diff options
Diffstat (limited to 'gfx/skia/skia/src/base/SkBlockAllocator.h')
-rw-r--r-- | gfx/skia/skia/src/base/SkBlockAllocator.h | 754 |
1 files changed, 754 insertions, 0 deletions
diff --git a/gfx/skia/skia/src/base/SkBlockAllocator.h b/gfx/skia/skia/src/base/SkBlockAllocator.h new file mode 100644 index 0000000000..02201c17d4 --- /dev/null +++ b/gfx/skia/skia/src/base/SkBlockAllocator.h @@ -0,0 +1,754 @@ +/* + * Copyright 2020 Google LLC + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#ifndef SkBlockAllocator_DEFINED +#define SkBlockAllocator_DEFINED + +#include "include/private/base/SkAlign.h" +#include "include/private/base/SkAssert.h" +#include "include/private/base/SkDebug.h" +#include "include/private/base/SkMacros.h" +#include "include/private/base/SkMath.h" +#include "include/private/base/SkNoncopyable.h" +#include "src/base/SkASAN.h" + +#include <algorithm> +#include <cstddef> +#include <cstdint> +#include <limits> +#include <new> +#include <type_traits> + +/** + * SkBlockAllocator provides low-level support for a block allocated arena with a dynamic tail that + * tracks space reservations within each block. Its APIs provide the ability to reserve space, + * resize reservations, and release reservations. It will automatically create new blocks if needed + * and destroy all remaining blocks when it is destructed. It assumes that anything allocated within + * its blocks has its destructors called externally. It is recommended that SkBlockAllocator is + * wrapped by a higher-level allocator that uses the low-level APIs to implement a simpler, + * purpose-focused API w/o having to worry as much about byte-level concerns. + * + * SkBlockAllocator has no limit to its total size, but each allocation is limited to 512MB (which + * should be sufficient for Skia's use cases). This upper allocation limit allows all internal + * operations to be performed using 'int' and avoid many overflow checks. Static asserts are used + * to ensure that those operations would not overflow when using the largest possible values. + * + * Possible use modes: + * 1. No upfront allocation, either on the stack or as a field + * SkBlockAllocator allocator(policy, heapAllocSize); + * + * 2. In-place new'd + * void* mem = operator new(totalSize); + * SkBlockAllocator* allocator = new (mem) SkBlockAllocator(policy, heapAllocSize, + * totalSize- sizeof(SkBlockAllocator)); + * delete allocator; + * + * 3. Use SkSBlockAllocator to increase the preallocation size + * SkSBlockAllocator<1024> allocator(policy, heapAllocSize); + * sizeof(allocator) == 1024; + */ +// TODO(michaelludwig) - While API is different, this shares similarities to SkArenaAlloc and +// SkFibBlockSizes, so we should work to integrate them. +class SkBlockAllocator final : SkNoncopyable { +public: + // Largest size that can be requested from allocate(), chosen because it's the largest pow-2 + // that is less than int32_t::max()/2. + inline static constexpr int kMaxAllocationSize = 1 << 29; + + enum class GrowthPolicy : int { + kFixed, // Next block size = N + kLinear, // = #blocks * N + kFibonacci, // = fibonacci(#blocks) * N + kExponential, // = 2^#blocks * N + kLast = kExponential + }; + inline static constexpr int kGrowthPolicyCount = static_cast<int>(GrowthPolicy::kLast) + 1; + + class Block final { + public: + ~Block(); + void operator delete(void* p) { ::operator delete(p); } + + // Return the maximum allocation size with the given alignment that can fit in this block. + template <size_t Align = 1, size_t Padding = 0> + int avail() const { return std::max(0, fSize - this->cursor<Align, Padding>()); } + + // Return the aligned offset of the first allocation, assuming it was made with the + // specified Align, and Padding. The returned offset does not mean a valid allocation + // starts at that offset, this is a utility function for classes built on top to manage + // indexing into a block effectively. + template <size_t Align = 1, size_t Padding = 0> + int firstAlignedOffset() const { return this->alignedOffset<Align, Padding>(kDataStart); } + + // Convert