/* SPDX-License-Identifier: LGPL-2.1-or-later */ #if HAVE_VALGRIND_MEMCHECK_H #include #endif #include #include #include #include #include #include #include #include "sd-device.h" #include "sd-id128.h" #include "alloc-util.h" #include "blkid-util.h" #include "blockdev-util.h" #include "btrfs-util.h" #include "build.h" #include "chase.h" #include "conf-files.h" #include "conf-parser.h" #include "constants.h" #include "cryptsetup-util.h" #include "device-util.h" #include "devnum-util.h" #include "dirent-util.h" #include "efivars.h" #include "errno-util.h" #include "fd-util.h" #include "fdisk-util.h" #include "fileio.h" #include "format-table.h" #include "format-util.h" #include "fs-util.h" #include "glyph-util.h" #include "gpt.h" #include "hexdecoct.h" #include "hmac.h" #include "id128-util.h" #include "initrd-util.h" #include "io-util.h" #include "json.h" #include "list.h" #include "loop-util.h" #include "main-func.h" #include "mkdir.h" #include "mkfs-util.h" #include "mount-util.h" #include "mountpoint-util.h" #include "nulstr-util.h" #include "openssl-util.h" #include "parse-argument.h" #include "parse-helpers.h" #include "pretty-print.h" #include "proc-cmdline.h" #include "process-util.h" #include "random-util.h" #include "resize-fs.h" #include "rm-rf.h" #include "sort-util.h" #include "specifier.h" #include "stdio-util.h" #include "string-table.h" #include "string-util.h" #include "strv.h" #include "sync-util.h" #include "terminal-util.h" #include "tmpfile-util.h" #include "tpm2-pcr.h" #include "tpm2-util.h" #include "user-util.h" #include "utf8.h" /* If not configured otherwise use a minimal partition size of 10M */ #define DEFAULT_MIN_SIZE (10ULL*1024ULL*1024ULL) /* Hard lower limit for new partition sizes */ #define HARD_MIN_SIZE 4096ULL /* We know up front we're never going to put more than this in a verity sig partition. */ #define VERITY_SIG_SIZE (HARD_MIN_SIZE*4ULL) /* libfdisk takes off slightly more than 1M of the disk size when creating a GPT disk label */ #define GPT_METADATA_SIZE (1044ULL*1024ULL) /* LUKS2 takes off 16M of the partition size with its metadata by default */ #define LUKS2_METADATA_SIZE (16ULL*1024ULL*1024ULL) /* To do LUKS2 offline encryption, we need to keep some extra free space at the end of the partition. */ #define LUKS2_METADATA_KEEP_FREE (LUKS2_METADATA_SIZE*2ULL) /* LUKS2 volume key size. */ #define VOLUME_KEY_SIZE (512ULL/8ULL) /* Use 4K as the default filesystem sector size because as long as the partitions are aligned to 4K, the * filesystems will then also be compatible with sector sizes 512, 1024 and 2048. */ #define DEFAULT_FILESYSTEM_SECTOR_SIZE 4096ULL #define APIVFS_TMP_DIRS_NULSTR "proc\0sys\0dev\0tmp\0run\0var/tmp\0" /* Note: When growing and placing new partitions we always align to 4K sector size. It's how newer hard disks * are designed, and if everything is aligned to that performance is best. And for older hard disks with 512B * sector size devices were generally assumed to have an even number of sectors, hence at the worst we'll * waste 3K per partition, which is probably fine. */ typedef enum EmptyMode { EMPTY_UNSET, /* no choice has been made yet */ EMPTY_REFUSE, /* refuse empty disks, never create a partition table */ EMPTY_ALLOW, /* allow empty disks, create partition table if necessary */ EMPTY_REQUIRE, /* require an empty disk, create a partition table */ EMPTY_FORCE, /* make disk empty, erase everything, create a partition table always */ EMPTY_CREATE, /* create disk as loopback file, create a partition table always */ _EMPTY_MODE_MAX, _EMPTY_MODE_INVALID = -EINVAL, } EmptyMode; typedef enum FilterPartitionType { FILTER_PARTITIONS_NONE, FILTER_PARTITIONS_EXCLUDE, FILTER_PARTITIONS_INCLUDE, _FILTER_PARTITIONS_MAX, _FILTER_PARTITIONS_INVALID = -EINVAL, } FilterPartitionsType; static EmptyMode arg_empty = EMPTY_UNSET; static bool arg_dry_run = true; static const char *arg_node = NULL; static char *arg_root = NULL; static char *arg_image = NULL; static char **arg_definitions = NULL; static bool arg_discard = true; static bool arg_can_factory_reset = false; static int arg_factory_reset = -1; static sd_id128_t arg_seed = SD_ID128_NULL; static bool arg_randomize = false; static int arg_pretty = -1; static uint64_t arg_size = UINT64_MAX; static bool arg_size_auto = false; static JsonFormatFlags arg_json_format_flags = JSON_FORMAT_OFF; static PagerFlags arg_pager_flags = 0; static bool arg_legend = true; static void *arg_key = NULL; static size_t arg_key_size = 0; static EVP_PKEY *arg_private_key = NULL; static X509 *arg_certificate = NULL; static char *arg_tpm2_device = NULL; static uint32_t arg_tpm2_seal_key_handle = 0; static char *arg_tpm2_device_key = NULL; static Tpm2PCRValue *arg_tpm2_hash_pcr_values = NULL; static size_t arg_tpm2_n_hash_pcr_values = 0; static char *arg_tpm2_public_key = NULL; static uint32_t arg_tpm2_public_key_pcr_mask = 0; static char *arg_tpm2_pcrlock = NULL; static bool arg_split = false; static GptPartitionType *arg_filter_partitions = NULL; static size_t arg_n_filter_partitions = 0; static FilterPartitionsType arg_filter_partitions_type = FILTER_PARTITIONS_NONE; static GptPartitionType *arg_defer_partitions = NULL; static size_t arg_n_defer_partitions = 0; static uint64_t arg_sector_size = 0; static ImagePolicy *arg_image_policy = NULL; static Architecture arg_architecture = _ARCHITECTURE_INVALID; static int arg_offline = -1; static char **arg_copy_from = NULL; static char *arg_copy_source = NULL; static char *arg_make_ddi = NULL; STATIC_DESTRUCTOR_REGISTER(arg_root, freep); STATIC_DESTRUCTOR_REGISTER(arg_image, freep); STATIC_DESTRUCTOR_REGISTER(arg_definitions, strv_freep); STATIC_DESTRUCTOR_REGISTER(arg_key, erase_and_freep); STATIC_DESTRUCTOR_REGISTER(arg_private_key, EVP_PKEY_freep); STATIC_DESTRUCTOR_REGISTER(arg_certificate, X509_freep); STATIC_DESTRUCTOR_REGISTER(arg_tpm2_device, freep); STATIC_DESTRUCTOR_REGISTER(arg_tpm2_device_key, freep); STATIC_DESTRUCTOR_REGISTER(arg_tpm2_hash_pcr_values, freep); STATIC_DESTRUCTOR_REGISTER(arg_tpm2_public_key, freep); STATIC_DESTRUCTOR_REGISTER(arg_tpm2_pcrlock, freep); STATIC_DESTRUCTOR_REGISTER(arg_filter_partitions, freep); STATIC_DESTRUCTOR_REGISTER(arg_image_policy, image_policy_freep); STATIC_DESTRUCTOR_REGISTER(arg_copy_from, strv_freep); STATIC_DESTRUCTOR_REGISTER(arg_copy_source, freep); STATIC_DESTRUCTOR_REGISTER(arg_make_ddi, freep); typedef struct FreeArea FreeArea; typedef enum EncryptMode { ENCRYPT_OFF, ENCRYPT_KEY_FILE, ENCRYPT_TPM2, ENCRYPT_KEY_FILE_TPM2, _ENCRYPT_MODE_MAX, _ENCRYPT_MODE_INVALID = -EINVAL, } EncryptMode; typedef enum VerityMode { VERITY_OFF, VERITY_DATA, VERITY_HASH, VERITY_SIG, _VERITY_MODE_MAX, _VERITY_MODE_INVALID = -EINVAL, } VerityMode; typedef enum MinimizeMode { MINIMIZE_OFF, MINIMIZE_BEST, MINIMIZE_GUESS, _MINIMIZE_MODE_MAX, _MINIMIZE_MODE_INVALID = -EINVAL, } MinimizeMode; typedef struct Partition { char *definition_path; char **drop_in_files; GptPartitionType type; sd_id128_t current_uuid, new_uuid; bool new_uuid_is_set; char *current_label, *new_label; sd_id128_t fs_uuid, luks_uuid, verity_uuid; uint8_t verity_salt[SHA256_DIGEST_SIZE]; bool dropped; bool factory_reset; int32_t priority; uint32_t weight, padding_weight; uint64_t current_size, new_size; uint64_t size_min, size_max; uint64_t current_padding, new_padding; uint64_t padding_min, padding_max; uint64_t partno; uint64_t offset; struct fdisk_partition *current_partition; struct fdisk_partition *new_partition; FreeArea *padding_area; FreeArea *allocated_to_area; char *copy_blocks_path; bool copy_blocks_path_is_our_file; bool copy_blocks_auto; const char *copy_blocks_root; int copy_blocks_fd; uint64_t copy_blocks_offset; uint64_t copy_blocks_size; char *format; char **copy_files; char **exclude_files_source; char **exclude_files_target; char **make_directories; char **subvolumes; EncryptMode encrypt; VerityMode verity; char *verity_match_key; MinimizeMode minimize; uint64_t verity_data_block_size; uint64_t verity_hash_block_size; uint64_t gpt_flags; int no_auto; int read_only; int growfs; struct iovec roothash; char *split_name_format; char *split_path; struct Partition *siblings[_VERITY_MODE_MAX]; LIST_FIELDS(struct Partition, partitions); } Partition; #define PARTITION_IS_FOREIGN(p) (!(p)->definition_path) #define PARTITION_EXISTS(p) (!!(p)->current_partition) struct FreeArea { Partition *after; uint64_t size; uint64_t allocated; }; typedef struct Context { LIST_HEAD(Partition, partitions); size_t n_partitions; FreeArea **free_areas; size_t n_free_areas; uint64_t start, end, total; struct fdisk_context *fdisk_context; uint64_t sector_size, grain_size, fs_sector_size; sd_id128_t seed; char *node; bool node_is_our_file; int backing_fd; bool from_scratch; } Context; static const char *empty_mode_table[_EMPTY_MODE_MAX] = { [EMPTY_UNSET] = "unset", [EMPTY_REFUSE] = "refuse", [EMPTY_ALLOW] = "allow", [EMPTY_REQUIRE] = "require", [EMPTY_FORCE] = "force", [EMPTY_CREATE] = "create", }; static const char *encrypt_mode_table[_ENCRYPT_MODE_MAX] = { [ENCRYPT_OFF] = "off", [ENCRYPT_KEY_FILE] = "key-file", [ENCRYPT_TPM2] = "tpm2", [ENCRYPT_KEY_FILE_TPM2] = "key-file+tpm2", }; static const char *verity_mode_table[_VERITY_MODE_MAX] = { [VERITY_OFF] = "off", [VERITY_DATA] = "data", [VERITY_HASH] = "hash", [VERITY_SIG] = "signature", }; static const char *minimize_mode_table[_MINIMIZE_MODE_MAX] = { [MINIMIZE_OFF] = "off", [MINIMIZE_BEST] = "best", [MINIMIZE_GUESS] = "guess", }; DEFINE_PRIVATE_STRING_TABLE_LOOKUP(empty_mode, EmptyMode); DEFINE_PRIVATE_STRING_TABLE_LOOKUP_FROM_STRING_WITH_BOOLEAN(encrypt_mode, EncryptMode, ENCRYPT_KEY_FILE); DEFINE_PRIVATE_STRING_TABLE_LOOKUP(verity_mode, VerityMode); DEFINE_PRIVATE_STRING_TABLE_LOOKUP_FROM_STRING_WITH_BOOLEAN(minimize_mode, MinimizeMode, MINIMIZE_BEST); static uint64_t round_down_size(uint64_t v, uint64_t p) { return (v / p) * p; } static uint64_t round_up_size(uint64_t v, uint64_t p) { v = DIV_ROUND_UP(v, p); if (v > UINT64_MAX / p) return UINT64_MAX; /* overflow */ return v * p; } static Partition *partition_new(void) { Partition *p; p = new(Partition, 1); if (!p) return NULL; *p = (Partition) { .weight = 1000, .padding_weight = 0, .current_size = UINT64_MAX, .new_size = UINT64_MAX, .size_min = UINT64_MAX, .size_max = UINT64_MAX, .current_padding = UINT64_MAX, .new_padding = UINT64_MAX, .padding_min = UINT64_MAX, .padding_max = UINT64_MAX, .partno = UINT64_MAX, .offset = UINT64_MAX, .copy_blocks_fd = -EBADF, .copy_blocks_offset = UINT64_MAX, .copy_blocks_size = UINT64_MAX, .no_auto = -1, .read_only = -1, .growfs = -1, .verity_data_block_size = UINT64_MAX, .verity_hash_block_size = UINT64_MAX, }; return p; } static Partition* partition_free(Partition *p) { if (!p) return NULL; free(p->current_label); free(p->new_label); free(p->definition_path); strv_free(p->drop_in_files); if (p->current_partition) fdisk_unref_partition(p->current_partition); if (p->new_partition) fdisk_unref_partition(p->new_partition); if (p->copy_blocks_path_is_our_file) unlink_and_free(p->copy_blocks_path); else free(p->copy_blocks_path); safe_close(p->copy_blocks_fd); free(p->format); strv_free(p->copy_files); strv_free(p->exclude_files_source); strv_free(p->exclude_files_target); strv_free(p->make_directories); strv_free(p->subvolumes); free(p->verity_match_key); iovec_done(&p->roothash); free(p->split_name_format); unlink_and_free(p->split_path); return mfree(p); } static void partition_foreignize(Partition *p) { assert(p); assert(PARTITION_EXISTS(p)); /* Reset several parameters set through definition file to make the partition foreign. */ p->definition_path = mfree(p->definition_path); p->drop_in_files = strv_free(p->drop_in_files); p->copy_blocks_path = mfree(p->copy_blocks_path); p->copy_blocks_fd = safe_close(p->copy_blocks_fd); p->copy_blocks_root = NULL; p->format = mfree(p->format); p->copy_files = strv_free(p->copy_files); p->exclude_files_source = strv_free(p->exclude_files_source); p->exclude_files_target = strv_free(p->exclude_files_target); p->make_directories = strv_free(p->make_directories); p->subvolumes = strv_free(p->subvolumes); p->verity_match_key = mfree(p->verity_match_key); p->priority = 0; p->weight = 1000; p->padding_weight = 0; p->size_min = UINT64_MAX; p->size_max = UINT64_MAX; p->padding_min = UINT64_MAX; p->padding_max = UINT64_MAX; p->no_auto = -1; p->read_only = -1; p->growfs = -1; p->verity = VERITY_OFF; } static bool partition_type_exclude(const GptPartitionType *type) { if (arg_filter_partitions_type == FILTER_PARTITIONS_NONE) return false; for (size_t i = 0; i < arg_n_filter_partitions; i++) if (sd_id128_equal(type->uuid, arg_filter_partitions[i].uuid)) return arg_filter_partitions_type == FILTER_PARTITIONS_EXCLUDE; return arg_filter_partitions_type == FILTER_PARTITIONS_INCLUDE; } static bool partition_type_defer(const GptPartitionType *type) { for (size_t i = 0; i < arg_n_defer_partitions; i++) if (sd_id128_equal(type->uuid, arg_defer_partitions[i].uuid)) return true; return false; } static Partition* partition_unlink_and_free(Context *context, Partition *p) { if (!p) return NULL; LIST_REMOVE(partitions, context->partitions, p); assert(context->n_partitions > 0); context->n_partitions--; return partition_free(p); } DEFINE_TRIVIAL_CLEANUP_FUNC(Partition*, partition_free); static Context *context_new(sd_id128_t seed) { Context *context; context = new(Context, 1); if (!context) return NULL; *context = (Context) { .start = UINT64_MAX, .end = UINT64_MAX, .total = UINT64_MAX, .seed = seed, }; return context; } static void context_free_free_areas(Context *context) { assert(context); for (size_t i = 0; i < context->n_free_areas; i++) free(context->free_areas[i]); context->free_areas = mfree(context->free_areas); context->n_free_areas = 0; } static Context *context_free(Context *context) { if (!context) return NULL; while (context->partitions) partition_unlink_and_free(context, context->partitions); assert(context->n_partitions == 0); context_free_free_areas(context); if (context->fdisk_context) fdisk_unref_context(context->fdisk_context); safe_close(context->backing_fd); if (context->node_is_our_file) unlink_and_free(context->node); else free(context->node); return mfree(context); } DEFINE_TRIVIAL_CLEANUP_FUNC(Context*, context_free); static int context_add_free_area( Context *context, uint64_t size, Partition *after) { FreeArea *a; assert(context); assert(!after || !after->padding_area); if (!GREEDY_REALLOC(context->free_areas, context->n_free_areas + 1)) return -ENOMEM; a = new(FreeArea, 1); if (!a) return -ENOMEM; *a = (FreeArea) { .size = size, .after = after, }; context->free_areas[context->n_free_areas++] = a; if (after) after->padding_area = a; return 0; } static void partition_drop_or_foreignize(Partition *p) { if (!p || p->dropped || PARTITION_IS_FOREIGN(p)) return; if (PARTITION_EXISTS(p)) { log_info("Can't grow existing partition %s of priority %" PRIi32 ", ignoring.", strna(p->current_label ?: p->new_label), p->priority); /* Handle the partition as foreign. Do not set dropped flag. */ partition_foreignize(p); } else { log_info("Can't fit partition %s of priority %" PRIi32 ", dropping.", p->definition_path, p->priority); p->dropped = true; p->allocated_to_area = NULL; } } static bool context_drop_or_foreignize_one_priority(Context *context) { int32_t priority = 0; LIST_FOREACH(partitions, p, context->partitions) { if (p->dropped) continue; priority = MAX(priority, p->priority); } /* Refuse to drop partitions with 0 or negative priorities or partitions of priorities that have at * least one existing priority */ if (priority <= 0) return false; LIST_FOREACH(partitions, p, context->partitions) { if (p->priority < priority) continue; partition_drop_or_foreignize(p); /* We ensure that all verity sibling partitions have the same priority, so it's safe * to drop all siblings here as well. */ for (VerityMode mode = VERITY_OFF + 1; mode < _VERITY_MODE_MAX; mode++) partition_drop_or_foreignize(p->siblings[mode]); } return true; } static uint64_t partition_min_size(const Context *context, const Partition *p) { uint64_t sz; assert(context); assert(p); /* Calculate the disk space we really need at minimum for this partition. If the partition already * exists the current size is what we really need. If it doesn't exist yet refuse to allocate less * than 4K. * * DEFAULT_MIN_SIZE is the default SizeMin= we configure if nothing else is specified. */ if (PARTITION_IS_FOREIGN(p)) { /* Don't allow changing size of partitions not managed by us */ assert(p->current_size != UINT64_MAX); return p->current_size; } if (p->verity == VERITY_SIG) return VERITY_SIG_SIZE; sz = p->current_size != UINT64_MAX ? p->current_size : HARD_MIN_SIZE; if (!PARTITION_EXISTS(p)) { uint64_t d = 0; if (p->encrypt != ENCRYPT_OFF) d += round_up_size(LUKS2_METADATA_KEEP_FREE, context->grain_size); if (p->copy_blocks_size != UINT64_MAX) d += round_up_size(p->copy_blocks_size, context->grain_size); else if (p->format || p->encrypt != ENCRYPT_OFF) { uint64_t f; /* If we shall synthesize a file system, take minimal fs size into account (assumed to be 4K if not known) */ f = p->format ? round_up_size(minimal_size_by_fs_name(p->format), context->grain_size) : UINT64_MAX; d += f == UINT64_MAX ? context->grain_size : f; } if (d > sz) sz = d; } return MAX(round_up_size(p->size_min != UINT64_MAX ? p->size_min : DEFAULT_MIN_SIZE, context->grain_size), sz); } static uint64_t partition_max_size(const Context *context, const Partition *p) { uint64_t sm; /* Calculate how large the partition may become at max. This is generally the configured maximum * size, except when it already exists and is larger than that. In that case it's the existing size, * since we never want to shrink partitions. */ assert(context); assert(p); if (PARTITION_IS_FOREIGN(p)) { /* Don't allow changing size of partitions not managed by us */ assert(p->current_size != UINT64_MAX); return p->current_size; } if (p->verity == VERITY_SIG) return VERITY_SIG_SIZE; if (p->size_max == UINT64_MAX) return UINT64_MAX; sm = round_down_size(p->size_max, context->grain_size); if (p->current_size != UINT64_MAX) sm = MAX(p->current_size, sm); return MAX(partition_min_size(context, p), sm); } static uint64_t partition_min_padding(const Partition *p) { assert(p); return p->padding_min != UINT64_MAX ? p->padding_min : 0; } static uint64_t partition_max_padding(const Partition *p) { assert(p); return p->padding_max; } static uint64_t partition_min_size_with_padding(Context *context, const Partition *p) { uint64_t sz; /* Calculate the disk space we need for this partition plus any free space coming after it. This * takes user configured padding into account as well as any additional whitespace needed to align * the next partition to 4K again. */ assert(context); assert(p); sz = partition_min_size(context, p) + partition_min_padding(p); if (PARTITION_EXISTS(p)) { /* If the partition wasn't aligned, add extra space so that any we might add will be aligned */ assert(p->offset != UINT64_MAX); return round_up_size(p->offset + sz, context->grain_size) - p->offset; } /* If this is a new partition we'll place it aligned, hence we just need to round up the required size here */ return round_up_size(sz, context->grain_size); } static uint64_t free_area_available(const FreeArea *a) { assert(a); /* Determines how much of this free area is not allocated yet */ assert(a->size >= a->allocated); return a->size - a->allocated; } static uint64_t free_area_current_end(Context *context, const FreeArea *a) { assert(context); assert(a); if (!a->after) return free_area_available(a); assert(a->after->offset != UINT64_MAX); assert(a->after->current_size != UINT64_MAX); /* Calculate where the free area ends, based on the offset of the partition preceding it. */ return round_up_size(a->after->offset + a->after->current_size, context->grain_size) + free_area_available(a); } static uint64_t free_area_min_end(Context *context, const FreeArea *a) { assert(context); assert(a); if (!a->after) return 0; assert(a->after->offset != UINT64_MAX); assert(a->after->current_size != UINT64_MAX); /* Calculate where the partition would end when we give it as much as it needs. */ return round_up_size(a->after->offset + partition_min_size_with_padding(context, a->after), context->grain_size); } static uint64_t free_area_available_for_new_partitions(Context *context, const FreeArea *a) { assert(context); assert(a); /* Similar to free_area_available(), but takes into account that the required size and padding of the * preceding partition is honoured. */ return LESS_BY(free_area_current_end(context, a), free_area_min_end(context, a)); } static int free_area_compare(FreeArea *const *a, FreeArea *const*b, Context *context) { assert(context); return CMP(free_area_available_for_new_partitions(context, *a), free_area_available_for_new_partitions(context, *b)); } static uint64_t charge_size(Context *context, uint64_t total, uint64_t amount) { assert(context); /* Subtract the specified amount from total, rounding up to multiple of 4K if there's room */ assert(amount <= total); return LESS_BY(total, round_up_size(amount, context->grain_size)); } static uint64_t charge_weight(uint64_t total, uint64_t amount) { assert(amount <= total); return total - amount; } static bool context_allocate_partitions(Context *context, uint64_t *ret_largest_free_area) { assert(context); /* This may be called multiple times. Reset previous assignments. */ for (size_t i = 0; i < context->n_free_areas; i++) context->free_areas[i]->allocated = 0; /* Sort free areas by size, putting smallest first */ typesafe_qsort_r(context->free_areas, context->n_free_areas, free_area_compare, context); /* In any case return size of the largest free area (i.e. not the size of all free areas * combined!) */ if (ret_largest_free_area) *ret_largest_free_area = context->n_free_areas == 0 ? 0 : free_area_available_for_new_partitions(context, context->free_areas[context->n_free_areas-1]); /* Check that each existing partition can fit its area. */ for (size_t i = 0; i < context->n_free_areas; i++) if (free_area_current_end(context, context->free_areas[i]) < free_area_min_end(context, context->free_areas[i])) return false; /* A simple first-fit algorithm. We return true if we can fit the partitions in, otherwise false. */ LIST_FOREACH(partitions, p, context->partitions) { bool fits = false; uint64_t required; FreeArea *a = NULL; /* Skip partitions we already dropped or that already exist */ if (p->dropped || PARTITION_EXISTS(p)) continue; /* How much do we need to fit? */ required = partition_min_size_with_padding(context, p); assert(required % context->grain_size == 0); for (size_t i = 0; i < context->n_free_areas; i++) { a = context->free_areas[i]; if (free_area_available_for_new_partitions(context, a) >= required) { fits = true; break; } } if (!fits) return false; /* 😢 Oh no! We can't fit this partition into any free area! */ /* Assign the partition to this free area */ p->allocated_to_area = a; /* Budget the minimal partition size */ a->allocated += required; } return true; } static int context_sum_weights(Context *context, FreeArea *a, uint64_t *ret) { uint64_t weight_sum = 0; assert(context); assert(a); assert(ret); /* Determine the sum of the weights of all partitions placed in or before the specified free area */ LIST_FOREACH(partitions, p, context->partitions) { if (p->padding_area != a && p->allocated_to_area != a) continue; if (p->weight > UINT64_MAX - weight_sum) goto overflow_sum; weight_sum += p->weight; if (p->padding_weight > UINT64_MAX - weight_sum) goto overflow_sum; weight_sum += p->padding_weight; } *ret = weight_sum; return 0; overflow_sum: return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Combined weight of partition exceeds unsigned 64-bit range, refusing."); } static uint64_t scale_by_weight(uint64_t value, uint64_t weight, uint64_t weight_sum) { assert(weight_sum >= weight); for (;;) { if (weight == 0) return 0; if (weight == weight_sum) return value; if (value <= UINT64_MAX / weight) return value * weight / weight_sum; /* Rescale weight and weight_sum to make not the calculation overflow. To satisfy the * following conditions, 'weight_sum' is rounded up but 'weight' is rounded down: * - the sum of scale_by_weight() for all weights must not be larger than the input value, * - scale_by_weight() must not be larger than the ideal value (i.e. calculated with uint128_t). */ weight_sum = DIV_ROUND_UP(weight_sum, 2); weight /= 2; } } typedef enum GrowPartitionPhase { /* The zeroth phase: do not touch foreign partitions (i.e. those we don't manage). */ PHASE_FOREIGN, /* The first phase: we charge partitions which need more (according to constraints) than their weight-based share. */ PHASE_OVERCHARGE, /* The second phase: we charge partitions which need less (according to constraints) than their weight-based share. */ PHASE_UNDERCHARGE, /* The third phase: we distribute what remains among the remaining partitions, according to the weights */ PHASE_DISTRIBUTE, _GROW_PARTITION_PHASE_MAX, } GrowPartitionPhase; static bool context_grow_partitions_phase( Context *context, FreeArea *a, GrowPartitionPhase phase, uint64_t *span, uint64_t *weight_sum) { bool try_again = false; assert(context); assert(a); assert(span); assert(weight_sum); /* Now let's look at the intended weights and adjust them taking the minimum space assignments into * account. i.e. if a partition has a small weight but a high minimum space value set it should not * get any additional room from the left-overs. Similar, if two partitions have the same weight they * should get the same space if possible, even if one has a smaller minimum size than the other. */ LIST_FOREACH(partitions, p, context->partitions) { /* Look only at partitions associated with this free area, i.e. immediately * preceding it, or allocated into it */ if (p->allocated_to_area != a && p->padding_area != a) continue; if (p->new_size == UINT64_MAX) { uint64_t share, rsz, xsz; bool charge = false; /* Calculate how much this space this partition needs if everyone would get * the weight based share */ share = scale_by_weight(*span, p->weight, *weight_sum); rsz = partition_min_size(context, p); xsz = partition_max_size(context, p); if (phase == PHASE_FOREIGN && PARTITION_IS_FOREIGN(p)) { /* Never change of foreign partitions (i.e. those we don't manage) */ p->new_size = p->current_size; charge = true; } else if (phase == PHASE_OVERCHARGE && rsz > share) { /* This partition needs more than its calculated share. Let's assign * it that, and take this partition out of all calculations and start * again. */ p->new_size = rsz; charge = try_again = true; } else if (phase == PHASE_UNDERCHARGE && xsz < share) { /* This partition accepts less than its calculated * share. Let's assign it that, and take this partition out * of all calculations and start again. */ p->new_size = xsz; charge = try_again = true; } else if (phase == PHASE_DISTRIBUTE) { /* This partition can accept its calculated share. Let's * assign it. There's no need to restart things here since * assigning this shouldn't impact the shares of the other * partitions. */ assert(share >= rsz); p->new_size = CLAMP(round_down_size(share, context->grain_size), rsz, xsz); charge = true; } if (charge) { *span = charge_size(context, *span, p->new_size); *weight_sum = charge_weight(*weight_sum, p->weight); } } if (p->new_padding == UINT64_MAX) { uint64_t share, rsz, xsz; bool charge = false; share = scale_by_weight(*span, p->padding_weight, *weight_sum); rsz = partition_min_padding(p); xsz = partition_max_padding(p); if (phase == PHASE_OVERCHARGE && rsz > share) { p->new_padding = rsz; charge = try_again = true; } else if (phase == PHASE_UNDERCHARGE && xsz < share) { p->new_padding = xsz; charge = try_again = true; } else if (phase == PHASE_DISTRIBUTE) { assert(share >= rsz); p->new_padding = CLAMP(round_down_size(share, context->grain_size), rsz, xsz); charge = true; } if (charge) { *span = charge_size(context, *span, p->new_padding); *weight_sum = charge_weight(*weight_sum, p->padding_weight); } } } return !try_again; } static void context_grow_partition_one(Context *context, FreeArea *a, Partition *p, uint64_t *span) { uint64_t m; assert(context); assert(a); assert(p); assert(span); if (*span == 0) return; if (p->allocated_to_area != a) return; if (PARTITION_IS_FOREIGN(p)) return; assert(p->new_size != UINT64_MAX); /* Calculate new size and align. */ m = round_down_size(p->new_size + *span, context->grain_size); /* But ensure this doesn't shrink the size. */ m = MAX(m, p->new_size); /* And ensure this doesn't exceed the maximum size. */ m = MIN(m, partition_max_size(context, p)); assert(m >= p->new_size); *span = charge_size(context, *span, m - p->new_size); p->new_size = m; } static int context_grow_partitions_on_free_area(Context *context, FreeArea *a) { uint64_t weight_sum = 0, span; int r; assert(context); assert(a); r = context_sum_weights(context, a, &weight_sum); if (r < 0) return r; /* Let's calculate the total area covered by this free area and the partition before it */ span = a->size; if (a->after) { assert(a->after->offset != UINT64_MAX); assert(a->after->current_size != UINT64_MAX); span += round_up_size(a->after->offset + a->after->current_size, context->grain_size) - a->after->offset; } for (GrowPartitionPhase phase = 0; phase < _GROW_PARTITION_PHASE_MAX;) if (context_grow_partitions_phase(context, a, phase, &span, &weight_sum)) phase++; /* go to the next phase */ /* We still have space left over? Donate to preceding partition if we have one */ if (span > 0 && a->after) context_grow_partition_one(context, a, a->after, &span); /* What? Even still some space left (maybe because there was no preceding partition, or it had a * size limit), then let's donate it to whoever wants it. */ if (span > 0) LIST_FOREACH(partitions, p, context->partitions) { context_grow_partition_one(context, a, p, &span); if (span == 0) break; } /* Yuck, still no one? Then make it padding */ if (span > 0 && a->after) { assert(a->after->new_padding != UINT64_MAX); a->after->new_padding += span; } return 0; } static int context_grow_partitions(Context *context) { int r; assert(context); for (size_t i = 0; i < context->n_free_areas; i++) { r = context_grow_partitions_on_free_area(context, context->free_areas[i]); if (r < 0) return r; } /* All existing partitions that have no free space after them can't change size */ LIST_FOREACH(partitions, p, context->partitions) { if (p->dropped) continue; if (!PARTITION_EXISTS(p) || p->padding_area) { /* The algorithm above must have initialized this already */ assert(p->new_size != UINT64_MAX); continue; } assert(p->new_size == UINT64_MAX); p->new_size = p->current_size; assert(p->new_padding == UINT64_MAX); p->new_padding = p->current_padding; } return 0; } static uint64_t find_first_unused_partno(Context *context) { uint64_t partno = 0; assert(context); for (partno = 0;; partno++) { bool found = false; LIST_FOREACH(partitions, p, context->partitions) if (p->partno != UINT64_MAX && p->partno == partno) found = true; if (!found) break; } return partno; } static void context_place_partitions(Context *context) { assert(context); for (size_t i = 0; i < context->n_free_areas; i++) { FreeArea *a = context->free_areas[i]; _unused_ uint64_t left; uint64_t start; if (a->after) { assert(a->after->offset != UINT64_MAX); assert(a->after->new_size != UINT64_MAX); assert(a->after->new_padding != UINT64_MAX); start = a->after->offset + a->after->new_size + a->after->new_padding; } else start = context->start; start = round_up_size(start, context->grain_size); left = a->size; LIST_FOREACH(partitions, p, context->partitions) { if (p->allocated_to_area != a) continue; p->offset = start; p->partno = find_first_unused_partno(context); assert(left >= p->new_size); start += p->new_size; left -= p->new_size; assert(left >= p->new_padding); start += p->new_padding; left -= p->new_padding; } } } static int config_parse_type( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { GptPartitionType *type = ASSERT_PTR(data); int r; assert(rvalue); r = gpt_partition_type_from_string(rvalue, type); if (r < 0) return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to parse partition type: %s", rvalue); if (arg_architecture >= 0) *type = gpt_partition_type_override_architecture(*type, arg_architecture); return 0; } static int config_parse_label( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { _cleanup_free_ char *resolved = NULL; char **label = ASSERT_PTR(data); int r; assert(rvalue); /* Nota bene: the empty label is a totally valid one. Let's hence not follow our usual rule of * assigning the empty string to reset to default here, but really accept it as label to set. */ r = specifier_printf(rvalue, GPT_LABEL_MAX, system_and_tmp_specifier_table, arg_root, NULL, &resolved); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to expand specifiers in Label=, ignoring: %s", rvalue); return 0; } if (!utf8_is_valid(resolved)) { log_syntax(unit, LOG_WARNING, filename, line, 0, "Partition label not valid UTF-8, ignoring: %s", rvalue); return 0; } r = gpt_partition_label_valid(resolved); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to check if string is valid as GPT partition label, ignoring: \"%s\" (from \"%s\")", resolved, rvalue); return 0; } if (!r) { log_syntax(unit, LOG_WARNING, filename, line, 0, "Partition label too long for GPT table, ignoring: \"%s\" (from \"%s\")", resolved, rvalue); return 0; } free_and_replace(*label, resolved); return 0; } static int config_parse_weight( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { uint32_t *w = ASSERT_PTR(data), v; int r; assert(rvalue); r = safe_atou32(rvalue, &v); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to parse weight value, ignoring: %s", rvalue); return 0; } if (v > 1000U*1000U) { log_syntax(unit, LOG_WARNING, filename, line, 0, "Weight needs to be in range 0…10000000, ignoring: %" PRIu32, v); return 0; } *w = v; return 0; } static int config_parse_size4096( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { uint64_t *sz = data, parsed; int r; assert(rvalue); assert(data); r = parse_size(rvalue, 1024, &parsed); if (r < 0) return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to parse size value: %s", rvalue); if (ltype > 0) *sz = round_up_size(parsed, 4096); else if (ltype < 0) *sz = round_down_size(parsed, 4096); else *sz = parsed; if (*sz != parsed) log_syntax(unit, LOG_NOTICE, filename, line, r, "Rounded %s= size %" PRIu64 " %s %" PRIu64 ", a multiple of 4096.", lvalue, parsed, special_glyph(SPECIAL_GLYPH_ARROW_RIGHT), *sz); return 0; } static int config_parse_block_size( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { uint64_t *blksz = ASSERT_PTR(data), parsed; int r; assert(rvalue); r = parse_size(rvalue, 1024, &parsed); if (r < 0) return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to parse size value: %s", rvalue); if (parsed < 512 || parsed > 4096) return log_syntax(unit, LOG_ERR, filename, line, SYNTHETIC_ERRNO(EINVAL), "Value not between 512 and 4096: %s", rvalue); if (!ISPOWEROF2(parsed)) return log_syntax(unit, LOG_ERR, filename, line, SYNTHETIC_ERRNO(EINVAL), "Value not a power of 2: %s", rvalue); *blksz = parsed; return 0; } static int config_parse_fstype( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { char **fstype = ASSERT_PTR(data); const char *e; assert(rvalue); /* Let's provide an easy way to override the chosen fstype for file system partitions */ e = secure_getenv("SYSTEMD_REPART_OVERRIDE_FSTYPE"); if (e && !streq(rvalue, e)) { log_syntax(unit, LOG_NOTICE, filename, line, 0, "Overriding defined file system type '%s' with '%s'.", rvalue, e); rvalue = e; } if (!filename_is_valid(rvalue)) return log_syntax(unit, LOG_ERR, filename, line, 0, "File system type is not valid, refusing: %s", rvalue); return free_and_strdup_warn(fstype, rvalue); } static int config_parse_copy_files( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { _cleanup_free_ char *source = NULL, *buffer = NULL, *resolved_source = NULL, *resolved_target = NULL; const char *p = rvalue, *target; char ***copy_files = ASSERT_PTR(data); int r; assert(rvalue); r = extract_first_word(&p, &source, ":", EXTRACT_CUNESCAPE|EXTRACT_DONT_COALESCE_SEPARATORS); if (r < 0) return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to extract source path: %s", rvalue); if (r == 0) { log_syntax(unit, LOG_WARNING, filename, line, 0, "No argument specified: %s", rvalue); return 0; } r = extract_first_word(&p, &buffer, ":", EXTRACT_CUNESCAPE|EXTRACT_DONT_COALESCE_SEPARATORS); if (r < 0) return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to extract target path: %s", rvalue); if (r == 0) target = source; /* No target, then it's the same as the source */ else target = buffer; if (!isempty(p)) return log_syntax(unit, LOG_ERR, filename, line, SYNTHETIC_ERRNO(EINVAL), "Too many arguments: %s", rvalue); r = specifier_printf(source, PATH_MAX-1, system_and_tmp_specifier_table, arg_root, NULL, &resolved_source); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to expand specifiers in CopyFiles= source, ignoring: %s", rvalue); return 0; } r = path_simplify_and_warn(resolved_source, PATH_CHECK_ABSOLUTE, unit, filename, line, lvalue); if (r < 0) return 0; r = specifier_printf(target, PATH_MAX-1, system_and_tmp_specifier_table, arg_root, NULL, &resolved_target); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to expand specifiers in CopyFiles= target, ignoring: %s", resolved_target); return 0; } r = path_simplify_and_warn(resolved_target, PATH_CHECK_ABSOLUTE, unit, filename, line, lvalue); if (r < 0) return 0; r = strv_consume_pair(copy_files, TAKE_PTR(resolved_source), TAKE_PTR(resolved_target)); if (r < 0) return log_oom(); return 0; } static int config_parse_exclude_files( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { _cleanup_free_ char *resolved = NULL; char ***exclude_files = ASSERT_PTR(data); int r; if (isempty(rvalue)) { *exclude_files = strv_free(*exclude_files); return 0; } r = specifier_printf(rvalue, PATH_MAX-1, system_and_tmp_specifier_table, arg_root, NULL, &resolved); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to expand specifiers in ExcludeFiles= path, ignoring: %s", rvalue); return 0; } r = path_simplify_and_warn(resolved, PATH_CHECK_ABSOLUTE|PATH_KEEP_TRAILING_SLASH, unit, filename, line, lvalue); if (r < 0) return 0; if (strv_consume(exclude_files, TAKE_PTR(resolved)) < 0) return log_oom(); return 0; } static int config_parse_copy_blocks( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { _cleanup_free_ char *d = NULL; Partition *partition = ASSERT_PTR(data); int r; assert(rvalue); if (isempty(rvalue)) { partition->copy_blocks_path = mfree(partition->copy_blocks_path); partition->copy_blocks_auto = false; return 0; } if (streq(rvalue, "auto")) { partition->copy_blocks_path = mfree(partition->copy_blocks_path); partition->copy_blocks_auto = true; partition->copy_blocks_root = arg_root; return 0; } r = specifier_printf(rvalue, PATH_MAX-1, system_and_tmp_specifier_table, arg_root, NULL, &d); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to expand specifiers in CopyBlocks= source path, ignoring: %s", rvalue); return 0; } r = path_simplify_and_warn(d, PATH_CHECK_ABSOLUTE, unit, filename, line, lvalue); if (r < 0) return 0; free_and_replace(partition->copy_blocks_path, d); partition->copy_blocks_auto = false; partition->copy_blocks_root = arg_root; return 0; } static int config_parse_make_dirs( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { char ***sv = ASSERT_PTR(data); const char *p = ASSERT_PTR(rvalue); int r; for (;;) { _cleanup_free_ char *word = NULL, *d = NULL; r = extract_first_word(&p, &word, NULL, EXTRACT_UNQUOTE); if (r == -ENOMEM) return log_oom(); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Invalid syntax, ignoring: %s", rvalue); return 0; } if (r == 0) return 0; r = specifier_printf(word, PATH_MAX-1, system_and_tmp_specifier_table, arg_root, NULL, &d); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to expand specifiers in MakeDirectories= parameter, ignoring: %s", word); continue; } r = path_simplify_and_warn(d, PATH_CHECK_ABSOLUTE, unit, filename, line, lvalue); if (r < 0) continue; r = strv_consume(sv, TAKE_PTR(d)); if (r < 0) return log_oom(); } } static DEFINE_CONFIG_PARSE_ENUM_WITH_DEFAULT(config_parse_encrypt, encrypt_mode, EncryptMode, ENCRYPT_OFF, "Invalid encryption mode"); static int config_parse_gpt_flags( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { uint64_t *gpt_flags = ASSERT_PTR(data); int r; assert(rvalue); r = safe_atou64(rvalue, gpt_flags); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to parse Flags= value, ignoring: %s", rvalue); return 0; } return 0; } static int config_parse_uuid( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { Partition *partition = ASSERT_PTR(data); int r; if (isempty(rvalue)) { partition->new_uuid = SD_ID128_NULL; partition->new_uuid_is_set = false; return 0; } if (streq(rvalue, "null")) { partition->new_uuid = SD_ID128_NULL; partition->new_uuid_is_set = true; return 0; } r = sd_id128_from_string(rvalue, &partition->new_uuid); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to parse 128-bit ID/UUID, ignoring: %s", rvalue); return 0; } partition->new_uuid_is_set = true; return 0; } static DEFINE_CONFIG_PARSE_ENUM_WITH_DEFAULT(config_parse_verity, verity_mode, VerityMode, VERITY_OFF, "Invalid verity mode"); static DEFINE_CONFIG_PARSE_ENUM_WITH_DEFAULT(config_parse_minimize, minimize_mode, MinimizeMode, MINIMIZE_OFF, "Invalid minimize mode"); static int partition_read_definition(Partition *p, const char *path, const char *const *conf_file_dirs) { ConfigTableItem table[] = { { "Partition", "Type", config_parse_type, 0, &p->type }, { "Partition", "Label", config_parse_label, 0, &p->new_label }, { "Partition", "UUID", config_parse_uuid, 0, p }, { "Partition", "Priority", config_parse_int32, 0, &p->priority }, { "Partition", "Weight", config_parse_weight, 0, &p->weight }, { "Partition", "PaddingWeight", config_parse_weight, 0, &p->padding_weight }, { "Partition", "SizeMinBytes", config_parse_size4096, -1, &p->size_min }, { "Partition", "SizeMaxBytes", config_parse_size4096, 1, &p->size_max }, { "Partition", "PaddingMinBytes", config_parse_size4096, -1, &p->padding_min }, { "Partition", "PaddingMaxBytes", config_parse_size4096, 1, &p->padding_max }, { "Partition", "FactoryReset", config_parse_bool, 0, &p->factory_reset }, { "Partition", "CopyBlocks", config_parse_copy_blocks, 0, p }, { "Partition", "Format", config_parse_fstype, 0, &p->format }, { "Partition", "CopyFiles", config_parse_copy_files, 0, &p->copy_files }, { "Partition", "ExcludeFiles", config_parse_exclude_files, 0, &p->exclude_files_source }, { "Partition", "ExcludeFilesTarget", config_parse_exclude_files, 0, &p->exclude_files_target }, { "Partition", "MakeDirectories", config_parse_make_dirs, 0, &p->make_directories }, { "Partition", "Encrypt", config_parse_encrypt, 0, &p->encrypt }, { "Partition", "Verity", config_parse_verity, 0, &p->verity }, { "Partition", "VerityMatchKey", config_parse_string, 0, &p->verity_match_key }, { "Partition", "Flags", config_parse_gpt_flags, 0, &p->gpt_flags }, { "Partition", "ReadOnly", config_parse_tristate, 0, &p->read_only }, { "Partition", "NoAuto", config_parse_tristate, 0, &p->no_auto }, { "Partition", "GrowFileSystem", config_parse_tristate, 0, &p->growfs }, { "Partition", "SplitName", config_parse_string, 0, &p->split_name_format }, { "Partition", "Minimize", config_parse_minimize, 0, &p->minimize }, { "Partition", "Subvolumes", config_parse_make_dirs, 0, &p->subvolumes }, { "Partition", "VerityDataBlockSizeBytes", config_parse_block_size, 0, &p->verity_data_block_size }, { "Partition", "VerityHashBlockSizeBytes", config_parse_block_size, 0, &p->verity_hash_block_size }, {} }; int r; _cleanup_free_ char *filename = NULL; const char* dropin_dirname; r = path_extract_filename(path, &filename); if (r < 0) return log_error_errno(r, "Failed to extract filename from path '%s': %m", path); dropin_dirname = strjoina(filename, ".d"); r = config_parse_many( STRV_MAKE_CONST(path), conf_file_dirs, dropin_dirname, arg_definitions ? NULL : arg_root, "Partition\0", config_item_table_lookup, table, CONFIG_PARSE_WARN, p, NULL, &p->drop_in_files); if (r < 0) return r; if (partition_type_exclude(&p->type)) return 0; if (p->size_min != UINT64_MAX && p->size_max != UINT64_MAX && p->size_min > p->size_max) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), "SizeMinBytes= larger than SizeMaxBytes=, refusing."); if (p->padding_min != UINT64_MAX && p->padding_max != UINT64_MAX && p->padding_min > p->padding_max) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), "PaddingMinBytes= larger than PaddingMaxBytes=, refusing."); if (sd_id128_is_null(p->type.uuid)) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), "Type= not defined, refusing."); if ((p->copy_blocks_path || p->copy_blocks_auto) && (p->format || !strv_isempty(p->copy_files) || !strv_isempty(p->make_directories))) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), "Format=/CopyFiles=/MakeDirectories= and CopyBlocks= cannot be combined, refusing."); if ((!strv_isempty(p->copy_files) || !strv_isempty(p->make_directories)) && streq_ptr(p->format, "swap")) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), "Format=swap and CopyFiles= cannot be combined, refusing."); if (!p->format) { const char *format = NULL; if (!strv_isempty(p->copy_files) || !strv_isempty(p->make_directories) || (p->encrypt != ENCRYPT_OFF && !(p->copy_blocks_path || p->copy_blocks_auto))) /* Pick "vfat" as file system for esp and xbootldr partitions, otherwise default to "ext4". */ format = IN_SET(p->type.designator, PARTITION_ESP, PARTITION_XBOOTLDR) ? "vfat" : "ext4"; else if (p->type.designator == PARTITION_SWAP) format = "swap"; if (format) { p->format = strdup(format); if (!p->format) return log_oom(); } } if (p->minimize != MINIMIZE_OFF && !p->format && p->verity != VERITY_HASH) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), "Minimize= can only be enabled if Format= or Verity=hash are set"); if (p->minimize == MINIMIZE_BEST && (p->format && !fstype_is_ro(p->format)) && p->verity != VERITY_HASH) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), "Minimize=best can only be used with read-only filesystems or Verity=hash"); if ((!strv_isempty(p->copy_files) || !strv_isempty(p->make_directories)) && !mkfs_supports_root_option(p->format) && geteuid() != 0) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EPERM), "Need to be root to populate %s filesystems with CopyFiles=/MakeDirectories=", p->format); if (p->format && fstype_is_ro(p->format) && strv_isempty(p->copy_files) && strv_isempty(p->make_directories)) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), "Cannot format %s filesystem without source files, refusing", p->format); if (p->verity != VERITY_OFF || p->encrypt != ENCRYPT_OFF) { r = dlopen_cryptsetup(); if (r < 0) return log_syntax(NULL, LOG_ERR, path, 1, r, "libcryptsetup not found, Verity=/Encrypt= are not supported: %m"); } if (p->verity != VERITY_OFF && !p->verity_match_key) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), "VerityMatchKey= must be set if Verity=%s", verity_mode_to_string(p->verity)); if (p->verity == VERITY_OFF && p->verity_match_key) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), "VerityMatchKey= can only be set if Verity= is not \"%s\"", verity_mode_to_string(p->verity)); if (IN_SET(p->verity, VERITY_HASH, VERITY_SIG) && (p->copy_files || p->copy_blocks_path || p->copy_blocks_auto || p->format || p->make_directories)) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), "CopyBlocks=/CopyFiles=/Format=/MakeDirectories= cannot be used with Verity=%s", verity_mode_to_string(p->verity)); if (p->verity != VERITY_OFF && p->encrypt != ENCRYPT_OFF) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), "Encrypting verity hash/data partitions is not supported"); if (p->verity == VERITY_SIG && !arg_private_key) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), "Verity signature partition requested but no private key provided (--private-key=)"); if (p->verity == VERITY_SIG && !arg_certificate) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), "Verity signature partition requested but no PEM certificate provided (--certificate=)"); if (p->verity == VERITY_SIG && (p->size_min != UINT64_MAX || p->size_max != UINT64_MAX)) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), "SizeMinBytes=/SizeMaxBytes= cannot be used with Verity=%s", verity_mode_to_string(p->verity)); if (!strv_isempty(p->subvolumes) && arg_offline > 0) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EOPNOTSUPP), "Subvolumes= cannot be used with --offline=yes"); /* Verity partitions are read only, let's imply the RO flag hence, unless explicitly configured otherwise. */ if ((IN_SET(p->type.designator, PARTITION_ROOT_VERITY, PARTITION_USR_VERITY) || p->verity == VERITY_DATA) && p->read_only < 0) p->read_only = true; /* Default to "growfs" on, unless read-only */ if (gpt_partition_type_knows_growfs(p->type) && p->read_only <= 0) p->growfs = true; if (!p->split_name_format) { char *s = strdup("%t"); if (!s) return log_oom(); p->split_name_format = s; } else if (streq(p->split_name_format, "-")) p->split_name_format = mfree(p->split_name_format); return 1; } static int find_verity_sibling(Context *context, Partition *p, VerityMode mode, Partition **ret) { Partition *s = NULL; assert(p); assert(p->verity != VERITY_OFF); assert(p->verity_match_key); assert(mode != VERITY_OFF); assert(p->verity != mode); assert(ret); /* Try to find the matching sibling partition of the given type for a verity partition. For a data * partition, this is the corresponding hash partition with the same verity name (and vice versa for * the hash partition). */ LIST_FOREACH(partitions, q, context->partitions) { if (p == q) continue; if (q->verity != mode) continue; assert(q->verity_match_key); if (!streq(p->verity_match_key, q->verity_match_key)) continue; if (s) return -ENOTUNIQ; s = q; } if (!s) return -ENXIO; *ret = s; return 0; } static int context_open_and_lock_backing_fd(const char *node, int operation, int *backing_fd) { _cleanup_close_ int fd = -EBADF; assert(node); assert(backing_fd); if (*backing_fd >= 0) return 0; fd = open(node, O_RDONLY|O_CLOEXEC); if (fd < 0) return log_error_errno(errno, "Failed to open device '%s': %m", node); /* Tell udev not to interfere while we are processing the device */ if (flock(fd, operation) < 0) return log_error_errno(errno, "Failed to lock device '%s': %m", node); log_debug("Device %s opened and locked.", node); *backing_fd = TAKE_FD(fd); return 1; } static int determine_current_padding( struct fdisk_context *c, struct fdisk_table *t, struct fdisk_partition *p, uint64_t secsz, uint64_t grainsz, uint64_t *ret) { size_t n_partitions; uint64_t offset, next = UINT64_MAX; assert(c); assert(t); assert(p); assert(ret); if (!fdisk_partition_has_end(p)) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition has no end!"); offset = fdisk_partition_get_end(p); assert(offset < UINT64_MAX); offset++; /* The end is one sector before the next partition or padding. */ assert(offset < UINT64_MAX / secsz); offset *= secsz; n_partitions = fdisk_table_get_nents(t); for (size_t i = 0; i < n_partitions; i++) { struct fdisk_partition *q; uint64_t start; q = fdisk_table_get_partition(t, i); if (!q) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m"); if (fdisk_partition_is_used(q) <= 0) continue; if (!fdisk_partition_has_start(q)) continue; start = fdisk_partition_get_start(q); assert(start < UINT64_MAX / secsz); start *= secsz; if (start >= offset && (next == UINT64_MAX || next > start)) next = start; } if (next == UINT64_MAX) { /* No later partition? In that case check the end of the usable area */ next = fdisk_get_last_lba(c); assert(next < UINT64_MAX); next++; /* The last LBA is one sector before the end */ assert(next < UINT64_MAX / secsz); next *= secsz; if (offset > next) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition end beyond disk end."); } assert(next >= offset); offset = round_up_size(offset, grainsz); next = round_down_size(next, grainsz); *ret = LESS_BY(next, offset); /* Saturated subtraction, rounding might have fucked things up */ return 0; } static int context_copy_from_one(Context *context, const char *src) { _cleanup_close_ int fd = -EBADF; _cleanup_(fdisk_unref_contextp) struct fdisk_context *c = NULL; _cleanup_(fdisk_unref_tablep) struct fdisk_table *t = NULL; Partition *last = NULL; unsigned long secsz, grainsz; size_t n_partitions; int r; assert(src); r = context_open_and_lock_backing_fd(src, LOCK_SH, &fd); if (r < 0) return r; r = fd_verify_regular(fd); if (r < 0) return log_error_errno(r, "%s is not a file: %m", src); r = fdisk_new_context_at(fd, /* path = */ NULL, /* read_only = */ true, /* sector_size = */ UINT32_MAX, &c); if (r < 0) return log_error_errno(r, "Failed to create fdisk context: %m"); secsz = fdisk_get_sector_size(c); grainsz = fdisk_get_grain_size(c); /* Insist on a power of two, and that it's a multiple of 512, i.e. the traditional sector size. */ if (secsz < 512 || !ISPOWEROF2(secsz)) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Sector size %lu is not a power of two larger than 512? Refusing.", secsz); if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT)) return log_error_errno(SYNTHETIC_ERRNO(EHWPOISON), "Cannot copy from disk %s with no GPT disk label.", src); r = fdisk_get_partitions(c, &t); if (r < 0) return log_error_errno(r, "Failed to acquire partition table: %m"); n_partitions = fdisk_table_get_nents(t); for (size_t i = 0; i < n_partitions; i++) { _cleanup_(partition_freep) Partition *np = NULL; _cleanup_free_ char *label_copy = NULL; struct fdisk_partition *p; const char *label; uint64_t sz, start, padding; sd_id128_t ptid, id; GptPartitionType type; p = fdisk_table_get_partition(t, i); if (!p) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m"); if (fdisk_partition_is_used(p) <= 0) continue; if (fdisk_partition_has_start(p) <= 0 || fdisk_partition_has_size(p) <= 0 || fdisk_partition_has_partno(p) <= 0) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Found a partition without a position, size or number."); r = fdisk_partition_get_type_as_id128(p, &ptid); if (r < 0) return log_error_errno(r, "Failed to query partition type UUID: %m"); type = gpt_partition_type_from_uuid(ptid); r = fdisk_partition_get_uuid_as_id128(p, &id); if (r < 0) return log_error_errno(r, "Failed to query partition UUID: %m"); label = fdisk_partition_get_name(p); if (!isempty(label)) { label_copy = strdup(label); if (!label_copy) return log_oom(); } sz = fdisk_partition_get_size(p); assert(sz <= UINT64_MAX/secsz); sz *= secsz; start = fdisk_partition_get_start(p); assert(start <= UINT64_MAX/secsz); start *= secsz; if (partition_type_exclude(&type)) continue; np = partition_new(); if (!np) return log_oom(); np->type = type; np->new_uuid = id; np->new_uuid_is_set = true; np->size_min = np->size_max = sz; np->new_label = TAKE_PTR(label_copy); np->definition_path = strdup(src); if (!np->definition_path) return log_oom(); r = determine_current_padding(c, t, p, secsz, grainsz, &padding); if (r < 0) return r; np->padding_min = np->padding_max = padding; np->copy_blocks_path = strdup(src); if (!np->copy_blocks_path) return log_oom(); np->copy_blocks_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); if (np->copy_blocks_fd < 0) return log_error_errno(r, "Failed to duplicate file descriptor of %s: %m", src); np->copy_blocks_offset = start; np->copy_blocks_size = sz; r = fdisk_partition_get_attrs_as_uint64(p, &np->gpt_flags); if (r < 0) return log_error_errno(r, "Failed to get partition flags: %m"); LIST_INSERT_AFTER(partitions, context->partitions, last, np); last = TAKE_PTR(np); context->n_partitions++; } return 0; } static int context_copy_from(Context *context) { int r; assert(context); STRV_FOREACH(src, arg_copy_from) { r = context_copy_from_one(context, *src); if (r < 0) return r; } return 0; } static int context_read_definitions(Context *context) { _cleanup_strv_free_ char **files = NULL; Partition *last = LIST_FIND_TAIL(partitions, context->partitions); const char *const *dirs; int r; assert(context); dirs = (const char* const*) (arg_definitions ?: CONF_PATHS_STRV("repart.d")); r = conf_files_list_strv(&files, ".conf", arg_definitions ? NULL : arg_root, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, dirs); if (r < 0) return log_error_errno(r, "Failed to enumerate *.conf files: %m"); STRV_FOREACH(f, files) { _cleanup_(partition_freep) Partition *p = NULL; p = partition_new(); if (!p) return log_oom(); p->definition_path = strdup(*f); if (!p->definition_path) return log_oom(); r = partition_read_definition(p, *f, dirs); if (r < 0) return r; if (r == 0) continue; LIST_INSERT_AFTER(partitions, context->partitions, last, p); last = TAKE_PTR(p); context->n_partitions++; } /* Check that each configured verity hash/data partition has a matching verity data/hash partition. */ LIST_FOREACH(partitions, p, context->partitions) { if (p->verity == VERITY_OFF) continue; for (VerityMode mode = VERITY_OFF + 1; mode < _VERITY_MODE_MAX; mode++) { Partition *q = NULL; if (p->verity == mode) continue; if (p->siblings[mode]) continue; r = find_verity_sibling(context, p, mode, &q); if (r == -ENXIO) { if (mode != VERITY_SIG) return log_syntax(NULL, LOG_ERR, p->definition_path, 1, SYNTHETIC_ERRNO(EINVAL), "Missing verity %s partition for verity %s partition with VerityMatchKey=%s", verity_mode_to_string(mode), verity_mode_to_string(p->verity), p->verity_match_key); } else if (r == -ENOTUNIQ) return log_syntax(NULL, LOG_ERR, p->definition_path, 1, SYNTHETIC_ERRNO(EINVAL), "Multiple verity %s partitions found for verity %s partition with VerityMatchKey=%s", verity_mode_to_string(mode), verity_mode_to_string(p->verity), p->verity_match_key); else if (r < 0) return log_syntax(NULL, LOG_ERR, p->definition_path, 1, r, "Failed to find verity %s partition for verity %s partition with VerityMatchKey=%s", verity_mode_to_string(mode), verity_mode_to_string(p->verity), p->verity_match_key); if (q) { if (q->priority != p->priority) return log_syntax(NULL, LOG_ERR, p->definition_path, 1, SYNTHETIC_ERRNO(EINVAL), "Priority mismatch (%i != %i) for verity sibling partitions with VerityMatchKey=%s", p->priority, q->priority, p->verity_match_key); p->siblings[mode] = q; } } } LIST_FOREACH(partitions, p, context->partitions) { Partition *dp; if (p->verity != VERITY_HASH) continue; if (p->minimize == MINIMIZE_OFF) continue; assert_se(dp = p->siblings[VERITY_DATA]); if (dp->minimize == MINIMIZE_OFF && !(dp->copy_blocks_path || dp->copy_blocks_auto)) return log_syntax(NULL, LOG_ERR, p->definition_path, 1, SYNTHETIC_ERRNO(EINVAL), "Minimize= set for verity hash partition but data partition does " "not set CopyBlocks= or Minimize="); } return 0; } static int fdisk_ask_cb(struct fdisk_context *c, struct fdisk_ask *ask, void *data) { _cleanup_free_ char *ids = NULL; int r; if (fdisk_ask_get_type(ask) != FDISK_ASKTYPE_STRING) return -EINVAL; ids = new(char, SD_ID128_UUID_STRING_MAX); if (!ids) return -ENOMEM; r = fdisk_ask_string_set_result(ask, sd_id128_to_uuid_string(*(sd_id128_t*) data, ids)); if (r < 0) return r; TAKE_PTR(ids); return 0; } static int fdisk_set_disklabel_id_by_uuid(struct fdisk_context *c, sd_id128_t id) { int r; r = fdisk_set_ask(c, fdisk_ask_cb, &id); if (r < 0) return r; r = fdisk_set_disklabel_id(c); if (r < 0) return r; return fdisk_set_ask(c, NULL, NULL); } static int derive_uuid(sd_id128_t base, const char *token, sd_id128_t *ret) { union { uint8_t md[SHA256_DIGEST_SIZE]; sd_id128_t id; } result; assert(token); assert(ret); /* Derive a new UUID from the specified UUID in a stable and reasonably safe way. Specifically, we * calculate the HMAC-SHA256 of the specified token string, keyed by the supplied base (typically the * machine ID). We use the machine ID as key (and not as cleartext!) of the HMAC operation since it's * the machine ID we don't want to leak. */ hmac_sha256(base.bytes, sizeof(base.bytes), token, strlen(token), result.md); /* Take the first half, mark it as v4 UUID */ assert_cc(sizeof(result.md) == sizeof(result.id) * 2); *ret = id128_make_v4_uuid(result.id); return 0; } static void derive_salt(sd_id128_t base, const char *token, uint8_t ret[static SHA256_DIGEST_SIZE]) { assert(token); hmac_sha256(base.bytes, sizeof(base.bytes), token, strlen(token), ret); } static int context_load_partition_table(Context *context) { _cleanup_(fdisk_unref_contextp) struct fdisk_context *c = NULL; _cleanup_(fdisk_unref_tablep) struct fdisk_table *t = NULL; uint64_t left_boundary = UINT64_MAX, first_lba, last_lba, nsectors; _cleanup_free_ char *disk_uuid_string = NULL; bool from_scratch = false; sd_id128_t disk_uuid; size_t n_partitions; unsigned long secsz; uint64_t grainsz, fs_secsz = DEFAULT_FILESYSTEM_SECTOR_SIZE; int r; assert(context); assert(!context->fdisk_context); assert(!context->free_areas); assert(context->start == UINT64_MAX); assert(context->end == UINT64_MAX); assert(context->total == UINT64_MAX); c = fdisk_new_context(); if (!c) return log_oom(); if (arg_sector_size > 0) { fs_secsz = arg_sector_size; r = fdisk_save_user_sector_size(c, /* phy= */ 0, arg_sector_size); } else { uint32_t ssz; struct stat st; r = context_open_and_lock_backing_fd( context->node, arg_dry_run ? LOCK_SH : LOCK_EX, &context->backing_fd); if (r < 0) return r; if (fstat(context->backing_fd, &st) < 0) return log_error_errno(errno, "Failed to stat %s: %m", context->node); if (IN_SET(arg_empty, EMPTY_REQUIRE, EMPTY_FORCE, EMPTY_CREATE) && S_ISREG(st.st_mode)) /* Don't probe sector size from partition table if we are supposed to strat from an empty disk */ fs_secsz = ssz = 512; else { /* Auto-detect sector size if not specified. */ r = probe_sector_size_prefer_ioctl(context->backing_fd, &ssz); if (r < 0) return log_error_errno(r, "Failed to probe sector size of '%s': %m", context->node); /* If we found the sector size and we're operating on a block device, use it as the file * system sector size as well, as we know its the sector size of the actual block device and * not just the offset at which we found the GPT header. */ if (r > 0 && S_ISBLK(st.st_mode)) fs_secsz = ssz; } r = fdisk_save_user_sector_size(c, /* phy= */ 0, ssz); } if (r < 0) return log_error_errno(r, "Failed to set sector size: %m"); /* libfdisk doesn't have an API to operate on arbitrary fds, hence reopen the fd going via the * /proc/self/fd/ magic path if we have an existing fd. Open the original file otherwise. */ r = fdisk_assign_device( c, context->backing_fd >= 0 ? FORMAT_PROC_FD_PATH(context->backing_fd) : context->node, arg_dry_run); if (r == -EINVAL && arg_size_auto) { struct stat st; /* libfdisk returns EINVAL if opening a file of size zero. Let's check for that, and accept * it if automatic sizing is requested. */ if (context->backing_fd < 0) r = stat(context->node, &st); else r = fstat(context->backing_fd, &st); if (r < 0) return log_error_errno(errno, "Failed to stat block device '%s': %m", context->node); if (S_ISREG(st.st_mode) && st.st_size == 0) { /* Use the fallback values if we have no better idea */ context->sector_size = fdisk_get_sector_size(c); context->fs_sector_size = fs_secsz; context->grain_size = 4096; return /* from_scratch = */ true; } r = -EINVAL; } if (r < 0) return log_error_errno(r, "Failed to open device '%s': %m", context->node); if (context->backing_fd < 0) { /* If we have no fd referencing the device yet, make a copy of the fd now, so that we have one */ r = context_open_and_lock_backing_fd(FORMAT_PROC_FD_PATH(fdisk_get_devfd(c)), arg_dry_run ? LOCK_SH : LOCK_EX, &context->backing_fd); if (r < 0) return r; } /* The offsets/sizes libfdisk returns to us will be in multiple of the sector size of the * device. This is typically 512, and sometimes 4096. Let's query libfdisk once for it, and then use * it for all our needs. Note that the values we use ourselves always are in bytes though, thus mean * the same thing universally. Also note that regardless what kind of sector size is in use we'll * place partitions at multiples of 4K. */ secsz = fdisk_get_sector_size(c); /* Insist on a power of two, and that it's a multiple of 512, i.e. the traditional sector size. */ if (secsz < 512 || !ISPOWEROF2(secsz)) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Sector size %lu is not a power of two larger than 512? Refusing.", secsz); /* Use at least 4K, and ensure it's a multiple of the sector size, regardless if that is smaller or * larger */ grainsz = secsz < 4096 ? 4096 : secsz; log_debug("Sector size of device is %lu bytes. Using grain size of %" PRIu64 ".", secsz, grainsz); switch (arg_empty) { case EMPTY_REFUSE: /* Refuse empty disks, insist on an existing GPT partition table */ if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT)) return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s has no GPT disk label, not repartitioning.", context->node); break; case EMPTY_REQUIRE: /* Require an empty disk, refuse any existing partition table */ r = fdisk_has_label(c); if (r < 0) return log_error_errno(r, "Failed to determine whether disk %s has a disk label: %m", context->node); if (r > 0) return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s already has a disk label, refusing.", context->node); from_scratch = true; break; case EMPTY_ALLOW: /* Allow both an empty disk and an existing partition table, but only GPT */ r = fdisk_has_label(c); if (r < 0) return log_error_errno(r, "Failed to determine whether disk %s has a disk label: %m", context->node); if (r > 0) { if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT)) return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s has non-GPT disk label, not repartitioning.", context->node); } else from_scratch = true; break; case EMPTY_FORCE: case EMPTY_CREATE: /* Always reinitiaize the disk, don't consider what there was on the disk before */ from_scratch = true; break; default: assert_not_reached(); } if (from_scratch) { r = fdisk_create_disklabel(c, "gpt"); if (r < 0) return log_error_errno(r, "Failed to create GPT disk label: %m"); r = derive_uuid(context->seed, "disk-uuid", &disk_uuid); if (r < 0) return log_error_errno(r, "Failed to acquire disk GPT uuid: %m"); r = fdisk_set_disklabel_id_by_uuid(c, disk_uuid); if (r < 0) return log_error_errno(r, "Failed to set GPT disk label: %m"); goto add_initial_free_area; } r = fdisk_get_disklabel_id(c, &disk_uuid_string); if (r < 0) return log_error_errno(r, "Failed to get current GPT disk label UUID: %m"); r = id128_from_string_nonzero(disk_uuid_string, &disk_uuid); if (r == -ENXIO) { r = derive_uuid(context->seed, "disk-uuid", &disk_uuid); if (r < 0) return log_error_errno(r, "Failed to acquire disk GPT uuid: %m"); r = fdisk_set_disklabel_id(c); if (r < 0) return log_error_errno(r, "Failed to set GPT disk label: %m"); } else if (r < 0) return log_error_errno(r, "Failed to parse current GPT disk label UUID: %m"); r = fdisk_get_partitions(c, &t); if (r < 0) return log_error_errno(r, "Failed to acquire partition table: %m"); n_partitions = fdisk_table_get_nents(t); for (size_t i = 0; i < n_partitions; i++) { _cleanup_free_ char *label_copy = NULL; Partition *last = NULL; struct fdisk_partition *p; const char *label; uint64_t sz, start; bool found = false; sd_id128_t ptid, id; size_t partno; p = fdisk_table_get_partition(t, i); if (!p) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m"); if (fdisk_partition_is_used(p) <= 0) continue; if (fdisk_partition_has_start(p) <= 0 || fdisk_partition_has_size(p) <= 0 || fdisk_partition_has_partno(p) <= 0) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Found a partition without a position, size or number."); r = fdisk_partition_get_type_as_id128(p, &ptid); if (r < 0) return log_error_errno(r, "Failed to query partition type UUID: %m"); r = fdisk_partition_get_uuid_as_id128(p, &id); if (r < 0) return log_error_errno(r, "Failed to query partition UUID: %m"); label = fdisk_partition_get_name(p); if (!isempty(label)) { label_copy = strdup(label); if (!label_copy) return log_oom(); } sz = fdisk_partition_get_size(p); assert(sz <= UINT64_MAX/secsz); sz *= secsz; start = fdisk_partition_get_start(p); assert(start <= UINT64_MAX/secsz); start *= secsz; partno = fdisk_partition_get_partno(p); if (left_boundary == UINT64_MAX || left_boundary > start) left_boundary = start; /* Assign this existing partition to the first partition of the right type that doesn't have * an existing one assigned yet. */ LIST_FOREACH(partitions, pp, context->partitions) { last = pp; if (!sd_id128_equal(pp->type.uuid, ptid)) continue; if (!pp->current_partition) { pp->current_uuid = id; pp->current_size = sz; pp->offset = start; pp->partno = partno; pp->current_label = TAKE_PTR(label_copy); pp->current_partition = p; fdisk_ref_partition(p); r = determine_current_padding(c, t, p, secsz, grainsz, &pp->current_padding); if (r < 0) return r; if (pp->current_padding > 0) { r = context_add_free_area(context, pp->current_padding, pp); if (r < 0) return r; } found = true; break; } } /* If we have no matching definition, create a new one. */ if (!found) { _cleanup_(partition_freep) Partition *np = NULL; np = partition_new(); if (!np) return log_oom(); np->current_uuid = id; np->type = gpt_partition_type_from_uuid(ptid); np->current_size = sz; np->offset = start; np->partno = partno; np->current_label = TAKE_PTR(label_copy); np->current_partition = p; fdisk_ref_partition(p); r = determine_current_padding(c, t, p, secsz, grainsz, &np->current_padding); if (r < 0) return r; if (np->current_padding > 0) { r = context_add_free_area(context, np->current_padding, np); if (r < 0) return r; } LIST_INSERT_AFTER(partitions, context->partitions, last, TAKE_PTR(np)); context->n_partitions++; } } add_initial_free_area: nsectors = fdisk_get_nsectors(c); assert(nsectors <= UINT64_MAX/secsz); nsectors *= secsz; first_lba = fdisk_get_first_lba(c); assert(first_lba <= UINT64_MAX/secsz); first_lba *= secsz; last_lba = fdisk_get_last_lba(c); assert(last_lba < UINT64_MAX); last_lba++; assert(last_lba <= UINT64_MAX/secsz); last_lba *= secsz; assert(last_lba >= first_lba); if (left_boundary == UINT64_MAX) { /* No partitions at all? Then the whole disk is up for grabs. */ first_lba = round_up_size(first_lba, grainsz); last_lba = round_down_size(last_lba, grainsz); if (last_lba > first_lba) { r = context_add_free_area(context, last_lba - first_lba, NULL); if (r < 0) return r; } } else { /* Add space left of first partition */ assert(left_boundary >= first_lba); first_lba = round_up_size(first_lba, grainsz); left_boundary = round_down_size(left_boundary, grainsz); last_lba = round_down_size(last_lba, grainsz); if (left_boundary > first_lba) { r = context_add_free_area(context, left_boundary - first_lba, NULL); if (r < 0) return r; } } context->start = first_lba; context->end = last_lba; context->total = nsectors; context->sector_size = secsz; context->fs_sector_size = fs_secsz; context->grain_size = grainsz; context->fdisk_context = TAKE_PTR(c); return from_scratch; } static void context_unload_partition_table(Context *context) { assert(context); LIST_FOREACH(partitions, p, context->partitions) { /* Entirely remove partitions that have no configuration */ if (PARTITION_IS_FOREIGN(p)) { partition_unlink_and_free(context, p); continue; } /* Otherwise drop all data we read off the block device and everything we might have * calculated based on it */ p->dropped = false; p->current_size = UINT64_MAX; p->new_size = UINT64_MAX; p->current_padding = UINT64_MAX; p->new_padding = UINT64_MAX; p->partno = UINT64_MAX; p->offset = UINT64_MAX; if (p->current_partition) { fdisk_unref_partition(p->current_partition); p->current_partition = NULL; } if (p->new_partition) { fdisk_unref_partition(p->new_partition); p->new_partition = NULL; } p->padding_area = NULL; p->allocated_to_area = NULL; p->current_uuid = SD_ID128_NULL; p->current_label = mfree(p->current_label); } context->start = UINT64_MAX; context->end = UINT64_MAX; context->total = UINT64_MAX; if (context->fdisk_context) { fdisk_unref_context(context->fdisk_context); context->fdisk_context = NULL; } context_free_free_areas(context); } static int format_size_change(uint64_t from, uint64_t to, char **ret) { char *t; if (from != UINT64_MAX) { if (from == to || to == UINT64_MAX) t = strdup(FORMAT_BYTES(from)); else t = strjoin(FORMAT_BYTES(from), " ", special_glyph(SPECIAL_GLYPH_ARROW_RIGHT), " ", FORMAT_BYTES(to)); } else if (to != UINT64_MAX) t = strjoin(special_glyph(SPECIAL_GLYPH_ARROW_RIGHT), " ", FORMAT_BYTES(to)); else { *ret = NULL; return 0; } if (!t) return log_oom(); *ret = t; return 1; } static const char *partition_label(const Partition *p) { assert(p); if (p->new_label) return p->new_label; if (p->current_label) return p->current_label; return gpt_partition_type_uuid_to_string(p->type.uuid); } static int context_dump_partitions(Context *context) { _cleanup_(table_unrefp) Table *t = NULL; uint64_t sum_padding = 0, sum_size = 0; int r; const size_t roothash_col = 14, dropin_files_col = 15, split_path_col = 16; bool has_roothash = false, has_dropin_files = false, has_split_path = false; if ((arg_json_format_flags & JSON_FORMAT_OFF) && context->n_partitions == 0) { log_info("Empty partition table."); return 0; } t = table_new("type", "label", "uuid", "partno", "file", "node", "offset", "old size", "raw size", "size", "old padding", "raw padding", "padding", "activity", "roothash", "drop-in files", "split path"); if (!t) return log_oom(); if (!DEBUG_LOGGING) { if (arg_json_format_flags & JSON_FORMAT_OFF) (void) table_set_display(t, (size_t) 0, (size_t) 1, (size_t) 2, (size_t) 3, (size_t) 4, (size_t) 8, (size_t) 9, (size_t) 12, roothash_col, dropin_files_col, split_path_col); else (void) table_set_display(t, (size_t) 0, (size_t) 1, (size_t) 2, (size_t) 3, (size_t) 4, (size_t) 5, (size_t) 6, (size_t) 7, (size_t) 8, (size_t) 10, (size_t) 11, (size_t) 13, roothash_col, dropin_files_col, split_path_col); } (void) table_set_align_percent(t, table_get_cell(t, 0, 5), 100); (void) table_set_align_percent(t, table_get_cell(t, 0, 6), 100); (void) table_set_align_percent(t, table_get_cell(t, 0, 7), 100); (void) table_set_align_percent(t, table_get_cell(t, 0, 8), 100); (void) table_set_align_percent(t, table_get_cell(t, 0, 9), 100); (void) table_set_align_percent(t, table_get_cell(t, 0, 10), 100); (void) table_set_align_percent(t, table_get_cell(t, 0, 11), 100); LIST_FOREACH(partitions, p, context->partitions) { _cleanup_free_ char *size_change = NULL, *padding_change = NULL, *partname = NULL, *rh = NULL; char uuid_buffer[SD_ID128_UUID_STRING_MAX]; const char *label, *activity = NULL; if (p->dropped) continue; if (p->current_size == UINT64_MAX) activity = "create"; else if (p->current_size != p->new_size) activity = "resize"; label = partition_label(p); partname = p->partno != UINT64_MAX ? fdisk_partname(context->node, p->partno+1) : NULL; r = format_size_change(p->current_size, p->new_size, &size_change); if (r < 0) return r; r = format_size_change(p->current_padding, p->new_padding, &padding_change); if (r < 0) return r; if (p->new_size != UINT64_MAX) sum_size += p->new_size; if (p->new_padding != UINT64_MAX) sum_padding += p->new_padding; if (p->verity != VERITY_OFF) { Partition *hp = p->verity == VERITY_HASH ? p : p->siblings[VERITY_HASH]; rh = iovec_is_set(&hp->roothash) ? hexmem(hp->roothash.iov_base, hp->roothash.iov_len) : strdup("TBD"); if (!rh) return log_oom(); } r = table_add_many( t, TABLE_STRING, gpt_partition_type_uuid_to_string_harder(p->type.uuid, uuid_buffer), TABLE_STRING, empty_to_null(label) ?: "-", TABLE_SET_COLOR, empty_to_null(label) ? NULL : ansi_grey(), TABLE_UUID, p->new_uuid_is_set ? p->new_uuid : p->current_uuid, TABLE_UINT64, p->partno, TABLE_PATH_BASENAME, p->definition_path, TABLE_SET_COLOR, p->definition_path ? NULL : ansi_grey(), TABLE_STRING, partname ?: "-", TABLE_SET_COLOR, partname ? NULL : ansi_highlight(), TABLE_UINT64, p->offset, TABLE_UINT64, p->current_size == UINT64_MAX ? 0 : p->current_size, TABLE_UINT64, p->new_size, TABLE_STRING, size_change, TABLE_SET_COLOR, !p->partitions_next && sum_size > 0 ? ansi_underline() : NULL, TABLE_UINT64, p->current_padding == UINT64_MAX ? 