summaryrefslogtreecommitdiffstats
path: root/gfx/skia/skia/src/base/SkBlockAllocator.h
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/skia/skia/src/base/SkBlockAllocator.h')
-rw-r--r--gfx/skia/skia/src/base/SkBlockAllocator.h754
1 files changed, 754 insertions, 0 deletions
diff --git a/gfx/skia/skia/src/base/SkBlockAllocator.h b/gfx/skia/skia/src/base/SkBlockAllocator.h
new file mode 100644
index 0000000000..02201c17d4
--- /dev/null
+++ b/gfx/skia/skia/src/base/SkBlockAllocator.h
@@ -0,0 +1,754 @@
+/*
+ * Copyright 2020 Google LLC
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SkBlockAllocator_DEFINED
+#define SkBlockAllocator_DEFINED
+
+#include "include/private/base/SkAlign.h"
+#include "include/private/base/SkAssert.h"
+#include "include/private/base/SkDebug.h"
+#include "include/private/base/SkMacros.h"
+#include "include/private/base/SkMath.h"
+#include "include/private/base/SkNoncopyable.h"
+#include "src/base/SkASAN.h"
+
+#include <algorithm>
+#include <cstddef>
+#include <cstdint>
+#include <limits>
+#include <new>
+#include <type_traits>
+
+/**
+ * SkBlockAllocator provides low-level support for a block allocated arena with a dynamic tail that
+ * tracks space reservations within each block. Its APIs provide the ability to reserve space,
+ * resize reservations, and release reservations. It will automatically create new blocks if needed
+ * and destroy all remaining blocks when it is destructed. It assumes that anything allocated within
+ * its blocks has its destructors called externally. It is recommended that SkBlockAllocator is
+ * wrapped by a higher-level allocator that uses the low-level APIs to implement a simpler,
+ * purpose-focused API w/o having to worry as much about byte-level concerns.
+ *
+ * SkBlockAllocator has no limit to its total size, but each allocation is limited to 512MB (which
+ * should be sufficient for Skia's use cases). This upper allocation limit allows all internal
+ * operations to be performed using 'int' and avoid many overflow checks. Static asserts are used
+ * to ensure that those operations would not overflow when using the largest possible values.
+ *
+ * Possible use modes:
+ * 1. No upfront allocation, either on the stack or as a field
+ * SkBlockAllocator allocator(policy, heapAllocSize);
+ *
+ * 2. In-place new'd
+ * void* mem = operator new(totalSize);
+ * SkBlockAllocator* allocator = new (mem) SkBlockAllocator(policy, heapAllocSize,
+ * totalSize- sizeof(SkBlockAllocator));
+ * delete allocator;
+ *
+ * 3. Use SkSBlockAllocator to increase the preallocation size
+ * SkSBlockAllocator<1024> allocator(policy, heapAllocSize);
+ * sizeof(allocator) == 1024;
+ */
+// TODO(michaelludwig) - While API is different, this shares similarities to SkArenaAlloc and
+// SkFibBlockSizes, so we should work to integrate them.
+class SkBlockAllocator final : SkNoncopyable {
+public:
+ // Largest size that can be requested from allocate(), chosen because it's the largest pow-2
+ // that is less than int32_t::max()/2.
+ inline static constexpr int kMaxAllocationSize = 1 << 29;
+
+ enum class GrowthPolicy : int {
+ kFixed, // Next block size = N
+ kLinear, // = #blocks * N
+ kFibonacci, // = fibonacci(#blocks) * N
+ kExponential, // = 2^#blocks * N
+ kLast = kExponential
+ };
+ inline static constexpr int kGrowthPolicyCount = static_cast<int>(GrowthPolicy::kLast) + 1;
+
+ class Block final {
+ public:
+ ~Block();
+ void operator delete(void* p) { ::operator delete(p); }
+
+ // Return the maximum allocation size with the given alignment that can fit in this block.
+ template <size_t Align = 1, size_t Padding = 0>
+ int avail() const { return std::max(0, fSize - this->cursor<Align, Padding>()); }
+
+ // Return the aligned offset of the first allocation, assuming it was made with the
+ // specified Align, and Padding. The returned offset does not mean a valid allocation
+ // starts at that offset, this is a utility function for classes built on top to manage
+ // indexing into a block effectively.
+ template <size_t Align = 1, size_t Padding = 0>
+ int firstAlignedOffset() const { return this->alignedOffset<Align, Padding>(kDataStart); }
+
+ // Convert an offset into this block's storage into a usable pointer.
