From 9e3c08db40b8916968b9f30096c7be3f00ce9647 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 21 Apr 2024 13:44:51 +0200 Subject: Adding upstream version 1:115.7.0. Signed-off-by: Daniel Baumann --- third_party/rust/regex-syntax/src/utf8.rs | 587 ++++++++++++++++++++++++++++++ 1 file changed, 587 insertions(+) create mode 100644 third_party/rust/regex-syntax/src/utf8.rs (limited to 'third_party/rust/regex-syntax/src/utf8.rs') diff --git a/third_party/rust/regex-syntax/src/utf8.rs b/third_party/rust/regex-syntax/src/utf8.rs new file mode 100644 index 0000000000..b9c8655320 --- /dev/null +++ b/third_party/rust/regex-syntax/src/utf8.rs @@ -0,0 +1,587 @@ +/*! +Converts ranges of Unicode scalar values to equivalent ranges of UTF-8 bytes. + +This is sub-module is useful for constructing byte based automatons that need +to embed UTF-8 decoding. The most common use of this module is in conjunction +with the [`hir::ClassUnicodeRange`](../hir/struct.ClassUnicodeRange.html) type. + +See the documentation on the `Utf8Sequences` iterator for more details and +an example. + +# Wait, what is this? + +This is simplest to explain with an example. Let's say you wanted to test +whether a particular byte sequence was a Cyrillic character. One possible +scalar value range is `[0400-04FF]`. The set of allowed bytes for this +range can be expressed as a sequence of byte ranges: + +```text +[D0-D3][80-BF] +``` + +This is simple enough: simply encode the boundaries, `0400` encodes to +`D0 80` and `04FF` encodes to `D3 BF`, and create ranges from each +corresponding pair of bytes: `D0` to `D3` and `80` to `BF`. + +However, what if you wanted to add the Cyrillic Supplementary characters to +your range? Your range might then become `[0400-052F]`. The same procedure +as above doesn't quite work because `052F` encodes to `D4 AF`. The byte ranges +you'd get from the previous transformation would be `[D0-D4][80-AF]`. However, +this isn't quite correct because this range doesn't capture many characters, +for example, `04FF` (because its last byte, `BF` isn't in the range `80-AF`). + +Instead, you need multiple sequences of byte ranges: + +```text +[D0-D3][80-BF] # matches codepoints 0400-04FF +[D4][80-AF] # matches codepoints 0500-052F +``` + +This gets even more complicated if you want bigger ranges, particularly if +they naively contain surrogate codepoints. For example, the sequence of byte +ranges for the basic multilingual plane (`[0000-FFFF]`) look like this: + +```text +[0-7F] +[C2-DF][80-BF] +[E0][A0-BF][80-BF] +[E1-EC][80-BF][80-BF] +[ED][80-9F][80-BF] +[EE-EF][80-BF][80-BF] +``` + +Note that the byte ranges above will *not* match any erroneous encoding of +UTF-8, including encodings of surrogate codepoints. + +And, of course, for all of Unicode (`[000000-10FFFF]`): + +```text +[0-7F] +[C2-DF][80-BF] +[E0][A0-BF][80-BF] +[E1-EC][80-BF][80-BF] +[ED][80-9F][80-BF] +[EE-EF][80-BF][80-BF] +[F0][90-BF][80-BF][80-BF] +[F1-F3][80-BF][80-BF][80-BF] +[F4][80-8F][80-BF][80-BF] +``` + +This module automates the process of creating these byte ranges from ranges of +Unicode scalar values. + +# Lineage + +I got the idea and general implementation strategy from Russ Cox in his +[article on regexps](https://web.archive.org/web/20160404141123/https://swtch.com/~rsc/regexp/regexp3.html) and RE2. +Russ Cox got it from Ken Thompson's `grep` (no source, folk lore?). +I also got the idea from +[Lucene](https://github.com/apache/lucene-solr/blob/ae93f4e7ac6a3908046391de35d4f50a0d3c59ca/lucene/core/src/java/org/apache/lucene/util/automaton/UTF32ToUTF8.java), +which uses it for executing automata on their term index. +*/ + +#![deny(missing_docs)] + +use std::char; +use std::fmt; +use std::iter::FusedIterator; +use std::slice; + +const MAX_UTF8_BYTES: usize = 4; + +/// Utf8Sequence represents a sequence of byte ranges. +/// +/// To match a Utf8Sequence, a candidate byte sequence must match each +/// successive range. +/// +/// For example, if there are two ranges, `[C2-DF][80-BF]`, then the byte +/// sequence `\xDD\x61` would not match because `0x61 < 0x80`. +#[derive(Copy, Clone, Eq, PartialEq, PartialOrd, Ord)] +pub enum Utf8Sequence { + /// One byte range. + One(Utf8Range), + /// Two successive byte ranges. + Two([Utf8Range; 2]), + /// Three successive byte ranges. + Three([Utf8Range; 3]), + /// Four successive byte ranges. + Four([Utf8Range; 4]), +} + +impl Utf8Sequence { + /// Creates a new UTF-8 sequence from the encoded bytes of a scalar value + /// range. + /// + /// This assumes that `start` and `end` have the same length. + fn from_encoded_range(start: &[u8], end: &[u8]) -> Self { + assert_eq!(start.len(), end.len()); + match start.len() { + 2 => Utf8Sequence::Two([ + Utf8Range::new(start[0], end[0]), + Utf8Range::new(start[1], end[1]), + ]), + 3 => Utf8Sequence::Three([ + Utf8Range::new(start[0], end[0]), + Utf8Range::new(start[1], end[1]), + Utf8Range::new(start[2], end[2]), + ]), + 4 => Utf8Sequence::Four([ + Utf8Range::new(start[0], end[0]), + Utf8Range::new(start[1], end[1]), + Utf8Range::new(start[2], end[2]), + Utf8Range::new(start[3], end[3]), + ]), + n => unreachable!("invalid encoded length: {}", n), + } + } + + /// Returns the underlying sequence of byte ranges as a slice. + pub fn as_slice(&self) -> &[Utf8Range] { + use self::Utf8Sequence::*; + match *self { + One(ref r) => slice::from_ref(r), + Two(ref r) => &r[..], + Three(ref r) => &r[..], + Four(ref r) => &r[..], + } + } + + /// Returns the number of byte ranges in this sequence. + /// + /// The length is guaranteed to be in the closed interval `[1, 4]`. + pub fn len(&self) -> usize { + self.as_slice().len() + } + + /// Reverses the ranges in this sequence. + /// + /// For example, if this corresponds to the following sequence: + /// + /// ```text + /// [D0-D3][80-BF] + /// ``` + /// + /// Then after reversal, it will be + /// + /// ```text + /// [80-BF][D0-D3] + /// ``` + /// + /// This is useful when one is constructing a UTF-8 automaton to match + /// character classes in reverse. + pub fn reverse(&mut self) { + match *self { + Utf8Sequence::One(_) => {} + Utf8Sequence::Two(ref mut x) => x.reverse(), + Utf8Sequence::Three(ref mut x) => x.reverse(), + Utf8Sequence::Four(ref mut x) => x.reverse(), + } + } + + /// Returns true if and only if a prefix of `bytes` matches this sequence + /// of byte ranges. + pub fn matches(&self, bytes: &[u8]) -> bool { + if bytes.len() < self.len() { + return false; + } + for (&b, r) in bytes.iter().zip(self) { + if !r.matches(b) { + return false; + } + } + true + } +} + +impl<'a> IntoIterator for &'a Utf8Sequence { + type IntoIter = slice::Iter<'a, Utf8Range>; + type Item = &'a Utf8Range; + + fn into_iter(self) -> Self::IntoIter { + self.as_slice().iter() + } +} + +impl fmt::Debug for Utf8Sequence { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + use self::Utf8Sequence::*; + match *self { + One(ref r) => write!