an offset into this block's storage into a usable pointer. + void* ptr(int offset) { + SkASSERT(offset >= kDataStart && offset < fSize); + return reinterpret_cast<char*>(this) + offset; + } + const void* ptr(int offset) const { return const_cast<Block*>(this)->ptr(offset); } + + // Every block has an extra 'int' for clients to use however they want. It will start + // at 0 when a new block is made, or when the head block is reset. + int metadata() const { return fMetadata; } + void setMetadata(int value) { fMetadata = value; } + + /** + * Release the byte range between offset 'start' (inclusive) and 'end' (exclusive). This + * will return true if those bytes were successfully reclaimed, i.e. a subsequent allocation + * request could occupy the space. Regardless of return value, the provided byte range that + * [start, end) represents should not be used until it's re-allocated with allocate<...>(). + */ + inline bool release(int start, int end); + + /** + * Resize a previously reserved byte range of offset 'start' (inclusive) to 'end' + * (exclusive). 'deltaBytes' is the SIGNED change to length of the reservation. + * + * When negative this means the reservation is shrunk and the new length is (end - start - + * |deltaBytes|). If this new length would be 0, the byte range can no longer be used (as if + * it were released instead). Asserts that it would not shrink the reservation below 0. + * + * If 'deltaBytes' is positive, the allocator attempts to increase the length of the + * reservation. If 'deltaBytes' is less than or equal to avail() and it was the last + * allocation in the block, it can be resized. If there is not enough available bytes to + * accommodate the increase in size, or another allocation is blocking the increase in size, + * then false will be returned and the reserved byte range is unmodified. + */ + inline bool resize(int start, int end, int deltaBytes); + + private: + friend class SkBlockAllocator; + + Block(Block* prev, int allocationSize); + + // We poison the unallocated space in a Block to allow ASAN to catch invalid writes. + void poisonRange(int start, int end) { + sk_asan_poison_memory_region(reinterpret_cast<char*>(this) + start, end - start); + } + void unpoisonRange(int start, int end) { + sk_asan_unpoison_memory_region(reinterpret_cast<char*>(this) + start, end - start); + } + + // Get fCursor, but aligned such that ptr(rval) satisfies Align. + template <size_t Align, size_t Padding> + int cursor() const { return this->alignedOffset<Align, Padding>(fCursor); } + + template <size_t Align, size_t Padding> + int alignedOffset(int offset) const; + + bool isScratch() const { return fCursor < 0; } + void markAsScratch() { + fCursor = -1; + this->poisonRange(kDataStart, fSize); + } + + SkDEBUGCODE(uint32_t fSentinel;) // known value to check for bad back pointers to blocks + + Block* fNext; // doubly-linked list of blocks + Block* fPrev; + + // Each block tracks its own cursor because as later blocks are released, an older block + // may become the active tail again. + int fSize; // includes the size of the BlockHeader and requested metadata + int fCursor; // (this + fCursor) points to next available allocation + int fMetadata; + + // On release builds, a Block's other 2 pointers and 3 int fields leaves 4 bytes of padding + // for 8 and 16 aligned systems. Currently this is only manipulated in the head block for + // an allocator-level metadata and is explicitly not reset when the head block is "released" + // Down the road we could instead choose to offer multiple metadata slots per block. + int fAllocatorMetadata; + }; + + // Tuple representing a range of bytes, marking the unaligned start, the first aligned point + // after any padding, and the upper limit depending on requested size. + struct ByteRange { + Block* fBlock; // Owning block + int fStart; // Inclusive byte lower limit of byte range + int fAlignedOffset; // >= start, matching alignment requirement (i.e. first real byte) + int fEnd; // Exclusive upper limit of byte range + }; + + // The