1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
|
/* SPDX-License-Identifier: LGPL-2.1-or-later */
#include <arpa/inet.h>
#include <errno.h>
#include <limits.h>
#include <net/if.h>
#include <netdb.h>
#include <netinet/ip.h>
#include <poll.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <linux/if.h>
#include "alloc-util.h"
#include "errno-util.h"
#include "escape.h"
#include "fd-util.h"
#include "fileio.h"
#include "format-util.h"
#include "io-util.h"
#include "log.h"
#include "memory-util.h"
#include "parse-util.h"
#include "path-util.h"
#include "process-util.h"
#include "socket-util.h"
#include "string-table.h"
#include "string-util.h"
#include "strv.h"
#include "sysctl-util.h"
#include "user-util.h"
#include "utf8.h"
#if ENABLE_IDN
# define IDN_FLAGS NI_IDN
#else
# define IDN_FLAGS 0
#endif
/* From the kernel's include/net/scm.h */
#ifndef SCM_MAX_FD
# define SCM_MAX_FD 253
#endif
static const char* const socket_address_type_table[] = {
[SOCK_STREAM] = "Stream",
[SOCK_DGRAM] = "Datagram",
[SOCK_RAW] = "Raw",
[SOCK_RDM] = "ReliableDatagram",
[SOCK_SEQPACKET] = "SequentialPacket",
[SOCK_DCCP] = "DatagramCongestionControl",
};
DEFINE_STRING_TABLE_LOOKUP(socket_address_type, int);
int socket_address_verify(const SocketAddress *a, bool strict) {
assert(a);
/* With 'strict' we enforce additional sanity constraints which are not set by the standard,
* but should only apply to sockets we create ourselves. */
switch (socket_address_family(a)) {
case AF_INET:
if (a->size != sizeof(struct sockaddr_in))
return -EINVAL;
if (a->sockaddr.in.sin_port == 0)
return -EINVAL;
if (!IN_SET(a->type, 0, SOCK_STREAM, SOCK_DGRAM))
return -EINVAL;
return 0;
case AF_INET6:
if (a->size != sizeof(struct sockaddr_in6))
return -EINVAL;
if (a->sockaddr.in6.sin6_port == 0)
return -EINVAL;
if (!IN_SET(a->type, 0, SOCK_STREAM, SOCK_DGRAM))
return -EINVAL;
return 0;
case AF_UNIX:
if (a->size < offsetof(struct sockaddr_un, sun_path))
return -EINVAL;
if (a->size > sizeof(struct sockaddr_un) + !strict)
/* If !strict, allow one extra byte, since getsockname() on Linux will append
* a NUL byte if we have path sockets that are above sun_path's full size. */
return -EINVAL;
if (a->size > offsetof(struct sockaddr_un, sun_path) &&
a->sockaddr.un.sun_path[0] != 0 &&
strict) {
/* Only validate file system sockets here, and only in strict mode */
const char *e;
e = memchr(a->sockaddr.un.sun_path, 0, sizeof(a->sockaddr.un.sun_path));
if (e) {
/* If there's an embedded NUL byte, make sure the size of the socket address matches it */
if (a->size != offsetof(struct sockaddr_un, sun_path) + (e - a->sockaddr.un.sun_path) + 1)
return -EINVAL;
} else {
/* If there's no embedded NUL byte, then the size needs to match the whole
* structure or the structure with one extra NUL byte suffixed. (Yeah, Linux is awful,
* and considers both equivalent: getsockname() even extends sockaddr_un beyond its
* size if the path is non NUL terminated.) */
if (!IN_SET(a->size, sizeof(a->sockaddr.un.sun_path), sizeof(a->sockaddr.un.sun_path)+1))
return -EINVAL;
}
}
if (!IN_SET(a->type, 0, SOCK_STREAM, SOCK_DGRAM, SOCK_SEQPACKET))
return -EINVAL;
return 0;
case AF_NETLINK:
if (a->size != sizeof(struct sockaddr_nl))
return -EINVAL;
if (!IN_SET(a->type, 0, SOCK_RAW, SOCK_DGRAM))
return -EINVAL;
return 0;
case AF_VSOCK:
if (a->size != sizeof(struct sockaddr_vm))
return -EINVAL;
if (!IN_SET(a->type, 0, SOCK_STREAM, SOCK_DGRAM))
return -EINVAL;
return 0;
default:
return -EAFNOSUPPORT;
}
}
int socket_address_print(const SocketAddress *a, char **ret) {
int r;
assert(a);
assert(ret);
r = socket_address_verify(a, false); /* We do non-strict validation, because we want to be
* able to pretty-print any socket the kernel considers
* valid. We still need to do validation to know if we
* can meaningfully print the address. */
if (r < 0)
return r;
if (socket_address_family(a) == AF_NETLINK) {
_cleanup_free_ char *sfamily = NULL;
r = netlink_family_to_string_alloc(a->protocol, &sfamily);
if (r < 0)
return r;
r = asprintf(ret, "%s %u", sfamily, a->sockaddr.nl.nl_groups);
if (r < 0)
return -ENOMEM;
return 0;
}
return sockaddr_pretty(&a->sockaddr.sa, a->size, false, true, ret);
}
bool socket_address_can_accept(const SocketAddress *a) {
assert(a);
return
IN_SET(a->type, SOCK_STREAM, SOCK_SEQPACKET);
}
bool socket_address_equal(const SocketAddress *a, const SocketAddress *b) {
assert(a);
assert(b);
/* Invalid addresses are unequal to all */
if (socket_address_verify(a, false) < 0 ||
socket_address_verify(b, false) < 0)
return false;
if (a->type != b->type)
return false;
if (socket_address_family(a) != socket_address_family(b))
return false;
switch (socket_address_family(a)) {
case AF_INET:
if (a->sockaddr.in.sin_addr.s_addr != b->sockaddr.in.sin_addr.s_addr)
return false;
if (a->sockaddr.in.sin_port != b->sockaddr.in.sin_port)
