1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
/* SPDX-License-Identifier: LGPL-2.1-or-later */
#include <sys/stat.h>
#include <sys/types.h>
#include "sd-daemon.h"
#include "sd-event.h"
#include "sd-messages.h"
#include "capability-util.h"
#include "clock-util.h"
#include "daemon-util.h"
#include "fd-util.h"
#include "fs-util.h"
#include "main-func.h"
#include "mkdir-label.h"
#include "network-util.h"
#include "process-util.h"
#include "signal-util.h"
#include "timesyncd-bus.h"
#include "timesyncd-conf.h"
#include "timesyncd-manager.h"
#include "user-util.h"
static int advance_tstamp(int fd, const struct stat *st) {
assert_se(fd >= 0);
assert_se(st);
/* So here's the problem: whenever we read the timestamp we'd like to ensure the next time we won't
* restore the exact same time again, but one at least one step further (so that comparing mtimes of
* the timestamp file is a reliable check that timesync did its thing). But file systems have
* different timestamp accuracy: traditional fat has 2s granularity, and even ext2 and friends expose
* different granularity depending on selected inode size during formatting! Hence, to ensure the
* timestamp definitely is increased, here's what we'll do: we'll first try to increase the timestamp
* by 1μs, write that and read it back. If it was updated, great. But if it was not, we'll instead
* increase the timestamp by 10μs, and do the same, then 100μs, then 1ms, and so on, until it works,
* or we reach 10s. If it still didn't work then, the fs is just broken and we give up. */
usec_t target = MAX3(now(CLOCK_REALTIME),
TIME_EPOCH * USEC_PER_SEC,
timespec_load(&st->st_mtim));
for (usec_t a = 1; a <= 10 * USEC_PER_SEC; a *= 10) { /* 1μs, 10μs, 100μs, 1ms, … 10s */
struct timespec ts[2];
struct stat new_st;
/* Bump to the maximum of the old timestamp advanced by the specified unit, */
usec_t c = usec_add(target, a);
timespec_store(&ts[0], c);
ts[1] = ts[0];
if (futimens(fd, ts) < 0) {
/* If this doesn't work at all, log, don't fail but give up */
log_warning_errno(errno, "Unable to update mtime of timestamp file, ignoring: %m");
return 0;
}
if (fstat(fd, &new_st) < 0)
return log_error_errno(errno, "Failed to stat timestamp file: %m");
if (timespec_load(&new_st.st_mtim) > target) {
log_debug("Successfully bumped timestamp file.");
return 1;
}
log_debug("Tried to advance timestamp file by " USEC_FMT ", but this didn't work, file system timestamp granularity too coarse?", a);
}
log_debug("Gave up trying to advance timestamp file.");
return 0;
}
static int load_clock_timestamp(uid_t uid, gid_t gid) {
usec_t min = TIME_EPOCH * USEC_PER_SEC, ct;
_cleanup_close_ int fd = -EBADF;
int r;
/* Let's try to make sure that the clock is always monotonically increasing, by saving the clock
* whenever we have a new NTP time, or when we shut down, and restoring it when we start again. This
* is particularly helpful on systems lacking a battery backed RTC. We also will adjust the time to
* at least the build time of systemd. */
fd = open(CLOCK_FILE, O_RDWR|O_CLOEXEC, 0644);
if (fd < 0) {
if (errno != ENOENT)
log_debug_errno(errno, "Unable to open timestamp file '" CLOCK_FILE "', ignoring: %m");
r = mkdir_safe_label(STATE_DIR, 0755, uid, gid,
MKDIR_FOLLOW_SYMLINK | MKDIR_WARN_MODE);
if (r < 0)
log_debug_errno(r, "Failed to create state directory, ignoring: %m");
/* create stamp file with the compiled-in date */
r = touch_file(CLOCK_FILE, /* parents= */ false, min, uid, gid, 0644);
if (r < 0)
log_debug_errno(r, "Failed to create %s, ignoring: %m", CLOCK_FILE);
} else {
struct stat st;
