summaryrefslogtreecommitdiffstats
path: root/src/VBox/VMM/VMMAll/IEMAllAImplC.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:17:27 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:17:27 +0000
commitf215e02bf85f68d3a6106c2a1f4f7f063f819064 (patch)
tree6bb5b92c046312c4e95ac2620b10ddf482d3fa8b /src/VBox/VMM/VMMAll/IEMAllAImplC.cpp
parentInitial commit. (diff)
downloadvirtualbox-f215e02bf85f68d3a6106c2a1f4f7f063f819064.tar.xz
virtualbox-f215e02bf85f68d3a6106c2a1f4f7f063f819064.zip
Adding upstream version 7.0.14-dfsg.upstream/7.0.14-dfsg
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/VBox/VMM/VMMAll/IEMAllAImplC.cpp')
-rw-r--r--src/VBox/VMM/VMMAll/IEMAllAImplC.cpp17407
1 files changed, 17407 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMAll/IEMAllAImplC.cpp b/src/VBox/VMM/VMMAll/IEMAllAImplC.cpp
new file mode 100644
index 00000000..1196f775
--- /dev/null
+++ b/src/VBox/VMM/VMMAll/IEMAllAImplC.cpp
@@ -0,0 +1,17407 @@
+/* $Id: IEMAllAImplC.cpp $ */
+/** @file
+ * IEM - Instruction Implementation in Assembly, portable C variant.
+ */
+
+/*
+ * Copyright (C) 2011-2023 Oracle and/or its affiliates.
+ *
+ * This file is part of VirtualBox base platform packages, as
+ * available from https://www.virtualbox.org.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation, in version 3 of the
+ * License.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, see <https://www.gnu.org/licenses>.
+ *
+ * SPDX-License-Identifier: GPL-3.0-only
+ */
+
+
+/*********************************************************************************************************************************
+* Header Files *
+*********************************************************************************************************************************/
+#include "IEMInternal.h"
+#include <VBox/vmm/vmcc.h>
+#include <iprt/errcore.h>
+#include <iprt/x86.h>
+#include <iprt/uint128.h>
+#include <iprt/uint256.h>
+#include <iprt/crc.h>
+
+RT_C_DECLS_BEGIN
+#include <softfloat.h>
+RT_C_DECLS_END
+
+
+/*********************************************************************************************************************************
+* Defined Constants And Macros *
+*********************************************************************************************************************************/
+/** @def IEM_WITHOUT_ASSEMBLY
+ * Enables all the code in this file.
+ */
+#if !defined(IEM_WITHOUT_ASSEMBLY)
+# if defined(RT_ARCH_ARM32) || defined(RT_ARCH_ARM64) || defined(DOXYGEN_RUNNING)
+# define IEM_WITHOUT_ASSEMBLY
+# endif
+#endif
+/* IEM_WITH_ASSEMBLY trumps IEM_WITHOUT_ASSEMBLY for tstIEMAImplAsm purposes. */
+#ifdef IEM_WITH_ASSEMBLY
+# undef IEM_WITHOUT_ASSEMBLY
+#endif
+
+/**
+ * Calculates the signed flag value given a result and it's bit width.
+ *
+ * The signed flag (SF) is a duplication of the most significant bit in the
+ * result.
+ *
+ * @returns X86_EFL_SF or 0.
+ * @param a_uResult Unsigned result value.
+ * @param a_cBitsWidth The width of the result (8, 16, 32, 64).
+ */
+#define X86_EFL_CALC_SF(a_uResult, a_cBitsWidth) \
+ ( (uint32_t)((a_uResult) >> ((a_cBitsWidth) - X86_EFL_SF_BIT - 1)) & X86_EFL_SF )
+
+/**
+ * Calculates the zero flag value given a result.
+ *
+ * The zero flag (ZF) indicates whether the result is zero or not.
+ *
+ * @returns X86_EFL_ZF or 0.
+ * @param a_uResult Unsigned result value.
+ */
+#define X86_EFL_CALC_ZF(a_uResult) \
+ ( (uint32_t)((a_uResult) == 0) << X86_EFL_ZF_BIT )
+
+/**
+ * Extracts the OF flag from a OF calculation result.
+ *
+ * These are typically used by concating with a bitcount. The problem is that
+ * 8-bit values needs shifting in the other direction than the others.
+ */
+#define X86_EFL_GET_OF_8(a_uValue) (((uint32_t)(a_uValue) << (X86_EFL_OF_BIT - 8 + 1)) & X86_EFL_OF)
+#define X86_EFL_GET_OF_16(a_uValue) ((uint32_t)((a_uValue) >> (16 - X86_EFL_OF_BIT - 1)) & X86_EFL_OF)
+#define X86_EFL_GET_OF_32(a_uValue) ((uint32_t)((a_uValue) >> (32 - X86_EFL_OF_BIT - 1)) & X86_EFL_OF)
+#define X86_EFL_GET_OF_64(a_uValue) ((uint32_t)((a_uValue) >> (64 - X86_EFL_OF_BIT - 1)) & X86_EFL_OF)
+
+/**
+ * Updates the status bits (CF, PF, AF, ZF, SF, and OF) after arithmetic op.
+ *
+ * @returns Status bits.
+ * @param a_pfEFlags Pointer to the 32-bit EFLAGS value to update.
+ * @param a_uResult Unsigned result value.
+ * @param a_uSrc The source value (for AF calc).
+ * @param a_uDst The original destination value (for AF calc).
+ * @param a_cBitsWidth The width of the result (8, 16, 32, 64).
+ * @param a_CfExpr Bool expression for the carry flag (CF).
+ * @param a_uSrcOf The a_uSrc value to use for overflow calculation.
+ */
+#define IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(a_pfEFlags, a_uResult, a_uDst, a_uSrc, a_cBitsWidth, a_CfExpr, a_uSrcOf) \
+ do { \
+ uint32_t fEflTmp = *(a_pfEFlags); \
+ fEflTmp &= ~X86_EFL_STATUS_BITS; \
+ fEflTmp |= (a_CfExpr) << X86_EFL_CF_BIT; \
+ fEflTmp |= g_afParity[(a_uResult) & 0xff]; \
+ fEflTmp |= ((uint32_t)(a_uResult) ^ (uint32_t)(a_uSrc) ^ (uint32_t)(a_uDst)) & X86_EFL_AF; \
+ fEflTmp |= X86_EFL_CALC_ZF(a_uResult); \
+ fEflTmp |= X86_EFL_CALC_SF(a_uResult, a_cBitsWidth); \
+ \
+ /* Overflow during ADDition happens when both inputs have the same signed \
+ bit value and the result has a different sign bit value. \
+ \
+ Since subtraction can be rewritten as addition: 2 - 1 == 2 + -1, it \
+ follows that for SUBtraction the signed bit value must differ between \
+ the two inputs and the result's signed bit diff from the first input. \
+ Note! Must xor with sign bit to convert, not do (0 - a_uSrc). \
+ \
+ See also: http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt */ \
+ fEflTmp |= X86_EFL_GET_OF_ ## a_cBitsWidth( ( ((uint ## a_cBitsWidth ## _t)~((a_uDst) ^ (a_uSrcOf))) \
+ & RT_BIT_64(a_cBitsWidth - 1)) \
+ & ((a_uResult) ^ (a_uDst)) ); \
+ *(a_pfEFlags) = fEflTmp; \
+ } while (0)
+
+/**
+ * Updates the status bits (CF, PF, AF, ZF, SF, and OF) after a logical op.
+ *
+ * CF and OF are defined to be 0 by logical operations. AF on the other hand is
+ * undefined. We do not set AF, as that seems to make the most sense (which
+ * probably makes it the most wrong in real life).
+ *
+ * @returns Status bits.
+ * @param a_pfEFlags Pointer to the 32-bit EFLAGS value to update.
+ * @param a_uResult Unsigned result value.
+ * @param a_cBitsWidth The width of the result (8, 16, 32, 64).
+ * @param a_fExtra Additional bits to set.
+ */
+#define IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(a_pfEFlags, a_uResult, a_cBitsWidth, a_fExtra) \
+ do { \
+ uint32_t fEflTmp = *(a_pfEFlags); \
+ fEflTmp &= ~X86_EFL_STATUS_BITS; \
+ fEflTmp |= g_afParity[(a_uResult) & 0xff]; \
+ fEflTmp |= X86_EFL_CALC_ZF(a_uResult); \
+ fEflTmp |= X86_EFL_CALC_SF(a_uResult, a_cBitsWidth); \
+ fEflTmp |= (a_fExtra); \
+ *(a_pfEFlags) = fEflTmp; \
+ } while (0)
+
+
+/*********************************************************************************************************************************
+* Global Variables *
+*********************************************************************************************************************************/
+/**
+ * Parity calculation table.
+ *
+ * This is also used by iemAllAImpl.asm.
+ *
+ * The generator code:
+ * @code
+ * #include <stdio.h>
+ *
+ * int main()
+ * {
+ * unsigned b;
+ * for (b = 0; b < 256; b++)
+ * {
+ * int cOnes = ( b & 1)
+ * + ((b >> 1) & 1)
+ * + ((b >> 2) & 1)
+ * + ((b >> 3) & 1)
+ * + ((b >> 4) & 1)
+ * + ((b >> 5) & 1)
+ * + ((b >> 6) & 1)
+ * + ((b >> 7) & 1);
+ * printf(" /" "* %#04x = %u%u%u%u%u%u%u%ub *" "/ %s,\n",
+ * b,
+ * (b >> 7) & 1,
+ * (b >> 6) & 1,
+ * (b >> 5) & 1,
+ * (b >> 4) & 1,
+ * (b >> 3) & 1,
+ * (b >> 2) & 1,
+ * (b >> 1) & 1,
+ * b & 1,
+ * cOnes & 1 ? "0" : "X86_EFL_PF");
+ * }
+ * return 0;
+ * }
+ * @endcode
+ */
+uint8_t const g_afParity[256] =
+{
+ /* 0000 = 00000000b */ X86_EFL_PF,
+ /* 0x01 = 00000001b */ 0,
+ /* 0x02 = 00000010b */ 0,
+ /* 0x03 = 00000011b */ X86_EFL_PF,
+ /* 0x04 = 00000100b */ 0,
+ /* 0x05 = 00000101b */ X86_EFL_PF,
+ /* 0x06 = 00000110b */ X86_EFL_PF,
+ /* 0x07 = 00000111b */ 0,
+ /* 0x08 = 00001000b */ 0,
+ /* 0x09 = 00001001b */ X86_EFL_PF,
+ /* 0x0a = 00001010b */ X86_EFL_PF,
+ /* 0x0b = 00001011b */ 0,
+ /* 0x0c = 00001100b */ X86_EFL_PF,
+ /* 0x0d = 00001101b */ 0,
+ /* 0x0e = 00001110b */ 0,
+ /* 0x0f = 00001111b */ X86_EFL_PF,
+ /* 0x10 = 00010000b */ 0,
+ /* 0x11 = 00010001b */ X86_EFL_PF,
+ /* 0x12 = 00010010b */ X86_EFL_PF,
+ /* 0x13 = 00010011b */ 0,
+ /* 0x14 = 00010100b */ X86_EFL_PF,
+ /* 0x15 = 00010101b */ 0,
+ /* 0x16 = 00010110b */ 0,
+ /* 0x17 = 00010111b */ X86_EFL_PF,
+ /* 0x18 = 00011000b */ X86_EFL_PF,
+ /* 0x19 = 00011001b */ 0,
+ /* 0x1a = 00011010b */ 0,
+ /* 0x1b = 00011011b */ X86_EFL_PF,
+ /* 0x1c = 00011100b */ 0,
+ /* 0x1d = 00011101b */ X86_EFL_PF,
+ /* 0x1e = 00011110b */ X86_EFL_PF,
+ /* 0x1f = 00011111b */ 0,
+ /* 0x20 = 00100000b */ 0,
+ /* 0x21 = 00100001b */ X86_EFL_PF,
+ /* 0x22 = 00100010b */ X86_EFL_PF,
+ /* 0x23 = 00100011b */ 0,
+ /* 0x24 = 00100100b */ X86_EFL_PF,
+ /* 0x25 = 00100101b */ 0,
+ /* 0x26 = 00100110b */ 0,
+ /* 0x27 = 00100111b */ X86_EFL_PF,
+ /* 0x28 = 00101000b */ X86_EFL_PF,
+ /* 0x29 = 00101001b */ 0,
+ /* 0x2a = 00101010b */ 0,
+ /* 0x2b = 00101011b */ X86_EFL_PF,
+ /* 0x2c = 00101100b */ 0,
+ /* 0x2d = 00101101b */ X86_EFL_PF,
+ /* 0x2e = 00101110b */ X86_EFL_PF,
+ /* 0x2f = 00101111b */ 0,
+ /* 0x30 = 00110000b */ X86_EFL_PF,
+ /* 0x31 = 00110001b */ 0,
+ /* 0x32 = 00110010b */ 0,
+ /* 0x33 = 00110011b */ X86_EFL_PF,
+ /* 0x34 = 00110100b */ 0,
+ /* 0x35 = 00110101b */ X86_EFL_PF,
+ /* 0x36 = 00110110b */ X86_EFL_PF,
+ /* 0x37 = 00110111b */ 0,
+ /* 0x38 = 00111000b */ 0,
+ /* 0x39 = 00111001b */ X86_EFL_PF,
+ /* 0x3a = 00111010b */ X86_EFL_PF,
+ /* 0x3b = 00111011b */ 0,
+ /* 0x3c = 00111100b */ X86_EFL_PF,
+ /* 0x3d = 00111101b */ 0,
+ /* 0x3e = 00111110b */ 0,
+ /* 0x3f = 00111111b */ X86_EFL_PF,
+ /* 0x40 = 01000000b */ 0,
+ /* 0x41 = 01000001b */ X86_EFL_PF,
+ /* 0x42 = 01000010b */ X86_EFL_PF,
+ /* 0x43 = 01000011b */ 0,
+ /* 0x44 = 01000100b */ X86_EFL_PF,
+ /* 0x45 = 01000101b */ 0,
+ /* 0x46 = 01000110b */ 0,
+ /* 0x47 = 01000111b */ X86_EFL_PF,
+ /* 0x48 = 01001000b */ X86_EFL_PF,
+ /* 0x49 = 01001001b */ 0,
+ /* 0x4a = 01001010b */ 0,
+ /* 0x4b = 01001011b */ X86_EFL_PF,
+ /* 0x4c = 01001100b */ 0,
+ /* 0x4d = 01001101b */ X86_EFL_PF,
+ /* 0x4e = 01001110b */ X86_EFL_PF,
+ /* 0x4f = 01001111b */ 0,
+ /* 0x50 = 01010000b */ X86_EFL_PF,
+ /* 0x51 = 01010001b */ 0,
+ /* 0x52 = 01010010b */ 0,
+ /* 0x53 = 01010011b */ X86_EFL_PF,
+ /* 0x54 = 01010100b */ 0,
+ /* 0x55 = 01010101b */ X86_EFL_PF,
+ /* 0x56 = 01010110b */ X86_EFL_PF,
+ /* 0x57 = 01010111b */ 0,
+ /* 0x58 = 01011000b */ 0,
+ /* 0x59 = 01011001b */ X86_EFL_PF,
+ /* 0x5a = 01011010b */ X86_EFL_PF,
+ /* 0x5b = 01011011b */ 0,
+ /* 0x5c = 01011100b */ X86_EFL_PF,
+ /* 0x5d = 01011101b */ 0,
+ /* 0x5e = 01011110b */ 0,
+ /* 0x5f = 01011111b */ X86_EFL_PF,
+ /* 0x60 = 01100000b */ X86_EFL_PF,
+ /* 0x61 = 01100001b */ 0,
+ /* 0x62 = 01100010b */ 0,
+ /* 0x63 = 01100011b */ X86_EFL_PF,
+ /* 0x64 = 01100100b */ 0,
+ /* 0x65 = 01100101b */ X86_EFL_PF,
+ /* 0x66 = 01100110b */ X86_EFL_PF,
+ /* 0x67 = 01100111b */ 0,
+ /* 0x68 = 01101000b */ 0,
+ /* 0x69 = 01101001b */ X86_EFL_PF,
+ /* 0x6a = 01101010b */ X86_EFL_PF,
+ /* 0x6b = 01101011b */ 0,
+ /* 0x6c = 01101100b */ X86_EFL_PF,
+ /* 0x6d = 01101101b */ 0,
+ /* 0x6e = 01101110b */ 0,
+ /* 0x6f = 01101111b */ X86_EFL_PF,
+ /* 0x70 = 01110000b */ 0,
+ /* 0x71 = 01110001b */ X86_EFL_PF,
+ /* 0x72 = 01110010b */ X86_EFL_PF,
+ /* 0x73 = 01110011b */ 0,
+ /* 0x74 = 01110100b */ X86_EFL_PF,
+ /* 0x75 = 01110101b */ 0,
+ /* 0x76 = 01110110b */ 0,
+ /* 0x77 = 01110111b */ X86_EFL_PF,
+ /* 0x78 = 01111000b */ X86_EFL_PF,
+ /* 0x79 = 01111001b */ 0,
+ /* 0x7a = 01111010b */ 0,
+ /* 0x7b = 01111011b */ X86_EFL_PF,
+ /* 0x7c = 01111100b */ 0,
+ /* 0x7d = 01111101b */ X86_EFL_PF,
+ /* 0x7e = 01111110b */ X86_EFL_PF,
+ /* 0x7f = 01111111b */ 0,
+ /* 0x80 = 10000000b */ 0,
+ /* 0x81 = 10000001b */ X86_EFL_PF,
+ /* 0x82 = 10000010b */ X86_EFL_PF,
+ /* 0x83 = 10000011b */ 0,
+ /* 0x84 = 10000100b */ X86_EFL_PF,
+ /* 0x85 = 10000101b */ 0,
+ /* 0x86 = 10000110b */ 0,
+ /* 0x87 = 10000111b */ X86_EFL_PF,
+ /* 0x88 = 10001000b */ X86_EFL_PF,
+ /* 0x89 = 10001001b */ 0,
+ /* 0x8a = 10001010b */ 0,
+ /* 0x8b = 10001011b */ X86_EFL_PF,
+ /* 0x8c = 10001100b */ 0,
+ /* 0x8d = 10001101b */ X86_EFL_PF,
+ /* 0x8e = 10001110b */ X86_EFL_PF,
+ /* 0x8f = 10001111b */ 0,
+ /* 0x90 = 10010000b */ X86_EFL_PF,
+ /* 0x91 = 10010001b */ 0,
+ /* 0x92 = 10010010b */ 0,
+ /* 0x93 = 10010011b */ X86_EFL_PF,
+ /* 0x94 = 10010100b */ 0,
+ /* 0x95 = 10010101b */ X86_EFL_PF,
+ /* 0x96 = 10010110b */ X86_EFL_PF,
+ /* 0x97 = 10010111b */ 0,
+ /* 0x98 = 10011000b */ 0,
+ /* 0x99 = 10011001b */ X86_EFL_PF,
+ /* 0x9a = 10011010b */ X86_EFL_PF,
+ /* 0x9b = 10011011b */ 0,
+ /* 0x9c = 10011100b */ X86_EFL_PF,
+ /* 0x9d = 10011101b */ 0,
+ /* 0x9e = 10011110b */ 0,
+ /* 0x9f = 10011111b */ X86_EFL_PF,
+ /* 0xa0 = 10100000b */ X86_EFL_PF,
+ /* 0xa1 = 10100001b */ 0,
+ /* 0xa2 = 10100010b */ 0,
+ /* 0xa3 = 10100011b */ X86_EFL_PF,
+ /* 0xa4 = 10100100b */ 0,
+ /* 0xa5 = 10100101b */ X86_EFL_PF,
+ /* 0xa6 = 10100110b */ X86_EFL_PF,
+ /* 0xa7 = 10100111b */ 0,
+ /* 0xa8 = 10101000b */ 0,
+ /* 0xa9 = 10101001b */ X86_EFL_PF,
+ /* 0xaa = 10101010b */ X86_EFL_PF,
+ /* 0xab = 10101011b */ 0,
+ /* 0xac = 10101100b */ X86_EFL_PF,
+ /* 0xad = 10101101b */ 0,
+ /* 0xae = 10101110b */ 0,
+ /* 0xaf = 10101111b */ X86_EFL_PF,
+ /* 0xb0 = 10110000b */ 0,
+ /* 0xb1 = 10110001b */ X86_EFL_PF,
+ /* 0xb2 = 10110010b */ X86_EFL_PF,
+ /* 0xb3 = 10110011b */ 0,
+ /* 0xb4 = 10110100b */ X86_EFL_PF,
+ /* 0xb5 = 10110101b */ 0,
+ /* 0xb6 = 10110110b */ 0,
+ /* 0xb7 = 10110111b */ X86_EFL_PF,
+ /* 0xb8 = 10111000b */ X86_EFL_PF,
+ /* 0xb9 = 10111001b */ 0,
+ /* 0xba = 10111010b */ 0,
+ /* 0xbb = 10111011b */ X86_EFL_PF,
+ /* 0xbc = 10111100b */ 0,
+ /* 0xbd = 10111101b */ X86_EFL_PF,
+ /* 0xbe = 10111110b */ X86_EFL_PF,
+ /* 0xbf = 10111111b */ 0,
+ /* 0xc0 = 11000000b */ X86_EFL_PF,
+ /* 0xc1 = 11000001b */ 0,
+ /* 0xc2 = 11000010b */ 0,
+ /* 0xc3 = 11000011b */ X86_EFL_PF,
+ /* 0xc4 = 11000100b */ 0,
+ /* 0xc5 = 11000101b */ X86_EFL_PF,
+ /* 0xc6 = 11000110b */ X86_EFL_PF,
+ /* 0xc7 = 11000111b */ 0,
+ /* 0xc8 = 11001000b */ 0,
+ /* 0xc9 = 11001001b */ X86_EFL_PF,
+ /* 0xca = 11001010b */ X86_EFL_PF,
+ /* 0xcb = 11001011b */ 0,
+ /* 0xcc = 11001100b */ X86_EFL_PF,
+ /* 0xcd = 11001101b */ 0,
+ /* 0xce = 11001110b */ 0,
+ /* 0xcf = 11001111b */ X86_EFL_PF,
+ /* 0xd0 = 11010000b */ 0,
+ /* 0xd1 = 11010001b */ X86_EFL_PF,
+ /* 0xd2 = 11010010b */ X86_EFL_PF,
+ /* 0xd3 = 11010011b */ 0,
+ /* 0xd4 = 11010100b */ X86_EFL_PF,
+ /* 0xd5 = 11010101b */ 0,
+ /* 0xd6 = 11010110b */ 0,
+ /* 0xd7 = 11010111b */ X86_EFL_PF,
+ /* 0xd8 = 11011000b */ X86_EFL_PF,
+ /* 0xd9 = 11011001b */ 0,
+ /* 0xda = 11011010b */ 0,
+ /* 0xdb = 11011011b */ X86_EFL_PF,
+ /* 0xdc = 11011100b */ 0,
+ /* 0xdd = 11011101b */ X86_EFL_PF,
+ /* 0xde = 11011110b */ X86_EFL_PF,
+ /* 0xdf = 11011111b */ 0,
+ /* 0xe0 = 11100000b */ 0,
+ /* 0xe1 = 11100001b */ X86_EFL_PF,
+ /* 0xe2 = 11100010b */ X86_EFL_PF,
+ /* 0xe3 = 11100011b */ 0,
+ /* 0xe4 = 11100100b */ X86_EFL_PF,
+ /* 0xe5 = 11100101b */ 0,
+ /* 0xe6 = 11100110b */ 0,
+ /* 0xe7 = 11100111b */ X86_EFL_PF,
+ /* 0xe8 = 11101000b */ X86_EFL_PF,
+ /* 0xe9 = 11101001b */ 0,
+ /* 0xea = 11101010b */ 0,
+ /* 0xeb = 11101011b */ X86_EFL_PF,
+ /* 0xec = 11101100b */ 0,
+ /* 0xed = 11101101b */ X86_EFL_PF,
+ /* 0xee = 11101110b */ X86_EFL_PF,
+ /* 0xef = 11101111b */ 0,
+ /* 0xf0 = 11110000b */ X86_EFL_PF,
+ /* 0xf1 = 11110001b */ 0,
+ /* 0xf2 = 11110010b */ 0,
+ /* 0xf3 = 11110011b */ X86_EFL_PF,
+ /* 0xf4 = 11110100b */ 0,
+ /* 0xf5 = 11110101b */ X86_EFL_PF,
+ /* 0xf6 = 11110110b */ X86_EFL_PF,
+ /* 0xf7 = 11110111b */ 0,
+ /* 0xf8 = 11111000b */ 0,
+ /* 0xf9 = 11111001b */ X86_EFL_PF,
+ /* 0xfa = 11111010b */ X86_EFL_PF,
+ /* 0xfb = 11111011b */ 0,
+ /* 0xfc = 11111100b */ X86_EFL_PF,
+ /* 0xfd = 11111101b */ 0,
+ /* 0xfe = 11111110b */ 0,
+ /* 0xff = 11111111b */ X86_EFL_PF,
+};
+
+/* for clang: */
+extern const RTFLOAT32U g_ar32Zero[];
+extern const RTFLOAT64U g_ar64Zero[];
+extern const RTFLOAT80U g_ar80Zero[];
+extern const RTFLOAT80U g_ar80One[];
+extern const RTFLOAT80U g_r80Indefinite;
+extern const RTFLOAT32U g_ar32Infinity[];
+extern const RTFLOAT64U g_ar64Infinity[];
+extern const RTFLOAT80U g_ar80Infinity[];
+extern const RTFLOAT128U g_r128Ln2;
+extern const RTUINT128U g_u128Ln2Mantissa;
+extern const RTUINT128U g_u128Ln2MantissaIntel;
+extern const RTFLOAT128U g_ar128F2xm1HornerConsts[];
+extern const RTFLOAT32U g_ar32QNaN[];
+extern const RTFLOAT64U g_ar64QNaN[];
+
+/** Zero values (indexed by fSign). */
+RTFLOAT32U const g_ar32Zero[] = { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(1) };
+RTFLOAT64U const g_ar64Zero[] = { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(1) };
+RTFLOAT80U const g_ar80Zero[] = { RTFLOAT80U_INIT_ZERO(0), RTFLOAT80U_INIT_ZERO(1) };
+
+/** One values (indexed by fSign). */
+RTFLOAT80U const g_ar80One[] =
+{ RTFLOAT80U_INIT(0, RT_BIT_64(63), RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT(1, RT_BIT_64(63), RTFLOAT80U_EXP_BIAS) };
+
+/** Indefinite (negative). */
+RTFLOAT80U const g_r80Indefinite = RTFLOAT80U_INIT_INDEFINITE(1);
+
+/** Infinities (indexed by fSign). */
+RTFLOAT32U const g_ar32Infinity[] = { RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(1) };
+RTFLOAT64U const g_ar64Infinity[] = { RTFLOAT64U_INIT_INF(0), RTFLOAT64U_INIT_INF(1) };
+RTFLOAT80U const g_ar80Infinity[] = { RTFLOAT80U_INIT_INF(0), RTFLOAT80U_INIT_INF(1) };
+
+/** Default QNaNs (indexed by fSign). */
+RTFLOAT32U const g_ar32QNaN[] = { RTFLOAT32U_INIT_QNAN(0), RTFLOAT32U_INIT_QNAN(1) };
+RTFLOAT64U const g_ar64QNaN[] = { RTFLOAT64U_INIT_QNAN(0), RTFLOAT64U_INIT_QNAN(1) };
+
+
+#if 0
+/** 128-bit floating point constant: 2.0 */
+const RTFLOAT128U g_r128Two = RTFLOAT128U_INIT_C(0, 0, 0, RTFLOAT128U_EXP_BIAS + 1);
+#endif
+
+
+/* The next section is generated by tools/IEMGenFpuConstants: */
+
+/** The ln2 constant as 128-bit floating point value.
+ * base-10: 6.93147180559945309417232121458176575e-1
+ * base-16: b.17217f7d1cf79abc9e3b39803f30@-1
+ * base-2 : 1.0110001011100100001011111110111110100011100111101111001101010111100100111100011101100111001100000000011111100110e-1 */
+//const RTFLOAT128U g_r128Ln2 = RTFLOAT128U_INIT_C(0, 0x62e42fefa39e, 0xf35793c7673007e6, 0x3ffe);
+const RTFLOAT128U g_r128Ln2 = RTFLOAT128U_INIT_C(0, 0x62e42fefa39e, 0xf357900000000000, 0x3ffe);
+/** High precision ln2 value.
+ * base-10: 6.931471805599453094172321214581765680747e-1
+ * base-16: b.17217f7d1cf79abc9e3b39803f2f6af0@-1
+ * base-2 : 1.0110001011100100001011111110111110100011100111101111001101010111100100111100011101100111001100000000011111100101111011010101111e-1 */
+const RTUINT128U g_u128Ln2Mantissa = RTUINT128_INIT_C(0xb17217f7d1cf79ab, 0xc9e3b39803f2f6af);
+/** High precision ln2 value, compatible with f2xm1 results on intel 10980XE.
+ * base-10: 6.931471805599453094151379470289064954613e-1
+ * base-16: b.17217f7d1cf79abc0000000000000000@-1
+ * base-2 : 1.0110001011100100001011111110111110100011100111101111001101010111100000000000000000000000000000000000000000000000000000000000000e-1 */
+const RTUINT128U g_u128Ln2MantissaIntel = RTUINT128_INIT_C(0xb17217f7d1cf79ab, 0xc000000000000000);
+
+/** Horner constants for f2xm1 */
+const RTFLOAT128U g_ar128F2xm1HornerConsts[] =
+{
+ /* a0
+ * base-10: 1.00000000000000000000000000000000000e0
+ * base-16: 1.0000000000000000000000000000@0
+ * base-2 : 1.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e0 */
+ RTFLOAT128U_INIT_C(0, 0x000000000000, 0x0000000000000000, 0x3fff),
+ /* a1
+ * base-10: 5.00000000000000000000000000000000000e-1
+ * base-16: 8.0000000000000000000000000000@-1
+ * base-2 : 1.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e-1 */
+ RTFLOAT128U_INIT_C(0, 0x000000000000, 0x0000000000000000, 0x3ffe),
+ /* a2
+ * base-10: 1.66666666666666666666666666666666658e-1
+ * base-16: 2.aaaaaaaaaaaaaaaaaaaaaaaaaaaa@-1
+ * base-2 : 1.0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101e-3 */
+ RTFLOAT128U_INIT_C(0, 0x555555555555, 0x5555555555555555, 0x3ffc),
+ /* a3
+ * base-10: 4.16666666666666666666666666666666646e-2
+ * base-16: a.aaaaaaaaaaaaaaaaaaaaaaaaaaa8@-2
+ * base-2 : 1.0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101e-5 */
+ RTFLOAT128U_INIT_C(0, 0x555555555555, 0x5555555555555555, 0x3ffa),
+ /* a4
+ * base-10: 8.33333333333333333333333333333333323e-3
+ * base-16: 2.2222222222222222222222222222@-2
+ * base-2 : 1.0001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001e-7 */
+ RTFLOAT128U_INIT_C(0, 0x111111111111, 0x1111111111111111, 0x3ff8),
+ /* a5
+ * base-10: 1.38888888888888888888888888888888874e-3
+ * base-16: 5.b05b05b05b05b05b05b05b05b058@-3
+ * base-2 : 1.0110110000010110110000010110110000010110110000010110110000010110110000010110110000010110110000010110110000010110e-10 */
+ RTFLOAT128U_INIT_C(0, 0x6c16c16c16c1, 0x6c16c16c16c16c16, 0x3ff5),
+ /* a6
+ * base-10: 1.98412698412698412698412698412698412e-4
+ * base-16: d.00d00d00d00d00d00d00d00d00d0@-4
+ * base-2 : 1.1010000000011010000000011010000000011010000000011010000000011010000000011010000000011010000000011010000000011010e-13 */
+ RTFLOAT128U_INIT_C(0, 0xa01a01a01a01, 0xa01a01a01a01a01a, 0x3ff2),
+ /* a7
+ * base-10: 2.48015873015873015873015873015873015e-5
+ * base-16: 1.a01a01a01a01a01a01a01a01a01a@-4
+ * base-2 : 1.1010000000011010000000011010000000011010000000011010000000011010000000011010000000011010000000011010000000011010e-16 */
+ RTFLOAT128U_INIT_C(0, 0xa01a01a01a01, 0xa01a01a01a01a01a, 0x3fef),
+ /* a8
+ * base-10: 2.75573192239858906525573192239858902e-6
+ * base-16: 2.e3bc74aad8e671f5583911ca002e@-5
+ * base-2 : 1.0111000111011110001110100101010101101100011100110011100011111010101011000001110010001000111001010000000000010111e-19 */
+ RTFLOAT128U_INIT_C(0, 0x71de3a556c73, 0x38faac1c88e50017, 0x3fec),
+ /* a9
+ * base-10: 2.75573192239858906525573192239858865e-7
+ * base-16: 4.9f93edde27d71cbbc05b4fa999e0@-6
+ * base-2 : 1.0010011111100100111110110111011110001001111101011100011100101110111100000001011011010011111010100110011001111000e-22 */
+ RTFLOAT128U_INIT_C(0, 0x27e4fb7789f5, 0xc72ef016d3ea6678, 0x3fe9),
+ /* a10
+ * base-10: 2.50521083854417187750521083854417184e-8
+ * base-16: 6.b99159fd5138e3f9d1f92e0df71c@-7
+ * base-2 : 1.1010111001100100010101100111111101010100010011100011100011111110011101000111111001001011100000110111110111000111e-26 */
+ RTFLOAT128U_INIT_C(0, 0xae64567f544e, 0x38fe747e4b837dc7, 0x3fe5),
+ /* a11
+ * base-10: 2.08767569878680989792100903212014296e-9
+ * base-16: 8.f76c77fc6c4bdaa26d4c3d67f420@-8
+ * base-2 : 1.0001111011101101100011101111111110001101100010010111101101010100010011011010100110000111101011001111111010000100e-29 */
+ RTFLOAT128U_INIT_C(0, 0x1eed8eff8d89, 0x7b544da987acfe84, 0x3fe2),
+ /* a12
+ * base-10: 1.60590438368216145993923771701549472e-10
+ * base-16: b.092309d43684be51c198e91d7b40@-9
+ * base-2 : 1.0110000100100100011000010011101010000110110100001001011111001010001110000011001100011101001000111010111101101000e-33 */
+ RTFLOAT128U_INIT_C(0, 0x6124613a86d0, 0x97ca38331d23af68, 0x3fde),
+ /* a13
+ * base-10: 1.14707455977297247138516979786821043e-11
+ * base-16: c.9cba54603e4e905d6f8a2efd1f20@-10
+ * base-2 : 1.1001001110010111010010101000110000000111110010011101001000001011101011011111000101000101110111111010001111100100e-37 */
+ RTFLOAT128U_INIT_C(0, 0x93974a8c07c9, 0xd20badf145dfa3e4, 0x3fda),
+ /* a14
+ * base-10: 7.64716373181981647590113198578806964e-13
+ * base-16: d.73f9f399dc0f88ec32b587746578@-11
+ * base-2 : 1.1010111001111111001111100111001100111011100000011111000100011101100001100101011010110000111011101000110010101111e-41 */
+ RTFLOAT128U_INIT_C(0, 0xae7f3e733b81, 0xf11d8656b0ee8caf, 0x3fd6),
+ /* a15
+ * base-10: 4.77947733238738529743820749111754352e-14
+ * base-16: d.73f9f399dc0f88ec32b587746578@-12
+ * base-2 : 1.1010111001111111001111100111001100111011100000011111000100011101100001100101011010110000111011101000110010101111e-45 */
+ RTFLOAT128U_INIT_C(0, 0xae7f3e733b81, 0xf11d8656b0ee8caf, 0x3fd2),
+ /* a16
+ * base-10: 2.81145725434552076319894558301031970e-15
+ * base-16: c.a963b81856a53593028cbbb8d7f8@-13
+ * base-2 : 1.1001010100101100011101110000001100001010110101001010011010110010011000000101000110010111011101110001101011111111e-49 */
+ RTFLOAT128U_INIT_C(0, 0x952c77030ad4, 0xa6b2605197771aff, 0x3fce),
+ /* a17
+ * base-10: 1.56192069685862264622163643500573321e-16
+ * base-16: b.413c31dcbecbbdd8024435161550@-14
+ * base-2 : 1.0110100000100111100001100011101110010111110110010111011110111011000000000100100010000110101000101100001010101010e-53 */
+ RTFLOAT128U_INIT_C(0, 0x6827863b97d9, 0x77bb004886a2c2aa, 0x3fca),
+ /* a18
+ * base-10: 8.22063524662432971695598123687227980e-18
+ * base-16: 9.7a4da340a0ab92650f61dbdcb3a0@-15
+ * base-2 : 1.0010111101001001101101000110100000010100000101010111001001001100101000011110110000111011011110111001011001110100e-57 */
+ RTFLOAT128U_INIT_C(0, 0x2f49b4681415, 0x724ca1ec3b7b9674, 0x3fc6),
+ /* a19
+ * base-10: 4.11031762331216485847799061843614006e-19
+ * base-16: 7.950ae900808941ea72b4afe3c2e8@-16
+ * base-2 : 1.1110010101000010101110100100000000100000001000100101000001111010100111001010110100101011111110001111000010111010e-62 */
+ RTFLOAT128U_INIT_C(0, 0xe542ba402022, 0x507a9cad2bf8f0ba, 0x3fc1),
+ /* a20
+ * base-10: 1.95729410633912612308475743735054143e-20
+ * base-16: 5.c6e3bdb73d5c62fbc51bf3b9b8fc@-17
+ * base-2 : 1.0111000110111000111011110110110111001111010101110001100010111110111100010100011011111100111011100110111000111111e-66 */
+ RTFLOAT128U_INIT_C(0, 0x71b8ef6dcf57, 0x18bef146fcee6e3f, 0x3fbd),
+ /* a21
+ * base-10: 8.89679139245057328674889744250246106e-22
+ * base-16: 4.338e5b6dfe14a5143242dfcce3a0@-18
+ * base-2 : 1.0000110011100011100101101101101101111111100001010010100101000101000011001001000010110111111100110011100011101000e-70 */
+ RTFLOAT128U_INIT_C(0, 0x0ce396db7f85, 0x29450c90b7f338e8, 0x3fb9),
+};
+
+
+/*
+ * There are a few 64-bit on 32-bit things we'd rather do in C. Actually, doing
+ * it all in C is probably safer atm., optimize what's necessary later, maybe.
+ */
+#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
+
+
+/*********************************************************************************************************************************
+* Binary Operations *
+*********************************************************************************************************************************/
+
+/*
+ * ADD
+ */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_add_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ uint64_t uDst = *puDst;
+ uint64_t uResult = uDst + uSrc;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 64, uResult < uDst, uSrc);
+}
+
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_add_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ uint32_t uDst = *puDst;
+ uint32_t uResult = uDst + uSrc;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 32, uResult < uDst, uSrc);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_add_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ uint16_t uDst = *puDst;
+ uint16_t uResult = uDst + uSrc;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 16, uResult < uDst, uSrc);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_add_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags))
+{
+ uint8_t uDst = *puDst;
+ uint8_t uResult = uDst + uSrc;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 8, uResult < uDst, uSrc);
+}
+
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+/*
+ * ADC
+ */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ if (!(*pfEFlags & X86_EFL_CF))
+ iemAImpl_add_u64(puDst, uSrc, pfEFlags);
+ else
+ {
+ uint64_t uDst = *puDst;
+ uint64_t uResult = uDst + uSrc + 1;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 64, uResult <= uDst, uSrc);
+ }
+}
+
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ if (!(*pfEFlags & X86_EFL_CF))
+ iemAImpl_add_u32(puDst, uSrc, pfEFlags);
+ else
+ {
+ uint32_t uDst = *puDst;
+ uint32_t uResult = uDst + uSrc + 1;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 32, uResult <= uDst, uSrc);
+ }
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ if (!(*pfEFlags & X86_EFL_CF))
+ iemAImpl_add_u16(puDst, uSrc, pfEFlags);
+ else
+ {
+ uint16_t uDst = *puDst;
+ uint16_t uResult = uDst + uSrc + 1;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 16, uResult <= uDst, uSrc);
+ }
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags))
+{
+ if (!(*pfEFlags & X86_EFL_CF))
+ iemAImpl_add_u8(puDst, uSrc, pfEFlags);
+ else
+ {
+ uint8_t uDst = *puDst;
+ uint8_t uResult = uDst + uSrc + 1;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 8, uResult <= uDst, uSrc);
+ }
+}
+
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+/*
+ * SUB
+ */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ uint64_t uDst = *puDst;
+ uint64_t uResult = uDst - uSrc;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 64, uDst < uSrc, uSrc ^ RT_BIT_64(63));
+}
+
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ uint32_t uDst = *puDst;
+ uint32_t uResult = uDst - uSrc;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 32, uDst < uSrc, uSrc ^ RT_BIT_32(31));
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ uint16_t uDst = *puDst;
+ uint16_t uResult = uDst - uSrc;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 16, uDst < uSrc, uSrc ^ (uint16_t)0x8000);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags))
+{
+ uint8_t uDst = *puDst;
+ uint8_t uResult = uDst - uSrc;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 8, uDst < uSrc, uSrc ^ (uint8_t)0x80);
+}
+
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+/*
+ * SBB
+ */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ if (!(*pfEFlags & X86_EFL_CF))
+ iemAImpl_sub_u64(puDst, uSrc, pfEFlags);
+ else
+ {
+ uint64_t uDst = *puDst;
+ uint64_t uResult = uDst - uSrc - 1;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 64, uDst <= uSrc, uSrc ^ RT_BIT_64(63));
+ }
+}
+
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ if (!(*pfEFlags & X86_EFL_CF))
+ iemAImpl_sub_u32(puDst, uSrc, pfEFlags);
+ else
+ {
+ uint32_t uDst = *puDst;
+ uint32_t uResult = uDst - uSrc - 1;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 32, uDst <= uSrc, uSrc ^ RT_BIT_32(31));
+ }
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ if (!(*pfEFlags & X86_EFL_CF))
+ iemAImpl_sub_u16(puDst, uSrc, pfEFlags);
+ else
+ {
+ uint16_t uDst = *puDst;
+ uint16_t uResult = uDst - uSrc - 1;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 16, uDst <= uSrc, uSrc ^ (uint16_t)0x8000);
+ }
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags))
+{
+ if (!(*pfEFlags & X86_EFL_CF))
+ iemAImpl_sub_u8(puDst, uSrc, pfEFlags);
+ else
+ {
+ uint8_t uDst = *puDst;
+ uint8_t uResult = uDst - uSrc - 1;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 8, uDst <= uSrc, uSrc ^ (uint8_t)0x80);
+ }
+}
+
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+
+/*
+ * OR
+ */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_or_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ uint64_t uResult = *puDst | uSrc;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0);
+}
+
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_or_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ uint32_t uResult = *puDst | uSrc;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 32, 0);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_or_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ uint16_t uResult = *puDst | uSrc;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 16, 0);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_or_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags))
+{
+ uint8_t uResult = *puDst | uSrc;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 8, 0);
+}
+
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+/*
+ * XOR
+ */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ uint64_t uResult = *puDst ^ uSrc;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0);
+}
+
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ uint32_t uResult = *puDst ^ uSrc;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 32, 0);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ uint16_t uResult = *puDst ^ uSrc;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 16, 0);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags))
+{
+ uint8_t uResult = *puDst ^ uSrc;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 8, 0);
+}
+
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+/*
+ * AND
+ */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_and_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ uint64_t const uResult = *puDst & uSrc;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0);
+}
+
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_and_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ uint32_t const uResult = *puDst & uSrc;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 32, 0);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_and_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ uint16_t const uResult = *puDst & uSrc;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 16, 0);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_and_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags))
+{
+ uint8_t const uResult = *puDst & uSrc;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 8, 0);
+}
+
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+#endif /* !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+/*
+ * ANDN (BMI1 instruction)
+ */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_andn_u64_fallback,(uint64_t *puDst, uint64_t uSrc1, uint64_t uSrc2, uint32_t *pfEFlags))
+{
+ uint64_t const uResult = ~uSrc1 & uSrc2;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_andn_u32_fallback,(uint32_t *puDst, uint32_t uSrc1, uint32_t uSrc2, uint32_t *pfEFlags))
+{
+ uint32_t const uResult = ~uSrc1 & uSrc2;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 32, 0);
+}
+
+
+#if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+IEM_DECL_IMPL_DEF(void, iemAImpl_andn_u64,(uint64_t *puDst, uint64_t uSrc1, uint64_t uSrc2, uint32_t *pfEFlags))
+{
+ iemAImpl_andn_u64_fallback(puDst, uSrc1, uSrc2, pfEFlags);
+}
+#endif
+
+
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+IEM_DECL_IMPL_DEF(void, iemAImpl_andn_u32,(uint32_t *puDst, uint32_t uSrc1, uint32_t uSrc2, uint32_t *pfEFlags))
+{
+ iemAImpl_andn_u32_fallback(puDst, uSrc1, uSrc2, pfEFlags);
+}
+#endif
+
+#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
+
+/*
+ * CMP
+ */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cmp_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ uint64_t uDstTmp = *puDst;
+ iemAImpl_sub_u64(&uDstTmp, uSrc, pfEFlags);
+}
+
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cmp_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ uint32_t uDstTmp = *puDst;
+ iemAImpl_sub_u32(&uDstTmp, uSrc, pfEFlags);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cmp_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ uint16_t uDstTmp = *puDst;
+ iemAImpl_sub_u16(&uDstTmp, uSrc, pfEFlags);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cmp_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags))
+{
+ uint8_t uDstTmp = *puDst;
+ iemAImpl_sub_u8(&uDstTmp, uSrc, pfEFlags);
+}
+
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+/*
+ * TEST
+ */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_test_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ uint64_t uResult = *puDst & uSrc;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0);
+}
+
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_test_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ uint32_t uResult = *puDst & uSrc;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 32, 0);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_test_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ uint16_t uResult = *puDst & uSrc;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 16, 0);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_test_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags))
+{
+ uint8_t uResult = *puDst & uSrc;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 8, 0);
+}
+
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+
+/*
+ * LOCK prefixed variants of the above
+ */
+
+/** 64-bit locked binary operand operation. */
+# define DO_LOCKED_BIN_OP(a_Mnemonic, a_cBitsWidth) \
+ do { \
+ uint ## a_cBitsWidth ## _t uOld = ASMAtomicUoReadU ## a_cBitsWidth(puDst); \
+ uint ## a_cBitsWidth ## _t uTmp; \
+ uint32_t fEflTmp; \
+ do \
+ { \
+ uTmp = uOld; \
+ fEflTmp = *pfEFlags; \
+ iemAImpl_ ## a_Mnemonic ## _u ## a_cBitsWidth(&uTmp, uSrc, &fEflTmp); \
+ } while (!ASMAtomicCmpXchgExU ## a_cBitsWidth(puDst, uTmp, uOld, &uOld)); \
+ *pfEFlags = fEflTmp; \
+ } while (0)
+
+
+#define EMIT_LOCKED_BIN_OP(a_Mnemonic, a_cBitsWidth) \
+ IEM_DECL_IMPL_DEF(void, iemAImpl_ ## a_Mnemonic ## _u ## a_cBitsWidth ## _locked,(uint ## a_cBitsWidth ## _t *puDst, \
+ uint ## a_cBitsWidth ## _t uSrc, \
+ uint32_t *pfEFlags)) \
+ { \
+ DO_LOCKED_BIN_OP(a_Mnemonic, a_cBitsWidth); \
+ }
+
+EMIT_LOCKED_BIN_OP(add, 64)
+EMIT_LOCKED_BIN_OP(adc, 64)
+EMIT_LOCKED_BIN_OP(sub, 64)
+EMIT_LOCKED_BIN_OP(sbb, 64)
+EMIT_LOCKED_BIN_OP(or, 64)
+EMIT_LOCKED_BIN_OP(xor, 64)
+EMIT_LOCKED_BIN_OP(and, 64)
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_LOCKED_BIN_OP(add, 32)
+EMIT_LOCKED_BIN_OP(adc, 32)
+EMIT_LOCKED_BIN_OP(sub, 32)
+EMIT_LOCKED_BIN_OP(sbb, 32)
+EMIT_LOCKED_BIN_OP(or, 32)
+EMIT_LOCKED_BIN_OP(xor, 32)
+EMIT_LOCKED_BIN_OP(and, 32)
+
+EMIT_LOCKED_BIN_OP(add, 16)
+EMIT_LOCKED_BIN_OP(adc, 16)
+EMIT_LOCKED_BIN_OP(sub, 16)
+EMIT_LOCKED_BIN_OP(sbb, 16)
+EMIT_LOCKED_BIN_OP(or, 16)
+EMIT_LOCKED_BIN_OP(xor, 16)
+EMIT_LOCKED_BIN_OP(and, 16)
+
+EMIT_LOCKED_BIN_OP(add, 8)
+EMIT_LOCKED_BIN_OP(adc, 8)
+EMIT_LOCKED_BIN_OP(sub, 8)
+EMIT_LOCKED_BIN_OP(sbb, 8)
+EMIT_LOCKED_BIN_OP(or, 8)
+EMIT_LOCKED_BIN_OP(xor, 8)
+EMIT_LOCKED_BIN_OP(and, 8)
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+
+/*
+ * Bit operations (same signature as above).
+ */
+
+/*
+ * BT
+ */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_bt_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ /* Note! "undefined" flags: OF, SF, ZF, AF, PF. However, it seems they're
+ not modified by either AMD (3990x) or Intel (i9-9980HK). */
+ Assert(uSrc < 64);
+ uint64_t uDst = *puDst;
+ if (uDst & RT_BIT_64(uSrc))
+ *pfEFlags |= X86_EFL_CF;
+ else
+ *pfEFlags &= ~X86_EFL_CF;
+}
+
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_bt_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ /* Note! "undefined" flags: OF, SF, ZF, AF, PF. However, it seems they're
+ not modified by either AMD (3990x) or Intel (i9-9980HK). */
+ Assert(uSrc < 32);
+ uint32_t uDst = *puDst;
+ if (uDst & RT_BIT_32(uSrc))
+ *pfEFlags |= X86_EFL_CF;
+ else
+ *pfEFlags &= ~X86_EFL_CF;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_bt_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ /* Note! "undefined" flags: OF, SF, ZF, AF, PF. However, it seems they're
+ not modified by either AMD (3990x) or Intel (i9-9980HK). */
+ Assert(uSrc < 16);
+ uint16_t uDst = *puDst;
+ if (uDst & RT_BIT_32(uSrc))
+ *pfEFlags |= X86_EFL_CF;
+ else
+ *pfEFlags &= ~X86_EFL_CF;
+}
+
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+/*
+ * BTC
+ */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_btc_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ /* Note! "undefined" flags: OF, SF, ZF, AF, PF. However, it seems they're
+ not modified by either AMD (3990x) or Intel (i9-9980HK). */
+ Assert(uSrc < 64);
+ uint64_t fMask = RT_BIT_64(uSrc);
+ uint64_t uDst = *puDst;
+ if (uDst & fMask)
+ {
+ uDst &= ~fMask;
+ *puDst = uDst;
+ *pfEFlags |= X86_EFL_CF;
+ }
+ else
+ {
+ uDst |= fMask;
+ *puDst = uDst;
+ *pfEFlags &= ~X86_EFL_CF;
+ }
+}
+
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_btc_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ /* Note! "undefined" flags: OF, SF, ZF, AF, PF. However, it seems they're
+ not modified by either AMD (3990x) or Intel (i9-9980HK). */
+ Assert(uSrc < 32);
+ uint32_t fMask = RT_BIT_32(uSrc);
+ uint32_t uDst = *puDst;
+ if (uDst & fMask)
+ {
+ uDst &= ~fMask;
+ *puDst = uDst;
+ *pfEFlags |= X86_EFL_CF;
+ }
+ else
+ {
+ uDst |= fMask;
+ *puDst = uDst;
+ *pfEFlags &= ~X86_EFL_CF;
+ }
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_btc_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ /* Note! "undefined" flags: OF, SF, ZF, AF, PF. However, it seems they're
+ not modified by either AMD (3990x) or Intel (i9-9980HK). */
+ Assert(uSrc < 16);
+ uint16_t fMask = RT_BIT_32(uSrc);
+ uint16_t uDst = *puDst;
+ if (uDst & fMask)
+ {
+ uDst &= ~fMask;
+ *puDst = uDst;
+ *pfEFlags |= X86_EFL_CF;
+ }
+ else
+ {
+ uDst |= fMask;
+ *puDst = uDst;
+ *pfEFlags &= ~X86_EFL_CF;
+ }
+}
+
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+/*
+ * BTR
+ */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_btr_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an
+ logical operation (AND/OR/whatever). */
+ Assert(uSrc < 64);
+ uint64_t fMask = RT_BIT_64(uSrc);
+ uint64_t uDst = *puDst;
+ if (uDst & fMask)
+ {
+ uDst &= ~fMask;
+ *puDst = uDst;
+ *pfEFlags |= X86_EFL_CF;
+ }
+ else
+ *pfEFlags &= ~X86_EFL_CF;
+}
+
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_btr_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an
+ logical operation (AND/OR/whatever). */
+ Assert(uSrc < 32);
+ uint32_t fMask = RT_BIT_32(uSrc);
+ uint32_t uDst = *puDst;
+ if (uDst & fMask)
+ {
+ uDst &= ~fMask;
+ *puDst = uDst;
+ *pfEFlags |= X86_EFL_CF;
+ }
+ else
+ *pfEFlags &= ~X86_EFL_CF;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_btr_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an
+ logical operation (AND/OR/whatever). */
+ Assert(uSrc < 16);
+ uint16_t fMask = RT_BIT_32(uSrc);
+ uint16_t uDst = *puDst;
+ if (uDst & fMask)
+ {
+ uDst &= ~fMask;
+ *puDst = uDst;
+ *pfEFlags |= X86_EFL_CF;
+ }
+ else
+ *pfEFlags &= ~X86_EFL_CF;
+}
+
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+/*
+ * BTS
+ */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_bts_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an
+ logical operation (AND/OR/whatever). */
+ Assert(uSrc < 64);
+ uint64_t fMask = RT_BIT_64(uSrc);
+ uint64_t uDst = *puDst;
+ if (uDst & fMask)
+ *pfEFlags |= X86_EFL_CF;
+ else
+ {
+ uDst |= fMask;
+ *puDst = uDst;
+ *pfEFlags &= ~X86_EFL_CF;
+ }
+}
+
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_bts_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an
+ logical operation (AND/OR/whatever). */
+ Assert(uSrc < 32);
+ uint32_t fMask = RT_BIT_32(uSrc);
+ uint32_t uDst = *puDst;
+ if (uDst & fMask)
+ *pfEFlags |= X86_EFL_CF;
+ else
+ {
+ uDst |= fMask;
+ *puDst = uDst;
+ *pfEFlags &= ~X86_EFL_CF;
+ }
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_bts_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an
+ logical operation (AND/OR/whatever). */
+ Assert(uSrc < 16);
+ uint16_t fMask = RT_BIT_32(uSrc);
+ uint32_t uDst = *puDst;
+ if (uDst & fMask)
+ *pfEFlags |= X86_EFL_CF;
+ else
+ {
+ uDst |= fMask;
+ *puDst = uDst;
+ *pfEFlags &= ~X86_EFL_CF;
+ }
+}
+
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+
+EMIT_LOCKED_BIN_OP(btc, 64)
+EMIT_LOCKED_BIN_OP(btr, 64)
+EMIT_LOCKED_BIN_OP(bts, 64)
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_LOCKED_BIN_OP(btc, 32)
+EMIT_LOCKED_BIN_OP(btr, 32)
+EMIT_LOCKED_BIN_OP(bts, 32)
+
+EMIT_LOCKED_BIN_OP(btc, 16)
+EMIT_LOCKED_BIN_OP(btr, 16)
+EMIT_LOCKED_BIN_OP(bts, 16)
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+
+/*
+ * Helpers for BSR and BSF.
+ *
+ * Note! "undefined" flags: OF, SF, AF, PF, CF.
+ * Intel behavior modelled on 10980xe, AMD on 3990X. Other marchs may
+ * produce different result (see https://www.sandpile.org/x86/flags.htm),
+ * but we restrict ourselves to emulating these recent marchs.
+ */
+#define SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlag, a_iBit) do { \
+ unsigned iBit = (a_iBit); \
+ uint32_t fEfl = *pfEFlags & ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF); \
+ if (iBit) \
+ { \
+ *puDst = --iBit; \
+ fEfl |= g_afParity[iBit]; \
+ } \
+ else \
+ fEfl |= X86_EFL_ZF | X86_EFL_PF; \
+ *pfEFlags = fEfl; \
+ } while (0)
+#define SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlag, a_iBit) do { \
+ unsigned const iBit = (a_iBit); \
+ if (iBit) \
+ { \
+ *puDst = iBit - 1; \
+ *pfEFlags &= ~X86_EFL_ZF; \
+ } \
+ else \
+ *pfEFlags |= X86_EFL_ZF; \
+ } while (0)
+
+
+/*
+ * BSF - first (least significant) bit set
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitFirstSetU64(uSrc));
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u64_intel,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitFirstSetU64(uSrc));
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u64_amd,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlags, ASMBitFirstSetU64(uSrc));
+}
+
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitFirstSetU32(uSrc));
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u32_intel,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitFirstSetU32(uSrc));
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u32_amd,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlags, ASMBitFirstSetU32(uSrc));
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitFirstSetU16(uSrc));
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u16_intel,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitFirstSetU16(uSrc));
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u16_amd,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlags, ASMBitFirstSetU16(uSrc));
+}
+
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+
+/*
+ * BSR - last (most significant) bit set
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitLastSetU64(uSrc));
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u64_intel,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitLastSetU64(uSrc));
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u64_amd,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlags, ASMBitLastSetU64(uSrc));
+}
+
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitLastSetU32(uSrc));
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u32_intel,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitLastSetU32(uSrc));
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u32_amd,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlags, ASMBitLastSetU32(uSrc));
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitLastSetU16(uSrc));
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u16_intel,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitLastSetU16(uSrc));
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u16_amd,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlags, ASMBitLastSetU16(uSrc));
+}
+
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+
+/*
+ * Helpers for LZCNT and TZCNT.
