1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "FilterNodeD2D1.h"
#include "Logging.h"
#include "SourceSurfaceD2D1.h"
#include "DrawTargetD2D1.h"
#include "ExtendInputEffectD2D1.h"
namespace mozilla {
namespace gfx {
D2D1_COLORMATRIX_ALPHA_MODE D2DAlphaMode(uint32_t aMode) {
switch (aMode) {
case ALPHA_MODE_PREMULTIPLIED:
return D2D1_COLORMATRIX_ALPHA_MODE_PREMULTIPLIED;
case ALPHA_MODE_STRAIGHT:
return D2D1_COLORMATRIX_ALPHA_MODE_STRAIGHT;
default:
MOZ_CRASH("GFX: Unknown enum value D2DAlphaMode!");
}
return D2D1_COLORMATRIX_ALPHA_MODE_PREMULTIPLIED;
}
D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE D2DAffineTransformInterpolationMode(
SamplingFilter aSamplingFilter) {
switch (aSamplingFilter) {
case SamplingFilter::GOOD:
return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_LINEAR;
case SamplingFilter::LINEAR:
return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_LINEAR;
case SamplingFilter::POINT:
return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_NEAREST_NEIGHBOR;
default:
MOZ_CRASH("GFX: Unknown enum value D2DAffineTIM!");
}
return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_LINEAR;
}
D2D1_BLEND_MODE D2DBlendMode(uint32_t aMode) {
switch (aMode) {
case BLEND_MODE_DARKEN:
return D2D1_BLEND_MODE_DARKEN;
case BLEND_MODE_LIGHTEN:
return D2D1_BLEND_MODE_LIGHTEN;
case BLEND_MODE_MULTIPLY:
return D2D1_BLEND_MODE_MULTIPLY;
case BLEND_MODE_SCREEN:
return D2D1_BLEND_MODE_SCREEN;
case BLEND_MODE_OVERLAY:
return D2D1_BLEND_MODE_OVERLAY;
case BLEND_MODE_COLOR_DODGE:
return D2D1_BLEND_MODE_COLOR_DODGE;
case BLEND_MODE_COLOR_BURN:
return D2D1_BLEND_MODE_COLOR_BURN;
case BLEND_MODE_HARD_LIGHT:
return D2D1_BLEND_MODE_HARD_LIGHT;
case BLEND_MODE_SOFT_LIGHT:
return D2D1_BLEND_MODE_SOFT_LIGHT;
case BLEND_MODE_DIFFERENCE:
return D2D1_BLEND_MODE_DIFFERENCE;
case BLEND_MODE_EXCLUSION:
return D2D1_BLEND_MODE_EXCLUSION;
case BLEND_MODE_HUE:
return D2D1_BLEND_MODE_HUE;
case BLEND_MODE_SATURATION:
return D2D1_BLEND_MODE_SATURATION;
case BLEND_MODE_COLOR:
return D2D1_BLEND_MODE_COLOR;
case BLEND_MODE_LUMINOSITY:
return D2D1_BLEND_MODE_LUMINOSITY;
default:
MOZ_CRASH("GFX: Unknown enum value D2DBlendMode!");
}
return D2D1_BLEND_MODE_DARKEN;
}
D2D1_MORPHOLOGY_MODE D2DMorphologyMode(uint32_t aMode) {
switch (aMode) {
case MORPHOLOGY_OPERATOR_DILATE:
return D2D1_MORPHOLOGY_MODE_DILATE;
case MORPHOLOGY_OPERATOR_ERODE:
return D2D1_MORPHOLOGY_MODE_ERODE;
}
MOZ_CRASH("GFX: Unknown enum value D2DMorphologyMode!");
return D2D1_MORPHOLOGY_MODE_DILATE;
}
D2D1_TURBULENCE_NOISE D2DTurbulenceNoise(uint32_t aMode) {
switch (aMode) {
case TURBULENCE_TYPE_FRACTAL_NOISE:
return D2D1_TURBULENCE_NOISE_FRACTAL_SUM;
case TURBULENCE_TYPE_TURBULENCE:
return D2D1_TURBULENCE_NOISE_TURBULENCE;
}
MOZ_CRASH("GFX: Unknown enum value D2DTurbulenceNoise!");
return D2D1_TURBULENCE_NOISE_TURBULENCE;
}
D2D1_COMPOSITE_MODE D2DFilterCompositionMode(uint32_t aMode) {
switch (aMode) {
case COMPOSITE_OPERATOR_OVER:
return D2D1_COMPOSITE_MODE_SOURCE_OVER;
case COMPOSITE_OPERATOR_IN:
return D2D1_COMPOSITE_MODE_SOURCE_IN;
case COMPOSITE_OPERATOR_OUT:
return D2D1_COMPOSITE_MODE_SOURCE_OUT;
case COMPOSITE_OPERATOR_ATOP:
return D2D1_COMPOSITE_MODE_SOURCE_ATOP;
case COMPOSITE_OPERATOR_XOR:
return D2D1_COMPOSITE_MODE_XOR;
case COMPOSITE_OPERATOR_LIGHTER:
return D2D1_COMPOSITE_MODE_PLUS;
}
MOZ_CRASH("GFX: Unknown enum value D2DFilterCompositionMode!");
return D2D1_COMPOSITE_MODE_SOURCE_OVER;
}
D2D1_CHANNEL_SELECTOR D2DChannelSelector(uint32_t aMode) {
switch (aMode) {
case COLOR_CHANNEL_R:
return D2D1_CHANNEL_SELECTOR_R;
case COLOR_CHANNEL_G:
return D2D1_CHANNEL_SELECTOR_G;
case COLOR_CHANNEL_B:
return D2D1_CHANNEL_SELECTOR_B;
case COLOR_CHANNEL_A:
return D2D1_CHANNEL_SELECTOR_A;
}
MOZ_CRASH("GFX: Unknown enum value D2DChannelSelector!");
return D2D1_CHANNEL_SELECTOR_R;
}
already_AddRefed<ID2D1Image> GetImageForSourceSurface(DrawTarget* aDT,