+ void* ptr(int offset) {
+ SkASSERT(offset >= kDataStart && offset < fSize);
+ return reinterpret_cast<char*>(this) + offset;
+ }
+ const void* ptr(int offset) const { return const_cast<Block*>(this)->ptr(offset); }
+
+ // Every block has an extra 'int' for clients to use however they want. It will start
+ // at 0 when a new block is made, or when the head block is reset.
+ int metadata() const { return fMetadata; }
+ void setMetadata(int value) { fMetadata = value; }
+
+ /**
+ * Release the byte range between offset 'start' (inclusive) and 'end' (exclusive). This
+ * will return true if those bytes were successfully reclaimed, i.e. a subsequent allocation
+ * request could occupy the space. Regardless of return value, the provided byte range that
+ * [start, end) represents should not be used until it's re-allocated with allocate<...>().
+ */
+ inline bool release(int start, int end);
+
+ /**
+ * Resize a previously reserved byte range of offset 'start' (inclusive) to 'end'
+ * (exclusive). 'deltaBytes' is the SIGNED change to length of the reservation.
+ *
+ * When negative this means the reservation is shrunk and the new length is (end - start -
+ * |deltaBytes|). If this new length would be 0, the byte range can no longer be used (as if
+ * it were released instead). Asserts that it would not shrink the reservation below 0.
+ *
+ * If 'deltaBytes' is positive, the allocator attempts to increase the length of the
+ * reservation. If 'deltaBytes' is less than or equal to avail() and it was the last
+ * allocation in the block, it can be resized. If there is not enough available bytes to
+ * accommodate the increase in size, or another allocation is blocking the increase in size,
+ * then false will be returned and the reserved byte range is unmodified.
+ */
+ inline bool resize(int start, int end, int deltaBytes);
+
+ private:
+ friend class SkBlockAllocator;
+
+ Block(Block* prev, int allocationSize);
+
+ // We poison the unallocated space in a Block to allow ASAN to catch invalid writes.
+ void poisonRange(int start, int end) {
+ sk_asan_poison_memory_region(reinterpret_cast<char*>(this) + start, end - start);
+ }
+ void unpoisonRange(int start, int end) {
+ sk_asan_unpoison_memory_region(reinterpret_cast<char*>(this) + start, end - start);
+ }
+
+ // Get fCursor, but aligned such that ptr(rval) satisfies Align.
+ template <size_t Align, size_t Padding>
+ int cursor() const { return this->alignedOffset<Align, Padding>(fCursor); }
+
+ template <size_t Align, size_t Padding>
+ int alignedOffset(int offset) const;
+
+ bool isScratch() const { return fCursor < 0; }
+ void markAsScratch() {
+ fCursor = -1;
+ this->poisonRange(kDataStart, fSize);
+ }
+
+ SkDEBUGCODE(uint32_t fSentinel;) // known value to check for bad back pointers to blocks
+
+ Block* fNext; // doubly-linked list of blocks
+ Block* fPrev;
+
+ // Each block tracks its own cursor because as later blocks are released, an older block
+ // may become the active tail again.
+ int fSize; // includes the size of the BlockHeader and requested metadata
+ int fCursor; // (this + fCursor) points to next available allocation
+ int fMetadata;
+
+ // On release builds, a Block's other 2 pointers and 3 int fields leaves 4 bytes of padding
+ // for 8 and 16 aligned systems. Currently this is only manipulated in the head block for
+ // an allocator-level metadata and is explicitly not reset when the head block is "released"
+ // Down the road we could instead choose to offer multiple metadata slots per block.
+ int fAllocatorMetadata;
+ };
+
+ // Tuple representing a range of bytes, marking the unaligned start, the first aligned point
+ // after any padding, and the upper limit depending on requested size.
+ struct ByteRange {
+ Block* fBlock; // Owning block
+ int fStart; // Inclusive byte lower limit of byte range
+ int fAlignedOffset; // >= start, matching alignment requirement (i.e. first real byte)
+ int fEnd; // Exclusive upper limit of byte range
+ };
+
+ // The size of the head block is determined by 'additionalPreallocBytes'. Subsequent heap blocks
+ // are determined by 'policy' and 'blockIncrementBytes', although 'blockIncrementBytes' will be
+ // aligned to std::max_align_t.
