/* SPDX-License-Identifier: LGPL-2.1-or-later */ #include #include #include #include "architecture.h" #include "conf-files.h" #include "errno-util.h" #include "fd-util.h" #include "fileio.h" #include "json.h" #include "log.h" #include "macro.h" #include "memory-util.h" #include "path-lookup.h" #include "path-util.h" #include "random-util.h" #include "recurse-dir.h" #include "siphash24.h" #include "socket-util.h" #include "sort-util.h" #include "string-util.h" #include "strv.h" #include "vmspawn-util.h" OvmfConfig* ovmf_config_free(OvmfConfig *config) { if (!config) return NULL; free(config->path); free(config->vars); return mfree(config); } int qemu_check_kvm_support(void) { if (access("/dev/kvm", F_OK) >= 0) return true; if (errno == ENOENT) { log_debug_errno(errno, "/dev/kvm not found. Not using KVM acceleration."); return false; } if (errno == EPERM) { log_debug_errno(errno, "Permission denied to access /dev/kvm. Not using KVM acceleration."); return false; } return -errno; } int qemu_check_vsock_support(void) { _cleanup_close_ int fd = -EBADF; /* Just using access() will just check if the device node exists, but not whether a * device driver is behind it (this is a common case since systemd-tmpfiles creates * the device node on boot, typically). * * Hence we open() the path to see if there's actually something behind. * * If not this should return ENODEV. */ fd = open("/dev/vhost-vsock", O_RDWR|O_CLOEXEC); if (fd >= 0) return true; if (errno == ENODEV) { log_debug_errno(errno, "/dev/vhost-vsock device doesn't exist. Not adding a vsock device to the virtual machine."); return false; } if (errno == EPERM) { log_debug_errno(errno, "Permission denied to access /dev/vhost-vsock. Not adding a vsock device to the virtual machine."); return false; } return -errno; } /* holds the data retrieved from the QEMU firmware interop JSON data */ typedef struct FirmwareData { char **features; char *firmware; char *vars; } FirmwareData; static FirmwareData* firmware_data_free(FirmwareData *fwd) { if (!fwd) return NULL; fwd->features = strv_free(fwd->features); fwd->firmware = mfree(fwd->firmware); fwd->vars = mfree(fwd->vars); return mfree(fwd); } DEFINE_TRIVIAL_CLEANUP_FUNC(FirmwareData*, firmware_data_free); static int firmware_executable(const char *name, JsonVariant *v, JsonDispatchFlags flags, void *userdata) { static const JsonDispatch table[] = { { "filename", JSON_VARIANT_STRING, json_dispatch_string, offsetof(FirmwareData, firmware), JSON_MANDATORY }, { "format", JSON_VARIANT_STRING, NULL, 0, JSON_MANDATORY }, {} }; return json_dispatch(v, table, 0, userdata); } static int firmware_nvram_template(const char *name, JsonVariant *v, JsonDispatchFlags flags, void *userdata) { static const JsonDispatch table[] = { { "filename", JSON_VARIANT_STRING, json_dispatch_string, offsetof(FirmwareData, vars), JSON_MANDATORY }, { "format", JSON_VARIANT_STRING, NULL, 0, JSON_MANDATORY }, {} }; return json_dispatch(v, table, 0, userdata); } static int firmware_mapping(const char *name, JsonVariant *v, JsonDispatchFlags flags, void *userdata) { static const JsonDispatch table[] = { { "device", JSON_VARIANT_STRING, NULL, 0, JSON_MANDATORY }, { "executable", JSON_VARIANT_OBJECT, firmware_executable, 0, JSON_MANDATORY }, { "nvram-template", JSON_VARIANT_OBJECT, firmware_nvram_template, 