SourceSurface* aSurface) {
if (aDT->IsTiledDrawTarget()) {
gfxDevCrash(LogReason::FilterNodeD2D1Target)
<< "Incompatible draw target type! " << (int)aDT->IsTiledDrawTarget();
return nullptr;
}
switch (aDT->GetBackendType()) {
case BackendType::DIRECT2D1_1:
return static_cast<DrawTargetD2D1*>(aDT)->GetImageForSurface(
aSurface, ExtendMode::CLAMP);
default:
gfxDevCrash(LogReason::FilterNodeD2D1Backend)
<< "Unknown draw target type! " << (int)aDT->GetBackendType();
return nullptr;
}
}
uint32_t ConvertValue(FilterType aType, uint32_t aAttribute, uint32_t aValue) {
switch (aType) {
case FilterType::COLOR_MATRIX:
if (aAttribute == ATT_COLOR_MATRIX_ALPHA_MODE) {
aValue = D2DAlphaMode(aValue);
}
break;
case FilterType::TRANSFORM:
if (aAttribute == ATT_TRANSFORM_FILTER) {
aValue = D2DAffineTransformInterpolationMode(SamplingFilter(aValue));
}
break;
case FilterType::BLEND:
if (aAttribute == ATT_BLEND_BLENDMODE) {
aValue = D2DBlendMode(aValue);
}
break;
case FilterType::MORPHOLOGY:
if (aAttribute == ATT_MORPHOLOGY_OPERATOR) {
aValue = D2DMorphologyMode(aValue);
}
break;
case FilterType::DISPLACEMENT_MAP:
if (aAttribute == ATT_DISPLACEMENT_MAP_X_CHANNEL ||
aAttribute == ATT_DISPLACEMENT_MAP_Y_CHANNEL) {
aValue = D2DChannelSelector(aValue);
}
break;
case FilterType::TURBULENCE:
if (aAttribute == ATT_TURBULENCE_TYPE) {
aValue = D2DTurbulenceNoise(aValue);
}
break;
case FilterType::COMPOSITE:
if (aAttribute == ATT_COMPOSITE_OPERATOR) {
aValue = D2DFilterCompositionMode(aValue);
}
break;
default:
break;
}
return aValue;
}
void ConvertValue(FilterType aType, uint32_t aAttribute, IntSize& aValue) {
switch (aType) {
case FilterType::MORPHOLOGY:
if (aAttribute == ATT_MORPHOLOGY_RADII) {
aValue.width *= 2;
aValue.width += 1;
aValue.height *= 2;
aValue.height += 1;
}
break;
default:
break;
}
}
UINT32
GetD2D1InputForInput(FilterType aType, uint32_t aIndex) { return aIndex; }
#define CONVERT_PROP(moz2dname, d2dname) \
case ATT_##moz2dname: \
return D2D1_##d2dname
UINT32
GetD2D1PropForAttribute(FilterType aType, uint32_t aIndex) {
switch (aType) {
case FilterType::COLOR_MATRIX:
switch (aIndex) {
CONVERT_PROP(COLOR_MATRIX_MATRIX, COLORMATRIX_PROP_COLOR_MATRIX);
CONVERT_PROP(COLOR_MATRIX_ALPHA_MODE, COLORMATRIX_PROP_ALPHA_MODE);
}
break;
case FilterType::TRANSFORM:
switch (aIndex) {
CONVERT_PROP(TRANSFORM_MATRIX, 2DAFFINETRANSFORM_PROP_TRANSFORM_MATRIX);
CONVERT_PROP(TRANSFORM_FILTER,
2DAFFINETRANSFORM_PROP_INTERPOLATION_MODE);
}
case FilterType::BLEND:
switch (aIndex) { CONVERT_PROP(BLEND_BLENDMODE, BLEND_PROP_MODE); }
break;
case FilterType::MORPHOLOGY:
switch (aIndex) {
CONVERT_PROP(MORPHOLOGY_OPERATOR, MORPHOLOGY_PROP_MODE);
}
break;
case FilterType::FLOOD:
switch (aIndex) { CONVERT_PROP(FLOOD_COLOR, FLOOD_PROP_COLOR); }
break;
case FilterType::TILE:
switch (aIndex) { CONVERT_PROP(TILE_SOURCE_RECT, TILE_PROP_RECT); }
break;
case FilterType::TABLE_TRANSFER:
switch (aIndex) {
CONVERT_PROP(TABLE_TRANSFER_DISABLE_R, TABLETRANSFER_PROP_RED_DISABLE);
CONVERT_PROP(TABLE_TRANSFER_DISABLE_G,
TABLETRANSFER_PROP_GREEN_DISABLE);
CONVERT_PROP(TABLE_TRANSFER_DISABLE_B, TABLETRANSFER_PROP_BLUE_DISABLE);
CONVERT_PROP(TABLE_TRANSFER_DISABLE_A,
TABLETRANSFER_PROP_ALPHA_DISABLE);
CONVERT_PROP(TABLE_TRANSFER_TABLE_R, TABLETRANSFER_PROP_RED_TABLE);
CONVERT_PROP(TABLE_TRANSFER_TABLE_G, TABLETRANSFER_PROP_GREEN_TABLE);
CONVERT_PROP(TABLE_TRANSFER_TABLE_B, TABLETRANSFER_PROP_BLUE_TABLE);
CONVERT_PROP(TABLE_TRANSFER_TABLE_A, TABLETRANSFER_PROP_ALPHA_TABLE);
}
break;
case FilterType::DISCRETE_TRANSFER:
switch (aIndex) {
CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_R,
DISCRETETRANSFER_PROP_RED_DISABLE);
CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_G,
DISCRETETRANSFER_PROP_GREEN_DISABLE);
CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_B,
DISCRETETRANSFER_PROP_BLUE_DISABLE);
CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_A,