return false;
break;
case AF_INET6:
if (memcmp(&a->sockaddr.in6.sin6_addr, &b->sockaddr.in6.sin6_addr, sizeof(a->sockaddr.in6.sin6_addr)) != 0)
return false;
if (a->sockaddr.in6.sin6_port != b->sockaddr.in6.sin6_port)
return false;
break;
case AF_UNIX:
if (a->size <= offsetof(struct sockaddr_un, sun_path) ||
b->size <= offsetof(struct sockaddr_un, sun_path))
return false;
if ((a->sockaddr.un.sun_path[0] == 0) != (b->sockaddr.un.sun_path[0] == 0))
return false;
if (a->sockaddr.un.sun_path[0]) {
if (!path_equal_or_inode_same(a->sockaddr.un.sun_path, b->sockaddr.un.sun_path, 0))
return false;
} else {
if (a->size != b->size)
return false;
if (memcmp(a->sockaddr.un.sun_path, b->sockaddr.un.sun_path, a->size) != 0)
return false;
}
break;
case AF_NETLINK:
if (a->protocol != b->protocol)
return false;
if (a->sockaddr.nl.nl_groups != b->sockaddr.nl.nl_groups)
return false;
break;
case AF_VSOCK:
if (a->sockaddr.vm.svm_cid != b->sockaddr.vm.svm_cid)
return false;
if (a->sockaddr.vm.svm_port != b->sockaddr.vm.svm_port)
return false;
break;
default:
/* Cannot compare, so we assume the addresses are different */
return false;
}
return true;
}
const char* socket_address_get_path(const SocketAddress *a) {
assert(a);
if (socket_address_family(a) != AF_UNIX)
return NULL;
if (a->sockaddr.un.sun_path[0] == 0)
return NULL;
/* Note that this is only safe because we know that there's an extra NUL byte after the sockaddr_un
* structure. On Linux AF_UNIX file system socket addresses don't have to be NUL terminated if they take up the
* full sun_path space. */
assert_cc(sizeof(union sockaddr_union) >= sizeof(struct sockaddr_un)+1);
return a->sockaddr.un.sun_path;
}
bool socket_ipv6_is_supported(void) {
static int cached = -1;
if (cached < 0) {
if (access("/proc/net/if_inet6", F_OK) < 0) {
if (errno != ENOENT) {
log_debug_errno(errno, "Unexpected error when checking whether /proc/net/if_inet6 exists: %m");
return false;
}
cached = false;
} else
cached = true;
}
return cached;
}
bool socket_ipv6_is_enabled(void) {
_cleanup_free_ char *v = NULL;
int r;
/* Much like socket_ipv6_is_supported(), but also checks that the sysctl that disables IPv6 on all
* interfaces isn't turned on */
if (!socket_ipv6_is_supported())
return false;
r = sysctl_read_ip_property(AF_INET6, "all", "disable_ipv6", &v);
if (r < 0) {
log_debug_errno(r, "Unexpected error reading 'net.ipv6.conf.all.disable_ipv6' sysctl: %m");
return true;
}
r = parse_boolean(v);
if (r < 0) {
log_debug_errno(r, "Failed to pare 'net.ipv6.conf.all.disable_ipv6' sysctl: %m");
return true;
}
return !r;
}
bool socket_address_matches_fd(const SocketAddress *a, int fd) {
SocketAddress b;
socklen_t solen;
assert(a);
assert(fd >= 0);
b.size = sizeof(b.sockaddr);
if (getsockname(fd, &b.sockaddr.sa, &b.size) < 0)
return false;
if (b.sockaddr.sa.sa_family != a->sockaddr.sa.sa_family)
return false;
solen = sizeof(b.type);
if (getsockopt(fd, SOL_SOCKET, SO_TYPE, &b.type, &solen) < 0)
return false;
if (b.type != a->type)
return false;
if (a->protocol != 0) {
solen = sizeof(b.protocol);
if (getsockopt(fd, SOL_SOCKET, SO_PROTOCOL, &b.protocol, &solen) < 0)
return false;
if (b.protocol != a->protocol)
return false;
}
return socket_address_equal(a, &b);
}
int sockaddr_port(const struct sockaddr *_sa, unsigned *ret_port) {
const union sockaddr_union *sa = (const union sockaddr_union*) _sa;
/* Note, this returns the port as 'unsigned' rather than 'uint16_t', as AF_VSOCK knows larger ports */
assert(sa);
switch (sa->sa.sa_family) {
case AF_INET:
*ret_port = be16toh(sa->in.sin_port);
return 0;
case AF_INET6:
*ret_port = be16toh(sa->in6.sin6_port);
return 0;
case AF_VSOCK:
*ret_port = sa->vm.svm_port;
return 0;
default:
return -EAFNOSUPPORT;
}
}
const union in_addr_union *sockaddr_in_addr(const struct sockaddr *_sa) {
const union sockaddr_union *sa = (const union sockaddr_union*) _sa;
if (!sa)
return NULL;
switch (sa->sa.sa_family) {
case AF_INET:
return (const union in_addr_union*) &sa->in.sin_addr;
case AF_INET6:
return (const union in_addr_union*) &sa->in6.sin6_addr;
default:
return NULL;
}
}
int sockaddr_set_in_addr(
union sockaddr_union *u,
int family,
const union in_addr_union *a,
uint16_t port) {
assert(u);
assert(a);
switch (family) {
case AF_INET:
u->in = (struct sockaddr_in) {
.sin_family = AF_INET,
.sin_addr = a->in,
.sin_port = htobe16(port),
};
return 0;
case AF_INET6:
u->in6 = (struct sockaddr_in6) {
.sin6_family = AF_INET6,
.sin6_addr = a->in6,
.sin6_port = htobe16(port),
};
return 0;
default:
return -EAFNOSUPPORT;
}
}
int sockaddr_pretty(
const struct sockaddr *_sa,
socklen_t salen,
bool translate_ipv6,
bool include_port,
char **ret) {
union sockaddr_union *sa = (union sockaddr_union*) _sa;
char *p;
int r;
assert(sa);
assert(salen >= sizeof(sa->sa.sa_family));
switch (sa->sa.sa_family) {
case AF_INET: {
uint32_t a;