+ */
+#define SET_BIT_CNT_SEARCH_RESULT_INTEL(a_puDst, a_uSrc, a_pfEFlags, a_uResult) do { \
+ unsigned const uResult = (a_uResult); \
+ *(a_puDst) = uResult; \
+ uint32_t fEfl = *(a_pfEFlags) & ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF); \
+ if (uResult) \
+ fEfl |= g_afParity[uResult]; \
+ else \
+ fEfl |= X86_EFL_ZF | X86_EFL_PF; \
+ if (!a_uSrc) \
+ fEfl |= X86_EFL_CF; \
+ *(a_pfEFlags) = fEfl; \
+ } while (0)
+#define SET_BIT_CNT_SEARCH_RESULT_AMD(a_puDst, a_uSrc, a_pfEFlags, a_uResult) do { \
+ unsigned const uResult = (a_uResult); \
+ *(a_puDst) = uResult; \
+ uint32_t fEfl = *(a_pfEFlags) & ~(X86_EFL_ZF | X86_EFL_CF); \
+ if (!uResult) \
+ fEfl |= X86_EFL_ZF; \
+ if (!a_uSrc) \
+ fEfl |= X86_EFL_CF; \
+ *(a_pfEFlags) = fEfl; \
+ } while (0)
+
+
+/*
+ * LZCNT - count leading zero bits.
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ iemAImpl_lzcnt_u64_intel(puDst, uSrc, pfEFlags);
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u64_intel,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_CNT_SEARCH_RESULT_INTEL(puDst, uSrc, pfEFlags, ASMCountLeadingZerosU64(uSrc));
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u64_amd,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_CNT_SEARCH_RESULT_AMD(puDst, uSrc, pfEFlags, ASMCountLeadingZerosU64(uSrc));
+}
+
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ iemAImpl_lzcnt_u32_intel(puDst, uSrc, pfEFlags);
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u32_intel,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_CNT_SEARCH_RESULT_INTEL(puDst, uSrc, pfEFlags, ASMCountLeadingZerosU32(uSrc));
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u32_amd,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_CNT_SEARCH_RESULT_AMD(puDst, uSrc, pfEFlags, ASMCountLeadingZerosU32(uSrc));
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ iemAImpl_lzcnt_u16_intel(puDst, uSrc, pfEFlags);
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u16_intel,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_CNT_SEARCH_RESULT_INTEL(puDst, uSrc, pfEFlags, ASMCountLeadingZerosU16(uSrc));
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u16_amd,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_CNT_SEARCH_RESULT_AMD(puDst, uSrc, pfEFlags, ASMCountLeadingZerosU16(uSrc));
+}
+
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+
+/*
+ * TZCNT - count leading zero bits.
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ iemAImpl_tzcnt_u64_intel(puDst, uSrc, pfEFlags);
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u64_intel,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_CNT_SEARCH_RESULT_INTEL(puDst, uSrc, pfEFlags, ASMCountTrailingZerosU64(uSrc));
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u64_amd,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_CNT_SEARCH_RESULT_AMD(puDst, uSrc, pfEFlags, ASMCountTrailingZerosU64(uSrc));
+}
+
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ iemAImpl_tzcnt_u32_intel(puDst, uSrc, pfEFlags);
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u32_intel,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_CNT_SEARCH_RESULT_INTEL(puDst, uSrc, pfEFlags, ASMCountTrailingZerosU32(uSrc));
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u32_amd,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_CNT_SEARCH_RESULT_AMD(puDst, uSrc, pfEFlags, ASMCountTrailingZerosU32(uSrc));
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ iemAImpl_tzcnt_u16_intel(puDst, uSrc, pfEFlags);
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u16_intel,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_CNT_SEARCH_RESULT_INTEL(puDst, uSrc, pfEFlags, ASMCountTrailingZerosU16(uSrc));
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u16_amd,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
+{
+ SET_BIT_CNT_SEARCH_RESULT_AMD(puDst, uSrc, pfEFlags, ASMCountTrailingZerosU16(uSrc));
+}
+
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+#endif /* !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+/*
+ * BEXTR (BMI1 instruction)
+ */
+#define EMIT_BEXTR(a_cBits, a_Type, a_Suffix) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_bextr_u,a_cBits,a_Suffix),(a_Type *puDst, a_Type uSrc1, \
+ a_Type uSrc2, uint32_t *pfEFlags)) \
+{ \
+ /* uSrc1 is considered virtually zero extended to 512 bits width. */ \
+ uint32_t fEfl = *pfEFlags & ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF); \
+ a_Type uResult; \
+ uint8_t const iFirstBit = (uint8_t)uSrc2; \
+ if (iFirstBit < a_cBits) \
+ { \
+ uResult = uSrc1 >> iFirstBit; \
+ uint8_t const cBits = (uint8_t)(uSrc2 >> 8); \
+ if (cBits < a_cBits) \
+ uResult &= RT_CONCAT(RT_BIT_,a_cBits)(cBits) - 1; \
+ *puDst = uResult; \
+ if (!uResult) \
+ fEfl |= X86_EFL_ZF; \
+ } \
+ else \
+ { \
+ *puDst = uResult = 0; \
+ fEfl |= X86_EFL_ZF; \
+ } \
+ /** @todo complete flag calculations. */ \
+ *pfEFlags = fEfl; \
+}
+
+EMIT_BEXTR(64, uint64_t, _fallback)
+EMIT_BEXTR(32, uint32_t, _fallback)
+#if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_BEXTR(64, uint64_t, RT_NOTHING)
+#endif
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_BEXTR(32, uint32_t, RT_NOTHING)
+#endif
+
+/*
+ * BLSR (BMI1 instruction)
+ */
+#define EMIT_BLSR(a_cBits, a_Type, a_Suffix) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_blsr_u,a_cBits,a_Suffix),(a_Type *puDst, a_Type uSrc, uint32_t *pfEFlags)) \
+{ \
+ uint32_t fEfl1 = *pfEFlags; \
+ uint32_t fEfl2 = fEfl1; \
+ *puDst = uSrc; \
+ iemAImpl_sub_u ## a_cBits(&uSrc, 1, &fEfl1); \
+ iemAImpl_and_u ## a_cBits(puDst, uSrc, &fEfl2); \
+ \
+ /* AMD: The carry flag is from the SUB operation. */ \
+ /* 10890xe: PF always cleared? */ \
+ fEfl2 &= ~(X86_EFL_CF | X86_EFL_PF); \
+ fEfl2 |= fEfl1 & X86_EFL_CF; \
+ *pfEFlags = fEfl2; \
+}
+
+EMIT_BLSR(64, uint64_t, _fallback)
+EMIT_BLSR(32, uint32_t, _fallback)
+#if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_BLSR(64, uint64_t, RT_NOTHING)
+#endif
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_BLSR(32, uint32_t, RT_NOTHING)
+#endif
+
+/*
+ * BLSMSK (BMI1 instruction)
+ */
+#define EMIT_BLSMSK(a_cBits, a_Type, a_Suffix) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_blsmsk_u,a_cBits,a_Suffix),(a_Type *puDst, a_Type uSrc, uint32_t *pfEFlags)) \
+{ \
+ uint32_t fEfl1 = *pfEFlags; \
+ uint32_t fEfl2 = fEfl1; \
+ *puDst = uSrc; \
+ iemAImpl_sub_u ## a_cBits(&uSrc, 1, &fEfl1); \
+ iemAImpl_xor_u ## a_cBits(puDst, uSrc, &fEfl2); \
+ \
+ /* AMD: The carry flag is from the SUB operation. */ \
+ /* 10890xe: PF always cleared? */ \
+ fEfl2 &= ~(X86_EFL_CF | X86_EFL_PF); \
+ fEfl2 |= fEfl1 & X86_EFL_CF; \
+ *pfEFlags = fEfl2; \
+}
+
+EMIT_BLSMSK(64, uint64_t, _fallback)
+EMIT_BLSMSK(32, uint32_t, _fallback)
+#if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_BLSMSK(64, uint64_t, RT_NOTHING)
+#endif
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_BLSMSK(32, uint32_t, RT_NOTHING)
+#endif
+
+/*
+ * BLSI (BMI1 instruction)
+ */
+#define EMIT_BLSI(a_cBits, a_Type, a_Suffix) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_blsi_u,a_cBits,a_Suffix),(a_Type *puDst, a_Type uSrc, uint32_t *pfEFlags)) \
+{ \
+ uint32_t fEfl1 = *pfEFlags; \
+ uint32_t fEfl2 = fEfl1; \
+ *puDst = uSrc; \
+ iemAImpl_neg_u ## a_cBits(&uSrc, &fEfl1); \
+ iemAImpl_and_u ## a_cBits(puDst, uSrc, &fEfl2); \
+ \
+ /* AMD: The carry flag is from the SUB operation. */ \
+ /* 10890xe: PF always cleared? */ \
+ fEfl2 &= ~(X86_EFL_CF | X86_EFL_PF); \
+ fEfl2 |= fEfl1 & X86_EFL_CF; \
+ *pfEFlags = fEfl2; \
+}
+
+EMIT_BLSI(64, uint64_t, _fallback)
+EMIT_BLSI(32, uint32_t, _fallback)
+#if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_BLSI(64, uint64_t, RT_NOTHING)
+#endif
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_BLSI(32, uint32_t, RT_NOTHING)
+#endif
+
+/*
+ * BZHI (BMI2 instruction)
+ */
+#define EMIT_BZHI(a_cBits, a_Type, a_Suffix) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_bzhi_u,a_cBits,a_Suffix),(a_Type *puDst, a_Type uSrc1, \
+ a_Type uSrc2, uint32_t *pfEFlags)) \
+{ \
+ uint32_t fEfl = *pfEFlags & ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF); \
+ a_Type uResult; \
+ uint8_t const iFirstBit = (uint8_t)uSrc2; \
+ if (iFirstBit < a_cBits) \
+ uResult = uSrc1 & (((a_Type)1 << iFirstBit) - 1); \
+ else \
+ { \
+ uResult = uSrc1; \
+ fEfl |= X86_EFL_CF; \
+ } \
+ *puDst = uResult; \
+ fEfl |= X86_EFL_CALC_ZF(uResult); \
+ fEfl |= X86_EFL_CALC_SF(uResult, a_cBits); \
+ *pfEFlags = fEfl; \
+}
+
+EMIT_BZHI(64, uint64_t, _fallback)
+EMIT_BZHI(32, uint32_t, _fallback)
+#if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_BZHI(64, uint64_t, RT_NOTHING)
+#endif
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_BZHI(32, uint32_t, RT_NOTHING)
+#endif
+
+/*
+ * POPCNT
+ */
+RT_ALIGNAS_VAR(64) static uint8_t const g_abBitCounts6[64] =
+{
+ 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
+ 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+ 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+};
+
+/** @todo Use native popcount where possible and employ some more efficient
+ * algorithm here (or in asm.h fallback)! */
+
+DECLINLINE(uint8_t) iemPopCountU16(uint16_t u16)
+{
+ return g_abBitCounts6[ u16 & 0x3f]
+ + g_abBitCounts6[(u16 >> 6) & 0x3f]
+ + g_abBitCounts6[(u16 >> 12) & 0x3f];
+}
+
+DECLINLINE(uint8_t) iemPopCountU32(uint32_t u32)
+{
+ return g_abBitCounts6[ u32 & 0x3f]
+ + g_abBitCounts6[(u32 >> 6) & 0x3f]
+ + g_abBitCounts6[(u32 >> 12) & 0x3f]
+ + g_abBitCounts6[(u32 >> 18) & 0x3f]
+ + g_abBitCounts6[(u32 >> 24) & 0x3f]
+ + g_abBitCounts6[(u32 >> 30) & 0x3f];
+}
+
+DECLINLINE(uint8_t) iemPopCountU64(uint64_t u64)
+{
+ return g_abBitCounts6[ u64 & 0x3f]
+ + g_abBitCounts6[(u64 >> 6) & 0x3f]
+ + g_abBitCounts6[(u64 >> 12) & 0x3f]
+ + g_abBitCounts6[(u64 >> 18) & 0x3f]
+ + g_abBitCounts6[(u64 >> 24) & 0x3f]
+ + g_abBitCounts6[(u64 >> 30) & 0x3f]
+ + g_abBitCounts6[(u64 >> 36) & 0x3f]
+ + g_abBitCounts6[(u64 >> 42) & 0x3f]
+ + g_abBitCounts6[(u64 >> 48) & 0x3f]
+ + g_abBitCounts6[(u64 >> 54) & 0x3f]
+ + g_abBitCounts6[(u64 >> 60) & 0x3f];
+}
+
+#define EMIT_POPCNT(a_cBits, a_Type, a_Suffix) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_popcnt_u,a_cBits,a_Suffix),(a_Type *puDst, a_Type uSrc, uint32_t *pfEFlags)) \
+{ \
+ uint32_t fEfl = *pfEFlags & ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF); \
+ a_Type uResult; \
+ if (uSrc) \
+ uResult = iemPopCountU ## a_cBits(uSrc); \
+ else \
+ { \
+ fEfl |= X86_EFL_ZF; \
+ uResult = 0; \
+ } \
+ *puDst = uResult; \
+ *pfEFlags = fEfl; \
+}
+
+EMIT_POPCNT(64, uint64_t, _fallback)
+EMIT_POPCNT(32, uint32_t, _fallback)
+EMIT_POPCNT(16, uint16_t, _fallback)
+#if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_POPCNT(64, uint64_t, RT_NOTHING)
+#endif
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_POPCNT(32, uint32_t, RT_NOTHING)
+EMIT_POPCNT(16, uint16_t, RT_NOTHING)
+#endif
+
+
+#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
+
+/*
+ * XCHG
+ */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *puMem, uint64_t *puReg))
+{
+#if ARCH_BITS >= 64
+ *puReg = ASMAtomicXchgU64(puMem, *puReg);
+#else
+ uint64_t uOldMem = *puMem;
+ while (!ASMAtomicCmpXchgExU64(puMem, *puReg, uOldMem, &uOldMem))
+ ASMNopPause();
+ *puReg = uOldMem;
+#endif
+}
+
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *puMem, uint32_t *puReg))
+{
+ *puReg = ASMAtomicXchgU32(puMem, *puReg);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *puMem, uint16_t *puReg))
+{
+ *puReg = ASMAtomicXchgU16(puMem, *puReg);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked,(uint8_t *puMem, uint8_t *puReg))
+{
+ *puReg = ASMAtomicXchgU8(puMem, *puReg);
+}
+
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+
+/* Unlocked variants for fDisregardLock mode: */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *puMem, uint64_t *puReg))
+{
+ uint64_t const uOld = *puMem;
+ *puMem = *puReg;
+ *puReg = uOld;
+}
+
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *puMem, uint32_t *puReg))
+{
+ uint32_t const uOld = *puMem;
+ *puMem = *puReg;
+ *puReg = uOld;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *puMem, uint16_t *puReg))
+{
+ uint16_t const uOld = *puMem;
+ *puMem = *puReg;
+ *puReg = uOld;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked,(uint8_t *puMem, uint8_t *puReg))
+{
+ uint8_t const uOld = *puMem;
+ *puMem = *puReg;
+ *puReg = uOld;
+}
+
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+
+/*
+ * XADD and LOCK XADD.
+ */
+#define EMIT_XADD(a_cBitsWidth, a_Type) \
+IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u ## a_cBitsWidth,(a_Type *puDst, a_Type *puReg, uint32_t *pfEFlags)) \
+{ \
+ a_Type uDst = *puDst; \
+ a_Type uResult = uDst; \
+ iemAImpl_add_u ## a_cBitsWidth(&uResult, *puReg, pfEFlags); \
+ *puDst = uResult; \
+ *puReg = uDst; \
+} \
+\
+IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u ## a_cBitsWidth ## _locked,(a_Type *puDst, a_Type *puReg, uint32_t *pfEFlags)) \
+{ \
+ a_Type uOld = ASMAtomicUoReadU ## a_cBitsWidth(puDst); \
+ a_Type uResult; \
+ uint32_t fEflTmp; \
+ do \
+ { \
+ uResult = uOld; \
+ fEflTmp = *pfEFlags; \
+ iemAImpl_add_u ## a_cBitsWidth(&uResult, *puReg, &fEflTmp); \
+ } while (!ASMAtomicCmpXchgExU ## a_cBitsWidth(puDst, uResult, uOld, &uOld)); \
+ *puReg = uOld; \
+ *pfEFlags = fEflTmp; \
+}
+EMIT_XADD(64, uint64_t)
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_XADD(32, uint32_t)
+EMIT_XADD(16, uint16_t)
+EMIT_XADD(8, uint8_t)
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+#endif
+
+/*
+ * CMPXCHG, CMPXCHG8B, CMPXCHG16B
+ *
+ * Note! We don't have non-locking/atomic cmpxchg primitives, so all cmpxchg
+ * instructions are emulated as locked.
+ */
+#if defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags))
+{
+ uint8_t uOld = *puAl;
+ if (ASMAtomicCmpXchgExU8(pu8Dst, uSrcReg, uOld, puAl))
+ Assert(*puAl == uOld);
+ iemAImpl_cmp_u8(&uOld, *puAl, pEFlags);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags))
+{
+ uint16_t uOld = *puAx;
+ if (ASMAtomicCmpXchgExU16(pu16Dst, uSrcReg, uOld, puAx))
+ Assert(*puAx == uOld);
+ iemAImpl_cmp_u16(&uOld, *puAx, pEFlags);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags))
+{
+ uint32_t uOld = *puEax;
+ if (ASMAtomicCmpXchgExU32(pu32Dst, uSrcReg, uOld, puEax))
+ Assert(*puEax == uOld);
+ iemAImpl_cmp_u32(&uOld, *puEax, pEFlags);
+}
+
+
+# if ARCH_BITS == 32
+IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags))
+# else
+IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags))
+# endif
+{
+# if ARCH_BITS == 32
+ uint64_t const uSrcReg = *puSrcReg;
+# endif
+ uint64_t uOld = *puRax;
+ if (ASMAtomicCmpXchgExU64(pu64Dst, uSrcReg, uOld, puRax))
+ Assert(*puRax == uOld);
+ iemAImpl_cmp_u64(&uOld, *puRax, pEFlags);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
+ uint32_t *pEFlags))
+{
+ uint64_t const uNew = pu64EbxEcx->u;
+ uint64_t const uOld = pu64EaxEdx->u;
+ if (ASMAtomicCmpXchgExU64(pu64Dst, uNew, uOld, &pu64EaxEdx->u))
+ {
+ Assert(pu64EaxEdx->u == uOld);
+ *pEFlags |= X86_EFL_ZF;
+ }
+ else
+ *pEFlags &= ~X86_EFL_ZF;
+}
+
+
+# if defined(RT_ARCH_AMD64) || defined(RT_ARCH_ARM64)
+IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
+ uint32_t *pEFlags))
+{
+# ifdef VBOX_STRICT
+ RTUINT128U const uOld = *pu128RaxRdx;
+# endif
+# if defined(RT_ARCH_AMD64)
+ if (ASMAtomicCmpXchgU128v2(&pu128Dst->u, pu128RbxRcx->s.Hi, pu128RbxRcx->s.Lo, pu128RaxRdx->s.Hi, pu128RaxRdx->s.Lo,
+ &pu128RaxRdx->u))
+# else
+ if (ASMAtomicCmpXchgU128(&pu128Dst->u, pu128RbxRcx->u, pu128RaxRdx->u, &pu128RaxRdx->u))
+# endif
+ {
+ Assert(pu128RaxRdx->s.Lo == uOld.s.Lo && pu128RaxRdx->s.Hi == uOld.s.Hi);
+ *pEFlags |= X86_EFL_ZF;
+ }
+ else
+ *pEFlags &= ~X86_EFL_ZF;
+}
+# endif
+
+#endif /* defined(IEM_WITHOUT_ASSEMBLY) */
+
+# if !defined(RT_ARCH_ARM64) /** @todo may need this for unaligned accesses... */
+IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx,
+ PRTUINT128U pu128RbxRcx, uint32_t *pEFlags))
+{
+ RTUINT128U u128Tmp = *pu128Dst;
+ if ( u128Tmp.s.Lo == pu128RaxRdx->s.Lo
+ && u128Tmp.s.Hi == pu128RaxRdx->s.Hi)
+ {
+ *pu128Dst = *pu128RbxRcx;
+ *pEFlags |= X86_EFL_ZF;
+ }
+ else
+ {
+ *pu128RaxRdx = u128Tmp;
+ *pEFlags &= ~X86_EFL_ZF;
+ }
+}
+#endif /* !RT_ARCH_ARM64 */
+
+#if defined(IEM_WITHOUT_ASSEMBLY)
+
+/* Unlocked versions mapped to the locked ones: */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags))
+{
+ iemAImpl_cmpxchg_u8_locked(pu8Dst, puAl, uSrcReg, pEFlags);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags))
+{
+ iemAImpl_cmpxchg_u16_locked(pu16Dst, puAx, uSrcReg, pEFlags);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags))
+{
+ iemAImpl_cmpxchg_u32_locked(pu32Dst, puEax, uSrcReg, pEFlags);
+}
+
+
+# if ARCH_BITS == 32
+IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags))
+{
+ iemAImpl_cmpxchg_u64_locked(pu64Dst, puRax, puSrcReg, pEFlags);
+}
+# else
+IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags))
+{
+ iemAImpl_cmpxchg_u64_locked(pu64Dst, puRax, uSrcReg, pEFlags);
+}
+# endif
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx, uint32_t *pEFlags))
+{
+ iemAImpl_cmpxchg8b_locked(pu64Dst, pu64EaxEdx, pu64EbxEcx, pEFlags);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
+ uint32_t *pEFlags))
+{
+ iemAImpl_cmpxchg16b_locked(pu128Dst, pu128RaxRdx, pu128RbxRcx, pEFlags);
+}
+
+#endif /* defined(IEM_WITHOUT_ASSEMBLY) */
+
+#if (!defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)) \
+ && !defined(DOXYGEN_RUNNING) /* Doxygen has some groking issues here and ends up mixing up input. Not worth tracking down now. */
+
+/*
+ * MUL, IMUL, DIV and IDIV helpers.
+ *
+ * - The U64 versions must use 128-bit intermediates, so we need to abstract the
+ * division step so we can select between using C operators and
+ * RTUInt128DivRem/RTUInt128MulU64ByU64.
+ *
+ * - The U8 versions work returns output in AL + AH instead of xDX + xAX, with the
+ * IDIV/DIV taking all the input in AX too. This means we have to abstract some
+ * input loads and the result storing.
+ */
+
+DECLINLINE(void) RTUInt128DivRemByU64(PRTUINT128U pQuotient, PRTUINT128U pRemainder, PCRTUINT128U pDividend, uint64_t u64Divisor)
+{
+# ifdef __GNUC__ /* GCC maybe really annoying in function. */
+ pQuotient->s.Lo = 0;
+ pQuotient->s.Hi = 0;
+# endif
+ RTUINT128U Divisor;
+ Divisor.s.Lo = u64Divisor;
+ Divisor.s.Hi = 0;
+ RTUInt128DivRem(pQuotient, pRemainder, pDividend, &Divisor);
+}
+
+# define DIV_LOAD(a_Dividend) \
+ a_Dividend.s.Lo = *puA, a_Dividend.s.Hi = *puD
+# define DIV_LOAD_U8(a_Dividend) \
+ a_Dividend.u = *puAX
+
+# define DIV_STORE(a_Quotient, a_uReminder) *puA = (a_Quotient), *puD = (a_uReminder)
+# define DIV_STORE_U8(a_Quotient, a_uReminder) *puAX = (uint8_t)(a_Quotient) | ((uint16_t)(a_uReminder) << 8)
+
+# define MUL_LOAD_F1() *puA
+# define MUL_LOAD_F1_U8() ((uint8_t)*puAX)
+
+# define MUL_STORE(a_Result) *puA = (a_Result).s.Lo, *puD = (a_Result).s.Hi
+# define MUL_STORE_U8(a_Result) *puAX = a_Result.u
+
+# define MULDIV_NEG(a_Value, a_cBitsWidth2x) \
+ (a_Value).u = UINT ## a_cBitsWidth2x ## _C(0) - (a_Value).u
+# define MULDIV_NEG_U128(a_Value, a_cBitsWidth2x) \
+ RTUInt128AssignNeg(&(a_Value))
+
+# define MULDIV_MUL(a_Result, a_Factor1, a_Factor2, a_cBitsWidth2x) \
+ (a_Result).u = (uint ## a_cBitsWidth2x ## _t)(a_Factor1) * (a_Factor2)
+# define MULDIV_MUL_U128(a_Result, a_Factor1, a_Factor2, a_cBitsWidth2x) \
+ RTUInt128MulU64ByU64(&(a_Result), a_Factor1, a_Factor2);
+
+# define MULDIV_MODDIV(a_Quotient, a_Remainder, a_Dividend, a_uDivisor) \
+ a_Quotient.u = (a_Dividend).u / (a_uDivisor), \
+ a_Remainder.u = (a_Dividend).u % (a_uDivisor)
+# define MULDIV_MODDIV_U128(a_Quotient, a_Remainder, a_Dividend, a_uDivisor) \
+ RTUInt128DivRemByU64(&a_Quotient, &a_Remainder, &a_Dividend, a_uDivisor)
+
+
+/*
+ * MUL
+ */
+# define EMIT_MUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnMul, a_Suffix, a_fIntelFlags) \
+IEM_DECL_IMPL_DEF(int, RT_CONCAT3(iemAImpl_mul_u,a_cBitsWidth,a_Suffix), a_Args) \
+{ \
+ RTUINT ## a_cBitsWidth2x ## U Result; \
+ a_fnMul(Result, a_fnLoadF1(), uFactor, a_cBitsWidth2x); \
+ a_fnStore(Result); \
+ \
+ /* Calc EFLAGS: */ \
+ uint32_t fEfl = *pfEFlags; \
+ if (a_fIntelFlags) \
+ { /* Intel: 6700K and 10980XE behavior */ \
+ fEfl &= ~(X86_EFL_SF | X86_EFL_CF | X86_EFL_OF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF); \
+ if (Result.s.Lo & RT_BIT_64(a_cBitsWidth - 1)) \
+ fEfl |= X86_EFL_SF; \
+ fEfl |= g_afParity[Result.s.Lo & 0xff]; \
+ if (Result.s.Hi != 0) \
+ fEfl |= X86_EFL_CF | X86_EFL_OF; \
+ } \
+ else \
+ { /* AMD: 3990X */ \
+ if (Result.s.Hi != 0) \
+ fEfl |= X86_EFL_CF | X86_EFL_OF; \
+ else \
+ fEfl &= ~(X86_EFL_CF | X86_EFL_OF); \
+ } \
+ *pfEFlags = fEfl; \
+ return 0; \
+} \
+
+# define EMIT_MUL(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnMul) \
+ EMIT_MUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnMul, RT_NOTHING, 1) \
+ EMIT_MUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnMul, _intel, 1) \
+ EMIT_MUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnMul, _amd, 0) \
+
+# ifndef DOXYGEN_RUNNING /* this totally confuses doxygen for some reason */
+EMIT_MUL(64, 128, (uint64_t *puA, uint64_t *puD, uint64_t uFactor, uint32_t *pfEFlags), (puA, puD, uFactor, pfEFlags),
+ MUL_LOAD_F1, MUL_STORE, MULDIV_MUL_U128)
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_MUL(32, 64, (uint32_t *puA, uint32_t *puD, uint32_t uFactor, uint32_t *pfEFlags), (puA, puD, uFactor, pfEFlags),
+ MUL_LOAD_F1, MUL_STORE, MULDIV_MUL)
+EMIT_MUL(16, 32, (uint16_t *puA, uint16_t *puD, uint16_t uFactor, uint32_t *pfEFlags), (puA, puD, uFactor, pfEFlags),
+ MUL_LOAD_F1, MUL_STORE, MULDIV_MUL)
+EMIT_MUL(8, 16, (uint16_t *puAX, uint8_t uFactor, uint32_t *pfEFlags), (puAX, uFactor, pfEFlags),
+ MUL_LOAD_F1_U8, MUL_STORE_U8, MULDIV_MUL)
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+# endif /* !DOXYGEN_RUNNING */
+
+/*
+ * MULX
+ */
+# define EMIT_MULX(a_cBitsWidth, a_cBitsWidth2x, a_uType, a_fnMul, a_Suffix) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_mulx_u,a_cBitsWidth,a_Suffix), \
+ (a_uType *puDst1, a_uType *puDst2, a_uType uSrc1, a_uType uSrc2)) \
+{ \
+ RTUINT ## a_cBitsWidth2x ## U Result; \
+ a_fnMul(Result, uSrc1, uSrc2, a_cBitsWidth2x); \
+ *puDst2 = Result.s.Lo; /* Lower part first, as we should return the high part when puDst2 == puDst1. */ \
+ *puDst1 = Result.s.Hi; \
+} \
+
+# ifndef DOXYGEN_RUNNING /* this totally confuses doxygen for some reason */
+EMIT_MULX(64, 128, uint64_t, MULDIV_MUL_U128, RT_NOTHING)
+EMIT_MULX(64, 128, uint64_t, MULDIV_MUL_U128, _fallback)
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_MULX(32, 64, uint32_t, MULDIV_MUL, RT_NOTHING)
+EMIT_MULX(32, 64, uint32_t, MULDIV_MUL, _fallback)
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+# endif /* !DOXYGEN_RUNNING */
+
+
+/*
+ * IMUL
+ *
+ * The SF, ZF, AF and PF flags are "undefined". AMD (3990x) leaves these
+ * flags as is. Whereas Intel skylake (6700K and 10980X (Cascade Lake)) always
+ * clear AF and ZF and calculates SF and PF as per the lower half of the result.
+ */
+# define EMIT_IMUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnNeg, a_fnMul, \
+ a_Suffix, a_fIntelFlags) \
+IEM_DECL_IMPL_DEF(int, RT_CONCAT3(iemAImpl_imul_u,a_cBitsWidth,a_Suffix),a_Args) \
+{ \
+ RTUINT ## a_cBitsWidth2x ## U Result; \
+ uint32_t fEfl = *pfEFlags & ~(X86_EFL_CF | X86_EFL_OF); \
+ \
+ uint ## a_cBitsWidth ## _t const uFactor1 = a_fnLoadF1(); \
+ if (!(uFactor1 & RT_BIT_64(a_cBitsWidth - 1))) \
+ { \
+ if (!(uFactor2 & RT_BIT_64(a_cBitsWidth - 1))) \
+ { \
+ a_fnMul(Result, uFactor1, uFactor2, a_cBitsWidth2x); \
+ if (Result.s.Hi != 0 || Result.s.Lo >= RT_BIT_64(a_cBitsWidth - 1)) \
+ fEfl |= X86_EFL_CF | X86_EFL_OF; \
+ } \
+ else \
+ { \
+ uint ## a_cBitsWidth ## _t const uPositiveFactor2 = UINT ## a_cBitsWidth ## _C(0) - uFactor2; \
+ a_fnMul(Result, uFactor1, uPositiveFactor2, a_cBitsWidth2x); \
+ if (Result.s.Hi != 0 || Result.s.Lo > RT_BIT_64(a_cBitsWidth - 1)) \
+ fEfl |= X86_EFL_CF | X86_EFL_OF; \
+ a_fnNeg(Result, a_cBitsWidth2x); \
+ } \
+ } \
+ else \
+ { \
+ if (!(uFactor2 & RT_BIT_64(a_cBitsWidth - 1))) \
+ { \
+ uint ## a_cBitsWidth ## _t const uPositiveFactor1 = UINT ## a_cBitsWidth ## _C(0) - uFactor1; \
+ a_fnMul(Result, uPositiveFactor1, uFactor2, a_cBitsWidth2x); \
+ if (Result.s.Hi != 0 || Result.s.Lo > RT_BIT_64(a_cBitsWidth - 1)) \
+ fEfl |= X86_EFL_CF | X86_EFL_OF; \
+ a_fnNeg(Result, a_cBitsWidth2x); \
+ } \
+ else \
+ { \
+ uint ## a_cBitsWidth ## _t const uPositiveFactor1 = UINT ## a_cBitsWidth ## _C(0) - uFactor1; \
+ uint ## a_cBitsWidth ## _t const uPositiveFactor2 = UINT ## a_cBitsWidth ## _C(0) - uFactor2; \
+ a_fnMul(Result, uPositiveFactor1, uPositiveFactor2, a_cBitsWidth2x); \
+ if (Result.s.Hi != 0 || Result.s.Lo >= RT_BIT_64(a_cBitsWidth - 1)) \
+ fEfl |= X86_EFL_CF | X86_EFL_OF; \
+ } \
+ } \
+ a_fnStore(Result); \
+ \
+ if (a_fIntelFlags) \
+ { \
+ fEfl &= ~(X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_PF); \
+ if (Result.s.Lo & RT_BIT_64(a_cBitsWidth - 1)) \
+ fEfl |= X86_EFL_SF; \
+ fEfl |= g_afParity[Result.s.Lo & 0xff]; \
+ } \
+ *pfEFlags = fEfl; \
+ return 0; \
+}
+# define EMIT_IMUL(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnNeg, a_fnMul) \
+ EMIT_IMUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnNeg, a_fnMul, RT_NOTHING, 1) \
+ EMIT_IMUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnNeg, a_fnMul, _intel, 1) \
+ EMIT_IMUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnNeg, a_fnMul, _amd, 0)
+
+# ifndef DOXYGEN_RUNNING /* this totally confuses doxygen for some reason */
+EMIT_IMUL(64, 128, (uint64_t *puA, uint64_t *puD, uint64_t uFactor2, uint32_t *pfEFlags), (puA, puD, uFactor2, pfEFlags),
+ MUL_LOAD_F1, MUL_STORE, MULDIV_NEG_U128, MULDIV_MUL_U128)
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_IMUL(32, 64, (uint32_t *puA, uint32_t *puD, uint32_t uFactor2, uint32_t *pfEFlags), (puA, puD, uFactor2, pfEFlags),
+ MUL_LOAD_F1, MUL_STORE, MULDIV_NEG, MULDIV_MUL)
+EMIT_IMUL(16, 32, (uint16_t *puA, uint16_t *puD, uint16_t uFactor2, uint32_t *pfEFlags), (puA, puD, uFactor2, pfEFlags),
+ MUL_LOAD_F1, MUL_STORE, MULDIV_NEG, MULDIV_MUL)
+EMIT_IMUL(8, 16, (uint16_t *puAX, uint8_t uFactor2, uint32_t *pfEFlags), (puAX, uFactor2, pfEFlags),
+ MUL_LOAD_F1_U8, MUL_STORE_U8, MULDIV_NEG, MULDIV_MUL)
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+# endif /* !DOXYGEN_RUNNING */
+
+
+/*
+ * IMUL with two operands are mapped onto the three operand variant, ignoring
+ * the high part of the product.
+ */
+# define EMIT_IMUL_TWO(a_cBits, a_uType) \
+IEM_DECL_IMPL_DEF(void, iemAImpl_imul_two_u ## a_cBits,(a_uType *puDst, a_uType uSrc, uint32_t *pfEFlags)) \
+{ \
+ a_uType uIgn; \
+ iemAImpl_imul_u ## a_cBits(puDst, &uIgn, uSrc, pfEFlags); \
+} \
+\
+IEM_DECL_IMPL_DEF(void, iemAImpl_imul_two_u ## a_cBits ## _intel,(a_uType *puDst, a_uType uSrc, uint32_t *pfEFlags)) \
+{ \
+ a_uType uIgn; \
+ iemAImpl_imul_u ## a_cBits ## _intel(puDst, &uIgn, uSrc, pfEFlags); \
+} \
+\
+IEM_DECL_IMPL_DEF(void, iemAImpl_imul_two_u ## a_cBits ## _amd,(a_uType *puDst, a_uType uSrc, uint32_t *pfEFlags)) \
+{ \
+ a_uType uIgn; \
+ iemAImpl_imul_u ## a_cBits ## _amd(puDst, &uIgn, uSrc, pfEFlags); \
+}
+
+EMIT_IMUL_TWO(64, uint64_t)
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_IMUL_TWO(32, uint32_t)
+EMIT_IMUL_TWO(16, uint16_t)
+# endif
+
+
+/*
+ * DIV
+ */
+# define EMIT_DIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnDivRem, \
+ a_Suffix, a_fIntelFlags) \
+IEM_DECL_IMPL_DEF(int, RT_CONCAT3(iemAImpl_div_u,a_cBitsWidth,a_Suffix),a_Args) \
+{ \
+ RTUINT ## a_cBitsWidth2x ## U Dividend; \
+ a_fnLoad(Dividend); \
+ if ( uDivisor != 0 \
+ && Dividend.s.Hi < uDivisor) \
+ { \
+ RTUINT ## a_cBitsWidth2x ## U Remainder, Quotient; \
+ a_fnDivRem(Quotient, Remainder, Dividend, uDivisor); \
+ a_fnStore(Quotient.s.Lo, Remainder.s.Lo); \
+ \
+ /* Calc EFLAGS: Intel 6700K and 10980XE leaves them alone. AMD 3990X sets AF and clears PF, ZF and SF. */ \
+ if (!a_fIntelFlags) \
+ *pfEFlags = (*pfEFlags & ~(X86_EFL_PF | X86_EFL_ZF | X86_EFL_SF)) | X86_EFL_AF; \
+ return 0; \
+ } \
+ /* #DE */ \
+ return -1; \
+}
+# define EMIT_DIV(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnDivRem) \
+ EMIT_DIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnDivRem, RT_NOTHING, 1) \
+ EMIT_DIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnDivRem, _intel, 1) \
+ EMIT_DIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnDivRem, _amd, 0)
+
+# ifndef DOXYGEN_RUNNING /* this totally confuses doxygen for some reason */
+EMIT_DIV(64,128,(uint64_t *puA, uint64_t *puD, uint64_t uDivisor, uint32_t *pfEFlags), (puA, puD, uDivisor, pfEFlags),
+ DIV_LOAD, DIV_STORE, MULDIV_MODDIV_U128)
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_DIV(32,64, (uint32_t *puA, uint32_t *puD, uint32_t uDivisor, uint32_t *pfEFlags), (puA, puD, uDivisor, pfEFlags),
+ DIV_LOAD, DIV_STORE, MULDIV_MODDIV)
+EMIT_DIV(16,32, (uint16_t *puA, uint16_t *puD, uint16_t uDivisor, uint32_t *pfEFlags), (puA, puD, uDivisor, pfEFlags),
+ DIV_LOAD, DIV_STORE, MULDIV_MODDIV)
+EMIT_DIV(8,16, (uint16_t *puAX, uint8_t uDivisor, uint32_t *pfEFlags), (puAX, uDivisor, pfEFlags),
+ DIV_LOAD_U8, DIV_STORE_U8, MULDIV_MODDIV)
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+# endif /* !DOXYGEN_RUNNING */
+
+
+/*
+ * IDIV
+ *
+ * EFLAGS are ignored and left as-is by Intel 6700K and 10980XE. AMD 3990X will
+ * set AF and clear PF, ZF and SF just like it does for DIV.
+ *
+ */
+# define EMIT_IDIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnNeg, a_fnDivRem, \
+ a_Suffix, a_fIntelFlags) \
+IEM_DECL_IMPL_DEF(int, RT_CONCAT3(iemAImpl_idiv_u,a_cBitsWidth,a_Suffix),a_Args) \
+{ \
+ /* Note! Skylake leaves all flags alone. */ \
+ \
+ /** @todo overflow checks */ \
+ if (uDivisor != 0) \
+ { \
+ /* \
+ * Convert to unsigned division. \
+ */ \
+ RTUINT ## a_cBitsWidth2x ## U Dividend; \
+ a_fnLoad(Dividend); \
+ bool const fSignedDividend = RT_BOOL(Dividend.s.Hi & RT_BIT_64(a_cBitsWidth - 1)); \
+ if (fSignedDividend) \
+ a_fnNeg(Dividend, a_cBitsWidth2x); \
+ \
+ uint ## a_cBitsWidth ## _t uDivisorPositive; \
+ if (!(uDivisor & RT_BIT_64(a_cBitsWidth - 1))) \
+ uDivisorPositive = uDivisor; \
+ else \
+ uDivisorPositive = UINT ## a_cBitsWidth ## _C(0) - uDivisor; \
+ \
+ RTUINT ## a_cBitsWidth2x ## U Remainder, Quotient; \
+ a_fnDivRem(Quotient, Remainder, Dividend, uDivisorPositive); \
+ \
+ /* \
+ * Setup the result, checking for overflows. \
+ */ \
+ if (!(uDivisor & RT_BIT_64(a_cBitsWidth - 1))) \
+ { \
+ if (!fSignedDividend) \
+ { \
+ /* Positive divisor, positive dividend => result positive. */ \
+ if (Quotient.s.Hi == 0 && Quotient.s.Lo <= (uint ## a_cBitsWidth ## _t)INT ## a_cBitsWidth ## _MAX) \
+ { \
+ a_fnStore(Quotient.s.Lo, Remainder.s.Lo); \
+ if (!a_fIntelFlags) \
+ *pfEFlags = (*pfEFlags & ~(X86_EFL_PF | X86_EFL_ZF | X86_EFL_SF)) | X86_EFL_AF; \
+ return 0; \
+ } \
+ } \
+ else \
+ { \
+ /* Positive divisor, negative dividend => result negative. */ \
+ if (Quotient.s.Hi == 0 && Quotient.s.Lo <= RT_BIT_64(a_cBitsWidth - 1)) \
+ { \
+ a_fnStore(UINT ## a_cBitsWidth ## _C(0) - Quotient.s.Lo, UINT ## a_cBitsWidth ## _C(0) - Remainder.s.Lo); \
+ if (!a_fIntelFlags) \
+ *pfEFlags = (*pfEFlags & ~(X86_EFL_PF | X86_EFL_ZF | X86_EFL_SF)) | X86_EFL_AF; \
+ return 0; \
+ } \
+ } \
+ } \
+ else \
+ { \
+ if (!fSignedDividend) \
+ { \
+ /* Negative divisor, positive dividend => negative quotient, positive remainder. */ \
+ if (Quotient.s.Hi == 0 && Quotient.s.Lo <= RT_BIT_64(a_cBitsWidth - 1)) \
+ { \
+ a_fnStore(UINT ## a_cBitsWidth ## _C(0) - Quotient.s.Lo, Remainder.s.Lo); \
+ if (!a_fIntelFlags) \
+ *pfEFlags = (*pfEFlags & ~(X86_EFL_PF | X86_EFL_ZF | X86_EFL_SF)) | X86_EFL_AF; \
+ return 0; \
+ } \
+ } \
+ else \
+ { \
+ /* Negative divisor, negative dividend => positive quotient, negative remainder. */ \
+ if (Quotient.s.Hi == 0 && Quotient.s.Lo <= (uint ## a_cBitsWidth ## _t)INT ## a_cBitsWidth ## _MAX) \
+ { \
+ a_fnStore(Quotient.s.Lo, UINT ## a_cBitsWidth ## _C(0) - Remainder.s.Lo); \
+ if (!a_fIntelFlags) \
+ *pfEFlags = (*pfEFlags & ~(X86_EFL_PF | X86_EFL_ZF | X86_EFL_SF)) | X86_EFL_AF; \
+ return 0; \
+ } \
+ } \
+ } \
+ } \
+ /* #DE */ \
+ return -1; \
+}
+# define EMIT_IDIV(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnNeg, a_fnDivRem) \
+ EMIT_IDIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnNeg, a_fnDivRem, RT_NOTHING, 1) \
+ EMIT_IDIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnNeg, a_fnDivRem, _intel, 1) \
+ EMIT_IDIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnNeg, a_fnDivRem, _amd, 0)
+
+# ifndef DOXYGEN_RUNNING /* this totally confuses doxygen for some reason */
+EMIT_IDIV(64,128,(uint64_t *puA, uint64_t *puD, uint64_t uDivisor, uint32_t *pfEFlags), (puA, puD, uDivisor, pfEFlags),
+ DIV_LOAD, DIV_STORE, MULDIV_NEG_U128, MULDIV_MODDIV_U128)
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_IDIV(32,64,(uint32_t *puA, uint32_t *puD, uint32_t uDivisor, uint32_t *pfEFlags), (puA, puD, uDivisor, pfEFlags),
+ DIV_LOAD, DIV_STORE, MULDIV_NEG, MULDIV_MODDIV)
+EMIT_IDIV(16,32,(uint16_t *puA, uint16_t *puD, uint16_t uDivisor, uint32_t *pfEFlags), (puA, puD, uDivisor, pfEFlags),
+ DIV_LOAD, DIV_STORE, MULDIV_NEG, MULDIV_MODDIV)
+EMIT_IDIV(8,16,(uint16_t *puAX, uint8_t uDivisor, uint32_t *pfEFlags), (puAX, uDivisor, pfEFlags),
+ DIV_LOAD_U8, DIV_STORE_U8, MULDIV_NEG, MULDIV_MODDIV)
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+# endif /* !DOXYGEN_RUNNING */
+
+#endif /* (!defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)) && !defined(DOXYGEN_RUNNING) */
+
+
+/*********************************************************************************************************************************
+* Unary operations. *
+*********************************************************************************************************************************/
+#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
+
+/** @def IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC
+ * Updates the status bits (CF, PF, AF, ZF, SF, and OF) for an INC or DEC instruction.
+ *
+ * CF is NOT modified for hysterical raisins (allegedly for carrying and
+ * borrowing in arithmetic loops on intel 8008).
+ *
+ * @returns Status bits.
+ * @param a_pfEFlags Pointer to the 32-bit EFLAGS value to update.
+ * @param a_uResult Unsigned result value.
+ * @param a_uDst The original destination value (for AF calc).
+ * @param a_cBitsWidth The width of the result (8, 16, 32, 64).
+ * @param a_OfMethod 0 for INC-style, 1 for DEC-style.
+ */
+#define IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(a_pfEFlags, a_uResult, a_uDst, a_cBitsWidth, a_OfMethod) \
+ do { \
+ uint32_t fEflTmp = *(a_pfEFlags); \
+ fEflTmp &= ~X86_EFL_STATUS_BITS | X86_EFL_CF; \
+ fEflTmp |= g_afParity[(a_uResult) & 0xff]; \
+ fEflTmp |= ((uint32_t)(a_uResult) ^ (uint32_t)(a_uDst)) & X86_EFL_AF; \
+ fEflTmp |= X86_EFL_CALC_ZF(a_uResult); \
+ fEflTmp |= X86_EFL_CALC_SF(a_uResult, a_cBitsWidth); \
+ fEflTmp |= X86_EFL_GET_OF_ ## a_cBitsWidth(a_OfMethod == 0 ? (((a_uDst) ^ RT_BIT_64(a_cBitsWidth - 1)) & (a_uResult)) \
+ : ((a_uDst) & ((a_uResult) ^ RT_BIT_64(a_cBitsWidth - 1))) ); \
+ *(a_pfEFlags) = fEflTmp; \
+ } while (0)
+
+/*
+ * INC
+ */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u64,(uint64_t *puDst, uint32_t *pfEFlags))
+{
+ uint64_t uDst = *puDst;
+ uint64_t uResult = uDst + 1;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 64, 0 /*INC*/);
+}
+
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u32,(uint32_t *puDst, uint32_t *pfEFlags))
+{
+ uint32_t uDst = *puDst;
+ uint32_t uResult = uDst + 1;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 32, 0 /*INC*/);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u16,(uint16_t *puDst, uint32_t *pfEFlags))
+{
+ uint16_t uDst = *puDst;
+ uint16_t uResult = uDst + 1;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 16, 0 /*INC*/);
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u8,(uint8_t *puDst, uint32_t *pfEFlags))
+{
+ uint8_t uDst = *puDst;
+ uint8_t uResult = uDst + 1;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 8, 0 /*INC*/);
+}
+
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+
+/*
+ * DEC
+ */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u64,(uint64_t *puDst, uint32_t *pfEFlags))
+{
+ uint64_t uDst = *puDst;
+ uint64_t uResult = uDst - 1;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 64, 1 /*INC*/);
+}
+
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u32,(uint32_t *puDst, uint32_t *pfEFlags))
+{
+ uint32_t uDst = *puDst;
+ uint32_t uResult = uDst - 1;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 32, 1 /*INC*/);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u16,(uint16_t *puDst, uint32_t *pfEFlags))
+{
+ uint16_t uDst = *puDst;
+ uint16_t uResult = uDst - 1;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 16, 1 /*INC*/);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u8,(uint8_t *puDst, uint32_t *pfEFlags))
+{
+ uint8_t uDst = *puDst;
+ uint8_t uResult = uDst - 1;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 8, 1 /*INC*/);
+}
+
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+
+/*
+ * NOT
+ */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_not_u64,(uint64_t *puDst, uint32_t *pfEFlags))
+{
+ uint64_t uDst = *puDst;
+ uint64_t uResult = ~uDst;
+ *puDst = uResult;
+ /* EFLAGS are not modified. */
+ RT_NOREF_PV(pfEFlags);
+}
+
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_not_u32,(uint32_t *puDst, uint32_t *pfEFlags))
+{
+ uint32_t uDst = *puDst;
+ uint32_t uResult = ~uDst;
+ *puDst = uResult;
+ /* EFLAGS are not modified. */
+ RT_NOREF_PV(pfEFlags);
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_not_u16,(uint16_t *puDst, uint32_t *pfEFlags))
+{
+ uint16_t uDst = *puDst;
+ uint16_t uResult = ~uDst;
+ *puDst = uResult;
+ /* EFLAGS are not modified. */
+ RT_NOREF_PV(pfEFlags);
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_not_u8,(uint8_t *puDst, uint32_t *pfEFlags))
+{
+ uint8_t uDst = *puDst;
+ uint8_t uResult = ~uDst;
+ *puDst = uResult;
+ /* EFLAGS are not modified. */
+ RT_NOREF_PV(pfEFlags);
+}
+
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+
+/*
+ * NEG
+ */
+
+/**
+ * Updates the status bits (CF, PF, AF, ZF, SF, and OF) for an NEG instruction.
+ *
+ * @returns Status bits.
+ * @param a_pfEFlags Pointer to the 32-bit EFLAGS value to update.
+ * @param a_uResult Unsigned result value.
+ * @param a_uDst The original destination value (for AF calc).
+ * @param a_cBitsWidth The width of the result (8, 16, 32, 64).
+ */
+#define IEM_EFL_UPDATE_STATUS_BITS_FOR_NEG(a_pfEFlags, a_uResult, a_uDst, a_cBitsWidth) \
+ do { \
+ uint32_t fEflTmp = *(a_pfEFlags); \
+ fEflTmp &= ~X86_EFL_STATUS_BITS & ~X86_EFL_CF; \
+ fEflTmp |= ((a_uDst) != 0) << X86_EFL_CF_BIT; \
+ fEflTmp |= g_afParity[(a_uResult) & 0xff]; \
+ fEflTmp |= ((uint32_t)(a_uResult) ^ (uint32_t)(a_uDst)) & X86_EFL_AF; \
+ fEflTmp |= X86_EFL_CALC_ZF(a_uResult); \
+ fEflTmp |= X86_EFL_CALC_SF(a_uResult, a_cBitsWidth); \
+ fEflTmp |= X86_EFL_GET_OF_ ## a_cBitsWidth((a_uDst) & (a_uResult)); \
+ *(a_pfEFlags) = fEflTmp; \
+ } while (0)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u64,(uint64_t *puDst, uint32_t *pfEFlags))
+{
+ uint64_t uDst = *puDst;
+ uint64_t uResult = (uint64_t)0 - uDst;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_NEG(pfEFlags, uResult, uDst, 64);
+}
+
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u32,(uint32_t *puDst, uint32_t *pfEFlags))
+{
+ uint32_t uDst = *puDst;
+ uint32_t uResult = (uint32_t)0 - uDst;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_NEG(pfEFlags, uResult, uDst, 32);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u16,(uint16_t *puDst, uint32_t *pfEFlags))
+{
+ uint16_t uDst = *puDst;
+ uint16_t uResult = (uint16_t)0 - uDst;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_NEG(pfEFlags, uResult, uDst, 16);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u8,(uint8_t *puDst, uint32_t *pfEFlags))
+{
+ uint8_t uDst = *puDst;
+ uint8_t uResult = (uint8_t)0 - uDst;
+ *puDst = uResult;
+ IEM_EFL_UPDATE_STATUS_BITS_FOR_NEG(pfEFlags, uResult, uDst, 8);
+}
+
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+/*
+ * Locked variants.