DISCRETETRANSFER_PROP_ALPHA_DISABLE);
CONVERT_PROP(DISCRETE_TRANSFER_TABLE_R,
DISCRETETRANSFER_PROP_RED_TABLE);
CONVERT_PROP(DISCRETE_TRANSFER_TABLE_G,
DISCRETETRANSFER_PROP_GREEN_TABLE);
CONVERT_PROP(DISCRETE_TRANSFER_TABLE_B,
DISCRETETRANSFER_PROP_BLUE_TABLE);
CONVERT_PROP(DISCRETE_TRANSFER_TABLE_A,
DISCRETETRANSFER_PROP_ALPHA_TABLE);
}
break;
case FilterType::LINEAR_TRANSFER:
switch (aIndex) {
CONVERT_PROP(LINEAR_TRANSFER_DISABLE_R,
LINEARTRANSFER_PROP_RED_DISABLE);
CONVERT_PROP(LINEAR_TRANSFER_DISABLE_G,
LINEARTRANSFER_PROP_GREEN_DISABLE);
CONVERT_PROP(LINEAR_TRANSFER_DISABLE_B,
LINEARTRANSFER_PROP_BLUE_DISABLE);
CONVERT_PROP(LINEAR_TRANSFER_DISABLE_A,
LINEARTRANSFER_PROP_ALPHA_DISABLE);
CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_R,
LINEARTRANSFER_PROP_RED_Y_INTERCEPT);
CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_G,
LINEARTRANSFER_PROP_GREEN_Y_INTERCEPT);
CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_B,
LINEARTRANSFER_PROP_BLUE_Y_INTERCEPT);
CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_A,
LINEARTRANSFER_PROP_ALPHA_Y_INTERCEPT);
CONVERT_PROP(LINEAR_TRANSFER_SLOPE_R, LINEARTRANSFER_PROP_RED_SLOPE);
CONVERT_PROP(LINEAR_TRANSFER_SLOPE_G, LINEARTRANSFER_PROP_GREEN_SLOPE);
CONVERT_PROP(LINEAR_TRANSFER_SLOPE_B, LINEARTRANSFER_PROP_BLUE_SLOPE);
CONVERT_PROP(LINEAR_TRANSFER_SLOPE_A, LINEARTRANSFER_PROP_ALPHA_SLOPE);
}
break;
case FilterType::GAMMA_TRANSFER:
switch (aIndex) {
CONVERT_PROP(GAMMA_TRANSFER_DISABLE_R, GAMMATRANSFER_PROP_RED_DISABLE);
CONVERT_PROP(GAMMA_TRANSFER_DISABLE_G,
GAMMATRANSFER_PROP_GREEN_DISABLE);
CONVERT_PROP(GAMMA_TRANSFER_DISABLE_B, GAMMATRANSFER_PROP_BLUE_DISABLE);
CONVERT_PROP(GAMMA_TRANSFER_DISABLE_A,
GAMMATRANSFER_PROP_ALPHA_DISABLE);
CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_R,
GAMMATRANSFER_PROP_RED_AMPLITUDE);
CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_G,
GAMMATRANSFER_PROP_GREEN_AMPLITUDE);
CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_B,
GAMMATRANSFER_PROP_BLUE_AMPLITUDE);
CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_A,
GAMMATRANSFER_PROP_ALPHA_AMPLITUDE);
CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_R,
GAMMATRANSFER_PROP_RED_EXPONENT);
CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_G,
GAMMATRANSFER_PROP_GREEN_EXPONENT);
CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_B,
GAMMATRANSFER_PROP_BLUE_EXPONENT);
CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_A,
GAMMATRANSFER_PROP_ALPHA_EXPONENT);
CONVERT_PROP(GAMMA_TRANSFER_OFFSET_R, GAMMATRANSFER_PROP_RED_OFFSET);
CONVERT_PROP(GAMMA_TRANSFER_OFFSET_G, GAMMATRANSFER_PROP_GREEN_OFFSET);
CONVERT_PROP(GAMMA_TRANSFER_OFFSET_B, GAMMATRANSFER_PROP_BLUE_OFFSET);
CONVERT_PROP(GAMMA_TRANSFER_OFFSET_A, GAMMATRANSFER_PROP_ALPHA_OFFSET);
}
break;
case FilterType::CONVOLVE_MATRIX:
switch (aIndex) {
CONVERT_PROP(CONVOLVE_MATRIX_BIAS, CONVOLVEMATRIX_PROP_BIAS);
CONVERT_PROP(CONVOLVE_MATRIX_KERNEL_MATRIX,
CONVOLVEMATRIX_PROP_KERNEL_MATRIX);
CONVERT_PROP(CONVOLVE_MATRIX_DIVISOR, CONVOLVEMATRIX_PROP_DIVISOR);
CONVERT_PROP(CONVOLVE_MATRIX_KERNEL_UNIT_LENGTH,
CONVOLVEMATRIX_PROP_KERNEL_UNIT_LENGTH);
CONVERT_PROP(CONVOLVE_MATRIX_PRESERVE_ALPHA,
CONVOLVEMATRIX_PROP_PRESERVE_ALPHA);
}
case FilterType::DISPLACEMENT_MAP:
switch (aIndex) {
CONVERT_PROP(DISPLACEMENT_MAP_SCALE, DISPLACEMENTMAP_PROP_SCALE);
CONVERT_PROP(DISPLACEMENT_MAP_X_CHANNEL,
DISPLACEMENTMAP_PROP_X_CHANNEL_SELECT);
CONVERT_PROP(DISPLACEMENT_MAP_Y_CHANNEL,
DISPLACEMENTMAP_PROP_Y_CHANNEL_SELECT);
}
break;
case FilterType::TURBULENCE:
switch (aIndex) {
CONVERT_PROP(TURBULENCE_BASE_FREQUENCY, TURBULENCE_PROP_BASE_FREQUENCY);
CONVERT_PROP(TURBULENCE_NUM_OCTAVES, TURBULENCE_PROP_NUM_OCTAVES);
CONVERT_PROP(TURBULENCE_SEED, TURBULENCE_PROP_SEED);
CONVERT_PROP(TURBULENCE_STITCHABLE, TURBULENCE_PROP_STITCHABLE);
CONVERT_PROP(TURBULENCE_TYPE, TURBULENCE_PROP_NOISE);
}
break;
case FilterType::ARITHMETIC_COMBINE:
