1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
/*
* Copyright © 2018, VideoLAN and dav1d authors
* Copyright © 2018, Two Orioles, LLC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include <stdio.h>
#include "common/intops.h"
#include "src/lr_apply.h"
static void lr_stripe(const Dav1dFrameContext *const f, pixel *p,
const pixel (*left)[4], int x, int y,
const int plane, const int unit_w, const int row_h,
const Av1RestorationUnit *const lr, enum LrEdgeFlags edges)
{
const Dav1dDSPContext *const dsp = f->dsp;
const int chroma = !!plane;
const int ss_ver = chroma & (f->sr_cur.p.p.layout == DAV1D_PIXEL_LAYOUT_I420);
const ptrdiff_t stride = f->sr_cur.p.stride[chroma];
const int sby = (y + (y ? 8 << ss_ver : 0)) >> (6 - ss_ver + f->seq_hdr->sb128);
const int have_tt = f->c->n_tc > 1;
const pixel *lpf = f->lf.lr_lpf_line[plane] +
have_tt * (sby * (4 << f->seq_hdr->sb128) - 4) * PXSTRIDE(stride) + x;
// The first stripe of the frame is shorter by 8 luma pixel rows.
int stripe_h = imin((64 - 8 * !y) >> ss_ver, row_h - y);
looprestorationfilter_fn lr_fn;
LooprestorationParams params;
if (lr->type == DAV1D_RESTORATION_WIENER) {
int16_t (*const filter)[8] = params.filter;
filter[0][0] = filter[0][6] = lr->filter_h[0];
filter[0][1] = filter[0][5] = lr->filter_h[1];
filter[0][2] = filter[0][4] = lr->filter_h[2];
filter[0][3] = -(filter[0][0] + filter[0][1] + filter[0][2]) * 2;
#if BITDEPTH != 8
/* For 8-bit SIMD it's beneficial to handle the +128 separately
* in order to avoid overflows. */
filter[0][3] += 128;
#endif
filter[1][0] = filter[1][6] = lr->filter_v[0];
filter[1][1] = filter[1][5] = lr->filter_v[1];
filter[1][2] = filter[1][4] = lr->filter_v[2];
filter[1][3] = 128 - (filter[1][0] + filter[1][1] + filter[1][2]) * 2;
lr_fn = dsp->lr.wiener[!(filter[0][0] | filter[1][0])];
} else {
assert(lr->type == DAV1D_RESTORATION_SGRPROJ);
const uint16_t *const sgr_params = dav1d_sgr_params[lr->sgr_idx];
params.sgr.s0 = sgr_params[0];
params.sgr.s1 = sgr_params[1];
params.sgr.w0 = lr->sgr_weights[0];
params.sgr.w1 = 128 - (lr->sgr_weights[0] + lr->sgr_weights[1]);
lr_fn = dsp->lr.sgr[!!sgr_params[0] + !!sgr_params[1] * 2 - 1];
}
while (y + stripe_h <= row_h) {
// Change the HAVE_BOTTOM bit in edges to (sby + 1 != f->sbh || y + stripe_h != row_h)
edges ^= (-(sby + 1 != f->sbh || y + stripe_h != row_h) ^ edges) & LR_HAVE_BOTTOM;
lr_fn(p, stride, left, lpf, unit_w, stripe_h, ¶ms, edges HIGHBD_CALL_SUFFIX);
left += stripe_h;
y += stripe_h;
p += stripe_h * PXSTRIDE(stride);
edges |= LR_HAVE_TOP;
stripe_h = imin(64 >> ss_ver, row_h - y);
if (stripe_h == 0) break;
lpf += 4 * PXSTRIDE(stride);
}
}
static void backup4xU(pixel (*dst)[4], const pixel *src, const ptrdiff_t src_stride,
int u)
{
for (; u > 0; u--, dst++, src += PXSTRIDE(src_stride))
pixel_copy(dst, src, 4);
}
static void lr_sbrow(const Dav1dFrameContext *const f, pixel *p, const int y,
const int w, const int h, const int row_h, const int plane)
{
const int chroma = !!plane;
const int ss_ver = chroma & (f->sr_cur.p.p.layout == DAV1D_PIXEL_LAYOUT_I420);
const int ss_hor = chroma & (f->sr_cur.p.p.layout != DAV1D_PIXEL_LAYOUT_I444);
const ptrdiff_t p_stride = f->sr_cur.p.stride[chroma];
const int unit_size_log2 = f->frame_hdr->restoration.unit_size[!!plane];
const int unit_size = 1 << unit_size_log2;
const int half_unit_size = unit_size >> 1;
const int max_unit_size = unit_size + half_unit_size;
// Y coordinate of the sbrow (y is 8 luma pixel rows above row_y)
const int row_y = y + ((8 >> ss_ver) * !!y);
// FIXME This is an ugly hack to lookup the proper AV1Filter unit for
// chroma planes. Question: For Multithreaded decoding, is it better
// to store the chroma LR information with collocated Luma information?
