summaryrefslogtreecommitdiffstats
path: root/libfdisk/src/gpt.c
blob: c3c0347cb8de0c7b999eacce54b2d5f9270fc971 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
/*
 * Copyright (C) 2007 Karel Zak <kzak@redhat.com>
 * Copyright (C) 2012 Davidlohr Bueso <dave@gnu.org>
 *
 * GUID Partition Table (GPT) support. Based on UEFI Specs 2.3.1
 * Chapter 5: GUID Partition Table (GPT) Disk Layout (Jun 27th, 2012).
 * Some ideas and inspiration from GNU parted and gptfdisk.
 */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <inttypes.h>
#include <stdint.h>
#include <sys/stat.h>
#include <sys/utsname.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <ctype.h>
#include <uuid.h>

#include "fdiskP.h"

#include "crc32.h"
#include "blkdev.h"
#include "bitops.h"
#include "strutils.h"
#include "all-io.h"
#include "pt-mbr.h"
#include "encode.h"

/**
 * SECTION: gpt
 * @title: UEFI GPT
 * @short_description: specific functionality
 */

#define GPT_HEADER_SIGNATURE 0x5452415020494645LL /* EFI PART */
#define GPT_HEADER_REVISION_V1_02 0x00010200
#define GPT_HEADER_REVISION_V1_00 0x00010000
#define GPT_HEADER_REVISION_V0_99 0x00009900
#define GPT_HEADER_MINSZ          92 /* bytes */

#define GPT_PMBR_LBA        0
#define GPT_MBR_PROTECTIVE  1
#define GPT_MBR_HYBRID      2

#define GPT_PRIMARY_PARTITION_TABLE_LBA 0x00000001ULL

#define EFI_PMBR_OSTYPE     0xEE
#define MSDOS_MBR_SIGNATURE 0xAA55
#define GPT_PART_NAME_LEN   (72 / sizeof(uint16_t))
#define GPT_NPARTITIONS     ((size_t) FDISK_GPT_NPARTITIONS_DEFAULT)

/* Globally unique identifier */
struct gpt_guid {
	uint32_t   time_low;
	uint16_t   time_mid;
	uint16_t   time_hi_and_version;
	uint8_t    clock_seq_hi;
	uint8_t    clock_seq_low;
	uint8_t    node[6];
};


/* only checking that the GUID is 0 is enough to verify an empty partition. */
#define GPT_UNUSED_ENTRY_GUID						\
	((struct gpt_guid) { 0x00000000, 0x0000, 0x0000, 0x00, 0x00,	\
			     { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }})

/* Linux native partition type */
#define GPT_DEFAULT_ENTRY_TYPE "0FC63DAF-8483-4772-8E79-3D69D8477DE4"

/*
 * Attribute bits
 */
enum {
	/* UEFI specific */
	GPT_ATTRBIT_REQ      = 0,
	GPT_ATTRBIT_NOBLOCK  = 1,
	GPT_ATTRBIT_LEGACY   = 2,

	/* GUID specific (range 48..64)*/
	GPT_ATTRBIT_GUID_FIRST	= 48,
	GPT_ATTRBIT_GUID_COUNT	= 16
};

#define GPT_ATTRSTR_REQ		"RequiredPartition"
#define GPT_ATTRSTR_REQ_TYPO	"RequiredPartiton"
#define GPT_ATTRSTR_NOBLOCK	"NoBlockIOProtocol"
#define GPT_ATTRSTR_LEGACY	"LegacyBIOSBootable"

/* The GPT Partition entry array contains an array of GPT entries. */
struct gpt_entry {
	struct gpt_guid     type; /* purpose and type of the partition */
	struct gpt_guid     partition_guid;
	uint64_t            lba_start;
	uint64_t            lba_end;
	uint64_t            attrs;
	uint16_t            name[GPT_PART_NAME_LEN];
}  __attribute__ ((packed));

/* GPT header */
struct gpt_header {
	uint64_t            signature; /* header identification */
	uint32_t            revision; /* header version */
	uint32_t            size; /* in bytes */
	uint32_t            crc32; /* header CRC checksum */
	uint32_t            reserved1; /* must be 0 */
	uint64_t            my_lba; /* LBA of block that contains this struct (LBA 1) */
	uint64_t            alternative_lba; /* backup GPT header */
	uint64_t            first_usable_lba; /* first usable logical block for partitions */
	uint64_t            last_usable_lba; /* last usable logical block for partitions */
	struct gpt_guid     disk_guid; /* unique disk identifier */
	uint64_t            partition_entry_lba; /* LBA of start of partition entries array */
	uint32_t            npartition_entries; /* total partition entries - normally 128 */
	uint32_t            sizeof_partition_entry; /* bytes for each GUID pt */
	uint32_t            partition_entry_array_crc32; /* partition CRC checksum */
	uint8_t             reserved2[512 - 92]; /* must all be 0 */
} __attribute__ ((packed));

struct gpt_record {
	uint8_t             boot_indicator; /* unused by EFI, set to 0x80 for bootable */
	uint8_t             start_head; /* unused by EFI, pt start in CHS */
	uint8_t             start_sector; /* unused by EFI, pt start in CHS */
	uint8_t             start_track;
	uint8_t             os_type; /* EFI and legacy non-EFI OS types */
	uint8_t             end_head; /* unused by EFI, pt end in CHS */
	uint8_t             end_sector; /* unused by EFI, pt end in CHS */
	uint8_t             end_track; /* unused by EFI, pt end in CHS */
	uint32_t            starting_lba; /* used by EFI - start addr of the on disk pt */
	uint32_t            size_in_lba; /* used by EFI - size of pt in LBA */
} __attribute__ ((packed));

/* Protected MBR and legacy MBR share same structure */
struct gpt_legacy_mbr {
	uint8_t             boot_code[440];
	uint32_t            unique_mbr_signature;
	uint16_t            unknown;
	struct gpt_record   partition_record[4];
	uint16_t            signature;
} __attribute__ ((packed));

/*
 * Here be dragons!
 * See: http://en.wikipedia.org/wiki/GUID_Partition_Table#Partition_type_GUIDs
 */
#define DEF_GUID(_u, _n) \
	{ \
		.typestr = (_u), \
		.name = (_n),    \
	}

static struct fdisk_parttype gpt_parttypes[] =
{
	#include "pt-gpt-partnames.h"
};

static const struct fdisk_shortcut gpt_parttype_cuts[] =
{
	{ .shortcut = "L", .alias = "linux", .data = "0FC63DAF-8483-4772-8E79-3D69D8477DE4" }, /* Linux */
	{ .shortcut = "S", .alias = "swap",  .data = "0657FD6D-A4AB-43C4-84E5-0933C84B4F4F" }, /* Swap */
	{ .shortcut = "H", .alias = "home",  .data = "933AC7E1-2EB4-4F13-B844-0E14E2AEF915" }, /* Home */
	{ .shortcut = "U", .alias = "uefi",  .data = "C12A7328-F81F-11D2-BA4B-00A0C93EC93B" }, /* UEFI system */
	{ .shortcut = "R", .alias = "raid",  .data = "A19D880F-05FC-4D3B-A006-743F0F84911E" }, /* Linux RAID */
	{ .shortcut = "V", .alias = "lvm",   .data = "E6D6D379-F507-44C2-A23C-238F2A3DF928" }  /* LVM */
};

#define alignment_required(_x)  ((_x)->grain != (_x)->sector_size)

/* gpt_entry macros */
#define gpt_partition_start(_e)		le64_to_cpu((_e)->lba_start)
#define gpt_partition_end(_e)		le64_to_cpu((_e)->lba_end)

/*
 * in-memory fdisk GPT stuff
 */
struct fdisk_gpt_label {
	struct fdisk_label	head;		/* generic part */

	/* gpt specific part */
	struct gpt_header	*pheader;	/* primary header */
	struct gpt_header	*bheader;	/* backup header */

	unsigned char *ents;			/* entries (partitions) */

	unsigned int no_relocate :1,		/* do not fix backup location */
		     minimize :1;
};

static void gpt_deinit(struct fdisk_label *lb);

static inline struct fdisk_gpt_label *self_label(struct fdisk_context *cxt)
{
	return (struct fdisk_gpt_label *) cxt->label;
}

/*
 * Returns the partition length, or 0 if end is before beginning.
 */
static uint64_t gpt_partition_size(const struct gpt_entry *e)
{
	uint64_t start = gpt_partition_start(e);
	uint64_t end = gpt_partition_end(e);

	return start > end ? 0 : end - start + 1ULL;
}

/* prints UUID in the real byte order! */
static void gpt_debug_uuid(const char *mesg, struct gpt_guid *guid)
{
	const unsigned char *uuid = (unsigned char *) guid;

	fprintf(stderr, "%s: "
		"%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x\n",
		mesg,
		uuid[0], uuid[1], uuid[2], uuid[3],
		uuid[4], uuid[5],
		uuid[6], uuid[7],
		uuid[8], uuid[9],
		uuid[10], uuid[11], uuid[12], uuid[13], uuid[14],uuid[15]);
}

/*
 * UUID is traditionally 16 byte big-endian array, except Intel EFI
 * specification where the UUID is a structure of little-endian fields.
 */
static void swap_efi_guid(struct gpt_guid *uid)
{
	uid->time_low = swab32(uid->time_low);
	uid->time_mid = swab16(uid->time_mid);
	uid->time_hi_and_version = swab16(uid->time_hi_and_version);
}

static int string_to_guid(const char *in, struct gpt_guid *guid)
{
	if (uuid_parse(in, (unsigned char *) guid)) {   /* BE */
		DBG(GPT, ul_debug("failed to parse GUID: %s", in));
		return -EINVAL;
	}
	swap_efi_guid(guid);				/* LE */
	return 0;
}

static char *guid_to_string(const struct gpt_guid *guid, char *out)
{
	struct gpt_guid u = *guid;	/* LE */

	swap_efi_guid(&u);		/* BE */
	uuid_unparse_upper((unsigned char *) &u, out);

	return out;
}

static struct fdisk_parttype *gpt_partition_parttype(
		struct fdisk_context *cxt,
		const struct gpt_entry *e)
{
	struct fdisk_parttype *t;
	char str[UUID_STR_LEN];
	struct gpt_guid guid = e->type;

	guid_to_string(&guid, str);
	t = fdisk_label_get_parttype_from_string(cxt->label, str);
	return t ? : fdisk_new_unknown_parttype(0, str);
}

static void gpt_entry_set_type(struct gpt_entry *e, struct gpt_guid *uuid)
{
	e->type = *uuid;
	DBG(GPT, gpt_debug_uuid("new type", uuid));
}

static int gpt_entry_set_name(struct gpt_entry *e, char *str)
{
	uint16_t name[GPT_PART_NAME_LEN] = { 0 };
	size_t i, mblen = 0;
	uint8_t *in = (uint8_t *) str;

	for (i = 0; *in && i < GPT_PART_NAME_LEN; in++) {
		if (!mblen) {
			if (!(*in & 0x80)) {
				name[i++] = *in;
			} else if ((*in & 0xE0) == 0xC0) {
				mblen = 1;
				name[i] = (uint16_t)(*in & 0x1F) << (mblen *6);
			} else if ((*in & 0xF0) == 0xE0) {
				mblen = 2;
				name[i] = (uint16_t)(*in & 0x0F) << (mblen *6);
			} else {
				/* broken UTF-8 or code point greater than U+FFFF */
				return -EILSEQ;
			}
		} else {
			/* incomplete UTF-8 sequence */
			if ((*in & 0xC0) != 0x80)
				return -EILSEQ;

			name[i] |= (uint16_t)(*in & 0x3F) << (--mblen *6);
			if (!mblen) {
				/* check for code points reserved for surrogate pairs*/
				if ((name[i] & 0xF800) == 0xD800)
					return -EILSEQ;
				i++;
			}
		}
	}

	for (i = 0; i < GPT_PART_NAME_LEN; i++)
		e->name[i] = cpu_to_le16(name[i]);

	return (int)((char *) in - str);
}

static int gpt_entry_set_uuid(struct gpt_entry *e, char *str)
{
	struct gpt_guid uuid;
	int rc;

	rc = string_to_guid(str, &uuid);
	if (rc)
		return rc;

	e->partition_guid = uuid;
	return 0;
}

static inline int gpt_entry_is_used(const struct gpt_entry *e)
{
	return memcmp(&e->type, &GPT_UNUSED_ENTRY_GUID,
			sizeof(struct gpt_guid)) != 0;
}


static const char *gpt_get_header_revstr(struct gpt_header *header)
{
	if (!header)
		goto unknown;

	switch (le32_to_cpu(header->revision)) {
	case GPT_HEADER_REVISION_V1_02:
		return "1.2";
	case GPT_HEADER_REVISION_V1_00:
		return "1.0";
	case GPT_HEADER_REVISION_V0_99:
		return "0.99";
	default:
		goto unknown;
	}

unknown:
	return "unknown";
}

static inline unsigned char *gpt_get_entry_ptr(struct fdisk_gpt_label *gpt, size_t i)
{
	return gpt->ents + le32_to_cpu(gpt->pheader->sizeof_partition_entry) * i;
}

static inline struct gpt_entry *gpt_get_entry(struct fdisk_gpt_label *gpt, size_t i)
{
	return (struct gpt_entry *) gpt_get_entry_ptr(gpt, i);
}

static inline struct gpt_entry *gpt_zeroize_entry(struct fdisk_gpt_label *gpt, size_t i)
{
	return (struct gpt_entry *) memset(gpt_get_entry_ptr(gpt, i),
			0, le32_to_cpu(gpt->pheader->sizeof_partition_entry));
}

/* Use to access array of entries, for() loops, etc. But don't use when
 * you directly do something with GPT header, then use uint32_t.
 */
static inline size_t gpt_get_nentries(struct fdisk_gpt_label *gpt)
{
	return (size_t) le32_to_cpu(gpt->pheader->npartition_entries);
}