(f, "{:?}", r), + Two(ref r) => write!(f, "{:?}{:?}", r[0], r[1]), + Three(ref r) => write!(f, "{:?}{:?}{:?}", r[0], r[1], r[2]), + Four(ref r) => { + write!(f, "{:?}{:?}{:?}{:?}", r[0], r[1], r[2], r[3]) + } + } + } +} + +/// A single inclusive range of UTF-8 bytes. +#[derive(Clone, Copy, Eq, PartialEq, PartialOrd, Ord)] +pub struct Utf8Range { + /// Start of byte range (inclusive). + pub start: u8, + /// End of byte range (inclusive). + pub end: u8, +} + +impl Utf8Range { + fn new(start: u8, end: u8) -> Self { + Utf8Range { start, end } + } + + /// Returns true if and only if the given byte is in this range. + pub fn matches(&self, b: u8) -> bool { + self.start <= b && b <= self.end + } +} + +impl fmt::Debug for Utf8Range { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + if self.start == self.end { + write!(f, "[{:X}]", self.start) + } else { + write!(f, "[{:X}-{:X}]", self.start, self.end) + } + } +} + +/// An iterator over ranges of matching UTF-8 byte sequences. +/// +/// The iteration represents an alternation of comprehensive byte sequences +/// that match precisely the set of UTF-8 encoded scalar values. +/// +/// A byte sequence corresponds to one of the scalar values in the range given +/// if and only if it completely matches exactly one of the sequences of byte +/// ranges produced by this iterator. +/// +/// Each sequence of byte ranges matches a unique set of bytes. That is, no two +/// sequences will match the same bytes. +/// +/// # Example +/// +/// This shows how to match an arbitrary byte sequence against a range of +/// scalar values. +/// +/// ```rust +/// use regex_syntax::utf8::{Utf8Sequences, Utf8Sequence}; +/// +/// fn matches(seqs: &[Utf8Sequence], bytes: &[u8]) -> bool { +/// for range in seqs { +/// if range.matches(bytes) { +/// return true; +/// } +/// } +/// false +/// } +/// +/// // Test the basic multilingual plane. +/// let seqs: Vec<_> = Utf8Sequences::new('\u{0}', '\u{FFFF}').collect(); +/// +/// // UTF-8 encoding of 'a'. +/// assert!(matches(&seqs, &[0x61])); +/// // UTF-8 encoding of '☃' (`\u{2603}`). +/// assert!(matches(&seqs, &[0xE2, 0x98, 0x83])); +/// // UTF-8 encoding of `\u{10348}` (outside the BMP). +/// assert!(!matches(&seqs, &[0xF0, 0x90, 0x8D, 0x88])); +/// // Tries to match against a UTF-8 encoding of a surrogate codepoint, +/// // which is invalid UTF-8, and therefore fails, despite the fact that +/// // the corresponding codepoint (0xD800) falls in the range given. +/// assert!(!matches(&seqs, &[0xED, 0xA0, 0x80])); +/// // And fails against plain old invalid UTF-8. +/// assert!