+ */
+
+/** Emit a function for doing a locked unary operand operation. */
+# define EMIT_LOCKED_UNARY_OP(a_Mnemonic, a_cBitsWidth) \
+ IEM_DECL_IMPL_DEF(void, iemAImpl_ ## a_Mnemonic ## _u ## a_cBitsWidth ## _locked,(uint ## a_cBitsWidth ## _t *puDst, \
+ uint32_t *pfEFlags)) \
+ { \
+ uint ## a_cBitsWidth ## _t uOld = ASMAtomicUoReadU ## a_cBitsWidth(puDst); \
+ uint ## a_cBitsWidth ## _t uTmp; \
+ uint32_t fEflTmp; \
+ do \
+ { \
+ uTmp = uOld; \
+ fEflTmp = *pfEFlags; \
+ iemAImpl_ ## a_Mnemonic ## _u ## a_cBitsWidth(&uTmp, &fEflTmp); \
+ } while (!ASMAtomicCmpXchgExU ## a_cBitsWidth(puDst, uTmp, uOld, &uOld)); \
+ *pfEFlags = fEflTmp; \
+ }
+
+EMIT_LOCKED_UNARY_OP(inc, 64)
+EMIT_LOCKED_UNARY_OP(dec, 64)
+EMIT_LOCKED_UNARY_OP(not, 64)
+EMIT_LOCKED_UNARY_OP(neg, 64)
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_LOCKED_UNARY_OP(inc, 32)
+EMIT_LOCKED_UNARY_OP(dec, 32)
+EMIT_LOCKED_UNARY_OP(not, 32)
+EMIT_LOCKED_UNARY_OP(neg, 32)
+
+EMIT_LOCKED_UNARY_OP(inc, 16)
+EMIT_LOCKED_UNARY_OP(dec, 16)
+EMIT_LOCKED_UNARY_OP(not, 16)
+EMIT_LOCKED_UNARY_OP(neg, 16)
+
+EMIT_LOCKED_UNARY_OP(inc, 8)
+EMIT_LOCKED_UNARY_OP(dec, 8)
+EMIT_LOCKED_UNARY_OP(not, 8)
+EMIT_LOCKED_UNARY_OP(neg, 8)
+# endif
+
+#endif /* !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+
+/*********************************************************************************************************************************
+* Shifting and Rotating *
+*********************************************************************************************************************************/
+
+/*
+ * ROL
+ */
+#define EMIT_ROL(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags, a_fnHlp) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_rol_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \
+{ \
+ cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \
+ if (cShift) \
+ { \
+ if (a_cBitsWidth < 32) \
+ cShift &= a_cBitsWidth - 1; \
+ a_uType const uDst = *puDst; \
+ a_uType const uResult = a_fnHlp(uDst, cShift); \
+ *puDst = uResult; \
+ \
+ /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement \
+ it the same way as for 1 bit shifts. */ \
+ AssertCompile(X86_EFL_CF_BIT == 0); \
+ uint32_t fEfl = *pfEFlags; \
+ fEfl &= ~(X86_EFL_CF | X86_EFL_OF); \
+ uint32_t const fCarry = (uResult & X86_EFL_CF); \
+ fEfl |= fCarry; \
+ if (!a_fIntelFlags) /* AMD 3990X: According to the last sub-shift: */ \
+ fEfl |= ((uResult >> (a_cBitsWidth - 1)) ^ fCarry) << X86_EFL_OF_BIT; \
+ else /* Intel 10980XE: According to the first sub-shift: */ \
+ fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ (uDst << 1)); \
+ *pfEFlags = fEfl; \
+ } \
+}
+
+#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_ROL(64, uint64_t, RT_NOTHING, 1, ASMRotateLeftU64)
+#endif
+EMIT_ROL(64, uint64_t, _intel, 1, ASMRotateLeftU64)
+EMIT_ROL(64, uint64_t, _amd, 0, ASMRotateLeftU64)
+
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_ROL(32, uint32_t, RT_NOTHING, 1, ASMRotateLeftU32)
+#endif
+EMIT_ROL(32, uint32_t, _intel, 1, ASMRotateLeftU32)
+EMIT_ROL(32, uint32_t, _amd, 0, ASMRotateLeftU32)
+
+DECL_FORCE_INLINE(uint16_t) iemAImpl_rol_u16_hlp(uint16_t uValue, uint8_t cShift)
+{
+ return (uValue << cShift) | (uValue >> (16 - cShift));
+}
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_ROL(16, uint16_t, RT_NOTHING, 1, iemAImpl_rol_u16_hlp)
+#endif
+EMIT_ROL(16, uint16_t, _intel, 1, iemAImpl_rol_u16_hlp)
+EMIT_ROL(16, uint16_t, _amd, 0, iemAImpl_rol_u16_hlp)
+
+DECL_FORCE_INLINE(uint8_t) iemAImpl_rol_u8_hlp(uint8_t uValue, uint8_t cShift)
+{
+ return (uValue << cShift) | (uValue >> (8 - cShift));
+}
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_ROL(8, uint8_t, RT_NOTHING, 1, iemAImpl_rol_u8_hlp)
+#endif
+EMIT_ROL(8, uint8_t, _intel, 1, iemAImpl_rol_u8_hlp)
+EMIT_ROL(8, uint8_t, _amd, 0, iemAImpl_rol_u8_hlp)
+
+
+/*
+ * ROR
+ */
+#define EMIT_ROR(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags, a_fnHlp) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_ror_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \
+{ \
+ cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \
+ if (cShift) \
+ { \
+ if (a_cBitsWidth < 32) \
+ cShift &= a_cBitsWidth - 1; \
+ a_uType const uDst = *puDst; \
+ a_uType const uResult = a_fnHlp(uDst, cShift); \
+ *puDst = uResult; \
+ \
+ /* Calc EFLAGS: */ \
+ AssertCompile(X86_EFL_CF_BIT == 0); \
+ uint32_t fEfl = *pfEFlags; \
+ fEfl &= ~(X86_EFL_CF | X86_EFL_OF); \
+ uint32_t const fCarry = (uResult >> ((a_cBitsWidth) - 1)) & X86_EFL_CF; \
+ fEfl |= fCarry; \
+ if (!a_fIntelFlags) /* AMD 3990X: According to the last sub-shift: */ \
+ fEfl |= (((uResult >> ((a_cBitsWidth) - 2)) ^ fCarry) & 1) << X86_EFL_OF_BIT; \
+ else /* Intel 10980XE: According to the first sub-shift: */ \
+ fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ (uDst << (a_cBitsWidth - 1))); \
+ *pfEFlags = fEfl; \
+ } \
+}
+
+#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_ROR(64, uint64_t, RT_NOTHING, 1, ASMRotateRightU64)
+#endif
+EMIT_ROR(64, uint64_t, _intel, 1, ASMRotateRightU64)
+EMIT_ROR(64, uint64_t, _amd, 0, ASMRotateRightU64)
+
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_ROR(32, uint32_t, RT_NOTHING, 1, ASMRotateRightU32)
+#endif
+EMIT_ROR(32, uint32_t, _intel, 1, ASMRotateRightU32)
+EMIT_ROR(32, uint32_t, _amd, 0, ASMRotateRightU32)
+
+DECL_FORCE_INLINE(uint16_t) iemAImpl_ror_u16_hlp(uint16_t uValue, uint8_t cShift)
+{
+ return (uValue >> cShift) | (uValue << (16 - cShift));
+}
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_ROR(16, uint16_t, RT_NOTHING, 1, iemAImpl_ror_u16_hlp)
+#endif
+EMIT_ROR(16, uint16_t, _intel, 1, iemAImpl_ror_u16_hlp)
+EMIT_ROR(16, uint16_t, _amd, 0, iemAImpl_ror_u16_hlp)
+
+DECL_FORCE_INLINE(uint8_t) iemAImpl_ror_u8_hlp(uint8_t uValue, uint8_t cShift)
+{
+ return (uValue >> cShift) | (uValue << (8 - cShift));
+}
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_ROR(8, uint8_t, RT_NOTHING, 1, iemAImpl_ror_u8_hlp)
+#endif
+EMIT_ROR(8, uint8_t, _intel, 1, iemAImpl_ror_u8_hlp)
+EMIT_ROR(8, uint8_t, _amd, 0, iemAImpl_ror_u8_hlp)
+
+
+/*
+ * RCL
+ */
+#define EMIT_RCL(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_rcl_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \
+{ \
+ cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \
+ if (a_cBitsWidth < 32 && a_fIntelFlags) \
+ cShift %= a_cBitsWidth + 1; \
+ if (cShift) \
+ { \
+ if (a_cBitsWidth < 32 && !a_fIntelFlags) \
+ cShift %= a_cBitsWidth + 1; \
+ a_uType const uDst = *puDst; \
+ a_uType uResult = uDst << cShift; \
+ if (cShift > 1) \
+ uResult |= uDst >> (a_cBitsWidth + 1 - cShift); \
+ \
+ AssertCompile(X86_EFL_CF_BIT == 0); \
+ uint32_t fEfl = *pfEFlags; \
+ uint32_t fInCarry = fEfl & X86_EFL_CF; \
+ uResult |= (a_uType)fInCarry << (cShift - 1); \
+ \
+ *puDst = uResult; \
+ \
+ /* Calc EFLAGS. */ \
+ fEfl &= ~(X86_EFL_CF | X86_EFL_OF); \
+ uint32_t const fOutCarry = a_cBitsWidth >= 32 || a_fIntelFlags || cShift \
+ ? (uDst >> (a_cBitsWidth - cShift)) & X86_EFL_CF : fInCarry; \
+ fEfl |= fOutCarry; \
+ if (!a_fIntelFlags) /* AMD 3990X: According to the last sub-shift: */ \
+ fEfl |= ((uResult >> (a_cBitsWidth - 1)) ^ fOutCarry) << X86_EFL_OF_BIT; \
+ else /* Intel 10980XE: According to the first sub-shift: */ \
+ fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ (uDst << 1)); \
+ *pfEFlags = fEfl; \
+ } \
+}
+
+#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_RCL(64, uint64_t, RT_NOTHING, 1)
+#endif
+EMIT_RCL(64, uint64_t, _intel, 1)
+EMIT_RCL(64, uint64_t, _amd, 0)
+
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_RCL(32, uint32_t, RT_NOTHING, 1)
+#endif
+EMIT_RCL(32, uint32_t, _intel, 1)
+EMIT_RCL(32, uint32_t, _amd, 0)
+
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_RCL(16, uint16_t, RT_NOTHING, 1)
+#endif
+EMIT_RCL(16, uint16_t, _intel, 1)
+EMIT_RCL(16, uint16_t, _amd, 0)
+
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_RCL(8, uint8_t, RT_NOTHING, 1)
+#endif
+EMIT_RCL(8, uint8_t, _intel, 1)
+EMIT_RCL(8, uint8_t, _amd, 0)
+
+
+/*
+ * RCR
+ */
+#define EMIT_RCR(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_rcr_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \
+{ \
+ cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \
+ if (a_cBitsWidth < 32 && a_fIntelFlags) \
+ cShift %= a_cBitsWidth + 1; \
+ if (cShift) \
+ { \
+ if (a_cBitsWidth < 32 && !a_fIntelFlags) \
+ cShift %= a_cBitsWidth + 1; \
+ a_uType const uDst = *puDst; \
+ a_uType uResult = uDst >> cShift; \
+ if (cShift > 1) \
+ uResult |= uDst << (a_cBitsWidth + 1 - cShift); \
+ \
+ AssertCompile(X86_EFL_CF_BIT == 0); \
+ uint32_t fEfl = *pfEFlags; \
+ uint32_t fInCarry = fEfl & X86_EFL_CF; \
+ uResult |= (a_uType)fInCarry << (a_cBitsWidth - cShift); \
+ *puDst = uResult; \
+ \
+ /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement \
+ it the same way as for 1 bit shifts. */ \
+ fEfl &= ~(X86_EFL_CF | X86_EFL_OF); \
+ uint32_t const fOutCarry = a_cBitsWidth >= 32 || a_fIntelFlags || cShift \
+ ? (uDst >> (cShift - 1)) & X86_EFL_CF : fInCarry; \
+ fEfl |= fOutCarry; \
+ if (!a_fIntelFlags) /* AMD 3990X: XOR two most signficant bits of the result: */ \
+ fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uResult ^ (uResult << 1)); \
+ else /* Intel 10980XE: same as AMD, but only for the first sub-shift: */ \
+ fEfl |= (fInCarry ^ (uint32_t)(uDst >> (a_cBitsWidth - 1))) << X86_EFL_OF_BIT; \
+ *pfEFlags = fEfl; \
+ } \
+}
+
+#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_RCR(64, uint64_t, RT_NOTHING, 1)
+#endif
+EMIT_RCR(64, uint64_t, _intel, 1)
+EMIT_RCR(64, uint64_t, _amd, 0)
+
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_RCR(32, uint32_t, RT_NOTHING, 1)
+#endif
+EMIT_RCR(32, uint32_t, _intel, 1)
+EMIT_RCR(32, uint32_t, _amd, 0)
+
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_RCR(16, uint16_t, RT_NOTHING, 1)
+#endif
+EMIT_RCR(16, uint16_t, _intel, 1)
+EMIT_RCR(16, uint16_t, _amd, 0)
+
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_RCR(8, uint8_t, RT_NOTHING, 1)
+#endif
+EMIT_RCR(8, uint8_t, _intel, 1)
+EMIT_RCR(8, uint8_t, _amd, 0)
+
+
+/*
+ * SHL
+ */
+#define EMIT_SHL(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_shl_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \
+{ \
+ cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \
+ if (cShift) \
+ { \
+ a_uType const uDst = *puDst; \
+ a_uType uResult = uDst << cShift; \
+ *puDst = uResult; \
+ \
+ /* Calc EFLAGS. */ \
+ AssertCompile(X86_EFL_CF_BIT == 0); \
+ uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \
+ uint32_t fCarry = (uDst >> (a_cBitsWidth - cShift)) & X86_EFL_CF; \
+ fEfl |= fCarry; \
+ if (!a_fIntelFlags) \
+ fEfl |= ((uResult >> (a_cBitsWidth - 1)) ^ fCarry) << X86_EFL_OF_BIT; /* AMD 3990X: Last shift result. */ \
+ else \
+ fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ (uDst << 1)); /* Intel 10980XE: First shift result. */ \
+ fEfl |= X86_EFL_CALC_SF(uResult, a_cBitsWidth); \
+ fEfl |= X86_EFL_CALC_ZF(uResult); \
+ fEfl |= g_afParity[uResult & 0xff]; \
+ if (!a_fIntelFlags) \
+ fEfl |= X86_EFL_AF; /* AMD 3990x sets it unconditionally, Intel 10980XE does the oposite */ \
+ *pfEFlags = fEfl; \
+ } \
+}
+
+#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_SHL(64, uint64_t, RT_NOTHING, 1)
+#endif
+EMIT_SHL(64, uint64_t, _intel, 1)
+EMIT_SHL(64, uint64_t, _amd, 0)
+
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_SHL(32, uint32_t, RT_NOTHING, 1)
+#endif
+EMIT_SHL(32, uint32_t, _intel, 1)
+EMIT_SHL(32, uint32_t, _amd, 0)
+
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_SHL(16, uint16_t, RT_NOTHING, 1)
+#endif
+EMIT_SHL(16, uint16_t, _intel, 1)
+EMIT_SHL(16, uint16_t, _amd, 0)
+
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_SHL(8, uint8_t, RT_NOTHING, 1)
+#endif
+EMIT_SHL(8, uint8_t, _intel, 1)
+EMIT_SHL(8, uint8_t, _amd, 0)
+
+
+/*
+ * SHR
+ */
+#define EMIT_SHR(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_shr_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \
+{ \
+ cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \
+ if (cShift) \
+ { \
+ a_uType const uDst = *puDst; \
+ a_uType uResult = uDst >> cShift; \
+ *puDst = uResult; \
+ \
+ /* Calc EFLAGS. */ \
+ AssertCompile(X86_EFL_CF_BIT == 0); \
+ uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \
+ fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF; \
+ if (a_fIntelFlags || cShift == 1) /* AMD 3990x does what intel documents; Intel 10980XE does this for all shift counts. */ \
+ fEfl |= (uDst >> (a_cBitsWidth - 1)) << X86_EFL_OF_BIT; \
+ fEfl |= X86_EFL_CALC_SF(uResult, a_cBitsWidth); \
+ fEfl |= X86_EFL_CALC_ZF(uResult); \
+ fEfl |= g_afParity[uResult & 0xff]; \
+ if (!a_fIntelFlags) \
+ fEfl |= X86_EFL_AF; /* AMD 3990x sets it unconditionally, Intel 10980XE does the oposite */ \
+ *pfEFlags = fEfl; \
+ } \
+}
+
+#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_SHR(64, uint64_t, RT_NOTHING, 1)
+#endif
+EMIT_SHR(64, uint64_t, _intel, 1)
+EMIT_SHR(64, uint64_t, _amd, 0)
+
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_SHR(32, uint32_t, RT_NOTHING, 1)
+#endif
+EMIT_SHR(32, uint32_t, _intel, 1)
+EMIT_SHR(32, uint32_t, _amd, 0)
+
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_SHR(16, uint16_t, RT_NOTHING, 1)
+#endif
+EMIT_SHR(16, uint16_t, _intel, 1)
+EMIT_SHR(16, uint16_t, _amd, 0)
+
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_SHR(8, uint8_t, RT_NOTHING, 1)
+#endif
+EMIT_SHR(8, uint8_t, _intel, 1)
+EMIT_SHR(8, uint8_t, _amd, 0)
+
+
+/*
+ * SAR
+ */
+#define EMIT_SAR(a_cBitsWidth, a_uType, a_iType, a_Suffix, a_fIntelFlags) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_sar_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \
+{ \
+ cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \
+ if (cShift) \
+ { \
+ a_iType const iDst = (a_iType)*puDst; \
+ a_uType uResult = iDst >> cShift; \
+ *puDst = uResult; \
+ \
+ /* Calc EFLAGS. \
+ Note! The OF flag is always zero because the result never differs from the input. */ \
+ AssertCompile(X86_EFL_CF_BIT == 0); \
+ uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \
+ fEfl |= (iDst >> (cShift - 1)) & X86_EFL_CF; \
+ fEfl |= X86_EFL_CALC_SF(uResult, a_cBitsWidth); \
+ fEfl |= X86_EFL_CALC_ZF(uResult); \
+ fEfl |= g_afParity[uResult & 0xff]; \
+ if (!a_fIntelFlags) \
+ fEfl |= X86_EFL_AF; /* AMD 3990x sets it unconditionally, Intel 10980XE does the oposite */ \
+ *pfEFlags = fEfl; \
+ } \
+}
+
+#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_SAR(64, uint64_t, int64_t, RT_NOTHING, 1)
+#endif
+EMIT_SAR(64, uint64_t, int64_t, _intel, 1)
+EMIT_SAR(64, uint64_t, int64_t, _amd, 0)
+
+#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_SAR(32, uint32_t, int32_t, RT_NOTHING, 1)
+#endif
+EMIT_SAR(32, uint32_t, int32_t, _intel, 1)
+EMIT_SAR(32, uint32_t, int32_t, _amd, 0)
+
+#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_SAR(16, uint16_t, int16_t, RT_NOTHING, 1)
+#endif
+EMIT_SAR(16, uint16_t, int16_t, _intel, 1)
+EMIT_SAR(16, uint16_t, int16_t, _amd, 0)
+
+#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_SAR(8, uint8_t, int8_t, RT_NOTHING, 1)
+#endif
+EMIT_SAR(8, uint8_t, int8_t, _intel, 1)
+EMIT_SAR(8, uint8_t, int8_t, _amd, 0)
+
+
+/*
+ * SHLD
+ *
+ * - CF is the last bit shifted out of puDst.
+ * - AF is always cleared by Intel 10980XE.
+ * - AF is always set by AMD 3990X.
+ * - OF is set according to the first shift on Intel 10980XE, it seems.
+ * - OF is set according to the last sub-shift on AMD 3990X.
+ * - ZF, SF and PF are calculated according to the result by both vendors.
+ *
+ * For 16-bit shifts the count mask isn't 15, but 31, and the CPU will
+ * pick either the source register or the destination register for input bits
+ * when going beyond 16. According to https://www.sandpile.org/x86/flags.htm
+ * intel has changed behaviour here several times. We implement what current
+ * skylake based does for now, we can extend this later as needed.
+ */
+#define EMIT_SHLD(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_shld_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, uint8_t cShift, \
+ uint32_t *pfEFlags)) \
+{ \
+ cShift &= a_cBitsWidth - 1; \
+ if (cShift) \
+ { \
+ a_uType const uDst = *puDst; \
+ a_uType uResult = uDst << cShift; \
+ uResult |= uSrc >> (a_cBitsWidth - cShift); \
+ *puDst = uResult; \
+ \
+ /* CALC EFLAGS: */ \
+ uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \
+ if (a_fIntelFlags) \
+ /* Intel 6700K & 10980XE: Set according to the first shift. AF always cleared. */ \
+ fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ (uDst << 1)); \
+ else \
+ { /* AMD 3990X: Set according to last shift. AF always set. */ \
+ fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth((uDst << (cShift - 1)) ^ uResult); \
+ fEfl |= X86_EFL_AF; \
+ } \
+ AssertCompile(X86_EFL_CF_BIT == 0); \
+ fEfl |= (uDst >> (a_cBitsWidth - cShift)) & X86_EFL_CF; /* CF = last bit shifted out */ \
+ fEfl |= g_afParity[uResult & 0xff]; \
+ fEfl |= X86_EFL_CALC_SF(uResult, a_cBitsWidth); \
+ fEfl |= X86_EFL_CALC_ZF(uResult); \
+ *pfEFlags = fEfl; \
+ } \
+}
+
+#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_SHLD(64, uint64_t, RT_NOTHING, 1)
+#endif
+EMIT_SHLD(64, uint64_t, _intel, 1)
+EMIT_SHLD(64, uint64_t, _amd, 0)
+
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_SHLD(32, uint32_t, RT_NOTHING, 1)
+#endif
+EMIT_SHLD(32, uint32_t, _intel, 1)
+EMIT_SHLD(32, uint32_t, _amd, 0)
+
+#define EMIT_SHLD_16(a_Suffix, a_fIntelFlags) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT(iemAImpl_shld_u16,a_Suffix),(uint16_t *puDst, uint16_t uSrc, uint8_t cShift, uint32_t *pfEFlags)) \
+{ \
+ cShift &= 31; \
+ if (cShift) \
+ { \
+ uint16_t const uDst = *puDst; \
+ uint64_t const uTmp = a_fIntelFlags \
+ ? ((uint64_t)uDst << 32) | ((uint32_t)uSrc << 16) | uDst \
+ : ((uint64_t)uDst << 32) | ((uint32_t)uSrc << 16) | uSrc; \
+ uint16_t const uResult = (uint16_t)((uTmp << cShift) >> 32); \
+ *puDst = uResult; \
+ \
+ /* CALC EFLAGS: */ \
+ uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \
+ AssertCompile(X86_EFL_CF_BIT == 0); \
+ if (a_fIntelFlags) \
+ { \
+ fEfl |= (uTmp >> (48 - cShift)) & X86_EFL_CF; /* CF = last bit shifted out of the combined operand */ \
+ /* Intel 6700K & 10980XE: OF is et according to the first shift. AF always cleared. */ \
+ fEfl |= X86_EFL_GET_OF_16(uDst ^ (uDst << 1)); \
+ } \
+ else \
+ { \
+ /* AMD 3990X: OF is set according to last shift, with some weirdness. AF always set. CF = last bit shifted out of uDst. */ \
+ if (cShift < 16) \
+ { \
+ fEfl |= (uDst >> (16 - cShift)) & X86_EFL_CF; \
+ fEfl |= X86_EFL_GET_OF_16((uDst << (cShift - 1)) ^ uResult); \
+ } \
+ else \
+ { \
+ if (cShift == 16) \
+ fEfl |= uDst & X86_EFL_CF; \
+ fEfl |= X86_EFL_GET_OF_16((uDst << (cShift - 1)) ^ 0); \
+ } \
+ fEfl |= X86_EFL_AF; \
+ } \
+ fEfl |= g_afParity[uResult & 0xff]; \
+ fEfl |= X86_EFL_CALC_SF(uResult, 16); \
+ fEfl |= X86_EFL_CALC_ZF(uResult); \
+ *pfEFlags = fEfl; \
+ } \
+}
+
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_SHLD_16(RT_NOTHING, 1)
+#endif
+EMIT_SHLD_16(_intel, 1)
+EMIT_SHLD_16(_amd, 0)
+
+
+/*
+ * SHRD
+ *
+ * EFLAGS behaviour seems to be the same as with SHLD:
+ * - CF is the last bit shifted out of puDst.
+ * - AF is always cleared by Intel 10980XE.
+ * - AF is always set by AMD 3990X.
+ * - OF is set according to the first shift on Intel 10980XE, it seems.
+ * - OF is set according to the last sub-shift on AMD 3990X.
+ * - ZF, SF and PF are calculated according to the result by both vendors.
+ *
+ * For 16-bit shifts the count mask isn't 15, but 31, and the CPU will
+ * pick either the source register or the destination register for input bits
+ * when going beyond 16. According to https://www.sandpile.org/x86/flags.htm
+ * intel has changed behaviour here several times. We implement what current
+ * skylake based does for now, we can extend this later as needed.
+ */
+#define EMIT_SHRD(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_shrd_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, uint8_t cShift, uint32_t *pfEFlags)) \
+{ \
+ cShift &= a_cBitsWidth - 1; \
+ if (cShift) \
+ { \
+ a_uType const uDst = *puDst; \
+ a_uType uResult = uDst >> cShift; \
+ uResult |= uSrc << (a_cBitsWidth - cShift); \
+ *puDst = uResult; \
+ \
+ uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \
+ AssertCompile(X86_EFL_CF_BIT == 0); \
+ fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF; \
+ if (a_fIntelFlags) \
+ /* Intel 6700K & 10980XE: Set according to the first shift. AF always cleared. */ \
+ fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ (uSrc << (a_cBitsWidth - 1))); \
+ else \
+ { /* AMD 3990X: Set according to last shift. AF always set. */ \
+ if (cShift > 1) /* Set according to last shift. */ \
+ fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth((uSrc << (a_cBitsWidth - cShift + 1)) ^ uResult); \
+ else \
+ fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ uResult); \
+ fEfl |= X86_EFL_AF; \
+ } \
+ fEfl |= X86_EFL_CALC_SF(uResult, a_cBitsWidth); \
+ fEfl |= X86_EFL_CALC_ZF(uResult); \
+ fEfl |= g_afParity[uResult & 0xff]; \
+ *pfEFlags = fEfl; \
+ } \
+}
+
+#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_SHRD(64, uint64_t, RT_NOTHING, 1)
+#endif
+EMIT_SHRD(64, uint64_t, _intel, 1)
+EMIT_SHRD(64, uint64_t, _amd, 0)
+
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_SHRD(32, uint32_t, RT_NOTHING, 1)
+#endif
+EMIT_SHRD(32, uint32_t, _intel, 1)
+EMIT_SHRD(32, uint32_t, _amd, 0)
+
+#define EMIT_SHRD_16(a_Suffix, a_fIntelFlags) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT(iemAImpl_shrd_u16,a_Suffix),(uint16_t *puDst, uint16_t uSrc, uint8_t cShift, uint32_t *pfEFlags)) \
+{ \
+ cShift &= 31; \
+ if (cShift) \
+ { \
+ uint16_t const uDst = *puDst; \
+ uint64_t const uTmp = a_fIntelFlags \
+ ? uDst | ((uint32_t)uSrc << 16) | ((uint64_t)uDst << 32) \
+ : uDst | ((uint32_t)uSrc << 16) | ((uint64_t)uSrc << 32); \
+ uint16_t const uResult = (uint16_t)(uTmp >> cShift); \
+ *puDst = uResult; \
+ \
+ uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \
+ AssertCompile(X86_EFL_CF_BIT == 0); \
+ if (a_fIntelFlags) \
+ { \
+ /* Intel 10980XE: The CF is the last shifted out of the combined uTmp operand. */ \
+ fEfl |= (uTmp >> (cShift - 1)) & X86_EFL_CF; \
+ /* Intel 6700K & 10980XE: Set according to the first shift. AF always cleared. */ \
+ fEfl |= X86_EFL_GET_OF_16(uDst ^ (uSrc << 15)); \
+ } \
+ else \
+ { \
+ /* AMD 3990X: CF flag seems to be last bit shifted out of uDst, not the combined uSrc:uSrc:uDst operand. */ \
+ fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF; \
+ /* AMD 3990X: Set according to last shift. AF always set. */ \
+ if (cShift > 1) /* Set according to last shift. */ \
+ fEfl |= X86_EFL_GET_OF_16((uint16_t)(uTmp >> (cShift - 1)) ^ uResult); \
+ else \
+ fEfl |= X86_EFL_GET_OF_16(uDst ^ uResult); \
+ fEfl |= X86_EFL_AF; \
+ } \
+ fEfl |= X86_EFL_CALC_SF(uResult, 16); \
+ fEfl |= X86_EFL_CALC_ZF(uResult); \
+ fEfl |= g_afParity[uResult & 0xff]; \
+ *pfEFlags = fEfl; \
+ } \
+}
+
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_SHRD_16(RT_NOTHING, 1)
+#endif
+EMIT_SHRD_16(_intel, 1)
+EMIT_SHRD_16(_amd, 0)
+
+
+/*
+ * RORX (BMI2)
+ */
+#define EMIT_RORX(a_cBitsWidth, a_uType, a_fnHlp) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT(iemAImpl_rorx_u,a_cBitsWidth),(a_uType *puDst, a_uType uSrc, a_uType cShift)) \
+{ \
+ *puDst = a_fnHlp(uSrc, cShift & (a_cBitsWidth - 1)); \
+}
+
+#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_RORX(64, uint64_t, ASMRotateRightU64)
+#endif
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_RORX(32, uint32_t, ASMRotateRightU32)
+#endif
+
+
+/*
+ * SHLX (BMI2)
+ */
+#define EMIT_SHLX(a_cBitsWidth, a_uType, a_Suffix) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_shlx_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, a_uType cShift)) \
+{ \
+ cShift &= a_cBitsWidth - 1; \
+ *puDst = uSrc << cShift; \
+}
+
+#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_SHLX(64, uint64_t, RT_NOTHING)
+EMIT_SHLX(64, uint64_t, _fallback)
+#endif
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_SHLX(32, uint32_t, RT_NOTHING)
+EMIT_SHLX(32, uint32_t, _fallback)
+#endif
+
+
+/*
+ * SHRX (BMI2)
+ */
+#define EMIT_SHRX(a_cBitsWidth, a_uType, a_Suffix) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_shrx_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, a_uType cShift)) \
+{ \
+ cShift &= a_cBitsWidth - 1; \
+ *puDst = uSrc >> cShift; \
+}
+
+#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_SHRX(64, uint64_t, RT_NOTHING)
+EMIT_SHRX(64, uint64_t, _fallback)
+#endif
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_SHRX(32, uint32_t, RT_NOTHING)
+EMIT_SHRX(32, uint32_t, _fallback)
+#endif
+
+
+/*
+ * SARX (BMI2)
+ */
+#define EMIT_SARX(a_cBitsWidth, a_uType, a_iType, a_Suffix) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_sarx_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, a_uType cShift)) \
+{ \
+ cShift &= a_cBitsWidth - 1; \
+ *puDst = (a_iType)uSrc >> cShift; \
+}
+
+#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_SARX(64, uint64_t, int64_t, RT_NOTHING)
+EMIT_SARX(64, uint64_t, int64_t, _fallback)
+#endif
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_SARX(32, uint32_t, int32_t, RT_NOTHING)
+EMIT_SARX(32, uint32_t, int32_t, _fallback)
+#endif
+
+
+/*
+ * PDEP (BMI2)
+ */
+#define EMIT_PDEP(a_cBitsWidth, a_uType, a_Suffix) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_pdep_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, a_uType fMask)) \
+{ \
+ a_uType uResult = 0; \
+ for (unsigned iMaskBit = 0, iBit = 0; iMaskBit < a_cBitsWidth; iMaskBit++) \
+ if (fMask & ((a_uType)1 << iMaskBit)) \
+ { \
+ uResult |= ((uSrc >> iBit) & 1) << iMaskBit; \
+ iBit++; \
+ } \
+ *puDst = uResult; \
+}
+
+#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_PDEP(64, uint64_t, RT_NOTHING)
+#endif
+EMIT_PDEP(64, uint64_t, _fallback)
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_PDEP(32, uint32_t, RT_NOTHING)
+#endif
+EMIT_PDEP(32, uint32_t, _fallback)
+
+/*
+ * PEXT (BMI2)
+ */
+#define EMIT_PEXT(a_cBitsWidth, a_uType, a_Suffix) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_pext_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, a_uType fMask)) \
+{ \
+ a_uType uResult = 0; \
+ for (unsigned iMaskBit = 0, iBit = 0; iMaskBit < a_cBitsWidth; iMaskBit++) \
+ if (fMask & ((a_uType)1 << iMaskBit)) \
+ { \
+ uResult |= ((uSrc >> iMaskBit) & 1) << iBit; \
+ iBit++; \
+ } \
+ *puDst = uResult; \
+}
+
+#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_PEXT(64, uint64_t, RT_NOTHING)
+#endif
+EMIT_PEXT(64, uint64_t, _fallback)
+#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_PEXT(32, uint32_t, RT_NOTHING)
+#endif
+EMIT_PEXT(32, uint32_t, _fallback)
+
+
+#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
+
+# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
+/*
+ * BSWAP
+ */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_bswap_u64,(uint64_t *puDst))
+{
+ *puDst = ASMByteSwapU64(*puDst);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_bswap_u32,(uint32_t *puDst))
+{
+ *puDst = ASMByteSwapU32(*puDst);
+}
+
+
+/* Note! undocument, so 32-bit arg */
+IEM_DECL_IMPL_DEF(void, iemAImpl_bswap_u16,(uint32_t *puDst))
+{
+#if 0
+ *(uint16_t *)puDst = ASMByteSwapU16(*(uint16_t *)puDst);
+#else
+ /* This is the behaviour AMD 3990x (64-bit mode): */
+ *(uint16_t *)puDst = 0;
+#endif
+}
+
+# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
+
+
+
+# if defined(IEM_WITHOUT_ASSEMBLY)
+
+/*
+ * LFENCE, SFENCE & MFENCE.
+ */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void))
+{
+ ASMReadFence();
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void))
+{
+ ASMWriteFence();
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void))
+{
+ ASMMemoryFence();
+}
+
+
+# ifndef RT_ARCH_ARM64
+IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void))
+{
+ ASMMemoryFence();
+}
+# endif
+
+# endif
+
+#endif /* !RT_ARCH_AMD64 || IEM_WITHOUT_ASSEMBLY */
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_arpl,(uint16_t *pu16Dst, uint16_t u16Src, uint32_t *pfEFlags))
+{
+ if ((*pu16Dst & X86_SEL_RPL) < (u16Src & X86_SEL_RPL))
+ {
+ *pu16Dst &= X86_SEL_MASK_OFF_RPL;
+ *pu16Dst |= u16Src & X86_SEL_RPL;
+
+ *pfEFlags |= X86_EFL_ZF;
+ }
+ else
+ *pfEFlags &= ~X86_EFL_ZF;
+}
+
+
+#if defined(IEM_WITHOUT_ASSEMBLY)
+
+/*********************************************************************************************************************************
+* x87 FPU Loads *
+*********************************************************************************************************************************/
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val))
+{
+ pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */
+ if (RTFLOAT32U_IS_NORMAL(pr32Val))
+ {
+ pFpuRes->r80Result.sj64.fSign = pr32Val->s.fSign;
+ pFpuRes->r80Result.sj64.fInteger = 1;
+ pFpuRes->r80Result.sj64.uFraction = (uint64_t)pr32Val->s.uFraction
+ << (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS);
+ pFpuRes->r80Result.sj64.uExponent = pr32Val->s.uExponent - RTFLOAT32U_EXP_BIAS + RTFLOAT80U_EXP_BIAS;
+ Assert(RTFLOAT80U_IS_NORMAL(&pFpuRes->r80Result));
+ }
+ else if (RTFLOAT32U_IS_ZERO(pr32Val))
+ {
+ pFpuRes->r80Result.s.fSign = pr32Val->s.fSign;
+ pFpuRes->r80Result.s.uExponent = 0;
+ pFpuRes->r80Result.s.uMantissa = 0;
+ Assert(RTFLOAT80U_IS_ZERO(&pFpuRes->r80Result));
+ }
+ else if (RTFLOAT32U_IS_SUBNORMAL(pr32Val))
+ {
+ /* Subnormal values gets normalized. */
+ pFpuRes->r80Result.sj64.fSign = pr32Val->s.fSign;
+ pFpuRes->r80Result.sj64.fInteger = 1;
+ unsigned const cExtraShift = RTFLOAT32U_FRACTION_BITS - ASMBitLastSetU32(pr32Val->s.uFraction);
+ pFpuRes->r80Result.sj64.uFraction = (uint64_t)pr32Val->s.uFraction
+ << (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS + cExtraShift + 1);
+ pFpuRes->r80Result.sj64.uExponent = pr32Val->s.uExponent - RTFLOAT32U_EXP_BIAS + RTFLOAT80U_EXP_BIAS - cExtraShift;
+ pFpuRes->FSW |= X86_FSW_DE;
+ if (!(pFpuState->FCW & X86_FCW_DM))
+ pFpuRes->FSW |= X86_FSW_ES | X86_FSW_B; /* The value is still pushed. */
+ }
+ else if (RTFLOAT32U_IS_INF(pr32Val))
+ {
+ pFpuRes->r80Result.s.fSign = pr32Val->s.fSign;
+ pFpuRes->r80Result.s.uExponent = RTFLOAT80U_EXP_MAX;
+ pFpuRes->r80Result.s.uMantissa = RT_BIT_64(63);
+ Assert(RTFLOAT80U_IS_INF(&pFpuRes->r80Result));
+ }
+ else
+ {
+ /* Signalling and quiet NaNs, both turn into quiet ones when loaded (weird). */
+ Assert(RTFLOAT32U_IS_NAN(pr32Val));
+ pFpuRes->r80Result.sj64.fSign = pr32Val->s.fSign;
+ pFpuRes->r80Result.sj64.uExponent = RTFLOAT80U_EXP_MAX;
+ pFpuRes->r80Result.sj64.fInteger = 1;
+ pFpuRes->r80Result.sj64.uFraction = (uint64_t)pr32Val->s.uFraction
+ << (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS);
+ if (RTFLOAT32U_IS_SIGNALLING_NAN(pr32Val))
+ {
+ pFpuRes->r80Result.sj64.uFraction |= RT_BIT_64(62); /* make quiet */
+ Assert(RTFLOAT80U_IS_QUIET_NAN(&pFpuRes->r80Result));
+ pFpuRes->FSW |= X86_FSW_IE;
+
+ if (!(pFpuState->FCW & X86_FCW_IM))
+ {
+ /* The value is not pushed. */
+ pFpuRes->FSW &= ~X86_FSW_TOP_MASK;
+ pFpuRes->FSW |= X86_FSW_ES | X86_FSW_B;
+ pFpuRes->r80Result.au64[0] = 0;
+ pFpuRes->r80Result.au16[4] = 0;
+ }
+ }
+ else
+ Assert(RTFLOAT80U_IS_QUIET_NAN(&pFpuRes->r80Result));
+ }
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val))
+{
+ pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */
+ if (RTFLOAT64U_IS_NORMAL(pr64Val))
+ {
+ pFpuRes->r80Result.sj64.fSign = pr64Val->s.fSign;
+ pFpuRes->r80Result.sj64.fInteger = 1;
+ pFpuRes->r80Result.sj64.uFraction = pr64Val->s64.uFraction << (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS);
+ pFpuRes->r80Result.sj64.uExponent = pr64Val->s.uExponent - RTFLOAT64U_EXP_BIAS + RTFLOAT80U_EXP_BIAS;
+ Assert(RTFLOAT80U_IS_NORMAL(&pFpuRes->r80Result));
+ }
+ else if (RTFLOAT64U_IS_ZERO(pr64Val))
+ {
+ pFpuRes->r80Result.s.fSign = pr64Val->s.fSign;
+ pFpuRes->r80Result.s.uExponent = 0;
+ pFpuRes->r80Result.s.uMantissa = 0;
+ Assert(RTFLOAT80U_IS_ZERO(&pFpuRes->r80Result));
+ }
+ else if (RTFLOAT64U_IS_SUBNORMAL(pr64Val))
+ {
+ /* Subnormal values gets normalized. */
+ pFpuRes->r80Result.sj64.fSign = pr64Val->s.fSign;
+ pFpuRes->r80Result.sj64.fInteger = 1;
+ unsigned const cExtraShift = RTFLOAT64U_FRACTION_BITS - ASMBitLastSetU64(pr64Val->s64.uFraction);
+ pFpuRes->r80Result.sj64.uFraction = pr64Val->s64.uFraction
+ << (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS + cExtraShift + 1);
+ pFpuRes->r80Result.sj64.uExponent = pr64Val->s.uExponent - RTFLOAT64U_EXP_BIAS + RTFLOAT80U_EXP_BIAS - cExtraShift;
+ pFpuRes->FSW |= X86_FSW_DE;
+ if (!(pFpuState->FCW & X86_FCW_DM))
+ pFpuRes->FSW |= X86_FSW_ES | X86_FSW_B; /* The value is still pushed. */
+ }
+ else if (RTFLOAT64U_IS_INF(pr64Val))
+ {
+ pFpuRes->r80Result.s.fSign = pr64Val->s.fSign;
+ pFpuRes->r80Result.s.uExponent = RTFLOAT80U_EXP_MAX;
+ pFpuRes->r80Result.s.uMantissa = RT_BIT_64(63);
+ Assert(RTFLOAT80U_IS_INF(&pFpuRes->r80Result));
+ }
+ else
+ {
+ /* Signalling and quiet NaNs, both turn into quiet ones when loaded (weird). */
+ Assert(RTFLOAT64U_IS_NAN(pr64Val));
+ pFpuRes->r80Result.sj64.fSign = pr64Val->s.fSign;
+ pFpuRes->r80Result.sj64.uExponent = RTFLOAT80U_EXP_MAX;
+ pFpuRes->r80Result.sj64.fInteger = 1;
+ pFpuRes->r80Result.sj64.uFraction = pr64Val->s64.uFraction << (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS);
+ if (RTFLOAT64U_IS_SIGNALLING_NAN(pr64Val))
+ {
+ pFpuRes->r80Result.sj64.uFraction |= RT_BIT_64(62); /* make quiet */
+ Assert(RTFLOAT80U_IS_QUIET_NAN(&pFpuRes->r80Result));
+ pFpuRes->FSW |= X86_FSW_IE;
+
+ if (!(pFpuState->FCW & X86_FCW_IM))
+ {
+ /* The value is not pushed. */
+ pFpuRes->FSW &= ~X86_FSW_TOP_MASK;
+ pFpuRes->FSW |= X86_FSW_ES | X86_FSW_B;
+ pFpuRes->r80Result.au64[0] = 0;
+ pFpuRes->r80Result.au16[4] = 0;
+ }
+ }
+ else
+ Assert(RTFLOAT80U_IS_QUIET_NAN(&pFpuRes->r80Result));
+ }
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
+{
+ pFpuRes->r80Result.au64[0] = pr80Val->au64[0];
+ pFpuRes->r80Result.au16[4] = pr80Val->au16[4];
+ /* Raises no exceptions. */
+ pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fld1,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes))
+{
+ pFpuRes->r80Result.sj64.fSign = 0;
+ pFpuRes->r80Result.sj64.uExponent = 0 + 16383;
+ pFpuRes->r80Result.sj64.fInteger = 1;
+ pFpuRes->r80Result.sj64.uFraction = 0;
+
+ /*
+ * FPU status word:
+ * - TOP is irrelevant, but we must match x86 assembly version.
+ * - C1 is always cleared as we don't have any stack overflows.
+ * - C0, C2, and C3 are undefined and Intel 10980XE does not touch them.
+ */
+ pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3));
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fldl2e,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes))
+{
+ pFpuRes->r80Result.sj64.fSign = 0;
+ pFpuRes->r80Result.sj64.uExponent = 0 + 16383;
+ pFpuRes->r80Result.sj64.fInteger = 1;
+ pFpuRes->r80Result.sj64.uFraction = (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST
+ || (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_UP
+ ? UINT64_C(0x38aa3b295c17f0bc) : UINT64_C(0x38aa3b295c17f0bb);
+ pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fldl2t,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes))
+{
+ pFpuRes->r80Result.sj64.fSign = 0;
+ pFpuRes->r80Result.sj64.uExponent = 1 + 16383;
+ pFpuRes->r80Result.sj64.fInteger = 1;
+ pFpuRes->r80Result.sj64.uFraction = (pFpuState->FCW & X86_FCW_RC_MASK) != X86_FCW_RC_UP
+ ? UINT64_C(0x549a784bcd1b8afe) : UINT64_C(0x549a784bcd1b8aff);
+ pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fldlg2,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes))
+{
+ pFpuRes->r80Result.sj64.fSign = 0;
+ pFpuRes->r80Result.sj64.uExponent = -2 + 16383;
+ pFpuRes->r80Result.sj64.fInteger = 1;
+ pFpuRes->r80Result.sj64.uFraction = (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST
+ || (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_UP
+ ? UINT64_C(0x1a209a84fbcff799) : UINT64_C(0x1a209a84fbcff798);
+ pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fldln2,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes))
+{
+ pFpuRes->r80Result.sj64.fSign = 0;
+ pFpuRes->r80Result.sj64.uExponent = -1 + 16383;
+ pFpuRes->r80Result.sj64.fInteger = 1;
+ pFpuRes->r80Result.sj64.uFraction = (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST
+ || (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_UP
+ ? UINT64_C(0x317217f7d1cf79ac) : UINT64_C(0x317217f7d1cf79ab);
+ pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fldpi,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes))
+{
+ pFpuRes->r80Result.sj64.fSign = 0;
+ pFpuRes->r80Result.sj64.uExponent = 1 + 16383;
+ pFpuRes->r80Result.sj64.fInteger = 1;
+ pFpuRes->r80Result.sj64.uFraction = (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST
+ || (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_UP
+ ? UINT64_C(0x490fdaa22168c235) : UINT64_C(0x490fdaa22168c234);
+ pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fldz,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes))
+{
+ pFpuRes->r80Result.s.fSign = 0;
+ pFpuRes->r80Result.s.uExponent = 0;
+ pFpuRes->r80Result.s.uMantissa = 0;
+ pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */
+}
+
+#define EMIT_FILD(a_cBits) \
+IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i ## a_cBits,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, \
+ int ## a_cBits ## _t const *piVal)) \
+{ \
+ int ## a_cBits ## _t iVal = *piVal; \
+ if (iVal == 0) \
+ { \
+ pFpuRes->r80Result.s.fSign = 0; \
+ pFpuRes->r80Result.s.uExponent = 0; \
+ pFpuRes->r80Result.s.uMantissa = 0; \
+ } \
+ else \
+ { \
+ if (iVal > 0) \
+ pFpuRes->r80Result.s.fSign = 0; \
+ else \
+ { \
+ pFpuRes->r80Result.s.fSign = 1; \
+ iVal = -iVal; \
+ } \
+ unsigned const cBits = ASMBitLastSetU ## a_cBits((uint ## a_cBits ## _t)iVal); \
+ pFpuRes->r80Result.s.uExponent = cBits - 1 + RTFLOAT80U_EXP_BIAS; \
+ pFpuRes->r80Result.s.uMantissa = (uint64_t)iVal << (RTFLOAT80U_FRACTION_BITS + 1 - cBits); \
+ } \
+ pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */ \
+}
+EMIT_FILD(16)
+EMIT_FILD(32)
+EMIT_FILD(64)
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val))
+{
+ pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */
+ if ( pd80Val->s.abPairs[0] == 0
+ && pd80Val->s.abPairs[1] == 0
+ && pd80Val->s.abPairs[2] == 0
+ && pd80Val->s.abPairs[3] == 0
+ && pd80Val->s.abPairs[4] == 0
+ && pd80Val->s.abPairs[5] == 0
+ && pd80Val->s.abPairs[6] == 0
+ && pd80Val->s.abPairs[7] == 0
+ && pd80Val->s.abPairs[8] == 0)
+ {
+ pFpuRes->r80Result.s.fSign = pd80Val->s.fSign;
+ pFpuRes->r80Result.s.uExponent = 0;
+ pFpuRes->r80Result.s.uMantissa = 0;
+ }
+ else
+ {
+ pFpuRes->r80Result.s.fSign = pd80Val->s.fSign;
+
+ size_t cPairs = RT_ELEMENTS(pd80Val->s.abPairs);
+ while (cPairs > 0 && pd80Val->s.abPairs[cPairs - 1] == 0)
+ cPairs--;
+
+ uint64_t uVal = 0;
+ uint64_t uFactor = 1;
+ for (size_t iPair = 0; iPair < cPairs; iPair++, uFactor *= 100)
+ uVal += RTPBCD80U_LO_DIGIT(pd80Val->s.abPairs[iPair]) * uFactor
+ + RTPBCD80U_HI_DIGIT(pd80Val->s.abPairs[iPair]) * uFactor * 10;
+
+ unsigned const cBits = ASMBitLastSetU64(uVal);
+ pFpuRes->r80Result.s.uExponent = cBits - 1 + RTFLOAT80U_EXP_BIAS;
+ pFpuRes->r80Result.s.uMantissa = uVal << (RTFLOAT80U_FRACTION_BITS + 1 - cBits);
+ }
+}
+
+
+/*********************************************************************************************************************************
+* x87 FPU Stores *
+*********************************************************************************************************************************/
+
+/**
+ * Helper for storing a deconstructed and normal R80 value as a 64-bit one.
+ *
+ * This uses the rounding rules indicated by fFcw and returns updated fFsw.
+ *
+ * @returns Updated FPU status word value.
+ * @param fSignIn Incoming sign indicator.
+ * @param uMantissaIn Incoming mantissa (dot between bit 63 and 62).
+ * @param iExponentIn Unbiased exponent.
+ * @param fFcw The FPU control word.
+ * @param fFsw Prepped FPU status word, i.e. exceptions and C1 clear.
+ * @param pr32Dst Where to return the output value, if one should be
+ * returned.
+ *
+ * @note Tailored as a helper for iemAImpl_fst_r80_to_r32 right now.
+ * @note Exact same logic as iemAImpl_StoreNormalR80AsR64.
+ */
+static uint16_t iemAImpl_StoreNormalR80AsR32(bool fSignIn, uint64_t uMantissaIn, int32_t iExponentIn,
+ uint16_t fFcw, uint16_t fFsw, PRTFLOAT32U pr32Dst)
+{
+ uint64_t const fRoundingOffMask = RT_BIT_64(RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS) - 1; /* 0x7ff */
+ uint64_t const uRoundingAdd = (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST
+ ? RT_BIT_64(RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS - 1) /* 0x400 */
+ : (fFcw & X86_FCW_RC_MASK) == (fSignIn ? X86_FCW_RC_DOWN : X86_FCW_RC_UP)
+ ? fRoundingOffMask
+ : 0;
+ uint64_t fRoundedOff = uMantissaIn & fRoundingOffMask;
+
+ /*
+ * Deal with potential overflows/underflows first, optimizing for none.
+ * 0 and MAX are used for special values; MAX-1 may be rounded up to MAX.
+ */
+ int32_t iExponentOut = (int32_t)iExponentIn + RTFLOAT32U_EXP_BIAS;
+ if ((uint32_t)iExponentOut - 1 < (uint32_t)(RTFLOAT32U_EXP_MAX - 3))
+ { /* likely? */ }
+ /*
+ * Underflow if the exponent zero or negative. This is attempted mapped
+ * to a subnormal number when possible, with some additional trickery ofc.
+ */
+ else if (iExponentOut <= 0)
+ {
+ bool const fIsTiny = iExponentOut < 0
+ || UINT64_MAX - uMantissaIn > uRoundingAdd;
+ if (!(fFcw & X86_FCW_UM) && fIsTiny)
+ /* Note! 754-1985 sec 7.4 has something about bias adjust of 192 here, not in 2008 & 2019. Perhaps only 8087 & 287? */
+ return fFsw | X86_FSW_UE | X86_FSW_ES | X86_FSW_B;
+
+ if (iExponentOut <= 0)
+ {
+ uMantissaIn = iExponentOut <= -63
+ ? uMantissaIn != 0
+ : (uMantissaIn >> (-iExponentOut + 1)) | ((uMantissaIn & (RT_BIT_64(-iExponentOut + 1) - 1)) != 0);
+ fRoundedOff = uMantissaIn & fRoundingOffMask;
+ if (fRoundedOff && fIsTiny)
+ fFsw |= X86_FSW_UE;
+ iExponentOut = 0;
+ }
+ }
+ /*
+ * Overflow if at or above max exponent value or if we will reach max
+ * when rounding. Will return +/-zero or +/-max value depending on
+ * whether we're rounding or not.
+ */
+ else if ( iExponentOut >= RTFLOAT32U_EXP_MAX
+ || ( iExponentOut == RTFLOAT32U_EXP_MAX - 1
+ && UINT64_MAX - uMantissaIn <= uRoundingAdd))
+ {
+ fFsw |= X86_FSW_OE;
+ if (!(fFcw & X86_FCW_OM))
+ return fFsw | X86_FSW_ES | X86_FSW_B;
+ fFsw |= X86_FSW_PE;
+ if (uRoundingAdd)
+ fFsw |= X86_FSW_C1;
+ if (!(fFcw & X86_FCW_PM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+
+ pr32Dst->s.fSign = fSignIn;
+ if (uRoundingAdd)
+ { /* Zero */
+ pr32Dst->s.uExponent = RTFLOAT32U_EXP_MAX;
+ pr32Dst->s.uFraction = 0;
+ }
+ else
+ { /* Max */
+ pr32Dst->s.uExponent = RTFLOAT32U_EXP_MAX - 1;
+ pr32Dst->s.uFraction = RT_BIT_32(RTFLOAT32U_FRACTION_BITS) - 1;
+ }
+ return fFsw;
+ }
+
+ /*
+ * Normal or subnormal number.
+ */
+ /* Do rounding - just truncate in near mode when midway on an even outcome. */
+ uint64_t uMantissaOut = uMantissaIn;
+ if ( (fFcw & X86_FCW_RC_MASK) != X86_FCW_RC_NEAREST
+ || (uMantissaIn & RT_BIT_64(RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS))
+ || fRoundedOff != uRoundingAdd)
+ {
+ uMantissaOut = uMantissaIn + uRoundingAdd;
+ if (uMantissaOut >= uMantissaIn)
+ { /* likely */ }
+ else
+ {
+ uMantissaOut >>= 1; /* (We don't need to add bit 63 here (the integer bit), as it will be chopped off below.) */
+ iExponentOut++;
+ Assert(iExponentOut < RTFLOAT32U_EXP_MAX); /* checked above */
+ fFsw |= X86_FSW_C1;
+ }
+ }
+ else
+ uMantissaOut = uMantissaIn;
+
+ /* Truncate the mantissa and set the return value. */
+ uMantissaOut >>= RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS;
+
+ pr32Dst->s.uFraction = (uint32_t)uMantissaOut; /* Note! too big for bitfield if normal. */
+ pr32Dst->s.uExponent = iExponentOut;
+ pr32Dst->s.fSign = fSignIn;
+
+ /* Set status flags realted to rounding. */
+ if (fRoundedOff)
+ {
+ fFsw |= X86_FSW_PE;
+ if (uMantissaOut > (uMantissaIn >> (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS)))
+ fFsw |= X86_FSW_C1;
+ if (!(fFcw & X86_FCW_PM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+
+ return fFsw;
+}
+
+
+/**
+ * @note Exact same logic as iemAImpl_fst_r80_to_r64.
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
+ PRTFLOAT32U pr32Dst, PCRTFLOAT80U pr80Src))
+{
+ uint16_t const fFcw = pFpuState->FCW;
+ uint16_t fFsw = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3));
+ if (RTFLOAT80U_IS_NORMAL(pr80Src))
+ fFsw = iemAImpl_StoreNormalR80AsR32(pr80Src->s.fSign, pr80Src->s.uMantissa,
+ (int32_t)pr80Src->s.uExponent - RTFLOAT80U_EXP_BIAS, fFcw, fFsw, pr32Dst);
+ else if (RTFLOAT80U_IS_ZERO(pr80Src))
+ {
+ pr32Dst->s.fSign = pr80Src->s.fSign;
+ pr32Dst->s.uExponent = 0;
+ pr32Dst->s.uFraction = 0;
+ Assert(RTFLOAT32U_IS_ZERO(pr32Dst));
+ }
+ else if (RTFLOAT80U_IS_INF(pr80Src))
+ {
+ pr32Dst->s.fSign = pr80Src->s.fSign;
+ pr32Dst->s.uExponent = RTFLOAT32U_EXP_MAX;
+ pr32Dst->s.uFraction = 0;
+ Assert(RTFLOAT32U_IS_INF(pr32Dst));
+ }
+ else if (RTFLOAT80U_IS_INDEFINITE(pr80Src))
+ {
+ /* Mapped to +/-QNaN */
+ pr32Dst->s.fSign = pr80Src->s.fSign;
+ pr32Dst->s.uExponent = RTFLOAT32U_EXP_MAX;
+ pr32Dst->s.uFraction = RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1);
+ }
+ else if (RTFLOAT80U_IS_PSEUDO_INF(pr80Src) || RTFLOAT80U_IS_UNNORMAL(pr80Src) || RTFLOAT80U_IS_PSEUDO_NAN(pr80Src))
+ {
+ /* Pseudo-Inf / Pseudo-Nan / Unnormal -> QNaN (during load, probably) */
+ if (fFcw & X86_FCW_IM)
+ {
+ pr32Dst->s.fSign = 1;
+ pr32Dst->s.uExponent = RTFLOAT32U_EXP_MAX;
+ pr32Dst->s.uFraction = RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1);
+ fFsw |= X86_FSW_IE;
+ }
+ else
+ fFsw |= X86_FSW_IE | X86_FSW_ES | X86_FSW_B;;
+ }
+ else if (RTFLOAT80U_IS_NAN(pr80Src))
+ {
+ /* IM applies to signalled NaN input only. Everything is converted to quiet NaN. */
+ if ((fFcw & X86_FCW_IM) || !RTFLOAT80U_IS_SIGNALLING_NAN(pr80Src))
+ {
+ pr32Dst->s.fSign = pr80Src->s.fSign;
+ pr32Dst->s.uExponent = RTFLOAT32U_EXP_MAX;
+ pr32Dst->s.uFraction = (uint32_t)(pr80Src->sj64.uFraction >> (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS));
+ pr32Dst->s.uFraction |= RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1);
+ if (RTFLOAT80U_IS_SIGNALLING_NAN(pr80Src))
+ fFsw |= X86_FSW_IE;
+ }
+ else
+ fFsw |= X86_FSW_IE | X86_FSW_ES | X86_FSW_B;
+ }
+ else
+ {
+ /* Denormal values causes both an underflow and precision exception. */
+ Assert(RTFLOAT80U_IS_DENORMAL(pr80Src) || RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Src));
+ if (fFcw & X86_FCW_UM)
+ {
+ pr32Dst->s.fSign = pr80Src->s.fSign;
+ pr32Dst->s.uExponent = 0;
+ if ((fFcw & X86_FCW_RC_MASK) == (!pr80Src->s.fSign ? X86_FCW_RC_UP : X86_FCW_RC_DOWN))
+ {
+ pr32Dst->s.uFraction = 1;
+ fFsw |= X86_FSW_UE | X86_FSW_PE | X86_FSW_C1;
+ if (!(fFcw & X86_FCW_PM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ else
+ {
+ pr32Dst->s.uFraction = 0;
+ fFsw |= X86_FSW_UE | X86_FSW_PE;
+ if (!(fFcw & X86_FCW_PM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ }
+ else
+ fFsw |= X86_FSW_UE | X86_FSW_ES | X86_FSW_B;
+ }
+ *pu16FSW = fFsw;
+}
+
+
+/**
+ * Helper for storing a deconstructed and normal R80 value as a 64-bit one.
+ *
+ * This uses the rounding rules indicated by fFcw and returns updated fFsw.
+ *
+ * @returns Updated FPU status word value.
+ * @param fSignIn Incoming sign indicator.
+ * @param uMantissaIn Incoming mantissa (dot between bit 63 and 62).
+ * @param iExponentIn Unbiased exponent.
+ * @param fFcw The FPU control word.
+ * @param fFsw Prepped FPU status word, i.e. exceptions and C1 clear.
+ * @param pr64Dst Where to return the output value, if one should be
+ * returned.
+ *
+ * @note Tailored as a helper for iemAImpl_fst_r80_to_r64 right now.
+ * @note Exact same logic as iemAImpl_StoreNormalR80AsR32.
+ */
+static uint16_t iemAImpl_StoreNormalR80AsR64(bool fSignIn, uint64_t uMantissaIn, int32_t iExponentIn,
+ uint16_t fFcw, uint16_t fFsw, PRTFLOAT64U pr64Dst)
+{
+ uint64_t const fRoundingOffMask = RT_BIT_64(RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS) - 1; /* 0x7ff */
+ uint32_t const uRoundingAdd = (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST
+ ? RT_BIT_64(RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS - 1) /* 0x400 */
+ : (fFcw & X86_FCW_RC_MASK) == (fSignIn ? X86_FCW_RC_DOWN : X86_FCW_RC_UP)
+ ? fRoundingOffMask
+ : 0;
+ uint32_t fRoundedOff = uMantissaIn & fRoundingOffMask;
+
+ /*
+ * Deal with potential overflows/underflows first, optimizing for none.
+ * 0 and MAX are used for special values; MAX-1 may be rounded up to MAX.
+ */
+ int32_t iExponentOut = (int32_t)iExponentIn + RTFLOAT64U_EXP_BIAS;
+ if ((uint32_t)iExponentOut - 1 < (uint32_t)(RTFLOAT64U_EXP_MAX - 3))
+ { /* likely? */ }
+ /*
+ * Underflow if the exponent zero or negative. This is attempted mapped
+ * to a subnormal number when possible, with some additional trickery ofc.