/* calculate size of entries array in bytes for specified number of entries */
static inline int gpt_calculate_sizeof_entries(
				struct gpt_header *hdr,
				uint32_t nents,	size_t *sz)
{
	uint32_t esz = hdr ? le32_to_cpu(hdr->sizeof_partition_entry) :
			     sizeof(struct gpt_entry);

	if (nents == 0 || esz == 0 || SIZE_MAX/esz < nents) {
		DBG(GPT, ul_debug("entries array size check failed"));
		return -ERANGE;
	}

	*sz = (size_t) nents * esz;
	return 0;
}

/* calculate size of entries array in sectors for specified number of entries */
static inline int gpt_calculate_sectorsof_entries(
				struct gpt_header *hdr,
				uint32_t nents, uint64_t *sz,
				struct fdisk_context *cxt)
{
	size_t esz = 0;
	int rc = gpt_calculate_sizeof_entries(hdr, nents, &esz);	/* in bytes */

	if (rc == 0)
		*sz = (esz + cxt->sector_size - 1) / cxt->sector_size;
	return rc;
}

/* calculate alternative (backup) entries array offset from primary header */
static inline int gpt_calculate_alternative_entries_lba(
				struct gpt_header *hdr,
				uint32_t nents,
				uint64_t *sz,
				struct fdisk_context *cxt)
{
	uint64_t esects = 0;
	int rc = gpt_calculate_sectorsof_entries(hdr, nents, &esects, cxt);

	if (rc)
		return rc;
	if (cxt->total_sectors < 1ULL + esects)
		return -ENOSPC;

	*sz = cxt->total_sectors - 1ULL - esects;
	return 0;
}

static inline int gpt_calculate_last_lba(
				struct gpt_header *hdr,
				uint32_t nents,
				uint64_t *sz,
				struct fdisk_context *cxt)
{
	uint64_t esects = 0;
	int rc = gpt_calculate_sectorsof_entries(hdr, nents, &esects, cxt);

	if (rc)
		return rc;
	if (cxt->total_sectors < 2ULL + esects)
		return -ENOSPC;

	*sz = cxt->total_sectors - 2ULL - esects;
	return 0;
}

static inline int gpt_calculate_first_lba(
				struct gpt_header *hdr,
				uint32_t nents,
				uint64_t *sz,
				struct fdisk_context *cxt)
{
	uint64_t esects = 0;
	int rc = gpt_calculate_sectorsof_entries(hdr, nents, &esects, cxt);

	if (rc == 0)
		*sz = esects + 2ULL;
	return rc;
}

/* the current size of entries array in bytes */
static inline int gpt_sizeof_entries(struct gpt_header *hdr, size_t *sz)
{
	return gpt_calculate_sizeof_entries(hdr, le32_to_cpu(hdr->npartition_entries), sz);
}

static char *gpt_get_header_id(struct gpt_header *header)
{
	char str[UUID_STR_LEN];
	struct gpt_guid guid = header->disk_guid;

	guid_to_string(&guid, str);

	return strdup(str);
}

/*
 * Builds a clean new valid protective MBR - will wipe out any existing data.
 * Returns 0 on success, otherwise < 0 on error.
 */
static int gpt_mknew_pmbr(struct fdisk_context *cxt)
{
	struct gpt_legacy_mbr *pmbr = NULL;
	int rc;

	if (!cxt || !cxt->firstsector)
		return -ENOSYS;

	if (fdisk_has_protected_bootbits(cxt))
		rc = fdisk_init_firstsector_buffer(cxt, 0, MBR_PT_BOOTBITS_SIZE);
	else
		rc = fdisk_init_firstsector_buffer(cxt, 0, 0);
	if (rc)
		return rc;

	pmbr = (struct gpt_legacy_mbr *) cxt->firstsector;
	memset(pmbr->partition_record, 0, sizeof(pmbr->partition_record));

	pmbr->signature = cpu_to_le16(MSDOS_MBR_SIGNATURE);
	pmbr->partition_record[0].os_type      = EFI_PMBR_OSTYPE;
	pmbr->partition_record[0].start_sector = 2;
	pmbr->partition_record[0].end_head     = 0xFF;
	pmbr->partition_record[0].end_sector   = 0xFF;
	pmbr->partition_record[0].end_track    = 0xFF;
	pmbr->partition_record[0].starting_lba = cpu_to_le32(1);
	pmbr->partition_record[0].size_in_lba  =
		cpu_to_le32((uint32_t) min( cxt->total_sectors - 1ULL, 0xFFFFFFFFULL) );

	return 0;
}


/* Move backup header to the end of the device */
static int gpt_fix_alternative_lba(struct fdisk_context *cxt, struct fdisk_gpt_label *gpt)
{
	struct gpt_header *p, *b;
	uint64_t x = 0, orig;
	size_t nents;
	int rc;

	if (!cxt)
		return -EINVAL;

	p = gpt->pheader;	/* primary */
	b = gpt->bheader;	/* backup */

	nents = le32_to_cpu(p->npartition_entries);
	orig = le64_to_cpu(p->alternative_lba);

	/* reference from primary to backup */
	p->alternative_lba = cpu_to_le64(cxt->total_sectors - 1ULL);

	/* reference from backup to primary */
	b->alternative_lba = p->my_lba;
	b->my_lba = p->alternative_lba;

	/* fix backup partitions array address */
	rc = gpt_calculate_alternative_entries_lba(p, nents, &x, cxt);
	if (rc)
		goto failed;

	b->partition_entry_lba = cpu_to_le64(x);

	/* update last usable LBA */
	rc = gpt_calculate_last_lba(p, nents, &x, cxt);
	if (rc)
		goto failed;

	p->last_usable_lba  = cpu_to_le64(x);
	b->last_usable_lba  = cpu_to_le64(x);

	DBG(GPT, ul_debug("Alternative-LBA updated from %"PRIu64" to %"PRIu64,
				orig, le64_to_cpu(p->alternative_lba)));
	return 0;
failed:
	DBG(GPT, ul_debug("failed to fix alternative-LBA [rc=%d]", rc));
	return rc;
}

static uint64_t gpt_calculate_minimal_size(struct fdisk_context *cxt, struct fdisk_gpt_label *gpt)
{
	size_t i;
	uint64_t x = 0, total = 0;
	struct gpt_header *hdr;

	assert(cxt);
	assert(gpt);
	assert(gpt->pheader);
	assert(gpt->ents);

	hdr = gpt->pheader;

	/* LBA behind the last partition */
	for (i = 0; i < gpt_get_nentries(gpt); i++) {
		struct gpt_entry *e = gpt_get_entry(gpt, i);

		if (gpt_entry_is_used(e)) {
			uint64_t end = gpt_partition_end(e);
			if (end > x)
				x = end;
		}
	}
	total = x + 1;

	/* the current last LBA usable for partitions */
	gpt_calculate_last_lba(hdr, le32_to_cpu(hdr->npartition_entries), &x, cxt);

	/* size of all stuff at the end of the device */
	total += cxt->total_sectors - x;

	DBG(GPT, ul_debug("minimal device is %"PRIu64, total));
	return total;
}

static int gpt_possible_minimize(struct fdisk_context *cxt, struct fdisk_gpt_label *gpt)
{
	struct gpt_header *hdr = gpt->pheader;
	uint64_t total = gpt_calculate_minimal_size(cxt, gpt);

	return le64_to_cpu(hdr->alternative_lba) > (total - 1ULL);
}

/* move backup header behind the last partition */
static int gpt_minimize_alternative_lba(struct fdisk_context *cxt, struct fdisk_gpt_label *gpt)
{
	uint64_t total = gpt_calculate_minimal_size(cxt, gpt);
	uint64_t orig = cxt->total_sectors;
	int rc;

	/* Let's temporary change size of the device to recalculate backup header */
	cxt->total_sectors = total;
	rc = gpt_fix_alternative_lba(cxt, gpt);
	if (rc)
		return rc;

	cxt->total_sectors = orig;
	fdisk_label_set_changed(cxt->label, 1);
	return 0;
}

/* some universal differences between the headers */
static void gpt_mknew_header_common(struct fdisk_context *cxt,
				    struct gpt_header *header, uint64_t lba)
{
	if (!cxt || !header)
		return;

	header->my_lba = cpu_to_le64(lba);

	if (lba == GPT_PRIMARY_PARTITION_TABLE_LBA) {
		/* primary */
		header->alternative_lba = cpu_to_le64(cxt->total_sectors - 1ULL);
		header->partition_entry_lba = cpu_to_le64(2ULL);

	} else {
		/* backup */
		uint64_t x = 0;
		gpt_calculate_alternative_entries_lba(header,
				le32_to_cpu(header->npartition_entries), &x, cxt);

		header->alternative_lba = cpu_to_le64(GPT_PRIMARY_PARTITION_TABLE_LBA);
		header->partition_entry_lba = cpu_to_le64(x);
	}
}

/*
 * Builds a new GPT header (at sector lba) from a backup header2.
 * If building a primary header, then backup is the secondary, and vice versa.
 *
 * Always pass a new (zeroized) header to build upon as we don't
 * explicitly zero-set some values such as CRCs and reserved.
 *
 * Returns 0 on success, otherwise < 0 on error.
 */
static int gpt_mknew_header_from_bkp(struct fdisk_context *cxt,
				     struct gpt_header *header,
				     uint64_t lba,
				     struct gpt_header *header2)
{
	if (!cxt || !header || !header2)
		return -ENOSYS;

	header->signature              = header2->signature;
	header->revision               = header2->revision;
	header->size                   = header2->size;
	header->npartition_entries     = header2->npartition_entries;
	header->sizeof_partition_entry = header2->sizeof_partition_entry;
	header->first_usable_lba       = header2->first_usable_lba;
	header->last_usable_lba        = header2->last_usable_lba;

	memcpy(&header->disk_guid,
	       &header2->disk_guid, sizeof(header2->disk_guid));
	gpt_mknew_header_common(cxt, header, lba);

	return 0;
}

static struct gpt_header *gpt_copy_header(struct fdisk_context *cxt,
			   struct gpt_header *src)
{
	struct gpt_header *res;

	if (!cxt || !src)
		return NULL;

	assert(cxt->sector_size >= sizeof(struct gpt_header));

	res = calloc(1, cxt->sector_size);
	if (!res) {
		fdisk_warn(cxt, _("failed to allocate GPT header"));
		return NULL;
	}

	res->my_lba                 = src->alternative_lba;
	res->alternative_lba        = src->my_lba;

	res->signature              = src->signature;
	res->revision               = src->revision;
	res->size                   = src->size;
	res->npartition_entries     = src->npartition_entries;
	res->sizeof_partition_entry = src->sizeof_partition_entry;
	res->first_usable_lba       = src->first_usable_lba;
	res->last_usable_lba        = src->last_usable_lba;

	memcpy(&res->disk_guid, &src->disk_guid, sizeof(src->disk_guid));


	if (res->my_lba == GPT_PRIMARY_PARTITION_TABLE_LBA)
		res->partition_entry_lba = cpu_to_le64(2ULL);
	else {
		uint64_t esz = (uint64_t) le32_to_cpu(src->npartition_entries) * sizeof(struct gpt_entry);
		uint64_t esects = (esz + cxt->sector_size - 1) / cxt->sector_size;

		res->partition_entry_lba = cpu_to_le64(cxt->total_sectors - 1ULL - esects);
	}

	return res;
}

static int get_script_u64(struct fdisk_context *cxt, uint64_t *num, const char *name)
{
	const char *str;
	int pwr = 0, rc = 0;

	assert(cxt);

	*num = 0;

	if (!cxt->script)
		return 1;

	str = fdisk_script_get_header(cxt->script, name);
	if (!str)
		return 1;

	rc = parse_size(str, (uintmax_t *) num, &pwr);
	if (rc < 0)
		return rc;
	if (pwr)
		*num /= cxt->sector_size;
	return 0;
}

static int count_first_last_lba(struct fdisk_context *cxt,
				 uint64_t *first, uint64_t *last,
				 uint32_t *maxents)
{
	int rc = 0;
	uint64_t flba = 0, llba = 0;
	uint64_t nents = GPT_NPARTITIONS;

	assert(cxt);
	assert(first);
	assert(last);

	*first = *last = 0;

	/* Get the table length from the script, if given */
	if (cxt->script) {
		rc = get_script_u64(cxt, &nents, "table-length");
		if (rc == 1)
			nents = GPT_NPARTITIONS;  /* undefined by script */
		else if (rc < 0)
			return rc;
	}

	/* The table length was not changed by the script, compute it. */
	if (flba == 0) {
		/* If the device is not large enough reduce this number of
		 * partitions and try to recalculate it again, until we get
		 * something useful or return error.
		 */
		for (; nents > 0; nents--) {
			rc = gpt_calculate_last_lba(NULL, nents, &llba, cxt);
			if (rc == 0)
				rc = gpt_calculate_first_lba(NULL, nents, &flba, cxt);
			if (llba < flba)
				rc = -ENOSPC;
			else if (rc == 0)
				break;
		}
	}

	if (rc)
		return rc;
	if (maxents)
		*maxents = nents;

	/* script default */
	if (cxt->script) {
		rc = get_script_u64(cxt, first, "first-lba");
		if (rc < 0)
			return rc;

		DBG(GPT, ul_debug("FirstLBA: script=%"PRIu64", uefi=%"PRIu64", topology=%ju.",
		                    *first, flba,  (uintmax_t)cxt->first_lba));

		if (rc == 0 && (*first < flba || *first > llba)) {
			fdisk_warnx(cxt, _("First LBA specified by script is out of range."));
			return -ERANGE;
		}

		rc = get_script_u64(cxt, last, "last-lba");
		if (rc < 0)
			return rc;

		DBG(GPT, ul_debug("LastLBA: script=%"PRIu64", uefi=%"PRIu64", topology=%ju.",
		                    *last, llba,  (uintmax_t)cxt->last_lba));

		if (rc == 0 && (*last > llba || *last < flba)) {
			fdisk_warnx(cxt, _("Last LBA specified by script is out of range."));
			return -ERANGE;
		}
	}

	if (!*last)
		*last = llba;