switch (aIndex) {
CONVERT_PROP(ARITHMETIC_COMBINE_COEFFICIENTS,
ARITHMETICCOMPOSITE_PROP_COEFFICIENTS);
}
break;
case FilterType::COMPOSITE:
switch (aIndex) { CONVERT_PROP(COMPOSITE_OPERATOR, COMPOSITE_PROP_MODE); }
break;
case FilterType::GAUSSIAN_BLUR:
switch (aIndex) {
CONVERT_PROP(GAUSSIAN_BLUR_STD_DEVIATION,
GAUSSIANBLUR_PROP_STANDARD_DEVIATION);
}
break;
case FilterType::DIRECTIONAL_BLUR:
switch (aIndex) {
CONVERT_PROP(DIRECTIONAL_BLUR_STD_DEVIATION,
DIRECTIONALBLUR_PROP_STANDARD_DEVIATION);
CONVERT_PROP(DIRECTIONAL_BLUR_DIRECTION, DIRECTIONALBLUR_PROP_ANGLE);
}
break;
case FilterType::POINT_DIFFUSE:
switch (aIndex) {
CONVERT_PROP(POINT_DIFFUSE_DIFFUSE_CONSTANT,
POINTDIFFUSE_PROP_DIFFUSE_CONSTANT);
CONVERT_PROP(POINT_DIFFUSE_POSITION, POINTDIFFUSE_PROP_LIGHT_POSITION);
CONVERT_PROP(POINT_DIFFUSE_COLOR, POINTDIFFUSE_PROP_COLOR);
CONVERT_PROP(POINT_DIFFUSE_SURFACE_SCALE,
POINTDIFFUSE_PROP_SURFACE_SCALE);
CONVERT_PROP(POINT_DIFFUSE_KERNEL_UNIT_LENGTH,
POINTDIFFUSE_PROP_KERNEL_UNIT_LENGTH);
}
break;
case FilterType::SPOT_DIFFUSE:
switch (aIndex) {
CONVERT_PROP(SPOT_DIFFUSE_DIFFUSE_CONSTANT,
SPOTDIFFUSE_PROP_DIFFUSE_CONSTANT);
CONVERT_PROP(SPOT_DIFFUSE_POINTS_AT, SPOTDIFFUSE_PROP_POINTS_AT);
CONVERT_PROP(SPOT_DIFFUSE_FOCUS, SPOTDIFFUSE_PROP_FOCUS);
CONVERT_PROP(SPOT_DIFFUSE_LIMITING_CONE_ANGLE,
SPOTDIFFUSE_PROP_LIMITING_CONE_ANGLE);
CONVERT_PROP(SPOT_DIFFUSE_POSITION, SPOTDIFFUSE_PROP_LIGHT_POSITION);
CONVERT_PROP(SPOT_DIFFUSE_COLOR, SPOTDIFFUSE_PROP_COLOR);
CONVERT_PROP(SPOT_DIFFUSE_SURFACE_SCALE,
SPOTDIFFUSE_PROP_SURFACE_SCALE);
CONVERT_PROP(SPOT_DIFFUSE_KERNEL_UNIT_LENGTH,
SPOTDIFFUSE_PROP_KERNEL_UNIT_LENGTH);
}
break;
case FilterType::DISTANT_DIFFUSE:
switch (aIndex) {
CONVERT_PROP(DISTANT_DIFFUSE_DIFFUSE_CONSTANT,
DISTANTDIFFUSE_PROP_DIFFUSE_CONSTANT);
CONVERT_PROP(DISTANT_DIFFUSE_AZIMUTH, DISTANTDIFFUSE_PROP_AZIMUTH);
CONVERT_PROP(DISTANT_DIFFUSE_ELEVATION, DISTANTDIFFUSE_PROP_ELEVATION);
CONVERT_PROP(DISTANT_DIFFUSE_COLOR, DISTANTDIFFUSE_PROP_COLOR);
CONVERT_PROP(DISTANT_DIFFUSE_SURFACE_SCALE,
DISTANTDIFFUSE_PROP_SURFACE_SCALE);
CONVERT_PROP(DISTANT_DIFFUSE_KERNEL_UNIT_LENGTH,
DISTANTDIFFUSE_PROP_KERNEL_UNIT_LENGTH);
}
break;
case FilterType::POINT_SPECULAR:
switch (aIndex) {
CONVERT_PROP(POINT_SPECULAR_SPECULAR_CONSTANT,
POINTSPECULAR_PROP_SPECULAR_CONSTANT);
CONVERT_PROP(POINT_SPECULAR_SPECULAR_EXPONENT,
POINTSPECULAR_PROP_SPECULAR_EXPONENT);
CONVERT_PROP(POINT_SPECULAR_POSITION,
POINTSPECULAR_PROP_LIGHT_POSITION);
CONVERT_PROP(POINT_SPECULAR_COLOR, POINTSPECULAR_PROP_COLOR);
CONVERT_PROP(POINT_SPECULAR_SURFACE_SCALE,
POINTSPECULAR_PROP_SURFACE_SCALE);
CONVERT_PROP(POINT_SPECULAR_KERNEL_UNIT_LENGTH,
POINTSPECULAR_PROP_KERNEL_UNIT_LENGTH);
}
break;
case FilterType::SPOT_SPECULAR:
switch (aIndex) {
CONVERT_PROP(SPOT_SPECULAR_SPECULAR_CONSTANT,
SPOTSPECULAR_PROP_SPECULAR_CONSTANT);
CONVERT_PROP(SPOT_SPECULAR_SPECULAR_EXPONENT,
SPOTSPECULAR_PROP_SPECULAR_EXPONENT);
CONVERT_PROP(SPOT_SPECULAR_POINTS_AT, SPOTSPECULAR_PROP_POINTS_AT);
CONVERT_PROP(SPOT_SPECULAR_FOCUS, SPOTSPECULAR_PROP_FOCUS);
CONVERT_PROP(SPOT_SPECULAR_LIMITING_CONE_ANGLE,
SPOTSPECULAR_PROP_LIMITING_CONE_ANGLE);
CONVERT_PROP(SPOT_SPECULAR_POSITION, SPOTSPECULAR_PROP_LIGHT_POSITION);
CONVERT_PROP(SPOT_SPECULAR_COLOR, SPOTSPECULAR_PROP_COLOR);
CONVERT_PROP(SPOT_SPECULAR_SURFACE_SCALE,
SPOTSPECULAR_PROP_SURFACE_SCALE);
CONVERT_PROP(SPOT_SPECULAR_KERNEL_UNIT_LENGTH,
SPOTSPECULAR_PROP_KERNEL_UNIT_LENGTH);
}
break;
case FilterType::DISTANT_SPECULAR:
switch (aIndex) {
CONVERT_PROP(DISTANT_SPECULAR_SPECULAR_CONSTANT,
DISTANTSPECULAR_PROP_SPECULAR_CONSTANT);
CONVERT_PROP(DISTANT_SPECULAR_SPECULAR_EXPONENT,
DISTANTSPECULAR_PROP_SPECULAR_EXPONENT);
CONVERT_PROP(DISTANT_SPECULAR_AZIMUTH, DISTANTSPECULAR_PROP_AZIMUTH);
CONVERT_PROP(DISTANT_SPECULAR_ELEVATION,
DISTANTSPECULAR_PROP_ELEVATION);
CONVERT_PROP(DISTANT_SPECULAR_COLOR, DISTANTSPECULAR_PROP_COLOR);