+ */
+ else if (iExponentOut <= 0)
+ {
+ bool const fIsTiny = iExponentOut < 0
+ || UINT64_MAX - uMantissaIn > uRoundingAdd;
+ if (!(fFcw & X86_FCW_UM) && fIsTiny)
+ /* Note! 754-1985 sec 7.4 has something about bias adjust of 1536 here, not in 2008 & 2019. Perhaps only 8087 & 287? */
+ return fFsw | X86_FSW_UE | X86_FSW_ES | X86_FSW_B;
+
+ if (iExponentOut <= 0)
+ {
+ uMantissaIn = iExponentOut <= -63
+ ? uMantissaIn != 0
+ : (uMantissaIn >> (-iExponentOut + 1)) | ((uMantissaIn & (RT_BIT_64(-iExponentOut + 1) - 1)) != 0);
+ fRoundedOff = uMantissaIn & fRoundingOffMask;
+ if (fRoundedOff && fIsTiny)
+ fFsw |= X86_FSW_UE;
+ iExponentOut = 0;
+ }
+ }
+ /*
+ * Overflow if at or above max exponent value or if we will reach max
+ * when rounding. Will return +/-zero or +/-max value depending on
+ * whether we're rounding or not.
+ */
+ else if ( iExponentOut >= RTFLOAT64U_EXP_MAX
+ || ( iExponentOut == RTFLOAT64U_EXP_MAX - 1
+ && UINT64_MAX - uMantissaIn <= uRoundingAdd))
+ {
+ fFsw |= X86_FSW_OE;
+ if (!(fFcw & X86_FCW_OM))
+ return fFsw | X86_FSW_ES | X86_FSW_B;
+ fFsw |= X86_FSW_PE;
+ if (uRoundingAdd)
+ fFsw |= X86_FSW_C1;
+ if (!(fFcw & X86_FCW_PM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+
+ pr64Dst->s64.fSign = fSignIn;
+ if (uRoundingAdd)
+ { /* Zero */
+ pr64Dst->s64.uExponent = RTFLOAT64U_EXP_MAX;
+ pr64Dst->s64.uFraction = 0;
+ }
+ else
+ { /* Max */
+ pr64Dst->s64.uExponent = RTFLOAT64U_EXP_MAX - 1;
+ pr64Dst->s64.uFraction = RT_BIT_64(RTFLOAT64U_FRACTION_BITS) - 1;
+ }
+ return fFsw;
+ }
+
+ /*
+ * Normal or subnormal number.
+ */
+ /* Do rounding - just truncate in near mode when midway on an even outcome. */
+ uint64_t uMantissaOut = uMantissaIn;
+ if ( (fFcw & X86_FCW_RC_MASK) != X86_FCW_RC_NEAREST
+ || (uMantissaIn & RT_BIT_32(RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS))
+ || fRoundedOff != uRoundingAdd)
+ {
+ uMantissaOut = uMantissaIn + uRoundingAdd;
+ if (uMantissaOut >= uMantissaIn)
+ { /* likely */ }
+ else
+ {
+ uMantissaOut >>= 1; /* (We don't need to add bit 63 here (the integer bit), as it will be chopped off below.) */
+ iExponentOut++;
+ Assert(iExponentOut < RTFLOAT64U_EXP_MAX); /* checked above */
+ fFsw |= X86_FSW_C1;
+ }
+ }
+ else
+ uMantissaOut = uMantissaIn;
+
+ /* Truncate the mantissa and set the return value. */
+ uMantissaOut >>= RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS;
+
+ pr64Dst->s64.uFraction = uMantissaOut; /* Note! too big for bitfield if normal. */
+ pr64Dst->s64.uExponent = iExponentOut;
+ pr64Dst->s64.fSign = fSignIn;
+
+ /* Set status flags realted to rounding. */
+ if (fRoundedOff)
+ {
+ fFsw |= X86_FSW_PE;
+ if (uMantissaOut > (uMantissaIn >> (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS)))
+ fFsw |= X86_FSW_C1;
+ if (!(fFcw & X86_FCW_PM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+
+ return fFsw;
+}
+
+
+/**
+ * @note Exact same logic as iemAImpl_fst_r80_to_r32.
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
+ PRTFLOAT64U pr64Dst, PCRTFLOAT80U pr80Src))
+{
+ uint16_t const fFcw = pFpuState->FCW;
+ uint16_t fFsw = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3));
+ if (RTFLOAT80U_IS_NORMAL(pr80Src))
+ fFsw = iemAImpl_StoreNormalR80AsR64(pr80Src->s.fSign, pr80Src->s.uMantissa,
+ (int32_t)pr80Src->s.uExponent - RTFLOAT80U_EXP_BIAS, fFcw, fFsw, pr64Dst);
+ else if (RTFLOAT80U_IS_ZERO(pr80Src))
+ {
+ pr64Dst->s64.fSign = pr80Src->s.fSign;
+ pr64Dst->s64.uExponent = 0;
+ pr64Dst->s64.uFraction = 0;
+ Assert(RTFLOAT64U_IS_ZERO(pr64Dst));
+ }
+ else if (RTFLOAT80U_IS_INF(pr80Src))
+ {
+ pr64Dst->s64.fSign = pr80Src->s.fSign;
+ pr64Dst->s64.uExponent = RTFLOAT64U_EXP_MAX;
+ pr64Dst->s64.uFraction = 0;
+ Assert(RTFLOAT64U_IS_INF(pr64Dst));
+ }
+ else if (RTFLOAT80U_IS_INDEFINITE(pr80Src))
+ {
+ /* Mapped to +/-QNaN */
+ pr64Dst->s64.fSign = pr80Src->s.fSign;
+ pr64Dst->s64.uExponent = RTFLOAT64U_EXP_MAX;
+ pr64Dst->s64.uFraction = RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1);
+ }
+ else if (RTFLOAT80U_IS_PSEUDO_INF(pr80Src) || RTFLOAT80U_IS_UNNORMAL(pr80Src) || RTFLOAT80U_IS_PSEUDO_NAN(pr80Src))
+ {
+ /* Pseudo-Inf / Pseudo-Nan / Unnormal -> QNaN (during load, probably) */
+ if (fFcw & X86_FCW_IM)
+ {
+ pr64Dst->s64.fSign = 1;
+ pr64Dst->s64.uExponent = RTFLOAT64U_EXP_MAX;
+ pr64Dst->s64.uFraction = RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1);
+ fFsw |= X86_FSW_IE;
+ }
+ else
+ fFsw |= X86_FSW_IE | X86_FSW_ES | X86_FSW_B;;
+ }
+ else if (RTFLOAT80U_IS_NAN(pr80Src))
+ {
+ /* IM applies to signalled NaN input only. Everything is converted to quiet NaN. */
+ if ((fFcw & X86_FCW_IM) || !RTFLOAT80U_IS_SIGNALLING_NAN(pr80Src))
+ {
+ pr64Dst->s64.fSign = pr80Src->s.fSign;
+ pr64Dst->s64.uExponent = RTFLOAT64U_EXP_MAX;
+ pr64Dst->s64.uFraction = pr80Src->sj64.uFraction >> (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS);
+ pr64Dst->s64.uFraction |= RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1);
+ if (RTFLOAT80U_IS_SIGNALLING_NAN(pr80Src))
+ fFsw |= X86_FSW_IE;
+ }
+ else
+ fFsw |= X86_FSW_IE | X86_FSW_ES | X86_FSW_B;
+ }
+ else
+ {
+ /* Denormal values causes both an underflow and precision exception. */
+ Assert(RTFLOAT80U_IS_DENORMAL(pr80Src) || RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Src));
+ if (fFcw & X86_FCW_UM)
+ {
+ pr64Dst->s64.fSign = pr80Src->s.fSign;
+ pr64Dst->s64.uExponent = 0;
+ if ((fFcw & X86_FCW_RC_MASK) == (!pr80Src->s.fSign ? X86_FCW_RC_UP : X86_FCW_RC_DOWN))
+ {
+ pr64Dst->s64.uFraction = 1;
+ fFsw |= X86_FSW_UE | X86_FSW_PE | X86_FSW_C1;
+ if (!(fFcw & X86_FCW_PM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ else
+ {
+ pr64Dst->s64.uFraction = 0;
+ fFsw |= X86_FSW_UE | X86_FSW_PE;
+ if (!(fFcw & X86_FCW_PM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ }
+ else
+ fFsw |= X86_FSW_UE | X86_FSW_ES | X86_FSW_B;
+ }
+ *pu16FSW = fFsw;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
+ PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src))
+{
+ /*
+ * FPU status word:
+ * - TOP is irrelevant, but we must match x86 assembly version (0).
+ * - C1 is always cleared as we don't have any stack overflows.
+ * - C0, C2, and C3 are undefined and Intel 10980XE does not touch them.
+ */
+ *pu16FSW = pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3); /* see iemAImpl_fld1 */
+ *pr80Dst = *pr80Src;
+}
+
+
+/*
+ *
+ * Mantissa:
+ * 63 56 48 40 32 24 16 8 0
+ * v v v v v v v v v
+ * 1[.]111 0000 1111 0000 1111 0000 1111 0000 1111 0000 1111 0000 1111 0000 1111 0000
+ * \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+ * Exp: 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
+ *
+ * int64_t has the same width, only bit 63 is the sign bit. So, the max we can map over
+ * are bits 1 thru 63, dropping off bit 0, with an exponent of 62. The number of bits we
+ * drop off from the mantissa increases with decreasing exponent, till an exponent of 0
+ * where we'll drop off all but bit 63.
+ */
+#define EMIT_FIST(a_cBits, a_iType, a_iTypeMin, a_iTypeIndefinite) \
+IEM_DECL_IMPL_DEF(void, iemAImpl_fist_r80_to_i ## a_cBits,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, \
+ a_iType *piDst, PCRTFLOAT80U pr80Val)) \
+{ \
+ uint16_t const fFcw = pFpuState->FCW; \
+ uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); \
+ bool const fSignIn = pr80Val->s.fSign; \
+ \
+ /* \
+ * Deal with normal numbers first. \
+ */ \
+ if (RTFLOAT80U_IS_NORMAL(pr80Val)) \
+ { \
+ uint64_t uMantissa = pr80Val->s.uMantissa; \
+ int32_t iExponent = (int32_t)pr80Val->s.uExponent - RTFLOAT80U_EXP_BIAS; \
+ \
+ if ((uint32_t)iExponent <= a_cBits - 2) \
+ { \
+ unsigned const cShiftOff = 63 - iExponent; \
+ uint64_t const fRoundingOffMask = RT_BIT_64(cShiftOff) - 1; \
+ uint64_t const uRoundingAdd = (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST \
+ ? RT_BIT_64(cShiftOff - 1) \
+ : (fFcw & X86_FCW_RC_MASK) == (fSignIn ? X86_FCW_RC_DOWN : X86_FCW_RC_UP) \
+ ? fRoundingOffMask \
+ : 0; \
+ uint64_t fRoundedOff = uMantissa & fRoundingOffMask; \
+ \
+ uMantissa >>= cShiftOff; \
+ uint64_t const uRounding = (fRoundedOff + uRoundingAdd) >> cShiftOff; \
+ uMantissa += uRounding; \
+ if (!(uMantissa & RT_BIT_64(a_cBits - 1))) \
+ { \
+ if (fRoundedOff) \
+ { \
+ if ((uMantissa & 1) && (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST && fRoundedOff == uRoundingAdd) \
+ uMantissa &= ~(uint64_t)1; /* round to even number if equal distance between up/down. */ \
+ else if (uRounding) \
+ fFsw |= X86_FSW_C1; \
+ fFsw |= X86_FSW_PE; \
+ if (!(fFcw & X86_FCW_PM)) \
+ fFsw |= X86_FSW_ES | X86_FSW_B; \
+ } \
+ \
+ if (!fSignIn) \
+ *piDst = (a_iType)uMantissa; \
+ else \
+ *piDst = -(a_iType)uMantissa; \
+ } \
+ else \
+ { \
+ /* overflowed after rounding. */ \
+ AssertMsg(iExponent == a_cBits - 2 && uMantissa == RT_BIT_64(a_cBits - 1), \
+ ("e=%d m=%#RX64 (org %#RX64) s=%d; shift=%d ro=%#RX64 rm=%#RX64 ra=%#RX64\n", iExponent, uMantissa, \
+ pr80Val->s.uMantissa, fSignIn, cShiftOff, fRoundedOff, fRoundingOffMask, uRoundingAdd)); \
+ \
+ /* Special case for the integer minimum value. */ \
+ if (fSignIn) \
+ { \
+ *piDst = a_iTypeMin; \
+ fFsw |= X86_FSW_PE | X86_FSW_C1; \
+ if (!(fFcw & X86_FCW_PM)) \
+ fFsw |= X86_FSW_ES | X86_FSW_B; \
+ } \
+ else \
+ { \
+ fFsw |= X86_FSW_IE; \
+ if (fFcw & X86_FCW_IM) \
+ *piDst = a_iTypeMin; \
+ else \
+ fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); \
+ } \
+ } \
+ } \
+ /* \
+ * Tiny sub-zero numbers. \
+ */ \
+ else if (iExponent < 0) \
+ { \
+ if (!fSignIn) \
+ { \
+ if ( (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_UP \
+ || (iExponent == -1 && (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST)) \
+ { \
+ *piDst = 1; \
+ fFsw |= X86_FSW_C1; \
+ } \
+ else \
+ *piDst = 0; \
+ } \
+ else \
+ { \
+ if ( (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_UP \
+ || (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_ZERO \
+ || (iExponent < -1 && (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST)) \
+ *piDst = 0; \
+ else \
+ { \
+ *piDst = -1; \
+ fFsw |= X86_FSW_C1; \
+ } \
+ } \
+ fFsw |= X86_FSW_PE; \
+ if (!(fFcw & X86_FCW_PM)) \
+ fFsw |= X86_FSW_ES | X86_FSW_B; \
+ } \
+ /* \
+ * Special MIN case. \
+ */ \
+ else if ( fSignIn && iExponent == a_cBits - 1 \
+ && ( a_cBits < 64 && (fFcw & X86_FCW_RC_MASK) != X86_FCW_RC_DOWN \
+ ? uMantissa < (RT_BIT_64(63) | RT_BIT_64(65 - a_cBits)) \
+ : uMantissa == RT_BIT_64(63))) \
+ { \
+ *piDst = a_iTypeMin; \
+ if (uMantissa & (RT_BIT_64(64 - a_cBits + 1) - 1)) \
+ { \
+ fFsw |= X86_FSW_PE; \
+ if (!(fFcw & X86_FCW_PM)) \
+ fFsw |= X86_FSW_ES | X86_FSW_B; \
+ } \
+ } \
+ /* \
+ * Too large/small number outside the target integer range. \
+ */ \
+ else \
+ { \
+ fFsw |= X86_FSW_IE; \
+ if (fFcw & X86_FCW_IM) \
+ *piDst = a_iTypeIndefinite; \
+ else \
+ fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); \
+ } \
+ } \
+ /* \
+ * Map both +0 and -0 to integer zero (signless/+). \
+ */ \
+ else if (RTFLOAT80U_IS_ZERO(pr80Val)) \
+ *piDst = 0; \
+ /* \
+ * Denormals are just really tiny sub-zero numbers that are either rounded \
+ * to zero, 1 or -1 depending on sign and rounding control. \
+ */ \
+ else if (RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val) || RTFLOAT80U_IS_DENORMAL(pr80Val)) \
+ { \
+ if ((fFcw & X86_FCW_RC_MASK) != (fSignIn ? X86_FCW_RC_DOWN : X86_FCW_RC_UP)) \
+ *piDst = 0; \
+ else \
+ { \
+ *piDst = fSignIn ? -1 : 1; \
+ fFsw |= X86_FSW_C1; \
+ } \
+ fFsw |= X86_FSW_PE; \
+ if (!(fFcw & X86_FCW_PM)) \
+ fFsw |= X86_FSW_ES | X86_FSW_B; \
+ } \
+ /* \
+ * All other special values are considered invalid arguments and result \
+ * in an IE exception and indefinite value if masked. \
+ */ \
+ else \
+ { \
+ fFsw |= X86_FSW_IE; \
+ if (fFcw & X86_FCW_IM) \
+ *piDst = a_iTypeIndefinite; \
+ else \
+ fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); \
+ } \
+ *pu16FSW = fFsw; \
+}
+EMIT_FIST(64, int64_t, INT64_MIN, X86_FPU_INT64_INDEFINITE)
+EMIT_FIST(32, int32_t, INT32_MIN, X86_FPU_INT32_INDEFINITE)
+EMIT_FIST(16, int16_t, INT16_MIN, X86_FPU_INT16_INDEFINITE)
+
+#endif /*IEM_WITHOUT_ASSEMBLY */
+
+
+/*
+ * The FISTT instruction was added with SSE3 and are a lot simpler than FIST.
+ *
+ * The 16-bit version is a bit peculiar, though, as it seems to be raising IE
+ * as if it was the 32-bit version (i.e. starting with exp 31 instead of 15),
+ * thus the @a a_cBitsIn.
+ */
+#define EMIT_FISTT(a_cBits, a_cBitsIn, a_iType, a_iTypeMin, a_iTypeMax, a_iTypeIndefinite, a_Suffix, a_fIntelVersion) \
+IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_fistt_r80_to_i,a_cBits,a_Suffix),(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, \
+ a_iType *piDst, PCRTFLOAT80U pr80Val)) \
+{ \
+ uint16_t const fFcw = pFpuState->FCW; \
+ uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); \
+ bool const fSignIn = pr80Val->s.fSign; \
+ \
+ /* \
+ * Deal with normal numbers first. \
+ */ \
+ if (RTFLOAT80U_IS_NORMAL(pr80Val)) \
+ { \
+ uint64_t uMantissa = pr80Val->s.uMantissa; \
+ int32_t iExponent = (int32_t)pr80Val->s.uExponent - RTFLOAT80U_EXP_BIAS; \
+ \
+ if ((uint32_t)iExponent <= a_cBitsIn - 2) \
+ { \
+ unsigned const cShiftOff = 63 - iExponent; \
+ uint64_t const fRoundingOffMask = RT_BIT_64(cShiftOff) - 1; \
+ uint64_t const fRoundedOff = uMantissa & fRoundingOffMask; \
+ uMantissa >>= cShiftOff; \
+ /*Assert(!(uMantissa & RT_BIT_64(a_cBits - 1)));*/ \
+ if (!fSignIn) \
+ *piDst = (a_iType)uMantissa; \
+ else \
+ *piDst = -(a_iType)uMantissa; \
+ \
+ if (fRoundedOff) \
+ { \
+ fFsw |= X86_FSW_PE; \
+ if (!(fFcw & X86_FCW_PM)) \
+ fFsw |= X86_FSW_ES | X86_FSW_B; \
+ } \
+ } \
+ /* \
+ * Tiny sub-zero numbers. \
+ */ \
+ else if (iExponent < 0) \
+ { \
+ *piDst = 0; \
+ fFsw |= X86_FSW_PE; \
+ if (!(fFcw & X86_FCW_PM)) \
+ fFsw |= X86_FSW_ES | X86_FSW_B; \
+ } \
+ /* \
+ * Special MIN case. \
+ */ \
+ else if ( fSignIn && iExponent == a_cBits - 1 \
+ && (a_cBits < 64 \
+ ? uMantissa < (RT_BIT_64(63) | RT_BIT_64(65 - a_cBits)) \
+ : uMantissa == RT_BIT_64(63)) ) \
+ { \
+ *piDst = a_iTypeMin; \
+ if (uMantissa & (RT_BIT_64(64 - a_cBits + 1) - 1)) \
+ { \
+ fFsw |= X86_FSW_PE; \
+ if (!(fFcw & X86_FCW_PM)) \
+ fFsw |= X86_FSW_ES | X86_FSW_B; \
+ } \
+ } \
+ /* \
+ * Figure this weirdness. \
+ */ \
+ else if (0 /* huh? gone? */ && a_cBits == 16 && fSignIn && iExponent == 31 && uMantissa < UINT64_C(0x8000100000000000) ) \
+ { \
+ *piDst = 0; \
+ if (uMantissa & (RT_BIT_64(64 - a_cBits + 1) - 1)) \
+ { \
+ fFsw |= X86_FSW_PE; \
+ if (!(fFcw & X86_FCW_PM)) \
+ fFsw |= X86_FSW_ES | X86_FSW_B; \
+ } \
+ } \
+ /* \
+ * Too large/small number outside the target integer range. \
+ */ \
+ else \
+ { \
+ fFsw |= X86_FSW_IE; \
+ if (fFcw & X86_FCW_IM) \
+ *piDst = a_iTypeIndefinite; \
+ else \
+ fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); \
+ } \
+ } \
+ /* \
+ * Map both +0 and -0 to integer zero (signless/+). \
+ */ \
+ else if (RTFLOAT80U_IS_ZERO(pr80Val)) \
+ *piDst = 0; \
+ /* \
+ * Denormals are just really tiny sub-zero numbers that are trucated to zero. \
+ */ \
+ else if (RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val) || RTFLOAT80U_IS_DENORMAL(pr80Val)) \
+ { \
+ *piDst = 0; \
+ fFsw |= X86_FSW_PE; \
+ if (!(fFcw & X86_FCW_PM)) \
+ fFsw |= X86_FSW_ES | X86_FSW_B; \
+ } \
+ /* \
+ * All other special values are considered invalid arguments and result \
+ * in an IE exception and indefinite value if masked. \
+ */ \
+ else \
+ { \
+ fFsw |= X86_FSW_IE; \
+ if (fFcw & X86_FCW_IM) \
+ *piDst = a_iTypeIndefinite; \
+ else \
+ fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); \
+ } \
+ *pu16FSW = fFsw; \
+}
+#if defined(IEM_WITHOUT_ASSEMBLY)
+EMIT_FISTT(64, 64, int64_t, INT64_MIN, INT64_MAX, X86_FPU_INT64_INDEFINITE, RT_NOTHING, 1)
+EMIT_FISTT(32, 32, int32_t, INT32_MIN, INT32_MAX, X86_FPU_INT32_INDEFINITE, RT_NOTHING, 1)
+EMIT_FISTT(16, 16, int16_t, INT16_MIN, INT16_MAX, X86_FPU_INT16_INDEFINITE, RT_NOTHING, 1)
+#endif
+EMIT_FISTT(16, 16, int16_t, INT16_MIN, INT16_MAX, X86_FPU_INT16_INDEFINITE, _intel, 1)
+EMIT_FISTT(16, 16, int16_t, INT16_MIN, INT16_MAX, X86_FPU_INT16_INDEFINITE, _amd, 0)
+
+
+#if defined(IEM_WITHOUT_ASSEMBLY)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
+ PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src))
+{
+ /*static RTPBCD80U const s_ad80MaxMin[2] = { RTPBCD80U_INIT_MAX(), RTPBCD80U_INIT_MIN() };*/
+ static RTPBCD80U const s_ad80Zeros[2] = { RTPBCD80U_INIT_ZERO(0), RTPBCD80U_INIT_ZERO(1) };
+ static RTPBCD80U const s_ad80One[2] = { RTPBCD80U_INIT_C(0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,1),
+ RTPBCD80U_INIT_C(1, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,1) };
+ static RTPBCD80U const s_d80Indefinite = RTPBCD80U_INIT_INDEFINITE();
+
+ uint16_t const fFcw = pFpuState->FCW;
+ uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3));
+ bool const fSignIn = pr80Src->s.fSign;
+
+ /*
+ * Deal with normal numbers first.
+ */
+ if (RTFLOAT80U_IS_NORMAL(pr80Src))
+ {
+ uint64_t uMantissa = pr80Src->s.uMantissa;
+ int32_t iExponent = (int32_t)pr80Src->s.uExponent - RTFLOAT80U_EXP_BIAS;
+ if ( (uint32_t)iExponent <= 58
+ || ((uint32_t)iExponent == 59 && uMantissa <= UINT64_C(0xde0b6b3a763fffff)) )
+ {
+ unsigned const cShiftOff = 63 - iExponent;
+ uint64_t const fRoundingOffMask = RT_BIT_64(cShiftOff) - 1;
+ uint64_t const uRoundingAdd = (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST
+ ? RT_BIT_64(cShiftOff - 1)
+ : (fFcw & X86_FCW_RC_MASK) == (fSignIn ? X86_FCW_RC_DOWN : X86_FCW_RC_UP)
+ ? fRoundingOffMask
+ : 0;
+ uint64_t fRoundedOff = uMantissa & fRoundingOffMask;
+
+ uMantissa >>= cShiftOff;
+ uint64_t const uRounding = (fRoundedOff + uRoundingAdd) >> cShiftOff;
+ uMantissa += uRounding;
+ if (uMantissa <= (uint64_t)RTPBCD80U_MAX)
+ {
+ if (fRoundedOff)
+ {
+ if ((uMantissa & 1) && (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST && fRoundedOff == uRoundingAdd)
+ uMantissa &= ~(uint64_t)1; /* round to even number if equal distance between up/down. */
+ else if (uRounding)
+ fFsw |= X86_FSW_C1;
+ fFsw |= X86_FSW_PE;
+ if (!(fFcw & X86_FCW_PM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+
+ pd80Dst->s.fSign = fSignIn;
+ pd80Dst->s.uPad = 0;
+ for (size_t iPair = 0; iPair < RT_ELEMENTS(pd80Dst->s.abPairs); iPair++)
+ {
+ unsigned const uDigits = uMantissa % 100;
+ uMantissa /= 100;
+ uint8_t const bLo = uDigits % 10;
+ uint8_t const bHi = uDigits / 10;
+ pd80Dst->s.abPairs[iPair] = RTPBCD80U_MAKE_PAIR(bHi, bLo);
+ }
+ }
+ else
+ {
+ /* overflowed after rounding. */
+ fFsw |= X86_FSW_IE;
+ if (fFcw & X86_FCW_IM)
+ *pd80Dst = s_d80Indefinite;
+ else
+ fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT);
+ }
+ }
+ /*
+ * Tiny sub-zero numbers.
+ */
+ else if (iExponent < 0)
+ {
+ if (!fSignIn)
+ {
+ if ( (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_UP
+ || (iExponent == -1 && (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST))
+ {
+ *pd80Dst = s_ad80One[fSignIn];
+ fFsw |= X86_FSW_C1;
+ }
+ else
+ *pd80Dst = s_ad80Zeros[fSignIn];
+ }
+ else
+ {
+ if ( (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_UP
+ || (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_ZERO
+ || (iExponent < -1 && (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST))
+ *pd80Dst = s_ad80Zeros[fSignIn];
+ else
+ {
+ *pd80Dst = s_ad80One[fSignIn];
+ fFsw |= X86_FSW_C1;
+ }
+ }
+ fFsw |= X86_FSW_PE;
+ if (!(fFcw & X86_FCW_PM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ /*
+ * Too large/small number outside the target integer range.
+ */
+ else
+ {
+ fFsw |= X86_FSW_IE;
+ if (fFcw & X86_FCW_IM)
+ *pd80Dst = s_d80Indefinite;
+ else
+ fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT);
+ }
+ }
+ /*
+ * Map both +0 and -0 to integer zero (signless/+).
+ */
+ else if (RTFLOAT80U_IS_ZERO(pr80Src))
+ *pd80Dst = s_ad80Zeros[fSignIn];
+ /*
+ * Denormals are just really tiny sub-zero numbers that are either rounded
+ * to zero, 1 or -1 depending on sign and rounding control.
+ */
+ else if (RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Src) || RTFLOAT80U_IS_DENORMAL(pr80Src))
+ {
+ if ((fFcw & X86_FCW_RC_MASK) != (fSignIn ? X86_FCW_RC_DOWN : X86_FCW_RC_UP))
+ *pd80Dst = s_ad80Zeros[fSignIn];
+ else
+ {
+ *pd80Dst = s_ad80One[fSignIn];
+ fFsw |= X86_FSW_C1;
+ }
+ fFsw |= X86_FSW_PE;
+ if (!(fFcw & X86_FCW_PM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ /*
+ * All other special values are considered invalid arguments and result
+ * in an IE exception and indefinite value if masked.
+ */
+ else
+ {
+ fFsw |= X86_FSW_IE;
+ if (fFcw & X86_FCW_IM)
+ *pd80Dst = s_d80Indefinite;
+ else
+ fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT);
+ }
+ *pu16FSW = fFsw;
+}
+
+
+/*********************************************************************************************************************************
+* FPU Helpers *
+*********************************************************************************************************************************/
+AssertCompileSize(RTFLOAT128U, 16);
+AssertCompileSize(RTFLOAT80U, 10);
+AssertCompileSize(RTFLOAT64U, 8);
+AssertCompileSize(RTFLOAT32U, 4);
+
+/**
+ * Normalizes a possible pseudo-normal value.
+ *
+ * Psuedo-normal values are some oddities from the 8087 & 287 days. They are
+ * denormals with the J-bit set, so they can simply be rewritten as 2**-16382,
+ * i.e. changing uExponent from 0 to 1.
+ *
+ * This macro will declare a RTFLOAT80U with the name given by
+ * @a a_r80ValNormalized and update the @a a_pr80Val variable to point to it if
+ * a normalization was performed.
+ *
+ * @note This must be applied before calling SoftFloat with a value that couldbe
+ * a pseudo-denormal, as SoftFloat doesn't handle pseudo-denormals
+ * correctly.
+ */
+#define IEM_NORMALIZE_PSEUDO_DENORMAL(a_pr80Val, a_r80ValNormalized) \
+ RTFLOAT80U a_r80ValNormalized; \
+ if (RTFLOAT80U_IS_PSEUDO_DENORMAL(a_pr80Val)) \
+ { \
+ a_r80ValNormalized = *a_pr80Val; \
+ a_r80ValNormalized.s.uExponent = 1; \
+ a_pr80Val = &a_r80ValNormalized; \
+ } else do {} while (0)
+
+#ifdef IEM_WITH_FLOAT128_FOR_FPU
+
+DECLINLINE(int) iemFpuF128SetRounding(uint16_t fFcw)
+{
+ int fNew;
+ switch (fFcw & X86_FCW_RC_MASK)
+ {
+ default:
+ case X86_FCW_RC_NEAREST: fNew = FE_TONEAREST; break;
+ case X86_FCW_RC_ZERO: fNew = FE_TOWARDZERO; break;
+ case X86_FCW_RC_UP: fNew = FE_UPWARD; break;
+ case X86_FCW_RC_DOWN: fNew = FE_DOWNWARD; break;
+ }
+ int fOld = fegetround();
+ fesetround(fNew);
+ return fOld;
+}
+
+
+DECLINLINE(void) iemFpuF128RestoreRounding(int fOld)
+{
+ fesetround(fOld);
+}
+
+DECLINLINE(_Float128) iemFpuF128FromFloat80(PCRTFLOAT80U pr80Val, uint16_t fFcw)
+{
+ RT_NOREF(fFcw);
+ RTFLOAT128U Tmp;
+ Tmp.s2.uSignAndExponent = pr80Val->s2.uSignAndExponent;
+ Tmp.s2.uFractionHigh = (uint16_t)((pr80Val->s2.uMantissa & (RT_BIT_64(63) - 1)) >> 48);
+ Tmp.s2.uFractionMid = (uint32_t)((pr80Val->s2.uMantissa & UINT32_MAX) >> 16);
+ Tmp.s2.uFractionLow = pr80Val->s2.uMantissa << 48;
+ if (RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val))
+ {
+ Assert(Tmp.s.uExponent == 0);
+ Tmp.s2.uSignAndExponent++;
+ }
+ return *(_Float128 *)&Tmp;
+}
+
+
+DECLINLINE(uint16_t) iemFpuF128ToFloat80(PRTFLOAT80U pr80Dst, _Float128 rd128ValSrc, uint16_t fFcw, uint16_t fFsw)
+{
+ RT_NOREF(fFcw);
+ RTFLOAT128U Tmp;
+ *(_Float128 *)&Tmp = rd128ValSrc;
+ ASMCompilerBarrier();
+ if (RTFLOAT128U_IS_NORMAL(&Tmp))
+ {
+ pr80Dst->s.fSign = Tmp.s64.fSign;
+ pr80Dst->s.uExponent = Tmp.s64.uExponent;
+ uint64_t uFraction = Tmp.s64.uFractionHi << (63 - 48)
+ | Tmp.s64.uFractionLo >> (64 - 15);
+
+ /* Do rounding - just truncate in near mode when midway on an even outcome. */
+ unsigned const cShiftOff = 64 - 15;
+ uint64_t const fRoundingOffMask = RT_BIT_64(cShiftOff) - 1;
+ uint64_t const uRoundedOff = Tmp.s64.uFractionLo & fRoundingOffMask;
+ if (uRoundedOff)
+ {
+ uint64_t const uRoundingAdd = (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST
+ ? RT_BIT_64(cShiftOff - 1)
+ : (fFcw & X86_FCW_RC_MASK) == (Tmp.s64.fSign ? X86_FCW_RC_DOWN : X86_FCW_RC_UP)
+ ? fRoundingOffMask
+ : 0;
+ if ( (fFcw & X86_FCW_RC_MASK) != X86_FCW_RC_NEAREST
+ || (Tmp.s64.uFractionLo & RT_BIT_64(cShiftOff))
+ || uRoundedOff != uRoundingAdd)
+ {
+ if ((uRoundedOff + uRoundingAdd) >> cShiftOff)
+ {
+ uFraction += 1;
+ if (!(uFraction & RT_BIT_64(63)))
+ { /* likely */ }
+ else
+ {
+ uFraction >>= 1;
+ pr80Dst->s.uExponent++;
+ if (pr80Dst->s.uExponent == RTFLOAT64U_EXP_MAX)
+ return fFsw;
+ }
+ fFsw |= X86_FSW_C1;
+ }
+ }
+ fFsw |= X86_FSW_PE;
+ if (!(fFcw & X86_FCW_PM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ pr80Dst->s.uMantissa = RT_BIT_64(63) | uFraction;
+ }
+ else if (RTFLOAT128U_IS_ZERO(&Tmp))
+ {
+ pr80Dst->s.fSign = Tmp.s64.fSign;
+ pr80Dst->s.uExponent = 0;
+ pr80Dst->s.uMantissa = 0;
+ }
+ else if (RTFLOAT128U_IS_INF(&Tmp))
+ {
+ pr80Dst->s.fSign = Tmp.s64.fSign;
+ pr80Dst->s.uExponent = 0;
+ pr80Dst->s.uMantissa = 0;
+ }
+ return fFsw;
+}
+
+
+#else /* !IEM_WITH_FLOAT128_FOR_FPU - SoftFloat */
+
+/** Initializer for the SoftFloat state structure. */
+# define IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(a_fFcw) \
+ { \
+ softfloat_tininess_afterRounding, \
+ ((a_fFcw) & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST ? (uint8_t)softfloat_round_near_even \
+ : ((a_fFcw) & X86_FCW_RC_MASK) == X86_FCW_RC_UP ? (uint8_t)softfloat_round_max \
+ : ((a_fFcw) & X86_FCW_RC_MASK) == X86_FCW_RC_DOWN ? (uint8_t)softfloat_round_min \
+ : (uint8_t)softfloat_round_minMag, \
+ 0, \
+ (uint8_t)((a_fFcw) & X86_FCW_XCPT_MASK), \
+ ((a_fFcw) & X86_FCW_PC_MASK) == X86_FCW_PC_53 ? (uint8_t)64 \
+ : ((a_fFcw) & X86_FCW_PC_MASK) == X86_FCW_PC_24 ? (uint8_t)32 : (uint8_t)80 \
+ }
+
+/** Returns updated FSW from a SoftFloat state and exception mask (FCW). */
+# define IEM_SOFTFLOAT_STATE_TO_FSW(a_fFsw, a_pSoftState, a_fFcw) \
+ ( (a_fFsw) \
+ | (uint16_t)(((a_pSoftState)->exceptionFlags & softfloat_flag_c1) << 2) \
+ | ((a_pSoftState)->exceptionFlags & X86_FSW_XCPT_MASK) \
+ | ( ((a_pSoftState)->exceptionFlags & X86_FSW_XCPT_MASK) & (~(a_fFcw) & X86_FSW_XCPT_MASK) \
+ ? X86_FSW_ES | X86_FSW_B : 0) )
+
+
+DECLINLINE(float128_t) iemFpuSoftF128Precision(float128_t r128, unsigned cBits, uint16_t fFcw = X86_FCW_RC_NEAREST)
+{
+ RT_NOREF(fFcw);
+ Assert(cBits > 64);
+# if 0 /* rounding does not seem to help */
+ uint64_t off = r128.v[0] & (RT_BIT_64(1 + 112 - cBits) - 1);
+ r128.v[0] &= ~(RT_BIT_64(1 + 112 - cBits) - 1);
+ if (off >= RT_BIT_64(1 + 112 - cBits - 1)
+ && (r128.v[0] & RT_BIT_64(1 + 112 - cBits)))
+ {
+ uint64_t uOld = r128.v[0];
+ r128.v[0] += RT_BIT_64(1 + 112 - cBits);
+ if (r128.v[0] < uOld)
+ r128.v[1] += 1;
+ }
+# else
+ r128.v[0] &= ~(RT_BIT_64(1 + 112 - cBits) - 1);
+# endif
+ return r128;
+}
+
+
+DECLINLINE(float128_t) iemFpuSoftF128PrecisionIprt(PCRTFLOAT128U pr128, unsigned cBits, uint16_t fFcw = X86_FCW_RC_NEAREST)
+{
+ RT_NOREF(fFcw);
+ Assert(cBits > 64);
+# if 0 /* rounding does not seem to help, not even on constants */
+ float128_t r128 = { pr128->au64[0], pr128->au64[1] };
+ uint64_t off = r128.v[0] & (RT_BIT_64(1 + 112 - cBits) - 1);
+ r128.v[0] &= ~(RT_BIT_64(1 + 112 - cBits) - 1);
+ if (off >= RT_BIT_64(1 + 112 - cBits - 1)
+ && (r128.v[0] & RT_BIT_64(1 + 112 - cBits)))
+ {
+ uint64_t uOld = r128.v[0];
+ r128.v[0] += RT_BIT_64(1 + 112 - cBits);
+ if (r128.v[0] < uOld)
+ r128.v[1] += 1;
+ }
+ return r128;
+# else
+ float128_t r128 = { { pr128->au64[0] & ~(RT_BIT_64(1 + 112 - cBits) - 1), pr128->au64[1] } };
+ return r128;
+# endif
+}
+
+
+# if 0 /* unused */
+DECLINLINE(float128_t) iemFpuSoftF128FromIprt(PCRTFLOAT128U pr128)
+{
+ float128_t r128 = { { pr128->au64[0], pr128->au64[1] } };
+ return r128;
+}
+# endif
+
+
+/** Converts a 80-bit floating point value to SoftFloat 128-bit floating point. */
+DECLINLINE(float128_t) iemFpuSoftF128FromFloat80(PCRTFLOAT80U pr80Val)
+{
+ extFloat80_t Tmp;
+ Tmp.signExp = pr80Val->s2.uSignAndExponent;
+ Tmp.signif = pr80Val->s2.uMantissa;
+ softfloat_state_t Ignored = SOFTFLOAT_STATE_INIT_DEFAULTS();
+ return extF80_to_f128(Tmp, &Ignored);
+}
+
+
+/**
+ * Converts from the packed IPRT 80-bit floating point (RTFLOAT80U) format to
+ * the SoftFloat extended 80-bit floating point format (extFloat80_t).
+ *
+ * This is only a structure format conversion, nothing else.
+ */
+DECLINLINE(extFloat80_t) iemFpuSoftF80FromIprt(PCRTFLOAT80U pr80Val)
+{
+ extFloat80_t Tmp;
+ Tmp.signExp = pr80Val->s2.uSignAndExponent;
+ Tmp.signif = pr80Val->s2.uMantissa;
+ return Tmp;
+}
+
+
+/**
+ * Converts from SoftFloat extended 80-bit floating point format (extFloat80_t)
+ * to the packed IPRT 80-bit floating point (RTFLOAT80U) format.
+ *
+ * This is only a structure format conversion, nothing else.
+ */
+DECLINLINE(PRTFLOAT80U) iemFpuSoftF80ToIprt(PRTFLOAT80U pr80Dst, extFloat80_t const r80XSrc)
+{
+ pr80Dst->s2.uSignAndExponent = r80XSrc.signExp;
+ pr80Dst->s2.uMantissa = r80XSrc.signif;
+ return pr80Dst;
+}
+
+
+DECLINLINE(uint16_t) iemFpuSoftF128ToFloat80(PRTFLOAT80U pr80Dst, float128_t r128Src, uint16_t fFcw, uint16_t fFsw)
+{
+ RT_NOREF(fFcw);
+ RTFLOAT128U Tmp;
+ *(float128_t *)&Tmp = r128Src;
+ ASMCompilerBarrier();
+
+ if (RTFLOAT128U_IS_NORMAL(&Tmp))
+ {
+ pr80Dst->s.fSign = Tmp.s64.fSign;
+ pr80Dst->s.uExponent = Tmp.s64.uExponent;
+ uint64_t uFraction = Tmp.s64.uFractionHi << (63 - 48)
+ | Tmp.s64.uFractionLo >> (64 - 15);
+
+ /* Do rounding - just truncate in near mode when midway on an even outcome. */
+ unsigned const cShiftOff = 64 - 15;
+ uint64_t const fRoundingOffMask = RT_BIT_64(cShiftOff) - 1;
+ uint64_t const uRoundedOff = Tmp.s64.uFractionLo & fRoundingOffMask;
+ if (uRoundedOff)
+ {
+ uint64_t const uRoundingAdd = (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST
+ ? RT_BIT_64(cShiftOff - 1)
+ : (fFcw & X86_FCW_RC_MASK) == (Tmp.s64.fSign ? X86_FCW_RC_DOWN : X86_FCW_RC_UP)
+ ? fRoundingOffMask
+ : 0;
+ if ( (fFcw & X86_FCW_RC_MASK) != X86_FCW_RC_NEAREST
+ || (Tmp.s64.uFractionLo & RT_BIT_64(cShiftOff))
+ || uRoundedOff != uRoundingAdd)
+ {
+ if ((uRoundedOff + uRoundingAdd) >> cShiftOff)
+ {
+ uFraction += 1;
+ if (!(uFraction & RT_BIT_64(63)))
+ { /* likely */ }
+ else
+ {
+ uFraction >>= 1;
+ pr80Dst->s.uExponent++;
+ if (pr80Dst->s.uExponent == RTFLOAT64U_EXP_MAX)
+ return fFsw;
+ }
+ fFsw |= X86_FSW_C1;
+ }
+ }
+ fFsw |= X86_FSW_PE;
+ if (!(fFcw & X86_FCW_PM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+
+ pr80Dst->s.uMantissa = RT_BIT_64(63) | uFraction;
+ }
+ else if (RTFLOAT128U_IS_ZERO(&Tmp))
+ {
+ pr80Dst->s.fSign = Tmp.s64.fSign;
+ pr80Dst->s.uExponent = 0;
+ pr80Dst->s.uMantissa = 0;
+ }
+ else if (RTFLOAT128U_IS_INF(&Tmp))
+ {
+ pr80Dst->s.fSign = Tmp.s64.fSign;
+ pr80Dst->s.uExponent = 0x7fff;
+ pr80Dst->s.uMantissa = 0;
+ }
+ return fFsw;
+}
+
+
+/**
+ * Helper for transfering exception and C1 to FSW and setting the result value
+ * accordingly.
+ *
+ * @returns Updated FSW.
+ * @param pSoftState The SoftFloat state following the operation.
+ * @param r80XResult The result of the SoftFloat operation.
+ * @param pr80Result Where to store the result for IEM.
+ * @param fFcw The FPU control word.
+ * @param fFsw The FSW before the operation, with necessary bits
+ * cleared and such.
+ * @param pr80XcptResult Alternative return value for use an unmasked \#IE is
+ * raised.
+ */
+DECLINLINE(uint16_t) iemFpuSoftStateAndF80ToFswAndIprtResult(softfloat_state_t const *pSoftState, extFloat80_t r80XResult,
+ PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw,
+ PCRTFLOAT80U pr80XcptResult)
+{
+ fFsw |= (pSoftState->exceptionFlags & X86_FSW_XCPT_MASK)
+ | (uint16_t)((pSoftState->exceptionFlags & softfloat_flag_c1) << 2);
+ if (fFsw & ~fFcw & X86_FSW_XCPT_MASK)
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+
+ if (!(fFsw & ~fFcw & (X86_FSW_IE | X86_FSW_DE)))
+ iemFpuSoftF80ToIprt(pr80Result, r80XResult);
+ else
+ {
+ fFsw &= ~(X86_FSW_OE | X86_FSW_UE | X86_FSW_PE | X86_FSW_ZE | X86_FSW_C1);
+ *pr80Result = *pr80XcptResult;
+ }
+ return fFsw;
+}
+
+
+/**
+ * Helper doing polynomial evaluation using Horner's method.
+ *
+ * See https://en.wikipedia.org/wiki/Horner%27s_method for details.
+ */
+float128_t iemFpuSoftF128HornerPoly(float128_t z, PCRTFLOAT128U g_par128HornerConsts, size_t cHornerConsts,
+ unsigned cPrecision, softfloat_state_t *pSoftState)
+{
+ Assert(cHornerConsts > 1);
+ size_t i = cHornerConsts - 1;
+ float128_t r128Result = iemFpuSoftF128PrecisionIprt(&g_par128HornerConsts[i], cPrecision);
+ while (i-- > 0)
+ {
+ r128Result = iemFpuSoftF128Precision(f128_mul(r128Result, z, pSoftState), cPrecision);
+ r128Result = f128_add(r128Result, iemFpuSoftF128PrecisionIprt(&g_par128HornerConsts[i], cPrecision), pSoftState);
+ r128Result = iemFpuSoftF128Precision(r128Result, cPrecision);
+ }
+ return r128Result;
+}
+
+#endif /* !IEM_WITH_FLOAT128_FOR_FPU - SoftFloat */
+
+
+/**
+ * Composes a normalized and rounded RTFLOAT80U result from a 192 bit wide
+ * mantissa, exponent and sign.
+ *
+ * @returns Updated FSW.
+ * @param pr80Dst Where to return the composed value.
+ * @param fSign The sign.
+ * @param puMantissa The mantissa, 256-bit type but the to 64-bits are
+ * ignored and should be zero. This will probably be
+ * modified during normalization and rounding.
+ * @param iExponent Unbiased exponent.
+ * @param fFcw The FPU control word.
+ * @param fFsw The FPU status word.
+ */
+static uint16_t iemFpuFloat80RoundAndComposeFrom192(PRTFLOAT80U pr80Dst, bool fSign, PRTUINT256U puMantissa,
+ int32_t iExponent, uint16_t fFcw, uint16_t fFsw)
+{
+ AssertStmt(puMantissa->QWords.qw3 == 0, puMantissa->QWords.qw3 = 0);
+
+ iExponent += RTFLOAT80U_EXP_BIAS;
+
+ /* Do normalization if necessary and possible. */
+ if (!(puMantissa->QWords.qw2 & RT_BIT_64(63)))
+ {
+ int cShift = 192 - RTUInt256BitCount(puMantissa);
+ if (iExponent > cShift)
+ iExponent -= cShift;
+ else
+ {
+ if (fFcw & X86_FCW_UM)
+ {
+ if (iExponent > 0)
+ cShift = --iExponent;
+ else
+ cShift = 0;
+ }
+ iExponent -= cShift;
+ }
+ RTUInt256AssignShiftLeft(puMantissa, cShift);
+ }
+
+ /* Do rounding. */
+ uint64_t uMantissa = puMantissa->QWords.qw2;
+ if (puMantissa->QWords.qw1 || puMantissa->QWords.qw0)
+ {
+ bool fAdd;
+ switch (fFcw & X86_FCW_RC_MASK)
+ {
+ default: /* (for the simple-minded MSC which otherwise things fAdd would be used uninitialized) */
+ case X86_FCW_RC_NEAREST:
+ if (puMantissa->QWords.qw1 & RT_BIT_64(63))
+ {
+ if ( (uMantissa & 1)
+ || puMantissa->QWords.qw0 != 0
+ || puMantissa->QWords.qw1 != RT_BIT_64(63))
+ {
+ fAdd = true;
+ break;
+ }
+ uMantissa &= ~(uint64_t)1;
+ }
+ fAdd = false;
+ break;
+ case X86_FCW_RC_ZERO:
+ fAdd = false;
+ break;
+ case X86_FCW_RC_UP:
+ fAdd = !fSign;
+ break;
+ case X86_FCW_RC_DOWN:
+ fAdd = fSign;
+ break;
+ }
+ if (fAdd)
+ {
+ uint64_t const uTmp = uMantissa;
+ uMantissa = uTmp + 1;
+ if (uMantissa < uTmp)
+ {
+ uMantissa >>= 1;
+ uMantissa |= RT_BIT_64(63);
+ iExponent++;
+ }
+ fFsw |= X86_FSW_C1;
+ }
+ fFsw |= X86_FSW_PE;
+ if (!(fFcw & X86_FCW_PM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+
+ /* Check for underflow (denormals). */
+ if (iExponent <= 0)
+ {
+ if (fFcw & X86_FCW_UM)
+ {
+ if (uMantissa & RT_BIT_64(63))
+ uMantissa >>= 1;
+ iExponent = 0;
+ }
+ else
+ {
+ iExponent += RTFLOAT80U_EXP_BIAS_ADJUST;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ fFsw |= X86_FSW_UE;
+ }
+ /* Check for overflow */
+ else if (iExponent >= RTFLOAT80U_EXP_MAX)
+ {
+ Assert(iExponent < RTFLOAT80U_EXP_MAX);
+ }
+
+ /* Compose the result. */
+ pr80Dst->s.uMantissa = uMantissa;
+ pr80Dst->s.uExponent = iExponent;
+ pr80Dst->s.fSign = fSign;
+ return fFsw;
+}
+
+
+/**
+ * See also iemAImpl_fld_r80_from_r32
+ */
+static uint16_t iemAImplConvertR32ToR80(PCRTFLOAT32U pr32Val, PRTFLOAT80U pr80Dst)
+{
+ uint16_t fFsw = 0;
+ if (RTFLOAT32U_IS_NORMAL(pr32Val))
+ {
+ pr80Dst->sj64.fSign = pr32Val->s.fSign;
+ pr80Dst->sj64.fInteger = 1;
+ pr80Dst->sj64.uFraction = (uint64_t)pr32Val->s.uFraction
+ << (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS);
+ pr80Dst->sj64.uExponent = pr32Val->s.uExponent - RTFLOAT32U_EXP_BIAS + RTFLOAT80U_EXP_BIAS;
+ Assert(RTFLOAT80U_IS_NORMAL(pr80Dst));
+ }
+ else if (RTFLOAT32U_IS_ZERO(pr32Val))
+ {
+ pr80Dst->s.fSign = pr32Val->s.fSign;
+ pr80Dst->s.uExponent = 0;
+ pr80Dst->s.uMantissa = 0;
+ Assert(RTFLOAT80U_IS_ZERO(pr80Dst));
+ }
+ else if (RTFLOAT32U_IS_SUBNORMAL(pr32Val))
+ {
+ /* Subnormal -> normalized + X86_FSW_DE return. */
+ pr80Dst->sj64.fSign = pr32Val->s.fSign;
+ pr80Dst->sj64.fInteger = 1;
+ unsigned const cExtraShift = RTFLOAT32U_FRACTION_BITS - ASMBitLastSetU32(pr32Val->s.uFraction);
+ pr80Dst->sj64.uFraction = (uint64_t)pr32Val->s.uFraction
+ << (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS + cExtraShift + 1);
+ pr80Dst->sj64.uExponent = pr32Val->s.uExponent - RTFLOAT32U_EXP_BIAS + RTFLOAT80U_EXP_BIAS - cExtraShift;
+ fFsw = X86_FSW_DE;
+ }
+ else if (RTFLOAT32U_IS_INF(pr32Val))
+ {
+ pr80Dst->s.fSign = pr32Val->s.fSign;
+ pr80Dst->s.uExponent = RTFLOAT80U_EXP_MAX;
+ pr80Dst->s.uMantissa = RT_BIT_64(63);
+ Assert(RTFLOAT80U_IS_INF(pr80Dst));
+ }
+ else
+ {
+ Assert(RTFLOAT32U_IS_NAN(pr32Val));
+ pr80Dst->sj64.fSign = pr32Val->s.fSign;
+ pr80Dst->sj64.uExponent = RTFLOAT80U_EXP_MAX;
+ pr80Dst->sj64.fInteger = 1;
+ pr80Dst->sj64.uFraction = (uint64_t)pr32Val->s.uFraction
+ << (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS);
+ Assert(RTFLOAT80U_IS_NAN(pr80Dst));
+ Assert(RTFLOAT80U_IS_SIGNALLING_NAN(pr80Dst) == RTFLOAT32U_IS_SIGNALLING_NAN(pr32Val));
+ }
+ return fFsw;
+}
+
+
+/**
+ * See also iemAImpl_fld_r80_from_r64
+ */
+static uint16_t iemAImplConvertR64ToR80(PCRTFLOAT64U pr64Val, PRTFLOAT80U pr80Dst)
+{
+ uint16_t fFsw = 0;
+ if (RTFLOAT64U_IS_NORMAL(pr64Val))
+ {
+ pr80Dst->sj64.fSign = pr64Val->s.fSign;
+ pr80Dst->sj64.fInteger = 1;
+ pr80Dst->sj64.uFraction = pr64Val->s64.uFraction << (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS);
+ pr80Dst->sj64.uExponent = pr64Val->s.uExponent - RTFLOAT64U_EXP_BIAS + RTFLOAT80U_EXP_BIAS;
+ Assert(RTFLOAT80U_IS_NORMAL(pr80Dst));
+ }
+ else if (RTFLOAT64U_IS_ZERO(pr64Val))
+ {
+ pr80Dst->s.fSign = pr64Val->s.fSign;
+ pr80Dst->s.uExponent = 0;
+ pr80Dst->s.uMantissa = 0;
+ Assert(RTFLOAT80U_IS_ZERO(pr80Dst));
+ }
+ else if (RTFLOAT64U_IS_SUBNORMAL(pr64Val))
+ {
+ /* Subnormal values gets normalized. */
+ pr80Dst->sj64.fSign = pr64Val->s.fSign;
+ pr80Dst->sj64.fInteger = 1;
+ unsigned const cExtraShift = RTFLOAT64U_FRACTION_BITS - ASMBitLastSetU64(pr64Val->s64.uFraction);
+ pr80Dst->sj64.uFraction = pr64Val->s64.uFraction
+ << (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS + cExtraShift + 1);
+ pr80Dst->sj64.uExponent = pr64Val->s.uExponent - RTFLOAT64U_EXP_BIAS + RTFLOAT80U_EXP_BIAS - cExtraShift;
+ fFsw = X86_FSW_DE;
+ }
+ else if (RTFLOAT64U_IS_INF(pr64Val))
+ {
+ pr80Dst->s.fSign = pr64Val->s.fSign;
+ pr80Dst->s.uExponent = RTFLOAT80U_EXP_MAX;
+ pr80Dst->s.uMantissa = RT_BIT_64(63);
+ Assert(RTFLOAT80U_IS_INF(pr80Dst));
+ }
+ else
+ {
+ /* Signalling and quiet NaNs, both turn into quiet ones when loaded (weird). */
+ Assert(RTFLOAT64U_IS_NAN(pr64Val));
+ pr80Dst->sj64.fSign = pr64Val->s.fSign;
+ pr80Dst->sj64.uExponent = RTFLOAT80U_EXP_MAX;
+ pr80Dst->sj64.fInteger = 1;
+ pr80Dst->sj64.uFraction = pr64Val->s64.uFraction << (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS);
+ Assert(RTFLOAT80U_IS_NAN(pr80Dst));
+ Assert(RTFLOAT80U_IS_SIGNALLING_NAN(pr80Dst) == RTFLOAT64U_IS_SIGNALLING_NAN(pr64Val));
+ }
+ return fFsw;
+}
+
+
+/**
+ * See also EMIT_FILD.