	/* default by topology */
	if (!*first)
		*first = flba < cxt->first_lba &&
			 cxt->first_lba < *last ? cxt->first_lba : flba;
	return 0;
}

/*
 * Builds a clean new GPT header (currently under revision 1.0).
 *
 * Always pass a new (zeroized) header to build upon as we don't
 * explicitly zero-set some values such as CRCs and reserved.
 *
 * Returns 0 on success, otherwise < 0 on error.
 */
static int gpt_mknew_header(struct fdisk_context *cxt,
			    struct gpt_header *header, uint64_t lba)
{
	uint64_t first, last;
	uint32_t nents = 0;
	int has_id = 0, rc;

	if (!cxt || !header)
		return -ENOSYS;

	header->signature = cpu_to_le64(GPT_HEADER_SIGNATURE);
	header->revision  = cpu_to_le32(GPT_HEADER_REVISION_V1_00);

	/* According to EFI standard it's valid to count all the first
	 * sector into header size, but some tools may have a problem
	 * to accept it, so use the header without the zeroed area.
	 * This does not have any impact to CRC, etc.   --kzak Jan-2015
	 */
	header->size = cpu_to_le32(sizeof(struct gpt_header)
				- sizeof(header->reserved2));

	/* Set {First,Last}LBA and number of the partitions
	 * (default is GPT_NPARTITIONS) */
	rc = count_first_last_lba(cxt, &first, &last, &nents);
	if (rc)
		return rc;

	header->npartition_entries     = cpu_to_le32(nents);
	header->sizeof_partition_entry = cpu_to_le32(sizeof(struct gpt_entry));

	header->first_usable_lba = cpu_to_le64(first);
	header->last_usable_lba  = cpu_to_le64(last);

	gpt_mknew_header_common(cxt, header, lba);

	if (cxt->script) {
		const char *id = fdisk_script_get_header(cxt->script, "label-id");
		struct gpt_guid guid = header->disk_guid;
		if (id && string_to_guid(id, &guid) == 0)
			has_id = 1;
		header->disk_guid = guid;
	}

	if (!has_id) {
		struct gpt_guid guid;

		uuid_generate_random((unsigned char *) &guid);
		swap_efi_guid(&guid);
		header->disk_guid = guid;
	}
	return 0;
}

/*
 * Checks if there is a valid protective MBR partition table.
 * Returns 0 if it is invalid or failure. Otherwise, return
 * GPT_MBR_PROTECTIVE or GPT_MBR_HYBRID, depending on the detection.
 */
static int valid_pmbr(struct fdisk_context *cxt)
{
	int i, part = 0, ret = 0; /* invalid by default */
	struct gpt_legacy_mbr *pmbr = NULL;

	if (!cxt->firstsector)
		goto done;

	pmbr = (struct gpt_legacy_mbr *) cxt->firstsector;

	if (le16_to_cpu(pmbr->signature) != MSDOS_MBR_SIGNATURE)
		goto done;

	/* seems like a valid MBR was found, check DOS primary partitions */
	for (i = 0; i < 4; i++) {
		if (pmbr->partition_record[i].os_type == EFI_PMBR_OSTYPE) {
			/*
			 * Ok, we at least know that there's a protective MBR,
			 * now check if there are other partition types for
			 * hybrid MBR.
			 */
			part = i;
			ret = GPT_MBR_PROTECTIVE;
			break;
		}
	}

	if (ret != GPT_MBR_PROTECTIVE)
		goto done;


	for (i = 0 ; i < 4; i++) {
		if ((pmbr->partition_record[i].os_type != EFI_PMBR_OSTYPE) &&
		    (pmbr->partition_record[i].os_type != 0x00)) {
			ret = GPT_MBR_HYBRID;
			goto done;
		}
	}

	/* LBA of the GPT partition header */
	if (pmbr->partition_record[part].starting_lba !=
	    cpu_to_le32(GPT_PRIMARY_PARTITION_TABLE_LBA))
		goto done;

	/*
	 * Protective MBRs take up the lesser of the whole disk
	 * or 2 TiB (32bit LBA), ignoring the rest of the disk.
	 * Some partitioning programs, nonetheless, choose to set
	 * the size to the maximum 32-bit limitation, disregarding
	 * the disk size.
	 *
	 * Hybrid MBRs do not necessarily comply with this.
	 *
	 * Consider a bad value here to be a warning to support dd-ing
	 * an image from a smaller disk to a bigger disk.
	 */
	if (ret == GPT_MBR_PROTECTIVE) {
		uint64_t sz_lba = (uint64_t) le32_to_cpu(pmbr->partition_record[part].size_in_lba);
		if (sz_lba != cxt->total_sectors - 1ULL && sz_lba != 0xFFFFFFFFULL) {

			fdisk_warnx(cxt, _("GPT PMBR size mismatch (%"PRIu64" != %"PRIu64") "
					   "will be corrected by write."),
					sz_lba, cxt->total_sectors - (uint64_t) 1);

			/* Note that gpt_write_pmbr() overwrites PMBR, but we want to keep it valid already
			 * in memory too to disable warnings when valid_pmbr() called next time */
			pmbr->partition_record[part].size_in_lba  =
				cpu_to_le32((uint32_t) min( cxt->total_sectors - 1ULL, 0xFFFFFFFFULL) );
			fdisk_label_set_changed(cxt->label, 1);
		}
	}
done:
	DBG(GPT, ul_debug("PMBR type: %s",
			ret == GPT_MBR_PROTECTIVE ? "protective" :
			ret == GPT_MBR_HYBRID     ? "hybrid"     : "???" ));
	return ret;
}

static uint64_t last_lba(struct fdisk_context *cxt)
{
	struct stat s;
	uint64_t sectors = 0;

	memset(&s, 0, sizeof(s));
	if (fstat(cxt->dev_fd, &s) == -1) {
		fdisk_warn(cxt, _("gpt: stat() failed"));
		return 0;
	}

	if (S_ISBLK(s.st_mode))
		sectors = cxt->total_sectors - 1ULL;
	else if (S_ISREG(s.st_mode))
		sectors = ((uint64_t) s.st_size /
			   (uint64_t) cxt->sector_size) - 1ULL;
	else
		fdisk_warnx(cxt, _("gpt: cannot handle files with mode %o"), s.st_mode);

	DBG(GPT, ul_debug("last LBA: %"PRIu64"", sectors));
	return sectors;
}

static ssize_t read_lba(struct fdisk_context *cxt, uint64_t lba,
			void *buffer, const size_t bytes)
{
	off_t offset = lba * cxt->sector_size;

	if (lseek(cxt->dev_fd, offset, SEEK_SET) == (off_t) -1)
		return -1;
	return (size_t)read(cxt->dev_fd, buffer, bytes) != bytes;
}


/* Returns the GPT entry array */
static unsigned char *gpt_read_entries(struct fdisk_context *cxt,
					 struct gpt_header *header)
{
	size_t sz = 0;
	ssize_t ssz;

	unsigned char *ret = NULL;
	off_t offset;

	assert(cxt);
	assert(header);

	if (gpt_sizeof_entries(header, &sz))
		return NULL;

	ret = calloc(1, sz);
	if (!ret)
		return NULL;

	offset = (off_t) le64_to_cpu(header->partition_entry_lba) *
		       cxt->sector_size;

	if (offset != lseek(cxt->dev_fd, offset, SEEK_SET))
		goto fail;

	ssz = read(cxt->dev_fd, ret, sz);
	if (ssz < 0 || (size_t) ssz != sz)
		goto fail;

	return ret;

fail:
	free(ret);
	return NULL;
}

static inline uint32_t count_crc32(const unsigned char *buf, size_t len,
				   size_t ex_off, size_t ex_len)
{
	return (ul_crc32_exclude_offset(~0L, buf, len, ex_off, ex_len) ^ ~0L);
}

static inline uint32_t gpt_header_count_crc32(struct gpt_header *header)
{
        return count_crc32((unsigned char *) header,		/* buffer */
			le32_to_cpu(header->size),		/* size of buffer */
			offsetof(struct gpt_header, crc32),	/* exclude */
			sizeof(header->crc32));			/* size of excluded area */
}

static inline uint32_t gpt_entryarr_count_crc32(struct gpt_header *header, unsigned char *ents)
{
	size_t arysz = 0;

	if (gpt_sizeof_entries(header, &arysz))
		return 0;

	return count_crc32(ents, arysz, 0, 0);
}


/*
 * Recompute header and partition array 32bit CRC checksums.
 * This function does not fail - if there's corruption, then it
 * will be reported when checksumming it again (ie: probing or verify).
 */
static void gpt_recompute_crc(struct gpt_header *header, unsigned char *ents)
{
	if (!header)
		return;

	header->partition_entry_array_crc32 =
			cpu_to_le32( gpt_entryarr_count_crc32(header, ents) );

	header->crc32 = cpu_to_le32( gpt_header_count_crc32(header) );
}

/*
 * Compute the 32bit CRC checksum of the partition table header.
 * Returns 1 if it is valid, otherwise 0.
 */
static int gpt_check_header_crc(struct gpt_header *header, unsigned char *ents)
{
	uint32_t orgcrc = le32_to_cpu(header->crc32),
		 crc = gpt_header_count_crc32(header);

	if (crc == orgcrc)
		return 1;

	/*
	 * If we have checksum mismatch it may be due to stale data, like a
	 * partition being added or deleted. Recompute the CRC again and make
	 * sure this is not the case.
	 */
	if (ents) {
		gpt_recompute_crc(header, ents);
		return gpt_header_count_crc32(header) == orgcrc;
	}

	return 0;
}

/*
 * It initializes the partition entry array.
 * Returns 1 if the checksum is valid, otherwise 0.
 */
static int gpt_check_entryarr_crc(struct gpt_header *header, unsigned char *ents)
{
	if (!header || !ents)
		return 0;

	return gpt_entryarr_count_crc32(header, ents) ==
			le32_to_cpu(header->partition_entry_array_crc32);
}

static int gpt_check_lba_sanity(struct fdisk_context *cxt, struct gpt_header *header)
{
	int ret = 0;
	uint64_t lu, fu, lastlba = last_lba(cxt);

	fu = le64_to_cpu(header->first_usable_lba);
	lu = le64_to_cpu(header->last_usable_lba);

	/* check if first and last usable LBA make sense */
	if (lu < fu) {
		DBG(GPT, ul_debug("error: header last LBA is before first LBA"));
		goto done;
	}

	/* check if first and last usable LBAs with the disk's last LBA */
	if (fu > lastlba || lu > lastlba) {
		DBG(GPT, ul_debug("error: header LBAs are after the disk's last LBA (%ju..%ju)",
					(uintmax_t) fu, (uintmax_t) lu));
		goto done;
	}

	/* the header has to be outside usable range */
	if (fu < GPT_PRIMARY_PARTITION_TABLE_LBA &&
	    GPT_PRIMARY_PARTITION_TABLE_LBA < lu) {
		DBG(GPT, ul_debug("error: header outside of usable range"));
		goto done;
	}

	ret = 1; /* sane */
done:
	return ret;
}

/* Check if there is a valid header signature */
static int gpt_check_signature(struct gpt_header *header)
{
	return header->signature == cpu_to_le64(GPT_HEADER_SIGNATURE);
}

/*
 * Return the specified GPT Header, or NULL upon failure/invalid.
 * Note that all tests must pass to ensure a valid header,
 * we do not rely on only testing the signature for a valid probe.
 */
static struct gpt_header *gpt_read_header(struct fdisk_context *cxt,
					  uint64_t lba,
					  unsigned char **_ents)
{
	struct gpt_header *header = NULL;
	unsigned char *ents = NULL;
	uint32_t hsz;

	if (!cxt)
		return NULL;

	/* always allocate all sector, the area after GPT header
	 * has to be fill by zeros */
	assert(cxt->sector_size >= sizeof(struct gpt_header));

	header = calloc(1, cxt->sector_size);
	if (!header)
		return NULL;

	/* read and verify header */
	if (read_lba(cxt, lba, header, cxt->sector_size) != 0)
		goto invalid;

	if (!gpt_check_signature(header))
		goto invalid;

	/* make sure header size is between 92 and sector size bytes */
	hsz = le32_to_cpu(header->size);
	if (hsz < GPT_HEADER_MINSZ || hsz > cxt->sector_size)
		goto invalid;

	if (!gpt_check_header_crc(header, NULL))
		goto invalid;

	/* read and verify entries */
	ents = gpt_read_entries(cxt, header);
	if (!ents)
		goto invalid;

	if (!gpt_check_entryarr_crc(header, ents))
		goto invalid;

	if (!gpt_check_lba_sanity(cxt, header))
		goto invalid;

	/* valid header must be at MyLBA */
	if (le64_to_cpu(header->my_lba) != lba)
		goto invalid;

	if (_ents)
		*_ents = ents;
	else
		free(ents);

	DBG(GPT, ul_debug("found valid header on LBA %"PRIu64"", lba));
	return header;
invalid:
	free(header);
	free(ents);

	DBG(GPT, ul_debug("read header on LBA %"PRIu64" failed", lba));
	return NULL;
}


static int gpt_locate_disklabel(struct fdisk_context *cxt, int n,
		const char **name, uint64_t *offset, size_t *size)
{
	struct fdisk_gpt_label *gpt;

	assert(cxt);