a = be32toh(sa->in.sin_addr.s_addr);
if (include_port)
r = asprintf(&p,
"%u.%u.%u.%u:%u",
a >> 24, (a >> 16) & 0xFF, (a >> 8) & 0xFF, a & 0xFF,
be16toh(sa->in.sin_port));
else
r = asprintf(&p,
"%u.%u.%u.%u",
a >> 24, (a >> 16) & 0xFF, (a >> 8) & 0xFF, a & 0xFF);
if (r < 0)
return -ENOMEM;
break;
}
case AF_INET6: {
static const unsigned char ipv4_prefix[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF
};
if (translate_ipv6 &&
memcmp(&sa->in6.sin6_addr, ipv4_prefix, sizeof(ipv4_prefix)) == 0) {
const uint8_t *a = sa->in6.sin6_addr.s6_addr+12;
if (include_port)
r = asprintf(&p,
"%u.%u.%u.%u:%u",
a[0], a[1], a[2], a[3],
be16toh(sa->in6.sin6_port));
else
r = asprintf(&p,
"%u.%u.%u.%u",
a[0], a[1], a[2], a[3]);
if (r < 0)
return -ENOMEM;
} else {
const char *a = IN6_ADDR_TO_STRING(&sa->in6.sin6_addr);
if (include_port) {
if (asprintf(&p,
"[%s]:%u%s%s",
a,
be16toh(sa->in6.sin6_port),
sa->in6.sin6_scope_id != 0 ? "%" : "",
FORMAT_IFNAME_FULL(sa->in6.sin6_scope_id, FORMAT_IFNAME_IFINDEX)) < 0)
return -ENOMEM;
} else {
if (sa->in6.sin6_scope_id != 0)
p = strjoin(a, "%", FORMAT_IFNAME_FULL(sa->in6.sin6_scope_id, FORMAT_IFNAME_IFINDEX));
else
p = strdup(a);
if (!p)
return -ENOMEM;
}
}
break;
}
case AF_UNIX:
if (salen <= offsetof(struct sockaddr_un, sun_path) ||
(sa->un.sun_path[0] == 0 && salen == offsetof(struct sockaddr_un, sun_path) + 1))
/* The name must have at least one character (and the leading NUL does not count) */
p = strdup("<unnamed>");
else {
/* Note that we calculate the path pointer here through the .un_buffer[] field, in order to
* outtrick bounds checking tools such as ubsan, which are too smart for their own good: on
* Linux the kernel may return sun_path[] data one byte longer than the declared size of the
* field. */
char *path = (char*) sa->un_buffer + offsetof(struct sockaddr_un, sun_path);
size_t path_len = salen - offsetof(struct sockaddr_un, sun_path);
if (path[0] == 0) {
/* Abstract socket. When parsing address information from, we
* explicitly reject overly long paths and paths with embedded NULs.
* But we might get such a socket from the outside. Let's return
* something meaningful and printable in this case. */
_cleanup_free_ char *e = NULL;
e = cescape_length(path + 1, path_len - 1);
if (!e)
return -ENOMEM;
p = strjoin("@", e);
} else {
if (path[path_len - 1] == '\0')
/* We expect a terminating NUL and don't print it */
path_len --;
p = cescape_length(path, path_len);
}
}
if (!p)
return -ENOMEM;
break;
case AF_VSOCK:
if (include_port) {
if (sa->vm.svm_cid == VMADDR_CID_ANY)
r = asprintf(&p, "vsock::%u", sa->vm.svm_port);
else
r = asprintf(&p, "vsock:%u:%u", sa->vm.svm_cid, sa->vm.svm_port);
} else
r = asprintf(&p, "vsock:%u", sa->vm.svm_cid);
if (r < 0)
return -ENOMEM;
break;
default:
return -EOPNOTSUPP;
}
*ret = p;
return 0;
}
int getpeername_pretty(int fd, bool include_port, char **ret) {
union sockaddr_union sa;
socklen_t salen = sizeof(sa);
int r;
assert(fd >= 0);
assert(ret);
if (getpeername(fd, &sa.sa, &salen) < 0)
return -errno;
if (sa.sa.sa_family == AF_UNIX) {
struct ucred ucred = UCRED_INVALID;
/* UNIX connection sockets are anonymous, so let's use
* PID/UID as pretty credentials instead */
r = getpeercred(fd, &ucred);
if (r < 0)
return r;
if (asprintf(ret, "PID "PID_FMT"/UID "UID_FMT, ucred.pid, ucred.uid) < 0)
return -ENOMEM;
return 0;
}
/* For remote sockets we translate IPv6 addresses back to IPv4
* if applicable, since that's nicer. */
return sockaddr_pretty(&sa.sa, salen, true, include_port, ret);
}
int getsockname_pretty(int fd, char **ret) {
union sockaddr_union sa;
socklen_t salen = sizeof(sa);
assert(fd >= 0);
assert(ret);
if (getsockname(fd, &sa.sa, &salen) < 0)
return -errno;
/* For local sockets we do not translate IPv6 addresses back
* to IPv6 if applicable, since this is usually used for
* listening sockets where the difference between IPv4 and
* IPv6 matters. */
return sockaddr_pretty(&sa.sa, salen, false, true, ret);
}
int socknameinfo_pretty(union sockaddr_union *sa, socklen_t salen, char **_ret) {
int r;
char host[NI_MAXHOST], *ret;
assert(_ret);
r = getnameinfo(&sa->sa, salen, host, sizeof(host), NULL, 0, IDN_FLAGS);
if (r != 0) {
int saved_errno = errno;
r = sockaddr_pretty(&sa->sa, salen, true, true, &ret);
if (r < 0)
return r;
log_debug_errno(saved_errno, "getnameinfo(%s) failed: %m", ret);
} else {
ret = strdup(host);
if (!ret)
return -ENOMEM;
}
*_ret = ret;
return 0;
}
static const char* const netlink_family_table[] = {
[NETLINK_ROUTE] = "route",
[NETLINK_FIREWALL] = "firewall",
[NETLINK_INET_DIAG] = "inet-diag",
[NETLINK_NFLOG] = "nflog",
[NETLINK_XFRM] = "xfrm",
[NETLINK_SELINUX] = "selinux",
[NETLINK_ISCSI] = "iscsi",
[NETLINK_AUDIT] = "audit",
[NETLINK_FIB_LOOKUP] = "fib-lookup",
[NETLINK_CONNECTOR] = "connector",
[NETLINK_NETFILTER] = "netfilter",
[NETLINK_IP6_FW] = "ip6-fw",
