1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
|
/* SPDX-License-Identifier: LGPL-2.1-or-later */
#include <errno.h>
#include <limits.h>
#include <stdio.h>
#include <unistd.h>
#include "errno-util.h"
#include "io-util.h"
#include "iovec-util.h"
#include "string-util.h"
#include "time-util.h"
int flush_fd(int fd) {
int count = 0;
/* Read from the specified file descriptor, until POLLIN is not set anymore, throwing away everything
* read. Note that some file descriptors (notable IP sockets) will trigger POLLIN even when no data can be read
* (due to IP packet checksum mismatches), hence this function is only safe to be non-blocking if the fd used
* was set to non-blocking too. */
for (;;) {
char buf[LINE_MAX];
ssize_t l;
int r;
r = fd_wait_for_event(fd, POLLIN, 0);
if (r < 0) {
if (r == -EINTR)
continue;
return r;
}
if (r == 0)
return count;
l = read(fd, buf, sizeof(buf));
if (l < 0) {
if (errno == EINTR)
continue;
if (errno == EAGAIN)
return count;
return -errno;
} else if (l == 0)
return count;
count += (int) l;
}
}
ssize_t loop_read(int fd, void *buf, size_t nbytes, bool do_poll) {
uint8_t *p = ASSERT_PTR(buf);
ssize_t n = 0;
assert(fd >= 0);
/* If called with nbytes == 0, let's call read() at least once, to validate the operation */
if (nbytes > (size_t) SSIZE_MAX)
return -EINVAL;
do {
ssize_t k;
k = read(fd, p, nbytes);
if (k < 0) {
if (errno == EINTR)
continue;
if (errno == EAGAIN && do_poll) {
/* We knowingly ignore any return value here,
* and expect that any error/EOF is reported
* via read() */
(void) fd_wait_for_event(fd, POLLIN, USEC_INFINITY);
continue;
}
return n > 0 ? n : -errno;
}
if (k == 0)
return n;
assert((size_t) k <= nbytes);
p += k;
nbytes -= k;
n += k;
} while (nbytes > 0);
return n;
}
int loop_read_exact(int fd, void *buf, size_t nbytes, bool do_poll) {
ssize_t n;
n = loop_read(fd, buf, nbytes, do_poll);
if (n < 0)
return (int) n;
if ((size_t) n != nbytes)
return -EIO;
return 0;
}
int loop_write_full(int fd, const void *buf, size_t nbytes, usec_t timeout) {
const uint8_t *p;
usec_t end;
int r;
assert(fd >= 0);
assert(buf || nbytes == 0);
if (nbytes == 0) {
static const dummy_t dummy[0];
assert_cc(sizeof(dummy) == 0);
p = (const void*) dummy; /* Some valid pointer, in case NULL was specified */
} else {
if (nbytes == SIZE_MAX)
nbytes = strlen(buf);
else if (_unlikely_(nbytes > (size_t) SSIZE_MAX))
return -EINVAL;
p = buf;
}
/* When timeout is 0 or USEC_INFINITY this is not used. But we initialize it to a sensible value. */
end = timestamp_is_set(timeout) ? usec_add(now(CLOCK_MONOTONIC), timeout) : USEC_INFINITY;
do {
ssize_t k;
k = write(fd, p, nbytes);
if (k < 0) {
if (errno == EINTR)
continue;
if (errno != EAGAIN || timeout == 0)
return -errno;
usec_t wait_for;
if (timeout == USEC_INFINITY)
wait_for = USEC_INFINITY;
else {
usec_t t = now(CLOCK_MONOTONIC);
if (t >= end)
return -ETIME;
wait_for = usec_sub_unsigned(end, t);
}
r = fd_wait_for_event(fd, POLLOUT, wait_for);
if (timeout == USEC_INFINITY || ERRNO_IS_NEG_TRANSIENT(r))
/* If timeout == USEC_INFINITY we knowingly ignore any return value
* here, and expect that any error/EOF is reported via write() */
continue;
if (r < 0)
return r;
if (r == 0)
return -ETIME;
continue;
}
if (_unlikely_(nbytes > 0 && k == 0)) /* Can't really happen */
return -EIO;
assert((size_t) k <= nbytes);
p += k;
nbytes -= k;
} while (nbytes > 0);
return 0;
}
int pipe_eof(int fd) {
int r;
r = fd_wait_for_event(fd, POLLIN, 0);
if (r <= 0)
return r;
return !!(r & POLLHUP);
}
int ppoll_usec(struct pollfd *fds, size_t nfds, usec_t timeout) {
int r;
assert(fds || nfds == 0);
/* This is a wrapper around ppoll() that does primarily two things:
*
* ✅ Takes a usec_t instead of a struct timespec
*
* ✅ Guarantees that if an invalid fd is specified we return EBADF (i.e. converts POLLNVAL to
* EBADF). This is done because EBADF is a programming error usually, and hence should bubble up
* as error, and not be eaten up as non-error POLLNVAL event.
*
* ⚠️ ⚠️ ⚠️ Note that this function does not add any special handling for EINTR. Don't forget
* poll()/ppoll() will return with EINTR on any received signal always, there is no automatic
* restarting via SA_RESTART available. Thus, typically you want to handle EINTR not as an error,
* but just as reason to restart things, under the assumption you use a more appropriate mechanism
* to handle signals, such as signalfd() or signal handlers. ⚠️ ⚠️ ⚠️
*/
if (nfds == 0)
return 0;
r = ppoll(fds, nfds, timeout == USEC_INFINITY ? NULL : TIMESPEC_STORE(timeout), NULL);
if (r < 0)
return -errno;
if (r == 0)
return 0;
for (size_t i = 0, n = r; i < nfds && n > 0; i++) {
if (fds[i].revents == 0)
continue;
if (fds[i].revents & POLLNVAL)
return -EBADF;
n--;
}
return r;
}
int fd_wait_for_event(int fd, int event, usec_t timeout) {
struct pollfd pollfd = {
.fd = fd,
.events = event,
};
int r;
/* ⚠️ ⚠️ ⚠️ Keep in mind you almost certainly want to handle -EINTR gracefully in the caller, see
* ppoll_usec() above! ⚠️ ⚠️ ⚠️ */
r = ppoll_usec(&pollfd, 1, timeout);
if (r <= 0)
return r;
return pollfd.revents;
}
static size_t nul_length(const uint8_t *p, size_t sz) {
size_t n = 0;
while (sz > 0) {
if (*p != 0)
break;
n++;
p++;
sz--;
}
return n;
}
ssize_t sparse_write(int fd, const void *p, size_t sz, size_t run_length) {
const uint8_t *q, *w, *e;
ssize_t l;
q = w = p;
e = q + sz;
while (q < e) {
size_t n;
n = nul_length(q, e - q);
/* If there are more than the specified run length of
* NUL bytes, or if this is the beginning or the end
* of the buffer, then seek instead of write */
if ((n > run_length) ||
(n > 0 && q == p) ||
(n > 0 && q + n >= e)) {
if (q > w) {
l = write(fd, w, q - w);
if (l < 0)
return -errno;
if (l != q -w)
return -EIO;
}
if (lseek(fd, n, SEEK_CUR) < 0)
return -errno;
q += n;
w = q;
} else if (n > 0)
q += n;
else
q++;
}
if (q > w) {
l = write(fd, w, q - w);
if (l < 0)
return -errno;
if (l != q - w)
return -EIO;
}
return q - (const uint8_t*) p;
}
|