+ //
+ // When 'additionalPreallocBytes' > 0, the allocator assumes that many extra bytes immediately
+ // after the allocator can be used by its inline head block. This is useful when the allocator
+ // is in-place new'ed into a larger block of memory, but it should remain set to 0 if stack
+ // allocated or if the class layout does not guarantee that space is present.
+ SkBlockAllocator(GrowthPolicy policy, size_t blockIncrementBytes,
+ size_t additionalPreallocBytes = 0);
+
+ ~SkBlockAllocator() { this->reset(); }
+ void operator delete(void* p) { ::operator delete(p); }
+
+ /**
+ * Helper to calculate the minimum number of bytes needed for heap block size, under the
+ * assumption that Align will be the requested alignment of the first call to allocate().
+ * Ex. To store N instances of T in a heap block, the 'blockIncrementBytes' should be set to
+ * BlockOverhead<alignof(T)>() + N * sizeof(T) when making the SkBlockAllocator.
+ */
+ template<size_t Align = 1, size_t Padding = 0>
+ static constexpr size_t BlockOverhead();
+
+ /**
+ * Helper to calculate the minimum number of bytes needed for a preallocation, under the
+ * assumption that Align will be the requested alignment of the first call to allocate().
+ * Ex. To preallocate a SkSBlockAllocator to hold N instances of T, its arge should be
+ * Overhead<alignof(T)>() + N * sizeof(T)
+ */
+ template<size_t Align = 1, size_t Padding = 0>
+ static constexpr size_t Overhead();
+
+ /**
+ * Return the total number of bytes of the allocator, including its instance overhead, per-block
+ * overhead and space used for allocations.
+ */
+ size_t totalSize() const;
+ /**
+ * Return the total number of bytes usable for allocations. This includes bytes that have
+ * been reserved already by a call to allocate() and bytes that are still available. It is
+ * totalSize() minus all allocator and block-level overhead.
+ */
+ size_t totalUsableSpace() const;
+ /**
+ * Return the total number of usable bytes that have been reserved by allocations. This will
+ * be less than or equal to totalUsableSpace().
+ */
+ size_t totalSpaceInUse() const;
+
+ /**
+ * Return the total number of bytes that were pre-allocated for the SkBlockAllocator. This will
+ * include 'additionalPreallocBytes' passed to the constructor, and represents what the total
+ * size would become after a call to reset().
+ */
+ size_t preallocSize() const {
+ // Don't double count fHead's Block overhead in both sizeof(SkBlockAllocator) and fSize.
+ return sizeof(SkBlockAllocator) + fHead.fSize - BaseHeadBlockSize();
+ }
+ /**
+ * Return the usable size of the inline head block; this will be equal to
+ * 'additionalPreallocBytes' plus any alignment padding that the system had to add to Block.
+ * The returned value represents what could be allocated before a heap block is be created.
+ */
+ size_t preallocUsableSpace() const {
+ return fHead.fSize - kDataStart;
+ }
+
+ /**
+ * Get the current value of the allocator-level metadata (a user-oriented slot). This is
+ * separate from any block-level metadata, but can serve a similar purpose to compactly support
+ * data collections on top of SkBlockAllocator.
+ */
+ int metadata() const { return fHead.fAllocatorMetadata; }
+
+ /**
+ * Set the current value of the allocator-level metadata.
+ */
+ void setMetadata(int value) { fHead.fAllocatorMetadata = value; }
+
+ /**
+ * Reserve space that will hold 'size' bytes. This will automatically allocate a new block if
+ * there is not enough available space in the current block to provide 'size' bytes. The
+ * returned ByteRange tuple specifies the Block owning the reserved memory, the full byte range,
+ * and the aligned offset within that range to use for the user-facing pointer. The following
+ * invariants hold:
+ *
+ * 1. block->ptr(alignedOffset) is aligned to Align
+ * 2. end - alignedOffset == size
+ * 3. Padding <= alignedOffset - start <= Padding + Align - 1
+ *
+ * Invariant #3, when Padding > 0, allows intermediate allocators to embed metadata along with
+ * the allocations. If the Padding bytes are used for some 'struct Meta', then
+ * ptr(alignedOffset - sizeof(Meta)) can be safely used as a Meta* if Meta's alignment
+ * requirements are less than or equal to the alignment specified in allocate<>. This can be
+ * easily guaranteed by using the pattern:
+ *
+ * allocate<max(UserAlign, alignof(Meta)), sizeof(Meta)>(userSize);
+ *
+ * This ensures that ptr(alignedOffset) will always satisfy UserAlign and
+ * ptr(alignedOffset - sizeof(Meta)) will always satisfy alignof(Meta). Alternatively, memcpy
+ * can be used to read and write values between start and alignedOffset without worrying about
+ * alignment requirements of the metadata.
