1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
// Copyright (c) 2011-2016 Google Inc.
// Use of this source code is governed by a BSD-style license that can be
// found in the gfx/skia/LICENSE file.
#include "SkConvolver.h"
#include <immintrin.h>
namespace skia {
void convolve_vertically_avx2(
const SkConvolutionFilter1D::ConvolutionFixed* filter, int filterLen,
unsigned char* const* srcRows, int width, unsigned char* out,
bool hasAlpha) {
// It's simpler to work with the output array in terms of 4-byte pixels.
auto* dst = (int*)out;
// Output up to eight pixels per iteration.
for (int x = 0; x < width; x += 8) {
// Accumulated result for 4 (non-adjacent) pairs of pixels,
// with each channel in signed 17.14 fixed point.
auto accum04 = _mm256_setzero_si256(), accum15 = _mm256_setzero_si256(),
accum26 = _mm256_setzero_si256(), accum37 = _mm256_setzero_si256();
// Convolve with the filter. (This inner loop is where we spend ~all our
// time.) While we can, we consume 2 filter coefficients and 2 rows of 8
// pixels each at a time.
auto convolve_16_pixels = [&](__m256i interlaced_coeffs,
__m256i pixels_01234567,
__m256i pixels_89ABCDEF) {
// Interlaced R0R8 G0G8 B0B8 A0A8 R1R9 G1G9... 32 8-bit values each.
auto _08194C5D = _mm256_unpacklo_epi8(pixels_01234567, pixels_89ABCDEF),
_2A3B6E7F = _mm256_unpackhi_epi8(pixels_01234567, pixels_89ABCDEF);
// Still interlaced R0R8 G0G8... as above, each channel expanded to 16-bit
// lanes.
auto _084C = _mm256_unpacklo_epi8(_08194C5D, _mm256_setzero_si256()),
_195D = _mm256_unpackhi_epi8(_08194C5D, _mm256_setzero_si256()),
_2A6E = _mm256_unpacklo_epi8(_2A3B6E7F, _mm256_setzero_si256()),
_3B7F = _mm256_unpackhi_epi8(_2A3B6E7F, _mm256_setzero_si256());
// accum0_R += R0*coeff0 + R8*coeff1, etc.
accum04 = _mm256_add_epi32(accum04,
_mm256_madd_epi16(_084C, interlaced_coeffs));
accum15 = _mm256_add_epi32(accum15,
_mm256_madd_epi16(_195D, interlaced_coeffs));
accum26 = _mm256_add_epi32(accum26,
_mm256_madd_epi16(_2A6E, interlaced_coeffs));
accum37 = _mm256_add_epi32(accum37,
_mm256_madd_epi16(_3B7F, interlaced_coeffs));
};
int i = 0;
for (; i < filterLen / 2 * 2; i += 2) {
convolve_16_pixels(
_mm256_set1_epi32(*(const int32_t*)(filter + i)),
_mm256_loadu_si256((const __m256i*)(srcRows[i + 0] + x * 4)),
_mm256_loadu_si256((const __m256i*)(srcRows[i + 1] + x * 4)));
}
if (i < filterLen) {
convolve_16_pixels(
_mm256_set1_epi32(*(const int16_t*)(filter + i)),
_mm256_loadu_si256((const __m256i*)(srcRows[i] + x * 4)),
_mm256_setzero_si256());
}
// Trim the fractional parts off the accumulators.
accum04 = _mm256_srai_epi32(accum04, 14);
accum15 = _mm256_srai_epi32(accum15, 14);
accum26 = _mm256_srai_epi32(accum26, 14);
accum37 = _mm256_srai_epi32(accum37, 14);
// Pack back down to 8-bit channels.
auto pixels = _mm256_packus_epi16(_mm256_packs_epi32(accum04, accum15),
_mm256_packs_epi32(accum26, accum37));
if (hasAlpha) {
// Clamp alpha to the max of r,g,b to make sure we stay premultiplied.
__m256i max_rg = _mm256_max_epu8(pixels, _mm256_srli_epi32(pixels, 8)),
max_rgb = _mm256_max_epu8(max_rg, _mm256_srli_epi32(pixels, 16));
pixels = _mm256_max_epu8(pixels, _mm256_slli_epi32(max_rgb, 24));
} else {
// Force opaque.
pixels = _mm256_or_si256(pixels, _mm256_set1_epi32(0xff000000));
}
// Normal path to store 8 pixels.
if (x + 8 <= width) {
_mm256_storeu_si256((__m256i*)dst, pixels);
dst += 8;
continue;
}
// Store one pixel at a time on the last iteration.
for (int i = x; i < width; i++) {
*dst++ = _mm_cvtsi128_si32(_mm256_castsi256_si128(pixels));
pixels = _mm256_permutevar8x32_epi32(
pixels, _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 0));
}
}
}
} // namespace skia
|