, &p); if (r <= 0) return r; if (le64toh(o->data.n_entries) <= 0) return 0; if (ret_from) { r = journal_file_move_to_object(f, OBJECT_ENTRY, le64toh(o->data.entry_offset), &o); if (r < 0) return r; *ret_from = le64toh(o->entry.monotonic); } if (ret_to) { r = journal_file_move_to_object(f, OBJECT_DATA, p, &o); if (r < 0) return r; r = journal_file_move_to_entry_for_data(f, o, DIRECTION_UP, &o, NULL); if (r <= 0) return r; *ret_to = le64toh(o->entry.monotonic); } return 1; } bool journal_file_rotate_suggested(JournalFile *f, usec_t max_file_usec, int log_level) { assert(f); assert(f->header); /* If we gained new header fields we gained new features, * hence suggest a rotation */ if (le64toh(f->header->header_size) < sizeof(Header)) { log_ratelimit_full(log_level, JOURNAL_LOG_RATELIMIT, "%s uses an outdated header, suggesting rotation.", f->path); return true; } /* Let's check if the hash tables grew over a certain fill level (75%, borrowing this value from * Java's hash table implementation), and if so suggest a rotation. To calculate the fill level we * need the n_data field, which only exists in newer versions. */ if (JOURNAL_HEADER_CONTAINS(f->header, n_data)) if (le64toh(f->header->n_data) * 4ULL > (le64toh(f->header->data_hash_table_size) / sizeof(HashItem)) * 3ULL) { log_ratelimit_full( log_level, JOURNAL_LOG_RATELIMIT, "Data hash table of %s has a fill level at %.1f (%"PRIu64" of %"PRIu64" items, %"PRIu64" file size, %"PRIu64" bytes per hash table item), suggesting rotation.", f->path, 100.0 * (double) le64toh(f->header->n_data) / ((double) (le64toh(f->header->data_hash_table_size) / sizeof(HashItem))), le64toh(f->header->n_data), le64toh(f->header->data_hash_table_size) / sizeof(HashItem), (uint64_t) f->last_stat.st_size, f->last_stat.st_size / le64toh(f->header->n_data)); return true; } if (JOURNAL_HEADER_CONTAINS(f->header, n_fields)) if (le64toh(f->header->n_fields) * 4ULL > (le64toh(f->header->field_hash_table_size) / sizeof(HashItem)) * 3ULL) { log_ratelimit_full( log_level, JOURNAL_LOG_RATELIMIT, "Field hash table of %s has a fill level at %.1f (%"PRIu64" of %"PRIu64" items), suggesting rotation.", f->path, 100.0 * (double) le64toh(f->header->n_fields) / ((double) (le64toh(f->header->field_hash_table_size) / sizeof(HashItem))), le64toh(f->header->n_fields), le64toh(f->header->field_hash_table_size) / sizeof(HashItem)); return true; } /* If there are too many hash collisions somebody is most likely playing games with us. Hence, if our * longest chain is longer than some threshold, let's suggest rotation. */ if (JOURNAL_HEADER_CONTAINS(f->header, data_hash_chain_depth) && le64toh(f->header->data_hash_chain_depth) > HASH_CHAIN_DEPTH_MAX) { log_ratelimit_full( log_level, JOURNAL_LOG_RATELIMIT, "Data hash table of %s has deepest hash chain of length %" PRIu64 ", suggesting rotation.", f->path, le64toh(f->header->data_hash_chain_depth)); return true; } if (JOURNAL_HEADER_CONTAINS(f->header, field_hash_chain_depth) && le64toh(f->header->field_hash_chain_depth) > HASH_CHAIN_DEPTH_MAX) { log_ratelimit_full( log_level, JOURNAL_LOG_RATELIMIT, "Field hash table of %s has deepest hash chain of length at %" PRIu64 ", suggesting rotation.", f->path, le64toh(f->header->field_hash_chain_depth)); return true; } /* Are the data objects properly indexed by field objects? */ if (JOURNAL_HEADER_CONTAINS(f->header, n_data) && JOURNAL_HEADER_CONTAINS(f->header, n_fields) && le64toh(f->header->n_data) > 0 && le64toh(f->header->n_fields) == 0) { log_ratelimit_full( log_level, JOURNAL_LOG_RATELIMIT, "Data objects of %s are not indexed by field objects, suggesting rotation.", f->path); return true; } if (max_file_usec > 0) { usec_t t, h; h = le64toh(f->header->head_entry_realtime); t = now(CLOCK_REALTIME); if (h > 0 && t > h + max_file_usec) { log_ratelimit_full( log_level, JOURNAL_LOG_RATELIMIT, "Oldest entry in %s is older than the configured file retention duration (%s), suggesting rotation.", f->path, FORMAT_TIMESPAN(max_file_usec, USEC_PER_SEC)); return true; } } return false; } static const char * const journal_object_type_table[] = { [OBJECT_UNUSED] = "unused", [OBJECT_DATA] = "data", [OBJECT_FIELD] = "field", [OBJECT_ENTRY] = "entry", [OBJECT_DATA_HASH_TABLE] = "data hash table", [OBJECT_FIELD_HASH_TABLE] = "field hash table", [OBJECT_ENTRY_ARRAY] = "entry array", [OBJECT_TAG] = "tag", }; DEFINE_STRING_TABLE_LOOKUP_TO_STRING(journal_object_type, ObjectType);