The extended testsuite only works with UID=0. It consists of the subdirectories named "test/TEST-??-*", each of which contains a description of an OS image and a test which consists of systemd units and scripts to execute in this image. The same image is used for execution under `systemd-nspawn` and `qemu`. To run the extended testsuite do the following: $ ninja -C build # Avoid building anything as root later $ sudo test/run-integration-tests.sh ninja: Entering directory `/home/zbyszek/src/systemd/build' ninja: no work to do. --x-- Running TEST-01-BASIC --x-- + make -C TEST-01-BASIC clean setup run make: Entering directory '/home/zbyszek/src/systemd/test/TEST-01-BASIC' TEST-01-BASIC CLEANUP: Basic systemd setup TEST-01-BASIC SETUP: Basic systemd setup ... TEST-01-BASIC RUN: Basic systemd setup [OK] make: Leaving directory '/home/zbyszek/src/systemd/test/TEST-01-BASIC' --x-- Result of TEST-01-BASIC: 0 --x-- --x-- Running TEST-02-CRYPTSETUP --x-- + make -C TEST-02-CRYPTSETUP clean setup run If one of the tests fails, then $subdir/test.log contains the log file of the test. To run just one of the cases: $ sudo make -C test/TEST-01-BASIC clean setup run Specifying the build directory ============================== If the build directory is not detected automatically, it can be specified with BUILD_DIR=: $ sudo BUILD_DIR=some-other-build/ test/run-integration-tests or $ sudo make -C test/TEST-01-BASIC BUILD_DIR=../../some-other-build/ ... Note that in the second case, the path is relative to the test case directory. An absolute path may also be used in both cases. Testing installed binaries instead of built =========================================== To run the extended testsuite using the systemd installed on the system instead of the systemd from a build, use the NO_BUILD=1: $ sudo NO_BUILD=1 test/run-integration-tests Configuration variables ======================= TEST_NO_QEMU=1 Don't run tests under qemu TEST_QEMU_ONLY=1 Run only tests that require qemu TEST_NO_NSPAWN=1 Don't run tests under systemd-nspawn TEST_PREFER_NSPAWN=1 Run all tests that do not require qemu under systemd-nspawn TEST_NO_KVM=1 Disable qemu KVM auto-detection (may be necessary when you're trying to run the *vanilla* qemu and have both qemu and qemu-kvm installed) TEST_NESTED_KVM=1 Allow tests to run with nested KVM. By default, the testsuite disables nested KVM if the host machine already runs under KVM. Setting this variable disables such checks QEMU_MEM=512M Configure amount of memory for qemu VMs (defaults to 512M) QEMU_SMP=1 Configure number of CPUs for qemu VMs (defaults to 1) KERNEL_APPEND='...' Append additional parameters to the kernel command line NSPAWN_ARGUMENTS='...' Specify additional arguments for systemd-nspawn QEMU_TIMEOUT=infinity Set a timeout for tests under qemu (defaults to 1800 sec) NSPAWN_TIMEOUT=infinity Set a timeout for tests under systemd-nspawn (defaults to 1800 sec) INTERACTIVE_DEBUG=1 Configure the machine to be more *user-friendly* for interactive debuggung (e.g. by setting a usable default terminal, suppressing the shutdown after the test, etc.) TEST_MATCH_SUBTEST=subtest If the test makes use of `run_subtests` use this variable to provide a POSIX extended regex to run only subtests matching the expression TEST_MATCH_TESTCASE=testcase Same as $TEST_MATCH_SUBTEST but for subtests that make use of `run_testcases` The kernel and initrd can be specified with $KERNEL_BIN and $INITRD. (Fedora's or Debian's default kernel path and initrd are used by default.) A script will try to find your qemu binary. If you want to specify a different one with $QEMU_BIN. Debugging the qemu image ======================== If you want to log in the testsuite virtual machine, use INTERACTIVE_DEBUG=1 and log in as root: $ sudo make -C test/TEST-01-BASIC INTERACTIVE_DEBUG=1 run The root password is empty. Ubuntu CI ========= New PR submitted to the project are run through regression tests, and one set of those is the 'autopkgtest' runs for several different architectures, called 'Ubuntu CI'. Part of that testing is to run all these tests. Sometimes these tests are temporarily deny-listed from running in the 'autopkgtest' tests while debugging a flaky test; that is done by creating a file in the test directory named 'deny-list-ubuntu-ci', for example to prevent the TEST-01-BASIC test from running in the 'autopkgtest' runs, create the file 'TEST-01-BASIC/deny-list-ubuntu-ci'. The tests may be disabled only for specific archs, by creating a deny-list file with the arch name at the end, e.g. 