[NETLINK_DNRTMSG] = "dnrtmsg",
[NETLINK_KOBJECT_UEVENT] = "kobject-uevent",
[NETLINK_GENERIC] = "generic",
[NETLINK_SCSITRANSPORT] = "scsitransport",
[NETLINK_ECRYPTFS] = "ecryptfs",
[NETLINK_RDMA] = "rdma",
};
DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(netlink_family, int, INT_MAX);
static const char* const socket_address_bind_ipv6_only_table[_SOCKET_ADDRESS_BIND_IPV6_ONLY_MAX] = {
[SOCKET_ADDRESS_DEFAULT] = "default",
[SOCKET_ADDRESS_BOTH] = "both",
[SOCKET_ADDRESS_IPV6_ONLY] = "ipv6-only"
};
DEFINE_STRING_TABLE_LOOKUP(socket_address_bind_ipv6_only, SocketAddressBindIPv6Only);
SocketAddressBindIPv6Only socket_address_bind_ipv6_only_or_bool_from_string(const char *n) {
int r;
r = parse_boolean(n);
if (r > 0)
return SOCKET_ADDRESS_IPV6_ONLY;
if (r == 0)
return SOCKET_ADDRESS_BOTH;
return socket_address_bind_ipv6_only_from_string(n);
}
bool sockaddr_equal(const union sockaddr_union *a, const union sockaddr_union *b) {
assert(a);
assert(b);
if (a->sa.sa_family != b->sa.sa_family)
return false;
if (a->sa.sa_family == AF_INET)
return a->in.sin_addr.s_addr == b->in.sin_addr.s_addr;
if (a->sa.sa_family == AF_INET6)
return memcmp(&a->in6.sin6_addr, &b->in6.sin6_addr, sizeof(a->in6.sin6_addr)) == 0;
if (a->sa.sa_family == AF_VSOCK)
return a->vm.svm_cid == b->vm.svm_cid;
return false;
}
int fd_set_sndbuf(int fd, size_t n, bool increase) {
int r, value;
socklen_t l = sizeof(value);
if (n > INT_MAX)
return -ERANGE;
r = getsockopt(fd, SOL_SOCKET, SO_SNDBUF, &value, &l);
if (r >= 0 && l == sizeof(value) && increase ? (size_t) value >= n*2 : (size_t) value == n*2)
return 0;
/* First, try to set the buffer size with SO_SNDBUF. */
r = setsockopt_int(fd, SOL_SOCKET, SO_SNDBUF, n);
if (r < 0)
return r;
/* SO_SNDBUF above may set to the kernel limit, instead of the requested size.
* So, we need to check the actual buffer size here. */
l = sizeof(value);
r = getsockopt(fd, SOL_SOCKET, SO_SNDBUF, &value, &l);
if (r >= 0 && l == sizeof(value) && increase ? (size_t) value >= n*2 : (size_t) value == n*2)
return 1;
/* If we have the privileges we will ignore the kernel limit. */
r = setsockopt_int(fd, SOL_SOCKET, SO_SNDBUFFORCE, n);
if (r < 0)
return r;
return 1;
}
int fd_set_rcvbuf(int fd, size_t n, bool increase) {
int r, value;
socklen_t l = sizeof(value);
if (n > INT_MAX)
return -ERANGE;
r = getsockopt(fd, SOL_SOCKET, SO_RCVBUF, &value, &l);
if (r >= 0 && l == sizeof(value) && increase ? (size_t) value >= n*2 : (size_t) value == n*2)
return 0;
/* First, try to set the buffer size with SO_RCVBUF. */
r = setsockopt_int(fd, SOL_SOCKET, SO_RCVBUF, n);
if (r < 0)
return r;
/* SO_RCVBUF above may set to the kernel limit, instead of the requested size.
* So, we need to check the actual buffer size here. */
l = sizeof(value);
r = getsockopt(fd, SOL_SOCKET, SO_RCVBUF, &value, &l);
if (r >= 0 && l == sizeof(value) && increase ? (size_t) value >= n*2 : (size_t) value == n*2)
return 1;
/* If we have the privileges we will ignore the kernel limit. */
r = setsockopt_int(fd, SOL_SOCKET, SO_RCVBUFFORCE, n);
if (r < 0)
return r;
return 1;
}
static const char* const ip_tos_table[] = {
[IPTOS_LOWDELAY] = "low-delay",
[IPTOS_THROUGHPUT] = "throughput",
[IPTOS_RELIABILITY] = "reliability",
[IPTOS_LOWCOST] = "low-cost",
};
DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(ip_tos, int, 0xff);
bool ifname_valid_char(char a) {
if ((unsigned char) a >= 127U)
return false;
if ((unsigned char) a <= 32U)
return false;
if (IN_SET(a,
':', /* colons are used by the legacy "alias" interface logic */
'/', /* slashes cannot work, since we need to use network interfaces in sysfs paths, and in paths slashes are separators */
'%')) /* %d is used in the kernel's weird foo%d format string naming feature which we really really don't want to ever run into by accident */
return false;
return true;
}
bool ifname_valid_full(const char *p, IfnameValidFlags flags) {
bool numeric = true;
/* Checks whether a network interface name is valid. This is inspired by dev_valid_name() in the kernel sources
* but slightly stricter, as we only allow non-control, non-space ASCII characters in the interface name. We
* also don't permit names that only container numbers, to avoid confusion with numeric interface indexes. */
assert(!(flags & ~_IFNAME_VALID_ALL));
if (isempty(p))
return false;
/* A valid ifindex? If so, it's valid iff IFNAME_VALID_NUMERIC is set */
if (parse_ifindex(p) >= 0)
return flags & IFNAME_VALID_NUMERIC;
if (flags & IFNAME_VALID_ALTERNATIVE) {
if (strlen(p) >= ALTIFNAMSIZ)
return false;
} else {
if (strlen(p) >= IFNAMSIZ)
return false;
}
if (dot_or_dot_dot(p))
return false;
/* Let's refuse "all" and "default" as interface name, to avoid collisions with the special sysctl
* directories /proc/sys/net/{ipv4,ipv6}/conf/{all,default} */