size of the head block is determined by 'additionalPreallocBytes'. Subsequent heap blocks + // are determined by 'policy' and 'blockIncrementBytes', although 'blockIncrementBytes' will be + // aligned to std::max_align_t. + // + // When 'additionalPreallocBytes' > 0, the allocator assumes that many extra bytes immediately + // after the allocator can be used by its inline head block. This is useful when the allocator + // is in-place new'ed into a larger block of memory, but it should remain set to 0 if stack + // allocated or if the class layout does not guarantee that space is present. + SkBlockAllocator(GrowthPolicy policy, size_t blockIncrementBytes, + size_t additionalPreallocBytes = 0); + + ~SkBlockAllocator() { this->reset(); } + void operator delete(void* p) { ::operator delete(p); } + + /** + * Helper to calculate the minimum number of bytes needed for heap block size, under the + * assumption that Align will be the requested alignment of the first call to allocate(). + * Ex. To store N instances of T in a heap block, the 'blockIncrementBytes' should be set to + * BlockOverhead<alignof(T)>() + N * sizeof(T) when making the SkBlockAllocator. + */ + template<size_t Align = 1, size_t Padding = 0> + static constexpr size_t BlockOverhead(); + + /** + * Helper to calculate the minimum number of bytes needed for a preallocation, under the + * assumption that Align will be the requested alignment of the first call to allocate(). + * Ex. To preallocate a SkSBlockAllocator to hold N instances of T, its arge should be + * Overhead<alignof(T)>() + N * sizeof(T) + */ + template<size_t Align = 1, size_t Padding = 0> + static constexpr size_t Overhead(); + + /** + * Return the total number of bytes of the allocator, including its instance overhead, per-block + * overhead and space used for allocations. + */ + size_t totalSize() const; + /** + * Return the total number of bytes usable for allocations. This includes bytes that have + * been reserved already by a call to allocate() and bytes that are still available. It is + * totalSize() minus all allocator and block-level overhead. + */ + size_t totalUsableSpace() const; + /** + * Return the total number of usable bytes that have been reserved by allocations. This will + * be less than or equal to totalUsableSpace(). + */ + size_t totalSpaceInUse() const; + + /** + * Return the total number of bytes that were pre-allocated for the SkBlockAllocator. This will + * include 'additionalPreallocBytes' passed to the constructor, and represents what the total + * size would become after a call to reset(). + */ + size_t preallocSize() const { + // Don't double count fHead's Block overhead in both sizeof(SkBlockAllocator) and fSize. + return sizeof(SkBlockAllocator) + fHead.fSize - BaseHeadBlockSize(); + } + /** + * Return the usable size of the inline head block; this will be equal to + * 'additionalPreallocBytes' plus any alignment padding that the system had to add to Block. + * The returned value represents what could be allocated before a heap block is be created. + */ + size_t preallocUsableSpace() const { + return fHead.fSize - kDataStart; + } + + /** + * Get the current value of the allocator-level metadata (a user-oriented slot). This is + * separate from any block-level metadata, but can serve a similar purpose to compactly support + * data collections on top of SkBlockAllocator. + */ + int metadata() const { return fHead.fAllocatorMetadata; } + + /** + * Set the current value of the allocator-level metadata. + */ + void setMetadata(int value) { fHead.fAllocatorMetadata = value; } + + /** + * Reserve space that will hold 'size' bytes. This will automatically allocate a new block if + * there is not enough available space in the current block to provide 'size' bytes. The + * returned ByteRange tuple specifies the Block owning the reserved memory, the full byte range, + * and the aligned offset within that range to use for the user-facing pointer. The following + * invariants hold: + * + * 1. block->ptr(alignedOffset) is aligned to Align + * 2. end - alignedOffset == size + * 3. Padding <= alignedOffset - start <= Padding + Align - 1 + * + * Invariant #3, when Padding > 0, allows intermediate allocators to embed metadata along with + * the allocations. If the Padding bytes are used for some 'struct Meta', then + * ptr(alignedOffset - sizeof(Meta)) can be safely used as a Meta* if Meta's alignment + * requirements are less than or equal to the alignment specified in allocate<>. This can be + * easily guaranteed by using the pattern: + * + * allocate<max(UserAlign, alignof(Meta)), sizeof(Meta)>(userSize); + * + * This ensures that ptr(alignedOffset) will always satisfy UserAlign and + * ptr(alignedOffset - sizeof(Meta)) will always satisfy alignof(Meta). Alternatively, memcpy + * can be used to read and write values between start and alignedOffset without worrying about + * alignment requirements of the metadata. + * + * For over-aligned allocations, the alignedOffset (as an int) may not be a multiple of Align, + * but the result of ptr(alignedOffset) will be a multiple of Align. + */ + template <size_t Align, size_t Padding = 0> + ByteRange allocate(size_t size); + + enum ReserveFlags : unsigned { + // If provided to reserve(), the input 'size' will be rounded up to the next size determined + // by the growth policy of the SkBlockAllocator. If not, 'size' will be aligned to max_align + kIgnoreGrowthPolicy_Flag = 0b01, + // If provided to reserve(), the number of available bytes of the current block will not + // be used to satisfy the reservation (assuming the contiguous range was long enough to + // begin with). + kIgnoreExistingBytes_Flag = 0b10, + + kNo_ReserveFlags = 0b00 + }; + + /** + * Ensure the block allocator has 'size' contiguous available bytes. After calling this + * function, currentBlock()->avail<Align, Padding>() may still report less than 'size' if the + * reserved space was added as a scratch block. This is done so that anything remaining in + * the current block can still be used if a smaller-than-size allocation is requested. If 'size' + * is requested by a subsequent allocation, the scratch block will automatically be activated + * and the request will not itself trigger any malloc. + * + * The optional 'flags' controls how the input size is allocated; by default it will attempt + * to use available contiguous bytes in the current block and will respect the growth policy + * of the allocator. + */ + template <size_t Align = 1, size_t Padding = 0> + void reserve(size_t size, ReserveFlags flags = kNo_ReserveFlags); + + /** + * Return a pointer to the start of the current block. This will never be null. + */ + const Block* currentBlock() const { return fTail; } + Block* currentBlock() { return fTail; } + + const Block* headBlock() const { return &fHead; } + Block* headBlock() { return &fHead; } + + /** + * Return the block that owns the allocated 'ptr'. Assuming that earlier, an allocation was + * returned as {b, start, alignedOffset, end}, and 'p = b->ptr(alignedOffset)', then a call + * to 'owningBlock<Align, Padding>(p, start) == b'. + * + * If calling code has already made a pointer to their metadata, i.e. 'm = p - Padding', then + * 'owningBlock<Align, 0>(m, start)' will also return b, allowing you to recover the block from + * the metadata pointer. + * + * If calling code has access to the original alignedOffset, this function should not be used + * since the owning block is just 'p - alignedOffset', regardless of original Align or Padding. + */ + template <size_t Align, size_t Padding = 0> + Block* owningBlock(const void* ptr, int start); + + template <size_t Align, size_t Padding = 0> + const Block* owningBlock(const void* ptr, int start) const { + return const_cast<SkBlockAllocator*>(this)->owningBlock<Align, Padding>(ptr, start); + } + + /** + * Find the owning block of the allocated pointer, 'p'. Without any additional information this + * is O(N) on the number of allocated blocks. + */ + Block* findOwningBlock(const void* ptr); + const Block* findOwningBlock(const void* ptr) const { + return