0 : p->current_padding, TABLE_UINT64, p->new_padding, TABLE_STRING, padding_change, TABLE_SET_COLOR, !p->partitions_next && sum_padding > 0 ? ansi_underline() : NULL, TABLE_STRING, activity ?: "unchanged", TABLE_STRING, rh, TABLE_STRV, p->drop_in_files, TABLE_STRING, empty_to_null(p->split_path) ?: "-"); if (r < 0) return table_log_add_error(r); has_roothash = has_roothash || !isempty(rh); has_dropin_files = has_dropin_files || !strv_isempty(p->drop_in_files); has_split_path = has_split_path || !isempty(p->split_path); } if ((arg_json_format_flags & JSON_FORMAT_OFF) && (sum_padding > 0 || sum_size > 0)) { const char *a, *b; a = strjoina(special_glyph(SPECIAL_GLYPH_SIGMA), " = ", FORMAT_BYTES(sum_size)); b = strjoina(special_glyph(SPECIAL_GLYPH_SIGMA), " = ", FORMAT_BYTES(sum_padding)); r = table_add_many( t, TABLE_EMPTY, TABLE_EMPTY, TABLE_EMPTY, TABLE_EMPTY, TABLE_EMPTY, TABLE_EMPTY, TABLE_EMPTY, TABLE_EMPTY, TABLE_EMPTY, TABLE_STRING, a, TABLE_EMPTY, TABLE_EMPTY, TABLE_STRING, b, TABLE_EMPTY, TABLE_EMPTY, TABLE_EMPTY, TABLE_EMPTY); if (r < 0) return table_log_add_error(r); } if (!has_roothash) { r = table_hide_column_from_display(t, roothash_col); if (r < 0) return log_error_errno(r, "Failed to set columns to display: %m"); } if (!has_dropin_files) { r = table_hide_column_from_display(t, dropin_files_col); if (r < 0) return log_error_errno(r, "Failed to set columns to display: %m"); } if (!has_split_path) { r = table_hide_column_from_display(t, split_path_col); if (r < 0) return log_error_errno(r, "Failed to set columns to display: %m"); } return table_print_with_pager(t, arg_json_format_flags, arg_pager_flags, arg_legend); } static int context_bar_char_process_partition( Context *context, Partition *bar[], size_t n, Partition *p, size_t **start_array, size_t *n_start_array) { uint64_t from, to, total; size_t x, y; assert(context); assert(bar); assert(n > 0); assert(p); assert(start_array); assert(n_start_array); if (p->dropped) return 0; assert(p->offset != UINT64_MAX); assert(p->new_size != UINT64_MAX); from = p->offset; to = from + p->new_size; assert(context->total > 0); total = context->total; assert(from <= total); x = from * n / total; assert(to <= total); y = to * n / total; assert(x <= y); assert(y <= n); for (size_t i = x; i < y; i++) bar[i] = p; if (!GREEDY_REALLOC_APPEND(*start_array, *n_start_array, &x, 1)) return log_oom(); return 1; } static int partition_hint(const Partition *p, const char *node, char **ret) { _cleanup_free_ char *buf = NULL; const char *label; sd_id128_t id; /* Tries really hard to find a suitable description for this partition */ if (p->definition_path) return path_extract_filename(p->definition_path, ret); label = partition_label(p); if (!isempty(label)) { buf = strdup(label); goto done; } if (p->partno != UINT64_MAX) { buf = fdisk_partname(node, p->partno+1); goto done; } if (p->new_uuid_is_set) id = p->new_uuid; else if (!sd_id128_is_null(p->current_uuid)) id = p->current_uuid; else id = p->type.uuid; buf = strdup(SD_ID128_TO_UUID_STRING(id)); done: if (!buf) return -ENOMEM; *ret = TAKE_PTR(buf); return 0; } static int context_dump_partition_bar(Context *context) { _cleanup_free_ Partition **bar = NULL; _cleanup_free_ size_t *start_array = NULL; size_t n_start_array = 0; Partition *last = NULL; bool z = false; size_t c, j = 0; int r; assert_se((c = columns()) >= 2); c -= 2; /* We do not use the leftmost and rightmost character cell */ bar = new0(Partition*, c); if (!bar) return log_oom(); LIST_FOREACH(partitions, p, context->partitions) { r = context_bar_char_process_partition(context, bar, c, p, &start_array, &n_start_array); if (r < 0) return r; } putc(' ', stdout); for (size_t i = 0; i < c; i++) { if (bar[i]) { if (last != bar[i]) z = !z; fputs(z ? ansi_green() : ansi_yellow(), stdout); fputs(special_glyph(SPECIAL_GLYPH_DARK_SHADE), stdout); } else { fputs(ansi_normal(), stdout); fputs(special_glyph(SPECIAL_GLYPH_LIGHT_SHADE), stdout); } last = bar[i]; } fputs(ansi_normal(), stdout); putc('\n', stdout); for (size_t i = 0; i < n_start_array; i++) { _cleanup_free_ char **line = NULL; line = new0(char*, c); if (!line) return log_oom(); j = 0; LIST_FOREACH(partitions, p, context->partitions) { _cleanup_free_ char *d = NULL; if (p->dropped) continue; j++; if (i < n_start_array - j) { if (line[start_array[j-1]]) { const char *e; /* Upgrade final corner to the right with a branch to the right */ e = startswith(line[start_array[j-1]], special_glyph(SPECIAL_GLYPH_TREE_RIGHT)); if (e) { d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_BRANCH), e); if (!d) return log_oom(); } } if (!d) { d = strdup(special_glyph(SPECIAL_GLYPH_TREE_VERTICAL)); if (!d) return log_oom(); } } else if (i == n_start_array - j) { _cleanup_free_ char *hint = NULL; (void) partition_hint(p, context->node, &hint); if (streq_ptr(line[start_array[j-1]], special_glyph(SPECIAL_GLYPH_TREE_VERTICAL))) d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_BRANCH), " ", strna(hint)); else d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_RIGHT), " ", strna(hint)); if (!d) return log_oom(); } if (d) free_and_replace(line[start_array[j-1]], d); } putc(' ', stdout); j = 0; while (j < c) { if (line[j]) { fputs(line[j], stdout); j += utf8_console_width(line[j]); } else { putc(' ', stdout); j++; } } putc('\n', stdout); for (j = 0; j < c; j++) free(line[j]); } return 0; } static bool context_has_roothash(Context *context) { LIST_FOREACH(partitions, p, context->partitions) if (iovec_is_set(&p->roothash)) return true; return false; } static int context_dump(Context *context, bool late) { int r; assert(context); if (arg_pretty == 0 && FLAGS_SET(arg_json_format_flags, JSON_FORMAT_OFF)) return 0; /* If we're outputting JSON, only dump after doing all operations so we can include the roothashes * in the output. */ if (!late && !FLAGS_SET(arg_json_format_flags, JSON_FORMAT_OFF)) return 0; /* If we're not outputting JSON, only dump again after doing all operations if there are any * roothashes that we need to communicate to the user. */ if (late && FLAGS_SET(arg_json_format_flags, JSON_FORMAT_OFF) && !context_has_roothash(context)) return 0; r = context_dump_partitions(context); if (r < 0) return r; /* Make sure we only write the partition bar once, even if we're writing the partition table twice to * communicate roothashes. */ if (FLAGS_SET(arg_json_format_flags, JSON_FORMAT_OFF) && !late) { putc('\n', stdout); r = context_dump_partition_bar(context); if (r < 0) return r; putc('\n', stdout); } fflush(stdout); return 0; } static bool context_changed(const Context *context) { assert(context); LIST_FOREACH(partitions, p, context->partitions) { if (p->dropped) continue; if (p->allocated_to_area) return true; if (p->new_size != p->current_size) return true; } return false; } static int context_wipe_range(Context *context, uint64_t offset, uint64_t size) { _cleanup_(blkid_free_probep) blkid_probe probe = NULL; int r; assert(context); assert(offset != UINT64_MAX); assert(size != UINT64_MAX); probe = blkid_new_probe(); if (!probe) return log_oom(); errno = 0; r = blkid_probe_set_device(probe, fdisk_get_devfd(context->fdisk_context), offset, size); if (r < 0) return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to allocate device probe for wiping."); errno = 0; if (blkid_probe_enable_superblocks(probe, true) < 0 || blkid_probe_set_superblocks_flags(probe, BLKID_SUBLKS_MAGIC|BLKID_SUBLKS_BADCSUM) < 0 || blkid_probe_enable_partitions(probe, true) < 0 || blkid_probe_set_partitions_flags(probe, BLKID_PARTS_MAGIC) < 0) return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to enable superblock and partition probing."); for (;;) { errno = 0; r = blkid_do_probe(probe); if (r < 0) return log_error_errno(errno_or_else(EIO), "Failed to probe for file systems."); if (r > 0) break; errno = 0; if (blkid_do_wipe(probe, false) < 0) return log_error_errno(errno_or_else(EIO), "Failed to wipe file system signature."); } return 0; } static int context_wipe_partition(Context *context, Partition *p) { int r; assert(context); assert(p); assert(!PARTITION_EXISTS(p)); /* Safety check: never wipe existing partitions */ assert(p->offset != UINT64_MAX); assert(p->new_size != UINT64_MAX); r = context_wipe_range(context, p->offset, p->new_size); if (r < 0) return r; log_info("Successfully wiped file system signatures from future partition %" PRIu64 ".", p->partno); return 0; } static int context_discard_range( Context *context, uint64_t offset, uint64_t size) { struct stat st; int fd; assert(context); assert(offset != UINT64_MAX); assert(size != UINT64_MAX); if (size <= 0) return 0; assert_se((fd = fdisk_get_devfd(context->fdisk_context)) >= 0); if (fstat(fd, &st) < 0) return -errno; if (S_ISREG(st.st_mode)) { if (fallocate(fd, FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE, offset, size) < 0) { if (ERRNO_IS_NOT_SUPPORTED(errno)) return -EOPNOTSUPP; return -errno; } return 1; } if (S_ISBLK(st.st_mode)) { uint64_t range[2], end; range[0] = round_up_size(offset, context->sector_size); if (offset > UINT64_MAX - size) return -ERANGE; end = offset + size; if (end <= range[0]) return 0; range[1] = round_down_size(end - range[0], context->sector_size); if (range[1] <= 0) return 0; if (ioctl(fd, BLKDISCARD, range) < 0) { if (ERRNO_IS_NOT_SUPPORTED(errno)) return -EOPNOTSUPP; return -errno; } return 1; } return -EOPNOTSUPP; } static int context_discard_partition(Context *context, Partition *p) { int r; assert(context); assert(p); assert(p->offset != UINT64_MAX); assert(p->new_size != UINT64_MAX); assert(!PARTITION_EXISTS(p)); /* Safety check: never discard existing partitions */ if (!arg_discard) return 0; r = context_discard_range(context, p->offset, p->new_size); if (r == -EOPNOTSUPP) { log_info("Storage does not support discard, not discarding data in future partition %" PRIu64 ".", p->partno); return 0; } if (r == -EBUSY) { /* Let's handle this gracefully: https://bugzilla.kernel.org/show_bug.cgi?id=211167 */ log_info("Block device is busy, not discarding partition %" PRIu64 " because it probably is mounted.", p->partno); return 0; } if (r == 0) { log_info("Partition %" PRIu64 " too short for discard, skipping.", p->partno); return 0; } if (r < 0) return log_error_errno(r, "Failed to discard data for future partition %" PRIu64 ".", p->partno); log_info("Successfully discarded data from future partition %" PRIu64 ".", p->partno); return 1; } static int context_discard_gap_after(Context *context, Partition *p) { uint64_t gap, next = UINT64_MAX; int r; assert(context); assert(!p || (p->offset != UINT64_MAX && p->new_size != UINT64_MAX)); if (!arg_discard) return 0; if (p) gap = p->offset + p->new_size; else /* The context start gets rounded up to grain_size, however * existing partitions may be before that so ensure the gap * starts at the first actually usable lba */ gap = fdisk_get_first_lba(context->fdisk_context) * context->sector_size; LIST_FOREACH(partitions, q, context->partitions) { if (q->dropped) continue; assert(q->offset != UINT64_MAX); assert(q->new_size != UINT64_MAX); if (q->offset < gap) continue; if (next == UINT64_MAX || q->offset < next) next = q->offset; } if (next == UINT64_MAX) { next = (fdisk_get_last_lba(context->fdisk_context) + 1) * context->sector_size; if (gap > next) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition end beyond disk end."); } assert(next >= gap); r = context_discard_range(context, gap, next - gap); if (r == -EOPNOTSUPP) { if (p) log_info("Storage does not support discard, not discarding gap after partition %" PRIu64 ".", p->partno); else log_info("Storage does not support discard, not discarding gap at beginning of disk."); return 0; } if (r == 0) /* Too short */ return 0; if (r < 0) { if (p) return log_error_errno(r, "Failed to discard gap after partition %" PRIu64 ".", p->partno); else return log_error_errno(r, "Failed to discard gap at beginning of disk."); } if (p) log_info("Successfully discarded gap after partition %" PRIu64 ".", p->partno); else log_info("Successfully discarded gap at beginning of disk."); return 0; } static int context_wipe_and_discard(Context *context) { int r; assert(context); if (arg_empty == EMPTY_CREATE) /* If we just created the image, no need to wipe */ return 0; /* Wipe and discard the contents of all partitions we are about to create. We skip the discarding if * we were supposed to start from scratch anyway, as in that case we just discard the whole block * device in one go early on. */ LIST_FOREACH(partitions, p, context->partitions) { if (!p->allocated_to_area) continue; if (partition_type_defer(&p->type)) continue; r = context_wipe_partition(context, p); if (r < 0) return r; if (!context->from_scratch) { r = context_discard_partition(context, p); if (r < 0) return r; r = context_discard_gap_after(context, p); if (r < 0) return r; } } if (!context->from_scratch) { r = context_discard_gap_after(context, NULL); if (r < 0) return r; } return 0; } typedef struct DecryptedPartitionTarget { int fd; char *dm_name; char *volume; struct crypt_device *device; } DecryptedPartitionTarget; static DecryptedPartitionTarget* decrypted_partition_target_free(DecryptedPartitionTarget *t) { #if HAVE_LIBCRYPTSETUP int r; if (!t) return NULL; safe_close(t->fd); /* udev or so might access out block device in the background while we are done. Let's hence * force detach the volume. We sync'ed before, hence this should be safe. */ r = sym_crypt_deactivate_by_name(t->device, t->dm_name, CRYPT_DEACTIVATE_FORCE); if (r < 0) log_warning_errno(r, "Failed to deactivate LUKS device, ignoring: %m"); sym_crypt_free(t->device); free(t->dm_name); free(t->volume); free(t); #endif return NULL; } typedef struct { LoopDevice *loop; int fd; char *path; int whole_fd; DecryptedPartitionTarget *decrypted; } PartitionTarget; static int partition_target_fd(PartitionTarget *t) { assert(t); assert(t->loop || t->fd >= 0 || t->whole_fd >= 0); if (t->decrypted) return t->decrypted->fd; if (t->loop) return t->loop->fd; if (t->fd >= 0) return t->fd; return t->whole_fd; } static const char* partition_target_path(PartitionTarget *t) { assert(t); assert(t->loop || t->path); if (t->decrypted) return t->decrypted->volume; if (t->loop) return t->loop->node; return t->path; } static PartitionTarget *partition_target_free(PartitionTarget *t) { if (!t) return NULL; decrypted_partition_target_free(t->decrypted); loop_device_unref(t->loop); safe_close(t->fd); unlink_and_free(t->path); return mfree(t); } DEFINE_TRIVIAL_CLEANUP_FUNC(PartitionTarget*, partition_target_free); static int prepare_temporary_file(PartitionTarget *t, uint64_t size) { _cleanup_(unlink_and_freep) char *temp = NULL; _cleanup_close_ int fd = -EBADF; const char *vt; int r; assert(t); r = var_tmp_dir(&vt); if (r < 0) return log_error_errno(r, "Could not determine temporary directory: %m"); temp = path_join(vt, "repart-XXXXXX"); if (!temp) return log_oom(); fd = mkostemp_safe(temp); if (fd < 0) return log_error_errno(fd, "Failed to create temporary file: %m"); if (ftruncate(fd, size) < 0) return log_error_errno(errno, "Failed to truncate temporary file to %s: %m", FORMAT_BYTES(size)); t->fd = TAKE_FD(fd); t->path = TAKE_PTR(temp); return 0; } static int partition_target_prepare( Context *context, Partition *p, uint64_t size, bool need_path, PartitionTarget **ret) { _cleanup_(partition_target_freep) PartitionTarget *t = NULL; _cleanup_(loop_device_unrefp) LoopDevice *d = NULL; int whole_fd, r; assert(context); assert(p); assert(ret); assert_se((whole_fd = fdisk_get_devfd(context->fdisk_context)) >= 0); t = new(PartitionTarget, 1); if (!t) return log_oom(); *t = (PartitionTarget) { .fd = -EBADF, .whole_fd = -EBADF, }; if (!need_path) { if (lseek(whole_fd, p->offset, SEEK_SET) < 0) return log_error_errno(errno, "Failed to seek to partition offset: %m"); t->whole_fd = whole_fd; *ret = TAKE_PTR(t); return 0; } /* Loopback block devices are not only useful to turn regular files into block devices, but * also to cut out sections of block devices into new block devices. */ if (arg_offline <= 0) { r = loop_device_make(whole_fd, O_RDWR, p->offset, size, context->sector_size, 0, LOCK_EX, &d); if (r < 0 && (arg_offline == 0 || (r != -ENOENT && !ERRNO_IS_PRIVILEGE(r)) || !strv_isempty(p->subvolumes))) return log_error_errno(r, "Failed to make loopback device of future partition %" PRIu64 ": %m", p->partno); if (r >= 0) { t->loop = TAKE_PTR(d); *ret = TAKE_PTR(t); return 0; } log_debug_errno(r, "No access to loop devices, falling back to a regular file"); } /* If we can't allocate a loop device, let's write to a regular file that we copy into the final * image so we can run in containers and without needing root privileges. On filesystems with * reflinking support, we can take advantage of this and just reflink the result into the image. */ r = prepare_temporary_file(t, size); if (r < 0) return r; *ret = TAKE_PTR(t); return 0; } static int partition_target_grow(PartitionTarget *t, uint64_t size) { int r; assert(t); assert(!t->decrypted); if (t->loop) { r = loop_device_refresh_size(t->loop, UINT64_MAX, size); if (r < 0) return log_error_errno(r, "Failed to refresh loopback device size: %m"); } else if (t->fd >= 0) { if (ftruncate(t->fd, size) < 0) return log_error_errno(errno, "Failed to grow '%s' to %s by truncation: %m", t->path, FORMAT_BYTES(size)); } return 0; } static int partition_target_sync(Context *context, Partition *p, PartitionTarget *t) { int whole_fd, r; assert(context); assert(p); assert(t); assert_se((whole_fd = fdisk_get_devfd(context->fdisk_context)) >= 0); if (t->decrypted && fsync(t->decrypted->fd) < 0) return log_error_errno(errno, "Failed to sync changes to '%s': %m", t->decrypted->volume); if (t->loop) { r = loop_device_sync(t->loop); if (r < 0) return log_error_errno(r, "Failed to sync loopback device: %m"); } else if (t->fd >= 0) { struct stat st; if (lseek(whole_fd, p->offset, SEEK_SET) < 0) return log_error_errno(errno, "Failed to seek to partition offset: %m"); if (lseek(t->fd, 0, SEEK_SET) < 0) return log_error_errno(errno, "Failed to seek to start of temporary file: %m"); if (fstat(t->fd, &st) < 0) return log_error_errno(errno, "Failed to stat temporary file: %m"); if (st.st_size > (off_t) p->new_size) return log_error_errno(SYNTHETIC_ERRNO(ENOSPC), "Partition %" PRIu64 "'s contents (%s) don't fit in the partition (%s)", p->partno, FORMAT_BYTES(st.st_size), FORMAT_BYTES(p->new_size)); r = copy_bytes(t->fd, whole_fd, UINT64_MAX, COPY_REFLINK|COPY_HOLES|COPY_FSYNC); if (r < 0) return log_error_errno(r, "Failed to copy bytes to partition: %m"); } else { if (fsync(t->whole_fd) < 0) return log_error_errno(errno, "Failed to sync changes: %m"); } return 0; } static int partition_encrypt(Context *context, Partition *p, PartitionTarget *target, bool offline) { #if HAVE_LIBCRYPTSETUP && HAVE_CRYPT_SET_DATA_OFFSET && HAVE_CRYPT_REENCRYPT_INIT_BY_PASSPHRASE && HAVE_CRYPT_REENCRYPT const char *node = partition_target_path(target); struct crypt_params_luks2 luks_params = { .label = strempty(ASSERT_PTR(p)->new_label), .sector_size = ASSERT_PTR(context)->fs_sector_size, .data_device = offline ? node : NULL, }; struct crypt_params_reencrypt reencrypt_params = { .mode = CRYPT_REENCRYPT_ENCRYPT, .direction = CRYPT_REENCRYPT_BACKWARD, .resilience = "datashift", .data_shift = LUKS2_METADATA_SIZE / 512, .luks2 = &luks_params, .flags = CRYPT_REENCRYPT_INITIALIZE_ONLY|CRYPT_REENCRYPT_MOVE_FIRST_SEGMENT, }; _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL; _cleanup_(erase_and_freep) char *base64_encoded = NULL; _cleanup_fclose_ FILE *h = NULL; _cleanup_free_ char *hp = NULL, *vol = NULL, *dm_name = NULL; const char *passphrase = NULL; size_t passphrase_size = 0; const char *vt; int r; assert(context); assert(p); assert(p->encrypt != ENCRYPT_OFF); r = dlopen_cryptsetup(); if (r < 0) return log_error_errno(r, "libcryptsetup not found, cannot encrypt: %m"); log_info("Encrypting future partition %" PRIu64 "...", p->partno); if (offline) { r = var_tmp_dir(&vt); if (r < 0) return log_error_errno(r, "Failed to determine temporary files directory: %m"); r = fopen_temporary_child(vt, &h, &hp); if (r < 0) return log_error_errno(r, "Failed to create temporary LUKS header file: %m"); /* Weird cryptsetup requirement which requires the header file to be the size of at least one * sector. */ if (ftruncate(fileno(h), luks_params.sector_size) < 0) return log_error_errno(errno, "Failed to grow temporary LUKS header file: %m"); } else { if (asprintf(&dm_name, "luks-repart-%08" PRIx64, random_u64()) < 0) return log_oom(); vol = path_join("/dev/mapper/", dm_name); if (!vol) return log_oom(); } r = sym_crypt_init(&cd, offline ? hp : node); if (r < 0) return log_error_errno(r, "Failed to allocate libcryptsetup context for %s: %m", hp); cryptsetup_enable_logging(cd); if (offline) { /* Disable kernel keyring usage by libcryptsetup as a workaround for * https://gitlab.com/cryptsetup/cryptsetup/-/merge_requests/273. This makes sure that we can * do offline encryption even when repart is running in a container. */ r = sym_crypt_volume_key_keyring(cd, false); if (r < 0) return log_error_errno(r, "Failed to disable kernel keyring: %m"); r = sym_crypt_metadata_locking(cd, false); if (r < 0) return log_error_errno(r, "Failed to disable metadata locking: %m"); r = sym_crypt_set_data_offset(cd, LUKS2_METADATA_SIZE / 512); if (r < 0) return log_error_errno(r, "Failed to set data offset: %m"); } r = sym_crypt_format( cd, CRYPT_LUKS2, "aes", "xts-plain64", SD_ID128_TO_UUID_STRING(p->luks_uuid), NULL, VOLUME_KEY_SIZE, &luks_params); if (r < 0) return log_error_errno(r, "Failed to LUKS2 format future partition: %m"); if (IN_SET(p->encrypt, ENCRYPT_KEY_FILE, ENCRYPT_KEY_FILE_TPM2)) { r = sym_crypt_keyslot_add_by_volume_key( cd, CRYPT_ANY_SLOT, NULL, VOLUME_KEY_SIZE, strempty(arg_key), arg_key_size); if (r < 0) return log_error_errno(r, "Failed to add LUKS2 key: %m"); passphrase = strempty(arg_key); passphrase_size = arg_key_size; } if (IN_SET(p->encrypt, ENCRYPT_TPM2, ENCRYPT_KEY_FILE_TPM2)) { #if HAVE_TPM2 _cleanup_(json_variant_unrefp) JsonVariant *v = NULL; _cleanup_(erase_and_freep) void *secret = NULL; _cleanup_free_ void *pubkey = NULL; _cleanup_free_ void *blob = NULL, *srk_buf = NULL; size_t secret_size, blob_size, pubkey_size = 0, srk_buf_size = 0; ssize_t base64_encoded_size; int keyslot; TPM2Flags flags = 0; if (arg_tpm2_public_key_pcr_mask != 0) { r = tpm2_load_pcr_public_key(arg_tpm2_public_key, &pubkey, &pubkey_size); if (r < 0) { if (arg_tpm2_public_key || r != -ENOENT) return log_error_errno(r, "Failed to read TPM PCR public key: %m"); log_debug_errno(r, "Failed to read TPM2 PCR public key, proceeding without: %m"); arg_tpm2_public_key_pcr_mask = 0; } } TPM2B_PUBLIC public; if (pubkey) { r = tpm2_tpm2b_public_from_pem(pubkey, pubkey_size, &public); if (r < 0) return log_error_errno(r, "Could not convert public key to TPM2B_PUBLIC: %m"); } _cleanup_(tpm2_pcrlock_policy_done) Tpm2PCRLockPolicy pcrlock_policy = {}; if (arg_tpm2_pcrlock) { r = tpm2_pcrlock_policy_load(arg_tpm2_pcrlock, &pcrlock_policy); if (r < 0) return r; flags |= TPM2_FLAGS_USE_PCRLOCK; } _cleanup_(tpm2_context_unrefp) Tpm2Context *tpm2_context = NULL; TPM2B_PUBLIC device_key_public = {}; if (arg_tpm2_device_key) { r = tpm2_load_public_key_file(arg_tpm2_device_key, &device_key_public); if (r < 0) return r; if (!tpm2_pcr_values_has_all_values(arg_tpm2_hash_pcr_values, arg_tpm2_n_hash_pcr_values)) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Must provide all PCR values when using TPM2 device key."); } else { r = tpm2_context_new(arg_tpm2_device, &tpm2_context); if (r < 0) return log_error_errno(r, "Failed to create TPM2 context: %m"); if (!tpm2_pcr_values_has_all_values(arg_tpm2_hash_pcr_values, arg_tpm2_n_hash_pcr_values)) { r = tpm2_pcr_read_missing_values(tpm2_context, arg_tpm2_hash_pcr_values, arg_tpm2_n_hash_pcr_values); if (r < 0) return log_error_errno(r, "Could not read pcr values: %m"); } } uint16_t hash_pcr_bank = 0; uint32_t hash_pcr_mask = 0; if (arg_tpm2_n_hash_pcr_values > 0) { size_t hash_count; r = tpm2_pcr_values_hash_count(arg_tpm2_hash_pcr_values, arg_tpm2_n_hash_pcr_values, &hash_count); if (r < 0) return log_error_errno(r, "Could not get hash count: %m"); if (hash_count > 1) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Multiple PCR banks selected."); hash_pcr_bank = arg_tpm2_hash_pcr_values[0].hash; r = tpm2_pcr_values_to_mask(arg_tpm2_hash_pcr_values, arg_tpm2_n_hash_pcr_values, hash_pcr_bank, &hash_pcr_mask); if (r < 0) return log_error_errno(r, "Could not get hash mask: %m"); } TPM2B_DIGEST policy = TPM2B_DIGEST_MAKE(NULL, TPM2_SHA256_DIGEST_SIZE); r = tpm2_calculate_sealing_policy( arg_tpm2_hash_pcr_values, arg_tpm2_n_hash_pcr_values, pubkey ? &public : NULL, /* use_pin= */ false, arg_tpm2_pcrlock ? &pcrlock_policy : NULL, &policy); if (r < 0) return log_error_errno(r, "Could not calculate sealing policy digest: %m"); if (arg_tpm2_device_key) r = tpm2_calculate_seal( arg_tpm2_seal_key_handle, &device_key_public, /* attributes= */ NULL, /* secret= */ NULL, /* secret_size= */ 0, &policy, /* pin= */ NULL, &secret, &secret_size, &blob, &blob_size, &srk_buf, &srk_buf_size); else r = tpm2_seal(tpm2_context, arg_tpm2_seal_key_handle, &policy, /* pin= */ NULL, &secret, &secret_size, &blob, &blob_size, /* ret_primary_alg= */ NULL, &srk_buf, &srk_buf_size); if (r < 0) return log_error_errno(r, "Failed to seal to TPM2: %m"); base64_encoded_size = base64mem(secret, secret_size, &base64_encoded); if (base64_encoded_size < 0) return log_error_errno(base64_encoded_size, "Failed to base64 encode secret key: %m"); r = cryptsetup_set_minimal_pbkdf(cd); if (r < 0) return log_error_errno(r, "Failed to set minimal PBKDF: %m"); keyslot = sym_crypt_keyslot_add_by_volume_key( cd, CRYPT_ANY_SLOT, /* volume_key= */ NULL, /* volume_key_size= */ VOLUME_KEY_SIZE, base64_encoded, base64_encoded_size); if (keyslot < 0) return log_error_errno(keyslot, "Failed to add new TPM2 key: %m"); r = tpm2_make_luks2_json( keyslot, hash_pcr_mask, hash_pcr_bank, pubkey, pubkey_size, arg_tpm2_public_key_pcr_mask, /* primary_alg= */ 0, blob, blob_size, policy.buffer, policy.size, NULL, 0, /* no salt because tpm2_seal has no pin */ srk_buf, srk_buf_size, flags, &v); if (r < 0) return log_error_errno(r, "Failed to prepare TPM2 JSON token object: %m"); r = cryptsetup_add_token_json(cd, v); if (r < 0) return log_error_errno(r, "Failed to add TPM2 JSON token to LUKS2 header: %m"); passphrase = base64_encoded; passphrase_size = strlen(base64_encoded); #else return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "Support for TPM2 enrollment not enabled."); #endif } if (offline) { r = sym_crypt_reencrypt_init_by_passphrase( cd, NULL, passphrase, passphrase_size, CRYPT_ANY_SLOT, 0, sym_crypt_get_cipher(cd), sym_crypt_get_cipher_mode(cd), &reencrypt_params); if (r < 0) return log_error_errno(r, "Failed to prepare for reencryption: %m"); /* crypt_reencrypt_init_by_passphrase() doesn't actually put the LUKS header at the front, we * have to do that ourselves. */ sym_crypt_free(cd); cd = NULL; r = sym_crypt_init(&cd, node); if (r < 0) return log_error_errno(r, "Failed to allocate libcryptsetup context for %s: %m", node); r = sym_crypt_header_restore(cd, CRYPT_LUKS2, hp); if (r < 0) return log_error_errno(r, "Failed to place new LUKS header at head of %s: %m", node); reencrypt_params.flags &= ~CRYPT_REENCRYPT_INITIALIZE_ONLY; r = sym_crypt_reencrypt_init_by_passphrase( cd, NULL, passphrase, passphrase_size, CRYPT_ANY_SLOT, 0, NULL, NULL, &reencrypt_params); if (r < 0) return log_error_errno(r, "Failed to load reencryption context: %m"); r = sym_crypt_reencrypt(cd, NULL); if (r < 0) return log_error_errno(r, "Failed to encrypt %s: %m", node); } else { _cleanup_free_ DecryptedPartitionTarget *t = NULL; _cleanup_close_ int dev_fd = -1; r = sym_crypt_activate_by_volume_key( cd, dm_name, NULL, VOLUME_KEY_SIZE, arg_discard ? CRYPT_ACTIVATE_ALLOW_DISCARDS : 0); if (r < 0) return log_error_errno(r, "Failed to activate LUKS superblock: %m"); dev_fd = open(vol, O_RDWR|O_CLOEXEC|O_NOCTTY); if (dev_fd < 0) return log_error_errno(errno, "Failed to open LUKS volume '%s': %m", vol); if (flock(dev_fd, LOCK_EX) < 0) return log_error_errno(errno, "Failed to lock '%s': %m", vol); t = new(DecryptedPartitionTarget, 1); if (!t) return log_oom(); *t = (DecryptedPartitionTarget) { .fd = TAKE_FD(dev_fd), .dm_name = TAKE_PTR(dm_name), .volume = TAKE_PTR(vol), .device = TAKE_PTR(cd), }; target->decrypted = TAKE_PTR(t); } log_info("Successfully encrypted future partition %" PRIu64 ".", p->partno); return 0; #else return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "libcryptsetup is not supported or is missing required symbols, cannot encrypt: %m"); #endif } static int partition_format_verity_hash( Context *context, Partition *p, const char *node, const char *data_node) { #if HAVE_LIBCRYPTSETUP Partition *dp; _cleanup_(partition_target_freep) PartitionTarget *t = NULL; _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL; _cleanup_free_ char *hint = NULL; int r; assert(context); assert(p); assert(p->verity == VERITY_HASH); assert(data_node); if (p->dropped) return 0; if (PARTITION_EXISTS(p)) /* Never format existing partitions */ return 0; /* Minimized partitions will use the copy blocks logic so let's make sure to skip those here. */ if (p->copy_blocks_fd >= 0) return 0; assert_se(dp = p->siblings[VERITY_DATA]); assert(!dp->dropped); (void) partition_hint(p, node, &hint); r = dlopen_cryptsetup(); if (r < 0) return log_error_errno(r, "libcryptsetup not found, cannot setup verity: %m"); if (!node) { r = partition_target_prepare(context, p, p->new_size, /*need_path=*/ true, &t); if (r < 0) return r; node = partition_target_path(t); } if (p->verity_data_block_size == UINT64_MAX) p->verity_data_block_size = context->fs_sector_size; if (p->verity_hash_block_size == UINT64_MAX) p->verity_hash_block_size = context->fs_sector_size; r = sym_crypt_init(&cd, node); if (r < 0) return log_error_errno(r, "Failed to allocate libcryptsetup context for %s: %m", node); cryptsetup_enable_logging(cd); r = sym_crypt_format( cd, CRYPT_VERITY, NULL, NULL, SD_ID128_TO_UUID_STRING(p->verity_uuid), NULL, 0, &(struct crypt_params_verity){ .data_device = data_node, .flags = CRYPT_VERITY_CREATE_HASH, .hash_name = "sha256", .hash_type = 1, .data_block_size = p->verity_data_block_size, .hash_block_size = p->verity_hash_block_size, .salt_size = sizeof(p->verity_salt), .salt = (const char*)p->verity_salt, }); if (r < 0) { /* libcryptsetup reports non-descriptive EIO errors for every I/O failure. Luckily, it * doesn't clobber errno so let's check for ENOSPC so we can report a better error if the * partition is too small. */ if (r == -EIO && errno == ENOSPC) return log_error_errno(errno, "Verity hash data does not fit in partition %s with size %s", strna(hint), FORMAT_BYTES(p->new_size)); return log_error_errno(r, "Failed to setup verity hash data of partition %s: %m", strna(hint)); } if (t) { r = partition_target_sync(context, p, t); if (r < 0) return r; } r = sym_crypt_get_volume_key_size(cd); if (r < 0) return log_error_errno(r, "Failed to determine verity root hash size of partition %s: %m", strna(hint)); _cleanup_(iovec_done) struct iovec rh = { .iov_base = malloc(r), .iov_len = r, }; if (!rh.iov_base) return log_oom(); r = sym_crypt_volume_key_get(cd, CRYPT_ANY_SLOT, (char *) rh.iov_base, &rh.iov_len, NULL, 0); if (r < 0) return log_error_errno(r, "Failed to get verity root hash of partition %s: %m", strna(hint)); assert(rh.iov_len >= sizeof(sd_id128_t) * 2); if (!dp->new_uuid_is_set) { memcpy_safe(dp->new_uuid.bytes, rh.iov_base, sizeof(sd_id128_t)); dp->new_uuid_is_set = true; } if (!p->new_uuid_is_set) { memcpy_safe(p->new_uuid.bytes, (uint8_t*) rh.iov_base + (rh.iov_len - sizeof(sd_id128_t)), sizeof(sd_id128_t)); p->new_uuid_is_set = true; } p->roothash = TAKE_STRUCT(rh); return 0; #else return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "libcryptsetup is not supported, cannot setup verity hashes: %m"); #endif } static int sign_verity_roothash( const struct iovec *roothash, struct iovec *ret_signature) { #if HAVE_OPENSSL _cleanup_(BIO_freep) BIO *rb = NULL; _cleanup_(PKCS7_freep) PKCS7 *p7 = NULL; _cleanup_free_ char *hex = NULL; _cleanup_free_ uint8_t *sig = NULL; int sigsz; assert(roothash); assert(iovec_is_set(roothash)); assert(ret_signature); hex = hexmem(roothash->iov_base, roothash->iov_len); if (!hex) return log_oom(); rb = BIO_new_mem_buf(hex, -1); if (!rb) return log_oom(); p7 = PKCS7_sign(arg_certificate, arg_private_key, NULL, rb, PKCS7_DETACHED|PKCS7_NOATTR|PKCS7_BINARY); if (!p7) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to calculate PKCS7 signature: %s", ERR_error_string(ERR_get_error(), NULL)); sigsz = i2d_PKCS7(p7, &sig); if (sigsz < 0) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to convert PKCS7 signature to DER: %s", ERR_error_string(ERR_get_error(), NULL)); ret_signature->iov_base = TAKE_PTR(sig); ret_signature->iov_len = sigsz; return 0; #else return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "OpenSSL is not supported, cannot setup verity signature: %m"); #endif } static int partition_format_verity_sig(Context *context, Partition *p) { _cleanup_(json_variant_unrefp) JsonVariant *v = NULL; _cleanup_(iovec_done) struct iovec sig = {}; _cleanup_free_ char *text = NULL, *hint = NULL; Partition *hp; uint8_t fp[X509_FINGERPRINT_SIZE]; int whole_fd, r; assert(p->verity == VERITY_SIG); if (p->dropped) return 0; if (PARTITION_EXISTS(p)) return 0; (void) partition_hint(p, context->node, &hint); assert_se(hp = p->siblings[VERITY_HASH]); assert(!hp->dropped); assert(arg_certificate); assert_se((whole_fd = fdisk_get_devfd(context->fdisk_context)) >= 0); r = sign_verity_roothash(&hp->roothash, &sig); if (r < 0) return r; r = x509_fingerprint(arg_certificate, fp); if (r < 0) return log_error_errno(r, "Unable to calculate X509 certificate fingerprint: %m"); r = json_build(&v, JSON_BUILD_OBJECT( JSON_BUILD_PAIR("rootHash", JSON_BUILD_HEX(hp->roothash.iov_base, hp->roothash.iov_len)), JSON_BUILD_PAIR( "certificateFingerprint", JSON_BUILD_HEX(fp, sizeof(fp)) ), JSON_BUILD_PAIR("signature", JSON_BUILD_IOVEC_BASE64(&sig)) ) ); if (r < 0) return log_error_errno(r, "Failed to build verity signature JSON object: %m"); r = json_variant_format(v, 0, &text); if (r < 0) return log_error_errno(r, "Failed to format verity signature JSON object: %m"); if (strlen(text)+1 > p->new_size) return log_error_errno(SYNTHETIC_ERRNO(E2BIG), "Verity signature too long for partition: %m"); r = strgrowpad0(&text, p->new_size); if (r < 0) return log_error_errno(r, "Failed to pad string to %s", FORMAT_BYTES(p->new_size)); if (lseek(whole_fd, p->offset, SEEK_SET) < 0) return log_error_errno(errno, "Failed to seek to partition %s offset: %m", strna(hint)); r = loop_write(whole_fd, text, p->new_size); if (r < 0) return log_error_errno(r, "Failed to write verity signature to partition %s: %m", strna(hint)); if (fsync(whole_fd) < 0) return log_error_errno(errno, "Failed to synchronize partition %s: %m", strna(hint)); return 0; } static int context_copy_blocks(Context *context) { int r; assert(context); /* Copy in file systems on the block level */ LIST_FOREACH(partitions, p, context->partitions) { _cleanup_(partition_target_freep) PartitionTarget *t = NULL; if (p->copy_blocks_fd < 0) continue; if (p->dropped) continue; if (PARTITION_EXISTS(p)) /* Never copy over existing partitions */ continue; if (partition_type_defer(&p->type)) continue; assert(p->new_size != UINT64_MAX); assert(p->copy_blocks_size != UINT64_MAX); assert(p->new_size >= p->copy_blocks_size + (p->encrypt != ENCRYPT_OFF ? LUKS2_METADATA_KEEP_FREE : 0)); usec_t start_timestamp = now(CLOCK_MONOTONIC); r = partition_target_prepare(context, p, p->new_size, /*need_path=*/ p->encrypt != ENCRYPT_OFF || p->siblings[VERITY_HASH], &t); if (r < 0) return r; if (p->encrypt != ENCRYPT_OFF && t->loop) { r = partition_encrypt(context, p, t, /* offline = */ false); if (r < 0) return r; } if (p->copy_blocks_offset == UINT64_MAX) log_info("Copying in '%s' (%s) on block level into future partition %" PRIu64 ".", p->copy_blocks_path, FORMAT_BYTES(p->copy_blocks_size), p->partno); else { log_info("Copying in '%s' @ %" PRIu64 " (%s) on block level into future partition %" PRIu64 ".", p->copy_blocks_path, p->copy_blocks_offset, FORMAT_BYTES(p->copy_blocks_size), p->partno); if (lseek(p->copy_blocks_fd, p->copy_blocks_offset, SEEK_SET) < 0) return log_error_errno(errno, "Failed to seek to copy blocks offset in %s: %m", p->copy_blocks_path); } r = copy_bytes(p->copy_blocks_fd, partition_target_fd(t), p->copy_blocks_size, COPY_REFLINK); if (r < 0) return log_error_errno(r, "Failed to copy in data from '%s': %m", p->copy_blocks_path); log_info("Copying in of '%s' on block level completed.", p->copy_blocks_path); if (p->encrypt != ENCRYPT_OFF && !t->loop) { r = partition_encrypt(context, p, t, /* offline = */ true); if (r < 0) return r; } r = partition_target_sync(context, p, t); if (r < 0) return r; usec_t time_spent = usec_sub_unsigned(now(CLOCK_MONOTONIC), start_timestamp); if (time_spent > 250 * USEC_PER_MSEC) /* Show throughput, but not if we spent too little time on it, since it's just noise then */ log_info("Block level copying and synchronization of partition %" PRIu64 " complete in %s (%s/s).", p->partno, FORMAT_TIMESPAN(time_spent, 0), FORMAT_BYTES((uint64_t) ((double) p->copy_blocks_size / time_spent * USEC_PER_SEC))); else log_info("Block level copying and synchronization of partition %" PRIu64 " complete in %s.", p->partno, FORMAT_TIMESPAN(time_spent, 0)); if (p->siblings[VERITY_HASH] && !partition_type_defer(&p->siblings[VERITY_HASH]->type)) { r = partition_format_verity_hash(context, p->siblings[VERITY_HASH], /* node = */ NULL, partition_target_path(t)); if (r < 0) return r; } if (p->siblings[VERITY_SIG] && !partition_type_defer(&p->siblings[VERITY_SIG]->type)) { r = partition_format_verity_sig(context, p->siblings[VERITY_SIG]); if (r < 0) return r; } } return 0; } static int add_exclude_path(const char *path, Hashmap **denylist, DenyType type) { _cleanup_free_ struct stat *st = NULL; int r; assert(path); assert(denylist); st = new(struct stat, 1); if (!st) return log_oom(); r = chase_and_stat(path, arg_copy_source, CHASE_PREFIX_ROOT, NULL, st); if (r == -ENOENT) return 0; if (r < 0) return log_error_errno(r, "Failed to stat source file '%s/%s': %m", strempty(arg_copy_source), path); r = hashmap_ensure_put(denylist, &inode_hash_ops, st, INT_TO_PTR(type)); if (r == -EEXIST) return 0; if (r < 0) return log_oom(); if (r > 0) TAKE_PTR(st); return 0; } static int make_copy_files_denylist( Context *context, const Partition *p, const char *source, const char *target, Hashmap **ret) { _cleanup_hashmap_free_ Hashmap *denylist = NULL; int r; assert(context); assert(p); assert(source); assert(target); assert(ret); /* Always exclude the top level APIVFS and temporary directories since the contents of these * directories are almost certainly not intended to end up in an image. */ NULSTR_FOREACH(s, APIVFS_TMP_DIRS_NULSTR) { r = add_exclude_path(s, &denylist, DENY_CONTENTS); if (r < 0) return r; } /* Add the user configured excludes. */ STRV_FOREACH(e, p->exclude_files_source) { r = add_exclude_path(*e, &denylist, endswith(*e, "/") ? DENY_CONTENTS : DENY_INODE); if (r < 0) return r; } STRV_FOREACH(e, p->exclude_files_target) { _cleanup_free_ char *path = NULL; const char *s = path_startswith(*e, target); if (!s) continue; path = path_join(source, s); if (!path) return log_oom(); r = add_exclude_path(path, &denylist, endswith(*e, "/") ? DENY_CONTENTS : DENY_INODE); if (r < 0) return r; } /* If we're populating a root partition, we don't want any files to end up under the APIVFS mount * points. While we already exclude /proc, users could still do something such as * "CopyFiles=/abc:/". Now, if /abc has a proc subdirectory with files in it, those will end up in * the top level proc directory in the root partition, which we want to avoid. To deal with these * cases, whenever we're populating a root partition and the target of CopyFiles= is the root * directory of the root partition, we exclude all directories under the source that are named after * APIVFS directories or named after mount points of other partitions that are also going to be part * of the image. */ if (p->type.designator == PARTITION_ROOT && empty_or_root(target)) { LIST_FOREACH(partitions, q, context->partitions) { if (q->type.designator == PARTITION_ROOT) continue; const char *sources = gpt_partition_type_mountpoint_nulstr(q->type); if (!sources) continue; NULSTR_FOREACH(s, sources) { _cleanup_free_ char *path = NULL; /* Exclude only the children of partition mount points so that the nested * partition mount point itself still ends up in the upper partition. */ path = path_join(source, s); if (!path) return -ENOMEM; r = add_exclude_path(path, &denylist, DENY_CONTENTS); if (r < 0) return r; } } NULSTR_FOREACH(s, APIVFS_TMP_DIRS_NULSTR) { _cleanup_free_ char *path = NULL; path = path_join(source, s); if (!path) return -ENOMEM; r = add_exclude_path(path, &denylist, DENY_CONTENTS); if (r < 0) return r; } } *ret = TAKE_PTR(denylist); return 0; } static int add_subvolume_path(const char *path, Set **subvolumes) { _cleanup_free_ struct stat *st = NULL; int r; assert(path); assert(subvolumes); st = new(struct stat, 1); if (!st) return log_oom(); r = chase_and_stat(path, arg_copy_source, CHASE_PREFIX_ROOT, NULL, st); if (r == -ENOENT) return 0; if (r < 0) return log_error_errno(r, "Failed to stat source file '%s/%s': %m", strempty(arg_copy_source), path); r = set_ensure_consume(subvolumes, &inode_hash_ops, TAKE_PTR(st)); if (r < 0) return log_oom(); return 0; } static int make_subvolumes_set( Context *context, const Partition *p, const char *source, const char *target, Set **ret) { _cleanup_set_free_ Set *subvolumes = NULL; int r; assert(context); assert(p); assert(target); assert(ret); STRV_FOREACH(subvolume, p->subvolumes) { _cleanup_free_ char *path = NULL; const char *s = path_startswith(*subvolume, target); if (!s) continue; path = path_join(source, s); if (!path) return log_oom(); r = add_subvolume_path(path, &subvolumes); if (r < 0) return r; } *ret = TAKE_PTR(subvolumes); return 0; } static int do_copy_files(Context *context, Partition *p, const char *root) { int r; assert(p); assert(root); /* copy_tree_at() automatically copies the permissions of source directories to target directories if * it created them. However, the root directory is created by us, so we have to manually take care * that it is initialized. We use the first source directory targeting "/" as the metadata source for * the root directory. */ STRV_FOREACH_PAIR(source, target, p->copy_files) { _cleanup_close_ int rfd = -EBADF, sfd = -EBADF; if (!path_equal(*target, "/")) continue; rfd = open(root, O_DIRECTORY|O_CLOEXEC|O_NOFOLLOW); if (rfd < 0) return -errno; sfd = chase_and_open(*source, arg_copy_source, CHASE_PREFIX_ROOT, O_PATH|O_DIRECTORY|O_CLOEXEC|O_NOCTTY, NULL); if (sfd < 0) return log_error_errno(sfd, "Failed to open source file '%s%s': %m", strempty(arg_copy_source), *source); (void) copy_xattr(sfd, NULL, rfd, NULL, COPY_ALL_XATTRS); (void) copy_access(sfd, rfd); (void) copy_times(sfd, rfd, 0); break; } STRV_FOREACH_PAIR(source, target, p->copy_files) { _cleanup_hashmap_free_ Hashmap *denylist = NULL; _cleanup_set_free_ Set *subvolumes_by_source_inode = NULL; _cleanup_close_ int sfd = -EBADF, pfd = -EBADF, tfd = -EBADF; r = make_copy_files_denylist(context, p, *source, *target, &denylist); if (r < 0) return r; r = make_subvolumes_set(context, p, *source, *target, &subvolumes_by_source_inode); if (r < 0) return r; sfd = chase_and_open(*source, arg_copy_source, CHASE_PREFIX_ROOT, O_CLOEXEC|O_NOCTTY, NULL); if (sfd == -ENOENT) { log_notice_errno(sfd, "Failed to open source file '%s%s', skipping: %m", strempty(arg_copy_source), *source); continue; } if (sfd < 0) return log_error_errno(sfd, "Failed to open source file '%s%s': %m", strempty(arg_copy_source), *source); r = fd_verify_regular(sfd); if (r < 0) { if (r != -EISDIR) return log_error_errno(r, "Failed to check type of source file '%s': %m", *source); /* We are looking at a directory */ tfd = chase_and_open(*target, root, CHASE_PREFIX_ROOT, O_RDONLY|O_DIRECTORY|O_CLOEXEC, NULL); if (tfd < 0) { _cleanup_free_ char *dn = NULL, *fn = NULL; if (tfd != -ENOENT) return log_error_errno(tfd, "Failed to open target directory '%s': %m", *target); r = path_extract_filename(*target, &fn); if (r < 0) return log_error_errno(r, "Failed to extract filename from '%s': %m", *target); r = path_extract_directory(*target, &dn); if (r < 0) return log_error_errno(r, "Failed to extract directory from '%s': %m", *target); r = mkdir_p_root(root, dn, UID_INVALID, GID_INVALID, 0755, p->subvolumes); if (r < 0) return log_error_errno(r, "Failed to create parent directory '%s': %m", dn); pfd = chase_and_open(dn, root, CHASE_PREFIX_ROOT, O_RDONLY|O_DIRECTORY|O_CLOEXEC, NULL); if (pfd < 0) return log_error_errno(pfd, "Failed to open parent directory of target: %m"); r = copy_tree_at( sfd, ".", pfd, fn, UID_INVALID, GID_INVALID, COPY_REFLINK|COPY_HOLES|COPY_MERGE|COPY_REPLACE|COPY_SIGINT|COPY_HARDLINKS|COPY_ALL_XATTRS|COPY_GRACEFUL_WARN|COPY_TRUNCATE, denylist, subvolumes_by_source_inode); } else r = copy_tree_at( sfd, ".", tfd, ".", UID_INVALID, GID_INVALID, COPY_REFLINK|COPY_HOLES|COPY_MERGE|COPY_REPLACE|COPY_SIGINT|COPY_HARDLINKS|COPY_ALL_XATTRS|COPY_GRACEFUL_WARN|COPY_TRUNCATE, denylist, subvolumes_by_source_inode); if (r < 0) return log_error_errno(r, "Failed to copy '%s%s' to '%s%s': %m", strempty(arg_copy_source), *source, strempty(root), *target); } else { _cleanup_free_ char *dn = NULL, *fn = NULL; /* We are looking at a regular file */ r = path_extract_filename(*target, &fn); if (r == -EADDRNOTAVAIL || r == O_DIRECTORY) return log_error_errno(SYNTHETIC_ERRNO(EISDIR), "Target path '%s' refers to a directory, but source path '%s' refers to regular file, can't copy.", *target, *source); if (r < 0) return log_error_errno(r, "Failed to extract filename from '%s': %m", *target); r = path_extract_directory(*target, &dn); if (r < 0) return log_error_errno(r, "Failed to extract directory from '%s': %m", *target); r = mkdir_p_root(root, dn, UID_INVALID, GID_INVALID, 0755, p->subvolumes); if (r < 0) return log_error_errno(r, "Failed to create parent directory: %m"); pfd = chase_and_open(dn, root, CHASE_PREFIX_ROOT, O_RDONLY|O_DIRECTORY|O_CLOEXEC, NULL); if (pfd < 0) return log_error_errno(pfd, "Failed to open parent directory of target: %m"); tfd = openat(pfd, fn, O_CREAT|O_EXCL|O_WRONLY|O_CLOEXEC, 0700); if (tfd < 0) return log_error_errno(errno, "Failed to create target file '%s': %m", *target); r = copy_bytes(sfd, tfd, UINT64_MAX, COPY_REFLINK|COPY_HOLES|COPY_SIGINT|COPY_TRUNCATE); if (r < 0) return log_error_errno(r, "Failed to copy '%s' to '%s%s': %m", *source, strempty(arg_copy_source), *target); (void) copy_xattr(sfd, NULL, tfd, NULL, COPY_ALL_XATTRS); (void) copy_access(sfd, tfd); (void) copy_times(sfd, tfd, 0); } } return 0; } static int do_make_directories(Partition *p, const char *root) { int r; assert(p); assert(root); STRV_FOREACH(d, p->make_directories) { r = mkdir_p_root(root, *d, UID_INVALID, GID_INVALID, 0755, p->subvolumes); if (r < 0) return log_error_errno(r, "Failed to create directory '%s' in file system: %m", *d); } return 0; } static bool partition_needs_populate(Partition *p) { assert(p); return !strv_isempty(p->copy_files) || !strv_isempty(p->make_directories); } static int partition_populate_directory(Context *context, Partition *p, char **ret) { _cleanup_(rm_rf_physical_and_freep) char *root = NULL; const char *vt; int r; assert(ret); log_info("Populating %s filesystem.", p->format); r = var_tmp_dir(&vt); if (r < 0) return log_error_errno(r, "Could not determine temporary directory: %m"); r = tempfn_random_child(vt, "repart", &root); if (r < 0) return log_error_errno(r, "Failed to generate temporary directory: %m"); r = mkdir(root, 0755); if (r < 0) return log_error_errno(errno, "Failed to create temporary directory: %m"); r = do_copy_files(context, p, root); if (r < 0) return r; r = do_make_directories(p, root); if (r < 0) return r; log_info("Successfully populated %s filesystem.", p->format); *ret = TAKE_PTR(root); return 0; } static int partition_populate_filesystem(Context *context, Partition *p, const char *node) { int r; assert(p); assert(node); log_info("Populating %s filesystem.", p->format); /* We copy in a child process, since we have to mount the fs for that, and we don't want that fs to * appear in the host namespace. Hence we fork a child that has its own file system namespace and * detached mount propagation. */ r = safe_fork("(sd-copy)", FORK_DEATHSIG_SIGTERM|FORK_LOG|FORK_WAIT|FORK_NEW_MOUNTNS|FORK_MOUNTNS_SLAVE, NULL); if (r < 0) return r; if (r == 0) { static const char fs[] = "/run/systemd/mount-root"; /* This is a child process with its own mount namespace and propagation to host turned off */ r = mkdir_p(fs, 0700); if (r < 0) { log_error_errno(r, "Failed to create mount point: %m"); _exit(EXIT_FAILURE); } if (mount_nofollow_verbose(LOG_ERR, node, fs, p->format, MS_NOATIME|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL) < 0) _exit(EXIT_FAILURE); if (do_copy_files(context, p, fs) < 0) _exit(EXIT_FAILURE); if (do_make_directories(p, fs) < 0) _exit(EXIT_FAILURE); r = syncfs_path(AT_FDCWD, fs); if (r < 0) { log_error_errno(r, "Failed to synchronize written files: %m"); _exit(EXIT_FAILURE); } _exit(EXIT_SUCCESS); } log_info("Successfully populated %s filesystem.", p->format); return 0; } static int context_mkfs(Context *context) { int r; assert(context); /* Make a file system */ LIST_FOREACH(partitions, p, context->partitions) { _cleanup_(rm_rf_physical_and_freep) char *root = NULL; _cleanup_(partition_target_freep) PartitionTarget *t = NULL; _cleanup_strv_free_ char **extra_mkfs_options = NULL; if (p->dropped) continue; if (PARTITION_EXISTS(p)) /* Never format existing partitions */ continue; if (!p->format) continue; /* Minimized partitions will use the copy blocks logic so let's make sure to skip those here. */ if (p->copy_blocks_fd >= 0) continue; if (partition_type_defer(&p->type)) continue; assert(p->offset != UINT64_MAX); assert(p->new_size != UINT64_MAX); assert(p->new_size >= (p->encrypt != ENCRYPT_OFF ? LUKS2_METADATA_KEEP_FREE : 0)); /* If we're doing encryption, we make sure we keep free space at the end which is required * for cryptsetup's offline encryption. */ r = partition_target_prepare(context, p, p->new_size - (p->encrypt != ENCRYPT_OFF ? LUKS2_METADATA_KEEP_FREE : 0), /*need_path=*/ true, &t); if (r < 0) return r; if (p->encrypt != ENCRYPT_OFF && t->loop) { r = partition_target_grow(t, p->new_size); if (r < 0) return r; r = partition_encrypt(context, p, t, /* offline = */ false); if (r < 0) return log_error_errno(r, "Failed to encrypt device: %m"); } log_info("Formatting future partition %" PRIu64 ".", p->partno); /* If we're not writing to a loop device or if we're populating a read-only filesystem, we * have to populate using the filesystem's mkfs's --root (or equivalent) option. To do that, * we need to set up the final directory tree beforehand. */ if (partition_needs_populate(p) && (!t->loop || fstype_is_ro(p->format))) { if (!mkfs_supports_root_option(p->format)) return log_error_errno(SYNTHETIC_ERRNO(ENODEV), "Loop device access is required to populate %s filesystems.", p->format); r = partition_populate_directory(context, p, &root); if (r < 0) return r; } r = mkfs_options_from_env("REPART", p->format, &extra_mkfs_options); if (r < 0) return log_error_errno(r, "Failed to determine mkfs command line options for '%s': %m", p->format); r = make_filesystem(partition_target_path(t), p->format, strempty(p->new_label), root, p->fs_uuid, arg_discard, /* quiet = */ false, context->fs_sector_size, extra_mkfs_options); if (r < 0) return r; /* The mkfs binary we invoked might have removed our temporary file when we're not operating * on a loop device, so let's make sure we open the file again to make sure our file * descriptor points to any potential new file. */ if (t->fd >= 0 && t->path && !t->loop) { safe_close(t->fd); t->fd = open(t->path, O_RDWR|O_CLOEXEC); if (t->fd < 0) return log_error_errno(errno, "Failed to reopen temporary file: %m"); } log_info("Successfully formatted future partition %" PRIu64 ".", p->partno); /* If we're writing to a loop device, we can now mount the empty filesystem and populate it. */ if (partition_needs_populate(p) && !root) { assert(t->loop); r = partition_populate_filesystem(context, p, partition_target_path(t)); if (r < 0) return r; } if (p->encrypt != ENCRYPT_OFF && !t->loop) { r = partition_target_grow(t, p->new_size); if (r < 0) return r; r = partition_encrypt(context, p, t, /* offline = */ true); if (r < 0) return log_error_errno(r, "Failed