/* * Copyright (c) 1990, 1991, 1993, 1994, 1995, 1996, 1997 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that: (1) source code distributions * retain the above copyright notice and this paragraph in its entirety, (2) * distributions including binary code include the above copyright notice and * this paragraph in its entirety in the documentation or other materials * provided with the distribution, and (3) all advertising materials mentioning * features or use of this software display the following acknowledgement: * ``This product includes software developed by the University of California, * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of * the University nor the names of its contributors may be used to endorse * or promote products derived from this software without specific prior * written permission. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. */ /* * txtproto_print() derived from original code by Hannes Gredler * (hannes@gredler.at): * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that: (1) source code * distributions retain the above copyright notice and this paragraph * in its entirety, and (2) distributions including binary code include * the above copyright notice and this paragraph in its entirety in * the documentation or other materials provided with the distribution. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND * WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT * LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE. */ #include #include "netdissect-stdinc.h" #include #include #include #include #include #include "netdissect-ctype.h" #include "netdissect.h" #include "extract.h" #include "ascii_strcasecmp.h" #include "timeval-operations.h" #define TOKBUFSIZE 128 enum date_flag { WITHOUT_DATE = 0, WITH_DATE = 1 }; enum time_flag { UTC_TIME = 0, LOCAL_TIME = 1 }; /* * Print out a character, filtering out the non-printable ones */ void fn_print_char(netdissect_options *ndo, u_char c) { if (!ND_ISASCII(c)) { c = ND_TOASCII(c); ND_PRINT("M-"); } if (!ND_ASCII_ISPRINT(c)) { c ^= 0x40; /* DEL to ?, others to alpha */ ND_PRINT("^"); } ND_PRINT("%c", c); } /* * Print a null-terminated string, filtering out non-printable characters. * DON'T USE IT with a pointer on the packet buffer because there is no * truncation check. For this use, see the nd_printX() functions below. */ void fn_print_str(netdissect_options *ndo, const u_char *s) { while (*s != '\0') { fn_print_char(ndo, *s); s++; } } /* * Print out a null-terminated filename (or other ASCII string) from * a fixed-length field in the packet buffer, or from what remains of * the packet. * * n is the length of the fixed-length field, or the number of bytes * remaining in the packet based on its on-the-network length. * * If ep is non-null, it should point just past the last captured byte * of the packet, e.g. ndo->ndo_snapend. If ep is NULL, we assume no * truncation check, other than the checks of the field length/remaining * packet data length, is needed. * * Return the number of bytes of string processed, including the * terminating null, if not truncated; as the terminating null is * included in the count, and as there must be a terminating null, * this will always be non-zero. Return 0 if truncated. */ u_int nd_printztn(netdissect_options *ndo, const u_char *s, u_int n, const u_char *ep) { u_int bytes; u_char c; bytes = 0; for (;;) { if (n == 0 || (ep != NULL && s >= ep)) { /* * Truncated. This includes "no null before we * got to the end of the fixed-length buffer or * the end of the packet". * * XXX - BOOTP says "null-terminated", which * means the maximum length of the string, in * bytes, is 1 less than the size of the buffer, * as there must always be a terminating null. */ bytes = 0; break; } c = GET_U_1(s); s++; bytes++; n--; if (c == '\0') { /* End of string */ break; } fn_print_char(ndo, c); } return(bytes); } /* * Print out a counted filename (or other ASCII string), part of * the packet buffer. * If ep is NULL, assume no truncation check is needed. * Return true if truncated. * Stop at ep (if given) or after n bytes, whichever is first. */ int nd_printn(netdissect_options *ndo, const u_char *s, u_int n, const u_char *ep) { u_char c; while (n > 0 && (ep == NULL || s < ep)) { n--; c = GET_U_1(s); s++; fn_print_char(ndo, c); } return (n == 0) ? 