	*name = NULL;
	*offset = 0;
	*size = 0;

	switch (n) {
	case 0:
		*name = "PMBR";
		*offset = 0;
		*size = 512;
		break;
	case 1:
		*name = _("GPT Header");
		*offset = (uint64_t) GPT_PRIMARY_PARTITION_TABLE_LBA * cxt->sector_size;
		*size = sizeof(struct gpt_header);
		break;
	case 2:
		*name = _("GPT Entries");
		gpt = self_label(cxt);
		*offset = (uint64_t) le64_to_cpu(gpt->pheader->partition_entry_lba) *
				     cxt->sector_size;
		return gpt_sizeof_entries(gpt->pheader, size);
	case 3:
		*name = _("GPT Backup Entries");
		gpt = self_label(cxt);
		*offset = (uint64_t) le64_to_cpu(gpt->bheader->partition_entry_lba) *
				     cxt->sector_size;
		return gpt_sizeof_entries(gpt->bheader, size);
	case 4:
		*name = _("GPT Backup Header");
		gpt = self_label(cxt);
		*offset = (uint64_t) le64_to_cpu(gpt->pheader->alternative_lba) * cxt->sector_size;
		*size = sizeof(struct gpt_header);
		break;
	default:
		return 1;			/* no more chunks */
	}

	return 0;
}

static int gpt_get_disklabel_item(struct fdisk_context *cxt, struct fdisk_labelitem *item)
{
	struct gpt_header *h;
	int rc = 0;
	uint64_t x = 0;

	assert(cxt);
	assert(cxt->label);
	assert(fdisk_is_label(cxt, GPT));

	h = self_label(cxt)->pheader;

	switch (item->id) {
	case GPT_LABELITEM_ID:
		item->name = _("Disk identifier");
		item->type = 's';
		item->data.str = gpt_get_header_id(h);
		if (!item->data.str)
			rc = -ENOMEM;
		break;
	case GPT_LABELITEM_FIRSTLBA:
		item->name = _("First usable LBA");
		item->type = 'j';
		item->data.num64 = le64_to_cpu(h->first_usable_lba);
		break;
	case GPT_LABELITEM_LASTLBA:
		item->name = _("Last usable LBA");
		item->type = 'j';
		item->data.num64 = le64_to_cpu(h->last_usable_lba);
		break;
	case GPT_LABELITEM_ALTLBA:
		/* TRANSLATORS: The LBA (Logical Block Address) of the backup GPT header. */
		item->name = _("Alternative LBA");
		item->type = 'j';
		item->data.num64 = le64_to_cpu(h->alternative_lba);
		break;
	case GPT_LABELITEM_ENTRIESLBA:
		/* TRANSLATORS: The start of the array of partition entries. */
		item->name = _("Partition entries starting LBA");
		item->type = 'j';
		item->data.num64 = le64_to_cpu(h->partition_entry_lba);
		break;
	case GPT_LABELITEM_ENTRIESLASTLBA:
		/* TRANSLATORS: The end of the array of partition entries. */
		item->name = _("Partition entries ending LBA");
		item->type = 'j';
		gpt_calculate_sectorsof_entries(h,
				le32_to_cpu(h->npartition_entries), &x, cxt);
		item->data.num64 = le64_to_cpu(h->partition_entry_lba) + x - 1;
		break;
	case GPT_LABELITEM_ENTRIESALLOC:
		item->name = _("Allocated partition entries");
		item->type = 'j';
		item->data.num64 = le32_to_cpu(h->npartition_entries);
		break;
	default:
		if (item->id < __FDISK_NLABELITEMS)
			rc = 1;	/* unsupported generic item */
		else
			rc = 2;	/* out of range */
		break;
	}

	return rc;
}

/*
 * Returns the number of partitions that are in use.
 */
static size_t partitions_in_use(struct fdisk_gpt_label *gpt)
{
	size_t i, used = 0;

	assert(gpt);
	assert(gpt->pheader);
	assert(gpt->ents);

	for (i = 0; i < gpt_get_nentries(gpt); i++) {
		struct gpt_entry *e = gpt_get_entry(gpt, i);

		if (gpt_entry_is_used(e))
			used++;
	}
	return used;
}


/*
 * Check if a partition is too big for the disk (sectors).
 * Returns the faulting partition number, otherwise 0.
 */
static uint32_t check_too_big_partitions(struct fdisk_gpt_label *gpt, uint64_t sectors)
{
	size_t i;

	assert(gpt);
	assert(gpt->pheader);
	assert(gpt->ents);

	for (i = 0; i < gpt_get_nentries(gpt); i++) {
		struct gpt_entry *e = gpt_get_entry(gpt, i);

		if (!gpt_entry_is_used(e))
			continue;
		if (gpt_partition_end(e) >= sectors)
			return i + 1;
	}

	return 0;
}

/*
 * Check if a partition ends before it begins
 * Returns the faulting partition number, otherwise 0.
 */
static uint32_t check_start_after_end_partitions(struct fdisk_gpt_label *gpt)
{
	size_t i;

	assert(gpt);
	assert(gpt->pheader);
	assert(gpt->ents);

	for (i = 0; i < gpt_get_nentries(gpt); i++) {
		struct gpt_entry *e = gpt_get_entry(gpt, i);

		if (!gpt_entry_is_used(e))
			continue;
		if (gpt_partition_start(e) > gpt_partition_end(e))
			return i + 1;
	}

	return 0;
}

/*
 * Check if partition e1 overlaps with partition e2.
 */
static inline int partition_overlap(struct gpt_entry *e1, struct gpt_entry *e2)
{
	uint64_t start1 = gpt_partition_start(e1);
	uint64_t end1   = gpt_partition_end(e1);
	uint64_t start2 = gpt_partition_start(e2);
	uint64_t end2   = gpt_partition_end(e2);

	return (start1 && start2 && (start1 <= end2) != (end1 < start2));
}

/*
 * Find any partitions that overlap.
 */
static uint32_t check_overlap_partitions(struct fdisk_gpt_label *gpt)
{
	size_t i, j;

	assert(gpt);
	assert(gpt->pheader);
	assert(gpt->ents);

	for (i = 0; i < gpt_get_nentries(gpt); i++)
		for (j = 0; j < i; j++) {
			struct gpt_entry *ei = gpt_get_entry(gpt, i);
			struct gpt_entry *ej = gpt_get_entry(gpt, j);

			if (!gpt_entry_is_used(ei) || !gpt_entry_is_used(ej))
				continue;
			if (partition_overlap(ei, ej)) {
				DBG(GPT, ul_debug("partitions overlap detected [%zu vs. %zu]", i, j));
				return i + 1;
			}
		}

	return 0;
}

/*
 * Find the first available block after the starting point; returns 0 if
 * there are no available blocks left, or error. From gdisk.
 */
static uint64_t find_first_available(struct fdisk_gpt_label *gpt, uint64_t start)
{
	int first_moved = 0;
	uint64_t first;
	uint64_t fu, lu;

	assert(gpt);
	assert(gpt->pheader);
	assert(gpt->ents);

	fu = le64_to_cpu(gpt->pheader->first_usable_lba);
	lu = le64_to_cpu(gpt->pheader->last_usable_lba);

	/*
	 * Begin from the specified starting point or from the first usable
	 * LBA, whichever is greater...
	 */
	first = start < fu ? fu : start;

	/*
	 * Now search through all partitions; if first is within an
	 * existing partition, move it to the next sector after that
	 * partition and repeat. If first was moved, set firstMoved
	 * flag; repeat until firstMoved is not set, so as to catch
	 * cases where partitions are out of sequential order....
	 */
	do {
		size_t i;

		first_moved = 0;
		for (i = 0; i < gpt_get_nentries(gpt); i++) {
			struct gpt_entry *e = gpt_get_entry(gpt, i);

			if (!gpt_entry_is_used(e))
				continue;
			if (first < gpt_partition_start(e))
				continue;
			if (first <= gpt_partition_end(e)) {
				first = gpt_partition_end(e) + 1;
				first_moved = 1;
			}
		}
	} while (first_moved == 1);

	if (first > lu)
		first = 0;

	return first;
}


/* Returns last available sector in the free space pointed to by start. From gdisk. */
static uint64_t find_last_free(struct fdisk_gpt_label *gpt, uint64_t start)
{
	size_t i;
	uint64_t nearest_start;

	assert(gpt);
	assert(gpt->pheader);
	assert(gpt->ents);

	nearest_start = le64_to_cpu(gpt->pheader->last_usable_lba);

	for (i = 0; i < gpt_get_nentries(gpt); i++) {
		struct gpt_entry *e = gpt_get_entry(gpt, i);
		uint64_t ps = gpt_partition_start(e);

		if (nearest_start > ps && ps > start)
			nearest_start = ps - 1ULL;
	}

	return nearest_start;
}

/* Returns the last free sector on the disk. From gdisk. */
static uint64_t find_last_free_sector(struct fdisk_gpt_label *gpt)
{
	int last_moved;
	uint64_t last = 0;

	assert(gpt);
	assert(gpt->pheader);
	assert(gpt->ents);

	/* start by assuming the last usable LBA is available */
	last = le64_to_cpu(gpt->pheader->last_usable_lba);
	do {
		size_t i;

		last_moved = 0;
		for (i = 0; i < gpt_get_nentries(gpt); i++) {
			struct gpt_entry *e = gpt_get_entry(gpt, i);

			if (last >= gpt_partition_start(e) &&
			    last <= gpt_partition_end(e)) {
				last = gpt_partition_start(e) - 1ULL;
				last_moved = 1;
			}
		}
	} while (last_moved == 1);

	return last;
}

/*
 * Finds the first available sector in the largest block of unallocated
 * space on the disk. Returns 0 if there are no available blocks left.
 * From gdisk.
 */
static uint64_t find_first_in_largest(struct fdisk_gpt_label *gpt)
{
	uint64_t start = 0, first_sect, last_sect;
	uint64_t segment_size, selected_size = 0, selected_segment = 0;

	assert(gpt);
	assert(gpt->pheader);
	assert(gpt->ents);

	do {
		first_sect = find_first_available(gpt, start);
		if (first_sect != 0) {
			last_sect = find_last_free(gpt, first_sect);
			segment_size = last_sect - first_sect + 1ULL;

			if (segment_size > selected_size) {
				selected_size = segment_size;
				selected_segment = first_sect;
			}
			start = last_sect + 1ULL;
		}
	} while (first_sect != 0);

	return selected_segment;
}

/*
 * Find the total number of free sectors, the number of segments in which
 * they reside, and the size of the largest of those segments. From gdisk.
 */
static uint64_t get_free_sectors(struct fdisk_context *cxt,
				 struct fdisk_gpt_label *gpt,
				 uint32_t *nsegments,
				 uint64_t *largest_segment)
{
	uint32_t num = 0;
	uint64_t first_sect, last_sect;
	uint64_t largest_seg = 0, segment_sz;
	uint64_t totfound = 0, start = 0; /* starting point for each search */

	if (!cxt->total_sectors)
		goto done;

	assert(gpt);
	assert(gpt->pheader);
	assert(gpt->ents);

	do {
		first_sect = find_first_available(gpt, start);
		if (first_sect) {
			last_sect = find_last_free(gpt, first_sect);
			segment_sz = last_sect - first_sect + 1;

			if (segment_sz > largest_seg)
				largest_seg = segment_sz;
			totfound += segment_sz;
			num++;
			start = last_sect + 1ULL;
		}
	} while (first_sect);

done:
	if (nsegments)
		*nsegments = num;
	if (largest_segment)
		*largest_segment = largest_seg;

	return totfound;
}

static int gpt_probe_label(struct fdisk_context *cxt)
{
	int mbr_type;
	struct fdisk_gpt_label *gpt;

	assert(cxt);
	assert(cxt->label);
	assert(fdisk_is_label(cxt, GPT));

	gpt = self_label(cxt);

	/* TODO: it would be nice to support scenario when GPT headers are OK,
	 *       but PMBR is corrupt */
	mbr_type = valid_pmbr(cxt);
	if (!mbr_type)
		goto failed;

	/* primary header */
	gpt->pheader = gpt_read_header(cxt, GPT_PRIMARY_PARTITION_TABLE_LBA,
				       &gpt->ents);

	if (gpt->pheader)
		/* primary OK, try backup from alternative LBA */
		gpt->bheader = gpt_read_header(cxt,
					le64_to_cpu(gpt->pheader->alternative_lba),
					NULL);
	else
		/* primary corrupted -- try last LBA */
		gpt->bheader = gpt_read_header(cxt, last_lba(cxt), &gpt->ents);

	if (!gpt->pheader && !gpt->bheader)
		goto failed;

	/* primary OK, backup corrupted -- recovery */
	if (gpt->pheader && !gpt->bheader) {
		fdisk_warnx(cxt, _("The backup GPT table is corrupt, but the "
				  "primary appears OK, so that will be used."));
		gpt->bheader = gpt_copy_header(cxt, gpt->pheader);
		if (!gpt->bheader)
			goto failed;
		gpt_recompute_crc(gpt->bheader, gpt->ents);
		fdisk_label_set_changed(cxt->label, 1);

	/* primary corrupted, backup OK -- recovery */
	} else if (!gpt->pheader && gpt->bheader) {
		fdisk_warnx(cxt, _("The primary GPT table is corrupt, but the "
				  "backup appears OK, so that will be used."));
		gpt->pheader = gpt_copy_header(cxt, gpt->bheader);
		if (!gpt->pheader)
			goto failed;
		gpt_recompute_crc(gpt->pheader, gpt->ents);
		fdisk_label_set_changed(cxt->label, 1);
	}

	/* The headers make be correct, but Backup do not have to be on the end
	 * of the device (due to device resize, etc.). Let's fix this issue. */
	if (gpt->minimize == 0 &&
	    (le64_to_cpu(gpt->pheader->alternative_lba) > cxt->total_sectors ||
	     le64_to_cpu(gpt->pheader->alternative_lba) < cxt->total_sectors - 1ULL)) {

		if (gpt->no_relocate || fdisk_is_readonly(cxt))
			fdisk_warnx(cxt, _("The backup GPT table is not on the end of the device."));

		else {
			fdisk_warnx(cxt, _("The backup GPT table is not on the end of the device. "
					   "This problem will be corrected by write."));

			if (gpt_fix_alternative_lba(cxt, gpt) != 0)
				fdisk_warnx(cxt, _("Failed to recalculate backup GPT table location"));
			gpt_recompute_crc(gpt->bheader, gpt->ents);
			gpt_recompute_crc(gpt->pheader, gpt->ents);
			fdisk_label_set_changed(cxt->label, 1);
		}
	}

	if (gpt->minimize && gpt_possible_minimize(cxt, gpt))
		fdisk_label_set_changed(cxt->label, 1);

	cxt->label->nparts_max = gpt_get_nentries(gpt);
	cxt->label->nparts_cur = partitions_in_use(gpt);
	return 1;
failed:
	DBG(GPT, ul_debug("probe failed"));
	gpt_deinit(cxt->label);
	return 0;
}

static char *encode_to_utf8(unsigned char *src, size_t count)
{
	unsigned char *dest;
	size_t len = (count * 3 / 2) + 1;

	dest = calloc(1, len);
	if (!dest)
		return NULL;

	ul_encode_to_utf8(UL_ENCODE_UTF16LE, dest, len, src, count);
	return (char *) dest;
}

static int gpt_entry_attrs_to_string(struct gpt_entry *e, char **res)
{
	unsigned int n, count = 0;
	size_t l;
	char *bits, *p;
	uint64_t attrs;

	assert(e);
	assert(res);