to encrypt device: %m"); } /* Note that we always sync explicitly here, since mkfs.fat doesn't do that on its own, and * if we don't sync before detaching a block device the in-flight sectors possibly won't hit * the disk. */ r = partition_target_sync(context, p, t); if (r < 0) return r; if (p->siblings[VERITY_HASH] && !partition_type_defer(&p->siblings[VERITY_HASH]->type)) { r = partition_format_verity_hash(context, p->siblings[VERITY_HASH], /* node = */ NULL, partition_target_path(t)); if (r < 0) return r; } if (p->siblings[VERITY_SIG] && !partition_type_defer(&p->siblings[VERITY_SIG]->type)) { r = partition_format_verity_sig(context, p->siblings[VERITY_SIG]); if (r < 0) return r; } } return 0; } static int parse_x509_certificate(const char *certificate, size_t certificate_size, X509 **ret) { #if HAVE_OPENSSL _cleanup_(X509_freep) X509 *cert = NULL; _cleanup_(BIO_freep) BIO *cb = NULL; assert(certificate); assert(certificate_size > 0); assert(ret); cb = BIO_new_mem_buf(certificate, certificate_size); if (!cb) return log_oom(); cert = PEM_read_bio_X509(cb, NULL, NULL, NULL); if (!cert) return log_error_errno(SYNTHETIC_ERRNO(EBADMSG), "Failed to parse X.509 certificate: %s", ERR_error_string(ERR_get_error(), NULL)); if (ret) *ret = TAKE_PTR(cert); return 0; #else return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "OpenSSL is not supported, cannot parse X509 certificate."); #endif } static int parse_private_key(const char *key, size_t key_size, EVP_PKEY **ret) { #if HAVE_OPENSSL _cleanup_(BIO_freep) BIO *kb = NULL; _cleanup_(EVP_PKEY_freep) EVP_PKEY *pk = NULL; assert(key); assert(key_size > 0); assert(ret); kb = BIO_new_mem_buf(key, key_size); if (!kb) return log_oom(); pk = PEM_read_bio_PrivateKey(kb, NULL, NULL, NULL); if (!pk) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to parse PEM private key: %s", ERR_error_string(ERR_get_error(), NULL)); if (ret) *ret = TAKE_PTR(pk); return 0; #else return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "OpenSSL is not supported, cannot parse private key."); #endif } static int partition_acquire_uuid(Context *context, Partition *p, sd_id128_t *ret) { struct { sd_id128_t type_uuid; uint64_t counter; } _packed_ plaintext = {}; union { uint8_t md[SHA256_DIGEST_SIZE]; sd_id128_t id; } result; uint64_t k = 0; int r; assert(context); assert(p); assert(ret); /* Calculate a good UUID for the indicated partition. We want a certain degree of reproducibility, * hence we won't generate the UUIDs randomly. Instead we use a cryptographic hash (precisely: * HMAC-SHA256) to derive them from a single seed. The seed is generally the machine ID of the * installation we are processing, but if random behaviour is desired can be random, too. We use the * seed value as key for the HMAC (since the machine ID is something we generally don't want to leak) * and the partition type as plaintext. The partition type is suffixed with a counter (only for the * second and later partition of the same type) if we have more than one partition of the same * time. Or in other words: * * With: * SEED := /etc/machine-id * * If first partition instance of type TYPE_UUID: * PARTITION_UUID := HMAC-SHA256(SEED, TYPE_UUID) * * For all later partition instances of type TYPE_UUID with INSTANCE being the LE64 encoded instance number: * PARTITION_UUID := HMAC-SHA256(SEED, TYPE_UUID || INSTANCE) */ LIST_FOREACH(partitions, q, context->partitions) { if (p == q) break; if (!sd_id128_equal(p->type.uuid, q->type.uuid)) continue; k++; } plaintext.type_uuid = p->type.uuid; plaintext.counter = htole64(k); hmac_sha256(context->seed.bytes, sizeof(context->seed.bytes), &plaintext, k == 0 ? sizeof(sd_id128_t) : sizeof(plaintext), result.md); /* Take the first half, mark it as v4 UUID */ assert_cc(sizeof(result.md) == sizeof(result.id) * 2); result.id = id128_make_v4_uuid(result.id); /* Ensure this partition UUID is actually unique, and there's no remaining partition from an earlier run? */ LIST_FOREACH(partitions, q, context->partitions) { if (p == q) continue; if (sd_id128_in_set(result.id, q->current_uuid, q->new_uuid)) { log_warning("Partition UUID calculated from seed for partition %" PRIu64 " already used, reverting to randomized UUID.", p->partno); r = sd_id128_randomize(&result.id); if (r < 0) return log_error_errno(r, "Failed to generate randomized UUID: %m"); break; } } *ret = result.id; return 0; } static int partition_acquire_label(Context *context, Partition *p, char **ret) { _cleanup_free_ char *label = NULL; const char *prefix; unsigned k = 1; assert(context); assert(p); assert(ret); prefix = gpt_partition_type_uuid_to_string(p->type.uuid); if (!prefix) prefix = "linux"; for (;;) { const char *ll = label ?: prefix; bool retry = false; LIST_FOREACH(partitions, q, context->partitions) { if (p == q) break; if (streq_ptr(ll, q->current_label) || streq_ptr(ll, q->new_label)) { retry = true; break; } } if (!retry) break; label = mfree(label); if (asprintf(&label, "%s-%u", prefix, ++k) < 0) return log_oom(); } if (!label) { label = strdup(prefix); if (!label) return log_oom(); } *ret = TAKE_PTR(label); return 0; } static int context_acquire_partition_uuids_and_labels(Context *context) { int r; assert(context); LIST_FOREACH(partitions, p, context->partitions) { sd_id128_t uuid; /* Never touch foreign partitions */ if (PARTITION_IS_FOREIGN(p)) { p->new_uuid = p->current_uuid; if (p->current_label) { r = free_and_strdup_warn(&p->new_label, strempty(p->current_label)); if (r < 0) return r; } continue; } if (!sd_id128_is_null(p->current_uuid)) p->new_uuid = uuid = p->current_uuid; /* Never change initialized UUIDs */ else if (p->new_uuid_is_set) uuid = p->new_uuid; else { /* Not explicitly set by user! */ r = partition_acquire_uuid(context, p, &uuid); if (r < 0) return r; /* The final verity hash/data UUIDs can only be determined after formatting the * verity hash partition. However, we still want to use the generated partition UUID * to derive other UUIDs to keep things unique and reproducible, so we always * generate a UUID if none is set, but we only use it as the actual partition UUID if * verity is not configured. */ if (!IN_SET(p->verity, VERITY_DATA, VERITY_HASH)) { p->new_uuid = uuid; p->new_uuid_is_set = true; } } /* Calculate the UUID for the file system as HMAC-SHA256 of the string "file-system-uuid", * keyed off the partition UUID. */ r = derive_uuid(uuid, "file-system-uuid", &p->fs_uuid); if (r < 0) return r; if (p->encrypt != ENCRYPT_OFF) { r = derive_uuid(uuid, "luks-uuid", &p->luks_uuid); if (r < 0) return r; } /* Derive the verity salt and verity superblock UUID from the seed to keep them reproducible */ if (p->verity == VERITY_HASH) { derive_salt(context->seed, "verity-salt", p->verity_salt); r = derive_uuid(context->seed, "verity-uuid", &p->verity_uuid); if (r < 0) return log_error_errno(r, "Failed to acquire verity uuid: %m"); } if (!isempty(p->current_label)) { /* never change initialized labels */ r = free_and_strdup_warn(&p->new_label, p->current_label); if (r < 0) return r; } else if (!p->new_label) { /* Not explicitly set by user! */ r = partition_acquire_label(context, p, &p->new_label); if (r < 0) return r; } } return 0; } static int set_gpt_flags(struct fdisk_partition *q, uint64_t flags) { _cleanup_free_ char *a = NULL; for (unsigned i = 0; i < sizeof(flags) * 8; i++) { uint64_t bit = UINT64_C(1) << i; char buf[DECIMAL_STR_MAX(unsigned)+1]; if (!FLAGS_SET(flags, bit)) continue; xsprintf(buf, "%u", i); if (!strextend_with_separator(&a, ",", buf)) return -ENOMEM; } return fdisk_partition_set_attrs(q, a); } static uint64_t partition_merge_flags(Partition *p) { uint64_t f; assert(p); f = p->gpt_flags; if (p->no_auto >= 0) { if (gpt_partition_type_knows_no_auto(p->type)) SET_FLAG(f, SD_GPT_FLAG_NO_AUTO, p->no_auto); else { char buffer[SD_ID128_UUID_STRING_MAX]; log_warning("Configured NoAuto=%s for partition type '%s' that doesn't support it, ignoring.", yes_no(p->no_auto), gpt_partition_type_uuid_to_string_harder(p->type.uuid, buffer)); } } if (p->read_only >= 0) { if (gpt_partition_type_knows_read_only(p->type)) SET_FLAG(f, SD_GPT_FLAG_READ_ONLY, p->read_only); else { char buffer[SD_ID128_UUID_STRING_MAX]; log_warning("Configured ReadOnly=%s for partition type '%s' that doesn't support it, ignoring.", yes_no(p->read_only), gpt_partition_type_uuid_to_string_harder(p->type.uuid, buffer)); } } if (p->growfs >= 0) { if (gpt_partition_type_knows_growfs(p->type)) SET_FLAG(f, SD_GPT_FLAG_GROWFS, p->growfs); else { char buffer[SD_ID128_UUID_STRING_MAX]; log_warning("Configured GrowFileSystem=%s for partition type '%s' that doesn't support it, ignoring.", yes_no(p->growfs), gpt_partition_type_uuid_to_string_harder(p->type.uuid, buffer)); } } return f; } static int context_mangle_partitions(Context *context) { int r; assert(context); LIST_FOREACH(partitions, p, context->partitions) { if (p->dropped) continue; if (partition_type_defer(&p->type)) continue; assert(p->new_size != UINT64_MAX); assert(p->offset != UINT64_MAX); assert(p->partno != UINT64_MAX); if (PARTITION_EXISTS(p)) { bool changed = false; assert(p->current_partition); if (p->new_size != p->current_size) { assert(p->new_size >= p->current_size); assert(p->new_size % context->sector_size == 0); r = fdisk_partition_size_explicit(p->current_partition, true); if (r < 0) return log_error_errno(r, "Failed to enable explicit sizing: %m"); r = fdisk_partition_set_size(p->current_partition, p->new_size / context->sector_size); if (r < 0) return log_error_errno(r, "Failed to grow partition: %m"); log_info("Growing existing partition %" PRIu64 ".", p->partno); changed = true; } if (!sd_id128_equal(p->new_uuid, p->current_uuid)) { r = fdisk_partition_set_uuid(p->current_partition, SD_ID128_TO_UUID_STRING(p->new_uuid)); if (r < 0) return log_error_errno(r, "Failed to set partition UUID: %m"); log_info("Initializing UUID of existing partition %" PRIu64 ".", p->partno); changed = true; } if (!streq_ptr(p->new_label, p->current_label)) { r = fdisk_partition_set_name(p->current_partition, strempty(p->new_label)); if (r < 0) return log_error_errno(r, "Failed to set partition label: %m"); log_info("Setting partition label of existing partition %" PRIu64 ".", p->partno); changed = true; } if (changed) { assert(!PARTITION_IS_FOREIGN(p)); /* never touch foreign partitions */ r = fdisk_set_partition(context->fdisk_context, p->partno, p->current_partition); if (r < 0) return log_error_errno(r, "Failed to update partition: %m"); } } else { _cleanup_(fdisk_unref_partitionp) struct fdisk_partition *q = NULL; _cleanup_(fdisk_unref_parttypep) struct fdisk_parttype *t = NULL; assert(!p->new_partition); assert(p->offset % context->sector_size == 0); assert(p->new_size % context->sector_size == 0); assert(p->new_label); t = fdisk_new_parttype(); if (!t) return log_oom(); r = fdisk_parttype_set_typestr(t, SD_ID128_TO_UUID_STRING(p->type.uuid)); if (r < 0) return log_error_errno(r, "Failed to initialize partition type: %m"); q = fdisk_new_partition(); if (!q) return log_oom(); r = fdisk_partition_set_type(q, t); if (r < 0) return log_error_errno(r, "Failed to set partition type: %m"); r = fdisk_partition_size_explicit(q, true); if (r < 0) return log_error_errno(r, "Failed to enable explicit sizing: %m"); r = fdisk_partition_set_start(q, p->offset / context->sector_size); if (r < 0) return log_error_errno(r, "Failed to position partition: %m"); r = fdisk_partition_set_size(q, p->new_size / context->sector_size); if (r < 0) return log_error_errno(r, "Failed to grow partition: %m"); r = fdisk_partition_set_partno(q, p->partno); if (r < 0) return log_error_errno(r, "Failed to set partition number: %m"); r = fdisk_partition_set_uuid(q, SD_ID128_TO_UUID_STRING(p->new_uuid)); if (r < 0) return log_error_errno(r, "Failed to set partition UUID: %m"); r = fdisk_partition_set_name(q, strempty(p->new_label)); if (r < 0) return log_error_errno(r, "Failed to set partition label: %m"); /* Merge the no auto + read only + growfs setting with the literal flags, and set them for the partition */ r = set_gpt_flags(q, partition_merge_flags(p)); if (r < 0) return log_error_errno(r, "Failed to set GPT partition flags: %m"); log_info("Adding new partition %" PRIu64 " to partition table.", p->partno); r = fdisk_add_partition(context->fdisk_context, q, NULL); if (r < 0) return log_error_errno(r, "Failed to add partition: %m"); assert(!p->new_partition); p->new_partition = TAKE_PTR(q); } } return 0; } static int split_name_printf(Partition *p, char **ret) { assert(p); const Specifier table[] = { { 't', specifier_string, GPT_PARTITION_TYPE_UUID_TO_STRING_HARDER(p->type.uuid) }, { 'T', specifier_id128, &p->type.uuid }, { 'U', specifier_id128, &p->new_uuid }, { 'n', specifier_uint64, &p->partno }, COMMON_SYSTEM_SPECIFIERS, {} }; return specifier_printf(p->split_name_format, NAME_MAX, table, arg_root, p, ret); } static int split_node(const char *node, char **ret_base, char **ret_ext) { _cleanup_free_ char *base = NULL, *ext = NULL; char *e; int r; assert(node); assert(ret_base); assert(ret_ext); r = path_extract_filename(node, &base); if (r == O_DIRECTORY || r == -EADDRNOTAVAIL) return log_error_errno(r, "Device node %s cannot be a directory", node); if (r < 0) return log_error_errno(r, "Failed to extract filename from %s: %m", node); e = endswith(base, ".raw"); if (e) { ext = strdup(e); if (!ext) return log_oom(); *e = 0; } *ret_base = TAKE_PTR(base); *ret_ext = TAKE_PTR(ext); return 0; } static int split_name_resolve(Context *context) { _cleanup_free_ char *parent = NULL, *base = NULL, *ext = NULL; int r; assert(context); r = path_extract_directory(context->node, &parent); if (r < 0 && r != -EDESTADDRREQ) return log_error_errno(r, "Failed to extract directory from %s: %m", context->node); r = split_node(context->node, &base, &ext); if (r < 0) return r; LIST_FOREACH(partitions, p, context->partitions) { _cleanup_free_ char *resolved = NULL; if (p->dropped) continue; if (!p->split_name_format) continue; r = split_name_printf(p, &resolved); if (r < 0) return log_error_errno(r, "Failed to resolve specifiers in %s: %m", p->split_name_format); if (parent) p->split_path = strjoin(parent, "/", base, ".", resolved, ext); else p->split_path = strjoin(base, ".", resolved, ext); if (!p->split_path) return log_oom(); } LIST_FOREACH(partitions, p, context->partitions) { if (!p->split_path) continue; LIST_FOREACH(partitions, q, context->partitions) { if (p == q) continue; if (!q->split_path) continue; if (!streq(p->split_path, q->split_path)) continue; return log_error_errno(SYNTHETIC_ERRNO(ENOTUNIQ), "%s and %s have the same resolved split name \"%s\", refusing", p->definition_path, q->definition_path, p->split_path); } } return 0; } static int context_split(Context *context) { int fd = -EBADF, r; if (!arg_split) return 0; assert(context); /* We can't do resolution earlier because the partition UUIDs for verity partitions are only filled * in after they've been generated. */ r = split_name_resolve(context); if (r < 0) return r; LIST_FOREACH(partitions, p, context->partitions) { _cleanup_close_ int fdt = -EBADF; if (p->dropped) continue; if (!p->split_path) continue; if (partition_type_defer(&p->type)) continue; fdt = open(p->split_path, O_WRONLY|O_NOCTTY|O_CLOEXEC|O_NOFOLLOW|O_CREAT|O_EXCL, 0666); if (fdt < 0) return log_error_errno(fdt, "Failed to open split partition file %s: %m", p->split_path); if (fd < 0) assert_se((fd = fdisk_get_devfd(context->fdisk_context)) >= 0); if (lseek(fd, p->offset, SEEK_SET) < 0) return log_error_errno(errno, "Failed to seek to partition offset: %m"); r = copy_bytes(fd, fdt, p->new_size, COPY_REFLINK|COPY_HOLES|COPY_TRUNCATE); if (r < 0) return log_error_errno(r, "Failed to copy to split partition %s: %m", p->split_path); } return 0; } static int context_write_partition_table(Context *context) { _cleanup_(fdisk_unref_tablep) struct fdisk_table *original_table = NULL; int capable, r; assert(context); if (!context->from_scratch && !context_changed(context)) { log_info("No changes."); return 0; } if (arg_dry_run) { log_notice("Refusing to repartition, please re-run with --dry-run=no."); return 0; } log_info("Applying changes to %s.", context->node); if (context->from_scratch && arg_empty != EMPTY_CREATE) { /* Erase everything if we operate from scratch, except if the image was just created anyway, and thus is definitely empty. */ r = context_wipe_range(context, 0, context->total); if (r < 0) return r; log_info("Wiped block device."); if (arg_discard) { r = context_discard_range(context, 0, context->total); if (r == -EOPNOTSUPP) log_info("Storage does not support discard, not discarding entire block device data."); else if (r < 0) return log_error_errno(r, "Failed to discard entire block device: %m"); else if (r > 0) log_info("Discarded entire block device."); } } r = fdisk_get_partitions(context->fdisk_context, &original_table); if (r < 0) return log_error_errno(r, "Failed to acquire partition table: %m"); /* Wipe fs signatures and discard sectors where the new partitions are going to be placed and in the * gaps between partitions, just to be sure. */ r = context_wipe_and_discard(context); if (r < 0) return r; r = context_copy_blocks(context); if (r < 0) return r; r = context_mkfs(context); if (r < 0) return r; r = context_mangle_partitions(context); if (r < 0) return r; log_info("Writing new partition table."); r = fdisk_write_disklabel(context->fdisk_context); if (r < 0) return log_error_errno(r, "Failed to write partition table: %m"); capable = blockdev_partscan_enabled(fdisk_get_devfd(context->fdisk_context)); if (capable == -ENOTBLK) log_debug("Not telling kernel to reread partition table, since we are not operating on a block device."); else if (capable < 0) return log_error_errno(capable, "Failed to check if block device supports partition scanning: %m"); else if (capable > 0) { log_info("Telling kernel to reread partition table."); if (context->from_scratch) r = fdisk_reread_partition_table(context->fdisk_context); else r = fdisk_reread_changes(context->fdisk_context, original_table); if (r < 0) return log_error_errno(r, "Failed to reread partition table: %m"); } else log_notice("Not telling kernel to reread partition table, because selected image does not support kernel partition block devices."); log_info("All done."); return 0; } static int context_read_seed(Context *context, const char *root) { int r; assert(context); if (!sd_id128_is_null(context->seed)) return 0; if (!arg_randomize) { r = id128_get_machine(root, &context->seed); if (r >= 0) return 0; if (!ERRNO_IS_MACHINE_ID_UNSET(r)) return log_error_errno(r, "Failed to parse machine ID of image: %m"); log_info("No machine ID set, using randomized partition UUIDs."); } r = sd_id128_randomize(&context->seed); if (r < 0) return log_error_errno(r, "Failed to generate randomized seed: %m"); return 0; } static int context_factory_reset(Context *context) { size_t n = 0; int r; assert(context); if (arg_factory_reset <= 0) return 0; if (context->from_scratch) /* Nothing to reset if we start from scratch */ return 0; if (arg_dry_run) { log_notice("Refusing to factory reset, please re-run with --dry-run=no."); return 0; } log_info("Applying factory reset."); LIST_FOREACH(partitions, p, context->partitions) { if (!p->factory_reset || !PARTITION_EXISTS(p)) continue; assert(p->partno != UINT64_MAX); log_info("Removing partition %" PRIu64 " for factory reset.", p->partno); r = fdisk_delete_partition(context->fdisk_context, p->partno); if (r < 0) return log_error_errno(r, "Failed to remove partition %" PRIu64 ": %m", p->partno); n++; } if (n == 0) { log_info("Factory reset requested, but no partitions to delete found."); return 0; } r = fdisk_write_disklabel(context->fdisk_context); if (r < 0) return log_error_errno(r, "Failed to write disk label: %m"); log_info("Successfully deleted %zu partitions.", n); return 1; } static int context_can_factory_reset(Context *context) { assert(context); LIST_FOREACH(partitions, p, context->partitions) if (p->factory_reset && PARTITION_EXISTS(p)) return true; return false; } static int resolve_copy_blocks_auto_candidate( dev_t partition_devno, GptPartitionType partition_type, dev_t restrict_devno, sd_id128_t *ret_uuid) { _cleanup_(blkid_free_probep) blkid_probe b = NULL; _cleanup_close_ int fd = -EBADF; _cleanup_free_ char *p = NULL; const char *pttype, *t; sd_id128_t pt_parsed, u; blkid_partition pp; dev_t whole_devno; blkid_partlist pl; int r; /* Checks if the specified partition has the specified GPT type UUID, and is located on the specified * 'restrict_devno' device. The type check is particularly relevant if we have Verity volume which is * backed by two separate partitions: the data and the hash partitions, and we need to find the right * one of the two. */ r = block_get_whole_disk(partition_devno, &whole_devno); if (r < 0) return log_error_errno( r, "Unable to determine containing block device of partition %u:%u: %m", major(partition_devno), minor(partition_devno)); if (restrict_devno != (dev_t) -1 && restrict_devno != whole_devno) return log_error_errno( SYNTHETIC_ERRNO(EPERM), "Partition %u:%u is located outside of block device %u:%u, refusing.", major(partition_devno), minor(partition_devno), major(restrict_devno), minor(restrict_devno)); fd = r = device_open_from_devnum(S_IFBLK, whole_devno, O_RDONLY|O_CLOEXEC|O_NONBLOCK, &p); if (r < 0) return log_error_errno(r, "Failed to open block device " DEVNUM_FORMAT_STR ": %m", DEVNUM_FORMAT_VAL(whole_devno)); b = blkid_new_probe(); if (!b) return log_oom(); errno = 0; r = blkid_probe_set_device(b, fd, 0, 0); if (r != 0) return log_error_errno(errno_or_else(ENOMEM), "Failed to open block device '%s': %m", p); (void) blkid_probe_enable_partitions(b, 1); (void) blkid_probe_set_partitions_flags(b, BLKID_PARTS_ENTRY_DETAILS); errno = 0; r = blkid_do_safeprobe(b); if (r == _BLKID_SAFEPROBE_ERROR) return log_error_errno(errno_or_else(EIO), "Unable to probe for partition table of '%s': %m", p); if (IN_SET(r, _BLKID_SAFEPROBE_AMBIGUOUS, _BLKID_SAFEPROBE_NOT_FOUND)) { log_debug("Didn't find partition table on block device '%s'.", p); return false; } assert(r == _BLKID_SAFEPROBE_FOUND); (void) blkid_probe_lookup_value(b, "PTTYPE", &pttype, NULL); if (!streq_ptr(pttype, "gpt")) { log_debug("Didn't find a GPT partition table on '%s'.", p); return false; } errno = 0; pl = blkid_probe_get_partitions(b); if (!pl) return log_error_errno(errno_or_else(EIO), "Unable read partition table of '%s': %m", p); pp = blkid_partlist_devno_to_partition(pl, partition_devno); if (!pp) { log_debug("Partition %u:%u has no matching partition table entry on '%s'.", major(partition_devno), minor(partition_devno), p); return false; } t = blkid_partition_get_type_string(pp); if (isempty(t)) { log_debug("Partition %u:%u has no type on '%s'.", major(partition_devno), minor(partition_devno), p); return false; } r = sd_id128_from_string(t, &pt_parsed); if (r < 0) { log_debug_errno(r, "Failed to parse partition type \"%s\": %m", t); return false; } if (!sd_id128_equal(pt_parsed, partition_type.uuid)) { log_debug("Partition %u:%u has non-matching partition type " SD_ID128_FORMAT_STR " (needed: " SD_ID128_FORMAT_STR "), ignoring.", major(partition_devno), minor(partition_devno), SD_ID128_FORMAT_VAL(pt_parsed), SD_ID128_FORMAT_VAL(partition_type.uuid)); return false; } r = blkid_partition_get_uuid_id128(pp, &u); if (r == -ENXIO) { log_debug_errno(r, "Partition " DEVNUM_FORMAT_STR " has no UUID.", DEVNUM_FORMAT_VAL(partition_devno)); return false; } if (r < 0) { log_debug_errno(r, "Failed to read partition UUID of " DEVNUM_FORMAT_STR ": %m", DEVNUM_FORMAT_VAL(partition_devno)); return false; } log_debug("Automatically found partition " DEVNUM_FORMAT_STR " of right type " SD_ID128_FORMAT_STR ".", DEVNUM_FORMAT_VAL(partition_devno), SD_ID128_FORMAT_VAL(pt_parsed)); if (ret_uuid) *ret_uuid = u; return true; } static int find_backing_devno( const char *path, const char *root, dev_t *ret) { _cleanup_free_ char *resolved = NULL; int r; assert(path); r = chase(path, root, CHASE_PREFIX_ROOT, &resolved, NULL); if (r < 0) return r; r = path_is_mount_point(resolved, NULL, 0); if (r < 0) return r; if (r == 0) /* Not a mount point, then it's not a partition of its own, let's not automatically use it. */ return -ENOENT; r = get_block_device(resolved, ret); if (r < 0) return r; if (r == 0) /* Not backed by physical file system, we can't use this */ return -ENOENT; return 0; } static int resolve_copy_blocks_auto( GptPartitionType type, const char *root, dev_t restrict_devno, dev_t *ret_devno, sd_id128_t *ret_uuid) { const char *try1 = NULL, *try2 = NULL; char p[SYS_BLOCK_PATH_MAX("/slaves")]; _cleanup_closedir_ DIR *d = NULL; sd_id128_t found_uuid = SD_ID128_NULL; dev_t devno, found = 0; int r; /* Enforce some security restrictions: CopyBlocks=auto should not be an avenue to get outside of the * --root=/--image= confinement. Specifically, refuse CopyBlocks= in combination with --root= at all, * and restrict block device references in the --image= case to loopback block device we set up. * * restrict_devno contain the dev_t of the loop back device we operate on in case of --image=, and * thus declares which device (and its partition subdevices) we shall limit access to. If * restrict_devno is zero no device probing access shall be allowed at all (used for --root=) and if * it is (dev_t) -1 then free access shall be allowed (if neither switch is used). */ if (restrict_devno == 0) return log_error_errno(SYNTHETIC_ERRNO(EPERM), "Automatic discovery of backing block devices not permitted in --root= mode, refusing."); /* Handles CopyBlocks=auto, and finds the right source partition to copy from. We look for matching * partitions in the host, using the appropriate directory as key and ensuring that the partition * type matches. */ if (type.designator == PARTITION_ROOT) try1 = "/"; else if (type.designator == PARTITION_USR) try1 = "/usr/"; else if (type.designator == PARTITION_ROOT_VERITY) try1 = "/"; else if (type.designator == PARTITION_USR_VERITY) try1 = "/usr/"; else if (type.designator == PARTITION_ESP) { try1 = "/efi/"; try2 = "/boot/"; } else if (type.designator == PARTITION_XBOOTLDR) try1 = "/boot/"; else return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "Partition type " SD_ID128_FORMAT_STR " not supported from automatic source block device discovery.", SD_ID128_FORMAT_VAL(type.uuid)); r = find_backing_devno(try1, root, &devno); if (r == -ENOENT && try2) r = find_backing_devno(try2, root, &devno); if (r < 0) return log_error_errno(r, "Failed to resolve automatic CopyBlocks= path for partition type " SD_ID128_FORMAT_STR ", sorry: %m", SD_ID128_FORMAT_VAL(type.uuid)); xsprintf_sys_block_path(p, "/slaves", devno); d = opendir(p); if (d) { struct dirent *de; for (;;) { _cleanup_free_ char *q = NULL, *t = NULL; sd_id128_t u; dev_t sl; errno = 0; de = readdir_no_dot(d); if (!de) { if (errno != 0) return log_error_errno(errno, "Failed to read directory '%s': %m", p); break; } if (!IN_SET(de->d_type, DT_LNK, DT_UNKNOWN)) continue; q = path_join(p, de->d_name, "/dev"); if (!q) return log_oom(); r = read_one_line_file(q, &t); if (r < 0) return log_error_errno(r, "Failed to read %s: %m", q); r = parse_devnum(t, &sl); if (r < 0) { log_debug_errno(r, "Failed to parse %s, ignoring: %m", q); continue; } if (major(sl) == 0) { log_debug("Device backing %s is special, ignoring.", q); continue; } r = resolve_copy_blocks_auto_candidate(sl, type, restrict_devno, &u); if (r < 0) return r; if (r > 0) { /* We found a matching one! */ if (found != 0) return log_error_errno(SYNTHETIC_ERRNO(ENOTUNIQ), "Multiple matching partitions found, refusing."); found = sl; found_uuid = u; } } } else if (errno != ENOENT) return log_error_errno(errno, "Failed open %s: %m", p); else { r = resolve_copy_blocks_auto_candidate(devno, type, restrict_devno, &found_uuid); if (r < 0) return r; if (r > 0) found = devno; } if (found == 0) return log_error_errno(SYNTHETIC_ERRNO(ENXIO), "Unable to automatically discover suitable partition to copy blocks from."); if (ret_devno) *ret_devno = found; if (ret_uuid) *ret_uuid = found_uuid; return 0; } static int context_open_copy_block_paths( Context *context, dev_t restrict_devno) { int r; assert(context); LIST_FOREACH(partitions, p, context->partitions) { _cleanup_close_ int source_fd = -EBADF; _cleanup_free_ char *opened = NULL; sd_id128_t uuid = SD_ID128_NULL; uint64_t size; struct stat st; if (p->copy_blocks_fd >= 0) continue; assert(p->copy_blocks_size == UINT64_MAX); if (PARTITION_EXISTS(p)) /* Never copy over partitions that already exist! */ continue; if (p->copy_blocks_path) { source_fd = chase_and_open(p->copy_blocks_path, p->copy_blocks_root, CHASE_PREFIX_ROOT, O_RDONLY|O_CLOEXEC|O_NONBLOCK, &opened); if (source_fd < 0) return log_error_errno(source_fd, "Failed to open '%s': %m", p->copy_blocks_path); if (fstat(source_fd, &st) < 0) return log_error_errno(errno, "Failed to stat block copy file '%s': %m", opened); if (!S_ISREG(st.st_mode) && restrict_devno != (dev_t) -1) return log_error_errno(SYNTHETIC_ERRNO(EPERM), "Copying from block device node is not permitted in --image=/--root= mode, refusing."); } else if (p->copy_blocks_auto) { dev_t devno = 0; /* Fake initialization to appease gcc. */ r = resolve_copy_blocks_auto(p->type, p->copy_blocks_root, restrict_devno, &devno, &uuid); if (r < 0) return r; assert(devno != 0); source_fd = r = device_open_from_devnum(S_IFBLK, devno, O_RDONLY|O_CLOEXEC|O_NONBLOCK, &opened); if (r < 0) return log_error_errno(r, "Failed to open automatically determined source block copy device " DEVNUM_FORMAT_STR ": %m", DEVNUM_FORMAT_VAL(devno)); if (fstat(source_fd, &st) < 0) return log_error_errno(errno, "Failed to stat block copy file '%s': %m", opened); } else continue; if (S_ISDIR(st.st_mode)) { _cleanup_free_ char *bdev = NULL; dev_t devt; /* If the file is a directory, automatically find the backing block device */ if (major(st.st_dev) != 0) devt = st.st_dev; else { /* Special support for btrfs */ r = btrfs_get_block_device_fd(source_fd, &devt); if (r == -EUCLEAN) return btrfs_log_dev_root(LOG_ERR, r, opened); if (r < 0) return log_error_errno(r, "Unable to determine backing block device of '%s': %m", opened); } safe_close(source_fd); source_fd = r = device_open_from_devnum(S_IFBLK, devt, O_RDONLY|O_CLOEXEC|O_NONBLOCK, &bdev); if (r < 0) return log_error_errno(r, "Failed to open block device backing '%s': %m", opened); if (fstat(source_fd, &st) < 0) return log_error_errno(errno, "Failed to stat block device '%s': %m", bdev); } if (S_ISREG(st.st_mode)) size = st.st_size; else if (S_ISBLK(st.st_mode)) { if (ioctl(source_fd, BLKGETSIZE64, &size) != 0) return log_error_errno(errno, "Failed to determine size of block device to copy from: %m"); } else return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Specified path to copy blocks from '%s' is not a regular file, block device or directory, refusing: %m", opened); if (size <= 0) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "File to copy bytes from '%s' has zero size, refusing.", opened); if (size % 512 != 0) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "File to copy bytes from '%s' has size that is not multiple of 512, refusing.", opened); p->copy_blocks_fd = TAKE_FD(source_fd); p->copy_blocks_size = size; free_and_replace(p->copy_blocks_path, opened); /* When copying from an existing partition copy that partitions UUID if none is configured explicitly */ if (!p->new_uuid_is_set && !sd_id128_is_null(uuid)) { p->new_uuid = uuid; p->new_uuid_is_set = true; } } return 0; } static int fd_apparent_size(int fd, uint64_t *ret) { off_t initial = 0; uint64_t size = 0; assert(fd >= 0); assert(ret); initial = lseek(fd, 0, SEEK_CUR); if (initial < 0) return log_error_errno(errno, "Failed to get file offset: %m"); for (off_t off = 0;;) { off_t r; r = lseek(fd, off, SEEK_DATA); if (r < 0 && errno == ENXIO) /* If errno == ENXIO, that means we've reached the final hole of the file and * that hole isn't followed by more data. */ break; if (r < 0) return log_error_errno(errno, "Failed to seek data in file from offset %"PRIi64": %m", off); off = r; /* Set the offset to the start of the data segment. */ /* After copying a potential hole, find the end of the data segment by looking for * the next hole. If we get ENXIO, we're at EOF. */ r = lseek(fd, off, SEEK_HOLE); if (r < 0) { if (errno == ENXIO) break; return log_error_errno(errno, "Failed to seek hole in file from offset %"PRIi64": %m", off); } size += r - off; off = r; } if (lseek(fd, initial, SEEK_SET) < 0) return log_error_errno(errno, "Failed to reset file offset: %m"); *ret = size; return 0; } static int context_minimize(Context *context) { const char *vt = NULL; int r; assert(context); LIST_FOREACH(partitions, p, context->partitions) { _cleanup_(rm_rf_physical_and_freep) char *root = NULL; _cleanup_(unlink_and_freep) char *temp = NULL; _cleanup_(loop_device_unrefp) LoopDevice *d = NULL; _cleanup_strv_free_ char **extra_mkfs_options = NULL; _cleanup_close_ int fd = -EBADF; _cleanup_free_ char *hint = NULL; sd_id128_t fs_uuid; struct stat st; uint64_t fsz; if (p->dropped) continue; if (PARTITION_EXISTS(p)) /* Never format existing partitions */ continue; if (!p->format) continue; if (p->copy_blocks_fd >= 0) continue; if (p->minimize == MINIMIZE_OFF) continue; if (!partition_needs_populate(p)) continue; assert(!p->copy_blocks_path); (void) partition_hint(p, context->node, &hint); log_info("Pre-populating %s filesystem of partition %s twice to calculate minimal partition size", p->format, strna(hint)); if (!vt) { r = var_tmp_dir(&vt); if (r < 0) return log_error_errno(r, "Could not determine temporary directory: %m"); } r = tempfn_random_child(vt, "repart", &temp); if (r < 0) return log_error_errno(r, "Failed to generate temporary file path: %m"); if (fstype_is_ro(p->format)) fs_uuid = p->fs_uuid; else { fd = open(temp, O_CREAT|O_EXCL|O_CLOEXEC|O_RDWR|O_NOCTTY, 0600); if (fd < 0) return log_error_errno(errno, "Failed to open temporary file %s: %m", temp); /* This may seem huge but it will be created sparse so it doesn't take up any space * on disk until written to. */ if (ftruncate(fd, 1024ULL * 1024ULL * 1024ULL * 1024ULL) < 0) return log_error_errno(errno, "Failed to truncate temporary file to %s: %m", FORMAT_BYTES(1024ULL * 1024ULL * 1024ULL * 1024ULL)); if (arg_offline <= 0) { r = loop_device_make(fd, O_RDWR, 0, UINT64_MAX, context->sector_size, 0, LOCK_EX, &d); if (r < 0 && (arg_offline == 0 || (r != -ENOENT && !ERRNO_IS_PRIVILEGE(r)) || !strv_isempty(p->subvolumes))) return log_error_errno(r, "Failed to make loopback device of %s: %m", temp); } /* We're going to populate this filesystem twice so use a random UUID the first time * to avoid UUID conflicts. */ r = sd_id128_randomize(&fs_uuid); if (r < 0) return r; } if (!d || fstype_is_ro(p->format)) { if (!mkfs_supports_root_option(p->format)) return log_error_errno(SYNTHETIC_ERRNO(ENODEV), "Loop device access is required to populate %s filesystems", p->format); r = partition_populate_directory(context, p, &root); if (r < 0) return r; } r = mkfs_options_from_env("REPART", p->format, &extra_mkfs_options); if (r < 0) return log_error_errno(r, "Failed to determine mkfs command line options for '%s': %m", p->format); r = make_filesystem(d ? d->node : temp, p->format, strempty(p->new_label), root, fs_uuid, arg_discard, /* quiet = */ false, context->fs_sector_size, extra_mkfs_options); if (r < 0) return r; /* Read-only filesystems are minimal from the first try because they create and size the * loopback file for us. */ if (fstype_is_ro(p->format)) { assert(fd < 0); fd = open(temp, O_RDONLY|O_CLOEXEC|O_NONBLOCK); if (fd < 0) return log_error_errno(errno, "Failed to open temporary file %s: %m", temp); if (fstat(fd, &st) < 0) return log_error_errno(errno, "Failed to stat temporary file: %m"); log_info("Minimal partition size of %s filesystem of partition %s is %s", p->format, strna(hint), FORMAT_BYTES(st.st_size)); p->copy_blocks_path = TAKE_PTR(temp); p->copy_blocks_path_is_our_file = true; p->copy_blocks_fd = TAKE_FD(fd); p->copy_blocks_size = st.st_size; continue; } if (!root) { assert(d); r = partition_populate_filesystem(context, p, d->node); if (r < 0) return r; } /* Other filesystems need to be provided with a pre-sized loopback file and will adapt to * fully occupy it. Because we gave the filesystem a 1T sparse file, we need to shrink the * filesystem down to a reasonable size again to fit it in the disk image. While there are * some filesystems that support shrinking, it doesn't always work properly (e.g. shrinking * btrfs gives us a 2.0G filesystem regardless of what we put in it). Instead, let's populate * the filesystem again, but this time, instead of providing the filesystem with a 1T sparse * loopback file, let's size the loopback file based on the actual data used by the * filesystem in the sparse file after the first attempt. This should be a good guess of the * minimal amount of space needed in the filesystem to fit all the required data. */ r = fd_apparent_size(fd, &fsz); if (r < 0) return r; /* Massage the size a bit because just going by actual data used in the sparse file isn't * fool-proof. */ uint64_t heuristic = streq(p->format, "xfs") ? fsz : fsz / 2; fsz = round_up_size(fsz + heuristic, context->grain_size); if (minimal_size_by_fs_name(p->format) != UINT64_MAX) fsz = MAX(minimal_size_by_fs_name(p->format), fsz); log_info("Minimal partition size of %s filesystem of partition %s is %s", p->format, strna(hint), FORMAT_BYTES(fsz)); d = loop_device_unref(d); /* Erase the previous filesystem first. */ if (ftruncate(fd, 0)) return log_error_errno(errno, "Failed to erase temporary file: %m"); if (ftruncate(fd, fsz)) return log_error_errno(errno, "Failed to truncate temporary file to %s: %m", FORMAT_BYTES(fsz)); if (arg_offline <= 0) { r = loop_device_make(fd, O_RDWR, 0, UINT64_MAX, context->sector_size, 0, LOCK_EX, &d); if (r < 0 && (arg_offline == 0 || (r != -ENOENT && !ERRNO_IS_PRIVILEGE(r)) || !strv_isempty(p->subvolumes))) return log_error_errno(r, "Failed to make loopback device of %s: %m", temp); } r = make_filesystem(d ? d->node : temp, p->format, strempty(p->new_label), root, p->fs_uuid, arg_discard, /* quiet = */ false, context->fs_sector_size, extra_mkfs_options); if (r < 0) return r; if (!root) { assert(d); r = partition_populate_filesystem(context, p, d->node); if (r < 0) return r; } if (fstat(fd, &st) < 0) return log_error_errno(errno, "Failed to stat temporary file: %m"); p->copy_blocks_path = TAKE_PTR(temp); p->copy_blocks_path_is_our_file = true; p->copy_blocks_fd = TAKE_FD(fd); p->copy_blocks_size = st.st_size; } /* Now that we've done the data partitions, do the verity hash partitions. We do these in a separate * step because they might depend on data generated in the previous step. */ LIST_FOREACH(partitions, p, context->partitions) { _cleanup_(unlink_and_freep) char *temp = NULL; _cleanup_free_ char *hint = NULL; _cleanup_close_ int fd = -EBADF; struct stat st; Partition *dp; if (p->dropped) continue; if (PARTITION_EXISTS(p)) /* Never format existing partitions */ continue; if (p->minimize == MINIMIZE_OFF) continue; if (p->verity != VERITY_HASH) continue; assert_se(dp = p->siblings[VERITY_DATA]); assert(!dp->dropped); assert(dp->copy_blocks_path); (void) partition_hint(p, context->node, &hint); log_info("Pre-populating verity hash data of partition %s to calculate minimal partition size", strna(hint)); if (!vt) { r = var_tmp_dir(&vt); if (r < 0) return log_error_errno(r, "Could not determine temporary directory: %m"); } r = tempfn_random_child(vt, "repart", &temp); if (r < 0) return log_error_errno(r, "Failed to generate temporary file path: %m"); r = touch(temp); if (r < 0) return log_error_errno(r, "Failed to create temporary file: %m"); r = partition_format_verity_hash(context, p, temp, dp->copy_blocks_path); if (r < 0) return r; fd = open(temp, O_RDONLY|O_CLOEXEC|O_NONBLOCK); if (fd < 0) return log_error_errno(errno, "Failed to open temporary file %s: %m", temp); if (fstat(fd, &st) < 0) return log_error_errno(errno, "Failed to stat temporary file: %m"); log_info("Minimal partition size of verity hash partition %s is %s", strna(hint), FORMAT_BYTES(st.st_size)); p->copy_blocks_path = TAKE_PTR(temp); p->copy_blocks_path_is_our_file = true; p->copy_blocks_fd = TAKE_FD(fd); p->copy_blocks_size = st.st_size; } return 0; } static int parse_partition_types(const char *p, GptPartitionType **partitions, size_t *n_partitions) { int r; assert(partitions); assert(n_partitions); for (;;) { _cleanup_free_ char *name = NULL; GptPartitionType type; r = extract_first_word(&p, &name, ",", EXTRACT_CUNESCAPE|EXTRACT_DONT_COALESCE_SEPARATORS); if (r == 0) break; if (r < 0) return log_error_errno(r, "Failed to extract partition type identifier or GUID: %s", p); r = gpt_partition_type_from_string(name, &type); if (r < 0) return log_error_errno(r, "'%s' is not a valid partition type identifier or GUID", name); if (!GREEDY_REALLOC(*partitions, *n_partitions + 1)) return log_oom(); (*partitions)[(*n_partitions)++] = type; } return 0; } static int help(void) { _cleanup_free_ char *link = NULL; int r; r = terminal_urlify_man("systemd-repart", "8", &link); if (r < 0) return log_oom(); printf("%s [OPTIONS...] [DEVICE]\n" "\n%sGrow and add partitions to partition table.%s\n\n" " -h --help Show this help\n" " --version Show package version\n" " --no-pager Do not pipe output into a pager\n" " --no-legend Do not show the headers and footers\n" " --dry-run=BOOL Whether to run dry-run operation\n" " --empty=MODE One of refuse, allow, require, force, create; controls\n" " how to handle empty disks lacking partition tables\n" " --discard=BOOL Whether to discard backing blocks for new partitions\n" " --pretty=BOOL Whether to show pretty summary before doing changes\n" " --factory-reset=BOOL Whether to remove data partitions before recreating\n" " them\n" " --can-factory-reset Test whether factory reset is defined\n" " --root=PATH Operate relative to root path\n" " --image=PATH Operate relative to image file\n" " --image-policy=POLICY\n" " Specify disk image dissection policy\n" " --definitions=DIR Find partition definitions in specified directory\n" " --key-file=PATH Key to use when encrypting partitions\n" " --private-key=PATH Private key to use when generating verity roothash\n" " signatures\n" " --certificate=PATH PEM certificate to use when generating verity\n" " roothash signatures\n" " --tpm2-device=PATH Path to TPM2 device node to use\n" " --tpm2-device-key=PATH\n" " Enroll a TPM2 device using its public key\n" " --tpm2-seal-key-handle=HANDLE\n" " Specify handle of key to use for sealing\n" " --tpm2-pcrs=PCR1+PCR2+PCR3+…\n" " TPM2 PCR indexes to use for TPM2 enrollment\n" " --tpm2-public-key=PATH\n" " Enroll signed TPM2 PCR policy against PEM public key\n" " --tpm2-public-key-pcrs=PCR1+PCR2+PCR3+…\n" " Enroll signed TPM2 PCR policy for specified TPM2 PCRs\n" " --tpm2-pcrlock=PATH\n" " Specify pcrlock policy to lock against\n" " --seed=UUID 128-bit seed UUID to derive all UUIDs from\n" " --size=BYTES Grow loopback file to specified size\n" " --json=pretty|short|off\n" " Generate JSON output\n" " --split=BOOL Whether to generate split artifacts\n" " --include-partitions=PARTITION1,PARTITION2,PARTITION3,…\n" " Ignore partitions not of the specified types\n" " --exclude-partitions=PARTITION1,PARTITION2,PARTITION3,…\n" " Ignore partitions of the specified types\n" " --defer-partitions=PARTITION1,PARTITION2,PARTITION3,…\n" " Take partitions of the specified types into account\n" " but don't populate them yet\n" " --sector-size=SIZE Set the logical sector size for the image\n" " --architecture=ARCH Set the generic architecture for the image\n" " --offline=BOOL Whether to build the image offline\n" " -s --copy-source=PATH Specify the primary source tree to copy files from\n" " --copy-from=IMAGE Copy partitions from the given image(s)\n" " -S --make-ddi=sysext Make a system extension DDI\n" " -C --make-ddi=confext Make a configuration extension DDI\n" " -P --make-ddi=portable Make a portable service DDI\n" "\nSee the %s for details.\n", program_invocation_short_name, ansi_highlight(), ansi_normal(), link); return 0; } static int parse_argv(int argc, char *argv[]) { enum { ARG_VERSION = 0x100, ARG_NO_PAGER, ARG_NO_LEGEND, ARG_DRY_RUN, ARG_EMPTY, ARG_DISCARD, ARG_FACTORY_RESET, ARG_CAN_FACTORY_RESET, ARG_ROOT, ARG_IMAGE, ARG_IMAGE_POLICY, ARG_SEED, ARG_PRETTY, ARG_DEFINITIONS, ARG_SIZE, ARG_JSON, ARG_KEY_FILE, ARG_PRIVATE_KEY, ARG_CERTIFICATE, ARG_TPM2_DEVICE, ARG_TPM2_DEVICE_KEY, ARG_TPM2_SEAL_KEY_HANDLE, ARG_TPM2_PCRS, ARG_TPM2_PUBLIC_KEY, ARG_TPM2_PUBLIC_KEY_PCRS, ARG_TPM2_PCRLOCK, ARG_SPLIT, ARG_INCLUDE_PARTITIONS, ARG_EXCLUDE_PARTITIONS, ARG_DEFER_PARTITIONS, ARG_SECTOR_SIZE, ARG_SKIP_PARTITIONS, ARG_ARCHITECTURE, ARG_OFFLINE, ARG_COPY_FROM, ARG_MAKE_DDI, }; static const struct option options[] = { { "help", no_argument, NULL, 'h' }, { "version", no_argument, NULL, ARG_VERSION }, { "no-pager", no_argument, NULL, ARG_NO_PAGER }, { "no-legend", no_argument, NULL, ARG_NO_LEGEND }, { "dry-run", required_argument, NULL, ARG_DRY_RUN }, { "empty", required_argument, NULL, ARG_EMPTY }, { "discard", required_argument, NULL, ARG_DISCARD }, { "factory-reset", required_argument, NULL, ARG_FACTORY_RESET }, { "can-factory-reset", no_argument, NULL, ARG_CAN_FACTORY_RESET }, { "root", required_argument, NULL, ARG_ROOT }, { "image", required_argument, NULL, ARG_IMAGE }, { "image-policy", required_argument, NULL, ARG_IMAGE_POLICY }, { "seed", required_argument, NULL, ARG_SEED }, { "pretty", required_argument, NULL, ARG_PRETTY }, { "definitions", required_argument, NULL, ARG_DEFINITIONS }, { "size", required_argument, NULL, ARG_SIZE }, { "json", required_argument, NULL, ARG_JSON }, { "key-file", required_argument, NULL, ARG_KEY_FILE }, { "private-key", required_argument, NULL, ARG_PRIVATE_KEY }, { "certificate", required_argument, NULL, ARG_CERTIFICATE }, { "tpm2-device", required_argument, NULL, ARG_TPM2_DEVICE }, { "tpm2-device-key", required_argument, NULL, ARG_TPM2_DEVICE_KEY }, { "tpm2-seal-key-handle", required_argument, NULL, ARG_TPM2_SEAL_KEY_HANDLE }, { "tpm2-pcrs", required_argument, NULL, ARG_TPM2_PCRS }, { "tpm2-public-key", required_argument, NULL, ARG_TPM2_PUBLIC_KEY }, { "tpm2-public-key-pcrs", required_argument, NULL, ARG_TPM2_PUBLIC_KEY_PCRS }, { "tpm2-pcrlock", required_argument, NULL, ARG_TPM2_PCRLOCK }, { "split", required_argument, NULL, ARG_SPLIT }, { "include-partitions", required_argument, NULL, ARG_INCLUDE_PARTITIONS }, { "exclude-partitions", required_argument, NULL, ARG_EXCLUDE_PARTITIONS }, { "defer-partitions", required_argument, NULL, ARG_DEFER_PARTITIONS }, { "sector-size", required_argument, NULL, ARG_SECTOR_SIZE }, { "architecture", required_argument, NULL, ARG_ARCHITECTURE }, { "offline", required_argument, NULL, ARG_OFFLINE }, { "copy-from", required_argument, NULL, ARG_COPY_FROM }, { "copy-source", required_argument, NULL, 's' }, { "make-ddi", required_argument, NULL, ARG_MAKE_DDI }, {} }; bool auto_hash_pcr_values = true, auto_public_key_pcr_mask = true, auto_pcrlock = true; int c, r; assert(argc >= 0); assert(argv); while ((c = getopt_long(argc, argv, "hs:SCP", options, NULL)) >= 0) switch (c) { case 'h': return help(); case ARG_VERSION: return version(); case ARG_NO_PAGER: arg_pager_flags |= PAGER_DISABLE; break; case ARG_NO_LEGEND: arg_legend = false; break; case ARG_DRY_RUN: r = parse_boolean_argument("--dry-run=", optarg, &arg_dry_run); if (r < 0) return r; break; case ARG_EMPTY: if (isempty(optarg)) { arg_empty = EMPTY_UNSET; break; } arg_empty = empty_mode_from_string(optarg); if (arg_empty < 0) return log_error_errno(arg_empty, "Failed to parse --empty= parameter: %s", optarg); break; case ARG_DISCARD: r = parse_boolean_argument("--discard=", optarg, &arg_discard); if (r < 0) return r; break; case ARG_FACTORY_RESET: r = parse_boolean_argument("--factory-reset=", optarg, NULL); if (r < 0) return r; arg_factory_reset = r; break; case ARG_CAN_FACTORY_RESET: arg_can_factory_reset = true; break; case ARG_ROOT: r = parse_path_argument(optarg, /* suppress_root= */ false, &arg_root); if (r < 0) return r; break; case ARG_IMAGE: r = parse_path_argument(optarg, /* suppress_root= */ false, &arg_image); if (r < 0) return r; break; case ARG_IMAGE_POLICY: r = parse_image_policy_argument(optarg, &arg_image_policy); if (r < 0) return r; break; case ARG_SEED: if (isempty(optarg)) { arg_seed = SD_ID128_NULL; arg_randomize = false; } else if (streq(optarg, "random")) arg_randomize = true; else { r = sd_id128_from_string(optarg, &arg_seed); if (r < 0) return log_error_errno(r, "Failed to parse seed: %s", optarg); arg_randomize = false; } break; case ARG_PRETTY: r = parse_boolean_argument("--pretty=", optarg, NULL); if (r < 0) return r; arg_pretty = r; break; case ARG_DEFINITIONS: { _cleanup_free_ char *path = NULL; r = parse_path_argument(optarg, false, &path); if (r < 0) return r; if (strv_consume(&arg_definitions, TAKE_PTR(path)) < 0) return log_oom(); break; } case ARG_SIZE: { uint64_t parsed, rounded; if (streq(optarg, "auto")) { arg_size = UINT64_MAX; arg_size_auto = true; break; } r = parse_size(optarg, 1024, &parsed); if (r < 0) return log_error_errno(r, "Failed to parse --size= parameter: %s", optarg); rounded = round_up_size(parsed, 4096); if (rounded == 0) return log_error_errno(SYNTHETIC_ERRNO(ERANGE), "Specified image size too small, refusing."); if (rounded == UINT64_MAX) return log_error_errno(SYNTHETIC_ERRNO(ERANGE), "Specified image size too large, refusing."); if (rounded != parsed) log_warning("Specified size is not a multiple of 4096, rounding up automatically. (%" PRIu64 " %s %" PRIu64 ")", parsed, special_glyph(SPECIAL_GLYPH_ARROW_RIGHT), rounded); arg_size = rounded; arg_size_auto = false; break; } case ARG_JSON: r = parse_json_argument(optarg, &arg_json_format_flags); if (r <= 0) return r; break; case ARG_KEY_FILE: { _cleanup_(erase_and_freep) char *k = NULL; size_t n = 0; r = read_full_file_full( AT_FDCWD, optarg, UINT64_MAX, SIZE_MAX, READ_FULL_FILE_SECURE|READ_FULL_FILE_WARN_WORLD_READABLE|READ_FULL_FILE_CONNECT_SOCKET, NULL, &k, &n); if (r < 0) return log_error_errno(r, "Failed to read key file '%s': %m", optarg); erase_and_free(arg_key); arg_key = TAKE_PTR(k); arg_key_size = n; break; } case ARG_PRIVATE_KEY: { _cleanup_(erase_and_freep) char *k = NULL; size_t n = 0; r = read_full_file_full( AT_FDCWD, optarg, UINT64_MAX, SIZE_MAX, READ_FULL_FILE_SECURE|READ_FULL_FILE_WARN_WORLD_READABLE|READ_FULL_FILE_CONNECT_SOCKET, NULL, &k, &n); if (r < 0) return log_error_errno(r, "Failed to read key file '%s': %m", optarg); EVP_PKEY_free(arg_private_key); arg_private_key = NULL; r = parse_private_key(k, n, &arg_private_key); if (r < 0) return r; break; } case ARG_CERTIFICATE: { _cleanup_free_ char *cert = NULL; size_t n = 0; r = read_full_file_full( AT_FDCWD, optarg, UINT64_MAX, SIZE_MAX, READ_FULL_FILE_CONNECT_SOCKET, NULL, &cert, &n); if (r < 0) return log_error_errno(r, "Failed to read certificate file '%s': %m", optarg); X509_free(arg_certificate); arg_certificate = NULL; r = parse_x509_certificate(cert, n, &arg_certificate); if (r < 0) return r; break; } case ARG_TPM2_DEVICE: { _cleanup_free_ char *device = NULL; if (streq(optarg, "list")) return tpm2_list_devices(); if (!streq(optarg, "auto")) { device = strdup(optarg); if (!device) return log_oom(); } free(arg_tpm2_device); arg_tpm2_device = TAKE_PTR(device); break; } case ARG_TPM2_DEVICE_KEY: r = parse_path_argument(optarg, /* suppress_root= */ false, &arg_tpm2_device_key); if (r < 0) return r; break; case ARG_TPM2_SEAL_KEY_HANDLE: r = safe_atou32_full(optarg, 16, &arg_tpm2_seal_key_handle); if (r < 0) return log_error_errno(r, "Could not parse TPM2 seal key handle index '%s': %m", optarg); break; case ARG_TPM2_PCRS: auto_hash_pcr_values = false; r = tpm2_parse_pcr_argument_append(optarg, &arg_tpm2_hash_pcr_values, &arg_tpm2_n_hash_pcr_values); if (r < 0) return r; break; case ARG_TPM2_PUBLIC_KEY: r = parse_path_argument(optarg, /* suppress_root= */ false, &arg_tpm2_public_key); if (r < 0) return r; break; case ARG_TPM2_PUBLIC_KEY_PCRS: auto_public_key_pcr_mask = false; r = tpm2_parse_pcr_argument_to_mask(optarg, &arg_tpm2_public_key_pcr_mask); if (r < 0) return r; break; case ARG_TPM2_PCRLOCK: r = parse_path_argument(optarg, /* suppress_root= */ false, &arg_tpm2_pcrlock); if (r < 0) return r; auto_pcrlock = false; break; case ARG_SPLIT: r = parse_boolean_argument("--split=", optarg, NULL); if (r < 0) return r; arg_split = r; break; case ARG_INCLUDE_PARTITIONS: if (arg_filter_partitions_type == FILTER_PARTITIONS_EXCLUDE) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Combination of --include-partitions= and --exclude-partitions= is invalid."); r = parse_partition_types(optarg, &arg_filter_partitions, &arg_n_filter_partitions); if (r < 0) return r; arg_filter_partitions_type = FILTER_PARTITIONS_INCLUDE; break; case ARG_EXCLUDE_PARTITIONS: if (arg_filter_partitions_type == FILTER_PARTITIONS_INCLUDE) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Combination of --include-partitions= and --exclude-partitions= is invalid."); r = parse_partition_types(optarg, &arg_filter_partitions, &arg_n_filter_partitions); if (r < 0) return r; arg_filter_partitions_type = FILTER_PARTITIONS_EXCLUDE; break; case ARG_DEFER_PARTITIONS: r = parse_partition_types(optarg, &arg_defer_partitions, &arg_n_defer_partitions); if (r < 0) return r; break; case ARG_SECTOR_SIZE: r = parse_sector_size(optarg, &arg_sector_size); if (r < 0) return r; break; case ARG_ARCHITECTURE: r = architecture_from_string(optarg); if (r < 0) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Invalid architecture '%s'", optarg); arg_architecture = r; break; case ARG_OFFLINE: if (streq(optarg, "auto")) arg_offline = -1; else { r = parse_boolean_argument("--offline=", optarg, NULL); if (r < 0) return r; arg_offline = r; } break; case ARG_COPY_FROM: { _cleanup_free_ char *p = NULL; r = parse_path_argument(optarg, /* suppress_root= */ false, &p); if (r < 0) return r; if (strv_consume(&arg_copy_from, TAKE_PTR(p)) < 0) return log_oom(); break; } case 's': r = parse_path_argument(optarg, /* suppress_root= */ false, &arg_copy_source); if (r < 0) return r; break; case ARG_MAKE_DDI: if (!filename_is_valid(optarg)) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Invalid DDI type: %s", optarg); r = free_and_strdup_warn(&arg_make_ddi, optarg); if (r < 0) return r; break; case 'S': r = free_and_strdup_warn(&arg_make_ddi, "sysext"); if (r < 0) return r; break; case 'C': r = free_and_strdup_warn(&arg_make_ddi, "confext"); if (r < 0) return r; break; case 'P': r = free_and_strdup_warn(&arg_make_ddi, "portable"); if (r < 0) return r; break; case '?': return -EINVAL; default: assert_not_reached(); } if (argc - optind > 1) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Expected at most one argument, the path to the block device or image file."); if (arg_make_ddi) { if (arg_definitions) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Combination of --make-ddi= and --definitions= is not supported."); if (!IN_SET(arg_empty, EMPTY_UNSET, EMPTY_CREATE)) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Combination of --make-ddi= and --empty=%s is not supported.", empty_mode_to_string(arg_empty)); /* Imply automatic sizing in DDI mode */ if (arg_size == UINT64_MAX) arg_size_auto = true; if (!arg_copy_source) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "No --copy-source= specified, refusing."); r = dir_is_empty(arg_copy_source, /* ignore_hidden_or_backup= */ false); if (r < 0) return log_error_errno(r, "Failed to determine if '%s' is empty: %m", arg_copy_source); if (r > 0) return log_error_errno(SYNTHETIC_ERRNO(ENOENT), "Source directory '%s' is empty, refusing to create empty image.", arg_copy_source); if (sd_id128_is_null(arg_seed) && !arg_randomize) { /* We don't want that /etc/machine-id leaks into any image built this way, hence * let's randomize the seed if not specified explicitly */ log_notice("No seed value specified, randomizing generated UUIDs, resulting image will not be reproducible."); arg_randomize = true; } arg_empty = EMPTY_CREATE; } if (arg_empty == EMPTY_UNSET) /* default to refuse mode, if not otherwise specified */ arg_empty = EMPTY_REFUSE; if (arg_factory_reset > 0 && IN_SET(arg_empty, EMPTY_FORCE, EMPTY_REQUIRE, EMPTY_CREATE)) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Combination of --factory-reset=yes and --empty=force/--empty=require/--empty=create is invalid."); if (arg_can_factory_reset) arg_dry_run = true; /* When --can-factory-reset is specified we don't make changes, hence * non-dry-run mode makes no sense. Thus, imply dry run mode so that we * open things strictly read-only. */ else if (arg_empty == EMPTY_CREATE) arg_dry_run = false; /* Imply --dry-run=no if we create the loopback file anew. After all we * cannot really break anyone's partition tables that way. */ /* Disable pager once we are not just reviewing, but doing things. */ if (!arg_dry_run) arg_pager_flags |= PAGER_DISABLE; if (arg_empty == EMPTY_CREATE && arg_size == UINT64_MAX && !arg_size_auto) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "If --empty=create is specified, --size= must be specified, too."); if (arg_image && arg_root) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Please specify either --root= or --image=, the combination of both is not supported."); else if (!arg_image && !arg_root && in_initrd()) { /* By default operate on /sysusr/ or /sysroot/ when invoked in the initrd. We prefer the * former, if it is mounted, so that we have deterministic behaviour on systems where /usr/ * is vendor-supplied but the root fs formatted on first boot. */ r = path_is_mount_point("/sysusr/usr", NULL, 0); if (r <= 0) { if (r < 0 && r != -ENOENT) log_debug_errno(r, "Unable to determine whether /sysusr/usr is a mount point, assuming it is not: %m"); arg_root = strdup("/sysroot"); } else arg_root = strdup("/sysusr"); if (!arg_root) return log_oom(); } arg_node = argc > optind ? argv[optind] : NULL; if (IN_SET(arg_empty, EMPTY_FORCE, EMPTY_REQUIRE, EMPTY_CREATE) && !arg_node && !arg_image) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "A path to a device node or image file must be specified when --make-ddi=, --empty=force, --empty=require or --empty=create are used."); if (arg_split && !arg_node) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "A path to an image file must be specified when --split is used."); if (auto_pcrlock) { assert(!arg_tpm2_pcrlock); r = tpm2_pcrlock_search_file(NULL, NULL, &arg_tpm2_pcrlock); if (r < 0) { if (r != -ENOENT) log_warning_errno(r, "Search for pcrlock.json failed, assuming it does not exist: %m"); } else log_debug("Automatically using pcrlock policy '%s'.", arg_tpm2_pcrlock); } if (auto_public_key_pcr_mask) { assert(arg_tpm2_public_key_pcr_mask == 0); arg_tpm2_public_key_pcr_mask = INDEX_TO_MASK(uint32_t, TPM2_PCR_KERNEL_BOOT); } if (auto_hash_pcr_values && !arg_tpm2_pcrlock) { /* Only lock to PCR 7 if no pcr policy is specified. */ assert(arg_tpm2_n_hash_pcr_values == 0); if (!GREEDY_REALLOC_APPEND( arg_tpm2_hash_pcr_values, arg_tpm2_n_hash_pcr_values, &TPM2_PCR_VALUE_MAKE(TPM2_PCR_INDEX_DEFAULT, /* hash= */ 0, /* value= */ {}), 1)) return log_oom(); } if (arg_pretty < 0 && isatty(STDOUT_FILENO)) arg_pretty = true; if (arg_architecture >= 0) { FOREACH_ARRAY(p, arg_filter_partitions, arg_n_filter_partitions) *p = gpt_partition_type_override_architecture(*p, arg_architecture); FOREACH_ARRAY(p, arg_defer_partitions, arg_n_defer_partitions) *p = gpt_partition_type_override_architecture(*p, arg_architecture); } return 1; } static int parse_proc_cmdline_factory_reset(void) { bool b; int r; if (arg_factory_reset >= 0) /* Never override what is specified on the process command line */ return 0; if (!in_initrd()) /* Never honour kernel command line factory reset request outside of the initrd */ return 0; r = proc_cmdline_get_bool("systemd.factory_reset", /* flags = */ 0, &b); if (r < 0) return log_error_errno(r, "Failed to parse systemd.factory_reset kernel command line argument: %m"); if (r > 0) { arg_factory_reset = b; if (b) log_notice("Honouring factory reset requested via kernel command line."); } return 0; } static int parse_efi_variable_factory_reset(void) { _cleanup_free_ char *value = NULL; int r; if (arg_factory_reset >= 0) /* Never override what is specified on the process command line */ return 0; if (!in_initrd()) /* Never honour EFI variable factory reset request outside of the initrd */ return 0; r = efi_get_variable_string(EFI_SYSTEMD_VARIABLE(FactoryReset), &value); if (r < 0) { if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r)) return 0; return log_error_errno(r, "Failed to read EFI variable FactoryReset: %m"); } r = parse_boolean(value); if (r < 0) return log_error_errno(r, "Failed to parse EFI variable FactoryReset: %m"); arg_factory_reset = r; if (r) log_notice("Factory reset requested via EFI variable FactoryReset."); return 0; } static int remove_efi_variable_factory_reset(void) { int r; r = efi_set_variable(EFI_SYSTEMD_VARIABLE(FactoryReset), NULL, 0); if (r < 0) { if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r)) return 0; return log_error_errno(r, "Failed to remove EFI variable FactoryReset: %m"); } log_info("Successfully unset EFI variable FactoryReset."); return 0; } static int acquire_root_devno( const char *p, const char *root, int mode, char **ret, int *ret_fd) { _cleanup_free_ char *found_path = NULL, *node = NULL; dev_t devno, fd_devno = MODE_INVALID; _cleanup_close_ int fd = -EBADF; struct stat st; int r; assert(p); assert(ret); assert(ret_fd); fd = chase_and_open(p, root, CHASE_PREFIX_ROOT, mode, &found_path); if (fd < 0) return fd; if (fstat(fd, &st) < 0) return -errno; if (S_ISREG(st.st_mode)) { *ret = TAKE_PTR(found_path); *ret_fd = TAKE_FD(fd); return 0; } if (S_ISBLK(st.st_mode)) { /* Refuse referencing explicit block devices if a root dir is specified, after all we should * not be able to leave the image the root path constrains us to. */ if (root) return -EPERM; fd_devno = devno = st.st_rdev; } else if (S_ISDIR(st.st_mode)) { devno = st.st_dev; if (major(devno) == 0) { r = btrfs_get_block_device_fd(fd, &devno); if (r == -ENOTTY) /* not btrfs */ return -ENODEV; if (r < 0) return r; } } else return -ENOTBLK; /* From dm-crypt to backing partition */ r = block_get_originating(devno, &devno); if (r == -ENOENT) log_debug_errno(r, "Device '%s' has no dm-crypt/dm-verity device, no need to look for underlying block device.", p); else if (r < 0) log_debug_errno(r, "Failed to find underlying block device for '%s', ignoring: %m", p); /* From partition to whole disk containing it */ r = block_get_whole_disk(devno, &devno); if (r < 0) log_debug_errno(r, "Failed to find whole disk block device for '%s', ignoring: %m", p); r = devname_from_devnum(S_IFBLK, devno, &node); if (r < 0) return log_debug_errno(r, "Failed to determine canonical path for '%s': %m", p); /* Only if we still look at the same block device we can reuse the fd. Otherwise return an * invalidated fd. */ if (fd_devno != MODE_INVALID && fd_devno == devno) { /* Tell udev not to interfere while we are processing the device */ if (flock(fd, arg_dry_run ? LOCK_SH : LOCK_EX) < 0) return log_error_errno(errno, "Failed to lock device '%s': %m", node); *ret_fd = TAKE_FD(fd); } else *ret_fd = -EBADF; *ret = TAKE_PTR(node); return 0; } static int find_root(Context *context) { _cleanup_free_ char *device = NULL; int r; assert(context); if (arg_node) { if (arg_empty == EMPTY_CREATE) { _cleanup_close_ int fd = -EBADF; _cleanup_free_ char *s = NULL; s = strdup(arg_node); if (!s) return log_oom(); fd = open(arg_node, O_RDONLY|O_CREAT|O_EXCL|O_CLOEXEC|O_NOFOLLOW, 0666); if (fd < 0) return log_error_errno(errno, "Failed to create '%s': %m", arg_node); context->node = TAKE_PTR(s); context->node_is_our_file = true; context->backing_fd = TAKE_FD(fd); return 0; } /* Note that we don't specify a root argument here: if the user explicitly configured a node * we'll take it relative to the host, not the image */ r = acquire_root_devno(arg_node, NULL, O_RDONLY|O_CLOEXEC, &context->node, &context->backing_fd); if (r == -EUCLEAN) return btrfs_log_dev_root(LOG_ERR, r, arg_node); if (r < 0) return log_error_errno(r, "Failed to open file or determine backing device of %s: %m", arg_node); return 0; } assert(IN_SET(arg_empty, EMPTY_REFUSE, EMPTY_ALLOW)); /* If the root mount has been replaced by some form of volatile file system (overlayfs), the * original root block device node is symlinked in /run/systemd/volatile-root. Let's read that * here. */ r = readlink_malloc("/run/systemd/volatile-root", &device); if (r == -ENOENT) { /* volatile-root not found */ /* Let's search for the root device. We look for two cases here: first in /, and then in /usr. The * latter we check for cases where / is a tmpfs and only /usr is an actual persistent block device * (think: volatile setups) */ FOREACH_STRING(p, "/", "/usr") { r = acquire_root_devno(p, arg_root, O_RDONLY|O_DIRECTORY|O_CLOEXEC, &context->node, &context->backing_fd); if (r < 0) { if (r == -EUCLEAN) return btrfs_log_dev_root(LOG_ERR, r, p); if (r != -ENODEV) return log_error_errno(r, "Failed to determine backing device of %s: %m", p); } else return 0; } } else if (r < 0) return log_error_errno(r, "Failed to read symlink /run/systemd/volatile-root: %m"); else { r = acquire_root_devno(device, NULL, O_RDONLY|O_CLOEXEC, &context->node, &context->backing_fd); if (r == -EUCLEAN) return btrfs_log_dev_root(LOG_ERR, r, device); if (r < 0) return log_error_errno(r, "Failed to open file or determine backing device of %s: %m", device); return 0; } return log_error_errno(SYNTHETIC_ERRNO(ENODEV), "Failed to discover root block device."); } static int resize_pt(int fd, uint64_t sector_size) { _cleanup_(fdisk_unref_contextp) struct fdisk_context *c = NULL; int r; /* After resizing the backing file we need to resize the partition table itself too, so that it takes * possession of the enlarged backing file. For this it suffices to open the device with libfdisk and * immediately write it again, with no changes. */ r = fdisk_new_context_at(fd, /* path= */ NULL, /* read_only= */ false, sector_size, &c); if (r < 0) return log_error_errno(r, "Failed to open device '%s': %m", FORMAT_PROC_FD_PATH(fd)); r = fdisk_has_label(c); if (r < 0) return log_error_errno(r, "Failed to determine whether disk '%s' has a disk label: %m", FORMAT_PROC_FD_PATH(fd)); if (r == 0) { log_debug("Not resizing partition table, as there currently is none."); return 0; } r = fdisk_write_disklabel(c); if (r < 0) return log_error_errno(r, "Failed to write resized partition table: %m"); log_info("Resized partition table."); return 1; } static int resize_backing_fd( const char *node, /* The primary way we access the disk image to operate on */ int *fd, /* An O_RDONLY fd referring to that inode */ const char *backing_file, /* If the above refers to a loopback device, the backing regular file for that, which we can grow */ LoopDevice *loop_device, uint64_t sector_size) { _cleanup_close_ int writable_fd = -EBADF; uint64_t current_size; struct stat st; int r; assert(node); assert(fd); if (arg_size == UINT64_MAX) /* Nothing to do */ return 0; if (*fd < 0) { /* Open the file if we haven't opened it yet. Note that we open it read-only here, just to * keep a reference to the file we can pass around. */ *fd = open(node, O_RDONLY|O_CLOEXEC); if (*fd < 0) return log_error_errno(errno, "Failed to open '%s' in order to adjust size: %m", node); } if (fstat(*fd, &st) < 0) return log_error_errno(errno, "Failed to stat '%s': %m", node); if (S_ISBLK(st.st_mode)) { if (!backing_file) return log_error_errno(SYNTHETIC_ERRNO(EBADF), "Cannot resize block device '%s'.", node); assert(loop_device); if (ioctl(*fd, BLKGETSIZE64, ¤t_size) < 0) return log_error_errno(errno, "Failed to determine size of block device %s: %m", node); } else { r = stat_verify_regular(&st); if (r < 0) return log_error_errno(r, "Specified path '%s' is not a regular file or loopback block device, cannot resize: %m", node); assert(!backing_file); assert(!loop_device); current_size = st.st_size; } if (current_size >= arg_size) { log_info("File '%s' already is of requested size or larger, not growing. (%s >= %s)", node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size)); return 0; } if (S_ISBLK(st.st_mode)) { assert(backing_file); /* This is a loopback device. We can't really grow those directly, but we can grow the * backing file, hence let's do that. */ writable_fd = open(backing_file, O_WRONLY|O_CLOEXEC|O_NONBLOCK); if (writable_fd < 0) return log_error_errno(errno, "Failed to open backing file '%s': %m", backing_file); if (fstat(writable_fd, &st) < 0) return log_error_errno(errno, "Failed to stat() backing file '%s': %m", backing_file); r = stat_verify_regular(&st); if (r < 0) return log_error_errno(r, "Backing file '%s' of block device is not a regular file: %m", backing_file); if ((uint64_t) st.st_size != current_size) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Size of backing file '%s' of loopback block device '%s' don't match, refusing.", node, backing_file); } else { assert(S_ISREG(st.st_mode)); assert(!backing_file); /* The file descriptor is read-only. In order to grow the file we need to have a writable fd. We * reopen the file for that temporarily. We keep the writable fd only open for this operation though, * as fdisk can't accept it anyway. */ writable_fd = fd_reopen(*fd, O_WRONLY|O_CLOEXEC); if (writable_fd < 0) return log_error_errno(writable_fd, "Failed to reopen backing file '%s' writable: %m", node); } if (!arg_discard) { if (fallocate(writable_fd, 0, 0, arg_size) < 0) { if (!ERRNO_IS_NOT_SUPPORTED(errno)) return log_error_errno(errno, "Failed to grow '%s' from %s to %s by allocation: %m", node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size)); /* Fallback to truncation, if fallocate() is not supported. */ log_debug("Backing file system does not support fallocate(), falling back to ftruncate()."); } else { if (current_size == 0) /* Likely regular file just created by us */ log_info("Allocated %s for '%s'.", FORMAT_BYTES(arg_size), node); else log_info("File '%s' grown from %s to %s by allocation.", node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size)); goto done; } } if (ftruncate(writable_fd, arg_size) < 0) return log_error_errno(errno, "Failed to grow '%s' from %s to %s by truncation: %m", node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size)); if (current_size == 0) /* Likely regular file just created by us */ log_info("Sized '%s' to %s.", node, FORMAT_BYTES(arg_size)); else log_info("File '%s' grown from %s to %s by truncation.", node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size)); done: r = resize_pt(writable_fd, sector_size); if (r < 0) return r; if (loop_device) { r = loop_device_refresh_size(loop_device, UINT64_MAX, arg_size); if (r < 0) return log_error_errno(r, "Failed to update loop device size: %m"); } return 1; } static int determine_auto_size(Context *c) { uint64_t sum; assert(c); sum = round_up_size(GPT_METADATA_SIZE, 4096); LIST_FOREACH(partitions, p, c->partitions) { uint64_t m; if (p->dropped) continue; m = partition_min_size_with_padding(c, p); if (m > UINT64_MAX - sum) return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Image would grow too large, refusing."); sum += m; } if (c->total != UINT64_MAX) /* Image already allocated? Then show its size. */ log_info("Automatically determined minimal disk image size as %s, current image size is %s.", FORMAT_BYTES(sum), FORMAT_BYTES(c->total)); else /* If the image is being created right now, then it has no previous size, suppress any comment about it hence. */ log_info("Automatically determined minimal disk image size as %s.", FORMAT_BYTES(sum)); arg_size = sum; return 0; } static int run(int argc, char *argv[]) { _cleanup_(loop_device_unrefp) LoopDevice *loop_device = NULL; _cleanup_(umount_and_freep) char *mounted_dir = NULL; _cleanup_(context_freep) Context* context = NULL; bool node_is_our_loop = false; int r; log_show_color(true); log_parse_environment(); log_open(); r = parse_argv(argc, argv); if (r <= 0) return r; r = parse_proc_cmdline_factory_reset(); if (r < 0) return r; r = parse_efi_variable_factory_reset(); if (r < 0) return r; #if HAVE_LIBCRYPTSETUP cryptsetup_enable_logging(NULL); #endif if (arg_image) { assert(!arg_root); /* Mount this strictly read-only: we shall modify the partition table, not the file * systems */ r = mount_image_privately_interactively( arg_image, arg_image_policy, DISSECT_IMAGE_MOUNT_READ_ONLY | (arg_node ? DISSECT_IMAGE_DEVICE_READ_ONLY : 0) | /* If a different node to make changes to is specified let's open the device in read-only mode) */ DISSECT_IMAGE_GPT_ONLY | DISSECT_IMAGE_RELAX_VAR_CHECK | DISSECT_IMAGE_USR_NO_ROOT | DISSECT_IMAGE_REQUIRE_ROOT, &mounted_dir, /* ret_dir_fd= */ NULL, &loop_device); if (r < 0) return r; arg_root = strdup(mounted_dir); if (!arg_root) return log_oom(); if (!arg_node) { arg_node = strdup(loop_device->node); if (!arg_node) return log_oom(); /* Remember that the device we are about to manipulate is actually the one we * allocated here, and thus to increase its backing file we know what to do */ node_is_our_loop = true; } } if (!arg_copy_source && arg_root) { /* If no explicit copy source is specified, then use --root=/--image= */ arg_copy_source = strdup(arg_root); if (!arg_copy_source) return log_oom(); } context = context_new(arg_seed); if (!context) return log_oom(); r = context_copy_from(context); if (r < 0) return r; if (arg_make_ddi) { _cleanup_free_ char *d = NULL, *dp = NULL; assert(!arg_definitions); d = strjoin(arg_make_ddi, ".repart.d/"); if (!d) return log_oom(); r = search_and_access(d, F_OK, arg_root, CONF_PATHS_USR_STRV("systemd/repart/definitions"), &dp); if (r < 0) return log_error_errno(r, "DDI type '%s' is not defined: %m", arg_make_ddi); if (strv_consume(&arg_definitions, TAKE_PTR(dp)) < 0) return log_oom(); } else strv_uniq(arg_definitions); r = context_read_definitions(context); if (r < 0) return r; r = find_root(context); if (r == -ENODEV) return 76; /* Special return value which means "Root block device not found, so not doing * anything". This isn't really an error when called at boot. */ if (r < 0) return r; if (arg_size != UINT64_MAX) { r = resize_backing_fd( context->node, &context->backing_fd, node_is_our_loop ? arg_image : NULL, node_is_our_loop ? loop_device : NULL, context->sector_size); if (r < 0) return r; } r = context_load_partition_table(context); if (r == -EHWPOISON) return 77; /* Special return value which means "Not GPT, so not doing anything". This isn't * really an error when called at boot. */ if (r < 0) return r; context->from_scratch = r > 0; /* Starting from scratch */ if (arg_can_factory_reset) { r = context_can_factory_reset(context); if (r < 0) return r; if (r == 0) return EXIT_FAILURE; return 0; } r = context_factory_reset(context); if (r < 0) return r; if (r > 0) { /* We actually did a factory reset! */ r = remove_efi_variable_factory_reset(); if (r < 0) return r; /* Reload the reduced partition table */ context_unload_partition_table(context); r = context_load_partition_table(context); if (r < 0) return r; } r = context_read_seed(context, arg_root); if (r < 0) return r; /* Make sure each partition has a unique UUID and unique label */ r = context_acquire_partition_uuids_and_labels(context); if (r < 0) return r; /* Open all files to copy blocks from now, since we want to take their size into consideration */ r = context_open_copy_block_paths( context, loop_device ? loop_device->devno : /* if --image= is specified, only allow partitions on the loopback device */ arg_root && !arg_image ? 0 : /* if --root= is specified, don't accept any block device */ (dev_t) -1); /* if neither is specified, make no restrictions */ if (r < 0) return r; r = context_minimize(context); if (r < 0) return r; if (arg_size_auto) { r = determine_auto_size(context); if (r < 0) return r; /* Flush out everything again, and let's grow the file first, then start fresh */ context_unload_partition_table(context); assert(arg_size != UINT64_MAX); r = resize_backing_fd( context->node, &context->backing_fd, node_is_our_loop ? arg_image : NULL, node_is_our_loop ? loop_device : NULL, context->sector_size); if (r < 0) return r; r = context_load_partition_table(context); if (r < 0) return r; } /* First try to fit new partitions in, dropping by priority until it fits */ for (;;) { uint64_t largest_free_area; if (context_allocate_partitions(context, &largest_free_area)) break; /* Success! */ if (!context_drop_or_foreignize_one_priority(context)) { r = log_error_errno(SYNTHETIC_ERRNO(ENOSPC), "Can't fit requested partitions into available free space (%s), refusing.", FORMAT_BYTES(largest_free_area)); determine_auto_size(context); return r; } } /* Now assign free space according to the weight logic */ r = context_grow_partitions(context); if (r < 0) return r; /* Now calculate where each new partition gets placed */ context_place_partitions(context); (void) context_dump(context, /*late=*/ false); r = context_write_partition_table(context); if (r < 0) return r; r = context_split(context); if (r < 0) return r; (void) context_dump(context, /*late=*/ true); context->node = mfree(context->node); LIST_FOREACH(partitions, p, context->partitions) p->split_path = mfree(p->split_path); return 0; } DEFINE_MAIN_FUNCTION_WITH_POSITIVE_FAILURE(run);