+ */
+#define EMIT_CONVERT_IXX_TO_R80(a_cBits) \
+static PRTFLOAT80U iemAImplConvertI ## a_cBits ## ToR80(int ## a_cBits ## _t iVal, PRTFLOAT80U pr80Dst) \
+{ \
+ if (iVal == 0) \
+ { \
+ pr80Dst->s.fSign = 0; \
+ pr80Dst->s.uExponent = 0; \
+ pr80Dst->s.uMantissa = 0; \
+ } \
+ else \
+ { \
+ if (iVal > 0) \
+ pr80Dst->s.fSign = 0; \
+ else \
+ { \
+ pr80Dst->s.fSign = 1; \
+ iVal = -iVal; \
+ } \
+ unsigned const cBits = ASMBitLastSetU ## a_cBits((uint ## a_cBits ## _t)iVal); \
+ pr80Dst->s.uExponent = cBits - 1 + RTFLOAT80U_EXP_BIAS; \
+ pr80Dst->s.uMantissa = (uint64_t)iVal << (RTFLOAT80U_FRACTION_BITS + 1 - cBits); \
+ } \
+ return pr80Dst; \
+}
+EMIT_CONVERT_IXX_TO_R80(16)
+EMIT_CONVERT_IXX_TO_R80(32)
+//EMIT_CONVERT_IXX_TO_R80(64)
+
+/** For implementing iemAImpl_fmul_r80_by_r64 and such. */
+#define EMIT_R80_BY_R64(a_Name, a_fnR80ByR80, a_DenormalException) \
+IEM_DECL_IMPL_DEF(void, a_Name,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2)) \
+{ \
+ RTFLOAT80U r80Val2; \
+ uint16_t fFsw = iemAImplConvertR64ToR80(pr64Val2, &r80Val2); \
+ Assert(!fFsw || fFsw == X86_FSW_DE); \
+ if (fFsw) \
+ { \
+ if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_NAN(pr80Val1) || (a_DenormalException)) \
+ fFsw = 0; \
+ else if (!(pFpuState->FCW & X86_FCW_DM)) \
+ { \
+ pFpuRes->r80Result = *pr80Val1; \
+ pFpuRes->FSW = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT) \
+ | X86_FSW_DE | X86_FSW_ES | X86_FSW_B; \
+ return; \
+ } \
+ } \
+ a_fnR80ByR80(pFpuState, pFpuRes, pr80Val1, &r80Val2); \
+ pFpuRes->FSW = (pFpuRes->FSW & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT) | fFsw; \
+}
+
+/** For implementing iemAImpl_fmul_r80_by_r32 and such. */
+#define EMIT_R80_BY_R32(a_Name, a_fnR80ByR80, a_DenormalException) \
+IEM_DECL_IMPL_DEF(void, a_Name,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2)) \
+{ \
+ RTFLOAT80U r80Val2; \
+ uint16_t fFsw = iemAImplConvertR32ToR80(pr32Val2, &r80Val2); \
+ Assert(!fFsw || fFsw == X86_FSW_DE); \
+ if (fFsw) \
+ { \
+ if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_NAN(pr80Val1) || (a_DenormalException)) \
+ fFsw = 0; \
+ else if (!(pFpuState->FCW & X86_FCW_DM)) \
+ { \
+ pFpuRes->r80Result = *pr80Val1; \
+ pFpuRes->FSW = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT) \
+ | X86_FSW_DE | X86_FSW_ES | X86_FSW_B; \
+ return; \
+ } \
+ } \
+ a_fnR80ByR80(pFpuState, pFpuRes, pr80Val1, &r80Val2); \
+ pFpuRes->FSW = (pFpuRes->FSW & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT) | fFsw; \
+}
+
+/** For implementing iemAImpl_fimul_r80_by_i32 and such. */
+#define EMIT_R80_BY_I32(a_Name, a_fnR80ByR80) \
+IEM_DECL_IMPL_DEF(void, a_Name,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2)) \
+{ \
+ RTFLOAT80U r80Val2; \
+ a_fnR80ByR80(pFpuState, pFpuRes, pr80Val1, iemAImplConvertI32ToR80(*pi32Val2, &r80Val2)); \
+ pFpuRes->FSW = (pFpuRes->FSW & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT); \
+}
+
+/** For implementing iemAImpl_fimul_r80_by_i16 and such. */
+#define EMIT_R80_BY_I16(a_Name, a_fnR80ByR80) \
+IEM_DECL_IMPL_DEF(void, a_Name,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2)) \
+{ \
+ RTFLOAT80U r80Val2; \
+ a_fnR80ByR80(pFpuState, pFpuRes, pr80Val1, iemAImplConvertI16ToR80(*pi16Val2, &r80Val2)); \
+ pFpuRes->FSW = (pFpuRes->FSW & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT); \
+}
+
+
+
+/*********************************************************************************************************************************
+* x86 FPU Division Operations *
+*********************************************************************************************************************************/
+
+/** Worker for iemAImpl_fdiv_r80_by_r80 & iemAImpl_fdivr_r80_by_r80. */
+static uint16_t iemAImpl_fdiv_f80_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PRTFLOAT80U pr80Result,
+ uint16_t fFcw, uint16_t fFsw, PCRTFLOAT80U pr80Val1Org)
+{
+ if (!RTFLOAT80U_IS_ZERO(pr80Val2) || RTFLOAT80U_IS_NAN(pr80Val1) || RTFLOAT80U_IS_INF(pr80Val1))
+ {
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw);
+ extFloat80_t r80XResult = extF80_div(iemFpuSoftF80FromIprt(pr80Val1), iemFpuSoftF80FromIprt(pr80Val2), &SoftState);
+ return iemFpuSoftStateAndF80ToFswAndIprtResult(&SoftState, r80XResult, pr80Result, fFcw, fFsw, pr80Val1Org);
+ }
+ if (!RTFLOAT80U_IS_ZERO(pr80Val1))
+ { /* Div by zero. */
+ if (fFcw & X86_FCW_ZM)
+ *pr80Result = g_ar80Infinity[pr80Val1->s.fSign != pr80Val2->s.fSign];
+ else
+ {
+ *pr80Result = *pr80Val1Org;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ fFsw |= X86_FSW_ZE;
+ }
+ else
+ { /* Invalid operand */
+ if (fFcw & X86_FCW_IM)
+ *pr80Result = g_r80Indefinite;
+ else
+ {
+ *pr80Result = *pr80Val1Org;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ fFsw |= X86_FSW_IE;
+ }
+ return fFsw;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fdiv_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
+{
+ uint16_t const fFcw = pFpuState->FCW;
+ uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT);
+
+ /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. */
+ if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2))
+ {
+ if (fFcw & X86_FCW_IM)
+ pFpuRes->r80Result = g_r80Indefinite;
+ else
+ {
+ pFpuRes->r80Result = *pr80Val1;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ fFsw |= X86_FSW_IE;
+ }
+ /* SoftFloat does not check for denormals and certainly not report them to us. NaNs & /0 trumps denormals. */
+ else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2) && !RTFLOAT80U_IS_ZERO(pr80Val2))
+ || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1)) )
+ {
+ if (fFcw & X86_FCW_DM)
+ {
+ PCRTFLOAT80U const pr80Val1Org = pr80Val1;
+ IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized);
+ IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized);
+ fFsw = iemAImpl_fdiv_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org);
+ }
+ else
+ {
+ pFpuRes->r80Result = *pr80Val1;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ fFsw |= X86_FSW_DE;
+ }
+ /* SoftFloat can handle the rest: */
+ else
+ fFsw = iemAImpl_fdiv_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1);
+
+ pFpuRes->FSW = fFsw;
+}
+
+
+EMIT_R80_BY_R64(iemAImpl_fdiv_r80_by_r64, iemAImpl_fdiv_r80_by_r80, 0)
+EMIT_R80_BY_R32(iemAImpl_fdiv_r80_by_r32, iemAImpl_fdiv_r80_by_r80, 0)
+EMIT_R80_BY_I32(iemAImpl_fidiv_r80_by_i32, iemAImpl_fdiv_r80_by_r80)
+EMIT_R80_BY_I16(iemAImpl_fidiv_r80_by_i16, iemAImpl_fdiv_r80_by_r80)
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fdivr_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
+{
+ uint16_t const fFcw = pFpuState->FCW;
+ uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT);
+
+ /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. */
+ if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2))
+ {
+ if (fFcw & X86_FCW_IM)
+ pFpuRes->r80Result = g_r80Indefinite;
+ else
+ {
+ pFpuRes->r80Result = *pr80Val1;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ fFsw |= X86_FSW_IE;
+ }
+ /* SoftFloat does not check for denormals and certainly not report them to us. NaNs & /0 trumps denormals. */
+ else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2))
+ || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1) && !RTFLOAT80U_IS_ZERO(pr80Val1)) )
+ {
+ if (fFcw & X86_FCW_DM)
+ {
+ PCRTFLOAT80U const pr80Val1Org = pr80Val1;
+ IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized);
+ IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized);
+ fFsw = iemAImpl_fdiv_f80_r80_worker(pr80Val2, pr80Val1, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org);
+ }
+ else
+ {
+ pFpuRes->r80Result = *pr80Val1;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ fFsw |= X86_FSW_DE;
+ }
+ /* SoftFloat can handle the rest: */
+ else
+ fFsw = iemAImpl_fdiv_f80_r80_worker(pr80Val2, pr80Val1, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1);
+
+ pFpuRes->FSW = fFsw;
+}
+
+
+EMIT_R80_BY_R64(iemAImpl_fdivr_r80_by_r64, iemAImpl_fdivr_r80_by_r80, RTFLOAT80U_IS_ZERO(pr80Val1))
+EMIT_R80_BY_R32(iemAImpl_fdivr_r80_by_r32, iemAImpl_fdivr_r80_by_r80, RTFLOAT80U_IS_ZERO(pr80Val1))
+EMIT_R80_BY_I32(iemAImpl_fidivr_r80_by_i32, iemAImpl_fdivr_r80_by_r80)
+EMIT_R80_BY_I16(iemAImpl_fidivr_r80_by_i16, iemAImpl_fdivr_r80_by_r80)
+
+
+/** Worker for iemAImpl_fprem_r80_by_r80 & iemAImpl_fprem1_r80_by_r80. */
+static uint16_t iemAImpl_fprem_fprem1_r80_by_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PRTFLOAT80U pr80Result,
+ uint16_t fFcw, uint16_t fFsw, PCRTFLOAT80U pr80Val1Org, bool fLegacyInstr)
+{
+ if (!RTFLOAT80U_IS_ZERO(pr80Val2) || RTFLOAT80U_IS_NAN(pr80Val1) || RTFLOAT80U_IS_INF(pr80Val1))
+ {
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw);
+ uint16_t fCxFlags = 0;
+ extFloat80_t r80XResult = extF80_partialRem(iemFpuSoftF80FromIprt(pr80Val1), iemFpuSoftF80FromIprt(pr80Val2),
+ fLegacyInstr ? softfloat_round_minMag : softfloat_round_near_even,
+ &fCxFlags, &SoftState);
+ Assert(!(fCxFlags & ~X86_FSW_C_MASK));
+ fFsw = iemFpuSoftStateAndF80ToFswAndIprtResult(&SoftState, r80XResult, pr80Result, fFcw, fFsw, pr80Val1Org);
+ if ( !(fFsw & X86_FSW_IE)
+ && !RTFLOAT80U_IS_NAN(pr80Result)
+ && !RTFLOAT80U_IS_INDEFINITE(pr80Result))
+ {
+ fFsw &= ~(uint16_t)X86_FSW_C_MASK;
+ fFsw |= fCxFlags & X86_FSW_C_MASK;
+ }
+ return fFsw;
+ }
+
+ /* Invalid operand */
+ if (fFcw & X86_FCW_IM)
+ *pr80Result = g_r80Indefinite;
+ else
+ {
+ *pr80Result = *pr80Val1Org;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ return fFsw | X86_FSW_IE;
+}
+
+
+static void iemAImpl_fprem_fprem1_r80_by_r80(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, bool fLegacyInstr)
+{
+ uint16_t const fFcw = pFpuState->FCW;
+ uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 /*| X86_FSW_C2*/ | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT);
+
+ /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals.
+ In addition, we'd like to handle zero ST(1) now as SoftFloat returns Inf instead
+ of Indefinite. (Note! There is no #Z like the footnotes to tables 3-31 and 3-32
+ for the FPREM1 & FPREM1 instructions in the intel reference manual claims!) */
+ if ( RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2)
+ || (RTFLOAT80U_IS_ZERO(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1) && !RTFLOAT80U_IS_INDEFINITE(pr80Val1)))
+ {
+ if (fFcw & X86_FCW_IM)
+ pFpuRes->r80Result = g_r80Indefinite;
+ else
+ {
+ pFpuRes->r80Result = *pr80Val1;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ fFsw |= X86_FSW_IE;
+ }
+ /* SoftFloat does not check for denormals and certainly not report them to us. NaNs & /0 trumps denormals. */
+ else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2) && !RTFLOAT80U_IS_ZERO(pr80Val2))
+ || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1) && !RTFLOAT80U_IS_INF(pr80Val1)) )
+ {
+ if (fFcw & X86_FCW_DM)
+ {
+ PCRTFLOAT80U const pr80Val1Org = pr80Val1;
+ IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized);
+ IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized);
+ fFsw = iemAImpl_fprem_fprem1_r80_by_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw,
+ pr80Val1Org, fLegacyInstr);
+ }
+ else
+ {
+ pFpuRes->r80Result = *pr80Val1;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ fFsw |= X86_FSW_DE;
+ }
+ /* SoftFloat can handle the rest: */
+ else
+ fFsw = iemAImpl_fprem_fprem1_r80_by_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw,
+ pr80Val1, fLegacyInstr);
+
+ pFpuRes->FSW = fFsw;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fprem_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
+{
+ iemAImpl_fprem_fprem1_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2, true /*fLegacyInstr*/);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fprem1_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
+{
+ iemAImpl_fprem_fprem1_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2, false /*fLegacyInstr*/);
+}
+
+
+/*********************************************************************************************************************************
+* x87 FPU Multiplication Operations *
+*********************************************************************************************************************************/
+
+/** Worker for iemAImpl_fmul_r80_by_r80. */
+static uint16_t iemAImpl_fmul_f80_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PRTFLOAT80U pr80Result,
+ uint16_t fFcw, uint16_t fFsw, PCRTFLOAT80U pr80Val1Org)
+{
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw);
+ extFloat80_t r80XResult = extF80_mul(iemFpuSoftF80FromIprt(pr80Val1), iemFpuSoftF80FromIprt(pr80Val2), &SoftState);
+ return iemFpuSoftStateAndF80ToFswAndIprtResult(&SoftState, r80XResult, pr80Result, fFcw, fFsw, pr80Val1Org);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fmul_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
+{
+ uint16_t const fFcw = pFpuState->FCW;
+ uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT);
+
+ /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. */
+ if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2))
+ {
+ if (fFcw & X86_FCW_IM)
+ pFpuRes->r80Result = g_r80Indefinite;
+ else
+ {
+ pFpuRes->r80Result = *pr80Val1;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ fFsw |= X86_FSW_IE;
+ }
+ /* SoftFloat does not check for denormals and certainly not report them to us. NaNs trumps denormals. */
+ else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2))
+ || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1)) )
+ {
+ if (fFcw & X86_FCW_DM)
+ {
+ PCRTFLOAT80U const pr80Val1Org = pr80Val1;
+ IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized);
+ IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized);
+ fFsw = iemAImpl_fmul_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org);
+ }
+ else
+ {
+ pFpuRes->r80Result = *pr80Val1;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ fFsw |= X86_FSW_DE;
+ }
+ /* SoftFloat can handle the rest: */
+ else
+ fFsw = iemAImpl_fmul_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1);
+
+ pFpuRes->FSW = fFsw;
+}
+
+
+EMIT_R80_BY_R64(iemAImpl_fmul_r80_by_r64, iemAImpl_fmul_r80_by_r80, 0)
+EMIT_R80_BY_R32(iemAImpl_fmul_r80_by_r32, iemAImpl_fmul_r80_by_r80, 0)
+EMIT_R80_BY_I32(iemAImpl_fimul_r80_by_i32, iemAImpl_fmul_r80_by_r80)
+EMIT_R80_BY_I16(iemAImpl_fimul_r80_by_i16, iemAImpl_fmul_r80_by_r80)
+
+
+/*********************************************************************************************************************************
+* x87 FPU Addition *
+*********************************************************************************************************************************/
+
+/** Worker for iemAImpl_fadd_r80_by_r80. */
+static uint16_t iemAImpl_fadd_f80_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PRTFLOAT80U pr80Result,
+ uint16_t fFcw, uint16_t fFsw, PCRTFLOAT80U pr80Val1Org)
+{
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw);
+ extFloat80_t r80XResult = extF80_add(iemFpuSoftF80FromIprt(pr80Val1), iemFpuSoftF80FromIprt(pr80Val2), &SoftState);
+ return iemFpuSoftStateAndF80ToFswAndIprtResult(&SoftState, r80XResult, pr80Result, fFcw, fFsw, pr80Val1Org);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fadd_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
+{
+ uint16_t const fFcw = pFpuState->FCW;
+ uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT);
+
+ /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. */
+ if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2))
+ {
+ if (fFcw & X86_FCW_IM)
+ pFpuRes->r80Result = g_r80Indefinite;
+ else
+ {
+ pFpuRes->r80Result = *pr80Val1;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ fFsw |= X86_FSW_IE;
+ }
+ /* SoftFloat does not check for denormals and certainly not report them to us. NaNs trumps denormals. */
+ else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2))
+ || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1)) )
+ {
+ if (fFcw & X86_FCW_DM)
+ {
+ PCRTFLOAT80U const pr80Val1Org = pr80Val1;
+ IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized);
+ IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized);
+ fFsw = iemAImpl_fadd_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org);
+ }
+ else
+ {
+ pFpuRes->r80Result = *pr80Val1;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ fFsw |= X86_FSW_DE;
+ }
+ /* SoftFloat can handle the rest: */
+ else
+ fFsw = iemAImpl_fadd_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1);
+
+ pFpuRes->FSW = fFsw;
+}
+
+
+EMIT_R80_BY_R64(iemAImpl_fadd_r80_by_r64, iemAImpl_fadd_r80_by_r80, 0)
+EMIT_R80_BY_R32(iemAImpl_fadd_r80_by_r32, iemAImpl_fadd_r80_by_r80, 0)
+EMIT_R80_BY_I32(iemAImpl_fiadd_r80_by_i32, iemAImpl_fadd_r80_by_r80)
+EMIT_R80_BY_I16(iemAImpl_fiadd_r80_by_i16, iemAImpl_fadd_r80_by_r80)
+
+
+/*********************************************************************************************************************************
+* x87 FPU Subtraction *
+*********************************************************************************************************************************/
+
+/** Worker for iemAImpl_fsub_r80_by_r80 and iemAImpl_fsubr_r80_by_r80. */
+static uint16_t iemAImpl_fsub_f80_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PRTFLOAT80U pr80Result,
+ uint16_t fFcw, uint16_t fFsw, PCRTFLOAT80U pr80Val1Org)
+{
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw);
+ extFloat80_t r80XResult = extF80_sub(iemFpuSoftF80FromIprt(pr80Val1), iemFpuSoftF80FromIprt(pr80Val2), &SoftState);
+ return iemFpuSoftStateAndF80ToFswAndIprtResult(&SoftState, r80XResult, pr80Result, fFcw, fFsw, pr80Val1Org);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fsub_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
+{
+ uint16_t const fFcw = pFpuState->FCW;
+ uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT);
+
+ /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. */
+ if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2))
+ {
+ if (fFcw & X86_FCW_IM)
+ pFpuRes->r80Result = g_r80Indefinite;
+ else
+ {
+ pFpuRes->r80Result = *pr80Val1;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ fFsw |= X86_FSW_IE;
+ }
+ /* SoftFloat does not check for denormals and certainly not report them to us. NaNs trumps denormals. */
+ else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2))
+ || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1)) )
+ {
+ if (fFcw & X86_FCW_DM)
+ {
+ PCRTFLOAT80U const pr80Val1Org = pr80Val1;
+ IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized);
+ IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized);
+ fFsw = iemAImpl_fsub_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org);
+ }
+ else
+ {
+ pFpuRes->r80Result = *pr80Val1;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ fFsw |= X86_FSW_DE;
+ }
+ /* SoftFloat can handle the rest: */
+ else
+ fFsw = iemAImpl_fsub_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1);
+
+ pFpuRes->FSW = fFsw;
+}
+
+
+EMIT_R80_BY_R64(iemAImpl_fsub_r80_by_r64, iemAImpl_fsub_r80_by_r80, 0)
+EMIT_R80_BY_R32(iemAImpl_fsub_r80_by_r32, iemAImpl_fsub_r80_by_r80, 0)
+EMIT_R80_BY_I32(iemAImpl_fisub_r80_by_i32, iemAImpl_fsub_r80_by_r80)
+EMIT_R80_BY_I16(iemAImpl_fisub_r80_by_i16, iemAImpl_fsub_r80_by_r80)
+
+
+/* Same as iemAImpl_fsub_r80_by_r80, but with input operands switched. */
+IEM_DECL_IMPL_DEF(void, iemAImpl_fsubr_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
+{
+ uint16_t const fFcw = pFpuState->FCW;
+ uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT);
+
+ /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. */
+ if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2))
+ {
+ if (fFcw & X86_FCW_IM)
+ pFpuRes->r80Result = g_r80Indefinite;
+ else
+ {
+ pFpuRes->r80Result = *pr80Val1;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ fFsw |= X86_FSW_IE;
+ }
+ /* SoftFloat does not check for denormals and certainly not report them to us. NaNs trumps denormals. */
+ else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2))
+ || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1)) )
+ {
+ if (fFcw & X86_FCW_DM)
+ {
+ PCRTFLOAT80U const pr80Val1Org = pr80Val1;
+ IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized);
+ IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized);
+ fFsw = iemAImpl_fsub_f80_r80_worker(pr80Val2, pr80Val1, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org);
+ }
+ else
+ {
+ pFpuRes->r80Result = *pr80Val1;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ fFsw |= X86_FSW_DE;
+ }
+ /* SoftFloat can handle the rest: */
+ else
+ fFsw = iemAImpl_fsub_f80_r80_worker(pr80Val2, pr80Val1, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1);
+
+ pFpuRes->FSW = fFsw;
+}
+
+
+EMIT_R80_BY_R64(iemAImpl_fsubr_r80_by_r64, iemAImpl_fsubr_r80_by_r80, 0)
+EMIT_R80_BY_R32(iemAImpl_fsubr_r80_by_r32, iemAImpl_fsubr_r80_by_r80, 0)
+EMIT_R80_BY_I32(iemAImpl_fisubr_r80_by_i32, iemAImpl_fsubr_r80_by_r80)
+EMIT_R80_BY_I16(iemAImpl_fisubr_r80_by_i16, iemAImpl_fsubr_r80_by_r80)
+
+
+/*********************************************************************************************************************************
+* x87 FPU Trigometric Operations *
+*********************************************************************************************************************************/
+static uint16_t iemAImpl_fpatan_r80_by_r80_normal(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PIEMFPURESULT pFpuRes, uint16_t fFcw, uint16_t fFsw)
+{
+ softfloat_state_t SoftState = SOFTFLOAT_STATE_INIT_DEFAULTS();
+ extFloat80_t y = iemFpuSoftF80FromIprt(pr80Val1);
+ extFloat80_t x = iemFpuSoftF80FromIprt(pr80Val2);
+ extFloat80_t v;
+ (void)fFcw;
+
+ v = extF80_atan2(y, x, &SoftState);
+
+ iemFpuSoftF80ToIprt(&pFpuRes->r80Result, v);
+ return fFsw;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fpatan_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
+{
+ uint16_t const fFcw = pFpuState->FCW;
+ uint16_t fFsw = pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3);
+
+ if (RTFLOAT80U_IS_NORMAL(pr80Val1) && RTFLOAT80U_IS_NORMAL(pr80Val2))
+ {
+ fFsw = iemAImpl_fpatan_r80_by_r80_normal(pr80Val1, pr80Val2, pFpuRes, fFcw, fFsw);
+
+ fFsw |= X86_FSW_PE | (7 << X86_FSW_TOP_SHIFT);
+ if (!(fFcw & X86_FCW_PM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ else
+ {
+ fFsw |= X86_FSW_IE;
+ if (!(fFcw & X86_FCW_IM))
+ {
+ pFpuRes->r80Result = *pr80Val2;
+ fFsw |= X86_FSW_ES | X86_FSW_B | (6 << X86_FSW_TOP_SHIFT);
+ }
+ else
+ {
+ pFpuRes->r80Result = g_r80Indefinite;
+ fFsw |= (7 << X86_FSW_TOP_SHIFT);
+ }
+ }
+
+ pFpuRes->FSW = fFsw;
+}
+#endif /* IEM_WITHOUT_ASSEMBLY */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fpatan_r80_by_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
+{
+ iemAImpl_fpatan_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2);
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fpatan_r80_by_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
+{
+ iemAImpl_fpatan_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2);
+}
+
+
+#if defined(IEM_WITHOUT_ASSEMBLY)
+static uint16_t iemAImpl_fptan_r80_r80_normal(PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val, uint16_t fFcw, uint16_t fFsw)
+{
+ softfloat_state_t SoftState = SOFTFLOAT_STATE_INIT_DEFAULTS();
+ extFloat80_t x = iemFpuSoftF80FromIprt(pr80Val);
+ extFloat80_t v;
+ (void)fFcw;
+
+ v = extF80_tan(x, &SoftState);
+
+ iemFpuSoftF80ToIprt(&pFpuResTwo->r80Result1, v);
+ return fFsw;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fptan_r80_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val))
+{
+ uint16_t const fFcw = pFpuState->FCW;
+ uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | /*X86_FSW_C2 |*/ X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT);
+
+ if (RTFLOAT80U_IS_ZERO(pr80Val))
+ {
+ pFpuResTwo->r80Result1 = *pr80Val;
+ pFpuResTwo->r80Result2 = g_ar80One[0];
+ }
+ else if (RTFLOAT80U_IS_NORMAL(pr80Val))
+ {
+ if (pr80Val->s.uExponent >= RTFLOAT80U_EXP_BIAS + 63)
+ {
+ fFsw |= X86_FSW_C2 | (7 << X86_FSW_TOP_SHIFT);
+ pFpuResTwo->r80Result1 = *pr80Val;
+ }
+ else
+ {
+ if (pr80Val->s.uExponent <= RTFLOAT80U_EXP_BIAS - 63)
+ {
+ pFpuResTwo->r80Result1 = *pr80Val;
+ }
+ else
+ {
+ fFsw = iemAImpl_fptan_r80_r80_normal(pFpuResTwo, pr80Val, fFcw, fFsw);
+ }
+
+ pFpuResTwo->r80Result2 = g_ar80One[0];
+
+ fFsw |= X86_FSW_PE;
+ if (!(fFcw & X86_FCW_PM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ }
+ else
+ {
+ fFsw |= X86_FSW_IE;
+ if (!(fFcw & X86_FCW_IM))
+ fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT);
+ }
+
+ pFpuResTwo->FSW = fFsw;
+}
+#endif /* IEM_WITHOUT_ASSEMBLY */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fptan_r80_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val))
+{
+ iemAImpl_fptan_r80_r80(pFpuState, pFpuResTwo, pr80Val);
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fptan_r80_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val))
+{
+ iemAImpl_fptan_r80_r80(pFpuState, pFpuResTwo, pr80Val);
+}
+
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+static uint16_t iemAImpl_fsin_r80_normal(PCRTFLOAT80U pr80Val, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw)
+{
+ softfloat_state_t SoftState = SOFTFLOAT_STATE_INIT_DEFAULTS();
+ extFloat80_t x = iemFpuSoftF80FromIprt(pr80Val);
+ extFloat80_t v;
+ (void)fFcw;
+
+ v = extF80_sin(x, &SoftState);
+
+ iemFpuSoftF80ToIprt(pr80Result, v);
+
+ return fFsw;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fsin_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
+{
+ uint16_t const fFcw = pFpuState->FCW;
+ uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | /*X86_FSW_C2 |*/ X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT);
+
+ if (RTFLOAT80U_IS_ZERO(pr80Val))
+ {
+ pFpuRes->r80Result = *pr80Val;
+ }
+ else if (RTFLOAT80U_IS_NORMAL(pr80Val))
+ {
+ if (pr80Val->s.uExponent >= RTFLOAT80U_EXP_BIAS + 63)
+ {
+ fFsw |= X86_FSW_C2;
+ pFpuRes->r80Result = *pr80Val;
+ }
+ else
+ {
+ if (pr80Val->s.uExponent <= RTFLOAT80U_EXP_BIAS - 63)
+ {
+ pFpuRes->r80Result = *pr80Val;
+ }
+ else
+ {
+ fFsw = iemAImpl_fsin_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw);
+ }
+ fFsw |= X86_FSW_PE;
+ if (!(fFcw & X86_FCW_PM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ }
+ else if (RTFLOAT80U_IS_INF(pr80Val))
+ {
+ fFsw |= X86_FSW_IE;
+ if (!(fFcw & X86_FCW_IM))
+ {
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ pFpuRes->r80Result = *pr80Val;
+ }
+ else
+ {
+ pFpuRes->r80Result = g_r80Indefinite;
+ }
+ }
+ else if (RTFLOAT80U_IS_DENORMAL(pr80Val))
+ {
+ fFsw |= X86_FSW_DE;
+
+ if (fFcw & X86_FCW_DM)
+ {
+ if (fFcw & X86_FCW_UM)
+ {
+ pFpuRes->r80Result = *pr80Val;
+ }
+ else
+ {
+ /* Underflow signalling as described at 7.4 section of 1985 IEEE 754*/
+ uint64_t uMantissa = pr80Val->s.uMantissa;
+ uint32_t uExponent = ASMBitLastSetU64(uMantissa);
+
+ uExponent = 64 - uExponent;
+ uMantissa <<= uExponent;
+ uExponent = RTFLOAT128U_EXP_BIAS_ADJUST - uExponent + 1;
+
+ pFpuRes->r80Result.s.fSign = pr80Val->s.fSign;
+ pFpuRes->r80Result.s.uMantissa = uMantissa;
+ pFpuRes->r80Result.s.uExponent = uExponent;
+ }
+
+ fFsw |= X86_FSW_UE | X86_FSW_PE;
+
+ if ((fFcw & X86_FCW_UM) && (fFcw & X86_FCW_PM))
+ {
+ /* All the exceptions are masked. */
+ }
+ else
+ {
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ }
+ else
+ {
+ pFpuRes->r80Result = *pr80Val;
+
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ }
+ else if (RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val))
+ {
+ pFpuRes->r80Result = *pr80Val;
+ fFsw |= X86_FSW_DE;
+
+ if (fFcw & X86_FCW_DM)
+ {
+ if (fFcw & X86_FCW_PM)
+ {
+ fFsw |= X86_FSW_PE;
+ }
+ else
+ {
+ fFsw |= X86_FSW_ES | X86_FSW_B | X86_FSW_PE;
+ }
+
+ pFpuRes->r80Result.sj64.uExponent = 1;
+ }
+ else
+ {
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ } else if ( RTFLOAT80U_IS_QUIET_NAN(pr80Val)
+ || RTFLOAT80U_IS_INDEFINITE(pr80Val))
+ {
+ pFpuRes->r80Result = *pr80Val;
+ } else {
+ if ( ( RTFLOAT80U_IS_UNNORMAL(pr80Val)
+ || RTFLOAT80U_IS_PSEUDO_NAN(pr80Val))
+ && (fFcw & X86_FCW_IM))
+ pFpuRes->r80Result = g_r80Indefinite;
+ else
+ {
+ pFpuRes->r80Result = *pr80Val;
+ if (RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val) && (fFcw & X86_FCW_IM))
+ pFpuRes->r80Result.s.uMantissa |= RT_BIT_64(62); /* make it quiet */
+ }
+
+ fFsw |= X86_FSW_IE;
+ if (!(fFcw & X86_FCW_IM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+
+ pFpuRes->FSW = fFsw;
+}
+#endif /* IEM_WITHOUT_ASSEMBLY */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fsin_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
+{
+ iemAImpl_fsin_r80(pFpuState, pFpuRes, pr80Val);
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fsin_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
+{
+ iemAImpl_fsin_r80(pFpuState, pFpuRes, pr80Val);
+}
+
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+static uint16_t iemAImpl_fcos_r80_normal(PCRTFLOAT80U pr80Val, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw)
+{
+ softfloat_state_t SoftState = SOFTFLOAT_STATE_INIT_DEFAULTS();
+ extFloat80_t x = iemFpuSoftF80FromIprt(pr80Val);
+ extFloat80_t v;
+ (void)fFcw;
+
+ v = extF80_cos(x, &SoftState);
+
+ iemFpuSoftF80ToIprt(pr80Result, v);
+
+ return fFsw;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fcos_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
+{
+ uint16_t const fFcw = pFpuState->FCW;
+ uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | /*X86_FSW_C2 |*/ X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT);
+
+ if (RTFLOAT80U_IS_ZERO(pr80Val))
+ {
+ pFpuRes->r80Result = g_ar80One[0];
+ }
+ else if (RTFLOAT80U_IS_NORMAL(pr80Val))
+ {
+ if (pr80Val->s.uExponent >= RTFLOAT80U_EXP_BIAS + 63)
+ {
+ fFsw |= X86_FSW_C2;
+ pFpuRes->r80Result = *pr80Val;
+ }
+ else
+ {
+ if (pr80Val->s.uExponent <= RTFLOAT80U_EXP_BIAS - 63)
+ {
+ pFpuRes->r80Result = g_ar80One[0];
+
+ }
+ else
+ {
+ fFsw = iemAImpl_fcos_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw);
+ fFsw |= X86_FSW_C1; // TBD: If the inexact result was rounded up (C1 is set) or “not rounded up” (C1 is cleared).
+ }
+ fFsw |= X86_FSW_PE;
+ if (!(fFcw & X86_FCW_PM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ }
+ else if (RTFLOAT80U_IS_INF(pr80Val))
+ {
+ fFsw |= X86_FSW_IE;
+ if (!(fFcw & X86_FCW_IM))
+ {
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ pFpuRes->r80Result = *pr80Val;
+ }
+ else
+ {
+ pFpuRes->r80Result = g_r80Indefinite;
+ }
+ }
+ else if (RTFLOAT80U_IS_DENORMAL(pr80Val) || RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val))
+ {
+ fFsw |= X86_FSW_DE;
+
+ if (fFcw & X86_FCW_DM)
+ {
+ pFpuRes->r80Result = g_ar80One[0];
+
+ if (fFcw & X86_FCW_PM)
+ {
+ fFsw |= X86_FSW_PE;
+ }
+ else
+ {
+ fFsw |= X86_FSW_PE | X86_FSW_ES | X86_FSW_B;
+ }
+ }
+ else
+ {
+ pFpuRes->r80Result = *pr80Val;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ } else if ( RTFLOAT80U_IS_QUIET_NAN(pr80Val)
+ || RTFLOAT80U_IS_INDEFINITE(pr80Val))
+ {
+ pFpuRes->r80Result = *pr80Val;
+ } else {
+ if ( ( RTFLOAT80U_IS_UNNORMAL(pr80Val)
+ || RTFLOAT80U_IS_PSEUDO_NAN(pr80Val))
+ && (fFcw & X86_FCW_IM))
+ pFpuRes->r80Result = g_r80Indefinite;
+ else
+ {
+ pFpuRes->r80Result = *pr80Val;
+ if (RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val) && (fFcw & X86_FCW_IM))
+ pFpuRes->r80Result.s.uMantissa |= RT_BIT_64(62); /* make it quiet */
+ }
+
+ fFsw |= X86_FSW_IE;
+ if (!(fFcw & X86_FCW_IM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+
+ pFpuRes->FSW = fFsw;
+}
+#endif /* IEM_WITHOUT_ASSEMBLY */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fcos_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
+{
+ iemAImpl_fcos_r80(pFpuState, pFpuRes, pr80Val);
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fcos_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
+{
+ iemAImpl_fcos_r80(pFpuState, pFpuRes, pr80Val);
+}
+
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+static uint16_t iemAImpl_fsincos_r80_r80_normal(PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val, uint16_t fFcw, uint16_t fFsw)
+{
+ softfloat_state_t SoftState = SOFTFLOAT_STATE_INIT_DEFAULTS();
+ extFloat80_t x = iemFpuSoftF80FromIprt(pr80Val);
+ extFloat80_t r80Sin, r80Cos;
+ (void)fFcw;
+
+ extF80_sincos(x, &r80Sin, &r80Cos, &SoftState);
+
+ iemFpuSoftF80ToIprt(&pFpuResTwo->r80Result1, r80Sin);
+ iemFpuSoftF80ToIprt(&pFpuResTwo->r80Result2, r80Cos);
+
+ return fFsw;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fsincos_r80_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val))
+{
+ uint16_t const fFcw = pFpuState->FCW;
+ uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | /*X86_FSW_C2 |*/ X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT);
+
+ if (RTFLOAT80U_IS_ZERO(pr80Val))
+ {
+ pFpuResTwo->r80Result1 = *pr80Val;
+ pFpuResTwo->r80Result2 = g_ar80One[0];
+ fFsw &= ~X86_FSW_TOP_MASK | (6 << X86_FSW_TOP_SHIFT);
+ }
+ else if (RTFLOAT80U_IS_NORMAL(pr80Val))
+ {
+ if (pr80Val->s.uExponent >= RTFLOAT80U_EXP_BIAS + 63)
+ {
+ fFsw |= X86_FSW_C2;
+
+ if (fFcw & X86_FCW_IM)
+ {
+ pFpuResTwo->r80Result1 = g_r80Indefinite;
+ }
+ else
+ {
+ pFpuResTwo->r80Result1 = g_ar80Zero[0];
+ }
+
+ pFpuResTwo->r80Result2 = *pr80Val;
+ }
+ else
+ {
+ fFsw &= ~X86_FSW_TOP_MASK | (6 << X86_FSW_TOP_SHIFT);
+
+ if (pr80Val->s.uExponent <= RTFLOAT80U_EXP_BIAS - 63)
+ {
+ pFpuResTwo->r80Result1 = *pr80Val;
+ pFpuResTwo->r80Result2 = g_ar80One[0];
+ }
+ else
+ {
+ fFsw = iemAImpl_fsincos_r80_r80_normal(pFpuResTwo, pr80Val, fFcw, fFsw);
+ fFsw |= X86_FSW_C1; // TBD: If the inexact result was rounded up (C1 is set) or “not rounded up” (C1 is cleared).
+ }
+ fFsw |= X86_FSW_PE;
+ if (!(fFcw & X86_FCW_PM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ }
+ else if (RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val))
+ {
+ fFsw |= X86_FSW_DE;
+
+ if (fFcw & X86_FCW_DM)
+ {
+ pFpuResTwo->r80Result1 = *pr80Val;
+ pFpuResTwo->r80Result2 = g_ar80One[0];
+ fFsw &= ~X86_FSW_TOP_MASK | (6 << X86_FSW_TOP_SHIFT);
+
+ if (fFcw & X86_FCW_PM)
+ {
+ fFsw |= X86_FSW_PE;
+ }
+ else
+ {
+ fFsw |= X86_FSW_PE | X86_FSW_ES | X86_FSW_B;
+ }
+
+ pFpuResTwo->r80Result1.sj64.uExponent = 1;
+ }
+ else
+ {
+ pFpuResTwo->r80Result1 = g_ar80Zero[0];
+ pFpuResTwo->r80Result2 = *pr80Val;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ }
+ else if (RTFLOAT80U_IS_DENORMAL(pr80Val))
+ {
+ fFsw |= X86_FSW_DE;
+
+ if (fFcw & X86_FCW_DM)
+ {
+ pFpuResTwo->r80Result2 = g_ar80One[0];
+
+ if (fFcw & X86_FCW_UM)
+ {
+ pFpuResTwo->r80Result1 = *pr80Val;
+ }
+ else
+ {
+ /* Underflow signalling as described at 7.4 section of 1985 IEEE 754*/
+ uint64_t uMantissa = pr80Val->s.uMantissa;
+ uint32_t uExponent = ASMBitLastSetU64(uMantissa);
+
+ uExponent = 64 - uExponent;
+ uMantissa <<= uExponent;
+ uExponent = RTFLOAT128U_EXP_BIAS_ADJUST - uExponent + 1;
+
+ pFpuResTwo->r80Result1.s.fSign = pr80Val->s.fSign;
+ pFpuResTwo->r80Result1.s.uMantissa = uMantissa;
+ pFpuResTwo->r80Result1.s.uExponent = uExponent;
+ }
+
+ fFsw &= ~X86_FSW_TOP_MASK | (6 << X86_FSW_TOP_SHIFT);
+ fFsw |= X86_FSW_UE | X86_FSW_PE;
+
+ if ((fFcw & X86_FCW_UM) && (fFcw & X86_FCW_PM))
+ {
+ /* All the exceptions are masked. */
+ }
+ else
+ {
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ }
+ else
+ {
+ pFpuResTwo->r80Result1 = g_ar80Zero[0];
+ pFpuResTwo->r80Result2 = *pr80Val;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ }
+ else if (RTFLOAT80U_IS_QUIET_NAN(pr80Val) || RTFLOAT80U_IS_INDEFINITE(pr80Val))
+ {
+ pFpuResTwo->r80Result1 = *pr80Val;
+ pFpuResTwo->r80Result2 = *pr80Val;
+ fFsw &= ~X86_FSW_TOP_MASK | (6 << X86_FSW_TOP_SHIFT);
+ }
+ else if (RTFLOAT80U_IS_UNNORMAL(pr80Val) || RTFLOAT80U_IS_PSEUDO_NAN(pr80Val))
+ {
+ if (fFcw & X86_FCW_IM)
+ {
+ pFpuResTwo->r80Result1 = g_r80Indefinite;
+ pFpuResTwo->r80Result2 = g_r80Indefinite;
+ fFsw &= ~X86_FSW_TOP_MASK | (6 << X86_FSW_TOP_SHIFT);
+ }
+ else
+ {
+ pFpuResTwo->r80Result1 = g_ar80Zero[0];
+ pFpuResTwo->r80Result2 = *pr80Val;
+ }
+
+ fFsw |= X86_FSW_IE;
+ if (!(fFcw & X86_FCW_IM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ else if (RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val))
+ {
+ pFpuResTwo->r80Result1 = *pr80Val;
+ pFpuResTwo->r80Result2 = *pr80Val;
+
+ if (fFcw & X86_FCW_IM)
+ {
+ pFpuResTwo->r80Result1.s.uMantissa |= RT_BIT_64(62); /* make it quiet */
+ pFpuResTwo->r80Result2.s.uMantissa |= RT_BIT_64(62);
+ fFsw &= ~X86_FSW_TOP_MASK | (6 << X86_FSW_TOP_SHIFT);
+ }
+ else
+ {
+ pFpuResTwo->r80Result1 = g_ar80Zero[0];
+ pFpuResTwo->r80Result2 = *pr80Val;
+ }
+
+ fFsw |= X86_FSW_IE;
+ if (!(fFcw & X86_FCW_IM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ else if (RTFLOAT80U_IS_INF(pr80Val))
+ {
+ if (fFcw & X86_FCW_IM)
+ {
+ pFpuResTwo->r80Result1 = g_r80Indefinite;
+ pFpuResTwo->r80Result2 = g_r80Indefinite;
+ fFsw &= ~X86_FSW_TOP_MASK | (6 << X86_FSW_TOP_SHIFT);
+ }
+ else
+ {
+ pFpuResTwo->r80Result1 = g_ar80Zero[0];
+ pFpuResTwo->r80Result2 = *pr80Val;
+ }
+
+ fFsw |= X86_FSW_IE;
+ if (!(fFcw & X86_FCW_IM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+
+ pFpuResTwo->FSW = fFsw;
+}
+#endif /* IEM_WITHOUT_ASSEMBLY */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fsincos_r80_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val))
+{
+ iemAImpl_fsincos_r80_r80(pFpuState, pFpuResTwo, pr80Val);
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fsincos_r80_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val))
+{
+ iemAImpl_fsincos_r80_r80(pFpuState, pFpuResTwo, pr80Val);
+}
+
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+
+/*********************************************************************************************************************************
+* x87 FPU Compare and Testing Operations *
+*********************************************************************************************************************************/
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_ftst_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val))
+{
+ uint16_t fFsw = (7 << X86_FSW_TOP_SHIFT);
+
+ if (RTFLOAT80U_IS_ZERO(pr80Val))
+ fFsw |= X86_FSW_C3;
+ else if (RTFLOAT80U_IS_NORMAL(pr80Val) || RTFLOAT80U_IS_INF(pr80Val))
+ fFsw |= pr80Val->s.fSign ? X86_FSW_C0 : 0;
+ else if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val))
+ {
+ fFsw |= pr80Val->s.fSign ? X86_FSW_C0 | X86_FSW_DE : X86_FSW_DE;
+ if (!(pFpuState->FCW & X86_FCW_DM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ else
+ {
+ fFsw |= X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3 | X86_FSW_IE;
+ if (!(pFpuState->FCW & X86_FCW_IM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+
+ *pu16Fsw = fFsw;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fxam_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val))
+{
+ RT_NOREF(pFpuState);
+ uint16_t fFsw = (7 << X86_FSW_TOP_SHIFT);
+
+ /* C1 = sign bit (always, even if empty Intel says). */
+ if (pr80Val->s.fSign)
+ fFsw |= X86_FSW_C1;
+
+ /* Classify the value in C0, C2, C3. */
+ if (!(pFpuState->FTW & RT_BIT_32(X86_FSW_TOP_GET(pFpuState->FSW))))
+ fFsw |= X86_FSW_C0 | X86_FSW_C3; /* empty */
+ else if (RTFLOAT80U_IS_NORMAL(pr80Val))
+ fFsw |= X86_FSW_C2;
+ else if (RTFLOAT80U_IS_ZERO(pr80Val))
+ fFsw |= X86_FSW_C3;
+ else if (RTFLOAT80U_IS_QUIET_OR_SIGNALLING_NAN(pr80Val))
+ fFsw |= X86_FSW_C0;
+ else if (RTFLOAT80U_IS_INF(pr80Val))
+ fFsw |= X86_FSW_C0 | X86_FSW_C2;
+ else if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val))
+ fFsw |= X86_FSW_C2 | X86_FSW_C3;
+ /* whatever else: 0 */
+
+ *pu16Fsw = fFsw;
+}
+
+
+/**
+ * Worker for fcom, fucom, and friends.
+ */
+static uint16_t iemAImpl_fcom_r80_by_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2,
+ uint16_t fFcw, uint16_t fFsw, bool fIeOnAllNaNs)
+{
+ /*
+ * Unpack the values.
+ */
+ bool const fSign1 = pr80Val1->s.fSign;
+ int32_t iExponent1 = pr80Val1->s.uExponent;
+ uint64_t uMantissa1 = pr80Val1->s.uMantissa;
+
+ bool const fSign2 = pr80Val2->s.fSign;
+ int32_t iExponent2 = pr80Val2->s.uExponent;
+ uint64_t uMantissa2 = pr80Val2->s.uMantissa;
+
+ /*
+ * Check for invalid inputs.
+ */
+ if ( RTFLOAT80U_IS_387_INVALID_EX(uMantissa1, iExponent1)
+ || RTFLOAT80U_IS_387_INVALID_EX(uMantissa2, iExponent2))
+ {
+ if (!(fFcw & X86_FCW_IM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ return fFsw | X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3 | X86_FSW_IE;
+ }
+
+ /*
+ * Check for NaNs and indefinites, they are all unordered and trumps #DE.
+ */
+ if ( RTFLOAT80U_IS_INDEFINITE_OR_QUIET_OR_SIGNALLING_NAN_EX(uMantissa1, iExponent1)
+ || RTFLOAT80U_IS_INDEFINITE_OR_QUIET_OR_SIGNALLING_NAN_EX(uMantissa2, iExponent2))
+ {
+ if ( fIeOnAllNaNs
+ || RTFLOAT80U_IS_SIGNALLING_NAN_EX(uMantissa1, iExponent1)
+ || RTFLOAT80U_IS_SIGNALLING_NAN_EX(uMantissa2, iExponent2))
+ {
+ fFsw |= X86_FSW_IE;
+ if (!(fFcw & X86_FCW_IM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ return fFsw | X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3;
+ }
+
+ /*
+ * Normalize the values.
+ */
+ if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL_EX(uMantissa1, iExponent1))
+ {
+ if (RTFLOAT80U_IS_PSEUDO_DENORMAL_EX(uMantissa1, iExponent1))
+ iExponent1 = 1;
+ else
+ {
+ iExponent1 = 64 - ASMBitLastSetU64(uMantissa1);
+ uMantissa1 <<= iExponent1;
+ iExponent1 = 1 - iExponent1;
+ }
+ fFsw |= X86_FSW_DE;
+ if (!(fFcw & X86_FCW_DM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+
+ if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL_EX(uMantissa2, iExponent2))
+ {
+ if (RTFLOAT80U_IS_PSEUDO_DENORMAL_EX(uMantissa2, iExponent2))
+ iExponent2 = 1;
+ else
+ {
+ iExponent2 = 64 - ASMBitLastSetU64(uMantissa2);
+ uMantissa2 <<= iExponent2;
+ iExponent2 = 1 - iExponent2;
+ }
+ fFsw |= X86_FSW_DE;
+ if (!(fFcw & X86_FCW_DM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+
+ /*
+ * Test if equal (val1 == val2):
+ */
+ if ( uMantissa1 == uMantissa2
+ && iExponent1 == iExponent2
+ && ( fSign1 == fSign2
+ || (uMantissa1 == 0 && iExponent1 == 0) /* ignore sign for zero */ ) )
+ fFsw |= X86_FSW_C3;
+ /*
+ * Test if less than (val1 < val2):
+ */
+ else if (fSign1 && !fSign2)
+ fFsw |= X86_FSW_C0;
+ else if (fSign1 == fSign2)
+ {
+ /* Zeros are problematic, however at the most one can be zero here. */
+ if (RTFLOAT80U_IS_ZERO_EX(uMantissa1, iExponent1))
+ return !fSign1 ? fFsw | X86_FSW_C0 : fFsw;
+ if (RTFLOAT80U_IS_ZERO_EX(uMantissa2, iExponent2))
+ return fSign1 ? fFsw | X86_FSW_C0 : fFsw;
+
+ if ( fSign1
+ ^ ( iExponent1 < iExponent2
+ || ( iExponent1 == iExponent2
+ && uMantissa1 < uMantissa2 ) ) )
+ fFsw |= X86_FSW_C0;
+ }
+ /* else: No flags set if greater. */
+
+ return fFsw;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fcom_r80_by_r80,(PCX86FXSTATE pFpuState, uint16_t *pfFsw,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
+{
+ *pfFsw = iemAImpl_fcom_r80_by_r80_worker(pr80Val1, pr80Val2, pFpuState->FCW, 6 << X86_FSW_TOP_SHIFT, true /*fIeOnAllNaNs*/);
+}
+
+
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fucom_r80_by_r80,(PCX86FXSTATE pFpuState, uint16_t *pfFsw,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
+{
+ *pfFsw = iemAImpl_fcom_r80_by_r80_worker(pr80Val1, pr80Val2, pFpuState->FCW, 6 << X86_FSW_TOP_SHIFT, false /*fIeOnAllNaNs*/);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fcom_r80_by_r64,(PCX86FXSTATE pFpuState, uint16_t *pfFsw,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2))
+{
+ RTFLOAT80U r80Val2;
+ uint16_t fFsw = iemAImplConvertR64ToR80(pr64Val2, &r80Val2);
+ Assert(!fFsw || fFsw == X86_FSW_DE);
+ *pfFsw = iemAImpl_fcom_r80_by_r80_worker(pr80Val1, &r80Val2, pFpuState->FCW, 7 << X86_FSW_TOP_SHIFT, true /*fIeOnAllNaNs*/);
+ if (fFsw != 0 && !(*pfFsw & X86_FSW_IE))
+ {
+ if (!(pFpuState->FCW & X86_FCW_DM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ *pfFsw |= fFsw;
+ }
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fcom_r80_by_r32,(PCX86FXSTATE pFpuState, uint16_t *pfFsw,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2))
+{
+ RTFLOAT80U r80Val2;
+ uint16_t fFsw = iemAImplConvertR32ToR80(pr32Val2, &r80Val2);
+ Assert(!fFsw || fFsw == X86_FSW_DE);
+ *pfFsw = iemAImpl_fcom_r80_by_r80_worker(pr80Val1, &r80Val2, pFpuState->FCW, 7 << X86_FSW_TOP_SHIFT, true /*fIeOnAllNaNs*/);
+ if (fFsw != 0 && !(*pfFsw & X86_FSW_IE))
+ {
+ if (!(pFpuState->FCW & X86_FCW_DM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ *pfFsw |= fFsw;
+ }
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_ficom_r80_by_i32,(PCX86FXSTATE pFpuState, uint16_t *pfFsw,
+ PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2))
+{
+ RTFLOAT80U r80Val2;
+ iemAImpl_fcom_r80_by_r80(pFpuState, pfFsw, pr80Val1, iemAImplConvertI32ToR80(*pi32Val2, &r80Val2));
+ *pfFsw = (*pfFsw & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_ficom_r80_by_i16,(PCX86FXSTATE pFpuState, uint16_t *pfFsw,
+ PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2))
+{
+ RTFLOAT80U r80Val2;
+ iemAImpl_fcom_r80_by_r80(pFpuState, pfFsw, pr80Val1, iemAImplConvertI16ToR80(*pi16Val2, &r80Val2));
+ *pfFsw = (*pfFsw & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT);
+}
+
+
+/**
+ * Worker for fcomi & fucomi.
+ */
+static uint32_t iemAImpl_fcomi_r80_by_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2,
+ uint16_t fFcw, uint16_t fFswIn, bool fIeOnAllNaNs, uint16_t *pfFsw)
+{
+ uint16_t fFsw = iemAImpl_fcom_r80_by_r80_worker(pr80Val1, pr80Val2, fFcw, 6 << X86_FSW_TOP_SHIFT, fIeOnAllNaNs);
+ uint32_t fEflags = ((fFsw & X86_FSW_C3) >> (X86_FSW_C3_BIT - X86_EFL_ZF_BIT))
+ | ((fFsw & X86_FSW_C2) >> (X86_FSW_C2_BIT - X86_EFL_PF_BIT))
+ | ((fFsw & X86_FSW_C0) >> (X86_FSW_C0_BIT - X86_EFL_CF_BIT));
+
+ /* Note! C1 is not cleared as per docs! Everything is preserved. */
+ *pfFsw = (fFsw & ~X86_FSW_C_MASK) | (fFswIn & X86_FSW_C_MASK);
+ return fEflags | X86_EFL_IF | X86_EFL_RA1_MASK;
+}
+
+
+IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_fcomi_r80_by_r80,(PCX86FXSTATE pFpuState, uint16_t *pfFsw,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
+{
+ return iemAImpl_fcomi_r80_by_r80_worker(pr80Val1, pr80Val2, pFpuState->FCW, pFpuState->FSW, true /*fIeOnAllNaNs*/, pfFsw);
+}
+
+
+IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_fucomi_r80_by_r80,(PCX86FXSTATE pFpuState, uint16_t *pfFsw,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
+{
+ return iemAImpl_fcomi_r80_by_r80_worker(pr80Val1, pr80Val2, pFpuState->FCW, pFpuState->FSW, false /*fIeOnAllNaNs*/, pfFsw);
+}
+
+
+/*********************************************************************************************************************************
+* x87 FPU Other Operations *
+*********************************************************************************************************************************/
+
+/**
+ * Helper for iemAImpl_frndint_r80, called both on normal and denormal numbers.
+ */
+static uint16_t iemAImpl_frndint_r80_normal(PCRTFLOAT80U pr80Val, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw)
+{
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw);
+ iemFpuSoftF80ToIprt(pr80Result, extF80_roundToInt(iemFpuSoftF80FromIprt(pr80Val), SoftState.roundingMode,
+ true /*exact / generate #PE */, &SoftState));
+ return IEM_SOFTFLOAT_STATE_TO_FSW(fFsw, &SoftState, fFcw);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_frndint_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
+{
+ uint16_t const fFcw = pFpuState->FCW;
+ uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT);
+
+ if (RTFLOAT80U_IS_NORMAL(pr80Val))
+ fFsw = iemAImpl_frndint_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw);
+ else if ( RTFLOAT80U_IS_ZERO(pr80Val)
+ || RTFLOAT80U_IS_QUIET_NAN(pr80Val)
+ || RTFLOAT80U_IS_INDEFINITE(pr80Val)
+ || RTFLOAT80U_IS_INF(pr80Val))
+ pFpuRes->r80Result = *pr80Val;
+ else if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val))
+ {
+ fFsw |= X86_FSW_DE;
+ if (fFcw & X86_FCW_DM)
+ fFsw = iemAImpl_frndint_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw);
+ else
+ {
+ pFpuRes->r80Result = *pr80Val;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ }
+ else
+ {
+ if (fFcw & X86_FCW_IM)
+ {
+ if (!RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val))
+ pFpuRes->r80Result = g_r80Indefinite;
+ else
+ {
+ pFpuRes->r80Result = *pr80Val;
+ pFpuRes->r80Result.s.uMantissa |= RT_BIT_64(62); /* make it quiet */
+ }
+ }
+ else
+ {
+ pFpuRes->r80Result = *pr80Val;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ fFsw |= X86_FSW_IE;
+ }
+ pFpuRes->FSW = fFsw;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fscale_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
+{
+ /* The SoftFloat worker function extF80_scale_extF80 is of our creation, so
+ it does everything we need it to do. */
+ uint16_t const fFcw = pFpuState->FCW;
+ uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT);
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw);
+ extFloat80_t r80XResult = extF80_scale_extF80(iemFpuSoftF80FromIprt(pr80Val1), iemFpuSoftF80FromIprt(pr80Val2), &SoftState);
+ pFpuRes->FSW = iemFpuSoftStateAndF80ToFswAndIprtResult(&SoftState, r80XResult, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1);
+}
+
+
+/**
+ * Helper for iemAImpl_fsqrt_r80, called both on normal and denormal numbers.