if (!FLAGS_SET(flags, IFNAME_VALID_SPECIAL) && STR_IN_SET(p, "all", "default"))
return false;
for (const char *t = p; *t; t++) {
if (!ifname_valid_char(*t))
return false;
numeric = numeric && ascii_isdigit(*t);
}
/* It's fully numeric but didn't parse as valid ifindex above? if so, it must be too large or zero or
* so, let's refuse that. */
if (numeric)
return false;
return true;
}
bool address_label_valid(const char *p) {
if (isempty(p))
return false;
if (strlen(p) >= IFNAMSIZ)
return false;
while (*p) {
if ((uint8_t) *p >= 127U)
return false;
if ((uint8_t) *p <= 31U)
return false;
p++;
}
return true;
}
int getpeercred(int fd, struct ucred *ucred) {
socklen_t n = sizeof(struct ucred);
struct ucred u;
int r;
assert(fd >= 0);
assert(ucred);
r = getsockopt(fd, SOL_SOCKET, SO_PEERCRED, &u, &n);
if (r < 0)
return -errno;
if (n != sizeof(struct ucred))
return -EIO;
/* Check if the data is actually useful and not suppressed due to namespacing issues */
if (!pid_is_valid(u.pid))
return -ENODATA;
/* Note that we don't check UID/GID here, as namespace translation works differently there: instead of
* receiving in "invalid" user/group we get the overflow UID/GID. */
*ucred = u;
return 0;
}
int getpeersec(int fd, char **ret) {
_cleanup_free_ char *s = NULL;
socklen_t n = 64;
assert(fd >= 0);
assert(ret);
for (;;) {
s = new0(char, n+1);
if (!s)
return -ENOMEM;
if (getsockopt(fd, SOL_SOCKET, SO_PEERSEC, s, &n) >= 0)
break;
if (errno != ERANGE)
return -errno;
s = mfree(s);
}
if (isempty(s))
return -EOPNOTSUPP;
*ret = TAKE_PTR(s);
return 0;
}
int getpeergroups(int fd, gid_t **ret) {
socklen_t n = sizeof(gid_t) * 64;
_cleanup_free_ gid_t *d = NULL;
assert(fd >= 0);
assert(ret);
for (;;) {
d = malloc(n);
if (!d)
return -ENOMEM;
if (getsockopt(fd, SOL_SOCKET, SO_PEERGROUPS, d, &n) >= 0)
break;
if (errno != ERANGE)
return -errno;
d = mfree(d);
}
assert_se(n % sizeof(gid_t) == 0);
n /= sizeof(gid_t);
if ((socklen_t) (int) n != n)
return -E2BIG;
*ret = TAKE_PTR(d);
return (int) n;
}
ssize_t send_many_fds_iov_sa(
int transport_fd,
int *fds_array, size_t n_fds_array,
const struct iovec *iov, size_t iovlen,
const struct sockaddr *sa, socklen_t len,
int flags) {
_cleanup_free_ struct cmsghdr *cmsg = NULL;
struct msghdr mh = {
.msg_name = (struct sockaddr*) sa,
.msg_namelen = len,
.msg_iov = (struct iovec *)iov,
.msg_iovlen = iovlen,
};
ssize_t k;
assert(transport_fd >= 0);
assert(fds_array || n_fds_array == 0);
/* The kernel will reject sending more than SCM_MAX_FD FDs at once */
if (n_fds_array > SCM_MAX_FD)
return -E2BIG;
/* We need either an FD array or data to send. If there's nothing, return an error. */
if (n_fds_array == 0 && !iov)
return -EINVAL;
if (n_fds_array > 0) {
mh.msg_controllen = CMSG_SPACE(sizeof(int) * n_fds_array);
mh.msg_control = cmsg = malloc(mh.msg_controllen);
if (!cmsg)
return -ENOMEM;
*cmsg = (struct cmsghdr) {
.cmsg_len = CMSG_LEN(sizeof(int) * n_fds_array),
.cmsg_level = SOL_SOCKET,
.cmsg_type = SCM_RIGHTS,
};
memcpy(CMSG_DATA(cmsg), fds_array, sizeof(int) * n_fds_array);
}
k = sendmsg(transport_fd, &mh, MSG_NOSIGNAL | flags);
if (k < 0)
return (ssize_t) -errno;
return k;
}
ssize_t send_one_fd_iov_sa(
int transport_fd,
int fd,
const struct iovec *iov, size_t iovlen,
const struct sockaddr *sa, socklen_t len,
int flags) {
CMSG_BUFFER_TYPE(CMSG_SPACE(sizeof(int))) control = {};
struct msghdr mh = {
.msg_name = (struct sockaddr*) sa,
.msg_namelen = len,
.msg_iov = (struct iovec *)iov,
.msg_iovlen = iovlen,
};
ssize_t k;
assert(transport_fd >= 0);
/*
* We need either an FD or data to send.
* If there's nothing, return an error.
*/
if (fd < 0 && !iov)
return -EINVAL;
if (fd >= 0) {
struct cmsghdr *cmsg;
mh.msg_control = &control;
mh.msg_controllen = sizeof(control);
cmsg = CMSG_FIRSTHDR(&mh);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
cmsg->cmsg_len = CMSG_LEN(sizeof(int));
memcpy(CMSG_DATA(cmsg), &fd, sizeof(int));
}
k = sendmsg(transport_fd, &mh, MSG_NOSIGNAL | flags);
if (k < 0)
return (ssize_t) -errno;
return k;
}
int send_one_fd_sa(
int transport_fd,
int fd,
const struct sockaddr *sa, socklen_t len,
int flags) {
assert(fd >= 0);
return (int) send_one_fd_iov_sa(transport_fd, fd, NULL, 0, sa, len, flags);
}
ssize_t receive_many_fds_iov(
int transport_fd,
struct iovec *iov, size_t iovlen,
int **ret_fds_array, size_t *ret_n_fds_array,
int flags) {
CMSG_BUFFER_TYPE(CMSG_SPACE(sizeof(int) * SCM_MAX_FD)) control;
struct msghdr mh = {
.msg_control = &control,
.msg_controllen = sizeof(control),
.msg_iov = iov,
.msg_iovlen = iovlen,
};
_cleanup_free_ int *fds_array = NULL;
size_t n_fds_array = 0;
struct cmsghdr *cmsg;
ssize_t k;
assert(transport_fd >= 0);
assert(ret_fds_array);
assert(ret_n_fds_array);
/*
* Receive many FDs via @transport_fd. We don't care for the transport-type. We retrieve all the FDs
* at once. This is best used in combination with send_many_fds().