	*res = NULL;
	attrs = e->attrs;
	if (!attrs)
		return 0;	/* no attributes at all */

	bits = (char *) &attrs;

	/* Note that sizeof() is correct here, we need separators between
	 * the strings so also count \0 is correct */
	*res = calloc(1, sizeof(GPT_ATTRSTR_NOBLOCK) +
			 sizeof(GPT_ATTRSTR_REQ) +
			 sizeof(GPT_ATTRSTR_LEGACY) +
			 sizeof("GUID:") + (GPT_ATTRBIT_GUID_COUNT * 3));
	if (!*res)
		return -errno;

	p = *res;
	if (isset(bits, GPT_ATTRBIT_REQ)) {
		memcpy(p, GPT_ATTRSTR_REQ, (l = sizeof(GPT_ATTRSTR_REQ)));
		p += l - 1;
	}
	if (isset(bits, GPT_ATTRBIT_NOBLOCK)) {
		if (p != *res)
			*p++ = ' ';
		memcpy(p, GPT_ATTRSTR_NOBLOCK, (l = sizeof(GPT_ATTRSTR_NOBLOCK)));
		p += l - 1;
	}
	if (isset(bits, GPT_ATTRBIT_LEGACY)) {
		if (p != *res)
			*p++ = ' ';
		memcpy(p, GPT_ATTRSTR_LEGACY, (l = sizeof(GPT_ATTRSTR_LEGACY)));
		p += l - 1;
	}

	for (n = GPT_ATTRBIT_GUID_FIRST;
	     n < GPT_ATTRBIT_GUID_FIRST + GPT_ATTRBIT_GUID_COUNT; n++) {

		if (!isset(bits, n))
			continue;
		if (!count) {
			if (p != *res)
				*p++ = ' ';
			p += sprintf(p, "GUID:%u", n);
		} else
			p += sprintf(p, ",%u", n);
		count++;
	}

	return 0;
}

static int gpt_entry_attrs_from_string(
			struct fdisk_context *cxt,
			struct gpt_entry *e,
			const char *str)
{
	const char *p = str;
	uint64_t attrs = 0;
	char *bits;

	assert(e);
	assert(p);

	DBG(GPT, ul_debug("parsing string attributes '%s'", p));

	bits = (char *) &attrs;

	while (p && *p) {
		int bit = -1;

		while (isblank(*p)) p++;
		if (!*p)
			break;

		DBG(GPT, ul_debug(" item '%s'", p));

		if (strncmp(p, GPT_ATTRSTR_REQ,
					sizeof(GPT_ATTRSTR_REQ) - 1) == 0) {
			bit = GPT_ATTRBIT_REQ;
			p += sizeof(GPT_ATTRSTR_REQ) - 1;
		} else if (strncmp(p, GPT_ATTRSTR_REQ_TYPO,
					sizeof(GPT_ATTRSTR_REQ_TYPO) - 1) == 0) {
			bit = GPT_ATTRBIT_REQ;
			p += sizeof(GPT_ATTRSTR_REQ_TYPO) - 1;
		} else if (strncmp(p, GPT_ATTRSTR_LEGACY,
					sizeof(GPT_ATTRSTR_LEGACY) - 1) == 0) {
			bit = GPT_ATTRBIT_LEGACY;
			p += sizeof(GPT_ATTRSTR_LEGACY) - 1;
		} else if (strncmp(p, GPT_ATTRSTR_NOBLOCK,
					sizeof(GPT_ATTRSTR_NOBLOCK) - 1) == 0) {
			bit = GPT_ATTRBIT_NOBLOCK;
			p += sizeof(GPT_ATTRSTR_NOBLOCK) - 1;

		/* GUID:<bit> as well as <bit> */
		} else if (isdigit((unsigned char) *p)
			   || (strncmp(p, "GUID:", 5) == 0
			       && isdigit((unsigned char) *(p + 5)))) {
			char *end = NULL;

			if (*p == 'G')
				p += 5;

			errno = 0;
			bit = strtol(p, &end, 0);
			if (errno || !end || end == str
			    || bit < GPT_ATTRBIT_GUID_FIRST
			    || bit >= GPT_ATTRBIT_GUID_FIRST + GPT_ATTRBIT_GUID_COUNT)
				bit = -1;
			else
				p = end;
		}

		if (bit < 0) {
			fdisk_warnx(cxt, _("unsupported GPT attribute bit '%s'"), p);
			return -EINVAL;
		}

		if (*p && *p != ',' && !isblank(*p)) {
			fdisk_warnx(cxt, _("failed to parse GPT attribute string '%s'"), str);
			return -EINVAL;
		}

		setbit(bits, bit);

		while (isblank(*p)) p++;
		if (*p == ',')
			p++;
	}

	e->attrs = attrs;
	return 0;
}

static int gpt_get_partition(struct fdisk_context *cxt, size_t n,
			     struct fdisk_partition *pa)
{
	struct fdisk_gpt_label *gpt;
	struct gpt_entry *e;
	char u_str[UUID_STR_LEN];
	int rc = 0;
	struct gpt_guid guid;

	assert(cxt);
	assert(cxt->label);
	assert(fdisk_is_label(cxt, GPT));

	gpt = self_label(cxt);

	if (n >= gpt_get_nentries(gpt))
		return -EINVAL;

	gpt = self_label(cxt);
	e = gpt_get_entry(gpt, n);

	pa->used = gpt_entry_is_used(e) || gpt_partition_start(e);
	if (!pa->used)
		return 0;

	pa->start = gpt_partition_start(e);
	pa->size = gpt_partition_size(e);
	pa->type = gpt_partition_parttype(cxt, e);

	guid = e->partition_guid;
	if (guid_to_string(&guid, u_str)) {
		pa->uuid = strdup(u_str);
		if (!pa->uuid) {
			rc = -errno;
			goto done;
		}
	} else
		pa->uuid = NULL;

	rc = gpt_entry_attrs_to_string(e, &pa->attrs);
	if (rc)
		goto done;

	pa->name = encode_to_utf8((unsigned char *)e->name, sizeof(e->name));
	return 0;
done:
	fdisk_reset_partition(pa);
	return rc;
}


static int gpt_set_partition(struct fdisk_context *cxt, size_t n,
			     struct fdisk_partition *pa)
{
	struct fdisk_gpt_label *gpt;
	struct gpt_entry *e;
	int rc = 0;
	uint64_t start, end;

	assert(cxt);
	assert(cxt->label);
	assert(fdisk_is_label(cxt, GPT));

	gpt = self_label(cxt);

	if (n >= gpt_get_nentries(gpt))
		return -EINVAL;

	FDISK_INIT_UNDEF(start);
	FDISK_INIT_UNDEF(end);

	gpt = self_label(cxt);
	e = gpt_get_entry(gpt, n);

	if (pa->uuid) {
		char new_u[UUID_STR_LEN], old_u[UUID_STR_LEN];
		struct gpt_guid guid;

		guid = e->partition_guid;
		guid_to_string(&guid, old_u);
		rc = gpt_entry_set_uuid(e, pa->uuid);
		if (rc)
			return rc;
		guid = e->partition_guid;
		guid_to_string(&guid, new_u);
		fdisk_info(cxt, _("Partition UUID changed from %s to %s."),
			old_u, new_u);
	}

	if (pa->name) {
		int len;
		char *old = encode_to_utf8((unsigned char *)e->name, sizeof(e->name));
		len = gpt_entry_set_name(e, pa->name);
		if (len < 0)
			fdisk_warn(cxt, _("Failed to translate partition name, name not changed."));
		else
			fdisk_info(cxt, _("Partition name changed from '%s' to '%.*s'."),
				old, len, pa->name);
		free(old);
	}

	if (pa->type && pa->type->typestr) {
		struct gpt_guid typeid;

		rc = string_to_guid(pa->type->typestr, &typeid);
		if (rc)
			return rc;
		gpt_entry_set_type(e, &typeid);
	}
	if (pa->attrs) {
		rc = gpt_entry_attrs_from_string(cxt, e, pa->attrs);
		if (rc)
			return rc;
	}

	if (fdisk_partition_has_start(pa))
		start = pa->start;
	if (fdisk_partition_has_size(pa) || fdisk_partition_has_start(pa)) {
		uint64_t xstart = fdisk_partition_has_start(pa) ? pa->start : gpt_partition_start(e);
		uint64_t xsize  = fdisk_partition_has_size(pa)  ? pa->size  : gpt_partition_size(e);
		end = xstart + xsize - 1ULL;
	}

	if (!FDISK_IS_UNDEF(start)) {
		if (start < le64_to_cpu(gpt->pheader->first_usable_lba)) {
			fdisk_warnx(cxt, _("The start of the partition understeps FirstUsableLBA."));
			return -EINVAL;
		}
		e->lba_start = cpu_to_le64(start);
	}
	if (!FDISK_IS_UNDEF(end)) {
		if (end > le64_to_cpu(gpt->pheader->last_usable_lba)) {
			fdisk_warnx(cxt, _("The end of the partition oversteps LastUsableLBA."));
			return -EINVAL;
		}
		e->lba_end = cpu_to_le64(end);
	}
	gpt_recompute_crc(gpt->pheader, gpt->ents);
	gpt_recompute_crc(gpt->bheader, gpt->ents);

	fdisk_label_set_changed(cxt->label, 1);
	return rc;
}

static int gpt_read(struct fdisk_context *cxt, off_t offset, void *buf, size_t count)
{
	if (offset != lseek(cxt->dev_fd, offset, SEEK_SET))
		return -errno;

	if (read_all(cxt->dev_fd, buf, count))
		return -errno;

	DBG(GPT, ul_debug("  read OK [offset=%zu, size=%zu]",
				(size_t) offset, count));
	return 0;
}

static int gpt_write(struct fdisk_context *cxt, off_t offset, void *buf, size_t count)
{
	if (offset != lseek(cxt->dev_fd, offset, SEEK_SET))
		return -errno;

	if (write_all(cxt->dev_fd, buf, count))
		return -errno;

	if (fsync(cxt->dev_fd) != 0)
		return -errno;

	DBG(GPT, ul_debug("  write OK [offset=%zu, size=%zu]",
				(size_t) offset, count));
	return 0;
}

/*
 * Write partitions.
 * Returns 0 on success, or corresponding error otherwise.
 */
static int gpt_write_partitions(struct fdisk_context *cxt,
				struct gpt_header *header, unsigned char *ents)
{
	size_t esz = 0;
	int rc;

	rc = gpt_sizeof_entries(header, &esz);
	if (rc)
		return rc;

	return gpt_write(cxt,
			(off_t) le64_to_cpu(header->partition_entry_lba) * cxt->sector_size,
			ents, esz);
}

/*
 * Write a GPT header to a specified LBA.
 *
 * We read all sector, so we have to write all sector back
 * to the device -- never ever rely on sizeof(struct gpt_header)!
 *
 * Returns 0 on success, or corresponding error otherwise.
 */
static int gpt_write_header(struct fdisk_context *cxt,
			    struct gpt_header *header, uint64_t lba)
{
	return gpt_write(cxt, lba * cxt->sector_size, header, cxt->sector_size);
}

/*
 * Write the protective MBR.
 * Returns 0 on success, or corresponding error otherwise.
 */
static int gpt_write_pmbr(struct fdisk_context *cxt)
{
	struct gpt_legacy_mbr *pmbr;
	struct gpt_legacy_mbr *current;
	int rc;

	assert(cxt);
	assert(cxt->firstsector);

	DBG(GPT, ul_debug("(over)writing PMBR"));
	pmbr = (struct gpt_legacy_mbr *) cxt->firstsector;

	/* zero out the legacy partitions */
	memset(pmbr->partition_record, 0, sizeof(pmbr->partition_record));

	pmbr->signature = cpu_to_le16(MSDOS_MBR_SIGNATURE);
	pmbr->partition_record[0].os_type      = EFI_PMBR_OSTYPE;
	pmbr->partition_record[0].start_sector = 2;
	pmbr->partition_record[0].end_head     = 0xFF;
	pmbr->partition_record[0].end_sector   = 0xFF;
	pmbr->partition_record[0].end_track    = 0xFF;
	pmbr->partition_record[0].starting_lba = cpu_to_le32(1);

	/*
	 * Set size_in_lba to the size of the disk minus one. If the size of the disk
	 * is too large to be represented by a 32bit LBA (2Tb), set it to 0xFFFFFFFF.
	 */
	if (cxt->total_sectors - 1ULL > 0xFFFFFFFFULL)
		pmbr->partition_record[0].size_in_lba = cpu_to_le32(0xFFFFFFFF);
	else
		pmbr->partition_record[0].size_in_lba =
			cpu_to_le32((uint32_t) (cxt->total_sectors - 1ULL));

	/* Read the current PMBR and compare it with the new, don't write if
	 * the same. */
	current = malloc(sizeof(*current));
	if (!current)
		goto do_write;

	rc = gpt_read(cxt, GPT_PMBR_LBA * cxt->sector_size,
		      current, sizeof(*current));
	if (!rc)
		rc = memcmp(pmbr, current, sizeof(*current));

	free(current);

	if (!rc) {
		DBG(GPT, ul_debug("Same MBR on disk => don't write it"));
		return 0;
	}

 do_write:
	/* pMBR covers the first sector (LBA) of the disk */
	return gpt_write(cxt, GPT_PMBR_LBA * cxt->sector_size,
			 pmbr, cxt->sector_size);
}