CONVERT_PROP(DISTANT_SPECULAR_SURFACE_SCALE,
DISTANTSPECULAR_PROP_SURFACE_SCALE);
CONVERT_PROP(DISTANT_SPECULAR_KERNEL_UNIT_LENGTH,
DISTANTSPECULAR_PROP_KERNEL_UNIT_LENGTH);
}
break;
case FilterType::CROP:
switch (aIndex) { CONVERT_PROP(CROP_RECT, CROP_PROP_RECT); }
break;
default:
break;
}
return UINT32_MAX;
}
bool GetD2D1PropsForIntSize(FilterType aType, uint32_t aIndex,
UINT32* aPropWidth, UINT32* aPropHeight) {
switch (aType) {
case FilterType::MORPHOLOGY:
if (aIndex == ATT_MORPHOLOGY_RADII) {
*aPropWidth = D2D1_MORPHOLOGY_PROP_WIDTH;
*aPropHeight = D2D1_MORPHOLOGY_PROP_HEIGHT;
return true;
}
break;
default:
break;
}
return false;
}
static inline REFCLSID GetCLDIDForFilterType(FilterType aType) {
switch (aType) {
case FilterType::OPACITY:
case FilterType::COLOR_MATRIX:
return CLSID_D2D1ColorMatrix;
case FilterType::TRANSFORM:
return CLSID_D2D12DAffineTransform;
case FilterType::BLEND:
return CLSID_D2D1Blend;
case FilterType::MORPHOLOGY:
return CLSID_D2D1Morphology;
case FilterType::FLOOD:
return CLSID_D2D1Flood;
case FilterType::TILE:
return CLSID_D2D1Tile;
case FilterType::TABLE_TRANSFER:
return CLSID_D2D1TableTransfer;
case FilterType::LINEAR_TRANSFER:
return CLSID_D2D1LinearTransfer;
case FilterType::DISCRETE_TRANSFER:
return CLSID_D2D1DiscreteTransfer;
case FilterType::GAMMA_TRANSFER:
return CLSID_D2D1GammaTransfer;
case FilterType::DISPLACEMENT_MAP:
return CLSID_D2D1DisplacementMap;
case FilterType::TURBULENCE:
return CLSID_D2D1Turbulence;
case FilterType::ARITHMETIC_COMBINE:
return CLSID_D2D1ArithmeticComposite;
case FilterType::COMPOSITE:
return CLSID_D2D1Composite;
case FilterType::GAUSSIAN_BLUR:
return CLSID_D2D1GaussianBlur;
case FilterType::DIRECTIONAL_BLUR:
return CLSID_D2D1DirectionalBlur;
case FilterType::POINT_DIFFUSE:
return CLSID_D2D1PointDiffuse;
case FilterType::POINT_SPECULAR:
return CLSID_D2D1PointSpecular;
case FilterType::SPOT_DIFFUSE:
return CLSID_D2D1SpotDiffuse;
case FilterType::SPOT_SPECULAR:
return CLSID_D2D1SpotSpecular;
case FilterType::DISTANT_DIFFUSE:
return CLSID_D2D1DistantDiffuse;
case FilterType::DISTANT_SPECULAR:
return CLSID_D2D1DistantSpecular;
case FilterType::CROP:
return CLSID_D2D1Crop;
case FilterType::PREMULTIPLY:
return CLSID_D2D1Premultiply;
case FilterType::UNPREMULTIPLY:
return CLSID_D2D1UnPremultiply;
default:
break;
}
return GUID_NULL;
}
static bool IsTransferFilterType(FilterType aType) {
switch (aType) {
case FilterType::LINEAR_TRANSFER:
case FilterType::GAMMA_TRANSFER:
case FilterType::TABLE_TRANSFER:
case FilterType::DISCRETE_TRANSFER:
return true;
default:
return false;
}
}
static bool HasUnboundedOutputRegion(FilterType aType) {
if (IsTransferFilterType(aType)) {
return true;
}
switch (aType) {
case FilterType::COLOR_MATRIX:
case FilterType::POINT_DIFFUSE:
case FilterType::SPOT_DIFFUSE:
case FilterType::DISTANT_DIFFUSE:
case FilterType::POINT_SPECULAR:
case FilterType::SPOT_SPECULAR:
case FilterType::DISTANT_SPECULAR:
return true;
default:
return false;
}
}
/* static */
already_AddRefed<FilterNode> FilterNodeD2D1::Create(ID2D1DeviceContext* aDC,
FilterType aType) {
if (aType == FilterType::CONVOLVE_MATRIX) {
return MakeAndAddRef<FilterNodeConvolveD2D1>(aDC);
}
RefPtr<ID2D1Effect> effect;
HRESULT hr;
hr = aDC->CreateEffect(GetCLDIDForFilterType(aType), getter_AddRefs(effect));
if (FAILED(hr) || !effect) {
gfxCriticalErrorOnce() << "Failed to create effect for FilterType: "
<< hexa(hr);
return nullptr;
}
if (aType == FilterType::ARITHMETIC_COMBINE) {
effect->SetValue(D2D1_ARITHMETICCOMPOSITE_PROP_CLAMP_OUTPUT, TRUE);
}
if (aType == FilterType::OPACITY) {
return MakeAndAddRef<FilterNodeOpacityD2D1>(effect, aType);
}
RefPtr<FilterNodeD2D1> filter = new FilterNodeD2D1(effect, aType);
if (HasUnboundedOutputRegion(aType)) {
// These filters can produce non-transparent output from transparent
// input pixels, and we want them to have an unbounded output region.