*/
k = recvmsg_safe(transport_fd, &mh, MSG_CMSG_CLOEXEC | flags);
if (k < 0)
return k;
CMSG_FOREACH(cmsg, &mh)
if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
size_t n = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(int);
fds_array = GREEDY_REALLOC(fds_array, n_fds_array + n);
if (!fds_array) {
cmsg_close_all(&mh);
return -ENOMEM;
}
memcpy(fds_array + n_fds_array, CMSG_TYPED_DATA(cmsg, int), sizeof(int) * n);
n_fds_array += n;
}
if (n_fds_array == 0) {
cmsg_close_all(&mh);
/* If didn't receive an FD or any data, return an error. */
if (k == 0)
return -EIO;
}
*ret_fds_array = TAKE_PTR(fds_array);
*ret_n_fds_array = n_fds_array;
return k;
}
int receive_many_fds(int transport_fd, int **ret_fds_array, size_t *ret_n_fds_array, int flags) {
ssize_t k;
k = receive_many_fds_iov(transport_fd, NULL, 0, ret_fds_array, ret_n_fds_array, flags);
if (k == 0)
return 0;
/* k must be negative, since receive_many_fds_iov() only returns a positive value if data was received
* through the iov. */
assert(k < 0);
return (int) k;
}
ssize_t receive_one_fd_iov(
int transport_fd,
struct iovec *iov, size_t iovlen,
int flags,
int *ret_fd) {
CMSG_BUFFER_TYPE(CMSG_SPACE(sizeof(int))) control;
struct msghdr mh = {
.msg_control = &control,
.msg_controllen = sizeof(control),
.msg_iov = iov,
.msg_iovlen = iovlen,
};
struct cmsghdr *found;
ssize_t k;
assert(transport_fd >= 0);
assert(ret_fd);
/*
* Receive a single FD via @transport_fd. We don't care for
* the transport-type. We retrieve a single FD at most, so for
* packet-based transports, the caller must ensure to send
* only a single FD per packet. This is best used in
* combination with send_one_fd().
*/
k = recvmsg_safe(transport_fd, &mh, MSG_CMSG_CLOEXEC | flags);
if (k < 0)
return k;
found = cmsg_find(&mh, SOL_SOCKET, SCM_RIGHTS, CMSG_LEN(sizeof(int)));
if (!found) {
cmsg_close_all(&mh);
/* If didn't receive an FD or any data, return an error. */
if (k == 0)
return -EIO;
}
if (found)
*ret_fd = *CMSG_TYPED_DATA(found, int);
else
*ret_fd = -EBADF;
return k;
}
int receive_one_fd(int transport_fd, int flags) {
int fd;
ssize_t k;
k = receive_one_fd_iov(transport_fd, NULL, 0, flags, &fd);
if (k == 0)
return fd;
/* k must be negative, since receive_one_fd_iov() only returns
* a positive value if data was received through the iov. */
assert(k < 0);
return (int) k;
}
ssize_t next_datagram_size_fd(int fd) {
ssize_t l;
int k;
/* This is a bit like FIONREAD/SIOCINQ, however a bit more powerful. The difference being: recv(MSG_PEEK) will
* actually cause the next datagram in the queue to be validated regarding checksums, which FIONREAD doesn't
* do. This difference is actually of major importance as we need to be sure that the size returned here
* actually matches what we will read with recvmsg() next, as otherwise we might end up allocating a buffer of
* the wrong size. */
l = recv(fd, NULL, 0, MSG_PEEK|MSG_TRUNC);
if (l < 0) {
if (IN_SET(errno, EOPNOTSUPP, EFAULT))
goto fallback;
return -errno;
}
if (l == 0)
goto fallback;
return l;
fallback:
k = 0;
/* Some sockets (AF_PACKET) do not support null-sized recv() with MSG_TRUNC set, let's fall back to FIONREAD
* for them. Checksums don't matter for raw sockets anyway, hence this should be fine. */
if (ioctl(fd, FIONREAD, &k) < 0)
return -errno;
return (ssize_t) k;
}
/* Put a limit on how many times will attempt to call accept4(). We loop
* only on "transient" errors, but let's make sure we don't loop forever. */
#define MAX_FLUSH_ITERATIONS 1024
int flush_accept(int fd) {
int r, b;
socklen_t l = sizeof(b);
/* Similar to flush_fd() but flushes all incoming connections by accepting and immediately closing
* them. */
if (getsockopt(fd, SOL_SOCKET, SO_ACCEPTCONN, &b, &l) < 0)
return -errno;
assert(l == sizeof(b));
if (!b) /* Let's check if this socket accepts connections before calling accept(). accept4() can
* return EOPNOTSUPP if the fd is not a listening socket, which we should treat as a fatal
* error, or in case the incoming TCP connection triggered a network issue, which we want to
* treat as a transient error. Thus, let's rule out the first reason for EOPNOTSUPP early, so
* we can loop safely on transient errors below. */
return -ENOTTY;
for (unsigned iteration = 0;; iteration++) {
int cfd;
r = fd_wait_for_event(fd, POLLIN, 0);
if (r < 0) {
if (r == -EINTR)
continue;
return r;
}
if (r == 0)
return 0;
if (iteration >= MAX_FLUSH_ITERATIONS)
return log_debug_errno(SYNTHETIC_ERRNO(EBUSY),
"Failed to flush connections within " STRINGIFY(MAX_FLUSH_ITERATIONS) " iterations.");
cfd = accept4(fd, NULL, NULL, SOCK_NONBLOCK|SOCK_CLOEXEC);
if (cfd < 0) {
if (errno == EAGAIN)
return 0;
