/* SPDX-License-Identifier: LGPL-2.1-or-later */ #include #include "hexdecoct.h" #include "log.h" #include "memory-util.h" #include "random-util.h" #include "terminal-util.h" #include "tests.h" TEST(random_bytes) { uint8_t buf[16] = {}; for (size_t i = 1; i < sizeof buf; i++) { random_bytes(buf, i); if (i + 1 < sizeof buf) assert_se(buf[i] == 0); hexdump(stdout, buf, i); } } TEST(crypto_random_bytes) { uint8_t buf[16] = {}; for (size_t i = 1; i < sizeof buf; i++) { assert_se(crypto_random_bytes(buf, i) == 0); if (i + 1 < sizeof buf) assert_se(buf[i] == 0); hexdump(stdout, buf, i); } } #define TOTAL 100000 static void test_random_u64_range_one(unsigned mod) { log_info("/* %s(%u) */", __func__, mod); unsigned max = 0, count[mod]; zero(count); for (unsigned i = 0; i < TOTAL; i++) { uint64_t x; x = random_u64_range(mod); count[x]++; max = MAX(max, count[x]); } /* Print histogram: vertical axis — value, horizontal axis — count. * * The expected value is always TOTAL/mod, because the distribution should be flat. The expected * variance is TOTAL×p×(1-p), where p==1/mod, and standard deviation the root of the variance. * Assert that the deviation from the expected value is less than 6 standard deviations. */ unsigned scale = 2 * max / (columns() < 20 ? 80 : columns() - 20); double exp = (double) TOTAL / mod; for (size_t i = 0; i < mod; i++) { double dev = (count[i] - exp) / sqrt(exp * (mod > 1 ? mod - 1 : 1) / mod); log_debug("%02zu: %5u (%+.3f)%*s", i, count[i], dev, (int) (count[i] / scale), "x"); assert_se(fabs(dev) < 6); /* 6 sigma is excessive, but this check should be enough to * identify catastrophic failure while minimizing false * positives. */ } } TEST(random_u64_range) { for (unsigned mod = 1; mod < 29; mod++) test_random_u64_range_one(mod); } DEFINE_TEST_MAIN(LOG_DEBUG);