+ *
+ * For over-aligned allocations, the alignedOffset (as an int) may not be a multiple of Align,
+ * but the result of ptr(alignedOffset) will be a multiple of Align.
+ */
+ template <size_t Align, size_t Padding = 0>
+ ByteRange allocate(size_t size);
+
+ enum ReserveFlags : unsigned {
+ // If provided to reserve(), the input 'size' will be rounded up to the next size determined
+ // by the growth policy of the SkBlockAllocator. If not, 'size' will be aligned to max_align
+ kIgnoreGrowthPolicy_Flag = 0b01,
+ // If provided to reserve(), the number of available bytes of the current block will not
+ // be used to satisfy the reservation (assuming the contiguous range was long enough to
+ // begin with).
+ kIgnoreExistingBytes_Flag = 0b10,
+
+ kNo_ReserveFlags = 0b00
+ };
+
+ /**
+ * Ensure the block allocator has 'size' contiguous available bytes. After calling this
+ * function, currentBlock()->avail<Align, Padding>() may still report less than 'size' if the
+ * reserved space was added as a scratch block. This is done so that anything remaining in
+ * the current block can still be used if a smaller-than-size allocation is requested. If 'size'
+ * is requested by a subsequent allocation, the scratch block will automatically be activated
+ * and the request will not itself trigger any malloc.
+ *
+ * The optional 'flags' controls how the input size is allocated; by default it will attempt
+ * to use available contiguous bytes in the current block and will respect the growth policy
+ * of the allocator.
+ */
+ template <size_t Align = 1, size_t Padding = 0>
+ void reserve(size_t size, ReserveFlags flags = kNo_ReserveFlags);
+
+ /**
+ * Return a pointer to the start of the current block. This will never be null.
+ */
+ const Block* currentBlock() const { return fTail; }
+ Block* currentBlock() { return fTail; }
+
+ const Block* headBlock() const { return &fHead; }
+ Block* headBlock() { return &fHead; }
+
+ /**
+ * Return the block that owns the allocated 'ptr'. Assuming that earlier, an allocation was
+ * returned as {b, start, alignedOffset, end}, and 'p = b->ptr(alignedOffset)', then a call
+ * to 'owningBlock<Align, Padding>(p, start) == b'.
+ *
+ * If calling code has already made a pointer to their metadata, i.e. 'm = p - Padding', then
+ * 'owningBlock<Align, 0>(m, start)' will also return b, allowing you to recover the block from
+ * the metadata pointer.
+ *
+ * If calling code has access to the original alignedOffset, this function should not be used
+ * since the owning block is just 'p - alignedOffset', regardless of original Align or Padding.
+ */
+ template <size_t Align, size_t Padding = 0>
+ Block* owningBlock(const void* ptr, int start);
+
+ template <size_t Align, size_t Padding = 0>
+ const Block* owningBlock(const void* ptr, int start) const {
+ return const_cast<SkBlockAllocator*>(this)->owningBlock<Align, Padding>(ptr, start);
+ }
+
+ /**
+ * Find the owning block of the allocated pointer, 'p'. Without any additional information this
+ * is O(N) on the number of allocated blocks.
+ */
+ Block* findOwningBlock(const void* ptr);
+ const Block* findOwningBlock(const void* ptr) const {
+ return const_cast<SkBlockAllocator*>(this)->findOwningBlock(ptr);
+ }
+
+ /**
+ * Explicitly free an entire block, invalidating any remaining allocations from the block.
+ * SkBlockAllocator will release all alive blocks automatically when it is destroyed, but this
+ * function can be used to reclaim memory over the lifetime of the allocator. The provided
+ * 'block' pointer must have previously come from a call to currentBlock() or allocate().
+ *
+ * If 'block' represents the inline-allocated head block, its cursor and metadata are instead
+ * reset to their defaults.
+ *
+ * If the block is not the head block, it may be kept as a scratch block to be reused for
+ * subsequent allocation requests, instead of making an entirely new block. A scratch block is
+ * not visible when iterating over blocks but is reported in the total size of the allocator.