// In other words. For a chroma restoration unit locate at 128,128 and
// with a 4:2:0 chroma subsampling, do we store the filter information at
// the AV1Filter unit located at (128,128) or (256,256)
// TODO Support chroma subsampling.
const int shift_hor = 7 - ss_hor;
/* maximum sbrow height is 128 + 8 rows offset */
ALIGN_STK_16(pixel, pre_lr_border, 2, [128 + 8][4]);
const Av1RestorationUnit *lr[2];
enum LrEdgeFlags edges = (y > 0 ? LR_HAVE_TOP : 0) | LR_HAVE_RIGHT;
int aligned_unit_pos = row_y & ~(unit_size - 1);
if (aligned_unit_pos && aligned_unit_pos + half_unit_size > h)
aligned_unit_pos -= unit_size;
aligned_unit_pos <<= ss_ver;
const int sb_idx = (aligned_unit_pos >> 7) * f->sr_sb128w;
const int unit_idx = ((aligned_unit_pos >> 6) & 1) << 1;
lr[0] = &f->lf.lr_mask[sb_idx].lr[plane][unit_idx];
int restore = lr[0]->type != DAV1D_RESTORATION_NONE;
int x = 0, bit = 0;
for (; x + max_unit_size <= w; p += unit_size, edges |= LR_HAVE_LEFT, bit ^= 1) {
const int next_x = x + unit_size;
const int next_u_idx = unit_idx + ((next_x >> (shift_hor - 1)) & 1);
lr[!bit] =
&f->lf.lr_mask[sb_idx + (next_x >> shift_hor)].lr[plane][next_u_idx];
const int restore_next = lr[!bit]->type != DAV1D_RESTORATION_NONE;
if (restore_next)
backup4xU(pre_lr_border[bit], p + unit_size - 4, p_stride, row_h - y);
if (restore)
lr_stripe(f, p, pre_lr_border[!bit], x, y, plane, unit_size, row_h,
lr[bit], edges);
x = next_x;
restore = restore_next;
}
if (restore) {
edges &= ~LR_HAVE_RIGHT;
const int unit_w = w - x;
lr_stripe(f, p, pre_lr_border[!bit], x, y, plane, unit_w, row_h, lr[bit], edges);
}
}
void bytefn(dav1d_lr_sbrow)(Dav1dFrameContext *const f, pixel *const dst[3],
const int sby)
{
const int offset_y = 8 * !!sby;
const ptrdiff_t *const dst_stride = f->sr_cur.p.stride;
const int restore_planes = f->lf.restore_planes;
const int not_last = sby + 1 < f->sbh;
if (restore_planes & LR_RESTORE_Y) {
const int h = f->sr_cur.p.p.h;
const int w = f->sr_cur.p.p.w;
const int next_row_y = (sby + 1) << (6 + f->seq_hdr->sb128);
const int row_h = imin(next_row_y - 8 * not_last, h);
const int y_stripe = (sby << (6 + f->seq_hdr->sb128)) - offset_y;
lr_sbrow(f, dst[0] - offset_y * PXSTRIDE(dst_stride[0]), y_stripe, w,
h, row_h, 0);
}
if (restore_planes & (LR_RESTORE_U | LR_RESTORE_V)) {
const int ss_ver = f->sr_cur.p.p.layout == DAV1D_PIXEL_LAYOUT_I420;
const int ss_hor = f->sr_cur.p.p.layout != DAV1D_PIXEL_LAYOUT_I444;
const int h = (f->sr_cur.p.p.h + ss_ver) >> ss_ver;
const int w = (f->sr_cur.p.p.w + ss_hor) >> ss_hor;
const int next_row_y = (sby + 1) << ((6 - ss_ver) + f->seq_hdr->sb128);
const int row_h = imin(next_row_y - (8 >> ss_ver) * not_last, h);
const int offset_uv = offset_y >> ss_ver;
const int y_stripe = (sby << ((6 - ss_ver) + f->seq_hdr->sb128)) - offset_uv;
if (restore_planes & LR_RESTORE_U)
lr_sbrow(f, dst[1] - offset_uv * PXSTRIDE(dst_stride[1]), y_stripe,
w, h, row_h, 1);
if (restore_planes & LR_RESTORE_V)
lr_sbrow(f, dst[2] - offset_uv * PXSTRIDE(dst_stride[1]), y_stripe,
w, h, row_h, 2);
}
}
|