const_cast<SkBlockAllocator*>(this)->findOwningBlock(ptr); + } + + /** + * Explicitly free an entire block, invalidating any remaining allocations from the block. + * SkBlockAllocator will release all alive blocks automatically when it is destroyed, but this + * function can be used to reclaim memory over the lifetime of the allocator. The provided + * 'block' pointer must have previously come from a call to currentBlock() or allocate(). + * + * If 'block' represents the inline-allocated head block, its cursor and metadata are instead + * reset to their defaults. + * + * If the block is not the head block, it may be kept as a scratch block to be reused for + * subsequent allocation requests, instead of making an entirely new block. A scratch block is + * not visible when iterating over blocks but is reported in the total size of the allocator. + */ + void releaseBlock(Block* block); + + /** + * Detach every heap-allocated block owned by 'other' and concatenate them to this allocator's + * list of blocks. This memory is now managed by this allocator. Since this only transfers + * ownership of a Block, and a Block itself does not move, any previous allocations remain + * valid and associated with their original Block instances. SkBlockAllocator-level functions + * that accept allocated pointers (e.g. findOwningBlock), must now use this allocator and not + * 'other' for these allocations. + * + * The head block of 'other' cannot be stolen, so higher-level allocators and memory structures + * must handle that data differently. + */ + void stealHeapBlocks(SkBlockAllocator* other); + + /** + * Explicitly free all blocks (invalidating all allocations), and resets the head block to its + * default state. The allocator-level metadata is reset to 0 as well. + */ + void reset(); + + /** + * Remove any reserved scratch space, either from calling reserve() or releaseBlock(). + */ + void resetScratchSpace(); + + template <bool Forward, bool Const> class BlockIter; + + /** + * Clients can iterate over all active Blocks in the SkBlockAllocator using for loops: + * + * Forward iteration from head to tail block (or non-const variant): + * for (const Block* b : this->blocks()) { } + * Reverse iteration from tail to head block: + * for (const Block* b : this->rblocks()) { } + * + * It is safe to call releaseBlock() on the active block while looping. + */ + inline BlockIter<true, false> blocks(); + inline BlockIter<true, true> blocks() const; + inline BlockIter<false, false> rblocks(); + inline BlockIter<false, true> rblocks() const; + +#ifdef SK_DEBUG + inline static constexpr uint32_t kAssignedMarker = 0xBEEFFACE; + inline static constexpr uint32_t kFreedMarker = 0xCAFEBABE; + + void validate() const; +#endif + +private: + friend class BlockAllocatorTestAccess; + friend class TBlockListTestAccess; + + inline static constexpr int kDataStart = sizeof(Block); + #ifdef SK_FORCE_8_BYTE_ALIGNMENT + // This is an issue for WASM builds using emscripten, which had std::max_align_t = 16, but + // was returning pointers only aligned to 8 bytes. + // https://github.com/emscripten-core/emscripten/issues/10072 + // + // Setting this to 8 will let SkBlockAllocator properly correct for the pointer address if + // a 16-byte aligned allocation is requested in wasm (unlikely since we don't use long + // doubles). + inline static constexpr size_t kAddressAlign = 8; + #else + // The alignment Block addresses will be at when created using operator new + // (spec-compliant is pointers are aligned to max_align_t). + inline static constexpr size_t kAddressAlign = alignof(std::max_align_t); + #endif + + // Calculates the size of a new Block required to store a kMaxAllocationSize request for the + // given alignment and padding bytes. Also represents maximum valid fCursor value in a Block. + template<size_t Align, size_t Padding> + static constexpr size_t MaxBlockSize(); + + static constexpr int BaseHeadBlockSize() { + return sizeof(SkBlockAllocator) - offsetof(SkBlockAllocator, fHead); + } + + // Append a new block to the end of the block linked list, updating fTail. 