+ */
+static uint16_t iemAImpl_fsqrt_r80_normal(PCRTFLOAT80U pr80Val, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw)
+{
+ Assert(!pr80Val->s.fSign);
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw);
+ iemFpuSoftF80ToIprt(pr80Result, extF80_sqrt(iemFpuSoftF80FromIprt(pr80Val), &SoftState));
+ return IEM_SOFTFLOAT_STATE_TO_FSW(fFsw, &SoftState, fFcw);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fsqrt_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
+{
+ uint16_t const fFcw = pFpuState->FCW;
+ uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT);
+
+ if (RTFLOAT80U_IS_NORMAL(pr80Val) && !pr80Val->s.fSign)
+ fFsw = iemAImpl_fsqrt_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw);
+ else if ( RTFLOAT80U_IS_ZERO(pr80Val)
+ || RTFLOAT80U_IS_QUIET_NAN(pr80Val)
+ || RTFLOAT80U_IS_INDEFINITE(pr80Val)
+ || (RTFLOAT80U_IS_INF(pr80Val) && !pr80Val->s.fSign))
+ pFpuRes->r80Result = *pr80Val;
+ else if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val) && !pr80Val->s.fSign) /* Negative denormals only generate #IE! */
+ {
+ fFsw |= X86_FSW_DE;
+ if (fFcw & X86_FCW_DM)
+ fFsw = iemAImpl_fsqrt_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw);
+ else
+ {
+ pFpuRes->r80Result = *pr80Val;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ }
+ else
+ {
+ if (fFcw & X86_FCW_IM)
+ {
+ if (!RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val))
+ pFpuRes->r80Result = g_r80Indefinite;
+ else
+ {
+ pFpuRes->r80Result = *pr80Val;
+ pFpuRes->r80Result.s.uMantissa |= RT_BIT_64(62); /* make it quiet */
+ }
+ }
+ else
+ {
+ pFpuRes->r80Result = *pr80Val;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ fFsw |= X86_FSW_IE;
+ }
+ pFpuRes->FSW = fFsw;
+}
+
+
+/**
+ * @code{.unparsed}
+ * x x * ln2
+ * f(x) = 2 - 1 = e - 1
+ *
+ * @endcode
+ *
+ * We can approximate e^x by a Taylor/Maclaurin series (see
+ * https://en.wikipedia.org/wiki/Taylor_series#Exponential_function):
+ * @code{.unparsed}
+ * n 0 1 2 3 4
+ * inf x x x x x x
+ * SUM ----- = --- + --- + --- + --- + --- + ...
+ * n=0 n! 0! 1! 2! 3! 4!
+ *
+ * 2 3 4
+ * x x x
+ * = 1 + x + --- + --- + --- + ...
+ * 2! 3! 4!
+ * @endcode
+ *
+ * Given z = x * ln2, we get:
+ * @code{.unparsed}
+ * 2 3 4 n
+ * z z z z z
+ * e - 1 = z + --- + --- + --- + ... + ---
+ * 2! 3! 4! n!
+ * @endcode
+ *
+ * Wanting to use Horner's method, we move one z outside and get:
+ * @code{.unparsed}
+ * 2 3 (n-1)
+ * z z z z
+ * = z ( 1 + --- + --- + --- + ... + ------- )
+ * 2! 3! 4! n!
+ * @endcode
+ *
+ * The constants we need for using Horner's methods are 1 and 1 / n!.
+ *
+ * For very tiny x values, we can get away with f(x) = x * ln 2, because
+ * because we don't have the necessary precision to represent 1.0 + z/3 + ...
+ * and can approximate it to be 1.0. For a visual demonstration of this
+ * check out https://www.desmos.com/calculator/vidcdxizd9 (for as long
+ * as it valid), plotting f(x) = 2^x - 1 and f(x) = x * ln2.
+ *
+ *
+ * As constant accuracy goes, figure 0.1 "80387 Block Diagram" in the "80387
+ * Data Sheet" (order 231920-002; Appendix E in 80387 PRM 231917-001; Military
+ * i387SX 271166-002), indicates that constants are 67-bit (constant rom block)
+ * and the internal mantissa size is 68-bit (mantissa adder & barrel shifter
+ * blocks). (The one bit difference is probably an implicit one missing from
+ * the constant ROM.) A paper on division and sqrt on the AMD-K7 by Stuart F.
+ * Oberman states that it internally used a 68 bit mantissa with a 18-bit
+ * exponent.
+ *
+ * However, even when sticking to 67 constants / 68 mantissas, I have not yet
+ * successfully reproduced the exact results from an Intel 10980XE, there is
+ * always a portition of rounding differences. Not going to spend too much time
+ * on getting this 100% the same, at least not now.
+ *
+ * P.S. If someone are really curious about 8087 and its contstants:
+ * http://www.righto.com/2020/05/extracting-rom-constants-from-8087-math.html
+ *
+ *
+ * @param pr80Val The exponent value (x), less than 1.0, greater than
+ * -1.0 and not zero. This can be a normal, denormal
+ * or pseudo-denormal value.
+ * @param pr80Result Where to return the result.
+ * @param fFcw FPU control word.
+ * @param fFsw FPU status word.
+ */
+static uint16_t iemAImpl_f2xm1_r80_normal(PCRTFLOAT80U pr80Val, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw)
+{
+ /* As mentioned above, we can skip the expensive polynomial calculation
+ as it will be close enough to 1.0 that it makes no difference.
+
+ The cutoff point for intel 10980XE is exponents >= -69. Intel
+ also seems to be using a 67-bit or 68-bit constant value, and we get
+ a smattering of rounding differences if we go for higher precision. */
+ if (pr80Val->s.uExponent <= RTFLOAT80U_EXP_BIAS - 69)
+ {
+ RTUINT256U u256;
+ RTUInt128MulByU64Ex(&u256, &g_u128Ln2MantissaIntel, pr80Val->s.uMantissa);
+ u256.QWords.qw0 |= 1; /* force #PE */
+ fFsw = iemFpuFloat80RoundAndComposeFrom192(pr80Result, pr80Val->s.fSign, &u256,
+ !RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val) && !RTFLOAT80U_IS_DENORMAL(pr80Val)
+ ? (int32_t)pr80Val->s.uExponent - RTFLOAT80U_EXP_BIAS
+ : 1 - RTFLOAT80U_EXP_BIAS,
+ fFcw, fFsw);
+ }
+ else
+ {
+#ifdef IEM_WITH_FLOAT128_FOR_FPU
+ /* This approach is not good enough for small values, we end up with zero. */
+ int const fOldRounding = iemFpuF128SetRounding(fFcw);
+ _Float128 rd128Val = iemFpuF128FromFloat80(pr80Val, fFcw);
+ _Float128 rd128Result = powf128(2.0L, rd128Val);
+ rd128Result -= 1.0L;
+ fFsw = iemFpuF128ToFloat80(pr80Result, rd128Result, fFcw, fFsw);
+ iemFpuF128RestoreRounding(fOldRounding);
+
+# else
+ softfloat_state_t SoftState = SOFTFLOAT_STATE_INIT_DEFAULTS();
+ float128_t const x = iemFpuSoftF128FromFloat80(pr80Val);
+
+ /* As mentioned above, enforce 68-bit internal mantissa width to better
+ match the Intel 10980XE results. */
+ unsigned const cPrecision = 68;
+
+ /* first calculate z = x * ln2 */
+ float128_t z = iemFpuSoftF128Precision(f128_mul(x, iemFpuSoftF128PrecisionIprt(&g_r128Ln2, cPrecision), &SoftState),
+ cPrecision);
+
+ /* Then do the polynomial evaluation. */
+ float128_t r = iemFpuSoftF128HornerPoly(z, g_ar128F2xm1HornerConsts, RT_ELEMENTS(g_ar128F2xm1HornerConsts),
+ cPrecision, &SoftState);
+ r = f128_mul(z, r, &SoftState);
+
+ /* Output the result. */
+ fFsw = iemFpuSoftF128ToFloat80(pr80Result, r, fFcw, fFsw);
+# endif
+ }
+ return fFsw;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_f2xm1_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
+{
+ uint16_t const fFcw = pFpuState->FCW;
+ uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT);
+
+ if (RTFLOAT80U_IS_NORMAL(pr80Val))
+ {
+ if (pr80Val->s.uExponent < RTFLOAT80U_EXP_BIAS)
+ fFsw = iemAImpl_f2xm1_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw);
+ else
+ {
+ /* Special case:
+ 2^+1.0 - 1.0 = 1.0
+ 2^-1.0 - 1.0 = -0.5 */
+ if ( pr80Val->s.uExponent == RTFLOAT80U_EXP_BIAS
+ && pr80Val->s.uMantissa == RT_BIT_64(63))
+ {
+ pFpuRes->r80Result.s.uMantissa = RT_BIT_64(63);
+ pFpuRes->r80Result.s.uExponent = RTFLOAT80U_EXP_BIAS - pr80Val->s.fSign;
+ pFpuRes->r80Result.s.fSign = pr80Val->s.fSign;
+ }
+ /* ST(0) > 1.0 || ST(0) < -1.0: undefined behavior */
+ /** @todo 287 is documented to only accept values 0 <= ST(0) <= 0.5. */
+ else
+ pFpuRes->r80Result = *pr80Val;
+ fFsw |= X86_FSW_PE;
+ if (!(fFcw & X86_FCW_PM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ }
+ else if ( RTFLOAT80U_IS_ZERO(pr80Val)
+ || RTFLOAT80U_IS_QUIET_NAN(pr80Val)
+ || RTFLOAT80U_IS_INDEFINITE(pr80Val))
+ pFpuRes->r80Result = *pr80Val;
+ else if (RTFLOAT80U_IS_INF(pr80Val))
+ pFpuRes->r80Result = pr80Val->s.fSign ? g_ar80One[1] : *pr80Val;
+ else if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val))
+ {
+ fFsw |= X86_FSW_DE;
+ if (fFcw & X86_FCW_DM)
+ fFsw = iemAImpl_f2xm1_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw);
+ else
+ {
+ pFpuRes->r80Result = *pr80Val;
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ }
+ else
+ {
+ if ( ( RTFLOAT80U_IS_UNNORMAL(pr80Val)
+ || RTFLOAT80U_IS_PSEUDO_NAN(pr80Val))
+ && (fFcw & X86_FCW_IM))
+ pFpuRes->r80Result = g_r80Indefinite;
+ else
+ {
+ pFpuRes->r80Result = *pr80Val;
+ if (RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val) && (fFcw & X86_FCW_IM))
+ pFpuRes->r80Result.s.uMantissa |= RT_BIT_64(62); /* make it quiet */
+ }
+ fFsw |= X86_FSW_IE;
+ if (!(fFcw & X86_FCW_IM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ pFpuRes->FSW = fFsw;
+}
+
+#endif /* IEM_WITHOUT_ASSEMBLY */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_f2xm1_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
+{
+ iemAImpl_f2xm1_r80(pFpuState, pFpuRes, pr80Val);
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_f2xm1_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
+{
+ iemAImpl_f2xm1_r80(pFpuState, pFpuRes, pr80Val);
+}
+
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fabs_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
+{
+ pFpuRes->FSW = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT);
+ pFpuRes->r80Result = *pr80Val;
+ pFpuRes->r80Result.s.fSign = 0;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fchs_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
+{
+ pFpuRes->FSW = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT);
+ pFpuRes->r80Result = *pr80Val;
+ pFpuRes->r80Result.s.fSign = !pr80Val->s.fSign;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fxtract_r80_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val))
+{
+ uint16_t const fFcw = pFpuState->FCW;
+ uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT);
+
+ if (RTFLOAT80U_IS_NORMAL(pr80Val))
+ {
+ softfloat_state_t Ignored = SOFTFLOAT_STATE_INIT_DEFAULTS();
+ iemFpuSoftF80ToIprt(&pFpuResTwo->r80Result1, i32_to_extF80((int32_t)pr80Val->s.uExponent - RTFLOAT80U_EXP_BIAS, &Ignored));
+
+ pFpuResTwo->r80Result2.s.fSign = pr80Val->s.fSign;
+ pFpuResTwo->r80Result2.s.uExponent = RTFLOAT80U_EXP_BIAS;
+ pFpuResTwo->r80Result2.s.uMantissa = pr80Val->s.uMantissa;
+ }
+ else if (RTFLOAT80U_IS_ZERO(pr80Val))
+ {
+ fFsw |= X86_FSW_ZE;
+ if (fFcw & X86_FCW_ZM)
+ {
+ pFpuResTwo->r80Result1 = g_ar80Infinity[1];
+ pFpuResTwo->r80Result2 = *pr80Val;
+ }
+ else
+ {
+ pFpuResTwo->r80Result2 = *pr80Val;
+ fFsw = X86_FSW_ES | X86_FSW_B | (fFsw & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT);
+ }
+ }
+ else if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val))
+ {
+ fFsw |= X86_FSW_DE;
+ if (fFcw & X86_FCW_DM)
+ {
+ pFpuResTwo->r80Result2.s.fSign = pr80Val->s.fSign;
+ pFpuResTwo->r80Result2.s.uExponent = RTFLOAT80U_EXP_BIAS;
+ pFpuResTwo->r80Result2.s.uMantissa = pr80Val->s.uMantissa;
+ int32_t iExponent = -16382;
+ while (!(pFpuResTwo->r80Result2.s.uMantissa & RT_BIT_64(63)))
+ {
+ pFpuResTwo->r80Result2.s.uMantissa <<= 1;
+ iExponent--;
+ }
+
+ softfloat_state_t Ignored = SOFTFLOAT_STATE_INIT_DEFAULTS();
+ iemFpuSoftF80ToIprt(&pFpuResTwo->r80Result1, i32_to_extF80(iExponent, &Ignored));
+ }
+ else
+ {
+ pFpuResTwo->r80Result2 = *pr80Val;
+ fFsw = X86_FSW_ES | X86_FSW_B | (fFsw & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT);
+ }
+ }
+ else if ( RTFLOAT80U_IS_QUIET_NAN(pr80Val)
+ || RTFLOAT80U_IS_INDEFINITE(pr80Val))
+ {
+ pFpuResTwo->r80Result1 = *pr80Val;
+ pFpuResTwo->r80Result2 = *pr80Val;
+ }
+ else if (RTFLOAT80U_IS_INF(pr80Val))
+ {
+ pFpuResTwo->r80Result1 = g_ar80Infinity[0];
+ pFpuResTwo->r80Result2 = *pr80Val;
+ }
+ else
+ {
+ if (fFcw & X86_FCW_IM)
+ {
+ if (!RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val))
+ pFpuResTwo->r80Result1 = g_r80Indefinite;
+ else
+ {
+ pFpuResTwo->r80Result1 = *pr80Val;
+ pFpuResTwo->r80Result1.s.uMantissa |= RT_BIT_64(62); /* make it quiet */
+ }
+ pFpuResTwo->r80Result2 = pFpuResTwo->r80Result1;
+ }
+ else
+ {
+ pFpuResTwo->r80Result2 = *pr80Val;
+ fFsw = X86_FSW_ES | X86_FSW_B | (fFsw & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT);
+ }
+ fFsw |= X86_FSW_IE;
+ }
+ pFpuResTwo->FSW = fFsw;
+}
+#endif /* IEM_WITHOUT_ASSEMBLY */
+
+#if defined(IEM_WITHOUT_ASSEMBLY)
+
+static uint16_t iemAImpl_fyl2x_r80_by_r80_normal(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw)
+{
+ softfloat_state_t SoftState = SOFTFLOAT_STATE_INIT_DEFAULTS();
+ extFloat80_t y = iemFpuSoftF80FromIprt(pr80Val1);
+ extFloat80_t x = iemFpuSoftF80FromIprt(pr80Val2);
+ extFloat80_t v;
+ (void)fFcw;
+
+ v = extF80_ylog2x(y, x, &SoftState);
+ iemFpuSoftF80ToIprt(pr80Result, v);
+
+ return fFsw;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fyl2x_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
+{
+ uint16_t const fFcw = pFpuState->FCW;
+ uint16_t fFsw = pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3);
+
+ if (RTFLOAT80U_IS_NORMAL(pr80Val1) && RTFLOAT80U_IS_NORMAL(pr80Val2) && !pr80Val2->s.fSign)
+ {
+ fFsw |= iemAImpl_fyl2x_r80_by_r80_normal(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw);
+
+ fFsw |= X86_FSW_PE | (7 << X86_FSW_TOP_SHIFT);
+ if (!(fFcw & X86_FCW_PM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ else
+ {
+ fFsw |= X86_FSW_IE;
+
+ if (!(fFcw & X86_FCW_IM))
+ {
+ pFpuRes->r80Result = *pr80Val2;
+ fFsw |= X86_FSW_ES | X86_FSW_B | (6 << X86_FSW_TOP_SHIFT);
+ }
+ else
+ {
+ pFpuRes->r80Result = g_r80Indefinite;
+ fFsw |= (7 << X86_FSW_TOP_SHIFT);
+ }
+ }
+
+ pFpuRes->FSW = fFsw;
+}
+#endif /* IEM_WITHOUT_ASSEMBLY */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fyl2x_r80_by_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
+{
+ iemAImpl_fyl2x_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2);
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fyl2x_r80_by_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
+{
+ iemAImpl_fyl2x_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2);
+}
+
+#if defined(IEM_WITHOUT_ASSEMBLY)
+
+static uint16_t iemAImpl_fyl2xp1_r80_by_r80_normal(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw)
+{
+ softfloat_state_t SoftState = SOFTFLOAT_STATE_INIT_DEFAULTS();
+ extFloat80_t y = iemFpuSoftF80FromIprt(pr80Val1);
+ extFloat80_t x = iemFpuSoftF80FromIprt(pr80Val2);
+ extFloat80_t v;
+ (void)fFcw;
+
+ v = extF80_ylog2xp1(y, x, &SoftState);
+ iemFpuSoftF80ToIprt(pr80Result, v);
+
+ return fFsw;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fyl2xp1_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
+{
+ uint16_t const fFcw = pFpuState->FCW;
+ uint16_t fFsw = pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3);
+
+ if (RTFLOAT80U_IS_NORMAL(pr80Val1) && RTFLOAT80U_IS_NORMAL(pr80Val2) && pr80Val2->s.uExponent < RTFLOAT80U_EXP_BIAS)
+ {
+ fFsw = iemAImpl_fyl2xp1_r80_by_r80_normal(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw);
+
+ fFsw |= X86_FSW_PE | (7 << X86_FSW_TOP_SHIFT);
+ if (!(fFcw & X86_FCW_PM))
+ fFsw |= X86_FSW_ES | X86_FSW_B;
+ }
+ else
+ {
+ fFsw |= X86_FSW_IE;
+
+ if (!(fFcw & X86_FCW_IM))
+ {
+ pFpuRes->r80Result = *pr80Val2;
+ fFsw |= X86_FSW_ES | X86_FSW_B | (6 << X86_FSW_TOP_SHIFT);
+ }
+ else
+ {
+ pFpuRes->r80Result = g_r80Indefinite;
+ fFsw |= (7 << X86_FSW_TOP_SHIFT);
+ }
+ }
+
+ pFpuRes->FSW = fFsw;
+}
+
+#endif /* IEM_WITHOUT_ASSEMBLY */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fyl2xp1_r80_by_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
+{
+ iemAImpl_fyl2xp1_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2);
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_fyl2xp1_r80_by_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
+ PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
+{
+ iemAImpl_fyl2xp1_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2);
+}
+
+
+/*********************************************************************************************************************************
+* MMX, SSE & AVX *
+*********************************************************************************************************************************/
+
+#ifdef IEM_WITH_VEX
+
+/*
+ * VMOVSLDUP
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc))
+{
+ pXState->x87.aXMM[iYRegDst].au32[0] = pXState->x87.aXMM[iYRegSrc].au32[0];
+ pXState->x87.aXMM[iYRegDst].au32[1] = pXState->x87.aXMM[iYRegSrc].au32[0];
+ pXState->x87.aXMM[iYRegDst].au32[2] = pXState->x87.aXMM[iYRegSrc].au32[2];
+ pXState->x87.aXMM[iYRegDst].au32[3] = pXState->x87.aXMM[iYRegSrc].au32[2];
+ pXState->u.YmmHi.aYmmHi[iYRegDst].au32[0] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[0];
+ pXState->u.YmmHi.aYmmHi[iYRegDst].au32[1] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[0];
+ pXState->u.YmmHi.aYmmHi[iYRegDst].au32[2] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[2];
+ pXState->u.YmmHi.aYmmHi[iYRegDst].au32[3] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[2];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc))
+{
+ pXState->x87.aXMM[iYRegDst].au32[0] = pSrc->au32[0];
+ pXState->x87.aXMM[iYRegDst].au32[1] = pSrc->au32[0];
+ pXState->x87.aXMM[iYRegDst].au32[2] = pSrc->au32[2];
+ pXState->x87.aXMM[iYRegDst].au32[3] = pSrc->au32[2];
+ pXState->u.YmmHi.aYmmHi[iYRegDst].au32[0] = pSrc->au32[4];
+ pXState->u.YmmHi.aYmmHi[iYRegDst].au32[1] = pSrc->au32[4];
+ pXState->u.YmmHi.aYmmHi[iYRegDst].au32[2] = pSrc->au32[6];
+ pXState->u.YmmHi.aYmmHi[iYRegDst].au32[3] = pSrc->au32[6];
+}
+
+#endif /* IEM_WITH_VEX */
+
+
+#ifdef IEM_WITH_VEX
+
+/*
+ * VMOVSHDUP
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_vmovshdup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc))
+{
+ pXState->x87.aXMM[iYRegDst].au32[0] = pXState->x87.aXMM[iYRegSrc].au32[1];
+ pXState->x87.aXMM[iYRegDst].au32[1] = pXState->x87.aXMM[iYRegSrc].au32[1];
+ pXState->x87.aXMM[iYRegDst].au32[2] = pXState->x87.aXMM[iYRegSrc].au32[3];
+ pXState->x87.aXMM[iYRegDst].au32[3] = pXState->x87.aXMM[iYRegSrc].au32[3];
+ pXState->u.YmmHi.aYmmHi[iYRegDst].au32[0] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[1];
+ pXState->u.YmmHi.aYmmHi[iYRegDst].au32[1] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[1];
+ pXState->u.YmmHi.aYmmHi[iYRegDst].au32[2] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[3];
+ pXState->u.YmmHi.aYmmHi[iYRegDst].au32[3] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[3];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vmovshdup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc))
+{
+ pXState->x87.aXMM[iYRegDst].au32[0] = pSrc->au32[1];
+ pXState->x87.aXMM[iYRegDst].au32[1] = pSrc->au32[1];
+ pXState->x87.aXMM[iYRegDst].au32[2] = pSrc->au32[3];
+ pXState->x87.aXMM[iYRegDst].au32[3] = pSrc->au32[3];
+ pXState->u.YmmHi.aYmmHi[iYRegDst].au32[0] = pSrc->au32[5];
+ pXState->u.YmmHi.aYmmHi[iYRegDst].au32[1] = pSrc->au32[5];
+ pXState->u.YmmHi.aYmmHi[iYRegDst].au32[2] = pSrc->au32[7];
+ pXState->u.YmmHi.aYmmHi[iYRegDst].au32[3] = pSrc->au32[7];
+}
+
+#endif /* IEM_WITH_VEX */
+
+
+#ifdef IEM_WITH_VEX
+
+/*
+ * VMOVDDUP
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc))
+{
+ pXState->x87.aXMM[iYRegDst].au64[0] = pXState->x87.aXMM[iYRegSrc].au64[0];
+ pXState->x87.aXMM[iYRegDst].au64[1] = pXState->x87.aXMM[iYRegSrc].au64[0];
+ pXState->u.YmmHi.aYmmHi[iYRegDst].au64[0] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au64[0];
+ pXState->u.YmmHi.aYmmHi[iYRegDst].au64[1] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au64[0];
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc))
+{
+ pXState->x87.aXMM[iYRegDst].au64[0] = pSrc->au64[0];
+ pXState->x87.aXMM[iYRegDst].au64[1] = pSrc->au64[0];
+ pXState->u.YmmHi.aYmmHi[iYRegDst].au64[0] = pSrc->au64[2];
+ pXState->u.YmmHi.aYmmHi[iYRegDst].au64[1] = pSrc->au64[2];
+}
+
+#endif /* IEM_WITH_VEX */
+
+
+/*
+ * PAND / VPAND / PANDPS / VPANDPS / PANDPD / VPANDPD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pand_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ *puDst &= *puSrc;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pand_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ puDst->au64[0] &= puSrc->au64[0];
+ puDst->au64[1] &= puSrc->au64[1];
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpand_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au64[0] = puSrc1->au64[0] & puSrc2->au64[0];
+ puDst->au64[1] = puSrc1->au64[1] & puSrc2->au64[1];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpand_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au64[0] = puSrc1->au64[0] & puSrc2->au64[0];
+ puDst->au64[1] = puSrc1->au64[1] & puSrc2->au64[1];
+ puDst->au64[2] = puSrc1->au64[2] & puSrc2->au64[2];
+ puDst->au64[3] = puSrc1->au64[3] & puSrc2->au64[3];
+}
+
+
+/*
+ * PANDN / VPANDN / PANDNPS / VPANDNPS / PANDNPD / VPANDNPD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pandn_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ *puDst = ~*puDst & *puSrc;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pandn_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ puDst->au64[0] = ~puDst->au64[0] & puSrc->au64[0];
+ puDst->au64[1] = ~puDst->au64[1] & puSrc->au64[1];
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpandn_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au64[0] = ~puSrc1->au64[0] & puSrc2->au64[0];
+ puDst->au64[1] = ~puSrc1->au64[1] & puSrc2->au64[1];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpandn_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au64[0] = ~puSrc1->au64[0] & puSrc2->au64[0];
+ puDst->au64[1] = ~puSrc1->au64[1] & puSrc2->au64[1];
+ puDst->au64[2] = ~puSrc1->au64[2] & puSrc2->au64[2];
+ puDst->au64[3] = ~puSrc1->au64[3] & puSrc2->au64[3];
+}
+
+
+/*
+ * POR / VPOR / PORPS / VPORPS / PORPD / VPORPD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_por_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ *puDst |= *puSrc;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_por_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ puDst->au64[0] |= puSrc->au64[0];
+ puDst->au64[1] |= puSrc->au64[1];
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpor_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au64[0] = puSrc1->au64[0] | puSrc2->au64[0];
+ puDst->au64[1] = puSrc1->au64[1] | puSrc2->au64[1];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpor_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au64[0] = puSrc1->au64[0] | puSrc2->au64[0];
+ puDst->au64[1] = puSrc1->au64[1] | puSrc2->au64[1];
+ puDst->au64[2] = puSrc1->au64[2] | puSrc2->au64[2];
+ puDst->au64[3] = puSrc1->au64[3] | puSrc2->au64[3];
+}
+
+
+/*
+ * PXOR / VPXOR / PXORPS / VPXORPS / PXORPD / VPXORPD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pxor_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ *puDst ^= *puSrc;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pxor_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ puDst->au64[0] ^= puSrc->au64[0];
+ puDst->au64[1] ^= puSrc->au64[1];
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpxor_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au64[0] = puSrc1->au64[0] ^ puSrc2->au64[0];
+ puDst->au64[1] = puSrc1->au64[1] ^ puSrc2->au64[1];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpxor_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au64[0] = puSrc1->au64[0] ^ puSrc2->au64[0];
+ puDst->au64[1] = puSrc1->au64[1] ^ puSrc2->au64[1];
+ puDst->au64[2] = puSrc1->au64[2] ^ puSrc2->au64[2];
+ puDst->au64[3] = puSrc1->au64[3] ^ puSrc2->au64[3];
+}
+
+
+/*
+ * PCMPEQB / VPCMPEQB
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+ uDst.au8[0] = uSrc1.au8[0] == uSrc2.au8[0] ? 0xff : 0;
+ uDst.au8[1] = uSrc1.au8[1] == uSrc2.au8[1] ? 0xff : 0;
+ uDst.au8[2] = uSrc1.au8[2] == uSrc2.au8[2] ? 0xff : 0;
+ uDst.au8[3] = uSrc1.au8[3] == uSrc2.au8[3] ? 0xff : 0;
+ uDst.au8[4] = uSrc1.au8[4] == uSrc2.au8[4] ? 0xff : 0;
+ uDst.au8[5] = uSrc1.au8[5] == uSrc2.au8[5] ? 0xff : 0;
+ uDst.au8[6] = uSrc1.au8[6] == uSrc2.au8[6] ? 0xff : 0;
+ uDst.au8[7] = uSrc1.au8[7] == uSrc2.au8[7] ? 0xff : 0;
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au8[0] = uSrc1.au8[0] == puSrc->au8[0] ? UINT8_MAX : 0;
+ puDst->au8[1] = uSrc1.au8[1] == puSrc->au8[1] ? UINT8_MAX : 0;
+ puDst->au8[2] = uSrc1.au8[2] == puSrc->au8[2] ? UINT8_MAX : 0;
+ puDst->au8[3] = uSrc1.au8[3] == puSrc->au8[3] ? UINT8_MAX : 0;
+ puDst->au8[4] = uSrc1.au8[4] == puSrc->au8[4] ? UINT8_MAX : 0;
+ puDst->au8[5] = uSrc1.au8[5] == puSrc->au8[5] ? UINT8_MAX : 0;
+ puDst->au8[6] = uSrc1.au8[6] == puSrc->au8[6] ? UINT8_MAX : 0;
+ puDst->au8[7] = uSrc1.au8[7] == puSrc->au8[7] ? UINT8_MAX : 0;
+ puDst->au8[8] = uSrc1.au8[8] == puSrc->au8[8] ? UINT8_MAX : 0;
+ puDst->au8[9] = uSrc1.au8[9] == puSrc->au8[9] ? UINT8_MAX : 0;
+ puDst->au8[10] = uSrc1.au8[10] == puSrc->au8[10] ? UINT8_MAX : 0;
+ puDst->au8[11] = uSrc1.au8[11] == puSrc->au8[11] ? UINT8_MAX : 0;
+ puDst->au8[12] = uSrc1.au8[12] == puSrc->au8[12] ? UINT8_MAX : 0;
+ puDst->au8[13] = uSrc1.au8[13] == puSrc->au8[13] ? UINT8_MAX : 0;
+ puDst->au8[14] = uSrc1.au8[14] == puSrc->au8[14] ? UINT8_MAX : 0;
+ puDst->au8[15] = uSrc1.au8[15] == puSrc->au8[15] ? UINT8_MAX : 0;
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqb_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au8[0] = puSrc1->au8[0] == puSrc2->au8[0] ? UINT8_MAX : 0;
+ puDst->au8[1] = puSrc1->au8[1] == puSrc2->au8[1] ? UINT8_MAX : 0;
+ puDst->au8[2] = puSrc1->au8[2] == puSrc2->au8[2] ? UINT8_MAX : 0;
+ puDst->au8[3] = puSrc1->au8[3] == puSrc2->au8[3] ? UINT8_MAX : 0;
+ puDst->au8[4] = puSrc1->au8[4] == puSrc2->au8[4] ? UINT8_MAX : 0;
+ puDst->au8[5] = puSrc1->au8[5] == puSrc2->au8[5] ? UINT8_MAX : 0;
+ puDst->au8[6] = puSrc1->au8[6] == puSrc2->au8[6] ? UINT8_MAX : 0;
+ puDst->au8[7] = puSrc1->au8[7] == puSrc2->au8[7] ? UINT8_MAX : 0;
+ puDst->au8[8] = puSrc1->au8[8] == puSrc2->au8[8] ? UINT8_MAX : 0;
+ puDst->au8[9] = puSrc1->au8[9] == puSrc2->au8[9] ? UINT8_MAX : 0;
+ puDst->au8[10] = puSrc1->au8[10] == puSrc2->au8[10] ? UINT8_MAX : 0;
+ puDst->au8[11] = puSrc1->au8[11] == puSrc2->au8[11] ? UINT8_MAX : 0;
+ puDst->au8[12] = puSrc1->au8[12] == puSrc2->au8[12] ? UINT8_MAX : 0;
+ puDst->au8[13] = puSrc1->au8[13] == puSrc2->au8[13] ? UINT8_MAX : 0;
+ puDst->au8[14] = puSrc1->au8[14] == puSrc2->au8[14] ? UINT8_MAX : 0;
+ puDst->au8[15] = puSrc1->au8[15] == puSrc2->au8[15] ? UINT8_MAX : 0;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqb_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au8[0] = puSrc1->au8[0] == puSrc2->au8[0] ? UINT8_MAX : 0;
+ puDst->au8[1] = puSrc1->au8[1] == puSrc2->au8[1] ? UINT8_MAX : 0;
+ puDst->au8[2] = puSrc1->au8[2] == puSrc2->au8[2] ? UINT8_MAX : 0;
+ puDst->au8[3] = puSrc1->au8[3] == puSrc2->au8[3] ? UINT8_MAX : 0;
+ puDst->au8[4] = puSrc1->au8[4] == puSrc2->au8[4] ? UINT8_MAX : 0;
+ puDst->au8[5] = puSrc1->au8[5] == puSrc2->au8[5] ? UINT8_MAX : 0;
+ puDst->au8[6] = puSrc1->au8[6] == puSrc2->au8[6] ? UINT8_MAX : 0;
+ puDst->au8[7] = puSrc1->au8[7] == puSrc2->au8[7] ? UINT8_MAX : 0;
+ puDst->au8[8] = puSrc1->au8[8] == puSrc2->au8[8] ? UINT8_MAX : 0;
+ puDst->au8[9] = puSrc1->au8[9] == puSrc2->au8[9] ? UINT8_MAX : 0;
+ puDst->au8[10] = puSrc1->au8[10] == puSrc2->au8[10] ? UINT8_MAX : 0;
+ puDst->au8[11] = puSrc1->au8[11] == puSrc2->au8[11] ? UINT8_MAX : 0;
+ puDst->au8[12] = puSrc1->au8[12] == puSrc2->au8[12] ? UINT8_MAX : 0;
+ puDst->au8[13] = puSrc1->au8[13] == puSrc2->au8[13] ? UINT8_MAX : 0;
+ puDst->au8[14] = puSrc1->au8[14] == puSrc2->au8[14] ? UINT8_MAX : 0;
+ puDst->au8[15] = puSrc1->au8[15] == puSrc2->au8[15] ? UINT8_MAX : 0;
+ puDst->au8[16] = puSrc1->au8[16] == puSrc2->au8[16] ? UINT8_MAX : 0;
+ puDst->au8[17] = puSrc1->au8[17] == puSrc2->au8[17] ? UINT8_MAX : 0;
+ puDst->au8[18] = puSrc1->au8[18] == puSrc2->au8[18] ? UINT8_MAX : 0;
+ puDst->au8[19] = puSrc1->au8[19] == puSrc2->au8[19] ? UINT8_MAX : 0;
+ puDst->au8[20] = puSrc1->au8[20] == puSrc2->au8[20] ? UINT8_MAX : 0;
+ puDst->au8[21] = puSrc1->au8[21] == puSrc2->au8[21] ? UINT8_MAX : 0;
+ puDst->au8[22] = puSrc1->au8[22] == puSrc2->au8[22] ? UINT8_MAX : 0;
+ puDst->au8[23] = puSrc1->au8[23] == puSrc2->au8[23] ? UINT8_MAX : 0;
+ puDst->au8[24] = puSrc1->au8[24] == puSrc2->au8[24] ? UINT8_MAX : 0;
+ puDst->au8[25] = puSrc1->au8[25] == puSrc2->au8[25] ? UINT8_MAX : 0;
+ puDst->au8[26] = puSrc1->au8[26] == puSrc2->au8[26] ? UINT8_MAX : 0;
+ puDst->au8[27] = puSrc1->au8[27] == puSrc2->au8[27] ? UINT8_MAX : 0;
+ puDst->au8[28] = puSrc1->au8[28] == puSrc2->au8[28] ? UINT8_MAX : 0;
+ puDst->au8[29] = puSrc1->au8[29] == puSrc2->au8[29] ? UINT8_MAX : 0;
+ puDst->au8[30] = puSrc1->au8[30] == puSrc2->au8[30] ? UINT8_MAX : 0;
+ puDst->au8[31] = puSrc1->au8[31] == puSrc2->au8[31] ? UINT8_MAX : 0;
+}
+
+
+/*
+ * PCMPEQW / VPCMPEQW
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+ uDst.au16[0] = uSrc1.au16[0] == uSrc2.au16[0] ? UINT16_MAX : 0;
+ uDst.au16[1] = uSrc1.au16[1] == uSrc2.au16[1] ? UINT16_MAX : 0;
+ uDst.au16[2] = uSrc1.au16[2] == uSrc2.au16[2] ? UINT16_MAX : 0;
+ uDst.au16[3] = uSrc1.au16[3] == uSrc2.au16[3] ? UINT16_MAX : 0;
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au16[0] = uSrc1.au16[0] == puSrc->au16[0] ? UINT16_MAX : 0;
+ puDst->au16[1] = uSrc1.au16[1] == puSrc->au16[1] ? UINT16_MAX : 0;
+ puDst->au16[2] = uSrc1.au16[2] == puSrc->au16[2] ? UINT16_MAX : 0;
+ puDst->au16[3] = uSrc1.au16[3] == puSrc->au16[3] ? UINT16_MAX : 0;
+ puDst->au16[4] = uSrc1.au16[4] == puSrc->au16[4] ? UINT16_MAX : 0;
+ puDst->au16[5] = uSrc1.au16[5] == puSrc->au16[5] ? UINT16_MAX : 0;
+ puDst->au16[6] = uSrc1.au16[6] == puSrc->au16[6] ? UINT16_MAX : 0;
+ puDst->au16[7] = uSrc1.au16[7] == puSrc->au16[7] ? UINT16_MAX : 0;
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au16[0] = puSrc1->au16[0] == puSrc2->au16[0] ? UINT16_MAX : 0;
+ puDst->au16[1] = puSrc1->au16[1] == puSrc2->au16[1] ? UINT16_MAX : 0;
+ puDst->au16[2] = puSrc1->au16[2] == puSrc2->au16[2] ? UINT16_MAX : 0;
+ puDst->au16[3] = puSrc1->au16[3] == puSrc2->au16[3] ? UINT16_MAX : 0;
+ puDst->au16[4] = puSrc1->au16[4] == puSrc2->au16[4] ? UINT16_MAX : 0;
+ puDst->au16[5] = puSrc1->au16[5] == puSrc2->au16[5] ? UINT16_MAX : 0;
+ puDst->au16[6] = puSrc1->au16[6] == puSrc2->au16[6] ? UINT16_MAX : 0;
+ puDst->au16[7] = puSrc1->au16[7] == puSrc2->au16[7] ? UINT16_MAX : 0;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au16[0] = puSrc1->au16[0] == puSrc2->au16[0] ? UINT16_MAX : 0;
+ puDst->au16[1] = puSrc1->au16[1] == puSrc2->au16[1] ? UINT16_MAX : 0;
+ puDst->au16[2] = puSrc1->au16[2] == puSrc2->au16[2] ? UINT16_MAX : 0;
+ puDst->au16[3] = puSrc1->au16[3] == puSrc2->au16[3] ? UINT16_MAX : 0;
+ puDst->au16[4] = puSrc1->au16[4] == puSrc2->au16[4] ? UINT16_MAX : 0;
+ puDst->au16[5] = puSrc1->au16[5] == puSrc2->au16[5] ? UINT16_MAX : 0;
+ puDst->au16[6] = puSrc1->au16[6] == puSrc2->au16[6] ? UINT16_MAX : 0;
+ puDst->au16[7] = puSrc1->au16[7] == puSrc2->au16[7] ? UINT16_MAX : 0;
+ puDst->au16[8] = puSrc1->au16[8] == puSrc2->au16[8] ? UINT16_MAX : 0;
+ puDst->au16[9] = puSrc1->au16[9] == puSrc2->au16[9] ? UINT16_MAX : 0;
+ puDst->au16[10] = puSrc1->au16[10] == puSrc2->au16[10] ? UINT16_MAX : 0;
+ puDst->au16[11] = puSrc1->au16[11] == puSrc2->au16[11] ? UINT16_MAX : 0;
+ puDst->au16[12] = puSrc1->au16[12] == puSrc2->au16[12] ? UINT16_MAX : 0;
+ puDst->au16[13] = puSrc1->au16[13] == puSrc2->au16[13] ? UINT16_MAX : 0;
+ puDst->au16[14] = puSrc1->au16[14] == puSrc2->au16[14] ? UINT16_MAX : 0;
+ puDst->au16[15] = puSrc1->au16[15] == puSrc2->au16[15] ? UINT16_MAX : 0;
+}
+
+
+/*
+ * PCMPEQD / VPCMPEQD.
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqd_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+ uDst.au32[0] = uSrc1.au32[0] == uSrc2.au32[0] ? UINT32_MAX : 0;
+ uDst.au32[1] = uSrc1.au32[1] == uSrc2.au32[1] ? UINT32_MAX : 0;
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqd_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au32[0] = uSrc1.au32[0] == puSrc->au32[0] ? UINT32_MAX : 0;
+ puDst->au32[1] = uSrc1.au32[1] == puSrc->au32[1] ? UINT32_MAX : 0;
+ puDst->au32[2] = uSrc1.au32[2] == puSrc->au32[2] ? UINT32_MAX : 0;
+ puDst->au32[3] = uSrc1.au32[3] == puSrc->au32[3] ? UINT32_MAX : 0;
+}
+
+#endif /* IEM_WITHOUT_ASSEMBLY */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqd_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au32[0] = puSrc1->au32[0] == puSrc2->au32[0] ? UINT32_MAX : 0;
+ puDst->au32[1] = puSrc1->au32[1] == puSrc2->au32[1] ? UINT32_MAX : 0;
+ puDst->au32[2] = puSrc1->au32[2] == puSrc2->au32[2] ? UINT32_MAX : 0;
+ puDst->au32[3] = puSrc1->au32[3] == puSrc2->au32[3] ? UINT32_MAX : 0;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqd_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au32[0] = puSrc1->au32[0] == puSrc2->au32[0] ? UINT32_MAX : 0;
+ puDst->au32[1] = puSrc1->au32[1] == puSrc2->au32[1] ? UINT32_MAX : 0;
+ puDst->au32[2] = puSrc1->au32[2] == puSrc2->au32[2] ? UINT32_MAX : 0;
+ puDst->au32[3] = puSrc1->au32[3] == puSrc2->au32[3] ? UINT32_MAX : 0;
+ puDst->au32[4] = puSrc1->au32[4] == puSrc2->au32[4] ? UINT32_MAX : 0;
+ puDst->au32[5] = puSrc1->au32[5] == puSrc2->au32[5] ? UINT32_MAX : 0;
+ puDst->au32[6] = puSrc1->au32[6] == puSrc2->au32[6] ? UINT32_MAX : 0;
+ puDst->au32[7] = puSrc1->au32[7] == puSrc2->au32[7] ? UINT32_MAX : 0;
+}
+
+
+/*
+ * PCMPEQQ / VPCMPEQQ.
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqq_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au64[0] = uSrc1.au64[0] == puSrc->au64[0] ? UINT64_MAX : 0;
+ puDst->au64[1] = uSrc1.au64[1] == puSrc->au64[1] ? UINT64_MAX : 0;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqq_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au64[0] = puSrc1->au64[0] == puSrc2->au64[0] ? UINT64_MAX : 0;
+ puDst->au64[1] = puSrc1->au64[1] == puSrc2->au64[1] ? UINT64_MAX : 0;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqq_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au64[0] = puSrc1->au64[0] == puSrc2->au64[0] ? UINT64_MAX : 0;
+ puDst->au64[1] = puSrc1->au64[1] == puSrc2->au64[1] ? UINT64_MAX : 0;
+ puDst->au64[2] = puSrc1->au64[2] == puSrc2->au64[2] ? UINT64_MAX : 0;
+ puDst->au64[3] = puSrc1->au64[3] == puSrc2->au64[3] ? UINT64_MAX : 0;
+}
+
+
+/*
+ * PCMPGTB / VPCMPGTB
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+ uDst.au8[0] = uSrc1.ai8[0] > uSrc2.ai8[0] ? UINT8_MAX : 0;
+ uDst.au8[1] = uSrc1.ai8[1] > uSrc2.ai8[1] ? UINT8_MAX : 0;
+ uDst.au8[2] = uSrc1.ai8[2] > uSrc2.ai8[2] ? UINT8_MAX : 0;
+ uDst.au8[3] = uSrc1.ai8[3] > uSrc2.ai8[3] ? UINT8_MAX : 0;
+ uDst.au8[4] = uSrc1.ai8[4] > uSrc2.ai8[4] ? UINT8_MAX : 0;
+ uDst.au8[5] = uSrc1.ai8[5] > uSrc2.ai8[5] ? UINT8_MAX : 0;
+ uDst.au8[6] = uSrc1.ai8[6] > uSrc2.ai8[6] ? UINT8_MAX : 0;
+ uDst.au8[7] = uSrc1.ai8[7] > uSrc2.ai8[7] ? UINT8_MAX : 0;
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au8[0] = uSrc1.ai8[0] > puSrc->ai8[0] ? UINT8_MAX : 0;
+ puDst->au8[1] = uSrc1.ai8[1] > puSrc->ai8[1] ? UINT8_MAX : 0;
+ puDst->au8[2] = uSrc1.ai8[2] > puSrc->ai8[2] ? UINT8_MAX : 0;
+ puDst->au8[3] = uSrc1.ai8[3] > puSrc->ai8[3] ? UINT8_MAX : 0;
+ puDst->au8[4] = uSrc1.ai8[4] > puSrc->ai8[4] ? UINT8_MAX : 0;
+ puDst->au8[5] = uSrc1.ai8[5] > puSrc->ai8[5] ? UINT8_MAX : 0;
+ puDst->au8[6] = uSrc1.ai8[6] > puSrc->ai8[6] ? UINT8_MAX : 0;
+ puDst->au8[7] = uSrc1.ai8[7] > puSrc->ai8[7] ? UINT8_MAX : 0;
+ puDst->au8[8] = uSrc1.ai8[8] > puSrc->ai8[8] ? UINT8_MAX : 0;
+ puDst->au8[9] = uSrc1.ai8[9] > puSrc->ai8[9] ? UINT8_MAX : 0;
+ puDst->au8[10] = uSrc1.ai8[10] > puSrc->ai8[10] ? UINT8_MAX : 0;
+ puDst->au8[11] = uSrc1.ai8[11] > puSrc->ai8[11] ? UINT8_MAX : 0;
+ puDst->au8[12] = uSrc1.ai8[12] > puSrc->ai8[12] ? UINT8_MAX : 0;
+ puDst->au8[13] = uSrc1.ai8[13] > puSrc->ai8[13] ? UINT8_MAX : 0;
+ puDst->au8[14] = uSrc1.ai8[14] > puSrc->ai8[14] ? UINT8_MAX : 0;
+ puDst->au8[15] = uSrc1.ai8[15] > puSrc->ai8[15] ? UINT8_MAX : 0;
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtb_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au8[0] = puSrc1->ai8[0] > puSrc2->ai8[0] ? UINT8_MAX : 0;
+ puDst->au8[1] = puSrc1->ai8[1] > puSrc2->ai8[1] ? UINT8_MAX : 0;
+ puDst->au8[2] = puSrc1->ai8[2] > puSrc2->ai8[2] ? UINT8_MAX : 0;
+ puDst->au8[3] = puSrc1->ai8[3] > puSrc2->ai8[3] ? UINT8_MAX : 0;
+ puDst->au8[4] = puSrc1->ai8[4] > puSrc2->ai8[4] ? UINT8_MAX : 0;
+ puDst->au8[5] = puSrc1->ai8[5] > puSrc2->ai8[5] ? UINT8_MAX : 0;
+ puDst->au8[6] = puSrc1->ai8[6] > puSrc2->ai8[6] ? UINT8_MAX : 0;
+ puDst->au8[7] = puSrc1->ai8[7] > puSrc2->ai8[7] ? UINT8_MAX : 0;
+ puDst->au8[8] = puSrc1->ai8[8] > puSrc2->ai8[8] ? UINT8_MAX : 0;
+ puDst->au8[9] = puSrc1->ai8[9] > puSrc2->ai8[9] ? UINT8_MAX : 0;
+ puDst->au8[10] = puSrc1->ai8[10] > puSrc2->ai8[10] ? UINT8_MAX : 0;
+ puDst->au8[11] = puSrc1->ai8[11] > puSrc2->ai8[11] ? UINT8_MAX : 0;
+ puDst->au8[12] = puSrc1->ai8[12] > puSrc2->ai8[12] ? UINT8_MAX : 0;
+ puDst->au8[13] = puSrc1->ai8[13] > puSrc2->ai8[13] ? UINT8_MAX : 0;
+ puDst->au8[14] = puSrc1->ai8[14] > puSrc2->ai8[14] ? UINT8_MAX : 0;
+ puDst->au8[15] = puSrc1->ai8[15] > puSrc2->ai8[15] ? UINT8_MAX : 0;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtb_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au8[0] = puSrc1->ai8[0] > puSrc2->ai8[0] ? UINT8_MAX : 0;
+ puDst->au8[1] = puSrc1->ai8[1] > puSrc2->ai8[1] ? UINT8_MAX : 0;
+ puDst->au8[2] = puSrc1->ai8[2] > puSrc2->ai8[2] ? UINT8_MAX : 0;
+ puDst->au8[3] = puSrc1->ai8[3] > puSrc2->ai8[3] ? UINT8_MAX : 0;
+ puDst->au8[4] = puSrc1->ai8[4] > puSrc2->ai8[4] ? UINT8_MAX : 0;
+ puDst->au8[5] = puSrc1->ai8[5] > puSrc2->ai8[5] ? UINT8_MAX : 0;
+ puDst->au8[6] = puSrc1->ai8[6] > puSrc2->ai8[6] ? UINT8_MAX : 0;
+ puDst->au8[7] = puSrc1->ai8[7] > puSrc2->ai8[7] ? UINT8_MAX : 0;
+ puDst->au8[8] = puSrc1->ai8[8] > puSrc2->ai8[8] ? UINT8_MAX : 0;
+ puDst->au8[9] = puSrc1->ai8[9] > puSrc2->ai8[9] ? UINT8_MAX : 0;
+ puDst->au8[10] = puSrc1->ai8[10] > puSrc2->ai8[10] ? UINT8_MAX : 0;
+ puDst->au8[11] = puSrc1->ai8[11] > puSrc2->ai8[11] ? UINT8_MAX : 0;
+ puDst->au8[12] = puSrc1->ai8[12] > puSrc2->ai8[12] ? UINT8_MAX : 0;
+ puDst->au8[13] = puSrc1->ai8[13] > puSrc2->ai8[13] ? UINT8_MAX : 0;
+ puDst->au8[14] = puSrc1->ai8[14] > puSrc2->ai8[14] ? UINT8_MAX : 0;
+ puDst->au8[15] = puSrc1->ai8[15] > puSrc2->ai8[15] ? UINT8_MAX : 0;
+ puDst->au8[16] = puSrc1->ai8[16] > puSrc2->ai8[16] ? UINT8_MAX : 0;
+ puDst->au8[17] = puSrc1->ai8[17] > puSrc2->ai8[17] ? UINT8_MAX : 0;
+ puDst->au8[18] = puSrc1->ai8[18] > puSrc2->ai8[18] ? UINT8_MAX : 0;
+ puDst->au8[19] = puSrc1->ai8[19] > puSrc2->ai8[19] ? UINT8_MAX : 0;
+ puDst->au8[20] = puSrc1->ai8[20] > puSrc2->ai8[20] ? UINT8_MAX : 0;
+ puDst->au8[21] = puSrc1->ai8[21] > puSrc2->ai8[21] ? UINT8_MAX : 0;
+ puDst->au8[22] = puSrc1->ai8[22] > puSrc2->ai8[22] ? UINT8_MAX : 0;
+ puDst->au8[23] = puSrc1->ai8[23] > puSrc2->ai8[23] ? UINT8_MAX : 0;
+ puDst->au8[24] = puSrc1->ai8[24] > puSrc2->ai8[24] ? UINT8_MAX : 0;
+ puDst->au8[25] = puSrc1->ai8[25] > puSrc2->ai8[25] ? UINT8_MAX : 0;
+ puDst->au8[26] = puSrc1->ai8[26] > puSrc2->ai8[26] ? UINT8_MAX : 0;
+ puDst->au8[27] = puSrc1->ai8[27] > puSrc2->ai8[27] ? UINT8_MAX : 0;
+ puDst->au8[28] = puSrc1->ai8[28] > puSrc2->ai8[28] ? UINT8_MAX : 0;
+ puDst->au8[29] = puSrc1->ai8[29] > puSrc2->ai8[29] ? UINT8_MAX : 0;
+ puDst->au8[30] = puSrc1->ai8[30] > puSrc2->ai8[30] ? UINT8_MAX : 0;
+ puDst->au8[31] = puSrc1->ai8[31] > puSrc2->ai8[31] ? UINT8_MAX : 0;
+}
+
+
+/*
+ * PCMPGTW / VPCMPGTW
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+ uDst.au16[0] = uSrc1.ai16[0] > uSrc2.ai16[0] ? UINT16_MAX : 0;
+ uDst.au16[1] = uSrc1.ai16[1] > uSrc2.ai16[1] ? UINT16_MAX : 0;
+ uDst.au16[2] = uSrc1.ai16[2] > uSrc2.ai16[2] ? UINT16_MAX : 0;
+ uDst.au16[3] = uSrc1.ai16[3] > uSrc2.ai16[3] ? UINT16_MAX : 0;
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au16[0] = uSrc1.ai16[0] > puSrc->ai16[0] ? UINT16_MAX : 0;
+ puDst->au16[1] = uSrc1.ai16[1] > puSrc->ai16[1] ? UINT16_MAX : 0;
+ puDst->au16[2] = uSrc1.ai16[2] > puSrc->ai16[2] ? UINT16_MAX : 0;
+ puDst->au16[3] = uSrc1.ai16[3] > puSrc->ai16[3] ? UINT16_MAX : 0;
+ puDst->au16[4] = uSrc1.ai16[4] > puSrc->ai16[4] ? UINT16_MAX : 0;
+ puDst->au16[5] = uSrc1.ai16[5] > puSrc->ai16[5] ? UINT16_MAX : 0;
+ puDst->au16[6] = uSrc1.ai16[6] > puSrc->ai16[6] ? UINT16_MAX : 0;
+ puDst->au16[7] = uSrc1.ai16[7] > puSrc->ai16[7] ? UINT16_MAX : 0;
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au16[0] = puSrc1->ai16[0] > puSrc2->ai16[0] ? UINT16_MAX : 0;
+ puDst->au16[1] = puSrc1->ai16[1] > puSrc2->ai16[1] ? UINT16_MAX : 0;
+ puDst->au16[2] = puSrc1->ai16[2] > puSrc2->ai16[2] ? UINT16_MAX : 0;
+ puDst->au16[3] = puSrc1->ai16[3] > puSrc2->ai16[3] ? UINT16_MAX : 0;
+ puDst->au16[4] = puSrc1->ai16[4] > puSrc2->ai16[4] ? UINT16_MAX : 0;
+ puDst->au16[5] = puSrc1->ai16[5] > puSrc2->ai16[5] ? UINT16_MAX : 0;
+ puDst->au16[6] = puSrc1->ai16[6] > puSrc2->ai16[6] ? UINT16_MAX : 0;
+ puDst->au16[7] = puSrc1->ai16[7] > puSrc2->ai16[7] ? UINT16_MAX : 0;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au16[0] = puSrc1->ai16[0] > puSrc2->ai16[0] ? UINT16_MAX : 0;
+ puDst->au16[1] = puSrc1->ai16[1] > puSrc2->ai16[1] ? UINT16_MAX : 0;
+ puDst->au16[2] = puSrc1->ai16[2] > puSrc2->ai16[2] ? UINT16_MAX : 0;
+ puDst->au16[3] = puSrc1->ai16[3] > puSrc2->ai16[3] ? UINT16_MAX : 0;
+ puDst->au16[4] = puSrc1->ai16[4] > puSrc2->ai16[4] ? UINT16_MAX : 0;
+ puDst->au16[5] = puSrc1->ai16[5] > puSrc2->ai16[5] ? UINT16_MAX : 0;
+ puDst->au16[6] = puSrc1->ai16[6] > puSrc2->ai16[6] ? UINT16_MAX : 0;
+ puDst->au16[7] = puSrc1->ai16[7] > puSrc2->ai16[7] ? UINT16_MAX : 0;
+ puDst->au16[8] = puSrc1->ai16[8] > puSrc2->ai16[8] ? UINT16_MAX : 0;
+ puDst->au16[9] = puSrc1->ai16[9] > puSrc2->ai16[9] ? UINT16_MAX : 0;
+ puDst->au16[10] = puSrc1->ai16[10] > puSrc2->ai16[10] ? UINT16_MAX : 0;
+ puDst->au16[11] = puSrc1->ai16[11] > puSrc2->ai16[11] ? UINT16_MAX : 0;
+ puDst->au16[12] = puSrc1->ai16[12] > puSrc2->ai16[12] ? UINT16_MAX : 0;
+ puDst->au16[13] = puSrc1->ai16[13] > puSrc2->ai16[13] ? UINT16_MAX : 0;
+ puDst->au16[14] = puSrc1->ai16[14] > puSrc2->ai16[14] ? UINT16_MAX : 0;
+ puDst->au16[15] = puSrc1->ai16[15] > puSrc2->ai16[15] ? UINT16_MAX : 0;
+}
+
+
+/*
+ * PCMPGTD / VPCMPGTD.