(!matches(&seqs, &[0xFF, 0xFF])); +/// ``` +/// +/// If this example seems circuitous, that's because it is! It's meant to be +/// illustrative. In practice, you could just try to decode your byte sequence +/// and compare it with the scalar value range directly. However, this is not +/// always possible (for example, in a byte based automaton). +#[derive(Debug)] +pub struct Utf8Sequences { + range_stack: Vec, +} + +impl Utf8Sequences { + /// Create a new iterator over UTF-8 byte ranges for the scalar value range + /// given. + pub fn new(start: char, end: char) -> Self { + let mut it = Utf8Sequences { range_stack: vec![] }; + it.push(start as u32, end as u32); + it + } + + /// reset resets the scalar value range. + /// Any existing state is cleared, but resources may be reused. + /// + /// N.B. Benchmarks say that this method is dubious. + #[doc(hidden)] + pub fn reset(&mut self, start: char, end: char) { + self.range_stack.clear(); + self.push(start as u32, end as u32); + } + + fn push(&mut self, start: u32, end: u32) { + self.range_stack.push(ScalarRange { start, end }); + } +} + +struct ScalarRange { + start: u32, + end: u32, +} + +impl fmt::Debug for ScalarRange { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + write!(f, "ScalarRange({:X}, {:X})", self.start, self.end) + } +} + +impl Iterator for Utf8Sequences { + type Item = Utf8Sequence; + + fn next(&mut self) -> Option { + 'TOP: while let Some(mut r) = self.range_stack.pop() { + 'INNER: loop { + if let Some((r1, r2)) = r.split() { + self.push(r2.start, r2.end); + r.start = r1.start; + r.end = r1.end; + continue 'INNER; + } + if !r.is_valid() { + continue 'TOP; + } + for i in 1..MAX_UTF8_BYTES { + let max = max_scalar_value(i); + if r.start <= max && max < r.end { + self.push(max + 1, r.end); + r.end = max; + continue 'INNER; + } + } + if let Some(ascii_range) = r.as_ascii() { + return Some(Utf8Sequence::One(ascii_range)); + } + for i in 1..MAX_UTF8_BYTES { + let m = (1 << (6 * i)) - 1; + if (r.start & !m) != (r.end & !m) { + if (r.start & m) != 0 { + self.push((r.start | m) + 1, r.end); + r.end = r.start | m; + continue 'INNER; + } + if (r.end & m) != m { + self.push(r.end & !m, r.end); + r.end = (r.end & !m) - 1; + continue 'INNER; + } + } + } + let mut start = [0; MAX_UTF8_BYTES]; + let mut end = [0; MAX_UTF8_BYTES]; + let n = r.encode(&mut start, &mut end); + return Some(Utf8Sequence::from_encoded_range( + &start[0..n], + &end[0..n], + )); + } + } + None + } +} + +impl FusedIterator for Utf8Sequences {} + +impl ScalarRange { + /// split splits this range if it overlaps with a surrogate codepoint. + /// + /// Either or both ranges may be invalid. + fn split(&self) -> Option<(ScalarRange, ScalarRange)> { + if self.start < 0xE000 && self.end > 0xD7FF { + Some(( + ScalarRange { start: self.start, end: 0xD7FF }, + ScalarRange { start: 0xE000, end: self.end }, + )) + } else { + None + } + } + + /// is_valid returns true if and only if start <= end. + fn is_valid(&self) -> bool { + self.start <= self.end + } + + /// as_ascii returns this range as a Utf8Range if and only if all scalar + /// values in this range can be encoded as a single byte. + fn as_ascii(&self) -> Option { + if self.is_ascii() { + Some(Utf8Range::new(self.start as u8, self.end as u8)) + } else { + None + } + } + + /// is_ascii returns true if the range is ASCII only (i.e., takes a single + /// byte to encode any scalar value). + fn is_ascii(&self) -> bool { + self.is_valid() && self.end <= 0x7f + } + + /// encode writes the UTF-8 encoding of the start and end of this range + /// to the corresponding destination slices, and returns the number of + /// bytes written. + /// + /// The slices should have room for at least `MAX_UTF8_BYTES`. + fn encode(&self, start: &mut [u8], end: &mut [u8]) -> usize { + let cs = char::from_u32(self.start).unwrap(); + let ce = char::from_u32(self.end).unwrap(); + let ss = cs.encode_utf8(start); + let se = ce.encode_utf8(end); + assert_eq!