'minSize' must + // have enough room for sizeof(Block). 'maxSize' is the upper limit of fSize for the new block + // that will preserve the static guarantees SkBlockAllocator makes. + void addBlock(int minSize, int maxSize); + + int scratchBlockSize() const { return fHead.fPrev ? fHead.fPrev->fSize : 0; } + + Block* fTail; // All non-head blocks are heap allocated; tail will never be null. + + // All remaining state is packed into 64 bits to keep SkBlockAllocator at 16 bytes + head block + // (on a 64-bit system). + + // Growth of the block size is controlled by four factors: BlockIncrement, N0 and N1, and a + // policy defining how N0 is updated. When a new block is needed, we calculate N1' = N0 + N1. + // Depending on the policy, N0' = N0 (no growth or linear growth), or N0' = N1 (Fibonacci), or + // N0' = N1' (exponential). The size of the new block is N1' * BlockIncrement * MaxAlign, + // after which fN0 and fN1 store N0' and N1' clamped into 23 bits. With current bit allocations, + // N1' is limited to 2^24, and assuming MaxAlign=16, then BlockIncrement must be '2' in order to + // eventually reach the hard 2^29 size limit of SkBlockAllocator. + + // Next heap block size = (fBlockIncrement * alignof(std::max_align_t) * (fN0 + fN1)) + uint64_t fBlockIncrement : 16; + uint64_t fGrowthPolicy : 2; // GrowthPolicy + uint64_t fN0 : 23; // = 1 for linear/exp.; = 0 for fixed/fibonacci, initially + uint64_t fN1 : 23; // = 1 initially + + // Inline head block, must be at the end so that it can utilize any additional reserved space + // from the initial allocation. + // The head block's prev pointer may be non-null, which signifies a scratch block that may be + // reused instead of allocating an entirely new block (this helps when allocate+release calls + // bounce back and forth across the capacity of a block). + alignas(kAddressAlign) Block fHead; + + static_assert(kGrowthPolicyCount <= 4); +}; + +// A wrapper around SkBlockAllocator that includes preallocated storage for the head block. +// N will be the preallocSize() reported by the allocator. +template<size_t N> +class SkSBlockAllocator : SkNoncopyable { +public: + using GrowthPolicy = SkBlockAllocator::GrowthPolicy; + + SkSBlockAllocator() { + new (fStorage) SkBlockAllocator(GrowthPolicy::kFixed, N, N - sizeof(SkBlockAllocator)); + } + explicit SkSBlockAllocator(GrowthPolicy policy) { + new (fStorage) SkBlockAllocator(policy, N, N - sizeof(SkBlockAllocator)); + } + + SkSBlockAllocator(GrowthPolicy policy, size_t blockIncrementBytes) { + new (fStorage) SkBlockAllocator(policy, blockIncrementBytes, N - sizeof(SkBlockAllocator)); + } + + ~SkSBlockAllocator() { + this->allocator()->~SkBlockAllocator(); + } + + SkBlockAllocator* operator->() { return this->allocator(); } + const SkBlockAllocator* operator->() const { return this->allocator(); } + + SkBlockAllocator* allocator() { return reinterpret_cast<SkBlockAllocator*>(fStorage); } + const SkBlockAllocator* allocator() const { + return reinterpret_cast<const SkBlockAllocator*>(fStorage); + } + +private: + static_assert(N >= sizeof(SkBlockAllocator)); + + // Will be used to placement new the allocator + alignas(SkBlockAllocator) char fStorage[N]; +}; + +/////////////////////////////////////////////////////////////////////////////////////////////////// +// Template and inline implementations + +SK_MAKE_BITFIELD_OPS(SkBlockAllocator::ReserveFlags) + +template<size_t Align, size_t Padding> +constexpr size_t SkBlockAllocator::BlockOverhead() { + static_assert(SkAlignTo(kDataStart + Padding, Align) >= sizeof(Block)); + return SkAlignTo(kDataStart + Padding, Align); +} + +template<size_t Align, size_t Padding> +constexpr size_t SkBlockAllocator::Overhead() { + // NOTE: On most platforms, SkBlockAllocator is packed; this is not the case on debug builds + // due to extra fields, or on WASM due to 4byte pointers but 16byte max align. + return std::max(sizeof(SkBlockAllocator), + offsetof(SkBlockAllocator, fHead) + BlockOverhead<Align, Padding>()); +} + +template<size_t Align, size_t Padding> +constexpr