'TEST-01-BASIC/deny-list-ubuntu-ci-arm64' to disable the TEST-01-BASIC test only on test runs for the 'arm64' architecture. Note the arch naming is not from 'uname -m', it is Debian arch names: https://wiki.debian.org/ArchitectureSpecificsMemo For PRs that fix a currently deny-listed test, the PR should include removal of the deny-list file. In case a test fails, the full set of artifacts, including the journal of the failed run, can be downloaded from the artifacts.tar.gz archive which will be reachable in the same URL parent directory as the logs.gz that gets linked on the Github CI status. To add new dependencies or new binaries to the packages used during the tests, a merge request can be sent to: https://salsa.debian.org/systemd-team/systemd targeting the 'upstream-ci' branch. The cloud-side infrastructure, that is hooked into the Github interface, is located at: https://git.launchpad.net/autopkgtest-cloud/ In case of infrastructure issues with this CI, things might go wrong in two places: - starting a job: this is done via a Github webhook, so check if the HTTP POST are failing on https://github.com/systemd/systemd/settings/hooks - running a job: all currently running jobs are listed at https://autopkgtest.ubuntu.com/running#pkg-systemd-upstream in case the PR does not show the status for some reason - reporting the job result: this is done on Canonical's cloud infrastructure, if jobs are started and running but no status is visible on the PR, then it is likely that reporting back is not working For infrastructure help, reaching out to Canonical via the #ubuntu-devel channel on libera.chat is an effective way to receive support in general. Manually running a part of the Ubuntu CI test suite =================================================== In some situations one may want/need to run one of the tests run by Ubuntu CI locally for debugging purposes. For this, you need a machine (or a VM) with the same Ubuntu release as is used by Ubuntu CI (Jammy ATTOW). First of all, clone the Debian systemd repository and sync it with the code of the PR (set by the $UPSTREAM_PULL_REQUEST env variable) you'd like to debug: # git clone https://salsa.debian.org/systemd-team/systemd.git # cd systemd # git checkout upstream-ci # TEST_UPSTREAM=1 UPSTREAM_PULL_REQUEST=12345 ./debian/extra/checkout-upstream Now install necessary build & test dependencies: ## PPA with some newer Ubuntu packages required by upstream systemd # add-apt-repository -y --enable-source ppa:upstream-systemd-ci/systemd-ci # apt build-dep -y systemd # apt install -y autopkgtest debhelper genisoimage git qemu-system-x86 \ libcurl4-openssl-dev libfdisk-dev libtss2-dev libfido2-dev \ libssl-dev python3-pefile Build systemd deb packages with debug info: # TEST_UPSTREAM=1 DEB_BUILD_OPTIONS="nocheck nostrip noopt" dpkg-buildpackage -us -uc # cd .. Prepare a testbed image for autopkgtest (tweak the release as necessary): # autopkgtest-buildvm-ubuntu-cloud --ram-size 1024 -v -a amd64 -r jammy And finally run the autopkgtest itself: # autopkgtest -o logs *.deb systemd/ \ --env=TEST_UPSTREAM=1 \ --timeout-factor=3 \ --test-name=boot-and-services \ --shell-fail \ -- autopkgtest-virt-qemu --cpus 4 --ram-size 2048 autopkgtest-jammy-amd64.img where --test-name= is the name of the test you want to run/debug. The --shell-fail option will pause the execution in case the test fails and shows you the information how to connect to the testbed for further debugging. Manually running CodeQL analysis ===================================== This is mostly useful for debugging various CodeQL quirks. Download the CodeQL Bundle from https://github.com/github/codeql-action/releases and unpack it somewhere. From now the 'tutorial' assumes you have the `codeql` binary from the unpacked archive in $PATH for brevity. Switch to the systemd repository if not already: $ cd Create an initial CodeQL database: $ CCACHE_DISABLE=1 codeql database create codeqldb --language=cpp -vvv Disabling ccache is important, otherwise you might see CodeQL complaining: No source code was seen and extracted to /home/mrc0mmand/repos/@ci-incubator/systemd/codeqldb. This can occur if the specified build commands failed to compile or process any code. - Confirm that there is some source code for the specified language in the project. - For codebases written in Go, JavaScript, TypeScript, and Python, do not specify an explicit --command. - For other languages, the --command must specify a "clean" build which compiles all the source code files without reusing existing build artefacts. If you want to run all queries systemd uses in CodeQL, run: $ codeql database analyze codeqldb/ --format csv --output results.csv .github/codeql-custom.qls .github/codeql-queries/*.ql -vvv Note: this will take a while. If you're interested in a specific check, the easiest way (without hunting down the specific CodeQL query file) is to create a custom query suite. For example: $ cat >test.qls <