+ */
+ void releaseBlock(Block* block);
+
+ /**
+ * Detach every heap-allocated block owned by 'other' and concatenate them to this allocator's
+ * list of blocks. This memory is now managed by this allocator. Since this only transfers
+ * ownership of a Block, and a Block itself does not move, any previous allocations remain
+ * valid and associated with their original Block instances. SkBlockAllocator-level functions
+ * that accept allocated pointers (e.g. findOwningBlock), must now use this allocator and not
+ * 'other' for these allocations.
+ *
+ * The head block of 'other' cannot be stolen, so higher-level allocators and memory structures
+ * must handle that data differently.
+ */
+ void stealHeapBlocks(SkBlockAllocator* other);
+
+ /**
+ * Explicitly free all blocks (invalidating all allocations), and resets the head block to its
+ * default state. The allocator-level metadata is reset to 0 as well.
+ */
+ void reset();
+
+ /**
+ * Remove any reserved scratch space, either from calling reserve() or releaseBlock().
+ */
+ void resetScratchSpace();
+
+ template <bool Forward, bool Const> class BlockIter;
+
+ /**
+ * Clients can iterate over all active Blocks in the SkBlockAllocator using for loops:
+ *
+ * Forward iteration from head to tail block (or non-const variant):
+ * for (const Block* b : this->blocks()) { }
+ * Reverse iteration from tail to head block:
+ * for (const Block* b : this->rblocks()) { }
+ *
+ * It is safe to call releaseBlock() on the active block while looping.
+ */
+ inline BlockIter<true, false> blocks();
+ inline BlockIter<true, true> blocks() const;
+ inline BlockIter<false, false> rblocks();
+ inline BlockIter<false, true> rblocks() const;
+
+#ifdef SK_DEBUG
+ inline static constexpr uint32_t kAssignedMarker = 0xBEEFFACE;
+ inline static constexpr uint32_t kFreedMarker = 0xCAFEBABE;
+
+ void validate() const;
+#endif
+
+private:
+ friend class BlockAllocatorTestAccess;
+ friend class TBlockListTestAccess;
+
+ inline static constexpr int kDataStart = sizeof(Block);
+ #ifdef SK_FORCE_8_BYTE_ALIGNMENT
+ // This is an issue for WASM builds using emscripten, which had std::max_align_t = 16, but
+ // was returning pointers only aligned to 8 bytes.
+ // https://github.com/emscripten-core/emscripten/issues/10072
+ //
+ // Setting this to 8 will let SkBlockAllocator properly correct for the pointer address if
+ // a 16-byte aligned allocation is requested in wasm (unlikely since we don't use long
+ // doubles).
+ inline static constexpr size_t kAddressAlign = 8;
+ #else
+ // The alignment Block addresses will be at when created using operator new
+ // (spec-compliant is pointers are aligned to max_align_t).
+ inline static constexpr size_t kAddressAlign = alignof(std::max_align_t);
+ #endif
+
+ // Calculates the size of a new Block required to store a kMaxAllocationSize request for the
+ // given alignment and padding bytes. Also represents maximum valid fCursor value in a Block.
+ template<size_t Align, size_t Padding>
+ static constexpr size_t MaxBlockSize();
+
+ static constexpr int BaseHeadBlockSize() {
+ return sizeof(SkBlockAllocator) - offsetof(SkBlockAllocator, fHead);
+ }
+
+ // Append a new block to the end of the block linked list, updating fTail. 'minSize' must
+ // have enough room for sizeof(Block). 'maxSize' is the upper limit of fSize for the new block
+ // that will preserve the static guarantees SkBlockAllocator makes.
+ void addBlock(int minSize, int maxSize);
+
+ int scratchBlockSize() const { return fHead.fPrev ? fHead.fPrev->fSize : 0; }
+
+ Block* fTail; // All non-head blocks are heap allocated; tail will never be null.
+
+ // All remaining state is packed into 64 bits to keep SkBlockAllocator at 16 bytes + head block
+ // (on a 64-bit system).
+
+ // Growth of the block size is controlled by four factors: BlockIncrement, N0 and N1, and a
+ // policy defining how N0 is updated. When a new block is needed, we calculate N1' = N0 + N1.
+ // Depending on the policy, N0' = N0 (no growth or linear growth), or N0' = N1 (Fibonacci), or
+ // N0' = N1' (exponential). The size of the new block is N1' * BlockIncrement * MaxAlign,
+ // after which fN0 and fN1 store N0' and N1' clamped into 23 bits. With current bit allocations,
+ // N1' is limited to 2^24, and assuming MaxAlign=16, then BlockIncrement must be '2' in order to
+ // eventually reach the hard 2^29 size limit of SkBlockAllocator.