size_t SkBlockAllocator::MaxBlockSize() { + // Without loss of generality, assumes 'align' will be the largest encountered alignment for the + // allocator (if it's not, the largest align will be encountered by the compiler and pass/fail + // the same set of static asserts). + return BlockOverhead<Align, Padding>() + kMaxAllocationSize; +} + +template<size_t Align, size_t Padding> +void SkBlockAllocator::reserve(size_t size, ReserveFlags flags) { + if (size > kMaxAllocationSize) { + SK_ABORT("Allocation too large (%zu bytes requested)", size); + } + int iSize = (int) size; + if ((flags & kIgnoreExistingBytes_Flag) || + this->currentBlock()->avail<Align, Padding>() < iSize) { + + int blockSize = BlockOverhead<Align, Padding>() + iSize; + int maxSize = (flags & kIgnoreGrowthPolicy_Flag) ? blockSize + : MaxBlockSize<Align, Padding>(); + SkASSERT((size_t) maxSize <= (MaxBlockSize<Align, Padding>())); + + SkDEBUGCODE(auto oldTail = fTail;) + this->addBlock(blockSize, maxSize); + SkASSERT(fTail != oldTail); + // Releasing the just added block will move it into scratch space, allowing the original + // tail's bytes to be used first before the scratch block is activated. + this->releaseBlock(fTail); + } +} + +template <size_t Align, size_t Padding> +SkBlockAllocator::ByteRange SkBlockAllocator::allocate(size_t size) { + // Amount of extra space for a new block to make sure the allocation can succeed. + static constexpr int kBlockOverhead = (int) BlockOverhead<Align, Padding>(); + + // Ensures 'offset' and 'end' calculations will be valid + static_assert((kMaxAllocationSize + SkAlignTo(MaxBlockSize<Align, Padding>(), Align)) + <= (size_t) std::numeric_limits<int32_t>::max()); + // Ensures size + blockOverhead + addBlock's alignment operations will be valid + static_assert(kMaxAllocationSize + kBlockOverhead + ((1 << 12) - 1) // 4K align for large blocks + <= std::numeric_limits<int32_t>::max()); + + if (size > kMaxAllocationSize) { + SK_ABORT("Allocation too large (%zu bytes requested)", size); + } + + int iSize = (int) size; + int offset = fTail->cursor<Align, Padding>(); + int end = offset + iSize; + if (end > fTail->fSize) { + this->addBlock(iSize + kBlockOverhead, MaxBlockSize<Align, Padding>()); + offset = fTail->cursor<Align, Padding>(); + end = offset + iSize; + } + + // Check invariants + SkASSERT(end <= fTail->fSize); + SkASSERT(end - offset == iSize); + SkASSERT(offset - fTail->fCursor >= (int) Padding && + offset - fTail->fCursor <= (int) (Padding + Align - 1)); + SkASSERT(reinterpret_cast<uintptr_t>(fTail->ptr(offset)) % Align == 0); + + int start = fTail->fCursor; + fTail->fCursor = end; + + fTail->unpoisonRange(offset - Padding, end); + + return {fTail, start, offset, end}; +} + +template <size_t Align, size_t Padding> +SkBlockAllocator::Block* SkBlockAllocator::owningBlock(const void* p, int start) { + // 'p' was originally formed by aligning 'block + start + Padding', producing the inequality: + // block + start + Padding <= p <= block + start + Padding + Align-1 + // Rearranging this yields: + // block <= p - start - Padding <= block + Align-1 + // Masking these terms by ~(Align-1) reconstructs 'block' if the alignment of the block is + // greater than or equal to Align (since block & ~(Align-1) == (block + Align-1) & ~(Align-1) + // in that case). Overalignment does not reduce to inequality unfortunately. + if /* constexpr */ (Align <= kAddressAlign) { + Block* block = reinterpret_cast<Block*>( + (reinterpret_cast<uintptr_t>(p) - start - Padding) & ~(Align - 1)); + SkASSERT(block->fSentinel == kAssignedMarker); + return block; + } else { + // There's not a constant-time expression available to reconstruct the block from 'p', + // but this is unlikely to happen frequently. + return this->findOwningBlock(p); + } +} + +template <size_t Align, size_t Padding> +int SkBlockAllocator::Block::alignedOffset(int offset) const { + static_assert(SkIsPow2(Align)); + // Aligning adds (Padding + Align - 1) as an intermediate step, so ensure that can't overflow + static_assert(MaxBlockSize<Align, Padding>() + Padding + Align - 1 + <= (size_t) std::numeric_limits<int32_t>::max()); + + if /* constexpr */ (Align <= kAddressAlign) { + // Same as SkAlignTo, but operates on ints instead of size_t + return (offset + Padding + Align - 1) & ~(Align - 1); + } else { + // Must take into account that 'this' may be starting at a pointer that doesn't satisfy the + // larger alignment request, so must align the entire pointer, not just offset + uintptr_t blockPtr = reinterpret_cast<uintptr_t>(this); + uintptr_t alignedPtr = (blockPtr + offset + Padding + Align - 1) & ~(Align - 1); + SkASSERT(alignedPtr - blockPtr <= (uintptr_t) std::numeric_limits<int32_t>::max()); + return (int) (alignedPtr - blockPtr); + } +} + +bool SkBlockAllocator::Block::resize(int start, int end, int deltaBytes) { + SkASSERT(fSentinel == kAssignedMarker); + SkASSERT(start >= kDataStart && end <= fSize && start < end); + + if (deltaBytes > kMaxAllocationSize || deltaBytes < -kMaxAllocationSize) { + // Cannot possibly satisfy the resize and could overflow subsequent math + return false; + } + if (fCursor == end) { + int nextCursor = end + deltaBytes; + SkASSERT(nextCursor >= start); + // We still check nextCursor >= start for release builds that wouldn't assert. + if (nextCursor <= fSize && nextCursor >= start) { + if (nextCursor < fCursor) { + // The allocation got smaller; poison the space that can no longer be used. + this->poisonRange(nextCursor + 1, end); + } else { + // The allocation got larger; unpoison the space that can now be used. + this->unpoisonRange(end, nextCursor); + } + + fCursor = nextCursor; + return true; + } + } + return false; +} + +// NOTE: release is equivalent to resize(start, end, start - end), and the compiler can optimize +// most of the operations away, but it wasn't able to remove the unnecessary branch comparing the +// new cursor to the block size or old start, so release() gets a specialization. +bool SkBlockAllocator::Block::release(int start, int end) { + SkASSERT(fSentinel == kAssignedMarker); + SkASSERT(start >= kDataStart && end <= fSize && start < end); + + this->poisonRange(start, end); + + if (fCursor == end) { + fCursor = start; + return true; + } else { + return false; + } +} + +///////// Block iteration +template <bool Forward, bool Const> +class SkBlockAllocator::BlockIter { +private: + using BlockT = typename std::conditional<Const, const Block, Block>::type; + using AllocatorT = + typename std::conditional<Const, const SkBlockAllocator, SkBlockAllocator>::type; + +public: + BlockIter(AllocatorT* allocator) : fAllocator(allocator) {} + + class Item { + public: + bool operator!=(const Item& other) const { return fBlock != other.fBlock; } + + BlockT* operator*() const { return fBlock; } + + Item& operator++() { + this->advance(fNext); + return *this; + } + + private: + friend BlockIter; + + Item(BlockT* block) { this->advance(block); } + + void advance(BlockT* block) { + fBlock = block; + fNext = block ? (Forward ? block->fNext : block->fPrev) : nullptr; + if (!Forward && fNext && fNext->isScratch()) { + // For reverse-iteration only, we need to stop at the head, not the scratch block + // possibly stashed in head->prev. + fNext = nullptr; + } + SkASSERT(!fNext || !fNext->isScratch()); + } + + BlockT* fBlock; + // Cache this before operator++ so that fBlock can be released during iteration + BlockT* fNext; + }; + + Item begin() const { return Item(Forward ? &fAllocator->fHead : fAllocator->fTail); } + Item end() const { return Item(nullptr); } + +private: + AllocatorT* fAllocator; +}; + +SkBlockAllocator::BlockIter<true, false> SkBlockAllocator::blocks() { + return BlockIter<true, false>(this); +} +SkBlockAllocator::BlockIter<true, true> SkBlockAllocator::blocks() const { + return BlockIter<true, true>(this); +} +SkBlockAllocator::BlockIter<false, false> SkBlockAllocator::rblocks() { + return BlockIter<false, false>(this); +} +SkBlockAllocator::BlockIter<false, true> SkBlockAllocator::rblocks() const { + return BlockIter<false, true>(this); +} + +#endif // SkBlockAllocator_DEFINED |