0, JSON_MANDATORY }, {} }; return json_dispatch(v, table, 0, userdata); } int find_ovmf_config(int search_sb, OvmfConfig **ret) { _cleanup_(ovmf_config_freep) OvmfConfig *config = NULL; _cleanup_free_ char *user_firmware_dir = NULL; _cleanup_strv_free_ char **conf_files = NULL; int r; /* Search in: * - $XDG_CONFIG_HOME/qemu/firmware * - /etc/qemu/firmware * - /usr/share/qemu/firmware * * Prioritising entries in "more specific" directories */ r = xdg_user_config_dir(&user_firmware_dir, "/qemu/firmware"); if (r < 0) return r; r = conf_files_list_strv(&conf_files, ".json", NULL, CONF_FILES_FILTER_MASKED|CONF_FILES_REGULAR, STRV_MAKE_CONST(user_firmware_dir, "/etc/qemu/firmware", "/usr/share/qemu/firmware")); if (r < 0) return log_debug_errno(r, "Failed to list config files: %m"); STRV_FOREACH(file, conf_files) { _cleanup_(firmware_data_freep) FirmwareData *fwd = NULL; _cleanup_(json_variant_unrefp) JsonVariant *config_json = NULL; _cleanup_free_ char *contents = NULL; size_t contents_sz = 0; r = read_full_file(*file, &contents, &contents_sz); if (r == -ENOMEM) return r; if (r < 0) { log_debug_errno(r, "Failed to read contents of %s - ignoring: %m", *file); continue; } r = json_parse(contents, 0, &config_json, NULL, NULL); if (r == -ENOMEM) return r; if (r < 0) { log_debug_errno(r, "Failed to parse the JSON in %s - ignoring: %m", *file); continue; } static const JsonDispatch table[] = { { "description", JSON_VARIANT_STRING, NULL, 0, JSON_MANDATORY }, { "interface-types", JSON_VARIANT_ARRAY, NULL, 0, JSON_MANDATORY }, { "mapping", JSON_VARIANT_OBJECT, firmware_mapping, 0, JSON_MANDATORY }, { "targets", JSON_VARIANT_ARRAY, NULL, 0, JSON_MANDATORY }, { "features", JSON_VARIANT_ARRAY, json_dispatch_strv, offsetof(FirmwareData, features), JSON_MANDATORY }, { "tags", JSON_VARIANT_ARRAY, NULL, 0, JSON_MANDATORY }, {} }; fwd = new0(FirmwareData, 1); if (!fwd) return -ENOMEM; r = json_dispatch(config_json, table, 0, fwd); if (r == -ENOMEM) return r; if (r < 0) { log_debug_errno(r, "Failed to extract the required fields from the JSON in %s - ignoring: %m", *file); continue; } int sb_present = !!strv_find(fwd->features, "secure-boot"); /* exclude firmware which doesn't match our Secure Boot requirements */ if (search_sb >= 0 && search_sb != sb_present) { log_debug("Skipping %s, firmware doesn't fit required Secure Boot configuration", *file); continue; } config = new0(OvmfConfig, 1); if (!config) return -ENOMEM; config->path = TAKE_PTR(fwd->firmware); config->vars = TAKE_PTR(fwd->vars); config->supports_sb = sb_present; break; } if (!config) return -ENOENT; if (ret) *ret = TAKE_PTR(config); return 0; } int find_qemu_binary(char **ret_qemu_binary) { int r; /* * On success the path to the qemu binary will be stored in `req_qemu_binary` * * If the qemu binary cannot be found -ENOENT will be returned. * If the native architecture is not supported by qemu -EOPNOTSUPP will be returned; */ static const char *architecture_to_qemu_table[_ARCHITECTURE_MAX] = { [ARCHITECTURE_ARM64] = "aarch64", /* differs from our name */ [ARCHITECTURE_ARM] = "arm", [ARCHITECTURE_ALPHA] = "alpha", [ARCHITECTURE_X86_64] = "x86_64", /* differs from our name */ [ARCHITECTURE_X86] = "i386", /* differs from our name */ [ARCHITECTURE_LOONGARCH64] = "loongarch64", [ARCHITECTURE_MIPS64_LE] = "mips", /* differs