/*
 * Writes in-memory GPT and pMBR data to disk.
 * Returns 0 if successful write, otherwise, a corresponding error.
 * Any indication of error will abort the operation.
 */
static int gpt_write_disklabel(struct fdisk_context *cxt)
{
	struct fdisk_gpt_label *gpt;
	int mbr_type;

	assert(cxt);
	assert(cxt->label);
	assert(fdisk_is_label(cxt, GPT));

	DBG(GPT, ul_debug("writing..."));

	gpt = self_label(cxt);
	mbr_type = valid_pmbr(cxt);

	/* check that disk is big enough to handle the backup header */
	if (le64_to_cpu(gpt->pheader->alternative_lba) > cxt->total_sectors)
		goto err0;

	/* check that the backup header is properly placed */
	if (le64_to_cpu(gpt->pheader->alternative_lba) < cxt->total_sectors - 1ULL)
		goto err0;

	if (check_overlap_partitions(gpt))
		goto err0;

	if (gpt->minimize)
		gpt_minimize_alternative_lba(cxt, gpt);

	/* recompute CRCs for both headers */
	gpt_recompute_crc(gpt->pheader, gpt->ents);
	gpt_recompute_crc(gpt->bheader, gpt->ents);

	/*
	 * UEFI requires writing in this specific order:
	 *   1) backup partition tables
	 *   2) backup GPT header
	 *   3) primary partition tables
	 *   4) primary GPT header
	 *   5) protective MBR
	 *
	 * If any write fails, we abort the rest.
	 */
	if (gpt_write_partitions(cxt, gpt->bheader, gpt->ents) != 0)
		goto err1;
	if (gpt_write_header(cxt, gpt->bheader,
			     le64_to_cpu(gpt->pheader->alternative_lba)) != 0)
		goto err1;
	if (gpt_write_partitions(cxt, gpt->pheader, gpt->ents) != 0)
		goto err1;
	if (gpt_write_header(cxt, gpt->pheader, GPT_PRIMARY_PARTITION_TABLE_LBA) != 0)
		goto err1;

	if (mbr_type == GPT_MBR_HYBRID)
		fdisk_warnx(cxt, _("The device contains hybrid MBR -- writing GPT only."));
	else if (gpt_write_pmbr(cxt) != 0)
		goto err1;

	DBG(GPT, ul_debug("...write success"));
	return 0;
err0:
	DBG(GPT, ul_debug("...write failed: incorrect input"));
	errno = EINVAL;
	return -EINVAL;
err1:
	DBG(GPT, ul_debug("...write failed: %m"));
	return -errno;
}

/*
 * Verify data integrity and report any found problems for:
 *   - primary and backup header validations
 *   - partition validations
 */
static int gpt_verify_disklabel(struct fdisk_context *cxt)
{
	int nerror = 0;
	unsigned int ptnum;
	struct fdisk_gpt_label *gpt;

	assert(cxt);
	assert(cxt->label);
	assert(fdisk_is_label(cxt, GPT));

	gpt = self_label(cxt);
	if (!gpt)
		return -EINVAL;

	if (!gpt->bheader) {
		nerror++;
		fdisk_warnx(cxt, _("Disk does not contain a valid backup header."));
	}

	if (!gpt_check_header_crc(gpt->pheader, gpt->ents)) {
		nerror++;
		fdisk_warnx(cxt, _("Invalid primary header CRC checksum."));
	}
	if (gpt->bheader && !gpt_check_header_crc(gpt->bheader, gpt->ents)) {
		nerror++;
		fdisk_warnx(cxt, _("Invalid backup header CRC checksum."));
	}

	if (!gpt_check_entryarr_crc(gpt->pheader, gpt->ents)) {
		nerror++;
		fdisk_warnx(cxt, _("Invalid partition entry checksum."));
	}

	if (!gpt_check_lba_sanity(cxt, gpt->pheader)) {
		nerror++;
		fdisk_warnx(cxt, _("Invalid primary header LBA sanity checks."));
	}
	if (gpt->bheader && !gpt_check_lba_sanity(cxt, gpt->bheader)) {
		nerror++;
		fdisk_warnx(cxt, _("Invalid backup header LBA sanity checks."));
	}

	if (le64_to_cpu(gpt->pheader->my_lba) != GPT_PRIMARY_PARTITION_TABLE_LBA) {
		nerror++;
		fdisk_warnx(cxt, _("MyLBA mismatch with real position at primary header."));
	}
	if (gpt->bheader && le64_to_cpu(gpt->bheader->my_lba) != last_lba(cxt)) {
		nerror++;
		fdisk_warnx(cxt, _("MyLBA mismatch with real position at backup header."));

	}
	if (le64_to_cpu(gpt->pheader->alternative_lba) >= cxt->total_sectors) {
		nerror++;
		fdisk_warnx(cxt, _("Disk is too small to hold all data."));
	}

	/*
	 * if the GPT is the primary table, check the alternateLBA
	 * to see if it is a valid GPT
	 */
	if (gpt->bheader && (le64_to_cpu(gpt->pheader->my_lba) !=
			     le64_to_cpu(gpt->bheader->alternative_lba))) {
		nerror++;
		fdisk_warnx(cxt, _("Primary and backup header mismatch."));
	}

	ptnum = check_overlap_partitions(gpt);
	if (ptnum) {
		nerror++;
		fdisk_warnx(cxt, _("Partition %u overlaps with partition %u."),
				ptnum, ptnum+1);
	}

	ptnum = check_too_big_partitions(gpt, cxt->total_sectors);
	if (ptnum) {
		nerror++;
		fdisk_warnx(cxt, _("Partition %u is too big for the disk."),
				ptnum);
	}

	ptnum = check_start_after_end_partitions(gpt);
	if (ptnum) {
		nerror++;
		fdisk_warnx(cxt, _("Partition %u ends before it starts."),
				ptnum);
	}

	if (!nerror) { /* yay :-) */
		uint32_t nsegments = 0;
		uint64_t free_sectors = 0, largest_segment = 0;
		char *strsz = NULL;

		fdisk_info(cxt, _("No errors detected."));
		fdisk_info(cxt, _("Header version: %s"), gpt_get_header_revstr(gpt->pheader));
		fdisk_info(cxt, _("Using %zu out of %zu partitions."),
		       partitions_in_use(gpt),
		       gpt_get_nentries(gpt));

		free_sectors = get_free_sectors(cxt, gpt, &nsegments, &largest_segment);
		if (largest_segment)
			strsz = size_to_human_string(SIZE_SUFFIX_SPACE | SIZE_SUFFIX_3LETTER,
					largest_segment * cxt->sector_size);

		fdisk_info(cxt,
			   P_("A total of %ju free sectors is available in %u segment.",
			      "A total of %ju free sectors is available in %u segments "
			      "(the largest is %s).", nsegments),
			   free_sectors, nsegments, strsz ? : "0 B");
		free(strsz);

	} else
		fdisk_warnx(cxt,
			P_("%d error detected.", "%d errors detected.", nerror),
			nerror);

	return nerror;
}

/* Delete a single GPT partition, specified by partnum. */
static int gpt_delete_partition(struct fdisk_context *cxt,
				size_t partnum)
{
	struct fdisk_gpt_label *gpt;

	assert(cxt);
	assert(cxt->label);
	assert(fdisk_is_label(cxt, GPT));

	gpt = self_label(cxt);

	if (partnum >= cxt->label->nparts_max)
		return -EINVAL;

	if (!gpt_entry_is_used(gpt_get_entry(gpt, partnum)))
		return -EINVAL;

	/* hasta la vista, baby! */
	gpt_zeroize_entry(gpt, partnum);

	gpt_recompute_crc(gpt->pheader, gpt->ents);
	gpt_recompute_crc(gpt->bheader, gpt->ents);
	cxt->label->nparts_cur--;
	fdisk_label_set_changed(cxt->label, 1);

	return 0;
}


/* Performs logical checks to add a new partition entry */
static int gpt_add_partition(
		struct fdisk_context *cxt,
		struct fdisk_partition *pa,
		size_t *partno)
{
	uint64_t user_f, user_l;	/* user input ranges for first and last sectors */
	uint64_t disk_f, disk_l;	/* first and last available sector ranges on device*/
	uint64_t dflt_f, dflt_l, max_l;	/* largest segment (default) */
	struct gpt_guid typeid;
	struct fdisk_gpt_label *gpt;
	struct gpt_header *pheader;
	struct gpt_entry *e;
	struct fdisk_ask *ask = NULL;
	size_t partnum;
	int rc;

	assert(cxt);
	assert(cxt->label);
	assert(fdisk_is_label(cxt, GPT));

	gpt = self_label(cxt);

	assert(gpt);
	assert(gpt->pheader);
	assert(gpt->ents);

	pheader = gpt->pheader;

	rc = fdisk_partition_next_partno(pa, cxt, &partnum);
	if (rc) {
		DBG(GPT, ul_debug("failed to get next partno"));
		return rc;
	}

	assert(partnum < gpt_get_nentries(gpt));

	if (gpt_entry_is_used(gpt_get_entry(gpt, partnum))) {
		fdisk_warnx(cxt, _("Partition %zu is already defined.  "
			           "Delete it before re-adding it."), partnum +1);
		return -ERANGE;
	}
	if (gpt_get_nentries(gpt) == partitions_in_use(gpt)) {
		fdisk_warnx(cxt, _("All partitions are already in use."));
		return -ENOSPC;
	}
	if (!get_free_sectors(cxt, gpt, NULL, NULL)) {
		fdisk_warnx(cxt, _("No free sectors available."));
		return -ENOSPC;
	}

	rc = string_to_guid(pa && pa->type && pa->type->typestr ?
				pa->type->typestr:
				GPT_DEFAULT_ENTRY_TYPE, &typeid);
	if (rc)
		return rc;

	disk_f = find_first_available(gpt, le64_to_cpu(pheader->first_usable_lba));
	e = gpt_get_entry(gpt, 0);

	/* if first sector no explicitly defined then ignore small gaps before
	 * the first partition */
	if ((!pa || !fdisk_partition_has_start(pa))
	    && gpt_entry_is_used(e)
	    && disk_f < gpt_partition_start(e)) {

		do {
			uint64_t x;
			DBG(GPT, ul_debug("testing first sector %"PRIu64"", disk_f));
			disk_f = find_first_available(gpt, disk_f);
			if (!disk_f)
				break;
			x = find_last_free(gpt, disk_f);
			if (x - disk_f >= cxt->grain / cxt->sector_size)
				break;
			DBG(GPT, ul_debug("first sector %"PRIu64" addresses to small space, continue...", disk_f));
			disk_f = x + 1ULL;
		} while(1);

		if (disk_f == 0)
			disk_f = find_first_available(gpt, le64_to_cpu(pheader->first_usable_lba));
	}

	e = NULL;
	disk_l = find_last_free_sector(gpt);

	/* the default is the largest free space */
	dflt_f = find_first_in_largest(gpt);
	dflt_l = find_last_free(gpt, dflt_f);

	/* don't offer too small free space by default, this is possible to
	 * bypass by sfdisk script */
	if ((!pa || !fdisk_partition_has_start(pa))
	    && dflt_l - dflt_f + 1 < cxt->grain / cxt->sector_size) {
		fdisk_warnx(cxt, _("No enough free sectors available."));
		return -ENOSPC;
	}

	/* align the default in range <dflt_f,dflt_l>*/
	dflt_f = fdisk_align_lba_in_range(cxt, dflt_f, dflt_f, dflt_l);

	/* first sector */
	if (pa && pa->start_follow_default) {
		user_f = dflt_f;

	} else if (pa && fdisk_partition_has_start(pa)) {
		DBG(GPT, ul_debug("first sector defined: %ju",  (uintmax_t)pa->start));
		if (pa->start != find_first_available(gpt, pa->start)) {
			fdisk_warnx(cxt, _("Sector %ju already used."),  (uintmax_t)pa->start);
			return -ERANGE;
		}
		user_f = pa->start;
	} else {
		/*  ask by dialog */
		for (;;) {
			if (!ask)
				ask = fdisk_new_ask();
			else
				fdisk_reset_ask(ask);
			if (!ask)
				return -ENOMEM;

			/* First sector */
			fdisk_ask_set_query(ask, _("First sector"));
			fdisk_ask_set_type(ask, FDISK_ASKTYPE_NUMBER);
			fdisk_ask_number_set_low(ask,     disk_f);	/* minimal */
			fdisk_ask_number_set_default(ask, dflt_f);	/* default */
			fdisk_ask_number_set_high(ask,    disk_l);	/* maximal */

			rc = fdisk_do_ask(cxt, ask);
			if (rc)
				goto done;

			user_f = fdisk_ask_number_get_result(ask);
			if (user_f != find_first_available(gpt, user_f)) {
				fdisk_warnx(cxt, _("Sector %ju already used."), user_f);
				continue;
			}
			break;
		}
	}


	/* Last sector */
	dflt_l = max_l = find_last_free(gpt, user_f);

	/* Make sure the last partition has aligned size by default because
	 * range specified by LastUsableLBA may be unaligned on disks where
	 * logical sector != physical (512/4K) because backup header size is
	 * calculated from logical sectors. */
	if (max_l == le64_to_cpu(gpt->pheader->last_usable_lba))
		dflt_l = fdisk_align_lba_in_range(cxt, max_l, user_f, max_l) - 1;

	if (pa && pa->end_follow_default) {
		user_l = dflt_l;