filter = new FilterNodeExtendInputAdapterD2D1(aDC, filter, aType);
}
if (IsTransferFilterType(aType)) {
// Component transfer filters should appear to apply on unpremultiplied
// colors, but the D2D1 effects apply on premultiplied colors.
filter = new FilterNodePremultiplyAdapterD2D1(aDC, filter, aType);
}
return filter.forget();
}
void FilterNodeD2D1::InitUnmappedProperties() {
switch (mType) {
case FilterType::COLOR_MATRIX:
mEffect->SetValue(D2D1_COLORMATRIX_PROP_CLAMP_OUTPUT, TRUE);
break;
case FilterType::TRANSFORM:
mEffect->SetValue(D2D1_2DAFFINETRANSFORM_PROP_BORDER_MODE,
D2D1_BORDER_MODE_HARD);
break;
default:
break;
}
}
void FilterNodeD2D1::SetInput(uint32_t aIndex, SourceSurface* aSurface) {
UINT32 input = GetD2D1InputForInput(mType, aIndex);
ID2D1Effect* effect = InputEffect();
if (mType == FilterType::COMPOSITE) {
UINT32 inputCount = effect->GetInputCount();
if (aIndex == inputCount - 1 && aSurface == nullptr) {
effect->SetInputCount(inputCount - 1);
} else if (aIndex >= inputCount && aSurface) {
effect->SetInputCount(aIndex + 1);
}
}
auto inputCount = effect->GetInputCount();
MOZ_RELEASE_ASSERT(input < inputCount);
mInputSurfaces.resize(inputCount);
mInputFilters.resize(inputCount);
// In order to convert aSurface into an ID2D1Image, we need to know what
// DrawTarget we paint into. However, the same FilterNode object can be
// used on different DrawTargets, so we need to hold on to the SourceSurface
// objects and delay the conversion until we're actually painted and know
// our target DrawTarget.
// The conversion happens in WillDraw().
mInputSurfaces[input] = aSurface;
mInputFilters[input] = nullptr;
// Clear the existing image from the effect.
effect->SetInput(input, nullptr);
}
void FilterNodeD2D1::SetInput(uint32_t aIndex, FilterNode* aFilter) {
UINT32 input = GetD2D1InputForInput(mType, aIndex);
ID2D1Effect* effect = InputEffect();
if (mType == FilterType::COMPOSITE) {
UINT32 inputCount = effect->GetInputCount();
if (aIndex == inputCount - 1 && aFilter == nullptr) {
effect->SetInputCount(inputCount - 1);
} else if (aIndex >= inputCount && aFilter) {
effect->SetInputCount(aIndex + 1);
}
}
auto inputCount = effect->GetInputCount();
MOZ_RELEASE_ASSERT(input < inputCount);
if (aFilter && aFilter->GetBackendType() != FILTER_BACKEND_DIRECT2D1_1) {
gfxWarning() << "Unknown input FilterNode set on effect.";
MOZ_ASSERT(0);
return;
}
FilterNodeD2D1* filter = static_cast<FilterNodeD2D1*>(aFilter);
mInputSurfaces.resize(inputCount);
mInputFilters.resize(inputCount);
// We hold on to the FilterNode object so that we can call WillDraw() on it.
mInputSurfaces[input] = nullptr;
mInputFilters[input] = filter;
if (filter) {
effect->SetInputEffect(input, filter->OutputEffect());
}
}
void FilterNodeD2D1::WillDraw(DrawTarget* aDT) {
// Convert input SourceSurfaces into ID2D1Images and set them on the effect.
for (size_t inputIndex = 0; inputIndex < mInputSurfaces.size();
inputIndex++) {
if (mInputSurfaces[inputIndex]) {
ID2D1Effect* effect = InputEffect();
RefPtr<ID2D1Image> image =
GetImageForSourceSurface(aDT, mInputSurfaces[inputIndex]);
effect->SetInput(inputIndex, image);
}
}
// Call WillDraw() on our input filters.