(ss.len(), se.len()); + ss.len() + } +} + +fn max_scalar_value(nbytes: usize) -> u32 { + match nbytes { + 1 => 0x007F, + 2 => 0x07FF, + 3 => 0xFFFF, + 4 => 0x0010_FFFF, + _ => unreachable!("invalid UTF-8 byte sequence size"), + } +} + +#[cfg(test)] +mod tests { + use std::char; + + use crate::utf8::{Utf8Range, Utf8Sequences}; + + fn rutf8(s: u8, e: u8) -> Utf8Range { + Utf8Range::new(s, e) + } + + fn never_accepts_surrogate_codepoints(start: char, end: char) { + for cp in 0xD800..0xE000 { + let buf = encode_surrogate(cp); + for r in Utf8Sequences::new(start, end) { + if r.matches(&buf) { + panic!( + "Sequence ({:X}, {:X}) contains range {:?}, \ + which matches surrogate code point {:X} \ + with encoded bytes {:?}", + start as u32, end as u32, r, cp, buf, + ); + } + } + } + } + + #[test] + fn codepoints_no_surrogates() { + never_accepts_surrogate_codepoints('\u{0}', '\u{FFFF}'); + never_accepts_surrogate_codepoints('\u{0}', '\u{10FFFF}'); + never_accepts_surrogate_codepoints('\u{0}', '\u{10FFFE}'); + never_accepts_surrogate_codepoints('\u{80}', '\u{10FFFF}'); + never_accepts_surrogate_codepoints('\u{D7FF}', '\u{E000}'); + } + + #[test] + fn single_codepoint_one_sequence() { + // Tests that every range of scalar values that contains a single + // scalar value is recognized by one sequence of byte ranges. + for i in 0x0..=0x0010_FFFF { + let c = match char::from_u32(i) { + None => continue, + Some(c) => c, + }; + let seqs: Vec<_> = Utf8Sequences::new(c, c).collect(); + assert_eq!(seqs.len(), 1); + } + } + + #[test] + fn bmp() { + use crate::utf8::Utf8Sequence::*; + + let seqs = Utf8Sequences::new('\u{0}', '\u{FFFF}').collect::>(); + assert_eq!( + seqs, + vec![ + One(rutf8(0x0, 0x7F)), + Two([rutf8(0xC2, 0xDF), rutf8(0x80, 0xBF)]), + Three([ + rutf8(0xE0, 0xE0), + rutf8(0xA0, 0xBF), + rutf8(0x80, 0xBF) + ]), + Three([ + rutf8(0xE1, 0xEC), + rutf8(0x80, 0xBF), + rutf8(0x80, 0xBF) + ]), + Three([ + rutf8(0xED, 0xED), + rutf8(0x80, 0x9F), + rutf8(0x80, 0xBF) + ]), + Three([ + rutf8(0xEE, 0xEF), + rutf8(0x80, 0xBF), + rutf8(0x80, 0xBF) + ]), + ] + ); + } + + #[test] + fn reverse() { + use crate::utf8::Utf8Sequence::*; + + let mut s = One(rutf8(0xA, 0xB)); + s.reverse(); + assert_eq!(s.as_slice(), &[rutf8(0xA, 0xB)]); + + let mut s = Two([rutf8(0xA, 0xB), rutf8(0xB, 0xC)]); + s.reverse(); + assert_eq!(s.as_slice(), &[rutf8(0xB, 0xC), rutf8(0xA, 0xB)]); + + let mut s = Three([rutf8(0xA, 0xB), rutf8(0xB, 0xC), rutf8(0xC, 0xD)]); + s.reverse(); + assert_eq!( + s.as_slice(), + &[rutf8(0xC, 0xD), rutf8(0xB, 0xC), rutf8(0xA, 0xB)] + ); + + let mut s = Four([ + rutf8(0xA, 0xB), + rutf8(0xB, 0xC), + rutf8(0xC, 0xD), + rutf8(0xD, 0xE), + ]); + s.reverse(); + assert_eq!( + s.as_slice(), + &[ + rutf8(0xD, 0xE), + rutf8(0xC, 0xD), + rutf8(0xB, 0xC), + rutf8(0xA, 0xB) + ] + ); + } + + fn encode_surrogate(cp: u32) -> [u8; 3] { + const TAG_CONT: u8 = 0b1000_0000; + const TAG_THREE_B: u8 = 0b1110_0000; + + assert!(0xD800 <= cp && cp < 0xE000); + let mut dst = [0; 3]; + dst[0] = (cp >> 12 & 0x0F) as u8 | TAG_THREE_B; + dst[1] = (cp >> 6 & 0x3F) as u8 | TAG_CONT; + dst[2] = (cp & 0x3F) as u8 | TAG_CONT; + dst + } +} -- cgit v1.2.3