if (ERRNO_IS_ACCEPT_AGAIN(errno))
continue;
return -errno;
}
safe_close(cfd);
}
}
struct cmsghdr* cmsg_find(struct msghdr *mh, int level, int type, socklen_t length) {
struct cmsghdr *cmsg;
assert(mh);
CMSG_FOREACH(cmsg, mh)
if (cmsg->cmsg_level == level &&
cmsg->cmsg_type == type &&
(length == (socklen_t) -1 || length == cmsg->cmsg_len))
return cmsg;
return NULL;
}
void* cmsg_find_and_copy_data(struct msghdr *mh, int level, int type, void *buf, size_t buf_len) {
struct cmsghdr *cmsg;
assert(mh);
assert(buf);
assert(buf_len > 0);
/* This is similar to cmsg_find_data(), but copy the found data to buf. This should be typically used
* when reading possibly unaligned data such as timestamp, as time_t is 64-bit and size_t is 32-bit on
* RISCV32. See issue #27241. */
cmsg = cmsg_find(mh, level, type, CMSG_LEN(buf_len));
if (!cmsg)
return NULL;
return memcpy_safe(buf, CMSG_DATA(cmsg), buf_len);
}
int socket_ioctl_fd(void) {
int fd;
/* Create a socket to invoke the various network interface ioctl()s on. Traditionally only AF_INET was good for
* that. Since kernel 4.6 AF_NETLINK works for this too. We first try to use AF_INET hence, but if that's not
* available (for example, because it is made unavailable via SECCOMP or such), we'll fall back to the more
* generic AF_NETLINK. */
fd = socket(AF_INET, SOCK_DGRAM|SOCK_CLOEXEC, 0);
if (fd < 0)
fd = socket(AF_NETLINK, SOCK_RAW|SOCK_CLOEXEC, NETLINK_GENERIC);
if (fd < 0)
return -errno;
return fd;
}
int sockaddr_un_unlink(const struct sockaddr_un *sa) {
const char *p, * nul;
assert(sa);
if (sa->sun_family != AF_UNIX)
return -EPROTOTYPE;
if (sa->sun_path[0] == 0) /* Nothing to do for abstract sockets */
return 0;
/* The path in .sun_path is not necessarily NUL terminated. Let's fix that. */
nul = memchr(sa->sun_path, 0, sizeof(sa->sun_path));
if (nul)
p = sa->sun_path;
else
p = memdupa_suffix0(sa->sun_path, sizeof(sa->sun_path));
if (unlink(p) < 0)
return -errno;
return 1;
}
int sockaddr_un_set_path(struct sockaddr_un *ret, const char *path) {
size_t l;
assert(ret);
assert(path);
/* Initialize ret->sun_path from the specified argument. This will interpret paths starting with '@' as
* abstract namespace sockets, and those starting with '/' as regular filesystem sockets. It won't accept
* anything else (i.e. no relative paths), to avoid ambiguities. Note that this function cannot be used to
* reference paths in the abstract namespace that include NUL bytes in the name. */
l = strlen(path);
if (l < 2)
return -EINVAL;
if (!IN_SET(path[0], '/', '@'))
return -EINVAL;
/* Don't allow paths larger than the space in sockaddr_un. Note that we are a tiny bit more restrictive than
* the kernel is: we insist on NUL termination (both for abstract namespace and regular file system socket
* addresses!), which the kernel doesn't. We do this to reduce chance of incompatibility with other apps that
* do not expect non-NUL terminated file system path. */
if (l+1 > sizeof(ret->sun_path))
return path[0] == '@' ? -EINVAL : -ENAMETOOLONG; /* return a recognizable error if this is
* too long to fit into a sockaddr_un, but
* is a file system path, and thus might be
* connectible via O_PATH indirection. */
*ret = (struct sockaddr_un) {
.sun_family = AF_UNIX,
};
if (path[0] == '@') {
/* Abstract namespace socket */
memcpy(ret->sun_path + 1, path + 1, l); /* copy *with* trailing NUL byte */
return (int) (offsetof(struct sockaddr_un, sun_path) + l); /* 🔥 *don't* 🔥 include trailing NUL in size */
} else {
assert(path[0] == '/');
/* File system socket */
memcpy(ret->sun_path, path, l + 1); /* copy *with* trailing NUL byte */
return (int) (offsetof(struct sockaddr_un, sun_path) + l + 1); /* include trailing NUL in size */
}
}
int socket_bind_to_ifname(int fd, const char *ifname) {
assert(fd >= 0);
/* Call with NULL to drop binding */
return RET_NERRNO(setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, ifname, strlen_ptr(ifname)));
}
int socket_bind_to_ifindex(int fd, int ifindex) {
char ifname[IF_NAMESIZE];
int r;
assert(fd >= 0);
if (ifindex <= 0)
/* Drop binding */
return RET_NERRNO(setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, NULL, 0));
r = setsockopt_int(fd, SOL_SOCKET, SO_BINDTOIFINDEX, ifindex);
if (r != -ENOPROTOOPT)
return r;
/* Fall back to SO_BINDTODEVICE on kernels < 5.0 which didn't have SO_BINDTOIFINDEX */
r = format_ifname(ifindex, ifname);
if (r < 0)
return r;
return socket_bind_to_ifname(fd, ifname);
}
ssize_t recvmsg_safe(int sockfd, struct msghdr *msg, int flags) {
ssize_t n;
/* A wrapper around recvmsg() that checks for MSG_CTRUNC, and turns it into an error, in a reasonably
* safe way, closing any SCM_RIGHTS fds in the error path.