usec_t stamp;
/* check if the recorded time is later than the compiled-in one */
if (fstat(fd, &st) < 0)
return log_error_errno(errno, "Unable to stat timestamp file '" CLOCK_FILE "': %m");
stamp = timespec_load(&st.st_mtim);
if (stamp > min)
min = stamp;
/* Try to fix the access mode, so that we can still touch the file after dropping
* privileges */
r = fchmod_and_chown(fd, 0644, uid, gid);
if (r < 0)
log_full_errno(ERRNO_IS_PRIVILEGE(r) ? LOG_DEBUG : LOG_WARNING, r,
"Failed to chmod or chown %s, ignoring: %m", CLOCK_FILE);
(void) advance_tstamp(fd, &st);
}
ct = now(CLOCK_REALTIME);
if (ct > min)
return 0;
/* Not that it matters much, but we actually restore the clock to n+1 here rather than n, simply
* because we read n as time previously already and we want to progress here, i.e. not report the
* same time again. */
if (clock_settime(CLOCK_REALTIME, TIMESPEC_STORE(min+1)) < 0) {
log_warning_errno(errno, "Failed to restore system clock, ignoring: %m");
return 0;
}
log_struct(LOG_INFO,
"MESSAGE_ID=" SD_MESSAGE_TIME_BUMP_STR,
"REALTIME_USEC=" USEC_FMT, min+1,
LOG_MESSAGE("System clock time unset or jumped backwards, restored from recorded timestamp: %s",
FORMAT_TIMESTAMP(min+1)));
return 0;
}
static int run(int argc, char *argv[]) {
_cleanup_(manager_freep) Manager *m = NULL;
_unused_ _cleanup_(notify_on_cleanup) const char *notify_message = NULL;
const char *user = "systemd-timesync";
uid_t uid, uid_current;
gid_t gid;
int r;
log_set_facility(LOG_CRON);
log_setup();
umask(0022);
if (argc != 1)
return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "This program does not take arguments.");
uid = uid_current = geteuid();
gid = getegid();
if (uid_current == 0) {
r = get_user_creds(&user, &uid, &gid, NULL, NULL, 0);
if (r < 0)
return log_error_errno(r, "Cannot resolve user name %s: %m", user);
}
r = load_clock_timestamp(uid, gid);
if (r < 0)
return r;
/* Drop privileges, but only if we have been started as root. If we are not running as root we assume all
* privileges are already dropped. */
if (uid_current == 0) {
r = drop_privileges(uid, gid, (1ULL << CAP_SYS_TIME));
if (r < 0)
return log_error_errno(r, "Failed to drop privileges: %m");
}
assert_se(sigprocmask_many(SIG_BLOCK, NULL, SIGTERM, SIGINT, SIGRTMIN+18, -1) >= 0);
r = manager_new(&m);
if (r < 0)
return log_error_errno(r, "Failed to allocate manager: %m");
r = manager_connect_bus(m);
if (r < 0)
return log_error_errno(r, "Could not connect to bus: %m");
if (clock_is_localtime(NULL) > 0) {
log_info("The system is configured to read the RTC time in the local time zone. "
"This mode cannot be fully supported. All system time to RTC updates are disabled.");
m->rtc_local_time = true;
}
r = manager_parse_config_file(m);
if (r < 0)
log_warning_errno(r, "Failed to parse configuration file: %m");
r = manager_parse_fallback_string(m, NTP_SERVERS);
if (r < 0)
return log_error_errno(r, "Failed to parse fallback server strings: %m");
log_debug("systemd-timesyncd running as pid " PID_FMT, getpid_cached());
notify_message = notify_start("READY=1\n"
"STATUS=Daemon is running",
NOTIFY_STOPPING);
r = manager_setup_save_time_event(m);
if (r < 0)
return r;
if (network_is_online()) {
r = manager_connect(m);
if (r < 0)
return r;
}
r = sd_event_loop(m->event);
if (r < 0)
return log_error_errno(r, "Failed to run event loop: %m");
/* if we got an authoritative time, store it in the file system */
if (m->save_on_exit) {
r = touch(CLOCK_FILE);
if (r < 0)
log_debug_errno(r, "Failed to touch " CLOCK_FILE ", ignoring: %m");
}
return 0;
}
DEFINE_MAIN_FUNCTION(run);
|