0 : 1; } /* * Print a counted filename (or other ASCII string), part of * the packet buffer, filtering out non-printable characters. * Stop if truncated (via GET_U_1/longjmp) or after n bytes, * whichever is first. * The suffix comes from: j:longJmp, n:after N bytes. */ void nd_printjn(netdissect_options *ndo, const u_char *s, u_int n) { while (n > 0) { fn_print_char(ndo, GET_U_1(s)); n--; s++; } } /* * Print a null-padded filename (or other ASCII string), part of * the packet buffer, filtering out non-printable characters. * Stop if truncated (via GET_U_1/longjmp) or after n bytes or before * the null char, whichever occurs first. * The suffix comes from: j:longJmp, n:after N bytes, p:null-Padded. */ void nd_printjnp(netdissect_options *ndo, const u_char *s, u_int n) { u_char c; while (n > 0) { c = GET_U_1(s); if (c == '\0') break; fn_print_char(ndo, c); n--; s++; } } /* * Print the timestamp .FRAC part (Microseconds/nanoseconds) */ static void ts_frac_print(netdissect_options *ndo, const struct timeval *tv) { #ifdef HAVE_PCAP_SET_TSTAMP_PRECISION switch (ndo->ndo_tstamp_precision) { case PCAP_TSTAMP_PRECISION_MICRO: ND_PRINT(".%06u", (unsigned)tv->tv_usec); break; case PCAP_TSTAMP_PRECISION_NANO: ND_PRINT(".%09u", (unsigned)tv->tv_usec); break; default: ND_PRINT(".{unknown}"); break; } #else ND_PRINT(".%06u", (unsigned)tv->tv_usec); #endif } /* * Print the timestamp as [YY:MM:DD] HH:MM:SS.FRAC. * if time_flag == LOCAL_TIME print local time else UTC/GMT time * if date_flag == WITH_DATE print YY:MM:DD before HH:MM:SS.FRAC */ static void ts_date_hmsfrac_print(netdissect_options *ndo, const struct timeval *tv, enum date_flag date_flag, enum time_flag time_flag) { struct tm *tm; char timebuf[32]; const char *timestr; if (tv->tv_sec < 0) { ND_PRINT("[timestamp < 1970-01-01 00:00:00 UTC]"); return; } if (time_flag == LOCAL_TIME) tm = localtime(&tv->tv_sec); else tm = gmtime(&tv->tv_sec); if (date_flag == WITH_DATE) { timestr = nd_format_time(timebuf, sizeof(timebuf), "%Y-%m-%d %H:%M:%S", tm); } else { timestr = nd_format_time(timebuf, sizeof(timebuf), "%H:%M:%S", tm); } ND_PRINT("%s", timestr); ts_frac_print(ndo, tv); } /* * Print the timestamp - Unix timeval style, as SECS.FRAC. */ static void ts_unix_print(netdissect_options *ndo, const struct timeval *tv) { if (tv->tv_sec < 0) { ND_PRINT("[timestamp < 1970-01-01 00:00:00 UTC]"); return; } ND_PRINT("%u", (unsigned)tv->tv_sec); ts_frac_print(ndo, tv); } /* * Print the timestamp */ void ts_print(netdissect_options *ndo, const struct timeval *tvp) { static struct timeval tv_ref; struct timeval tv_result; int negative_offset; int nano_prec; switch (ndo->ndo_tflag) { case 0: /* Default */ ts_date_hmsfrac_print(ndo, tvp, WITHOUT_DATE, LOCAL_TIME); ND_PRINT(" "); break; case 1: /* No time stamp */ break; case 2: /* Unix timeval style */ ts_unix_print(ndo, tvp); ND_PRINT(" "); break; case 3: /* Microseconds/nanoseconds since previous packet */ case 5: /* Microseconds/nanoseconds since first packet */ #ifdef HAVE_PCAP_SET_TSTAMP_PRECISION switch (ndo->ndo_tstamp_precision) { case PCAP_TSTAMP_PRECISION_MICRO: nano_prec = 0; break; case PCAP_TSTAMP_PRECISION_NANO: nano_prec = 1; break; default: nano_prec = 0; break; } #else nano_prec = 0; #endif if (!