*
* Note that unlike our usual coding style this might modify *msg on failure. */
n = recvmsg(sockfd, msg, flags);
if (n < 0)
return -errno;
if (FLAGS_SET(msg->msg_flags, MSG_CTRUNC)) {
cmsg_close_all(msg);
return -EXFULL; /* a recognizable error code */
}
return n;
}
int socket_get_family(int fd) {
int af;
socklen_t sl = sizeof(af);
if (getsockopt(fd, SOL_SOCKET, SO_DOMAIN, &af, &sl) < 0)
return -errno;
if (sl != sizeof(af))
return -EINVAL;
return af;
}
int socket_set_recvpktinfo(int fd, int af, bool b) {
if (af == AF_UNSPEC) {
af = socket_get_family(fd);
if (af < 0)
return af;
}
switch (af) {
case AF_INET:
return setsockopt_int(fd, IPPROTO_IP, IP_PKTINFO, b);
case AF_INET6:
return setsockopt_int(fd, IPPROTO_IPV6, IPV6_RECVPKTINFO, b);
case AF_NETLINK:
return setsockopt_int(fd, SOL_NETLINK, NETLINK_PKTINFO, b);
case AF_PACKET:
return setsockopt_int(fd, SOL_PACKET, PACKET_AUXDATA, b);
default:
return -EAFNOSUPPORT;
}
}
int socket_set_unicast_if(int fd, int af, int ifi) {
be32_t ifindex_be = htobe32(ifi);
if (af == AF_UNSPEC) {
af = socket_get_family(fd);
if (af < 0)
return af;
}
switch (af) {
case AF_INET:
return RET_NERRNO(setsockopt(fd, IPPROTO_IP, IP_UNICAST_IF, &ifindex_be, sizeof(ifindex_be)));
case AF_INET6:
return RET_NERRNO(setsockopt(fd, IPPROTO_IPV6, IPV6_UNICAST_IF, &ifindex_be, sizeof(ifindex_be)));
default:
return -EAFNOSUPPORT;
}
}
int socket_set_option(int fd, int af, int opt_ipv4, int opt_ipv6, int val) {
if (af == AF_UNSPEC) {
af = socket_get_family(fd);
if (af < 0)
return af;
}
switch (af) {
case AF_INET:
return setsockopt_int(fd, IPPROTO_IP, opt_ipv4, val);
case AF_INET6:
return setsockopt_int(fd, IPPROTO_IPV6, opt_ipv6, val);
default:
return -EAFNOSUPPORT;
}
}
int socket_get_mtu(int fd, int af, size_t *ret) {
int mtu, r;
if (af == AF_UNSPEC) {
af = socket_get_family(fd);
if (af < 0)
return af;
}
switch (af) {
case AF_INET:
r = getsockopt_int(fd, IPPROTO_IP, IP_MTU, &mtu);
break;
case AF_INET6:
r = getsockopt_int(fd, IPPROTO_IPV6, IPV6_MTU, &mtu);
break;
default:
return -EAFNOSUPPORT;
}
if (r < 0)
return r;
if (mtu <= 0)
return -EINVAL;
*ret = (size_t) mtu;
return 0;
}
static int connect_unix_path_simple(int fd, const char *path) {
union sockaddr_union sa = {
.un.sun_family = AF_UNIX,
};
size_t l;
assert(fd >= 0);
assert(path);
l = strlen(path);
assert(l > 0);
assert(l < sizeof(sa.un.sun_path));
memcpy(sa.un.sun_path, path, l + 1);
return RET_NERRNO(connect(fd, &sa.sa, offsetof(struct sockaddr_un, sun_path) + l + 1));
}
static int connect_unix_inode(int fd, int inode_fd) {
assert(fd >= 0);
assert(inode_fd >= 0);
return connect_unix_path_simple(fd, FORMAT_PROC_FD_PATH(inode_fd));
}
int connect_unix_path(int fd, int dir_fd, const char *path) {
_cleanup_close_ int inode_fd = -EBADF;
assert(fd >= 0);
assert(dir_fd == AT_FDCWD || dir_fd >= 0);
/* Connects to the specified AF_UNIX socket in the file system. Works around the 108 byte size limit
* in sockaddr_un, by going via O_PATH if needed. This hence works for any kind of path. */
if (!path)
return connect_unix_inode(fd, dir_fd); /* If no path is specified, then dir_fd refers to the socket inode to connect to. */
/* Refuse zero length path early, to make sure AF_UNIX stack won't mistake this for an abstract
* namespace path, since first char is NUL */
if (isempty(path))
return -EINVAL;
/* Shortcut for the simple case */
if (dir_fd == AT_FDCWD && strlen(path) < sizeof_field(struct sockaddr_un, sun_path))
return connect_unix_path_simple(fd, path);
/* If dir_fd is specified, then we need to go the indirect O_PATH route, because connectat() does not
* exist. If the path is too long, we also need to take the indirect route, since we can't fit this
* into a sockaddr_un directly. */
inode_fd = openat(dir_fd, path, O_PATH|O_CLOEXEC);
if (inode_fd < 0)
return -errno;
return connect_unix_inode(fd, inode_fd);
}
int socket_address_parse_unix(SocketAddress *ret_address, const char *s) {
struct sockaddr_un un;
int r;
assert(ret_address);
assert(s);
if (!IN_SET(*s, '/', '@'))
return -EPROTO;
r = sockaddr_un_set_path(&un, s);
if (r < 0)
return r;
*ret_address = (SocketAddress) {
.sockaddr.un = un,
.size = r,
};
return 0;
}
int socket_address_parse_vsock(SocketAddress *ret_address, const char *s) {
/* AF_VSOCK socket in vsock:cid:port notation */
_cleanup_free_ char *n = NULL;
char *e, *cid_start;
unsigned port, cid;
int type, r;
assert(ret_address);
assert(s);
if ((cid_start = startswith(s, "vsock:")))
type = 0;
else if ((cid_start = startswith(s, "vsock-dgram:")))
type = SOCK_DGRAM;
else if ((cid_start = startswith(s, "vsock-seqpacket:")))
type = SOCK_SEQPACKET;
else if ((cid_start = startswith(s, "vsock-stream:")))
type = SOCK_STREAM;
else
return -EPROTO;
e = strchr(cid_start, ':');
if (!e)
return -EINVAL;
r = safe_atou(e+1, &port);
if (r < 0)
return r;
n = strndup(cid_start, e - cid_start);
if (!n)
return -ENOMEM;
if (isempty(n))
cid = VMADDR_CID_ANY;
else {
r = safe_atou(n, &cid);
if (r < 0)
return r;
}
*ret_address = (SocketAddress) {
.sockaddr.vm = {
.svm_cid = cid,
.svm_family = AF_VSOCK,
.svm_port = port,
},
.type = type,
.size = sizeof(struct sockaddr_vm),
};
return 0;
}
|