/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkPathOpsConic_DEFINED #define SkPathOpsConic_DEFINED #include "include/core/SkPoint.h" #include "include/core/SkScalar.h" #include "include/private/base/SkDebug.h" #include "src/base/SkArenaAlloc.h" #include "src/pathops/SkPathOpsDebug.h" #include "src/pathops/SkPathOpsPoint.h" #include "src/pathops/SkPathOpsQuad.h" #include "src/pathops/SkPathOpsTCurve.h" class SkIntersections; class SkOpGlobalState; struct SkDCubic; struct SkDLine; struct SkDRect; struct SkDConic { static const int kPointCount = 3; static const int kPointLast = kPointCount - 1; static const int kMaxIntersections = 4; SkDQuad fPts; SkScalar fWeight; bool collapsed() const { return fPts.collapsed(); } bool controlsInside() const { return fPts.controlsInside(); } void debugInit() { fPts.debugInit(); fWeight = 0; } void debugSet(const SkDPoint* pts, SkScalar weight); SkDConic flip() const { SkDConic result = {{{fPts[2], fPts[1], fPts[0]} SkDEBUGPARAMS(fPts.fDebugGlobalState) }, fWeight}; return result; } #ifdef SK_DEBUG SkOpGlobalState* globalState() const { return fPts.globalState(); } #endif static bool IsConic() { return true; } const SkDConic& set(const SkPoint pts[kPointCount], SkScalar weight SkDEBUGPARAMS(SkOpGlobalState* state = nullptr)) { fPts.set(pts SkDEBUGPARAMS(state)); fWeight = weight; return *this; } const SkDPoint& operator[](int n) const { return fPts[n]; } SkDPoint& operator[](int n) { return fPts[n]; } static int AddValidTs(double s[], int realRoots, double* t) { return SkDQuad::AddValidTs(s, realRoots, t); } void align(int endIndex, SkDPoint* dstPt) const { fPts.align(endIndex, dstPt); } SkDVector dxdyAtT(double t) const; static int FindExtrema(const double src[], SkScalar weight, double tValue[1]); bool hullIntersects(const SkDQuad& quad, bool* isLinear) const { return fPts.hullIntersects(quad, isLinear); } bool hullIntersects(const SkDConic& conic, bool* isLinear) const { return fPts.hullIntersects(conic.fPts, isLinear); } bool hullIntersects(const SkDCubic& cubic, bool* isLinear) const; bool isLinear(int startIndex, int endIndex) const { return fPts.isLinear(startIndex, endIndex); } static int maxIntersections() { return kMaxIntersections; } bool monotonicInX() const { return fPts.monotonicInX(); } bool monotonicInY() const { return fPts.monotonicInY(); } void otherPts(int oddMan, const SkDPoint* endPt[2]) const { fPts.otherPts(oddMan, endPt); } static int pointCount() { return kPointCount; } static int pointLast() { return kPointLast; } SkDPoint ptAtT(double t) const; static int RootsReal(double A, double B, double C, double t[2]) { return SkDQuad::RootsReal(A, B, C, t); } static int RootsValidT(const double A, const double B, const double C, double s[2]) { return SkDQuad::RootsValidT(A, B, C, s); } SkDConic subDivide(double t1, double t2) const; void subDivide(double t1, double t2, SkDConic* c) const { *c = this->subDivide(t1, t2); } static SkDConic SubDivide(const SkPoint a[kPointCount], SkScalar weight, double t1, double t2) { SkDConic conic; conic.set(a, weight); return conic.subDivide(t1, t2); } SkDPoint subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2, SkScalar* weight) const; static SkDPoint SubDivide(const SkPoint pts[kPointCount], SkScalar weight, const SkDPoint& a, const SkDPoint& c, double t1, double t2, SkScalar* newWeight) { SkDConic conic; conic.set(pts, weight); return conic.subDivide(a, c, t1, t2, newWeight); } // utilities callable by the user from the debugger when the implementation code is linked in void dump() const; void dumpID(int id) const; void dumpInner() const; }; class SkTConic : public SkTCurve { public: SkDConic fConic; SkTConic() {} SkTConic(const SkDConic& c) : fConic(c) { } ~SkTConic() override {} const SkDPoint& operator[](int n) const override { return fConic[n]; } SkDPoint& operator[](int n) override { return fConic[n]; } bool collapsed() const override { return fConic.collapsed(); } bool controlsInside() const override { return fConic.controlsInside(); } void debugInit() override { return fConic.debugInit(); } #if DEBUG_T_SECT void dumpID(int id) const override { return fConic.dumpID(id); } #endif SkDVector dxdyAtT(double t) const override { return fConic.dxdyAtT(t); } #ifdef SK_DEBUG SkOpGlobalState* globalState() const override { return fConic.globalState(); } #endif bool hullIntersects(const SkDQuad& quad, bool* isLinear) const override; bool hullIntersects(const SkDConic& conic, bool* isLinear) const override { return conic.hullIntersects(fConic, isLinear); } bool hullIntersects(const SkDCubic& cubic, bool* isLinear) const override; bool hullIntersects(const SkTCurve& curve, bool* isLinear) const override { return curve.hullIntersects(fConic, isLinear); } int intersectRay(SkIntersections* i, const SkDLine& line) const override; bool IsConic() const override { return true; } SkTCurve* make(SkArenaAlloc& heap) const override { return heap.make(); } int maxIntersections() const override { return SkDConic::kMaxIntersections; } void otherPts(int oddMan, const SkDPoint* endPt[2]) const override { fConic.otherPts(oddMan, endPt); } int pointCount() const override { return SkDConic::kPointCount; } int pointLast() const override { return SkDConic::kPointLast; } SkDPoint ptAtT(double t) const override { return fConic.ptAtT(t); } void setBounds(SkDRect* ) const override; void subDivide(double t1, double t2, SkTCurve* curve) const override { ((SkTConic*) curve)->fConic = fConic.subDivide(t1, t2); } }; #endif