+
+ // Next heap block size = (fBlockIncrement * alignof(std::max_align_t) * (fN0 + fN1))
+ uint64_t fBlockIncrement : 16;
+ uint64_t fGrowthPolicy : 2; // GrowthPolicy
+ uint64_t fN0 : 23; // = 1 for linear/exp.; = 0 for fixed/fibonacci, initially
+ uint64_t fN1 : 23; // = 1 initially
+
+ // Inline head block, must be at the end so that it can utilize any additional reserved space
+ // from the initial allocation.
+ // The head block's prev pointer may be non-null, which signifies a scratch block that may be
+ // reused instead of allocating an entirely new block (this helps when allocate+release calls
+ // bounce back and forth across the capacity of a block).
+ alignas(kAddressAlign) Block fHead;
+
+ static_assert(kGrowthPolicyCount <= 4);
+};
+
+// A wrapper around SkBlockAllocator that includes preallocated storage for the head block.
+// N will be the preallocSize() reported by the allocator.
+template<size_t N>
+class SkSBlockAllocator : SkNoncopyable {
+public:
+ using GrowthPolicy = SkBlockAllocator::GrowthPolicy;
+
+ SkSBlockAllocator() {
+ new (fStorage) SkBlockAllocator(GrowthPolicy::kFixed, N, N - sizeof(SkBlockAllocator));
+ }
+ explicit SkSBlockAllocator(GrowthPolicy policy) {
+ new (fStorage) SkBlockAllocator(policy, N, N - sizeof(SkBlockAllocator));
+ }
+
+ SkSBlockAllocator(GrowthPolicy policy, size_t blockIncrementBytes) {
+ new (fStorage) SkBlockAllocator(policy, blockIncrementBytes, N - sizeof(SkBlockAllocator));
+ }
+
+ ~SkSBlockAllocator() {
+ this->allocator()->~SkBlockAllocator();
+ }
+
+ SkBlockAllocator* operator->() { return this->allocator(); }
+ const SkBlockAllocator* operator->() const { return this->allocator(); }
+
+ SkBlockAllocator* allocator() { return reinterpret_cast<SkBlockAllocator*>(fStorage); }
+ const SkBlockAllocator* allocator() const {
+ return reinterpret_cast<const SkBlockAllocator*>(fStorage);
+ }
+
+private:
+ static_assert(N >= sizeof(SkBlockAllocator));
+
+ // Will be used to placement new the allocator
+ alignas(SkBlockAllocator) char fStorage[N];
+};
+
+///////////////////////////////////////////////////////////////////////////////////////////////////
+// Template and inline implementations
+
+SK_MAKE_BITFIELD_OPS(SkBlockAllocator::ReserveFlags)
+
+template<size_t Align, size_t Padding>
+constexpr size_t SkBlockAllocator::BlockOverhead() {
+ static_assert(SkAlignTo(kDataStart + Padding, Align) >= sizeof(Block));
+ return SkAlignTo(kDataStart + Padding, Align);
+}
+
+template<size_t Align, size_t Padding>
+constexpr size_t SkBlockAllocator::Overhead() {
+ // NOTE: On most platforms, SkBlockAllocator is packed; this is not the case on debug builds
+ // due to extra fields, or on WASM due to 4byte pointers but 16byte max align.
+ return std::max(sizeof(SkBlockAllocator),
+ offsetof(SkBlockAllocator, fHead) + BlockOverhead<Align, Padding>());
+}
+
+template<size_t Align, size_t Padding>
+constexpr size_t SkBlockAllocator::MaxBlockSize() {
+ // Without loss of generality, assumes 'align' will be the largest encountered alignment for the
+ // allocator (if it's not, the largest align will be encountered by the compiler and pass/fail
+ // the same set of static asserts).