	} else if (pa && fdisk_partition_has_size(pa)) {
		user_l = user_f + pa->size - 1;
		DBG(GPT, ul_debug("size defined: %ju, end: %"PRIu64
				  "(last possible: %"PRIu64", optimal: %"PRIu64")",
				(uintmax_t)pa->size, user_l, max_l, dflt_l));

		if (user_l != dflt_l
		    && !pa->size_explicit
		    && alignment_required(cxt)
		    && user_l - user_f > (cxt->grain / fdisk_get_sector_size(cxt))) {

			user_l = fdisk_align_lba_in_range(cxt, user_l, user_f, dflt_l);
			if (user_l > user_f)
				user_l -= 1ULL;
		}
	} else {
		for (;;) {
			if (!ask)
				ask = fdisk_new_ask();
			else
				fdisk_reset_ask(ask);
			if (!ask)
				return -ENOMEM;

			fdisk_ask_set_query(ask, _("Last sector, +/-sectors or +/-size{K,M,G,T,P}"));
			fdisk_ask_set_type(ask, FDISK_ASKTYPE_OFFSET);
			fdisk_ask_number_set_low(ask,     user_f);	/* minimal */
			fdisk_ask_number_set_default(ask, dflt_l);	/* default */
			fdisk_ask_number_set_high(ask,    max_l);	/* maximal */
			fdisk_ask_number_set_base(ask,    user_f);	/* base for relative input */
			fdisk_ask_number_set_unit(ask,    cxt->sector_size);
			fdisk_ask_number_set_wrap_negative(ask, 1);	/* wrap negative around high */

			rc = fdisk_do_ask(cxt, ask);
			if (rc)
				goto done;

			user_l = fdisk_ask_number_get_result(ask);
			if (fdisk_ask_number_is_relative(ask)) {
				user_l = fdisk_align_lba_in_range(cxt, user_l, user_f, dflt_l);
				if (user_l > user_f)
					user_l -= 1ULL;
			}

			if (user_l >= user_f && user_l <= disk_l)
				break;

			fdisk_warnx(cxt, _("Value out of range."));
		}
	}


	if (user_f > user_l || partnum >= cxt->label->nparts_max) {
		fdisk_warnx(cxt, _("Could not create partition %zu"), partnum + 1);
		rc = -EINVAL;
		goto done;
	}

	/* Be paranoid and check against on-disk setting rather than against libfdisk cxt */
	if (user_l > le64_to_cpu(pheader->last_usable_lba)) {
		fdisk_warnx(cxt, _("The last usable GPT sector is %ju, but %ju is requested."),
				le64_to_cpu(pheader->last_usable_lba), user_l);
		rc = -EINVAL;
		goto done;
	}

	if (user_f < le64_to_cpu(pheader->first_usable_lba)) {
		fdisk_warnx(cxt, _("The first usable GPT sector is %ju, but %ju is requested."),
				le64_to_cpu(pheader->first_usable_lba), user_f);
		rc = -EINVAL;
		goto done;
	}

	assert(!FDISK_IS_UNDEF(user_l));
	assert(!FDISK_IS_UNDEF(user_f));
	assert(partnum < gpt_get_nentries(gpt));

	e = gpt_get_entry(gpt, partnum);
	e->lba_end = cpu_to_le64(user_l);
	e->lba_start = cpu_to_le64(user_f);

	gpt_entry_set_type(e, &typeid);

	if (pa && pa->uuid) {
		/* Sometimes it's necessary to create a copy of the PT and
		 * reuse already defined UUID
		 */
		rc = gpt_entry_set_uuid(e, pa->uuid);
		if (rc)
			goto done;
	} else {
		/* Any time a new partition entry is created a new GUID must be
		 * generated for that partition, and every partition is guaranteed
		 * to have a unique GUID.
		 */
		struct gpt_guid guid;

		uuid_generate_random((unsigned char *) &guid);
		swap_efi_guid(&guid);
		e->partition_guid = guid;
	}

	if (pa && pa->name && *pa->name)
		gpt_entry_set_name(e, pa->name);
	if (pa && pa->attrs)
		gpt_entry_attrs_from_string(cxt, e, pa->attrs);

	DBG(GPT, ul_debug("new partition: partno=%zu, start=%"PRIu64", end=%"PRIu64", size=%"PRIu64"",
				partnum,
				gpt_partition_start(e),
				gpt_partition_end(e),
				gpt_partition_size(e)));

	gpt_recompute_crc(gpt->pheader, gpt->ents);
	gpt_recompute_crc(gpt->bheader, gpt->ents);

	/* report result */
	{
		struct fdisk_parttype *t;

		cxt->label->nparts_cur++;
		fdisk_label_set_changed(cxt->label, 1);

		t = gpt_partition_parttype(cxt, e);
		fdisk_info_new_partition(cxt, partnum + 1, user_f, user_l, t);
		fdisk_unref_parttype(t);
	}

	rc = 0;
	if (partno)
		*partno = partnum;
done:
	fdisk_unref_ask(ask);
	return rc;
}

/*
 * Create a new GPT disklabel - destroys any previous data.
 */
static int gpt_create_disklabel(struct fdisk_context *cxt)
{
	int rc = 0;
	size_t esz = 0;
	char str[UUID_STR_LEN];
	struct fdisk_gpt_label *gpt;
	struct gpt_guid guid;

	assert(cxt);
	assert(cxt->label);
	assert(fdisk_is_label(cxt, GPT));

	gpt = self_label(cxt);

	/* label private stuff has to be empty, see gpt_deinit() */
	assert(gpt->pheader == NULL);
	assert(gpt->bheader == NULL);

	/*
	 * When no header, entries or pmbr is set, we're probably
	 * dealing with a new, empty disk - so always allocate memory
	 * to deal with the data structures whatever the case is.
	 */
	rc = gpt_mknew_pmbr(cxt);
	if (rc < 0)
		goto done;

	assert(cxt->sector_size >= sizeof(struct gpt_header));

	/* primary */
	gpt->pheader = calloc(1, cxt->sector_size);
	if (!gpt->pheader) {
		rc = -ENOMEM;
		goto done;
	}
	rc = gpt_mknew_header(cxt, gpt->pheader, GPT_PRIMARY_PARTITION_TABLE_LBA);
	if (rc < 0)
		goto done;

	/* backup ("copy" primary) */
	gpt->bheader = calloc(1, cxt->sector_size);
	if (!gpt->bheader) {
		rc = -ENOMEM;
		goto done;
	}
	rc = gpt_mknew_header_from_bkp(cxt, gpt->bheader,
			last_lba(cxt), gpt->pheader);
	if (rc < 0)
		goto done;

	rc = gpt_sizeof_entries(gpt->pheader, &esz);
	if (rc)
		goto done;
	gpt->ents = calloc(1, esz);
	if (!gpt->ents) {
		rc = -ENOMEM;
		goto done;
	}
	gpt_recompute_crc(gpt->pheader, gpt->ents);
	gpt_recompute_crc(gpt->bheader, gpt->ents);

	cxt->label->nparts_max = gpt_get_nentries(gpt);
	cxt->label->nparts_cur = 0;

	guid = gpt->pheader->disk_guid;
	guid_to_string(&guid, str);
	fdisk_label_set_changed(cxt->label, 1);
	fdisk_info(cxt, _("Created a new GPT disklabel (GUID: %s)."), str);

	if (gpt_get_nentries(gpt) < GPT_NPARTITIONS)
		fdisk_info(cxt, _("The maximal number of partitions is %zu (default is %zu)."),
				gpt_get_nentries(gpt), GPT_NPARTITIONS);
done:
	return rc;
}

static int gpt_set_disklabel_id(struct fdisk_context *cxt, const char *str)
{
	struct fdisk_gpt_label *gpt;
	struct gpt_guid uuid;
	char *old, *new;
	int rc;

	assert(cxt);
	assert(cxt->label);
	assert(fdisk_is_label(cxt, GPT));

	gpt = self_label(cxt);
	if (!str) {
		char *buf = NULL;

		if (fdisk_ask_string(cxt,
				_("Enter new disk UUID (in 8-4-4-4-12 format)"), &buf))
			return -EINVAL;
		rc = string_to_guid(buf, &uuid);
		free(buf);
	} else
		rc = string_to_guid(str, &uuid);

	if (rc) {
		fdisk_warnx(cxt, _("Failed to parse your UUID."));
		return rc;
	}

	old = gpt_get_header_id(gpt->pheader);

	gpt->pheader->disk_guid = uuid;
	gpt->bheader->disk_guid = uuid;

	gpt_recompute_crc(gpt->pheader, gpt->ents);
	gpt_recompute_crc(gpt->bheader, gpt->ents);

	new = gpt_get_header_id(gpt->pheader);

	fdisk_info(cxt, _("Disk identifier changed from %s to %s."), old, new);

	free(old);
	free(new);
	fdisk_label_set_changed(cxt->label, 1);
	return 0;
}

static int gpt_check_table_overlap(struct fdisk_context *cxt,
				   uint64_t first_usable,
				   uint64_t last_usable)
{
	struct fdisk_gpt_label *gpt = self_label(cxt);
	size_t i;
	int rc = 0;

	/* First check if there's enough room for the table. last_lba may have wrapped */
	if (first_usable > cxt->total_sectors || /* far too little space */
	    last_usable > cxt->total_sectors || /* wrapped */
	    first_usable > last_usable) { /* too little space */
		fdisk_warnx(cxt, _("Not enough space for new partition table!"));
		return -ENOSPC;
	}

	/* check that all partitions fit in the remaining space */
	for (i = 0; i < gpt_get_nentries(gpt); i++) {
		struct gpt_entry *e = gpt_get_entry(gpt, i);

		if (!gpt_entry_is_used(e))
		        continue;
		if (gpt_partition_start(e) < first_usable) {
			fdisk_warnx(cxt, _("Partition #%zu out of range (minimal start is %"PRIu64" sectors)"),
		                    i + 1, first_usable);
			rc = -EINVAL;
		}
		if (gpt_partition_end(e) > last_usable) {
			fdisk_warnx(cxt, _("Partition #%zu out of range (maximal end is %"PRIu64" sectors)"),
		                    i + 1, last_usable - (uint64_t) 1);
			rc = -EINVAL;
		}
	}
	return rc;
}

/**
 * fdisk_gpt_set_npartitions:
 * @cxt: context
 * @nents: number of wanted entries
 *
 * Elarge GPT entries array if possible. The function check if an existing
 * partition does not overlap the entries array area. If yes, then it report
 * warning and returns -EINVAL.
 *
 * Returns: 0 on success, < 0 on error.
 * Since: 2.29
 */
int fdisk_gpt_set_npartitions(struct fdisk_context *cxt, uint32_t nents)
{
	struct fdisk_gpt_label *gpt;
	size_t new_size = 0;
	uint32_t old_nents;
	uint64_t first_usable = 0ULL, last_usable = 0ULL;
	int rc;

	assert(cxt);
	assert(cxt->label);

	if (!fdisk_is_label(cxt, GPT))
		return -EINVAL;

	gpt = self_label(cxt);

	old_nents = le32_to_cpu(gpt->pheader->npartition_entries);
	if (old_nents == nents)
		return 0;	/* do nothing, say nothing */

	/* calculate the size (bytes) of the entries array */
	rc = gpt_calculate_sizeof_entries(gpt->pheader, nents, &new_size);
	if (rc) {
		uint32_t entry_size = le32_to_cpu(gpt->pheader->sizeof_partition_entry);

		if (entry_size == 0)
			fdisk_warnx(cxt, _("The partition entry size is zero."));
		else
			fdisk_warnx(cxt, _("The number of the partition has to be smaller than %zu."),
				(size_t) UINT32_MAX / entry_size);
		return rc;
	}

	rc = gpt_calculate_first_lba(gpt->pheader, nents, &first_usable, cxt);
	if (rc == 0)
		rc = gpt_calculate_last_lba(gpt->pheader, nents, &last_usable, cxt);
	if (rc)
		return rc;

	/* if expanding the table, first check that everything fits,
	 * then allocate more memory and zero. */
	if (nents > old_nents) {
		unsigned char *ents;
		size_t old_size = 0;

		rc = gpt_calculate_sizeof_entries(gpt->pheader, old_nents, &old_size);
		if (rc == 0)
			rc = gpt_check_table_overlap(cxt, first_usable, last_usable);
		if (rc)
			return rc;
		ents = realloc(gpt->ents, new_size);
		if (!ents) {
			fdisk_warnx(cxt, _("Cannot allocate memory!"));
			return -ENOMEM;
		}
		memset(ents + old_size, 0, new_size - old_size);
		gpt->ents = ents;
	}

	/* everything's ok, apply the new size */
	gpt->pheader->npartition_entries = cpu_to_le32(nents);
	gpt->bheader->npartition_entries = cpu_to_le32(nents);

	/* usable LBA addresses will have changed */
	fdisk_set_first_lba(cxt, first_usable);
	fdisk_set_last_lba(cxt, last_usable);
	gpt->pheader->first_usable_lba = cpu_to_le64(first_usable);
	gpt->bheader->first_usable_lba = cpu_to_le64(first_usable);
	gpt->pheader->last_usable_lba = cpu_to_le64(last_usable);
	gpt->bheader->last_usable_lba = cpu_to_le64(last_usable);

	/* The backup header must be recalculated */
	gpt_mknew_header_common(cxt, gpt->bheader, le64_to_cpu(gpt->pheader->alternative_lba));

	/* CRCs will have changed */
	gpt_recompute_crc(gpt->pheader, gpt->ents);
	gpt_recompute_crc(gpt->bheader, gpt->ents);

	/* update library info */
	cxt->label->nparts_max = gpt_get_nentries(gpt);

	fdisk_info(cxt, _("Partition table length changed from %"PRIu32" to %"PRIu32"."),
			old_nents, nents);

	fdisk_label_set_changed(cxt->label, 1);
	return 0;
}

static int gpt_part_is_used(struct fdisk_context *cxt, size_t i)
{
	struct fdisk_gpt_label *gpt;
	struct gpt_entry *e;

	assert(cxt);
	assert(cxt->label);
	assert(fdisk_is_label(cxt, GPT));

	gpt = self_label(cxt);

	if (i >= gpt_get_nentries(gpt))
		return 0;

	e = gpt_get_entry(gpt, i);

	return gpt_entry_is_used(e) || gpt_partition_start(e);
}

/**
 * fdisk_gpt_is_hybrid:
 * @cxt: context
 *
 * The regular GPT contains PMBR (dummy protective MBR) where the protective
 * MBR does not address any partitions.
 *
 * Hybrid GPT contains regular MBR where this partition table addresses the
 * same partitions as GPT. It's recommended to not use hybrid GPT due to MBR
 * limits.
 *
 * The libfdisk does not provide functionality to sync GPT and MBR, you have to
 * directly access and modify (P)MBR (see fdisk_new_nested_context()).
 *
 * Returns: 1 if partition table detected as hybrid otherwise return 0
 */
int fdisk_gpt_is_hybrid(struct fdisk_context *cxt)
{
	assert(cxt);
	return valid_pmbr(cxt) == GPT_MBR_HYBRID;
}