for (std::vector<RefPtr<FilterNodeD2D1>>::iterator it = mInputFilters.begin();
it != mInputFilters.end(); it++) {
if (*it) {
(*it)->WillDraw(aDT);
}
}
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, uint32_t aValue) {
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
if (mType == FilterType::TURBULENCE &&
aIndex == ATT_TURBULENCE_BASE_FREQUENCY) {
mEffect->SetValue(input, D2D1::Vector2F(FLOAT(aValue), FLOAT(aValue)));
return;
} else if (mType == FilterType::DIRECTIONAL_BLUR &&
aIndex == ATT_DIRECTIONAL_BLUR_DIRECTION) {
mEffect->SetValue(input, aValue == BLUR_DIRECTION_X ? 0 : 90.0f);
return;
}
mEffect->SetValue(input, ConvertValue(mType, aIndex, aValue));
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, Float aValue) {
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, aValue);
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Point& aValue) {
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, D2DPoint(aValue));
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Matrix5x4& aValue) {
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, D2DMatrix5x4(aValue));
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Point3D& aValue) {
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, D2DVector3D(aValue));
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Size& aValue) {
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, D2D1::Vector2F(aValue.width, aValue.height));
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const IntSize& aValue) {
UINT32 widthProp, heightProp;
if (!GetD2D1PropsForIntSize(mType, aIndex, &widthProp, &heightProp)) {
return;
}
IntSize value = aValue;
ConvertValue(mType, aIndex, value);
mEffect->SetValue(widthProp, (UINT)value.width);
mEffect->SetValue(heightProp, (UINT)value.height);
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const DeviceColor& aValue) {
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
switch (mType) {
case FilterType::POINT_DIFFUSE:
case FilterType::SPOT_DIFFUSE:
case FilterType::DISTANT_DIFFUSE:
case FilterType::POINT_SPECULAR:
case FilterType::SPOT_SPECULAR:
case FilterType::DISTANT_SPECULAR:
mEffect->SetValue(input, D2D1::Vector3F(aValue.r, aValue.g, aValue.b));
break;
default:
mEffect->SetValue(input,
D2D1::Vector4F(aValue.r * aValue.a, aValue.g * aValue.a,
aValue.b * aValue.a, aValue.a));
}
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Rect& aValue) {
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, D2DRect(aValue));
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const IntRect& aValue) {
if (mType == FilterType::TURBULENCE) {
MOZ_ASSERT(aIndex == ATT_TURBULENCE_RECT);
mEffect->SetValue(D2D1_TURBULENCE_PROP_OFFSET,
D2D1::Vector2F(Float(aValue.X()), Float(aValue.Y())));
mEffect->SetValue(
D2D1_TURBULENCE_PROP_SIZE,
D2D1::Vector2F(Float(aValue.Width()), Float(aValue.Height())));
return;
}
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input,
D2D1::RectF(Float(aValue.X()), Float(aValue.Y()),
Float(aValue.XMost()), Float(aValue.YMost())));
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, bool aValue) {
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, (BOOL)aValue);
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Float* aValues,
uint32_t aSize) {
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, (BYTE*)aValues, sizeof(Float) * aSize);
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const IntPoint& aValue) {
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, D2DPoint(aValue));
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Matrix& aMatrix) {
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, D2DMatrix(aMatrix));
}
void FilterNodeOpacityD2D1::SetAttribute(uint32_t aIndex, Float aValue) {
D2D1_MATRIX_5X4_F matrix =
D2D1::Matrix5x4F(aValue, 0, 0, 0, 0, aValue, 0, 0, 0, 0, aValue, 0, 0, 0,
0, aValue, 0, 0, 0, 0);
mEffect->SetValue(D2D1_COLORMATRIX_PROP_COLOR_MATRIX, matrix);
mEffect->SetValue(D2D1_COLORMATRIX_PROP_ALPHA_MODE,
D2D1_COLORMATRIX_ALPHA_MODE_STRAIGHT);
}
FilterNodeConvolveD2D1::FilterNodeConvolveD2D1(ID2D1DeviceContext* aDC)
: FilterNodeD2D1(nullptr, FilterType::CONVOLVE_MATRIX),
mEdgeMode(EDGE_MODE_DUPLICATE) {
// Correctly handling the interaction of edge mode and source rect is a bit
// tricky with D2D1 effects. We want the edge mode to only apply outside of
// the source rect (as specified by the ATT_CONVOLVE_MATRIX_SOURCE_RECT
// attribute). So if our input surface or filter is smaller than the source
// rect, we need to add transparency around it until we reach the edges of
// the source rect, and only then do any repeating or edge duplicating.
// Unfortunately, the border effect does not have a source rect attribute -
// it only looks at the output rect of its input filter or surface. So we use
// our custom ExtendInput effect to adjust the output rect of our input.
// All of this is only necessary when our edge mode is not EDGE_MODE_NONE, so
// we update the filter chain dynamically in UpdateChain().
HRESULT hr;
hr = aDC->CreateEffect(CLSID_D2D1ConvolveMatrix, getter_AddRefs(mEffect));
if (FAILED(hr) || !mEffect) {
gfxWarning() << "Failed to create ConvolveMatrix filter!";
return;
}
mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_BORDER_MODE,
D2D1_BORDER_MODE_SOFT);
hr = aDC->CreateEffect(CLSID_ExtendInputEffect,
getter_AddRefs(mExtendInputEffect));
if (FAILED(hr) || !mExtendInputEffect) {
gfxWarning() << "Failed to create ConvolveMatrix filter!";
return;
}
hr = aDC->CreateEffect(CLSID_D2D1Border, getter_AddRefs(mBorderEffect));
if (FAILED(hr) || !mBorderEffect) {
gfxWarning() << "Failed to create ConvolveMatrix filter!";
return;
}
mBorderEffect->SetInputEffect(0, mExtendInputEffect.get());
UpdateChain();
UpdateSourceRect();
}
void FilterNodeConvolveD2D1::SetInput(uint32_t aIndex, FilterNode* aFilter) {
FilterNodeD2D1::SetInput(aIndex, aFilter);
UpdateChain();
}
void FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex, uint32_t aValue) {
if (aIndex != ATT_CONVOLVE_MATRIX_EDGE_MODE) {
return FilterNodeD2D1::SetAttribute(aIndex, aValue);
}
mEdgeMode = (ConvolveMatrixEdgeMode)aValue;
UpdateChain();
}
ID2D1Effect* FilterNodeConvolveD2D1::InputEffect() {
return mEdgeMode == EDGE_MODE_NONE ? mEffect.get() : mExtendInputEffect.get();
}
void FilterNodeConvolveD2D1::UpdateChain() {
// The shape of the filter graph:
//
// EDGE_MODE_NONE:
// input --> convolvematrix
//
// EDGE_MODE_DUPLICATE or EDGE_MODE_WRAP:
// input --> extendinput --> border --> convolvematrix
//
// mEffect is convolvematrix.