(netdissect_timevalisset(&tv_ref))) tv_ref = *tvp; /* set timestamp for first packet */ negative_offset = netdissect_timevalcmp(tvp, &tv_ref, <); if (negative_offset) netdissect_timevalsub(&tv_ref, tvp, &tv_result, nano_prec); else netdissect_timevalsub(tvp, &tv_ref, &tv_result, nano_prec); ND_PRINT((negative_offset ? "-" : " ")); ts_date_hmsfrac_print(ndo, &tv_result, WITHOUT_DATE, UTC_TIME); ND_PRINT(" "); if (ndo->ndo_tflag == 3) tv_ref = *tvp; /* set timestamp for previous packet */ break; case 4: /* Date + Default */ ts_date_hmsfrac_print(ndo, tvp, WITH_DATE, LOCAL_TIME); ND_PRINT(" "); break; } } /* * Print an unsigned relative number of seconds (e.g. hold time, prune timer) * in the form 5m1s. This does no truncation, so 32230861 seconds * is represented as 1y1w1d1h1m1s. */ void unsigned_relts_print(netdissect_options *ndo, uint32_t secs) { static const char *lengths[] = {"y", "w", "d", "h", "m", "s"}; static const u_int seconds[] = {31536000, 604800, 86400, 3600, 60, 1}; const char **l = lengths; const u_int *s = seconds; if (secs == 0) { ND_PRINT("0s"); return; } while (secs > 0) { if (secs >= *s) { ND_PRINT("%u%s", secs / *s, *l); secs -= (secs / *s) * *s; } s++; l++; } } /* * Print a signed relative number of seconds (e.g. hold time, prune timer) * in the form 5m1s. This does no truncation, so 32230861 seconds * is represented as 1y1w1d1h1m1s. */ void signed_relts_print(netdissect_options *ndo, int32_t secs) { if (secs < 0) { ND_PRINT("-"); if (secs == INT32_MIN) { /* * -2^31; you can't fit its absolute value into * a 32-bit signed integer. * * Just directly pass said absolute value to * unsigned_relts_print() directly. * * (XXX - does ISO C guarantee that -(-2^n), * when calculated and cast to an n-bit unsigned * integer type, will have the value 2^n?) */ unsigned_relts_print(ndo, 2147483648U); } else { /* * We now know -secs will fit into an int32_t; * negate it and pass that to unsigned_relts_print(). */ unsigned_relts_print(ndo, -secs); } return; } unsigned_relts_print(ndo, secs); } /* * Format a struct tm with strftime(). * If the pointer to the struct tm is null, that means that the * routine to convert a time_t to a struct tm failed; the localtime() * and gmtime() in the Microsoft Visual Studio C library will fail, * returning null, if the value is before the UNIX Epoch. */ const char * nd_format_time(char *buf, size_t bufsize, const char *format, const struct tm *timeptr) { if (timeptr != NULL) { if (strftime(buf, bufsize, format, timeptr) != 0) return (buf); else return ("[nd_format_time() buffer is too small]"); } else return ("[localtime() or gmtime() couldn't convert the date and time]"); } /* Print the truncated string */ void nd_print_trunc(netdissect_options *ndo) { ND_PRINT(" [|%s]", ndo->ndo_protocol); } /* Print the protocol name */ void nd_print_protocol(netdissect_options *ndo) { ND_PRINT("%s", ndo->ndo_protocol); } /* Print the protocol name in caps (uppercases) */ void nd_print_protocol_caps(netdissect_options *ndo) { const char *p; for (p = ndo->ndo_protocol; *p != '\0'; p++) ND_PRINT("%c", ND_ASCII_TOUPPER(*p)); } /* Print the invalid string */ void nd_print_invalid(netdissect_options *ndo) { ND_PRINT(" (invalid)"); } /* * this is a generic routine for printing unknown data; * we pass on the linefeed plus indentation string to * get a proper output - returns 0 on error */ int print_unknown_data(netdissect_options *ndo, const u_char *cp, const char *ident, u_int len) { u_int len_to_print; len_to_print = len; if (!ND_TTEST_LEN(cp, 0)) { ND_PRINT("%sDissector error: print_unknown_data called with pointer past end of packet", ident); return(0); } if (ND_BYTES_AVAILABLE_AFTER(cp) < len_to_print) len_to_print = ND_BYTES_AVAILABLE_AFTER(cp); hex_print(ndo, ident, cp, len_to_print); return(1); /* everything is ok */ } /* * Convert a token value to a string; use "fmt" if not found. */ static const char * tok2strbuf(const struct tok *lp, const char *fmt, u_int v, char *buf, size_t bufsize) { if (lp != NULL) { while (lp->s != NULL) { if (lp->v == v) return (lp->s); ++lp; } } if (fmt == NULL) fmt = "#%d"; (void)snprintf(buf, bufsize, fmt, v); return (const char *)buf; } /* * Convert a token value to a string; use "fmt" if not found. * Uses tok2strbuf() on one of four local static buffers of size TOKBUFSIZE * in round-robin fashion. */ const char * tok2str(const struct tok *lp, const char *fmt, u_int v) { static char buf[4][TOKBUFSIZE]; static int idx = 0; char *ret; ret = buf[idx]; idx = (idx+1) & 3; return tok2strbuf(lp, fmt, v, ret, sizeof(buf[0])); } /* * Convert a bit token value to a string; use "fmt" if not found. * this is useful for parsing bitfields, the output strings are separated * if the s field is positive. * * A token matches iff it has one or more bits set and every bit that is set * in the token is set in v. Consequently, a 0 token never matches. */ static char * bittok2str_internal(const struct tok *lp, const char *fmt, u_int v, const char *sep) { static char buf[1024+1]; /* our string buffer */ char *bufp = buf; size_t space_left = sizeof(buf), string_size; const char * sepstr = ""; while (lp != NULL && lp->s != NULL) { if (lp->v && (v & lp->v) == lp->v) { /* ok we have found something */ if (space_left <= 1) return (buf); /* only enough room left for NUL, if that */ string_size = strlcpy(bufp, sepstr, space_left); if (string_size >= space_left) return (buf); /* we ran out of room */ bufp += string_size; space_left -= string_size; if (space_left <= 1) return (buf); /* only enough room left for NUL, if that */ string_size = strlcpy(bufp, lp->s, space_left); if (string_size >= space_left) return (buf); /* we ran out of room */ bufp += string_size; space_left -= string_size; sepstr = sep; } lp++; } if (bufp == buf) /* bummer - lets print the "unknown" message as advised in the fmt string if we got one */ (void)snprintf(buf, sizeof(buf), fmt == NULL ? "#%08x" : fmt, v); return (buf); } /* * Convert a bit token value to a string; use "fmt" if not found. * this is useful for parsing bitfields, the output strings are not separated. */ char * bittok2str_nosep(const struct tok *lp, const char *fmt, u_int v) { return (bittok2str_internal(lp, fmt, v, "")); } /* * Convert a bit token value to a string; use "fmt" if not found. * this is useful for parsing bitfields, the output strings are comma separated. */ char * bittok2str(const struct tok *lp, const char *fmt, u_int v) { return (bittok2str_internal(lp, fmt, v, ", ")); } /* * Convert a value to a string using an array; the macro * tok2strary() in is the public interface to * this function and ensures that the second argument is * correct for bounds-checking. */ const char * tok2strary_internal(const char **lp, int n, const char *fmt, int v) { static char buf[TOKBUFSIZE]; if (v >= 0 && v < n && lp[v] != NULL) return lp[v]; if (fmt == NULL) fmt = "#%d"; (void)snprintf(buf, sizeof(buf), fmt, v); return (buf); } const struct tok * uint2tokary_internal(const struct uint_tokary dict[], const size_t size, const u_int val) { size_t i; /* Try a direct lookup before the full scan. */ if (val < size && dict[val].uintval == val) return dict[val].tokary; /* OK if NULL */ for (i = 0; i < size; i++) if (dict[i].uintval == val) return dict[i].tokary; /* OK if NULL */ return NULL; } /* * Convert a 32-bit netmask to prefixlen if possible * the function returns the prefix-len; if plen == -1 * then conversion was not possible; */ int mask2plen(uint32_t mask) { const uint32_t bitmasks[33] = { 0x00000000, 0x80000000, 0xc0000000, 0xe0000000, 0xf0000000, 0xf8000000, 0xfc000000, 0xfe000000, 0xff000000, 0xff800000, 0xffc00000, 0xffe00000, 0xfff00000, 0xfff80000, 0xfffc0000, 0xfffe0000, 0xffff0000, 0xffff8000, 0xffffc000, 0xffffe000, 0xfffff000, 0xfffff800, 0xfffffc00, 0xfffffe00, 0xffffff00, 0xffffff80, 0xffffffc0, 0xffffffe0, 0xfffffff0, 0xfffffff8, 0xfffffffc, 0xfffffffe, 0xffffffff }; int prefix_len = 32; /* let's see if we can transform the mask into a prefixlen */ while (prefix_len >= 0) { if (bitmasks[prefix_len] == mask) break; prefix_len--; } return (prefix_len); } int mask62plen(const u_char *mask) { u_char bitmasks[9] = { 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff }; int byte; int cidr_len = 0; for (byte = 0; byte < 16; byte++) { u_int bits; for (bits = 0; bits < (sizeof (bitmasks) / sizeof (bitmasks[0])); bits++) { if (mask[byte] == bitmasks[bits]) { cidr_len += bits; break; } } if (mask[byte] != 0xff) break; } return (cidr_len); } /* * Routine to print out information for text-based protocols such as FTP, * HTTP, SMTP, RTSP, SIP, .... */ #define MAX_TOKEN 128 /* * Fetch a token from a packet, starting at the specified index, * and return the length of the token. * * Returns 0 on error; yes, this is indistinguishable from an empty * token, but an "empty token" isn't a valid token - it just means * either a space character at the beginning of the line (this * includes a blank line) or no more tokens remaining on the line. */ static int fetch_token(netdissect_options *ndo, const u_char *pptr, u_int idx, u_int len, u_char *tbuf, size_t tbuflen) { size_t toklen = 0; u_char c; for (; idx < len; idx++) { if (!ND_TTEST_1(pptr + idx)) { /* ran past end of captured data */ return (0); } c = GET_U_1(pptr + idx); if (!ND_ISASCII(c)) { /* not an ASCII character */ return (0); } if (c == ' ' || c == '\t' || c == '\r' || c == '\n') { /* end of token */ break; } if (!ND_ASCII_ISPRINT(c)) { /* not part of a command token or response code */ return (0); } if (toklen + 2 > tbuflen) { /* no room for this character and terminating '\0' */ return (0); } tbuf[toklen] = c; toklen++; } if (toklen == 0) { /* no token */ return (0); } tbuf[toklen] = '\0'; /* * Skip past any white space after the token, until we see * an end-of-line (CR or LF). */ for (; idx < len; idx++) { if (!ND_TTEST_1(pptr + idx)) { /* ran past end of captured data */ break; } c = GET_U_1(pptr + idx); if (c == '\r' || c == '\n') { /* end of line */ break; } if (!ND_ASCII_ISPRINT(c)) { /* not a printable ASCII character */ break; } if (c != ' ' && c != '\t' && c != '\r' && c != '\n') { /* beginning of next token */ break; } } return (idx); } /* * Scan a buffer looking for a line ending - LF or CR-LF. * Return the index of the character after the line ending or 0 if * we encounter a non-ASCII or non-printable character or don't find * the line ending. */ static u_int print_txt_line(netdissect_options *ndo, const char *prefix, const u_char *pptr, u_int idx, u_int len) { u_int startidx; u_int linelen; u_char c; startidx = idx; while (idx < len) { c = GET_U_1(pptr + idx); if (c == '\n') { /* * LF without CR; end of line. * Skip the LF and print the line, with the * exception of the LF. */ linelen = idx - startidx; idx++; goto print; } else if (c == '\r') { /* CR - any LF? */ if ((idx+1) >= len) { /* not in this packet */ return (0); } if (GET_U_1(pptr + idx + 1) == '\n') { /* * CR-LF; end of line. * Skip the CR-LF and print the line, with * the exception of the CR-LF. */ linelen = idx - startidx; idx += 2; goto print; } /* * CR followed by something else; treat this * as if it were binary data, and don't print * it. */ return (0); } else if (!ND_ASCII_ISPRINT(c) && c != '\t') { /* * Not a printable ASCII character and not a tab; * treat this as if it were binary data, and * don't print it. */ return (0); } idx++; } /* * All printable ASCII, but no line ending after that point * in the buffer. */ linelen = idx - startidx; ND_PRINT("%s%.*s", prefix, (int)linelen, pptr + startidx); return (0); print: ND_PRINT("%s%.