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtd_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+ uDst.au32[0] = uSrc1.ai32[0] > uSrc2.ai32[0] ? UINT32_MAX : 0;
+ uDst.au32[1] = uSrc1.ai32[1] > uSrc2.ai32[1] ? UINT32_MAX : 0;
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtd_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au32[0] = uSrc1.ai32[0] > puSrc->ai32[0] ? UINT32_MAX : 0;
+ puDst->au32[1] = uSrc1.ai32[1] > puSrc->ai32[1] ? UINT32_MAX : 0;
+ puDst->au32[2] = uSrc1.ai32[2] > puSrc->ai32[2] ? UINT32_MAX : 0;
+ puDst->au32[3] = uSrc1.ai32[3] > puSrc->ai32[3] ? UINT32_MAX : 0;
+}
+
+#endif /* IEM_WITHOUT_ASSEMBLY */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtd_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au32[0] = puSrc1->ai32[0] > puSrc2->ai32[0] ? UINT32_MAX : 0;
+ puDst->au32[1] = puSrc1->ai32[1] > puSrc2->ai32[1] ? UINT32_MAX : 0;
+ puDst->au32[2] = puSrc1->ai32[2] > puSrc2->ai32[2] ? UINT32_MAX : 0;
+ puDst->au32[3] = puSrc1->ai32[3] > puSrc2->ai32[3] ? UINT32_MAX : 0;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtd_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au32[0] = puSrc1->ai32[0] > puSrc2->ai32[0] ? UINT32_MAX : 0;
+ puDst->au32[1] = puSrc1->ai32[1] > puSrc2->ai32[1] ? UINT32_MAX : 0;
+ puDst->au32[2] = puSrc1->ai32[2] > puSrc2->ai32[2] ? UINT32_MAX : 0;
+ puDst->au32[3] = puSrc1->ai32[3] > puSrc2->ai32[3] ? UINT32_MAX : 0;
+ puDst->au32[4] = puSrc1->ai32[4] > puSrc2->ai32[4] ? UINT32_MAX : 0;
+ puDst->au32[5] = puSrc1->ai32[5] > puSrc2->ai32[5] ? UINT32_MAX : 0;
+ puDst->au32[6] = puSrc1->ai32[6] > puSrc2->ai32[6] ? UINT32_MAX : 0;
+ puDst->au32[7] = puSrc1->ai32[7] > puSrc2->ai32[7] ? UINT32_MAX : 0;
+}
+
+
+/*
+ * PCMPGTQ / VPCMPGTQ.
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtq_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au64[0] = uSrc1.ai64[0] > puSrc->ai64[0] ? UINT64_MAX : 0;
+ puDst->au64[1] = uSrc1.ai64[1] > puSrc->ai64[1] ? UINT64_MAX : 0;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtq_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au64[0] = puSrc1->ai64[0] > puSrc2->ai64[0] ? UINT64_MAX : 0;
+ puDst->au64[1] = puSrc1->ai64[1] > puSrc2->ai64[1] ? UINT64_MAX : 0;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtq_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au64[0] = puSrc1->ai64[0] > puSrc2->ai64[0] ? UINT64_MAX : 0;
+ puDst->au64[1] = puSrc1->ai64[1] > puSrc2->ai64[1] ? UINT64_MAX : 0;
+ puDst->au64[2] = puSrc1->ai64[2] > puSrc2->ai64[2] ? UINT64_MAX : 0;
+ puDst->au64[3] = puSrc1->ai64[3] > puSrc2->ai64[3] ? UINT64_MAX : 0;
+}
+
+
+/*
+ * PADDB / VPADDB
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_paddb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+ uDst.au8[0] = uSrc1.au8[0] + uSrc2.au8[0];
+ uDst.au8[1] = uSrc1.au8[1] + uSrc2.au8[1];
+ uDst.au8[2] = uSrc1.au8[2] + uSrc2.au8[2];
+ uDst.au8[3] = uSrc1.au8[3] + uSrc2.au8[3];
+ uDst.au8[4] = uSrc1.au8[4] + uSrc2.au8[4];
+ uDst.au8[5] = uSrc1.au8[5] + uSrc2.au8[5];
+ uDst.au8[6] = uSrc1.au8[6] + uSrc2.au8[6];
+ uDst.au8[7] = uSrc1.au8[7] + uSrc2.au8[7];
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_paddb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au8[0] = uSrc1.au8[0] + puSrc->au8[0];
+ puDst->au8[1] = uSrc1.au8[1] + puSrc->au8[1];
+ puDst->au8[2] = uSrc1.au8[2] + puSrc->au8[2];
+ puDst->au8[3] = uSrc1.au8[3] + puSrc->au8[3];
+ puDst->au8[4] = uSrc1.au8[4] + puSrc->au8[4];
+ puDst->au8[5] = uSrc1.au8[5] + puSrc->au8[5];
+ puDst->au8[6] = uSrc1.au8[6] + puSrc->au8[6];
+ puDst->au8[7] = uSrc1.au8[7] + puSrc->au8[7];
+ puDst->au8[8] = uSrc1.au8[8] + puSrc->au8[8];
+ puDst->au8[9] = uSrc1.au8[9] + puSrc->au8[9];
+ puDst->au8[10] = uSrc1.au8[10] + puSrc->au8[10];
+ puDst->au8[11] = uSrc1.au8[11] + puSrc->au8[11];
+ puDst->au8[12] = uSrc1.au8[12] + puSrc->au8[12];
+ puDst->au8[13] = uSrc1.au8[13] + puSrc->au8[13];
+ puDst->au8[14] = uSrc1.au8[14] + puSrc->au8[14];
+ puDst->au8[15] = uSrc1.au8[15] + puSrc->au8[15];
+}
+
+#endif
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddb_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au8[0] = puSrc1->au8[0] + puSrc2->au8[0];
+ puDst->au8[1] = puSrc1->au8[1] + puSrc2->au8[1];
+ puDst->au8[2] = puSrc1->au8[2] + puSrc2->au8[2];
+ puDst->au8[3] = puSrc1->au8[3] + puSrc2->au8[3];
+ puDst->au8[4] = puSrc1->au8[4] + puSrc2->au8[4];
+ puDst->au8[5] = puSrc1->au8[5] + puSrc2->au8[5];
+ puDst->au8[6] = puSrc1->au8[6] + puSrc2->au8[6];
+ puDst->au8[7] = puSrc1->au8[7] + puSrc2->au8[7];
+ puDst->au8[8] = puSrc1->au8[8] + puSrc2->au8[8];
+ puDst->au8[9] = puSrc1->au8[9] + puSrc2->au8[9];
+ puDst->au8[10] = puSrc1->au8[10] + puSrc2->au8[10];
+ puDst->au8[11] = puSrc1->au8[11] + puSrc2->au8[11];
+ puDst->au8[12] = puSrc1->au8[12] + puSrc2->au8[12];
+ puDst->au8[13] = puSrc1->au8[13] + puSrc2->au8[13];
+ puDst->au8[14] = puSrc1->au8[14] + puSrc2->au8[14];
+ puDst->au8[15] = puSrc1->au8[15] + puSrc2->au8[15];
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddb_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au8[0] = puSrc1->au8[0] + puSrc2->au8[0];
+ puDst->au8[1] = puSrc1->au8[1] + puSrc2->au8[1];
+ puDst->au8[2] = puSrc1->au8[2] + puSrc2->au8[2];
+ puDst->au8[3] = puSrc1->au8[3] + puSrc2->au8[3];
+ puDst->au8[4] = puSrc1->au8[4] + puSrc2->au8[4];
+ puDst->au8[5] = puSrc1->au8[5] + puSrc2->au8[5];
+ puDst->au8[6] = puSrc1->au8[6] + puSrc2->au8[6];
+ puDst->au8[7] = puSrc1->au8[7] + puSrc2->au8[7];
+ puDst->au8[8] = puSrc1->au8[8] + puSrc2->au8[8];
+ puDst->au8[9] = puSrc1->au8[9] + puSrc2->au8[9];
+ puDst->au8[10] = puSrc1->au8[10] + puSrc2->au8[10];
+ puDst->au8[11] = puSrc1->au8[11] + puSrc2->au8[11];
+ puDst->au8[12] = puSrc1->au8[12] + puSrc2->au8[12];
+ puDst->au8[13] = puSrc1->au8[13] + puSrc2->au8[13];
+ puDst->au8[14] = puSrc1->au8[14] + puSrc2->au8[14];
+ puDst->au8[15] = puSrc1->au8[15] + puSrc2->au8[15];
+ puDst->au8[16] = puSrc1->au8[16] + puSrc2->au8[16];
+ puDst->au8[17] = puSrc1->au8[17] + puSrc2->au8[17];
+ puDst->au8[18] = puSrc1->au8[18] + puSrc2->au8[18];
+ puDst->au8[19] = puSrc1->au8[19] + puSrc2->au8[19];
+ puDst->au8[20] = puSrc1->au8[20] + puSrc2->au8[20];
+ puDst->au8[21] = puSrc1->au8[21] + puSrc2->au8[21];
+ puDst->au8[22] = puSrc1->au8[22] + puSrc2->au8[22];
+ puDst->au8[23] = puSrc1->au8[23] + puSrc2->au8[23];
+ puDst->au8[24] = puSrc1->au8[24] + puSrc2->au8[24];
+ puDst->au8[25] = puSrc1->au8[25] + puSrc2->au8[25];
+ puDst->au8[26] = puSrc1->au8[26] + puSrc2->au8[26];
+ puDst->au8[27] = puSrc1->au8[27] + puSrc2->au8[27];
+ puDst->au8[28] = puSrc1->au8[28] + puSrc2->au8[28];
+ puDst->au8[29] = puSrc1->au8[29] + puSrc2->au8[29];
+ puDst->au8[30] = puSrc1->au8[30] + puSrc2->au8[30];
+ puDst->au8[31] = puSrc1->au8[31] + puSrc2->au8[31];
+}
+
+
+/*
+ * PADDSB / VPADDSB
+ */
+#define SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(a_iWord) \
+ ( (uint16_t)((a_iWord) + 0x80) <= (uint16_t)0xff \
+ ? (uint8_t)(a_iWord) \
+ : (uint8_t)0x7f + (uint8_t)(((a_iWord) >> 15) & 1) ) /* 0x7f = INT8_MAX; 0x80 = INT8_MIN; source bit 15 = sign */
+
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_paddsb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+ uDst.au8[0] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[0] + uSrc2.ai8[0]);
+ uDst.au8[1] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[1] + uSrc2.ai8[1]);
+ uDst.au8[2] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[2] + uSrc2.ai8[2]);
+ uDst.au8[3] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[3] + uSrc2.ai8[3]);
+ uDst.au8[4] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[4] + uSrc2.ai8[4]);
+ uDst.au8[5] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[5] + uSrc2.ai8[5]);
+ uDst.au8[6] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[6] + uSrc2.ai8[6]);
+ uDst.au8[7] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[7] + uSrc2.ai8[7]);
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_paddsb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au8[0] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[0] + puSrc->ai8[0]);
+ puDst->au8[1] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[1] + puSrc->ai8[1]);
+ puDst->au8[2] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[2] + puSrc->ai8[2]);
+ puDst->au8[3] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[3] + puSrc->ai8[3]);
+ puDst->au8[4] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[4] + puSrc->ai8[4]);
+ puDst->au8[5] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[5] + puSrc->ai8[5]);
+ puDst->au8[6] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[6] + puSrc->ai8[6]);
+ puDst->au8[7] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[7] + puSrc->ai8[7]);
+ puDst->au8[8] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[8] + puSrc->ai8[8]);
+ puDst->au8[9] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[9] + puSrc->ai8[9]);
+ puDst->au8[10] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[10] + puSrc->ai8[10]);
+ puDst->au8[11] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[11] + puSrc->ai8[11]);
+ puDst->au8[12] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[12] + puSrc->ai8[12]);
+ puDst->au8[13] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[13] + puSrc->ai8[13]);
+ puDst->au8[14] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[14] + puSrc->ai8[14]);
+ puDst->au8[15] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[15] + puSrc->ai8[15]);
+}
+
+#endif
+
+
+/*
+ * PADDSB / VPADDSB
+ */
+#define SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(a_uWord) \
+ ( (uint16_t)(a_uWord) <= (uint16_t)0xff \
+ ? (uint8_t)(a_uWord) \
+ : (uint8_t)0xff ) /* 0xff = UINT8_MAX */
+
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_paddusb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+ uDst.au8[0] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[0] + uSrc2.au8[0]);
+ uDst.au8[1] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[1] + uSrc2.au8[1]);
+ uDst.au8[2] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[2] + uSrc2.au8[2]);
+ uDst.au8[3] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[3] + uSrc2.au8[3]);
+ uDst.au8[4] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[4] + uSrc2.au8[4]);
+ uDst.au8[5] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[5] + uSrc2.au8[5]);
+ uDst.au8[6] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[6] + uSrc2.au8[6]);
+ uDst.au8[7] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[7] + uSrc2.au8[7]);
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_paddusb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au8[0] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[0] + puSrc->au8[0]);
+ puDst->au8[1] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[1] + puSrc->au8[1]);
+ puDst->au8[2] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[2] + puSrc->au8[2]);
+ puDst->au8[3] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[3] + puSrc->au8[3]);
+ puDst->au8[4] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[4] + puSrc->au8[4]);
+ puDst->au8[5] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[5] + puSrc->au8[5]);
+ puDst->au8[6] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[6] + puSrc->au8[6]);
+ puDst->au8[7] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[7] + puSrc->au8[7]);
+ puDst->au8[8] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[8] + puSrc->au8[8]);
+ puDst->au8[9] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[9] + puSrc->au8[9]);
+ puDst->au8[10] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[10] + puSrc->au8[10]);
+ puDst->au8[11] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[11] + puSrc->au8[11]);
+ puDst->au8[12] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[12] + puSrc->au8[12]);
+ puDst->au8[13] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[13] + puSrc->au8[13]);
+ puDst->au8[14] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[14] + puSrc->au8[14]);
+ puDst->au8[15] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[15] + puSrc->au8[15]);
+}
+
+#endif
+
+
+/*
+ * PADDW / VPADDW
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_paddw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+ uDst.au16[0] = uSrc1.au16[0] + uSrc2.au16[0];
+ uDst.au16[1] = uSrc1.au16[1] + uSrc2.au16[1];
+ uDst.au16[2] = uSrc1.au16[2] + uSrc2.au16[2];
+ uDst.au16[3] = uSrc1.au16[3] + uSrc2.au16[3];
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_paddw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au16[0] = uSrc1.au16[0] + puSrc->au16[0];
+ puDst->au16[1] = uSrc1.au16[1] + puSrc->au16[1];
+ puDst->au16[2] = uSrc1.au16[2] + puSrc->au16[2];
+ puDst->au16[3] = uSrc1.au16[3] + puSrc->au16[3];
+ puDst->au16[4] = uSrc1.au16[4] + puSrc->au16[4];
+ puDst->au16[5] = uSrc1.au16[5] + puSrc->au16[5];
+ puDst->au16[6] = uSrc1.au16[6] + puSrc->au16[6];
+ puDst->au16[7] = uSrc1.au16[7] + puSrc->au16[7];
+}
+
+#endif
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au16[0] = puSrc1->au16[0] + puSrc2->au16[0];
+ puDst->au16[1] = puSrc1->au16[1] + puSrc2->au16[1];
+ puDst->au16[2] = puSrc1->au16[2] + puSrc2->au16[2];
+ puDst->au16[3] = puSrc1->au16[3] + puSrc2->au16[3];
+ puDst->au16[4] = puSrc1->au16[4] + puSrc2->au16[4];
+ puDst->au16[5] = puSrc1->au16[5] + puSrc2->au16[5];
+ puDst->au16[6] = puSrc1->au16[6] + puSrc2->au16[6];
+ puDst->au16[7] = puSrc1->au16[7] + puSrc2->au16[7];
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au16[0] = puSrc1->au16[0] + puSrc2->au16[0];
+ puDst->au16[1] = puSrc1->au16[1] + puSrc2->au16[1];
+ puDst->au16[2] = puSrc1->au16[2] + puSrc2->au16[2];
+ puDst->au16[3] = puSrc1->au16[3] + puSrc2->au16[3];
+ puDst->au16[4] = puSrc1->au16[4] + puSrc2->au16[4];
+ puDst->au16[5] = puSrc1->au16[5] + puSrc2->au16[5];
+ puDst->au16[6] = puSrc1->au16[6] + puSrc2->au16[6];
+ puDst->au16[7] = puSrc1->au16[7] + puSrc2->au16[7];
+ puDst->au16[8] = puSrc1->au16[8] + puSrc2->au16[8];
+ puDst->au16[9] = puSrc1->au16[9] + puSrc2->au16[9];
+ puDst->au16[10] = puSrc1->au16[10] + puSrc2->au16[10];
+ puDst->au16[11] = puSrc1->au16[11] + puSrc2->au16[11];
+ puDst->au16[12] = puSrc1->au16[12] + puSrc2->au16[12];
+ puDst->au16[13] = puSrc1->au16[13] + puSrc2->au16[13];
+ puDst->au16[14] = puSrc1->au16[14] + puSrc2->au16[14];
+ puDst->au16[15] = puSrc1->au16[15] + puSrc2->au16[15];
+}
+
+
+/*
+ * PADDSW / VPADDSW
+ */
+#define SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(a_iDword) \
+ ( (uint32_t)((a_iDword) + 0x8000) <= (uint16_t)0xffff \
+ ? (uint16_t)(a_iDword) \
+ : (uint16_t)0x7fff + (uint16_t)(((a_iDword) >> 31) & 1) ) /* 0x7fff = INT16_MAX; 0x8000 = INT16_MIN; source bit 31 = sign */
+
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_paddsw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+ uDst.au16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[0] + uSrc2.ai16[0]);
+ uDst.au16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[1] + uSrc2.ai16[1]);
+ uDst.au16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[2] + uSrc2.ai16[2]);
+ uDst.au16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[3] + uSrc2.ai16[3]);
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_paddsw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[0] + puSrc->ai16[0]);
+ puDst->au16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[1] + puSrc->ai16[1]);
+ puDst->au16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[2] + puSrc->ai16[2]);
+ puDst->au16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[3] + puSrc->ai16[3]);
+ puDst->au16[4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[4] + puSrc->ai16[4]);
+ puDst->au16[5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[5] + puSrc->ai16[5]);
+ puDst->au16[6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[6] + puSrc->ai16[6]);
+ puDst->au16[7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[7] + puSrc->ai16[7]);
+}
+
+#endif
+
+
+/*
+ * PADDUSW / VPADDUSW
+ */
+#define SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(a_uDword) \
+ ( (uint32_t)(a_uDword) <= (uint16_t)0xffff \
+ ? (uint16_t)(a_uDword) \
+ : (uint16_t)0xffff ) /* 0xffff = UINT16_MAX */
+
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_paddusw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+ uDst.au16[0] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[0] + uSrc2.au16[0]);
+ uDst.au16[1] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[1] + uSrc2.au16[1]);
+ uDst.au16[2] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[2] + uSrc2.au16[2]);
+ uDst.au16[3] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[3] + uSrc2.au16[3]);
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_paddusw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au16[0] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[0] + puSrc->au16[0]);
+ puDst->au16[1] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[1] + puSrc->au16[1]);
+ puDst->au16[2] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[2] + puSrc->au16[2]);
+ puDst->au16[3] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[3] + puSrc->au16[3]);
+ puDst->au16[4] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[4] + puSrc->au16[4]);
+ puDst->au16[5] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[5] + puSrc->au16[5]);
+ puDst->au16[6] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[6] + puSrc->au16[6]);
+ puDst->au16[7] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[7] + puSrc->au16[7]);
+}
+
+#endif
+
+
+/*
+ * PADDD / VPADDD.
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_paddd_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+ uDst.au32[0] = uSrc1.au32[0] + uSrc2.au32[0];
+ uDst.au32[1] = uSrc1.au32[1] + uSrc2.au32[1];
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_paddd_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au32[0] = uSrc1.au32[0] + puSrc->au32[0];
+ puDst->au32[1] = uSrc1.au32[1] + puSrc->au32[1];
+ puDst->au32[2] = uSrc1.au32[2] + puSrc->au32[2];
+ puDst->au32[3] = uSrc1.au32[3] + puSrc->au32[3];
+}
+
+#endif /* IEM_WITHOUT_ASSEMBLY */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddd_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au32[0] = puSrc1->au32[0] + puSrc2->au32[0];
+ puDst->au32[1] = puSrc1->au32[1] + puSrc2->au32[1];
+ puDst->au32[2] = puSrc1->au32[2] + puSrc2->au32[2];
+ puDst->au32[3] = puSrc1->au32[3] + puSrc2->au32[3];
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddd_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au32[0] = puSrc1->au32[0] + puSrc2->au32[0];
+ puDst->au32[1] = puSrc1->au32[1] + puSrc2->au32[1];
+ puDst->au32[2] = puSrc1->au32[2] + puSrc2->au32[2];
+ puDst->au32[3] = puSrc1->au32[3] + puSrc2->au32[3];
+ puDst->au32[4] = puSrc1->au32[4] + puSrc2->au32[4];
+ puDst->au32[5] = puSrc1->au32[5] + puSrc2->au32[5];
+ puDst->au32[6] = puSrc1->au32[6] + puSrc2->au32[6];
+ puDst->au32[7] = puSrc1->au32[7] + puSrc2->au32[7];
+}
+
+
+/*
+ * PADDQ / VPADDQ.
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_paddq_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ *puDst = *puDst + *puSrc;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_paddq_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au64[0] = uSrc1.au64[0] + puSrc->au64[0];
+ puDst->au64[1] = uSrc1.au64[1] + puSrc->au64[1];
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddq_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au64[0] = puSrc1->au64[0] + puSrc2->au64[0];
+ puDst->au64[1] = puSrc1->au64[1] + puSrc2->au64[1];
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddq_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au64[0] = puSrc1->au64[0] + puSrc2->au64[0];
+ puDst->au64[1] = puSrc1->au64[1] + puSrc2->au64[1];
+ puDst->au64[2] = puSrc1->au64[2] + puSrc2->au64[2];
+ puDst->au64[3] = puSrc1->au64[3] + puSrc2->au64[3];
+}
+
+
+/*
+ * PSUBB / VPSUBB
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psubb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+ uDst.au8[0] = uSrc1.au8[0] - uSrc2.au8[0];
+ uDst.au8[1] = uSrc1.au8[1] - uSrc2.au8[1];
+ uDst.au8[2] = uSrc1.au8[2] - uSrc2.au8[2];
+ uDst.au8[3] = uSrc1.au8[3] - uSrc2.au8[3];
+ uDst.au8[4] = uSrc1.au8[4] - uSrc2.au8[4];
+ uDst.au8[5] = uSrc1.au8[5] - uSrc2.au8[5];
+ uDst.au8[6] = uSrc1.au8[6] - uSrc2.au8[6];
+ uDst.au8[7] = uSrc1.au8[7] - uSrc2.au8[7];
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psubb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au8[0] = uSrc1.au8[0] - puSrc->au8[0];
+ puDst->au8[1] = uSrc1.au8[1] - puSrc->au8[1];
+ puDst->au8[2] = uSrc1.au8[2] - puSrc->au8[2];
+ puDst->au8[3] = uSrc1.au8[3] - puSrc->au8[3];
+ puDst->au8[4] = uSrc1.au8[4] - puSrc->au8[4];
+ puDst->au8[5] = uSrc1.au8[5] - puSrc->au8[5];
+ puDst->au8[6] = uSrc1.au8[6] - puSrc->au8[6];
+ puDst->au8[7] = uSrc1.au8[7] - puSrc->au8[7];
+ puDst->au8[8] = uSrc1.au8[8] - puSrc->au8[8];
+ puDst->au8[9] = uSrc1.au8[9] - puSrc->au8[9];
+ puDst->au8[10] = uSrc1.au8[10] - puSrc->au8[10];
+ puDst->au8[11] = uSrc1.au8[11] - puSrc->au8[11];
+ puDst->au8[12] = uSrc1.au8[12] - puSrc->au8[12];
+ puDst->au8[13] = uSrc1.au8[13] - puSrc->au8[13];
+ puDst->au8[14] = uSrc1.au8[14] - puSrc->au8[14];
+ puDst->au8[15] = uSrc1.au8[15] - puSrc->au8[15];
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpsubb_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au8[0] = puSrc1->au8[0] - puSrc2->au8[0];
+ puDst->au8[1] = puSrc1->au8[1] - puSrc2->au8[1];
+ puDst->au8[2] = puSrc1->au8[2] - puSrc2->au8[2];
+ puDst->au8[3] = puSrc1->au8[3] - puSrc2->au8[3];
+ puDst->au8[4] = puSrc1->au8[4] - puSrc2->au8[4];
+ puDst->au8[5] = puSrc1->au8[5] - puSrc2->au8[5];
+ puDst->au8[6] = puSrc1->au8[6] - puSrc2->au8[6];
+ puDst->au8[7] = puSrc1->au8[7] - puSrc2->au8[7];
+ puDst->au8[8] = puSrc1->au8[8] - puSrc2->au8[8];
+ puDst->au8[9] = puSrc1->au8[9] - puSrc2->au8[9];
+ puDst->au8[10] = puSrc1->au8[10] - puSrc2->au8[10];
+ puDst->au8[11] = puSrc1->au8[11] - puSrc2->au8[11];
+ puDst->au8[12] = puSrc1->au8[12] - puSrc2->au8[12];
+ puDst->au8[13] = puSrc1->au8[13] - puSrc2->au8[13];
+ puDst->au8[14] = puSrc1->au8[14] - puSrc2->au8[14];
+ puDst->au8[15] = puSrc1->au8[15] - puSrc2->au8[15];
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpsubb_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au8[0] = puSrc1->au8[0] - puSrc2->au8[0];
+ puDst->au8[1] = puSrc1->au8[1] - puSrc2->au8[1];
+ puDst->au8[2] = puSrc1->au8[2] - puSrc2->au8[2];
+ puDst->au8[3] = puSrc1->au8[3] - puSrc2->au8[3];
+ puDst->au8[4] = puSrc1->au8[4] - puSrc2->au8[4];
+ puDst->au8[5] = puSrc1->au8[5] - puSrc2->au8[5];
+ puDst->au8[6] = puSrc1->au8[6] - puSrc2->au8[6];
+ puDst->au8[7] = puSrc1->au8[7] - puSrc2->au8[7];
+ puDst->au8[8] = puSrc1->au8[8] - puSrc2->au8[8];
+ puDst->au8[9] = puSrc1->au8[9] - puSrc2->au8[9];
+ puDst->au8[10] = puSrc1->au8[10] - puSrc2->au8[10];
+ puDst->au8[11] = puSrc1->au8[11] - puSrc2->au8[11];
+ puDst->au8[12] = puSrc1->au8[12] - puSrc2->au8[12];
+ puDst->au8[13] = puSrc1->au8[13] - puSrc2->au8[13];
+ puDst->au8[14] = puSrc1->au8[14] - puSrc2->au8[14];
+ puDst->au8[15] = puSrc1->au8[15] - puSrc2->au8[15];
+ puDst->au8[16] = puSrc1->au8[16] - puSrc2->au8[16];
+ puDst->au8[17] = puSrc1->au8[17] - puSrc2->au8[17];
+ puDst->au8[18] = puSrc1->au8[18] - puSrc2->au8[18];
+ puDst->au8[19] = puSrc1->au8[19] - puSrc2->au8[19];
+ puDst->au8[20] = puSrc1->au8[20] - puSrc2->au8[20];
+ puDst->au8[21] = puSrc1->au8[21] - puSrc2->au8[21];
+ puDst->au8[22] = puSrc1->au8[22] - puSrc2->au8[22];
+ puDst->au8[23] = puSrc1->au8[23] - puSrc2->au8[23];
+ puDst->au8[24] = puSrc1->au8[24] - puSrc2->au8[24];
+ puDst->au8[25] = puSrc1->au8[25] - puSrc2->au8[25];
+ puDst->au8[26] = puSrc1->au8[26] - puSrc2->au8[26];
+ puDst->au8[27] = puSrc1->au8[27] - puSrc2->au8[27];
+ puDst->au8[28] = puSrc1->au8[28] - puSrc2->au8[28];
+ puDst->au8[29] = puSrc1->au8[29] - puSrc2->au8[29];
+ puDst->au8[30] = puSrc1->au8[30] - puSrc2->au8[30];
+ puDst->au8[31] = puSrc1->au8[31] - puSrc2->au8[31];
+}
+
+
+/*
+ * PSUBSB / VSUBSB
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psubsb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+ uDst.au8[0] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[0] - uSrc2.ai8[0]);
+ uDst.au8[1] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[1] - uSrc2.ai8[1]);
+ uDst.au8[2] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[2] - uSrc2.ai8[2]);
+ uDst.au8[3] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[3] - uSrc2.ai8[3]);
+ uDst.au8[4] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[4] - uSrc2.ai8[4]);
+ uDst.au8[5] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[5] - uSrc2.ai8[5]);
+ uDst.au8[6] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[6] - uSrc2.ai8[6]);
+ uDst.au8[7] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[7] - uSrc2.ai8[7]);
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psubsb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au8[0] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[0] - puSrc->ai8[0]);
+ puDst->au8[1] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[1] - puSrc->ai8[1]);
+ puDst->au8[2] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[2] - puSrc->ai8[2]);
+ puDst->au8[3] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[3] - puSrc->ai8[3]);
+ puDst->au8[4] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[4] - puSrc->ai8[4]);
+ puDst->au8[5] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[5] - puSrc->ai8[5]);
+ puDst->au8[6] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[6] - puSrc->ai8[6]);
+ puDst->au8[7] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[7] - puSrc->ai8[7]);
+ puDst->au8[8] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[8] - puSrc->ai8[8]);
+ puDst->au8[9] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[9] - puSrc->ai8[9]);
+ puDst->au8[10] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[10] - puSrc->ai8[10]);
+ puDst->au8[11] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[11] - puSrc->ai8[11]);
+ puDst->au8[12] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[12] - puSrc->ai8[12]);
+ puDst->au8[13] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[13] - puSrc->ai8[13]);
+ puDst->au8[14] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[14] - puSrc->ai8[14]);
+ puDst->au8[15] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[15] - puSrc->ai8[15]);
+}
+
+#endif
+
+
+/*
+ * PADDSB / VPADDSB
+ */
+#define SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(a_uWord) \
+ ( (uint16_t)(a_uWord) <= (uint16_t)0xff \
+ ? (uint8_t)(a_uWord) \
+ : (uint8_t)0 )
+
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psubusb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+ uDst.au8[0] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[0] - uSrc2.au8[0]);
+ uDst.au8[1] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[1] - uSrc2.au8[1]);
+ uDst.au8[2] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[2] - uSrc2.au8[2]);
+ uDst.au8[3] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[3] - uSrc2.au8[3]);
+ uDst.au8[4] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[4] - uSrc2.au8[4]);
+ uDst.au8[5] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[5] - uSrc2.au8[5]);
+ uDst.au8[6] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[6] - uSrc2.au8[6]);
+ uDst.au8[7] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[7] - uSrc2.au8[7]);
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psubusb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au8[0] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[0] - puSrc->au8[0]);
+ puDst->au8[1] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[1] - puSrc->au8[1]);
+ puDst->au8[2] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[2] - puSrc->au8[2]);
+ puDst->au8[3] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[3] - puSrc->au8[3]);
+ puDst->au8[4] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[4] - puSrc->au8[4]);
+ puDst->au8[5] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[5] - puSrc->au8[5]);
+ puDst->au8[6] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[6] - puSrc->au8[6]);
+ puDst->au8[7] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[7] - puSrc->au8[7]);
+ puDst->au8[8] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[8] - puSrc->au8[8]);
+ puDst->au8[9] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[9] - puSrc->au8[9]);
+ puDst->au8[10] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[10] - puSrc->au8[10]);
+ puDst->au8[11] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[11] - puSrc->au8[11]);
+ puDst->au8[12] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[12] - puSrc->au8[12]);
+ puDst->au8[13] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[13] - puSrc->au8[13]);
+ puDst->au8[14] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[14] - puSrc->au8[14]);
+ puDst->au8[15] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[15] - puSrc->au8[15]);
+}
+
+#endif
+
+
+/*
+ * PSUBW / VPSUBW
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psubw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+ uDst.au16[0] = uSrc1.au16[0] - uSrc2.au16[0];
+ uDst.au16[1] = uSrc1.au16[1] - uSrc2.au16[1];
+ uDst.au16[2] = uSrc1.au16[2] - uSrc2.au16[2];
+ uDst.au16[3] = uSrc1.au16[3] - uSrc2.au16[3];
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psubw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au16[0] = uSrc1.au16[0] - puSrc->au16[0];
+ puDst->au16[1] = uSrc1.au16[1] - puSrc->au16[1];
+ puDst->au16[2] = uSrc1.au16[2] - puSrc->au16[2];
+ puDst->au16[3] = uSrc1.au16[3] - puSrc->au16[3];
+ puDst->au16[4] = uSrc1.au16[4] - puSrc->au16[4];
+ puDst->au16[5] = uSrc1.au16[5] - puSrc->au16[5];
+ puDst->au16[6] = uSrc1.au16[6] - puSrc->au16[6];
+ puDst->au16[7] = uSrc1.au16[7] - puSrc->au16[7];
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpsubw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au16[0] = puSrc1->au16[0] - puSrc2->au16[0];
+ puDst->au16[1] = puSrc1->au16[1] - puSrc2->au16[1];
+ puDst->au16[2] = puSrc1->au16[2] - puSrc2->au16[2];
+ puDst->au16[3] = puSrc1->au16[3] - puSrc2->au16[3];
+ puDst->au16[4] = puSrc1->au16[4] - puSrc2->au16[4];
+ puDst->au16[5] = puSrc1->au16[5] - puSrc2->au16[5];
+ puDst->au16[6] = puSrc1->au16[6] - puSrc2->au16[6];
+ puDst->au16[7] = puSrc1->au16[7] - puSrc2->au16[7];
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpsubw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au16[0] = puSrc1->au16[0] - puSrc2->au16[0];
+ puDst->au16[1] = puSrc1->au16[1] - puSrc2->au16[1];
+ puDst->au16[2] = puSrc1->au16[2] - puSrc2->au16[2];
+ puDst->au16[3] = puSrc1->au16[3] - puSrc2->au16[3];
+ puDst->au16[4] = puSrc1->au16[4] - puSrc2->au16[4];
+ puDst->au16[5] = puSrc1->au16[5] - puSrc2->au16[5];
+ puDst->au16[6] = puSrc1->au16[6] - puSrc2->au16[6];
+ puDst->au16[7] = puSrc1->au16[7] - puSrc2->au16[7];
+ puDst->au16[8] = puSrc1->au16[8] - puSrc2->au16[8];
+ puDst->au16[9] = puSrc1->au16[9] - puSrc2->au16[9];
+ puDst->au16[10] = puSrc1->au16[10] - puSrc2->au16[10];
+ puDst->au16[11] = puSrc1->au16[11] - puSrc2->au16[11];
+ puDst->au16[12] = puSrc1->au16[12] - puSrc2->au16[12];
+ puDst->au16[13] = puSrc1->au16[13] - puSrc2->au16[13];
+ puDst->au16[14] = puSrc1->au16[14] - puSrc2->au16[14];
+ puDst->au16[15] = puSrc1->au16[15] - puSrc2->au16[15];
+}
+
+
+/*
+ * PSUBSW / VPSUBSW
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psubsw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+ uDst.au16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[0] - uSrc2.ai16[0]);
+ uDst.au16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[1] - uSrc2.ai16[1]);
+ uDst.au16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[2] - uSrc2.ai16[2]);
+ uDst.au16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[3] - uSrc2.ai16[3]);
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psubsw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[0] - puSrc->ai16[0]);
+ puDst->au16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[1] - puSrc->ai16[1]);
+ puDst->au16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[2] - puSrc->ai16[2]);
+ puDst->au16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[3] - puSrc->ai16[3]);
+ puDst->au16[4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[4] - puSrc->ai16[4]);
+ puDst->au16[5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[5] - puSrc->ai16[5]);
+ puDst->au16[6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[6] - puSrc->ai16[6]);
+ puDst->au16[7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[7] - puSrc->ai16[7]);
+}
+
+#endif
+
+
+/*
+ * PSUBUSW / VPSUBUSW
+ */
+#define SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(a_uDword) \
+ ( (uint32_t)(a_uDword) <= (uint16_t)0xffff \
+ ? (uint16_t)(a_uDword) \
+ : (uint16_t)0 )
+
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psubusw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+ uDst.au16[0] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[0] - uSrc2.au16[0]);
+ uDst.au16[1] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[1] - uSrc2.au16[1]);
+ uDst.au16[2] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[2] - uSrc2.au16[2]);
+ uDst.au16[3] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[3] - uSrc2.au16[3]);
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psubusw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au16[0] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[0] - puSrc->au16[0]);
+ puDst->au16[1] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[1] - puSrc->au16[1]);
+ puDst->au16[2] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[2] - puSrc->au16[2]);
+ puDst->au16[3] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[3] - puSrc->au16[3]);
+ puDst->au16[4] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[4] - puSrc->au16[4]);
+ puDst->au16[5] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[5] - puSrc->au16[5]);
+ puDst->au16[6] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[6] - puSrc->au16[6]);
+ puDst->au16[7] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[7] - puSrc->au16[7]);
+}
+
+#endif
+
+
+/*
+ * PSUBD / VPSUBD.
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psubd_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+ uDst.au32[0] = uSrc1.au32[0] - uSrc2.au32[0];
+ uDst.au32[1] = uSrc1.au32[1] - uSrc2.au32[1];
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psubd_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au32[0] = uSrc1.au32[0] - puSrc->au32[0];
+ puDst->au32[1] = uSrc1.au32[1] - puSrc->au32[1];
+ puDst->au32[2] = uSrc1.au32[2] - puSrc->au32[2];
+ puDst->au32[3] = uSrc1.au32[3] - puSrc->au32[3];
+}
+
+#endif /* IEM_WITHOUT_ASSEMBLY */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpsubd_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au32[0] = puSrc1->au32[0] - puSrc2->au32[0];
+ puDst->au32[1] = puSrc1->au32[1] - puSrc2->au32[1];
+ puDst->au32[2] = puSrc1->au32[2] - puSrc2->au32[2];
+ puDst->au32[3] = puSrc1->au32[3] - puSrc2->au32[3];
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpsubd_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au32[0] = puSrc1->au32[0] - puSrc2->au32[0];
+ puDst->au32[1] = puSrc1->au32[1] - puSrc2->au32[1];
+ puDst->au32[2] = puSrc1->au32[2] - puSrc2->au32[2];
+ puDst->au32[3] = puSrc1->au32[3] - puSrc2->au32[3];
+ puDst->au32[4] = puSrc1->au32[4] - puSrc2->au32[4];
+ puDst->au32[5] = puSrc1->au32[5] - puSrc2->au32[5];
+ puDst->au32[6] = puSrc1->au32[6] - puSrc2->au32[6];
+ puDst->au32[7] = puSrc1->au32[7] - puSrc2->au32[7];
+}
+
+
+/*
+ * PSUBQ / VPSUBQ.
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psubq_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ *puDst = *puDst - *puSrc;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psubq_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au64[0] = uSrc1.au64[0] - puSrc->au64[0];
+ puDst->au64[1] = uSrc1.au64[1] - puSrc->au64[1];
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpsubq_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au64[0] = puSrc1->au64[0] - puSrc2->au64[0];
+ puDst->au64[1] = puSrc1->au64[1] - puSrc2->au64[1];
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpsubq_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RT_NOREF(pExtState);
+ puDst->au64[0] = puSrc1->au64[0] - puSrc2->au64[0];
+ puDst->au64[1] = puSrc1->au64[1] - puSrc2->au64[1];
+ puDst->au64[2] = puSrc1->au64[2] - puSrc2->au64[2];
+ puDst->au64[3] = puSrc1->au64[3] - puSrc2->au64[3];
+}
+
+
+
+/*
+ * PMULLW / VPMULLW / PMULLD / VPMULLD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmullw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+ uDst.ai16[0] = uSrc1.ai16[0] * uSrc2.ai16[0];
+ uDst.ai16[1] = uSrc1.ai16[1] * uSrc2.ai16[1];
+ uDst.ai16[2] = uSrc1.ai16[2] * uSrc2.ai16[2];
+ uDst.ai16[3] = uSrc1.ai16[3] * uSrc2.ai16[3];
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmullw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->ai16[0] = uSrc1.ai16[0] * puSrc->ai16[0];
+ puDst->ai16[1] = uSrc1.ai16[1] * puSrc->ai16[1];
+ puDst->ai16[2] = uSrc1.ai16[2] * puSrc->ai16[2];
+ puDst->ai16[3] = uSrc1.ai16[3] * puSrc->ai16[3];
+ puDst->ai16[4] = uSrc1.ai16[4] * puSrc->ai16[4];
+ puDst->ai16[5] = uSrc1.ai16[5] * puSrc->ai16[5];
+ puDst->ai16[6] = uSrc1.ai16[6] * puSrc->ai16[6];
+ puDst->ai16[7] = uSrc1.ai16[7] * puSrc->ai16[7];
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmulld_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->ai32[0] = uSrc1.ai32[0] * puSrc->ai32[0];
+ puDst->ai32[1] = uSrc1.ai32[1] * puSrc->ai32[1];
+ puDst->ai32[2] = uSrc1.ai32[2] * puSrc->ai32[2];
+ puDst->ai32[3] = uSrc1.ai32[3] * puSrc->ai32[3];
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmullw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ puDst->ai16[0] = puSrc1->ai16[0] * puSrc2->ai16[0];
+ puDst->ai16[1] = puSrc1->ai16[1] * puSrc2->ai16[1];
+ puDst->ai16[2] = puSrc1->ai16[2] * puSrc2->ai16[2];
+ puDst->ai16[3] = puSrc1->ai16[3] * puSrc2->ai16[3];
+ puDst->ai16[4] = puSrc1->ai16[4] * puSrc2->ai16[4];
+ puDst->ai16[5] = puSrc1->ai16[5] * puSrc2->ai16[5];
+ puDst->ai16[6] = puSrc1->ai16[6] * puSrc2->ai16[6];
+ puDst->ai16[7] = puSrc1->ai16[7] * puSrc2->ai16[7];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmullw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ puDst->ai16[ 0] = puSrc1->ai16[ 0] * puSrc2->ai16[ 0];
+ puDst->ai16[ 1] = puSrc1->ai16[ 1] * puSrc2->ai16[ 1];
+ puDst->ai16[ 2] = puSrc1->ai16[ 2] * puSrc2->ai16[ 2];
+ puDst->ai16[ 3] = puSrc1->ai16[ 3] * puSrc2->ai16[ 3];
+ puDst->ai16[ 4] = puSrc1->ai16[ 4] * puSrc2->ai16[ 4];
+ puDst->ai16[ 5] = puSrc1->ai16[ 5] * puSrc2->ai16[ 5];
+ puDst->ai16[ 6] = puSrc1->ai16[ 6] * puSrc2->ai16[ 6];
+ puDst->ai16[ 7] = puSrc1->ai16[ 7] * puSrc2->ai16[ 7];
+ puDst->ai16[ 8] = puSrc1->ai16[ 8] * puSrc2->ai16[ 8];
+ puDst->ai16[ 9] = puSrc1->ai16[ 9] * puSrc2->ai16[ 9];
+ puDst->ai16[10] = puSrc1->ai16[10] * puSrc2->ai16[10];
+ puDst->ai16[11] = puSrc1->ai16[11] * puSrc2->ai16[11];
+ puDst->ai16[12] = puSrc1->ai16[12] * puSrc2->ai16[12];
+ puDst->ai16[13] = puSrc1->ai16[13] * puSrc2->ai16[13];
+ puDst->ai16[14] = puSrc1->ai16[14] * puSrc2->ai16[14];
+ puDst->ai16[15] = puSrc1->ai16[15] * puSrc2->ai16[15];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmulld_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ puDst->ai32[0] = puSrc1->ai32[0] * puSrc2->ai32[0];
+ puDst->ai32[1] = puSrc1->ai32[1] * puSrc2->ai32[1];
+ puDst->ai32[2] = puSrc1->ai32[2] * puSrc2->ai32[2];
+ puDst->ai32[3] = puSrc1->ai32[3] * puSrc2->ai32[3];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmulld_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ puDst->ai32[0] = puSrc1->ai32[0] * puSrc2->ai32[0];
+ puDst->ai32[1] = puSrc1->ai32[1] * puSrc2->ai32[1];
+ puDst->ai32[2] = puSrc1->ai32[2] * puSrc2->ai32[2];
+ puDst->ai32[3] = puSrc1->ai32[3] * puSrc2->ai32[3];
+ puDst->ai32[4] = puSrc1->ai32[4] * puSrc2->ai32[4];
+ puDst->ai32[5] = puSrc1->ai32[5] * puSrc2->ai32[5];
+ puDst->ai32[6] = puSrc1->ai32[6] * puSrc2->ai32[6];
+ puDst->ai32[7] = puSrc1->ai32[7] * puSrc2->ai32[7];
+}
+
+
+/*
+ * PMULHW / VPMULHW
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmulhw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+ uDst.ai16[0] = RT_HIWORD(uSrc1.ai16[0] * uSrc2.ai16[0]);
+ uDst.ai16[1] = RT_HIWORD(uSrc1.ai16[1] * uSrc2.ai16[1]);
+ uDst.ai16[2] = RT_HIWORD(uSrc1.ai16[2] * uSrc2.ai16[2]);
+ uDst.ai16[3] = RT_HIWORD(uSrc1.ai16[3] * uSrc2.ai16[3]);
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmulhw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RT_NOREF(pFpuState);
+ RTUINT128U uSrc1 = *puDst;
+ puDst->ai16[0] = RT_HIWORD(uSrc1.ai16[0] * puSrc->ai16[0]);
+ puDst->ai16[1] = RT_HIWORD(uSrc1.ai16[1] * puSrc->ai16[1]);
+ puDst->ai16[2] = RT_HIWORD(uSrc1.ai16[2] * puSrc->ai16[2]);
+ puDst->ai16[3] = RT_HIWORD(uSrc1.ai16[3] * puSrc->ai16[3]);
+ puDst->ai16[4] = RT_HIWORD(uSrc1.ai16[4] * puSrc->ai16[4]);
+ puDst->ai16[5] = RT_HIWORD(uSrc1.ai16[5] * puSrc->ai16[5]);
+ puDst->ai16[6] = RT_HIWORD(uSrc1.ai16[6] * puSrc->ai16[6]);
+ puDst->ai16[7] = RT_HIWORD(uSrc1.ai16[7] * puSrc->ai16[7]);
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmulhw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ puDst->ai16[0] = RT_HIWORD(puSrc1->ai16[0] * puSrc2->ai16[0]);
+ puDst->ai16[1] = RT_HIWORD(puSrc1->ai16[1] * puSrc2->ai16[1]);
+ puDst->ai16[2] = RT_HIWORD(puSrc1->ai16[2] * puSrc2->ai16[2]);
+ puDst->ai16[3] = RT_HIWORD(puSrc1->ai16[3] * puSrc2->ai16[3]);
+ puDst->ai16[4] = RT_HIWORD(puSrc1->ai16[4] * puSrc2->ai16[4]);
+ puDst->ai16[5] = RT_HIWORD(puSrc1->ai16[5] * puSrc2->ai16[5]);
+ puDst->ai16[6] = RT_HIWORD(puSrc1->ai16[6] * puSrc2->ai16[6]);
+ puDst->ai16[7] = RT_HIWORD(puSrc1->ai16[7] * puSrc2->ai16[7]);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmulhw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ puDst->ai16[ 0] = RT_HIWORD(puSrc1->ai16[ 0] * puSrc2->ai16[ 0]);
+ puDst->ai16[ 1] = RT_HIWORD(puSrc1->ai16[ 1] * puSrc2->ai16[ 1]);
+ puDst->ai16[ 2] = RT_HIWORD(puSrc1->ai16[ 2] * puSrc2->ai16[ 2]);
+ puDst->ai16[ 3] = RT_HIWORD(puSrc1->ai16[ 3] * puSrc2->ai16[ 3]);
+ puDst->ai16[ 4] = RT_HIWORD(puSrc1->ai16[ 4] * puSrc2->ai16[ 4]);
+ puDst->ai16[ 5] = RT_HIWORD(puSrc1->ai16[ 5] * puSrc2->ai16[ 5]);
+ puDst->ai16[ 6] = RT_HIWORD(puSrc1->ai16[ 6] * puSrc2->ai16[ 6]);
+ puDst->ai16[ 7] = RT_HIWORD(puSrc1->ai16[ 7] * puSrc2->ai16[ 7]);
+ puDst->ai16[ 8] = RT_HIWORD(puSrc1->ai16[ 8] * puSrc2->ai16[ 8]);
+ puDst->ai16[ 9] = RT_HIWORD(puSrc1->ai16[ 9] * puSrc2->ai16[ 9]);
+ puDst->ai16[10] = RT_HIWORD(puSrc1->ai16[10] * puSrc2->ai16[10]);
+ puDst->ai16[11] = RT_HIWORD(puSrc1->ai16[11] * puSrc2->ai16[11]);
+ puDst->ai16[12] = RT_HIWORD(puSrc1->ai16[12] * puSrc2->ai16[12]);
+ puDst->ai16[13] = RT_HIWORD(puSrc1->ai16[13] * puSrc2->ai16[13]);
+ puDst->ai16[14] = RT_HIWORD(puSrc1->ai16[14] * puSrc2->ai16[14]);
+ puDst->ai16[15] = RT_HIWORD(puSrc1->ai16[15] * puSrc2->ai16[15]);
+}
+
+
+/*
+ * PMULHUW / VPMULHUW
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmulhuw_u64,(uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+ uDst.au16[0] = RT_HIWORD(uSrc1.au16[0] * uSrc2.au16[0]);
+ uDst.au16[1] = RT_HIWORD(uSrc1.au16[1] * uSrc2.au16[1]);
+ uDst.au16[2] = RT_HIWORD(uSrc1.au16[2] * uSrc2.au16[2]);
+ uDst.au16[3] = RT_HIWORD(uSrc1.au16[3] * uSrc2.au16[3]);
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmulhuw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+ puDst->au16[0] = RT_HIWORD(uSrc1.au16[0] * puSrc->au16[0]);
+ puDst->au16[1] = RT_HIWORD(uSrc1.au16[1] * puSrc->au16[1]);
+ puDst->au16[2] = RT_HIWORD(uSrc1.au16[2] * puSrc->au16[2]);
+ puDst->au16[3] = RT_HIWORD(uSrc1.au16[3] * puSrc->au16[3]);
+ puDst->au16[4] = RT_HIWORD(uSrc1.au16[4] * puSrc->au16[4]);
+ puDst->au16[5] = RT_HIWORD(uSrc1.au16[5] * puSrc->au16[5]);
+ puDst->au16[6] = RT_HIWORD(uSrc1.au16[6] * puSrc->au16[6]);