+ return BlockOverhead<Align, Padding>() + kMaxAllocationSize;
+}
+
+template<size_t Align, size_t Padding>
+void SkBlockAllocator::reserve(size_t size, ReserveFlags flags) {
+ if (size > kMaxAllocationSize) {
+ SK_ABORT("Allocation too large (%zu bytes requested)", size);
+ }
+ int iSize = (int) size;
+ if ((flags & kIgnoreExistingBytes_Flag) ||
+ this->currentBlock()->avail<Align, Padding>() < iSize) {
+
+ int blockSize = BlockOverhead<Align, Padding>() + iSize;
+ int maxSize = (flags & kIgnoreGrowthPolicy_Flag) ? blockSize
+ : MaxBlockSize<Align, Padding>();
+ SkASSERT((size_t) maxSize <= (MaxBlockSize<Align, Padding>()));
+
+ SkDEBUGCODE(auto oldTail = fTail;)
+ this->addBlock(blockSize, maxSize);
+ SkASSERT(fTail != oldTail);
+ // Releasing the just added block will move it into scratch space, allowing the original
+ // tail's bytes to be used first before the scratch block is activated.
+ this->releaseBlock(fTail);
+ }
+}
+
+template <size_t Align, size_t Padding>
+SkBlockAllocator::ByteRange SkBlockAllocator::allocate(size_t size) {
+ // Amount of extra space for a new block to make sure the allocation can succeed.
+ static constexpr int kBlockOverhead = (int) BlockOverhead<Align, Padding>();
+
+ // Ensures 'offset' and 'end' calculations will be valid
+ static_assert((kMaxAllocationSize + SkAlignTo(MaxBlockSize<Align, Padding>(), Align))
+ <= (size_t) std::numeric_limits<int32_t>::max());
+ // Ensures size + blockOverhead + addBlock's alignment operations will be valid
+ static_assert(kMaxAllocationSize + kBlockOverhead + ((1 << 12) - 1) // 4K align for large blocks
+ <= std::numeric_limits<int32_t>::max());
+
+ if (size > kMaxAllocationSize) {
+ SK_ABORT("Allocation too large (%zu bytes requested)", size);
+ }
+
+ int iSize = (int) size;
+ int offset = fTail->cursor<Align, Padding>();
+ int end = offset + iSize;
+ if (end > fTail->fSize) {
+ this->addBlock(iSize + kBlockOverhead, MaxBlockSize<Align, Padding>());
+ offset = fTail->cursor<Align, Padding>();
+ end = offset + iSize;
+ }
+
+ // Check invariants
+ SkASSERT(end <= fTail->fSize);
+ SkASSERT(end - offset == iSize);
+ SkASSERT(offset - fTail->fCursor >= (int) Padding &&
+ offset - fTail->fCursor <= (int) (Padding + Align - 1));
+ SkASSERT(reinterpret_cast<uintptr_t>(fTail->ptr(offset)) % Align == 0);
+
+ int start = fTail->fCursor;
+ fTail->fCursor = end;
+
+ fTail->unpoisonRange(offset - Padding, end);
+
+ return {fTail, start, offset, end};
+}
+
+template <size_t Align, size_t Padding>
+SkBlockAllocator::Block* SkBlockAllocator::owningBlock(const void* p, int start) {
+ // 'p' was originally formed by aligning 'block + start + Padding', producing the inequality:
+ // block + start + Padding <= p <= block + start + Padding + Align-1
+ // Rearranging this yields:
+ // block <= p - start - Padding <= block + Align-1
+ // Masking these terms by ~(Align-1) reconstructs 'block' if the alignment of the block is
+ // greater than or equal to Align (since block & ~(Align-1) == (block + Align-1) & ~(Align-1)
+ // in that case). Overalignment does not reduce to inequality unfortunately.
+ if /* constexpr */ (Align <= kAddressAlign) {
+ Block* block = reinterpret_cast<Block*>(
+ (reinterpret_cast<uintptr_t>(p) - start - Padding) & ~(Align - 1));
+ SkASSERT(block->fSentinel == kAssignedMarker);
+ return block;
+ } else {
+ // There's not a constant-time expression available to reconstruct the block from 'p',
+ // but this is unlikely to happen frequently.