*s", prefix, (int)linelen, pptr + startidx); return (idx); } /* Assign needed before calling txtproto_print(): ndo->ndo_protocol = "proto" */ void txtproto_print(netdissect_options *ndo, const u_char *pptr, u_int len, const char **cmds, u_int flags) { u_int idx, eol; u_char token[MAX_TOKEN+1]; const char *cmd; int print_this = 0; if (cmds != NULL) { /* * This protocol has more than just request and * response lines; see whether this looks like a * request or response and, if so, print it and, * in verbose mode, print everything after it. * * This is for HTTP-like protocols, where we * want to print requests and responses, but * don't want to print continuations of request * or response bodies in packets that don't * contain the request or response line. */ idx = fetch_token(ndo, pptr, 0, len, token, sizeof(token)); if (idx != 0) { /* Is this a valid request name? */ while ((cmd = *cmds++) != NULL) { if (ascii_strcasecmp((const char *)token, cmd) == 0) { /* Yes. */ print_this = 1; break; } } /* * No - is this a valid response code (3 digits)? * * Is this token the response code, or is the next * token the response code? */ if (flags & RESP_CODE_SECOND_TOKEN) { /* * Next token - get it. */ idx = fetch_token(ndo, pptr, idx, len, token, sizeof(token)); } if (idx != 0) { if (ND_ASCII_ISDIGIT(token[0]) && ND_ASCII_ISDIGIT(token[1]) && ND_ASCII_ISDIGIT(token[2]) && token[3] == '\0') { /* Yes. */ print_this = 1; } } } } else { /* * Either: * * 1) This protocol has only request and response lines * (e.g., FTP, where all the data goes over a different * connection); assume the payload is a request or * response. * * or * * 2) This protocol is just text, so that we should * always, at minimum, print the first line and, * in verbose mode, print all lines. */ print_this = 1; } nd_print_protocol_caps(ndo); if (print_this) { /* * In non-verbose mode, just print the protocol, followed * by the first line. * * In verbose mode, print lines as text until we run out * of characters or see something that's not a * printable-ASCII line. */ if (ndo->ndo_vflag) { /* * We're going to print all the text lines in the * request or response; just print the length * on the first line of the output. */ ND_PRINT(", length: %u", len); for (idx = 0; idx < len && (eol = print_txt_line(ndo, "\n\t", pptr, idx, len)) != 0; idx = eol) ; } else { /* * Just print the first text line. */ print_txt_line(ndo, ": ", pptr, 0, len); } } } #if (defined(__i386__) || defined(_M_IX86) || defined(__X86__) || defined(__x86_64__) || defined(_M_X64)) || \ (defined(__arm__) || defined(_M_ARM) || defined(__aarch64__)) || \ (defined(__m68k__) && (!defined(__mc68000__) && !defined(__mc68010__))) || \ (defined(__ppc__) || defined(__ppc64__) || defined(_M_PPC) || defined(_ARCH_PPC) || defined(_ARCH_PPC64)) || \ (defined(__s390__) || defined(__s390x__) || defined(__zarch__)) || \ defined(__vax__) /* * The processor natively handles unaligned loads, so just use memcpy() * and memcmp(), to enable those optimizations. * * XXX - are those all the x86 tests we need? * XXX - do we need to worry about ARMv1 through ARMv5, which didn't * support unaligned loads, and, if so, do we need to worry about all * of them, or just some of them, e.g. ARMv5? * XXX - are those the only 68k tests we need not to generated * unaligned accesses if the target is the 68000 or 68010? * XXX - are there any tests we don't need, because some definitions are for * compilers that also predefine the GCC symbols? * XXX - do we need to test for both 32-bit and 64-bit versions of those * architectures in all cases? */ #else /* * The processor doesn't natively handle unaligned loads, * and the compiler might "helpfully" optimize memcpy() * and memcmp(), when handed pointers that would normally * be properly aligned, into sequences that assume proper * alignment. * * Do copies and compares of possibly-unaligned data by * calling routines that wrap memcpy() and memcmp(), to * prevent that optimization. */ void unaligned_memcpy(void *p, const void *q, size_t l) { memcpy(p, q, l); } /* As with memcpy(), so with memcmp(). */ int unaligned_memcmp(const void *p, const void *q, size_t l) { return (memcmp(p, q, l)); } #endif