if (mEdgeMode != EDGE_MODE_NONE) {
mEffect->SetInputEffect(0, mBorderEffect.get());
}
RefPtr<ID2D1Effect> inputEffect;
if (mInputFilters.size() > 0 && mInputFilters[0]) {
inputEffect = mInputFilters[0]->OutputEffect();
}
InputEffect()->SetInputEffect(0, inputEffect);
if (mEdgeMode == EDGE_MODE_DUPLICATE) {
mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_X,
D2D1_BORDER_EDGE_MODE_CLAMP);
mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_Y,
D2D1_BORDER_EDGE_MODE_CLAMP);
} else if (mEdgeMode == EDGE_MODE_WRAP) {
mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_X,
D2D1_BORDER_EDGE_MODE_WRAP);
mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_Y,
D2D1_BORDER_EDGE_MODE_WRAP);
}
}
void FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex,
const IntSize& aValue) {
if (aIndex != ATT_CONVOLVE_MATRIX_KERNEL_SIZE) {
MOZ_ASSERT(false);
return;
}
mKernelSize = aValue;
mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_KERNEL_SIZE_X, aValue.width);
mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_KERNEL_SIZE_Y, aValue.height);
UpdateOffset();
}
void FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex,
const IntPoint& aValue) {
if (aIndex != ATT_CONVOLVE_MATRIX_TARGET) {
MOZ_ASSERT(false);
return;
}
mTarget = aValue;
UpdateOffset();
}
void FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex,
const IntRect& aValue) {
if (aIndex != ATT_CONVOLVE_MATRIX_SOURCE_RECT) {
MOZ_ASSERT(false);
return;
}
mSourceRect = aValue;
UpdateSourceRect();
}
void FilterNodeConvolveD2D1::UpdateOffset() {
D2D1_VECTOR_2F vector = D2D1::Vector2F(
(Float(mKernelSize.width) - 1.0f) / 2.0f - Float(mTarget.x),
(Float(mKernelSize.height) - 1.0f) / 2.0f - Float(mTarget.y));
mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_KERNEL_OFFSET, vector);
}
void FilterNodeConvolveD2D1::UpdateSourceRect() {
mExtendInputEffect->SetValue(
EXTENDINPUT_PROP_OUTPUT_RECT,
D2D1::Vector4F(Float(mSourceRect.X()), Float(mSourceRect.Y()),
Float(mSourceRect.XMost()), Float(mSourceRect.YMost())));
}
FilterNodeExtendInputAdapterD2D1::FilterNodeExtendInputAdapterD2D1(
ID2D1DeviceContext* aDC, FilterNodeD2D1* aFilterNode, FilterType aType)
: FilterNodeD2D1(aFilterNode->MainEffect(), aType),
mWrappedFilterNode(aFilterNode) {
// We have an mEffect that looks at the bounds of the input effect, and we
// want mEffect to regard its input as unbounded. So we take the input,
// pipe it through an ExtendInput effect (which has an infinite output rect
// by default), and feed the resulting unbounded composition into mEffect.
HRESULT hr;
hr = aDC->CreateEffect(CLSID_ExtendInputEffect,
getter_AddRefs(mExtendInputEffect));
if (FAILED(hr) || !mExtendInputEffect) {
gfxWarning() << "Failed to create extend input effect for filter: "
<< hexa(hr);
return;
}
aFilterNode->InputEffect()->SetInputEffect(0, mExtendInputEffect.get());
}
FilterNodePremultiplyAdapterD2D1::FilterNodePremultiplyAdapterD2D1(
ID2D1DeviceContext* aDC, FilterNodeD2D1* aFilterNode, FilterType aType)
: FilterNodeD2D1(aFilterNode->MainEffect(), aType) {
// D2D1 component transfer effects do strange things when it comes to
// premultiplication.
// For our purposes we only need the transfer filters to apply straight to
// unpremultiplied source channels and output unpremultiplied results.
// However, the D2D1 effects are designed differently: They can apply to both
// premultiplied and unpremultiplied inputs, and they always premultiply
// their result - at least in those color channels that have not been
// disabled.
// In order to determine whether the input needs to be unpremultiplied as
// part of the transfer, the effect consults the alpha mode metadata of the
// input surface or the input effect. We don't have such a concept in Moz2D,
// and giving Moz2D users different results based on something that cannot be
// influenced through Moz2D APIs seems like a bad idea.
// We solve this by applying a premultiply effect to the input before feeding
// it into the transfer effect. The premultiply effect always premultiplies
// regardless of any alpha mode metadata on inputs, and it always marks its
// output as premultiplied so that the transfer effect will unpremultiply
// consistently. Feeding always-premultiplied input into the transfer effect
// also avoids another problem that would appear when individual color
// channels disable the transfer: In that case, the disabled channels would
// pass through unchanged in their unpremultiplied form and the other
// channels would be premultiplied, giving a mixed result.
// But since we now ensure that the input is premultiplied, disabled channels
// will pass premultiplied values through to the result, which is consistent
// with the enabled channels.
// We also add an unpremultiply effect that postprocesses the result of the
// transfer effect because getting unpremultiplied results from the transfer
// filters is part of the FilterNode API.
HRESULT hr;
hr = aDC->CreateEffect(CLSID_D2D1Premultiply,
getter_AddRefs(mPrePremultiplyEffect));
if (FAILED(hr) || !mPrePremultiplyEffect) {
gfxWarning() << "Failed to create ComponentTransfer filter!";
return;
}
hr = aDC->CreateEffect(CLSID_D2D1UnPremultiply,
getter_AddRefs(mPostUnpremultiplyEffect));
if (FAILED(hr) || !mPostUnpremultiplyEffect) {
gfxWarning() << "Failed to create ComponentTransfer filter!";
return;
}
aFilterNode->InputEffect()->SetInputEffect(0, mPrePremultiplyEffect.get());
mPostUnpremultiplyEffect->SetInputEffect(0, aFilterNode->OutputEffect());
}
} // namespace gfx
} // namespace mozilla
|