from our name */ [ARCHITECTURE_MIPS_LE] = "mips", /* differs from our name */ [ARCHITECTURE_PARISC] = "hppa", /* differs from our name */ [ARCHITECTURE_PPC64_LE] = "ppc", /* differs from our name */ [ARCHITECTURE_PPC64] = "ppc", /* differs from our name */ [ARCHITECTURE_PPC] = "ppc", [ARCHITECTURE_RISCV32] = "riscv32", [ARCHITECTURE_RISCV64] = "riscv64", [ARCHITECTURE_S390X] = "s390x", }; FOREACH_STRING(s, "qemu", "qemu-kvm") { r = find_executable(s, ret_qemu_binary); if (r == 0) return 0; if (r != -ENOENT) return r; } const char *arch_qemu = architecture_to_qemu_table[native_architecture()]; if (!arch_qemu) return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "Architecture %s not supported by qemu", architecture_to_string(native_architecture())); _cleanup_free_ char *qemu_arch_specific = NULL; qemu_arch_specific = strjoin("qemu-system-", arch_qemu); if (!qemu_arch_specific) return -ENOMEM; return find_executable(qemu_arch_specific, ret_qemu_binary); } int vsock_fix_child_cid(unsigned *machine_cid, const char *machine, int *ret_child_sock) { /* this is an arbitrary value picked from /dev/urandom */ static const uint8_t sip_key[HASH_KEY_SIZE] = { 0x03, 0xad, 0xf0, 0xa4, 0x59, 0x2c, 0x77, 0x11, 0xda, 0x39, 0x0c, 0xba, 0xf5, 0x4c, 0x80, 0x52 }; struct siphash machine_hash_state, state; _cleanup_close_ int vfd = -EBADF; int r; /* uint64_t is required here for the ioctl call, but valid CIDs are only 32 bits */ uint64_t cid = *ASSERT_PTR(machine_cid); assert(machine); assert(ret_child_sock); /* Fix the CID of the AF_VSOCK socket passed to qemu * * If the user has passed us a CID (machine_cid != VMADDR_CID_ANY), then attempt to bind to that CID * and error if we cannot. * * Otherwise hash the machine name to get a random CID and attempt to bind to that. * If it is occupied add more information into the hash and try again. * If after 64 attempts this hasn't worked fallback to truly random CIDs. * If after another 64 attempts this hasn't worked then give up and return EADDRNOTAVAIL. */ /* remove O_CLOEXEC before this fd is passed to QEMU */ vfd = open("/dev/vhost-vsock", O_RDWR|O_CLOEXEC); if (vfd < 0) return log_debug_errno(errno, "Failed to open /dev/vhost-vsock as read/write: %m"); if (cid != VMADDR_CID_ANY) { r = ioctl(vfd, VHOST_VSOCK_SET_GUEST_CID, &cid); if (r < 0) return log_debug_errno(errno, "Failed to set CID for child vsock with user provided CID %" PRIu64 ": %m", cid); *ret_child_sock = TAKE_FD(vfd); return 0; } siphash24_init(&machine_hash_state, sip_key); siphash24_compress_string(machine, &machine_hash_state); for (unsigned i = 0; i < 64; i++) { state = machine_hash_state; siphash24_compress_safe(&i, sizeof i, &state); uint64_t hash = siphash24_finalize(&state); cid = 3 + (hash % (UINT_MAX - 4)); r = ioctl(vfd, VHOST_VSOCK_SET_GUEST_CID, &cid); if (r >= 0) { *machine_cid = cid; *ret_child_sock = TAKE_FD(vfd); return 0; } if (errno != EADDRINUSE) return -errno; } for (unsigned i = 0; i < 64; i++) { cid = 3 + random_u64_range(UINT_MAX - 4); r = ioctl(vfd, VHOST_VSOCK_SET_GUEST_CID, &cid); if (r >= 0) { *machine_cid = cid; *ret_child_sock = TAKE_FD(vfd); return 0; } if (errno != EADDRINUSE) return -errno; } return log_debug_errno(SYNTHETIC_ERRNO(EADDRNOTAVAIL), "Failed to assign a CID to the guest vsock"); }