+ return this->findOwningBlock(p);
+ }
+}
+
+template <size_t Align, size_t Padding>
+int SkBlockAllocator::Block::alignedOffset(int offset) const {
+ static_assert(SkIsPow2(Align));
+ // Aligning adds (Padding + Align - 1) as an intermediate step, so ensure that can't overflow
+ static_assert(MaxBlockSize<Align, Padding>() + Padding + Align - 1
+ <= (size_t) std::numeric_limits<int32_t>::max());
+
+ if /* constexpr */ (Align <= kAddressAlign) {
+ // Same as SkAlignTo, but operates on ints instead of size_t
+ return (offset + Padding + Align - 1) & ~(Align - 1);
+ } else {
+ // Must take into account that 'this' may be starting at a pointer that doesn't satisfy the
+ // larger alignment request, so must align the entire pointer, not just offset
+ uintptr_t blockPtr = reinterpret_cast<uintptr_t>(this);
+ uintptr_t alignedPtr = (blockPtr + offset + Padding + Align - 1) & ~(Align - 1);
+ SkASSERT(alignedPtr - blockPtr <= (uintptr_t) std::numeric_limits<int32_t>::max());
+ return (int) (alignedPtr - blockPtr);
+ }
+}
+
+bool SkBlockAllocator::Block::resize(int start, int end, int deltaBytes) {
+ SkASSERT(fSentinel == kAssignedMarker);
+ SkASSERT(start >= kDataStart && end <= fSize && start < end);
+
+ if (deltaBytes > kMaxAllocationSize || deltaBytes < -kMaxAllocationSize) {
+ // Cannot possibly satisfy the resize and could overflow subsequent math
+ return false;
+ }
+ if (fCursor == end) {
+ int nextCursor = end + deltaBytes;
+ SkASSERT(nextCursor >= start);
+ // We still check nextCursor >= start for release builds that wouldn't assert.
+ if (nextCursor <= fSize && nextCursor >= start) {
+ if (nextCursor < fCursor) {
+ // The allocation got smaller; poison the space that can no longer be used.
+ this->poisonRange(nextCursor + 1, end);
+ } else {
+ // The allocation got larger; unpoison the space that can now be used.
+ this->unpoisonRange(end, nextCursor);
+ }
+
+ fCursor = nextCursor;
+ return true;
+ }
+ }
+ return false;
+}
+
+// NOTE: release is equivalent to resize(start, end, start - end), and the compiler can optimize
+// most of the operations away, but it wasn't able to remove the unnecessary branch comparing the
+// new cursor to the block size or old start, so release() gets a specialization.
+bool SkBlockAllocator::Block::release(int start, int end) {
+ SkASSERT(fSentinel == kAssignedMarker);
+ SkASSERT(start >= kDataStart && end <= fSize && start < end);
+
+ this->poisonRange(start, end);
+
+ if (fCursor == end) {
+ fCursor = start;
+ return true;
+ } else {
+ return false;
+ }
+}
+
+///////// Block iteration
+template <bool Forward, bool Const>
+class SkBlockAllocator::BlockIter {
+private:
+ using BlockT = typename std::conditional<Const, const Block, Block>::type;
+ using AllocatorT =
+ typename std::conditional<Const, const SkBlockAllocator, SkBlockAllocator>::type;
+
+public:
+ BlockIter(AllocatorT* allocator) : fAllocator(allocator) {}
+
+ class Item {
+ public:
+ bool operator!=(const Item& other) const { return fBlock != other.fBlock; }
+
+ BlockT* operator*() const { return fBlock; }
+
+ Item& operator++() {
+ this->advance(fNext);
+ return *this;
+ }
+
+ private:
+ friend BlockIter;
+
+ Item(BlockT* block) { this->advance(block); }
+
+ void advance(BlockT* block) {
+ fBlock = block;
+ fNext = block ? (Forward ? block->fNext : block->fPrev) : nullptr;
+ if (!Forward && fNext && fNext->isScratch()) {
+ // For reverse-iteration only, we need to stop at the head, not the scratch block
+ // possibly stashed in head->prev.
+ fNext = nullptr;
+ }
+ SkASSERT(!fNext || !fNext->isScratch());
+ }
+
+ BlockT* fBlock;
+ // Cache this before operator++ so that fBlock can be released during iteration
+ BlockT* fNext;
+ };
+
+ Item begin() const { return Item(Forward ? &fAllocator->fHead : fAllocator->fTail); }
+ Item end() const { return Item(nullptr); }
+
+private:
+ AllocatorT* fAllocator;
+};
+
+SkBlockAllocator::BlockIter<true, false> SkBlockAllocator::blocks() {
+ return BlockIter<true, false>(this);
+}
+SkBlockAllocator::BlockIter<true, true> SkBlockAllocator::blocks() const {
+ return BlockIter<true, true>(this);
+}
+SkBlockAllocator::BlockIter<false, false> SkBlockAllocator::rblocks() {
+ return BlockIter<false, false>(this);
+}
+SkBlockAllocator::BlockIter<false, true> SkBlockAllocator::rblocks() const {
+ return BlockIter<false, true>(this);
+}
+
+#endif // SkBlockAllocator_DEFINED