/**
 * fdisk_gpt_get_partition_attrs:
 * @cxt: context
 * @partnum: partition number
 * @attrs: GPT partition attributes
 *
 * Sets @attrs for the given partition
 *
 * Returns: 0 on success, <0 on error.
 */
int fdisk_gpt_get_partition_attrs(
		struct fdisk_context *cxt,
		size_t partnum,
		uint64_t *attrs)
{
	struct fdisk_gpt_label *gpt;

	assert(cxt);
	assert(cxt->label);

	if (!fdisk_is_label(cxt, GPT))
		return -EINVAL;

	gpt = self_label(cxt);

	if (partnum >= gpt_get_nentries(gpt))
		return -EINVAL;

	*attrs = le64_to_cpu(gpt_get_entry(gpt, partnum)->attrs);
	return 0;
}

/**
 * fdisk_gpt_set_partition_attrs:
 * @cxt: context
 * @partnum: partition number
 * @attrs: GPT partition attributes
 *
 * Sets the GPT partition attributes field to @attrs.
 *
 * Returns: 0 on success, <0 on error.
 */
int fdisk_gpt_set_partition_attrs(
		struct fdisk_context *cxt,
		size_t partnum,
		uint64_t attrs)
{
	struct fdisk_gpt_label *gpt;

	assert(cxt);
	assert(cxt->label);

	if (!fdisk_is_label(cxt, GPT))
		return -EINVAL;

	DBG(GPT, ul_debug("entry attributes change requested partno=%zu", partnum));
	gpt = self_label(cxt);

	if (partnum >= gpt_get_nentries(gpt))
		return -EINVAL;

	gpt_get_entry(gpt, partnum)->attrs = cpu_to_le64(attrs);
	fdisk_info(cxt, _("The attributes on partition %zu changed to 0x%016" PRIx64 "."),
			partnum + 1, attrs);

	gpt_recompute_crc(gpt->pheader, gpt->ents);
	gpt_recompute_crc(gpt->bheader, gpt->ents);
	fdisk_label_set_changed(cxt->label, 1);
	return 0;
}

static int gpt_toggle_partition_flag(
		struct fdisk_context *cxt,
		size_t i,
		unsigned long flag)
{
	struct fdisk_gpt_label *gpt;
	struct gpt_entry *e;
	uint64_t attrs;
	uintmax_t tmp;
	char *bits;
	const char *name = NULL;
	int bit = -1, rc;

	assert(cxt);
	assert(cxt->label);
	assert(fdisk_is_label(cxt, GPT));

	DBG(GPT, ul_debug("entry attribute change requested partno=%zu", i));
	gpt = self_label(cxt);

	if (i >= gpt_get_nentries(gpt))
		return -EINVAL;

	e = gpt_get_entry(gpt, i);
	attrs = e->attrs;
	bits = (char *) &attrs;

	switch (flag) {
	case GPT_FLAG_REQUIRED:
		bit = GPT_ATTRBIT_REQ;
		name = GPT_ATTRSTR_REQ;
		break;
	case GPT_FLAG_NOBLOCK:
		bit = GPT_ATTRBIT_NOBLOCK;
		name = GPT_ATTRSTR_NOBLOCK;
		break;
	case GPT_FLAG_LEGACYBOOT:
		bit = GPT_ATTRBIT_LEGACY;
		name = GPT_ATTRSTR_LEGACY;
		break;
	case GPT_FLAG_GUIDSPECIFIC:
		rc = fdisk_ask_number(cxt, 48, 48, 63, _("Enter GUID specific bit"), &tmp);
		if (rc)
			return rc;
		bit = tmp;
		break;
	default:
		/* already specified PT_FLAG_GUIDSPECIFIC bit */
		if (flag >= 48 && flag <= 63) {
			bit = flag;
			flag = GPT_FLAG_GUIDSPECIFIC;
		}
		break;
	}

	if (bit < 0) {
		fdisk_warnx(cxt, _("failed to toggle unsupported bit %lu"), flag);
		return -EINVAL;
	}

	if (!isset(bits, bit))
		setbit(bits, bit);
	else
		clrbit(bits, bit);

	e->attrs = attrs;

	if (flag == GPT_FLAG_GUIDSPECIFIC)
		fdisk_info(cxt, isset(bits, bit) ?
			_("The GUID specific bit %d on partition %zu is enabled now.") :
			_("The GUID specific bit %d on partition %zu is disabled now."),
			bit, i + 1);
	else
		fdisk_info(cxt, isset(bits, bit) ?
			_("The %s flag on partition %zu is enabled now.") :
			_("The %s flag on partition %zu is disabled now."),
			name, i + 1);

	gpt_recompute_crc(gpt->pheader, gpt->ents);
	gpt_recompute_crc(gpt->bheader, gpt->ents);
	fdisk_label_set_changed(cxt->label, 1);
	return 0;
}

static int gpt_entry_cmp_start(const void *a, const void *b)
{
	const struct gpt_entry  *ae = (const struct gpt_entry *) a,
				*be = (const struct gpt_entry *) b;
	int au = gpt_entry_is_used(ae),
	    bu = gpt_entry_is_used(be);

	if (!au && !bu)
		return 0;
	if (!au)
		return 1;
	if (!bu)
		return -1;

	return cmp_numbers(gpt_partition_start(ae), gpt_partition_start(be));
}

/* sort partition by start sector */
static int gpt_reorder(struct fdisk_context *cxt)
{
	struct fdisk_gpt_label *gpt;
	size_t i, nparts, mess;

	assert(cxt);
	assert(cxt->label);
	assert(fdisk_is_label(cxt, GPT));

	gpt = self_label(cxt);
	nparts = gpt_get_nentries(gpt);

	for (i = 0, mess = 0; mess == 0 && i + 1 < nparts; i++)
		mess = gpt_entry_cmp_start(
				(const void *) gpt_get_entry(gpt, i),
				(const void *) gpt_get_entry(gpt, i + 1)) > 0;

	if (!mess)
		return 1;

	qsort(gpt->ents, nparts, sizeof(struct gpt_entry),
			gpt_entry_cmp_start);

	gpt_recompute_crc(gpt->pheader, gpt->ents);
	gpt_recompute_crc(gpt->bheader, gpt->ents);
	fdisk_label_set_changed(cxt->label, 1);

	return 0;
}

static int gpt_reset_alignment(struct fdisk_context *cxt)
{
	struct fdisk_gpt_label *gpt;
	struct gpt_header *h;

	assert(cxt);
	assert(cxt->label);
	assert(fdisk_is_label(cxt, GPT));

	gpt = self_label(cxt);
	h = gpt ? gpt->pheader : NULL;

	if (h) {
		/* always follow existing table */
		cxt->first_lba = le64_to_cpu(h->first_usable_lba);
		cxt->last_lba  = le64_to_cpu(h->last_usable_lba);
	} else {
		/* estimate ranges for GPT */
		uint64_t first, last;

		count_first_last_lba(cxt, &first, &last, NULL);
		if (cxt->first_lba < first)
			cxt->first_lba = first;
		if (cxt->last_lba > last)
			cxt->last_lba = last;
	}

	return 0;
}
/*
 * Deinitialize fdisk-specific variables
 */
static void gpt_deinit(struct fdisk_label *lb)
{
	struct fdisk_gpt_label *gpt = (struct fdisk_gpt_label *) lb;

	if (!gpt)
		return;

	free(gpt->ents);
	free(gpt->pheader);
	free(gpt->bheader);

	gpt->ents = NULL;
	gpt->pheader = NULL;
	gpt->bheader = NULL;
}

static const struct fdisk_label_operations gpt_operations =
{
	.probe		= gpt_probe_label,
	.write		= gpt_write_disklabel,
	.verify		= gpt_verify_disklabel,
	.create		= gpt_create_disklabel,
	.locate		= gpt_locate_disklabel,
	.get_item	= gpt_get_disklabel_item,
	.set_id		= gpt_set_disklabel_id,

	.get_part	= gpt_get_partition,
	.set_part	= gpt_set_partition,
	.add_part	= gpt_add_partition,
	.del_part	= gpt_delete_partition,
	.reorder	= gpt_reorder,

	.part_is_used	= gpt_part_is_used,
	.part_toggle_flag = gpt_toggle_partition_flag,

	.deinit		= gpt_deinit,

	.reset_alignment = gpt_reset_alignment
};

static const struct fdisk_field gpt_fields[] =
{
	/* basic */
	{ FDISK_FIELD_DEVICE,	N_("Device"),	 10,	0 },
	{ FDISK_FIELD_START,	N_("Start"),	  5,	FDISK_FIELDFL_NUMBER },
	{ FDISK_FIELD_END,	N_("End"),	  5,	FDISK_FIELDFL_NUMBER },
	{ FDISK_FIELD_SECTORS,	N_("Sectors"),	  5,	FDISK_FIELDFL_NUMBER },
	{ FDISK_FIELD_SIZE,	N_("Size"),	  5,	FDISK_FIELDFL_NUMBER | FDISK_FIELDFL_EYECANDY },
	{ FDISK_FIELD_TYPE,	N_("Type"),	0.1,	FDISK_FIELDFL_EYECANDY },
	/* expert */
	{ FDISK_FIELD_TYPEID,	N_("Type-UUID"), 36,	FDISK_FIELDFL_DETAIL },
	{ FDISK_FIELD_UUID,	N_("UUID"),	 36,	FDISK_FIELDFL_DETAIL },
	{ FDISK_FIELD_NAME,	N_("Name"),	0.2,	FDISK_FIELDFL_DETAIL },
	{ FDISK_FIELD_ATTR,	N_("Attrs"),	  0,	FDISK_FIELDFL_DETAIL }
};

/*
 * allocates GPT in-memory stuff
 */
struct fdisk_label *fdisk_new_gpt_label(struct fdisk_context *cxt __attribute__ ((__unused__)))
{
	struct fdisk_label *lb;
	struct fdisk_gpt_label *gpt;

	gpt = calloc(1, sizeof(*gpt));
	if (!gpt)
		return NULL;

	/* initialize generic part of the driver */
	lb = (struct fdisk_label *) gpt;
	lb->name = "gpt";
	lb->id = FDISK_DISKLABEL_GPT;
	lb->op = &gpt_operations;

	lb->parttypes = gpt_parttypes;
	lb->nparttypes = ARRAY_SIZE(gpt_parttypes);
	lb->parttype_cuts = gpt_parttype_cuts;
	lb->nparttype_cuts = ARRAY_SIZE(gpt_parttype_cuts);

	lb->fields = gpt_fields;
	lb->nfields = ARRAY_SIZE(gpt_fields);

	/* return calloc() result to keep static anaylizers happy */
	return (struct fdisk_label *) gpt;
}

/**
 * fdisk_gpt_disable_relocation
 * @lb: label
 * @disable: 0 or 1
 *
 * Disable automatic backup header relocation to the end of the device. The
 * header position is recalculated during libfdisk probing stage by
 * fdisk_assign_device() and later written by fdisk_write_disklabel(), so you
 * need to call it before fdisk_assign_device().
 *
 * Since: 2.36
 */
void fdisk_gpt_disable_relocation(struct fdisk_label *lb, int disable)
{
	struct fdisk_gpt_label *gpt = (struct fdisk_gpt_label *) lb;

	assert(gpt);
	gpt->no_relocate = disable ? 1 : 0;
}

/**
 * fdisk_gpt_enable_minimize
 * @lb: label
 * @enable: 0 or 1
 *
 * Force libfdisk to write backup header to behind last partition. The
 * header position is recalculated on fdisk_write_disklabel().
 *
 * Since: 2.36
 */
void fdisk_gpt_enable_minimize(struct fdisk_label *lb, int enable)
{
	struct fdisk_gpt_label *gpt = (struct fdisk_gpt_label *) lb;

	assert(gpt);
	gpt->minimize = enable ? 1 : 0;
}

#ifdef TEST_PROGRAM
static int test_getattr(struct fdisk_test *ts, int argc, char *argv[])
{
	const char *disk = argv[1];
	size_t part = strtoul(argv[2], NULL, 0) - 1;
	struct fdisk_context *cxt;
	uint64_t atters = 0;

	cxt = fdisk_new_context();
	fdisk_assign_device(cxt, disk, 1);

	if (!fdisk_is_label(cxt, GPT))
		return EXIT_FAILURE;

	if (fdisk_gpt_get_partition_attrs(cxt, part, &atters))
		return EXIT_FAILURE;

	printf("%s: 0x%016" PRIx64 "\n", argv[2], atters);

	fdisk_unref_context(cxt);
	return 0;
}

static int test_setattr(struct fdisk_test *ts, int argc, char *argv[])
{
	const char *disk = argv[1];
	size_t part = strtoul(argv[2], NULL, 0) - 1;
	uint64_t atters = strtoull(argv[3], NULL, 0);
	struct fdisk_context *cxt;

	cxt = fdisk_new_context();
	fdisk_assign_device(cxt, disk, 0);

	if (!fdisk_is_label(cxt, GPT))
		return EXIT_FAILURE;

	if (fdisk_gpt_set_partition_attrs(cxt, part, atters))
		return EXIT_FAILURE;

	if (fdisk_write_disklabel(cxt))
		return EXIT_FAILURE;

	fdisk_unref_context(cxt);
	return 0;
}

int main(int argc, char *argv[])
{
	struct fdisk_test tss[] = {
		{ "--getattr",  test_getattr,  "<disk> <partition>             print attributes" },
		{ "--setattr",  test_setattr,  "<disk> <partition> <value>     set attributes" },
		{ NULL }
	};

	return fdisk_run_test(tss, argc, argv);
}

#endif