+ puDst->au16[7] = RT_HIWORD(uSrc1.au16[7] * puSrc->au16[7]);
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmulhuw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ puDst->au16[0] = RT_HIWORD(puSrc1->au16[0] * puSrc2->au16[0]);
+ puDst->au16[1] = RT_HIWORD(puSrc1->au16[1] * puSrc2->au16[1]);
+ puDst->au16[2] = RT_HIWORD(puSrc1->au16[2] * puSrc2->au16[2]);
+ puDst->au16[3] = RT_HIWORD(puSrc1->au16[3] * puSrc2->au16[3]);
+ puDst->au16[4] = RT_HIWORD(puSrc1->au16[4] * puSrc2->au16[4]);
+ puDst->au16[5] = RT_HIWORD(puSrc1->au16[5] * puSrc2->au16[5]);
+ puDst->au16[6] = RT_HIWORD(puSrc1->au16[6] * puSrc2->au16[6]);
+ puDst->au16[7] = RT_HIWORD(puSrc1->au16[7] * puSrc2->au16[7]);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmulhuw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ puDst->au16[ 0] = RT_HIWORD(puSrc1->au16[ 0] * puSrc2->au16[ 0]);
+ puDst->au16[ 1] = RT_HIWORD(puSrc1->au16[ 1] * puSrc2->au16[ 1]);
+ puDst->au16[ 2] = RT_HIWORD(puSrc1->au16[ 2] * puSrc2->au16[ 2]);
+ puDst->au16[ 3] = RT_HIWORD(puSrc1->au16[ 3] * puSrc2->au16[ 3]);
+ puDst->au16[ 4] = RT_HIWORD(puSrc1->au16[ 4] * puSrc2->au16[ 4]);
+ puDst->au16[ 5] = RT_HIWORD(puSrc1->au16[ 5] * puSrc2->au16[ 5]);
+ puDst->au16[ 6] = RT_HIWORD(puSrc1->au16[ 6] * puSrc2->au16[ 6]);
+ puDst->au16[ 7] = RT_HIWORD(puSrc1->au16[ 7] * puSrc2->au16[ 7]);
+ puDst->au16[ 8] = RT_HIWORD(puSrc1->au16[ 8] * puSrc2->au16[ 8]);
+ puDst->au16[ 9] = RT_HIWORD(puSrc1->au16[ 9] * puSrc2->au16[ 9]);
+ puDst->au16[10] = RT_HIWORD(puSrc1->au16[10] * puSrc2->au16[10]);
+ puDst->au16[11] = RT_HIWORD(puSrc1->au16[11] * puSrc2->au16[11]);
+ puDst->au16[12] = RT_HIWORD(puSrc1->au16[12] * puSrc2->au16[12]);
+ puDst->au16[13] = RT_HIWORD(puSrc1->au16[13] * puSrc2->au16[13]);
+ puDst->au16[14] = RT_HIWORD(puSrc1->au16[14] * puSrc2->au16[14]);
+ puDst->au16[15] = RT_HIWORD(puSrc1->au16[15] * puSrc2->au16[15]);
+}
+
+
+/*
+ * PSRLW / VPSRLW
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psrlw_u64,(uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+
+ if (uSrc2.au64[0] <= 15)
+ {
+ uDst.au16[0] = uSrc1.au16[0] >> uSrc2.au8[0];
+ uDst.au16[1] = uSrc1.au16[1] >> uSrc2.au8[0];
+ uDst.au16[2] = uSrc1.au16[2] >> uSrc2.au8[0];
+ uDst.au16[3] = uSrc1.au16[3] >> uSrc2.au8[0];
+ }
+ else
+ {
+ uDst.au64[0] = 0;
+ }
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psrlw_imm_u64,(uint64_t *puDst, uint8_t uShift))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uDst;
+
+ if (uShift <= 15)
+ {
+ uDst.au16[0] = uSrc1.au16[0] >> uShift;
+ uDst.au16[1] = uSrc1.au16[1] >> uShift;
+ uDst.au16[2] = uSrc1.au16[2] >> uShift;
+ uDst.au16[3] = uSrc1.au16[3] >> uShift;
+ }
+ else
+ {
+ uDst.au64[0] = 0;
+ }
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psrlw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ if (puSrc->au64[0] <= 15)
+ {
+ puDst->au16[0] = uSrc1.au16[0] >> puSrc->au8[0];
+ puDst->au16[1] = uSrc1.au16[1] >> puSrc->au8[0];
+ puDst->au16[2] = uSrc1.au16[2] >> puSrc->au8[0];
+ puDst->au16[3] = uSrc1.au16[3] >> puSrc->au8[0];
+ puDst->au16[4] = uSrc1.au16[4] >> puSrc->au8[0];
+ puDst->au16[5] = uSrc1.au16[5] >> puSrc->au8[0];
+ puDst->au16[6] = uSrc1.au16[6] >> puSrc->au8[0];
+ puDst->au16[7] = uSrc1.au16[7] >> puSrc->au8[0];
+ }
+ else
+ {
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ }
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psrlw_imm_u128,(PRTUINT128U puDst, uint8_t uShift))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ if (uShift <= 15)
+ {
+ puDst->au16[0] = uSrc1.au16[0] >> uShift;
+ puDst->au16[1] = uSrc1.au16[1] >> uShift;
+ puDst->au16[2] = uSrc1.au16[2] >> uShift;
+ puDst->au16[3] = uSrc1.au16[3] >> uShift;
+ puDst->au16[4] = uSrc1.au16[4] >> uShift;
+ puDst->au16[5] = uSrc1.au16[5] >> uShift;
+ puDst->au16[6] = uSrc1.au16[6] >> uShift;
+ puDst->au16[7] = uSrc1.au16[7] >> uShift;
+ }
+ else
+ {
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ }
+}
+
+#endif
+
+
+/*
+ * PSRAW / VPSRAW
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psraw_u64,(uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+
+ if (uSrc2.au64[0] <= 15)
+ {
+ uDst.ai16[0] = uSrc1.ai16[0] >> uSrc2.au8[0];
+ uDst.ai16[1] = uSrc1.ai16[1] >> uSrc2.au8[0];
+ uDst.ai16[2] = uSrc1.ai16[2] >> uSrc2.au8[0];
+ uDst.ai16[3] = uSrc1.ai16[3] >> uSrc2.au8[0];
+ }
+ else
+ {
+ uDst.au64[0] = 0;
+ }
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psraw_imm_u64,(uint64_t *puDst, uint8_t uShift))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uDst;
+
+ if (uShift <= 15)
+ {
+ uDst.ai16[0] = uSrc1.ai16[0] >> uShift;
+ uDst.ai16[1] = uSrc1.ai16[1] >> uShift;
+ uDst.ai16[2] = uSrc1.ai16[2] >> uShift;
+ uDst.ai16[3] = uSrc1.ai16[3] >> uShift;
+ }
+ else
+ {
+ uDst.au64[0] = 0;
+ }
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psraw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ if (puSrc->au64[0] <= 15)
+ {
+ puDst->ai16[0] = uSrc1.ai16[0] >> puSrc->au8[0];
+ puDst->ai16[1] = uSrc1.ai16[1] >> puSrc->au8[0];
+ puDst->ai16[2] = uSrc1.ai16[2] >> puSrc->au8[0];
+ puDst->ai16[3] = uSrc1.ai16[3] >> puSrc->au8[0];
+ puDst->ai16[4] = uSrc1.ai16[4] >> puSrc->au8[0];
+ puDst->ai16[5] = uSrc1.ai16[5] >> puSrc->au8[0];
+ puDst->ai16[6] = uSrc1.ai16[6] >> puSrc->au8[0];
+ puDst->ai16[7] = uSrc1.ai16[7] >> puSrc->au8[0];
+ }
+ else
+ {
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ }
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psraw_imm_u128,(PRTUINT128U puDst, uint8_t uShift))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ if (uShift <= 15)
+ {
+ puDst->ai16[0] = uSrc1.ai16[0] >> uShift;
+ puDst->ai16[1] = uSrc1.ai16[1] >> uShift;
+ puDst->ai16[2] = uSrc1.ai16[2] >> uShift;
+ puDst->ai16[3] = uSrc1.ai16[3] >> uShift;
+ puDst->ai16[4] = uSrc1.ai16[4] >> uShift;
+ puDst->ai16[5] = uSrc1.ai16[5] >> uShift;
+ puDst->ai16[6] = uSrc1.ai16[6] >> uShift;
+ puDst->ai16[7] = uSrc1.ai16[7] >> uShift;
+ }
+ else
+ {
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ }
+}
+
+#endif
+
+
+/*
+ * PSLLW / VPSLLW
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psllw_u64,(uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+
+ if (uSrc2.au64[0] <= 15)
+ {
+ uDst.au16[0] = uSrc1.au16[0] << uSrc2.au8[0];
+ uDst.au16[1] = uSrc1.au16[1] << uSrc2.au8[0];
+ uDst.au16[2] = uSrc1.au16[2] << uSrc2.au8[0];
+ uDst.au16[3] = uSrc1.au16[3] << uSrc2.au8[0];
+ }
+ else
+ {
+ uDst.au64[0] = 0;
+ }
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psllw_imm_u64,(uint64_t *puDst, uint8_t uShift))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uDst;
+
+ if (uShift <= 15)
+ {
+ uDst.au16[0] = uSrc1.au16[0] << uShift;
+ uDst.au16[1] = uSrc1.au16[1] << uShift;
+ uDst.au16[2] = uSrc1.au16[2] << uShift;
+ uDst.au16[3] = uSrc1.au16[3] << uShift;
+ }
+ else
+ {
+ uDst.au64[0] = 0;
+ }
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psllw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ if (puSrc->au64[0] <= 15)
+ {
+ puDst->au16[0] = uSrc1.au16[0] << puSrc->au8[0];
+ puDst->au16[1] = uSrc1.au16[1] << puSrc->au8[0];
+ puDst->au16[2] = uSrc1.au16[2] << puSrc->au8[0];
+ puDst->au16[3] = uSrc1.au16[3] << puSrc->au8[0];
+ puDst->au16[4] = uSrc1.au16[4] << puSrc->au8[0];
+ puDst->au16[5] = uSrc1.au16[5] << puSrc->au8[0];
+ puDst->au16[6] = uSrc1.au16[6] << puSrc->au8[0];
+ puDst->au16[7] = uSrc1.au16[7] << puSrc->au8[0];
+ }
+ else
+ {
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ }
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psllw_imm_u128,(PRTUINT128U puDst, uint8_t uShift))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ if (uShift <= 15)
+ {
+ puDst->au16[0] = uSrc1.au16[0] << uShift;
+ puDst->au16[1] = uSrc1.au16[1] << uShift;
+ puDst->au16[2] = uSrc1.au16[2] << uShift;
+ puDst->au16[3] = uSrc1.au16[3] << uShift;
+ puDst->au16[4] = uSrc1.au16[4] << uShift;
+ puDst->au16[5] = uSrc1.au16[5] << uShift;
+ puDst->au16[6] = uSrc1.au16[6] << uShift;
+ puDst->au16[7] = uSrc1.au16[7] << uShift;
+ }
+ else
+ {
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ }
+}
+
+#endif
+
+
+/*
+ * PSRLD / VPSRLD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psrld_u64,(uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+
+ if (uSrc2.au64[0] <= 31)
+ {
+ uDst.au32[0] = uSrc1.au32[0] >> uSrc2.au8[0];
+ uDst.au32[1] = uSrc1.au32[1] >> uSrc2.au8[0];
+ }
+ else
+ {
+ uDst.au64[0] = 0;
+ }
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psrld_imm_u64,(uint64_t *puDst, uint8_t uShift))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uDst;
+
+ if (uShift <= 31)
+ {
+ uDst.au32[0] = uSrc1.au32[0] >> uShift;
+ uDst.au32[1] = uSrc1.au32[1] >> uShift;
+ }
+ else
+ {
+ uDst.au64[0] = 0;
+ }
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psrld_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ if (puSrc->au64[0] <= 31)
+ {
+ puDst->au32[0] = uSrc1.au32[0] >> puSrc->au8[0];
+ puDst->au32[1] = uSrc1.au32[1] >> puSrc->au8[0];
+ puDst->au32[2] = uSrc1.au32[2] >> puSrc->au8[0];
+ puDst->au32[3] = uSrc1.au32[3] >> puSrc->au8[0];
+ }
+ else
+ {
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ }
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psrld_imm_u128,(PRTUINT128U puDst, uint8_t uShift))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ if (uShift <= 31)
+ {
+ puDst->au32[0] = uSrc1.au32[0] >> uShift;
+ puDst->au32[1] = uSrc1.au32[1] >> uShift;
+ puDst->au32[2] = uSrc1.au32[2] >> uShift;
+ puDst->au32[3] = uSrc1.au32[3] >> uShift;
+ }
+ else
+ {
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ }
+}
+
+#endif
+
+
+/*
+ * PSRAD / VPSRAD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psrad_u64,(uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+
+ if (uSrc2.au64[0] <= 31)
+ {
+ uDst.ai32[0] = uSrc1.ai32[0] >> uSrc2.au8[0];
+ uDst.ai32[1] = uSrc1.ai32[1] >> uSrc2.au8[0];
+ }
+ else
+ {
+ uDst.au64[0] = 0;
+ }
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psrad_imm_u64,(uint64_t *puDst, uint8_t uShift))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uDst;
+
+ if (uShift <= 31)
+ {
+ uDst.ai32[0] = uSrc1.ai32[0] >> uShift;
+ uDst.ai32[1] = uSrc1.ai32[1] >> uShift;
+ }
+ else
+ {
+ uDst.au64[0] = 0;
+ }
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psrad_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ if (puSrc->au64[0] <= 31)
+ {
+ puDst->ai32[0] = uSrc1.ai32[0] >> puSrc->au8[0];
+ puDst->ai32[1] = uSrc1.ai32[1] >> puSrc->au8[0];
+ puDst->ai32[2] = uSrc1.ai32[2] >> puSrc->au8[0];
+ puDst->ai32[3] = uSrc1.ai32[3] >> puSrc->au8[0];
+ }
+ else
+ {
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ }
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psrad_imm_u128,(PRTUINT128U puDst, uint8_t uShift))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ if (uShift <= 31)
+ {
+ puDst->ai32[0] = uSrc1.ai32[0] >> uShift;
+ puDst->ai32[1] = uSrc1.ai32[1] >> uShift;
+ puDst->ai32[2] = uSrc1.ai32[2] >> uShift;
+ puDst->ai32[3] = uSrc1.ai32[3] >> uShift;
+ }
+ else
+ {
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ }
+}
+
+#endif
+
+
+/*
+ * PSLLD / VPSLLD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pslld_u64,(uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+
+ if (uSrc2.au64[0] <= 31)
+ {
+ uDst.au32[0] = uSrc1.au32[0] << uSrc2.au8[0];
+ uDst.au32[1] = uSrc1.au32[1] << uSrc2.au8[0];
+ }
+ else
+ {
+ uDst.au64[0] = 0;
+ }
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pslld_imm_u64,(uint64_t *puDst, uint8_t uShift))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uDst;
+
+ if (uShift <= 31)
+ {
+ uDst.au32[0] = uSrc1.au32[0] << uShift;
+ uDst.au32[1] = uSrc1.au32[1] << uShift;
+ }
+ else
+ {
+ uDst.au64[0] = 0;
+ }
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pslld_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ if (puSrc->au64[0] <= 31)
+ {
+ puDst->au32[0] = uSrc1.au32[0] << puSrc->au8[0];
+ puDst->au32[1] = uSrc1.au32[1] << puSrc->au8[0];
+ puDst->au32[2] = uSrc1.au32[2] << puSrc->au8[0];
+ puDst->au32[3] = uSrc1.au32[3] << puSrc->au8[0];
+ }
+ else
+ {
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ }
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pslld_imm_u128,(PRTUINT128U puDst, uint8_t uShift))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ if (uShift <= 31)
+ {
+ puDst->au32[0] = uSrc1.au32[0] << uShift;
+ puDst->au32[1] = uSrc1.au32[1] << uShift;
+ puDst->au32[2] = uSrc1.au32[2] << uShift;
+ puDst->au32[3] = uSrc1.au32[3] << uShift;
+ }
+ else
+ {
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ }
+}
+
+#endif
+
+
+/*
+ * PSRLQ / VPSRLQ
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psrlq_u64,(uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+
+ if (uSrc2.au64[0] <= 63)
+ {
+ uDst.au64[0] = uSrc1.au64[0] >> uSrc2.au8[0];
+ }
+ else
+ {
+ uDst.au64[0] = 0;
+ }
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psrlq_imm_u64,(uint64_t *puDst, uint8_t uShift))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uDst;
+
+ if (uShift <= 63)
+ {
+ uDst.au64[0] = uSrc1.au64[0] >> uShift;
+ }
+ else
+ {
+ uDst.au64[0] = 0;
+ }
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psrlq_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ if (puSrc->au64[0] <= 63)
+ {
+ puDst->au64[0] = uSrc1.au64[0] >> puSrc->au8[0];
+ puDst->au64[1] = uSrc1.au64[1] >> puSrc->au8[0];
+ }
+ else
+ {
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ }
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psrlq_imm_u128,(PRTUINT128U puDst, uint8_t uShift))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ if (uShift <= 63)
+ {
+ puDst->au64[0] = uSrc1.au64[0] >> uShift;
+ puDst->au64[1] = uSrc1.au64[1] >> uShift;
+ }
+ else
+ {
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ }
+}
+
+#endif
+
+
+/*
+ * PSLLQ / VPSLLQ
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psllq_u64,(uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+
+ if (uSrc2.au64[0] <= 63)
+ {
+ uDst.au64[0] = uSrc1.au64[0] << uSrc2.au8[0];
+ }
+ else
+ {
+ uDst.au64[0] = 0;
+ }
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psllq_imm_u64,(uint64_t *puDst, uint8_t uShift))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uDst;
+
+ if (uShift <= 63)
+ {
+ uDst.au64[0] = uSrc1.au64[0] << uShift;
+ }
+ else
+ {
+ uDst.au64[0] = 0;
+ }
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psllq_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ if (puSrc->au64[0] <= 63)
+ {
+ puDst->au64[0] = uSrc1.au64[0] << puSrc->au8[0];
+ puDst->au64[1] = uSrc1.au64[1] << puSrc->au8[0];
+ }
+ else
+ {
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ }
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psllq_imm_u128,(PRTUINT128U puDst, uint8_t uShift))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ if (uShift <= 63)
+ {
+ puDst->au64[0] = uSrc1.au64[0] << uShift;
+ puDst->au64[1] = uSrc1.au64[1] << uShift;
+ }
+ else
+ {
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ }
+}
+
+#endif
+
+
+/*
+ * PSRLDQ / VPSRLDQ
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psrldq_imm_u128,(PRTUINT128U puDst, uint8_t uShift))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ if (uShift < 16)
+ {
+ int i;
+
+ for (i = 0; i < 16 - uShift; ++i)
+ puDst->au8[i] = uSrc1.au8[i + uShift];
+ for (i = 16 - uShift; i < 16; ++i)
+ puDst->au8[i] = 0;
+ }
+ else
+ {
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ }
+}
+
+#endif
+
+
+/*
+ * PSLLDQ / VPSLLDQ
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pslldq_imm_u128,(PRTUINT128U puDst, uint8_t uShift))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ if (uShift < 16)
+ {
+ int i;
+
+ for (i = 0; i < uShift; ++i)
+ puDst->au8[i] = 0;
+ for (i = uShift; i < 16; ++i)
+ puDst->au8[i] = uSrc1.au8[i - uShift];
+ }
+ else
+ {
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ }
+}
+
+#endif
+
+
+/*
+ * PMADDWD / VPMADDWD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmaddwd_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+
+ uDst.ai32[0] = (int32_t)uSrc1.ai16[0] * uSrc2.ai16[0] + (int32_t)uSrc1.ai16[1] * uSrc2.ai16[1];
+ uDst.ai32[1] = (int32_t)uSrc1.ai16[2] * uSrc2.ai16[2] + (int32_t)uSrc1.ai16[3] * uSrc2.ai16[3];
+ *puDst = uDst.u;
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmaddwd_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->ai32[0] = (int32_t)uSrc1.ai16[0] * puSrc->ai16[0] + (int32_t)uSrc1.ai16[1] * puSrc->ai16[1];
+ puDst->ai32[1] = (int32_t)uSrc1.ai16[2] * puSrc->ai16[2] + (int32_t)uSrc1.ai16[3] * puSrc->ai16[3];
+ puDst->ai32[2] = (int32_t)uSrc1.ai16[4] * puSrc->ai16[4] + (int32_t)uSrc1.ai16[5] * puSrc->ai16[5];
+ puDst->ai32[3] = (int32_t)uSrc1.ai16[6] * puSrc->ai16[6] + (int32_t)uSrc1.ai16[7] * puSrc->ai16[7];
+ RT_NOREF(pFpuState);
+}
+
+#endif
+
+
+/*
+ * PMAXUB / VPMAXUB / PMAXUW / VPMAXUW / PMAXUD / VPMAXUD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmaxub_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+
+ uDst.au8[0] = RT_MAX(uSrc1.au8[0], uSrc2.au8[0]);
+ uDst.au8[1] = RT_MAX(uSrc1.au8[1], uSrc2.au8[1]);
+ uDst.au8[2] = RT_MAX(uSrc1.au8[2], uSrc2.au8[2]);
+ uDst.au8[3] = RT_MAX(uSrc1.au8[3], uSrc2.au8[3]);
+ uDst.au8[4] = RT_MAX(uSrc1.au8[4], uSrc2.au8[4]);
+ uDst.au8[5] = RT_MAX(uSrc1.au8[5], uSrc2.au8[5]);
+ uDst.au8[6] = RT_MAX(uSrc1.au8[6], uSrc2.au8[6]);
+ uDst.au8[7] = RT_MAX(uSrc1.au8[7], uSrc2.au8[7]);
+ *puDst = uDst.u;
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmaxub_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->au8[ 0] = RT_MAX(uSrc1.au8[ 0], puSrc->au8[ 0]);
+ puDst->au8[ 1] = RT_MAX(uSrc1.au8[ 1], puSrc->au8[ 1]);
+ puDst->au8[ 2] = RT_MAX(uSrc1.au8[ 2], puSrc->au8[ 2]);
+ puDst->au8[ 3] = RT_MAX(uSrc1.au8[ 3], puSrc->au8[ 3]);
+ puDst->au8[ 4] = RT_MAX(uSrc1.au8[ 4], puSrc->au8[ 4]);
+ puDst->au8[ 5] = RT_MAX(uSrc1.au8[ 5], puSrc->au8[ 5]);
+ puDst->au8[ 6] = RT_MAX(uSrc1.au8[ 6], puSrc->au8[ 6]);
+ puDst->au8[ 7] = RT_MAX(uSrc1.au8[ 7], puSrc->au8[ 7]);
+ puDst->au8[ 8] = RT_MAX(uSrc1.au8[ 8], puSrc->au8[ 8]);
+ puDst->au8[ 9] = RT_MAX(uSrc1.au8[ 9], puSrc->au8[ 9]);
+ puDst->au8[10] = RT_MAX(uSrc1.au8[10], puSrc->au8[10]);
+ puDst->au8[11] = RT_MAX(uSrc1.au8[11], puSrc->au8[11]);
+ puDst->au8[12] = RT_MAX(uSrc1.au8[12], puSrc->au8[12]);
+ puDst->au8[13] = RT_MAX(uSrc1.au8[13], puSrc->au8[13]);
+ puDst->au8[14] = RT_MAX(uSrc1.au8[14], puSrc->au8[14]);
+ puDst->au8[15] = RT_MAX(uSrc1.au8[15], puSrc->au8[15]);
+ RT_NOREF(pFpuState);
+}
+
+#endif
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmaxuw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->au16[ 0] = RT_MAX(uSrc1.au16[ 0], puSrc->au16[ 0]);
+ puDst->au16[ 1] = RT_MAX(uSrc1.au16[ 1], puSrc->au16[ 1]);
+ puDst->au16[ 2] = RT_MAX(uSrc1.au16[ 2], puSrc->au16[ 2]);
+ puDst->au16[ 3] = RT_MAX(uSrc1.au16[ 3], puSrc->au16[ 3]);
+ puDst->au16[ 4] = RT_MAX(uSrc1.au16[ 4], puSrc->au16[ 4]);
+ puDst->au16[ 5] = RT_MAX(uSrc1.au16[ 5], puSrc->au16[ 5]);
+ puDst->au16[ 6] = RT_MAX(uSrc1.au16[ 6], puSrc->au16[ 6]);
+ puDst->au16[ 7] = RT_MAX(uSrc1.au16[ 7], puSrc->au16[ 7]);
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmaxud_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->au32[ 0] = RT_MAX(uSrc1.au32[ 0], puSrc->au32[ 0]);
+ puDst->au32[ 1] = RT_MAX(uSrc1.au32[ 1], puSrc->au32[ 1]);
+ puDst->au32[ 2] = RT_MAX(uSrc1.au32[ 2], puSrc->au32[ 2]);
+ puDst->au32[ 3] = RT_MAX(uSrc1.au32[ 3], puSrc->au32[ 3]);
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxub_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ puDst->au8[ 0] = RT_MAX(puSrc1->au8[ 0], puSrc2->au8[ 0]);
+ puDst->au8[ 1] = RT_MAX(puSrc1->au8[ 1], puSrc2->au8[ 1]);
+ puDst->au8[ 2] = RT_MAX(puSrc1->au8[ 2], puSrc2->au8[ 2]);
+ puDst->au8[ 3] = RT_MAX(puSrc1->au8[ 3], puSrc2->au8[ 3]);
+ puDst->au8[ 4] = RT_MAX(puSrc1->au8[ 4], puSrc2->au8[ 4]);
+ puDst->au8[ 5] = RT_MAX(puSrc1->au8[ 5], puSrc2->au8[ 5]);
+ puDst->au8[ 6] = RT_MAX(puSrc1->au8[ 6], puSrc2->au8[ 6]);
+ puDst->au8[ 7] = RT_MAX(puSrc1->au8[ 7], puSrc2->au8[ 7]);
+ puDst->au8[ 8] = RT_MAX(puSrc1->au8[ 8], puSrc2->au8[ 8]);
+ puDst->au8[ 9] = RT_MAX(puSrc1->au8[ 9], puSrc2->au8[ 9]);
+ puDst->au8[10] = RT_MAX(puSrc1->au8[10], puSrc2->au8[10]);
+ puDst->au8[11] = RT_MAX(puSrc1->au8[11], puSrc2->au8[11]);
+ puDst->au8[12] = RT_MAX(puSrc1->au8[12], puSrc2->au8[12]);
+ puDst->au8[13] = RT_MAX(puSrc1->au8[13], puSrc2->au8[13]);
+ puDst->au8[14] = RT_MAX(puSrc1->au8[14], puSrc2->au8[14]);
+ puDst->au8[15] = RT_MAX(puSrc1->au8[15], puSrc2->au8[15]);
+ RT_NOREF(pExtState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxub_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ puDst->au8[ 0] = RT_MAX(puSrc1->au8[ 0], puSrc2->au8[ 0]);
+ puDst->au8[ 1] = RT_MAX(puSrc1->au8[ 1], puSrc2->au8[ 1]);
+ puDst->au8[ 2] = RT_MAX(puSrc1->au8[ 2], puSrc2->au8[ 2]);
+ puDst->au8[ 3] = RT_MAX(puSrc1->au8[ 3], puSrc2->au8[ 3]);
+ puDst->au8[ 4] = RT_MAX(puSrc1->au8[ 4], puSrc2->au8[ 4]);
+ puDst->au8[ 5] = RT_MAX(puSrc1->au8[ 5], puSrc2->au8[ 5]);
+ puDst->au8[ 6] = RT_MAX(puSrc1->au8[ 6], puSrc2->au8[ 6]);
+ puDst->au8[ 7] = RT_MAX(puSrc1->au8[ 7], puSrc2->au8[ 7]);
+ puDst->au8[ 8] = RT_MAX(puSrc1->au8[ 8], puSrc2->au8[ 8]);
+ puDst->au8[ 9] = RT_MAX(puSrc1->au8[ 9], puSrc2->au8[ 9]);
+ puDst->au8[10] = RT_MAX(puSrc1->au8[10], puSrc2->au8[10]);
+ puDst->au8[11] = RT_MAX(puSrc1->au8[11], puSrc2->au8[11]);
+ puDst->au8[12] = RT_MAX(puSrc1->au8[12], puSrc2->au8[12]);
+ puDst->au8[13] = RT_MAX(puSrc1->au8[13], puSrc2->au8[13]);
+ puDst->au8[14] = RT_MAX(puSrc1->au8[14], puSrc2->au8[14]);
+ puDst->au8[15] = RT_MAX(puSrc1->au8[15], puSrc2->au8[15]);
+ puDst->au8[16] = RT_MAX(puSrc1->au8[16], puSrc2->au8[16]);
+ puDst->au8[17] = RT_MAX(puSrc1->au8[17], puSrc2->au8[17]);
+ puDst->au8[18] = RT_MAX(puSrc1->au8[18], puSrc2->au8[18]);
+ puDst->au8[19] = RT_MAX(puSrc1->au8[19], puSrc2->au8[19]);
+ puDst->au8[20] = RT_MAX(puSrc1->au8[20], puSrc2->au8[20]);
+ puDst->au8[21] = RT_MAX(puSrc1->au8[21], puSrc2->au8[21]);
+ puDst->au8[22] = RT_MAX(puSrc1->au8[22], puSrc2->au8[22]);
+ puDst->au8[23] = RT_MAX(puSrc1->au8[23], puSrc2->au8[23]);
+ puDst->au8[24] = RT_MAX(puSrc1->au8[24], puSrc2->au8[24]);
+ puDst->au8[25] = RT_MAX(puSrc1->au8[25], puSrc2->au8[25]);
+ puDst->au8[26] = RT_MAX(puSrc1->au8[26], puSrc2->au8[26]);
+ puDst->au8[27] = RT_MAX(puSrc1->au8[27], puSrc2->au8[27]);
+ puDst->au8[28] = RT_MAX(puSrc1->au8[28], puSrc2->au8[28]);
+ puDst->au8[29] = RT_MAX(puSrc1->au8[29], puSrc2->au8[29]);
+ puDst->au8[30] = RT_MAX(puSrc1->au8[30], puSrc2->au8[30]);
+ puDst->au8[31] = RT_MAX(puSrc1->au8[31], puSrc2->au8[31]);
+ RT_NOREF(pExtState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxuw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ puDst->au16[ 0] = RT_MAX(puSrc1->au16[ 0], puSrc2->au16[ 0]);
+ puDst->au16[ 1] = RT_MAX(puSrc1->au16[ 1], puSrc2->au16[ 1]);
+ puDst->au16[ 2] = RT_MAX(puSrc1->au16[ 2], puSrc2->au16[ 2]);
+ puDst->au16[ 3] = RT_MAX(puSrc1->au16[ 3], puSrc2->au16[ 3]);
+ puDst->au16[ 4] = RT_MAX(puSrc1->au16[ 4], puSrc2->au16[ 4]);
+ puDst->au16[ 5] = RT_MAX(puSrc1->au16[ 5], puSrc2->au16[ 5]);
+ puDst->au16[ 6] = RT_MAX(puSrc1->au16[ 6], puSrc2->au16[ 6]);
+ puDst->au16[ 7] = RT_MAX(puSrc1->au16[ 7], puSrc2->au16[ 7]);
+ RT_NOREF(pExtState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxuw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ puDst->au16[ 0] = RT_MAX(puSrc1->au16[ 0], puSrc2->au16[ 0]);
+ puDst->au16[ 1] = RT_MAX(puSrc1->au16[ 1], puSrc2->au16[ 1]);
+ puDst->au16[ 2] = RT_MAX(puSrc1->au16[ 2], puSrc2->au16[ 2]);
+ puDst->au16[ 3] = RT_MAX(puSrc1->au16[ 3], puSrc2->au16[ 3]);
+ puDst->au16[ 4] = RT_MAX(puSrc1->au16[ 4], puSrc2->au16[ 4]);
+ puDst->au16[ 5] = RT_MAX(puSrc1->au16[ 5], puSrc2->au16[ 5]);
+ puDst->au16[ 6] = RT_MAX(puSrc1->au16[ 6], puSrc2->au16[ 6]);
+ puDst->au16[ 7] = RT_MAX(puSrc1->au16[ 7], puSrc2->au16[ 7]);
+ puDst->au16[ 8] = RT_MAX(puSrc1->au16[ 8], puSrc2->au16[ 8]);
+ puDst->au16[ 9] = RT_MAX(puSrc1->au16[ 9], puSrc2->au16[ 9]);
+ puDst->au16[10] = RT_MAX(puSrc1->au16[10], puSrc2->au16[10]);
+ puDst->au16[11] = RT_MAX(puSrc1->au16[11], puSrc2->au16[11]);
+ puDst->au16[12] = RT_MAX(puSrc1->au16[12], puSrc2->au16[12]);
+ puDst->au16[13] = RT_MAX(puSrc1->au16[13], puSrc2->au16[13]);
+ puDst->au16[14] = RT_MAX(puSrc1->au16[14], puSrc2->au16[14]);
+ puDst->au16[15] = RT_MAX(puSrc1->au16[15], puSrc2->au16[15]);
+ RT_NOREF(pExtState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxud_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ puDst->au32[ 0] = RT_MAX(puSrc1->au32[ 0], puSrc2->au32[ 0]);
+ puDst->au32[ 1] = RT_MAX(puSrc1->au32[ 1], puSrc2->au32[ 1]);
+ puDst->au32[ 2] = RT_MAX(puSrc1->au32[ 2], puSrc2->au32[ 2]);
+ puDst->au32[ 3] = RT_MAX(puSrc1->au32[ 3], puSrc2->au32[ 3]);
+ RT_NOREF(pExtState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxud_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ puDst->au32[ 0] = RT_MAX(puSrc1->au32[ 0], puSrc2->au32[ 0]);
+ puDst->au32[ 1] = RT_MAX(puSrc1->au32[ 1], puSrc2->au32[ 1]);
+ puDst->au32[ 2] = RT_MAX(puSrc1->au32[ 2], puSrc2->au32[ 2]);
+ puDst->au32[ 3] = RT_MAX(puSrc1->au32[ 3], puSrc2->au32[ 3]);
+ puDst->au32[ 4] = RT_MAX(puSrc1->au32[ 4], puSrc2->au32[ 4]);
+ puDst->au32[ 5] = RT_MAX(puSrc1->au32[ 5], puSrc2->au32[ 5]);
+ puDst->au32[ 6] = RT_MAX(puSrc1->au32[ 6], puSrc2->au32[ 6]);
+ puDst->au32[ 7] = RT_MAX(puSrc1->au32[ 7], puSrc2->au32[ 7]);
+ RT_NOREF(pExtState);
+}
+
+
+/*
+ * PMAXSB / VPMAXSB / PMAXSW / VPMAXSW / PMAXSD / VPMAXSD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmaxsw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+
+ uDst.ai16[0] = RT_MAX(uSrc1.ai16[0], uSrc2.ai16[0]);
+ uDst.ai16[1] = RT_MAX(uSrc1.ai16[1], uSrc2.ai16[1]);
+ uDst.ai16[2] = RT_MAX(uSrc1.ai16[2], uSrc2.ai16[2]);
+ uDst.ai16[3] = RT_MAX(uSrc1.ai16[3], uSrc2.ai16[3]);
+ *puDst = uDst.u;
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmaxsw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->ai16[ 0] = RT_MAX(uSrc1.ai16[ 0], puSrc->ai16[ 0]);
+ puDst->ai16[ 1] = RT_MAX(uSrc1.ai16[ 1], puSrc->ai16[ 1]);
+ puDst->ai16[ 2] = RT_MAX(uSrc1.ai16[ 2], puSrc->ai16[ 2]);
+ puDst->ai16[ 3] = RT_MAX(uSrc1.ai16[ 3], puSrc->ai16[ 3]);
+ puDst->ai16[ 4] = RT_MAX(uSrc1.ai16[ 4], puSrc->ai16[ 4]);
+ puDst->ai16[ 5] = RT_MAX(uSrc1.ai16[ 5], puSrc->ai16[ 5]);
+ puDst->ai16[ 6] = RT_MAX(uSrc1.ai16[ 6], puSrc->ai16[ 6]);
+ puDst->ai16[ 7] = RT_MAX(uSrc1.ai16[ 7], puSrc->ai16[ 7]);
+ RT_NOREF(pFpuState);
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmaxsb_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->ai8[ 0] = RT_MAX(uSrc1.ai8[ 0], puSrc->ai8[ 0]);
+ puDst->ai8[ 1] = RT_MAX(uSrc1.ai8[ 1], puSrc->ai8[ 1]);
+ puDst->ai8[ 2] = RT_MAX(uSrc1.ai8[ 2], puSrc->ai8[ 2]);
+ puDst->ai8[ 3] = RT_MAX(uSrc1.ai8[ 3], puSrc->ai8[ 3]);
+ puDst->ai8[ 4] = RT_MAX(uSrc1.ai8[ 4], puSrc->ai8[ 4]);
+ puDst->ai8[ 5] = RT_MAX(uSrc1.ai8[ 5], puSrc->ai8[ 5]);
+ puDst->ai8[ 6] = RT_MAX(uSrc1.ai8[ 6], puSrc->ai8[ 6]);
+ puDst->ai8[ 7] = RT_MAX(uSrc1.ai8[ 7], puSrc->ai8[ 7]);
+ puDst->ai8[ 8] = RT_MAX(uSrc1.ai8[ 8], puSrc->ai8[ 8]);
+ puDst->ai8[ 9] = RT_MAX(uSrc1.ai8[ 9], puSrc->ai8[ 9]);
+ puDst->ai8[10] = RT_MAX(uSrc1.ai8[10], puSrc->ai8[10]);
+ puDst->ai8[11] = RT_MAX(uSrc1.ai8[11], puSrc->ai8[11]);
+ puDst->ai8[12] = RT_MAX(uSrc1.ai8[12], puSrc->ai8[12]);
+ puDst->ai8[13] = RT_MAX(uSrc1.ai8[13], puSrc->ai8[13]);
+ puDst->ai8[14] = RT_MAX(uSrc1.ai8[14], puSrc->ai8[14]);
+ puDst->ai8[15] = RT_MAX(uSrc1.ai8[15], puSrc->ai8[15]);
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmaxsd_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->ai32[ 0] = RT_MAX(uSrc1.ai32[ 0], puSrc->ai32[ 0]);
+ puDst->ai32[ 1] = RT_MAX(uSrc1.ai32[ 1], puSrc->ai32[ 1]);
+ puDst->ai32[ 2] = RT_MAX(uSrc1.ai32[ 2], puSrc->ai32[ 2]);
+ puDst->ai32[ 3] = RT_MAX(uSrc1.ai32[ 3], puSrc->ai32[ 3]);
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxsb_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ puDst->ai8[ 0] = RT_MAX(puSrc1->ai8[ 0], puSrc2->ai8[ 0]);
+ puDst->ai8[ 1] = RT_MAX(puSrc1->ai8[ 1], puSrc2->ai8[ 1]);
+ puDst->ai8[ 2] = RT_MAX(puSrc1->ai8[ 2], puSrc2->ai8[ 2]);
+ puDst->ai8[ 3] = RT_MAX(puSrc1->ai8[ 3], puSrc2->ai8[ 3]);
+ puDst->ai8[ 4] = RT_MAX(puSrc1->ai8[ 4], puSrc2->ai8[ 4]);
+ puDst->ai8[ 5] = RT_MAX(puSrc1->ai8[ 5], puSrc2->ai8[ 5]);
+ puDst->ai8[ 6] = RT_MAX(puSrc1->ai8[ 6], puSrc2->ai8[ 6]);
+ puDst->ai8[ 7] = RT_MAX(puSrc1->ai8[ 7], puSrc2->ai8[ 7]);
+ puDst->ai8[ 8] = RT_MAX(puSrc1->ai8[ 8], puSrc2->ai8[ 8]);
+ puDst->ai8[ 9] = RT_MAX(puSrc1->ai8[ 9], puSrc2->ai8[ 9]);
+ puDst->ai8[10] = RT_MAX(puSrc1->ai8[10], puSrc2->ai8[10]);
+ puDst->ai8[11] = RT_MAX(puSrc1->ai8[11], puSrc2->ai8[11]);
+ puDst->ai8[12] = RT_MAX(puSrc1->ai8[12], puSrc2->ai8[12]);
+ puDst->ai8[13] = RT_MAX(puSrc1->ai8[13], puSrc2->ai8[13]);
+ puDst->ai8[14] = RT_MAX(puSrc1->ai8[14], puSrc2->ai8[14]);
+ puDst->ai8[15] = RT_MAX(puSrc1->ai8[15], puSrc2->ai8[15]);
+ RT_NOREF(pExtState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxsb_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ puDst->ai8[ 0] = RT_MAX(puSrc1->ai8[ 0], puSrc2->ai8[ 0]);
+ puDst->ai8[ 1] = RT_MAX(puSrc1->ai8[ 1], puSrc2->ai8[ 1]);
+ puDst->ai8[ 2] = RT_MAX(puSrc1->ai8[ 2], puSrc2->ai8[ 2]);
+ puDst->ai8[ 3] = RT_MAX(puSrc1->ai8[ 3], puSrc2->ai8[ 3]);
+ puDst->ai8[ 4] = RT_MAX(puSrc1->ai8[ 4], puSrc2->ai8[ 4]);
+ puDst->ai8[ 5] = RT_MAX(puSrc1->ai8[ 5], puSrc2->ai8[ 5]);
+ puDst->ai8[ 6] = RT_MAX(puSrc1->ai8[ 6], puSrc2->ai8[ 6]);
+ puDst->ai8[ 7] = RT_MAX(puSrc1->ai8[ 7], puSrc2->ai8[ 7]);
+ puDst->ai8[ 8] = RT_MAX(puSrc1->ai8[ 8], puSrc2->ai8[ 8]);
+ puDst->ai8[ 9] = RT_MAX(puSrc1->ai8[ 9], puSrc2->ai8[ 9]);
+ puDst->ai8[10] = RT_MAX(puSrc1->ai8[10], puSrc2->ai8[10]);
+ puDst->ai8[11] = RT_MAX(puSrc1->ai8[11], puSrc2->ai8[11]);
+ puDst->ai8[12] = RT_MAX(puSrc1->ai8[12], puSrc2->ai8[12]);
+ puDst->ai8[13] = RT_MAX(puSrc1->ai8[13], puSrc2->ai8[13]);
+ puDst->ai8[14] = RT_MAX(puSrc1->ai8[14], puSrc2->ai8[14]);
+ puDst->ai8[15] = RT_MAX(puSrc1->ai8[15], puSrc2->ai8[15]);
+ puDst->ai8[16] = RT_MAX(puSrc1->ai8[16], puSrc2->ai8[16]);
+ puDst->ai8[17] = RT_MAX(puSrc1->ai8[17], puSrc2->ai8[17]);
+ puDst->ai8[18] = RT_MAX(puSrc1->ai8[18], puSrc2->ai8[18]);
+ puDst->ai8[19] = RT_MAX(puSrc1->ai8[19], puSrc2->ai8[19]);
+ puDst->ai8[20] = RT_MAX(puSrc1->ai8[20], puSrc2->ai8[20]);
+ puDst->ai8[21] = RT_MAX(puSrc1->ai8[21], puSrc2->ai8[21]);
+ puDst->ai8[22] = RT_MAX(puSrc1->ai8[22], puSrc2->ai8[22]);
+ puDst->ai8[23] = RT_MAX(puSrc1->ai8[23], puSrc2->ai8[23]);
+ puDst->ai8[24] = RT_MAX(puSrc1->ai8[24], puSrc2->ai8[24]);
+ puDst->ai8[25] = RT_MAX(puSrc1->ai8[25], puSrc2->ai8[25]);
+ puDst->ai8[26] = RT_MAX(puSrc1->ai8[26], puSrc2->ai8[26]);
+ puDst->ai8[27] = RT_MAX(puSrc1->ai8[27], puSrc2->ai8[27]);
+ puDst->ai8[28] = RT_MAX(puSrc1->ai8[28], puSrc2->ai8[28]);
+ puDst->ai8[29] = RT_MAX(puSrc1->ai8[29], puSrc2->ai8[29]);
+ puDst->ai8[30] = RT_MAX(puSrc1->ai8[30], puSrc2->ai8[30]);
+ puDst->ai8[31] = RT_MAX(puSrc1->ai8[31], puSrc2->ai8[31]);
+ RT_NOREF(pExtState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxsw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ puDst->ai16[ 0] = RT_MAX(puSrc1->ai16[ 0], puSrc2->ai16[ 0]);
+ puDst->ai16[ 1] = RT_MAX(puSrc1->ai16[ 1], puSrc2->ai16[ 1]);
+ puDst->ai16[ 2] = RT_MAX(puSrc1->ai16[ 2], puSrc2->ai16[ 2]);
+ puDst->ai16[ 3] = RT_MAX(puSrc1->ai16[ 3], puSrc2->ai16[ 3]);
+ puDst->ai16[ 4] = RT_MAX(puSrc1->ai16[ 4], puSrc2->ai16[ 4]);
+ puDst->ai16[ 5] = RT_MAX(puSrc1->ai16[ 5], puSrc2->ai16[ 5]);
+ puDst->ai16[ 6] = RT_MAX(puSrc1->ai16[ 6], puSrc2->ai16[ 6]);
+ puDst->ai16[ 7] = RT_MAX(puSrc1->ai16[ 7], puSrc2->ai16[ 7]);
+ RT_NOREF(pExtState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxsw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ puDst->ai16[ 0] = RT_MAX(puSrc1->ai16[ 0], puSrc2->ai16[ 0]);
+ puDst->ai16[ 1] = RT_MAX(puSrc1->ai16[ 1], puSrc2->ai16[ 1]);
+ puDst->ai16[ 2] = RT_MAX(puSrc1->ai16[ 2], puSrc2->ai16[ 2]);
+ puDst->ai16[ 3] = RT_MAX(puSrc1->ai16[ 3], puSrc2->ai16[ 3]);
+ puDst->ai16[ 4] = RT_MAX(puSrc1->ai16[ 4], puSrc2->ai16[ 4]);
+ puDst->ai16[ 5] = RT_MAX(puSrc1->ai16[ 5], puSrc2->ai16[ 5]);
+ puDst->ai16[ 6] = RT_MAX(puSrc1->ai16[ 6], puSrc2->ai16[ 6]);
+ puDst->ai16[ 7] = RT_MAX(puSrc1->ai16[ 7], puSrc2->ai16[ 7]);
+ puDst->ai16[ 8] = RT_MAX(puSrc1->ai16[ 8], puSrc2->ai16[ 8]);
+ puDst->ai16[ 9] = RT_MAX(puSrc1->ai16[ 9], puSrc2->ai16[ 9]);
+ puDst->ai16[10] = RT_MAX(puSrc1->ai16[10], puSrc2->ai16[10]);
+ puDst->ai16[11] = RT_MAX(puSrc1->ai16[11], puSrc2->ai16[11]);
+ puDst->ai16[12] = RT_MAX(puSrc1->ai16[12], puSrc2->ai16[12]);
+ puDst->ai16[13] = RT_MAX(puSrc1->ai16[13], puSrc2->ai16[13]);
+ puDst->ai16[14] = RT_MAX(puSrc1->ai16[14], puSrc2->ai16[14]);
+ puDst->ai16[15] = RT_MAX(puSrc1->ai16[15], puSrc2->ai16[15]);
+ RT_NOREF(pExtState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxsd_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ puDst->ai32[ 0] = RT_MAX(puSrc1->ai32[ 0], puSrc2->ai32[ 0]);
+ puDst->ai32[ 1] = RT_MAX(puSrc1->ai32[ 1], puSrc2->ai32[ 1]);
+ puDst->ai32[ 2] = RT_MAX(puSrc1->ai32[ 2], puSrc2->ai32[ 2]);
+ puDst->ai32[ 3] = RT_MAX(puSrc1->ai32[ 3], puSrc2->ai32[ 3]);
+ RT_NOREF(pExtState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxsd_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ puDst->ai32[ 0] = RT_MAX(puSrc1->ai32[ 0], puSrc2->ai32[ 0]);
+ puDst->ai32[ 1] = RT_MAX(puSrc1->ai32[ 1], puSrc2->ai32[ 1]);
+ puDst->ai32[ 2] = RT_MAX(puSrc1->ai32[ 2], puSrc2->ai32[ 2]);
+ puDst->ai32[ 3] = RT_MAX(puSrc1->ai32[ 3], puSrc2->ai32[ 3]);
+ puDst->ai32[ 4] = RT_MAX(puSrc1->ai32[ 4], puSrc2->ai32[ 4]);
+ puDst->ai32[ 5] = RT_MAX(puSrc1->ai32[ 5], puSrc2->ai32[ 5]);
+ puDst->ai32[ 6] = RT_MAX(puSrc1->ai32[ 6], puSrc2->ai32[ 6]);
+ puDst->ai32[ 7] = RT_MAX(puSrc1->ai32[ 7], puSrc2->ai32[ 7]);
+ RT_NOREF(pExtState);
+}
+
+
+/*
+ * PMINUB / VPMINUB / PMINUW / VPMINUW / PMINUD / VPMINUD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pminub_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+
+ uDst.au8[0] = RT_MIN(uSrc1.au8[0], uSrc2.au8[0]);
+ uDst.au8[1] = RT_MIN(uSrc1.au8[1], uSrc2.au8[1]);
+ uDst.au8[2] = RT_MIN(uSrc1.au8[2], uSrc2.au8[2]);
+ uDst.au8[3] = RT_MIN(uSrc1.au8[3], uSrc2.au8[3]);
+ uDst.au8[4] = RT_MIN(uSrc1.au8[4], uSrc2.au8[4]);
+ uDst.au8[5] = RT_MIN(uSrc1.au8[5], uSrc2.au8[5]);
+ uDst.au8[6] = RT_MIN(uSrc1.au8[6], uSrc2.au8[6]);
+ uDst.au8[7] = RT_MIN(uSrc1.au8[7], uSrc2.au8[7]);
+ *puDst = uDst.u;
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pminub_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->au8[ 0] = RT_MIN(uSrc1.au8[ 0], puSrc->au8[ 0]);
+ puDst->au8[ 1] = RT_MIN(uSrc1.au8[ 1], puSrc->au8[ 1]);
+ puDst->au8[ 2] = RT_MIN(uSrc1.au8[ 2], puSrc->au8[ 2]);
+ puDst->au8[ 3] = RT_MIN(uSrc1.au8[ 3], puSrc->au8[ 3]);
+ puDst->au8[ 4] = RT_MIN(uSrc1.au8[ 4], puSrc->au8[ 4]);
+ puDst->au8[ 5] = RT_MIN(uSrc1.au8[ 5], puSrc->au8[ 5]);
+ puDst->au8[ 6] = RT_MIN(uSrc1.au8[ 6], puSrc->au8[ 6]);
+ puDst->au8[ 7] = RT_MIN(uSrc1.au8[ 7], puSrc->au8[ 7]);
+ puDst->au8[ 8] = RT_MIN(uSrc1.au8[ 8], puSrc->au8[ 8]);
+ puDst->au8[ 9] = RT_MIN(uSrc1.au8[ 9], puSrc->au8[ 9]);
+ puDst->au8[10] = RT_MIN(uSrc1.au8[10], puSrc->au8[10]);
+ puDst->au8[11] = RT_MIN(uSrc1.au8[11], puSrc->au8[11]);
+ puDst->au8[12] = RT_MIN(uSrc1.au8[12], puSrc->au8[12]);
+ puDst->au8[13] = RT_MIN(uSrc1.au8[13], puSrc->au8[13]);
+ puDst->au8[14] = RT_MIN(uSrc1.au8[14], puSrc->au8[14]);
+ puDst->au8[15] = RT_MIN(uSrc1.au8[15], puSrc->au8[15]);
+ RT_NOREF(pFpuState);
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pminuw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->au16[ 0] = RT_MIN(uSrc1.au16[ 0], puSrc->au16[ 0]);
+ puDst->au16[ 1] = RT_MIN(uSrc1.au16[ 1], puSrc->au16[ 1]);
+ puDst->au16[ 2] = RT_MIN(uSrc1.au16[ 2], puSrc->au16[ 2]);
+ puDst->au16[ 3] = RT_MIN(uSrc1.au16[ 3], puSrc->au16[ 3]);
+ puDst->au16[ 4] = RT_MIN(uSrc1.au16[ 4], puSrc->au16[ 4]);
+ puDst->au16[ 5] = RT_MIN(uSrc1.au16[ 5], puSrc->au16[ 5]);
+ puDst->au16[ 6] = RT_MIN(uSrc1.au16[ 6], puSrc->au16[ 6]);
+ puDst->au16[ 7] = RT_MIN(uSrc1.au16[ 7], puSrc->au16[ 7]);
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pminud_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->au32[ 0] = RT_MIN(uSrc1.au32[ 0], puSrc->au32[ 0]);
+ puDst->au32[ 1] = RT_MIN(uSrc1.au32[ 1], puSrc->au32[ 1]);
+ puDst->au32[ 2] = RT_MIN(uSrc1.au32[ 2], puSrc->au32[ 2]);
+ puDst->au32[ 3] = RT_MIN(uSrc1.au32[ 3], puSrc->au32[ 3]);
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpminub_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ puDst->au8[ 0] = RT_MIN(puSrc1->au8[ 0], puSrc2->au8[ 0]);
+ puDst->au8[ 1] = RT_MIN(puSrc1->au8[ 1], puSrc2->au8[ 1]);
+ puDst->au8[ 2] = RT_MIN(puSrc1->au8[ 2], puSrc2->au8[ 2]);
+ puDst->au8[ 3] = RT_MIN(puSrc1->au8[ 3], puSrc2->au8[ 3]);
+ puDst->au8[ 4] = RT_MIN(puSrc1->au8[ 4], puSrc2->au8[ 4]);
+ puDst->au8[ 5] = RT_MIN(puSrc1->au8[ 5], puSrc2->au8[ 5]);
+ puDst->au8[ 6] = RT_MIN(puSrc1->au8[ 6], puSrc2->au8[ 6]);
+ puDst->au8[ 7] = RT_MIN(puSrc1->au8[ 7], puSrc2->au8[ 7]);
+ puDst->au8[ 8] = RT_MIN(puSrc1->au8[ 8], puSrc2->au8[ 8]);
+ puDst->au8[ 9] = RT_MIN(puSrc1->au8[ 9], puSrc2->au8[ 9]);
+ puDst->au8[10] = RT_MIN(puSrc1->au8[10], puSrc2->au8[10]);
+ puDst->au8[11] = RT_MIN(puSrc1->au8[11], puSrc2->au8[11]);
+ puDst->au8[12] = RT_MIN(puSrc1->au8[12], puSrc2->au8[12]);
+ puDst->au8[13] = RT_MIN(puSrc1->au8[13], puSrc2->au8[13]);
+ puDst->au8[14] = RT_MIN(puSrc1->au8[14], puSrc2->au8[14]);
+ puDst->au8[15] = RT_MIN(puSrc1->au8[15], puSrc2->au8[15]);
+ RT_NOREF(pExtState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpminub_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ puDst->au8[ 0] = RT_MIN(puSrc1->au8[ 0], puSrc2->au8[ 0]);
+ puDst->au8[ 1] = RT_MIN(puSrc1->au8[ 1], puSrc2->au8[ 1]);
+ puDst->au8[ 2] = RT_MIN(puSrc1->au8[ 2], puSrc2->au8[ 2]);
+ puDst->au8[ 3] = RT_MIN(puSrc1->au8[ 3], puSrc2->au8[ 3]);
+ puDst->au8[ 4] = RT_MIN(puSrc1->au8[ 4], puSrc2->au8[ 4]);
+ puDst->au8[ 5] = RT_MIN(puSrc1->au8[ 5], puSrc2->au8[ 5]);
+ puDst->au8[ 6] = RT_MIN(puSrc1->au8[ 6], puSrc2->au8[ 6]);
+ puDst->au8[ 7] = RT_MIN(puSrc1->au8[ 7], puSrc2->au8[ 7]);
+ puDst->au8[ 8] = RT_MIN(puSrc1->au8[ 8], puSrc2->au8[ 8]);
+ puDst->au8[ 9] = RT_MIN(puSrc1->au8[ 9], puSrc2->au8[ 9]);
+ puDst->au8[10] = RT_MIN(puSrc1->au8[10], puSrc2->au8[10]);
+ puDst->au8[11] = RT_MIN(puSrc1->au8[11], puSrc2->au8[11]);
+ puDst->au8[12] = RT_MIN(puSrc1->au8[12], puSrc2->au8[12]);
+ puDst->au8[13] = RT_MIN(puSrc1->au8[13], puSrc2->au8[13]);
+ puDst->au8[14] = RT_MIN(puSrc1->au8[14], puSrc2->au8[14]);
+ puDst->au8[15] = RT_MIN(puSrc1->au8[15], puSrc2->au8[15]);
+ puDst->au8[16] = RT_MIN(puSrc1->au8[16], puSrc2->au8[16]);
+ puDst->au8[17] = RT_MIN(puSrc1->au8[17], puSrc2->au8[17]);
+ puDst->au8[18] = RT_MIN(puSrc1->au8[18], puSrc2->au8[18]);
+ puDst->au8[19] = RT_MIN(puSrc1->au8[19], puSrc2->au8[19]);
+ puDst->au8[20] = RT_MIN(puSrc1->au8[20], puSrc2->au8[20]);
+ puDst->au8[21] = RT_MIN(puSrc1->au8[21], puSrc2->au8[21]);
+ puDst->au8[22] = RT_MIN(puSrc1->au8[22], puSrc2->au8[22]);
+ puDst->au8[23] = RT_MIN(puSrc1->au8[23], puSrc2->au8[23]);
+ puDst->au8[24] = RT_MIN(puSrc1->au8[24], puSrc2->au8[24]);
+ puDst->au8[25] = RT_MIN(puSrc1->au8[25], puSrc2->au8[25]);
+ puDst->au8[26] = RT_MIN(puSrc1->au8[26], puSrc2->au8[26]);
+ puDst->au8[27] = RT_MIN(puSrc1->au8[27], puSrc2->au8[27]);
+ puDst->au8[28] = RT_MIN(puSrc1->au8[28], puSrc2->au8[28]);
+ puDst->au8[29] = RT_MIN(puSrc1->au8[29], puSrc2->au8[29]);
+ puDst->au8[30] = RT_MIN(puSrc1->au8[30], puSrc2->au8[30]);
+ puDst->au8[31] = RT_MIN(puSrc1->au8[31], puSrc2->au8[31]);
+ RT_NOREF(pExtState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpminuw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ puDst->au16[ 0] = RT_MIN(puSrc1->au16[ 0], puSrc2->au16[ 0]);
+ puDst->au16[ 1] = RT_MIN(puSrc1->au16[ 1], puSrc2->au16[ 1]);
+ puDst->au16[ 2] = RT_MIN(puSrc1->au16[ 2], puSrc2->au16[ 2]);
+ puDst->au16[ 3] = RT_MIN(puSrc1->au16[ 3], puSrc2->au16[ 3]);
+ puDst->au16[ 4] = RT_MIN(puSrc1->au16[ 4], puSrc2->au16[ 4]);
+ puDst->au16[ 5] = RT_MIN(puSrc1->au16[ 5], puSrc2->au16[ 5]);
+ puDst->au16[ 6] = RT_MIN(puSrc1->au16[ 6], puSrc2->au16[ 6]);
+ puDst->au16[ 7] = RT_MIN(puSrc1->au16[ 7], puSrc2->au16[ 7]);
+ RT_NOREF(pExtState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpminuw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ puDst->au16[ 0] = RT_MIN(puSrc1->au16[ 0], puSrc2->au16[ 0]);
+ puDst->au16[ 1] = RT_MIN(puSrc1->au16[ 1], puSrc2->au16[ 1]);
+ puDst->au16[ 2] = RT_MIN(puSrc1->au16[ 2], puSrc2->au16[ 2]);
+ puDst->au16[ 3] = RT_MIN(puSrc1->au16[ 3], puSrc2->au16[ 3]);
+ puDst->au16[ 4] = RT_MIN(puSrc1->au16[ 4], puSrc2->au16[ 4]);
+ puDst->au16[ 5] = RT_MIN(puSrc1->au16[ 5], puSrc2->au16[ 5]);
+ puDst->au16[ 6] = RT_MIN(puSrc1->au16[ 6], puSrc2->au16[ 6]);
+ puDst->au16[ 7] = RT_MIN(puSrc1->au16[ 7], puSrc2->au16[ 7]);
+ puDst->au16[ 8] = RT_MIN(puSrc1->au16[ 8], puSrc2->au16[ 8]);
+ puDst->au16[ 9] = RT_MIN(puSrc1->au16[ 9], puSrc2->au16[ 9]);
+ puDst->au16[10] = RT_MIN(puSrc1->au16[10], puSrc2->au16[10]);
+ puDst->au16[11] = RT_MIN(puSrc1->au16[11], puSrc2->au16[11]);
+ puDst->au16[12] = RT_MIN(puSrc1->au16[12], puSrc2->au16[12]);
+ puDst->au16[13] = RT_MIN(puSrc1->au16[13], puSrc2->au16[13]);
+ puDst->au16[14] = RT_MIN(puSrc1->au16[14], puSrc2->au16[14]);
+ puDst->au16[15] = RT_MIN(puSrc1->au16[15], puSrc2->au16[15]);
+ RT_NOREF(pExtState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpminud_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ puDst->au32[ 0] = RT_MIN(puSrc1->au32[ 0], puSrc2->au32[ 0]);
+ puDst->au32[ 1] = RT_MIN(puSrc1->au32[ 1], puSrc2->au32[ 1]);
+ puDst->au32[ 2] = RT_MIN(puSrc1->au32[ 2], puSrc2->au32[ 2]);
+ puDst->au32[ 3] = RT_MIN(puSrc1->au32[ 3], puSrc2->au32[ 3]);
+ RT_NOREF(pExtState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpminud_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ puDst->au32[ 0] = RT_MIN(puSrc1->au32[ 0], puSrc2->au32[ 0]);
+ puDst->au32[ 1] = RT_MIN(puSrc1->au32[ 1], puSrc2->au32[ 1]);
+ puDst->au32[ 2] = RT_MIN(puSrc1->au32[ 2], puSrc2->au32[ 2]);
+ puDst->au32[ 3] = RT_MIN(puSrc1->au32[ 3], puSrc2->au32[ 3]);
+ puDst->au32[ 4] = RT_MIN(puSrc1->au32[ 4], puSrc2->au32[ 4]);
+ puDst->au32[ 5] = RT_MIN(puSrc1->au32[ 5], puSrc2->au32[ 5]);
+ puDst->au32[ 6] = RT_MIN(puSrc1->au32[ 6], puSrc2->au32[ 6]);
+ puDst->au32[ 7] = RT_MIN(puSrc1->au32[ 7], puSrc2->au32[ 7]);
+ RT_NOREF(pExtState);
+}
+
+
+/*
+ * PMINSB / VPMINSB / PMINSW / VPMINSW / PMINSD / VPMINSD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pminsw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+
+ uDst.ai16[0] = RT_MIN(uSrc1.ai16[0], uSrc2.ai16[0]);
+ uDst.ai16[1] = RT_MIN(uSrc1.ai16[1], uSrc2.ai16[1]);
+ uDst.ai16[2] = RT_MIN(uSrc1.ai16[2], uSrc2.ai16[2]);
+ uDst.ai16[3] = RT_MIN(uSrc1.ai16[3], uSrc2.ai16[3]);
+ *puDst = uDst.u;
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pminsw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->ai16[ 0] = RT_MIN(uSrc1.ai16[ 0], puSrc->ai16[ 0]);
+ puDst->ai16[ 1] = RT_MIN(uSrc1.ai16[ 1], puSrc->ai16[ 1]);
+ puDst->ai16[ 2] = RT_MIN(uSrc1.ai16[ 2], puSrc->ai16[ 2]);
+ puDst->ai16[ 3] = RT_MIN(uSrc1.ai16[ 3], puSrc->ai16[ 3]);
+ puDst->ai16[ 4] = RT_MIN(uSrc1.ai16[ 4], puSrc->ai16[ 4]);
+ puDst->ai16[ 5] = RT_MIN(uSrc1.ai16[ 5], puSrc->ai16[ 5]);
+ puDst->ai16[ 6] = RT_MIN(uSrc1.ai16[ 6], puSrc->ai16[ 6]);
+ puDst->ai16[ 7] = RT_MIN(uSrc1.ai16[ 7], puSrc->ai16[ 7]);
+ RT_NOREF(pFpuState);
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pminsb_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->ai8[ 0] = RT_MIN(uSrc1.ai8[ 0], puSrc->ai8[ 0]);
+ puDst->ai8[ 1] = RT_MIN(uSrc1.ai8[ 1], puSrc->ai8[ 1]);
+ puDst->ai8[ 2] = RT_MIN(uSrc1.ai8[ 2], puSrc->ai8[ 2]);
+ puDst->ai8[ 3] = RT_MIN(uSrc1.ai8[ 3], puSrc->ai8[ 3]);
+ puDst->ai8[ 4] = RT_MIN(uSrc1.ai8[ 4], puSrc->ai8[ 4]);
+ puDst->ai8[ 5] = RT_MIN(uSrc1.ai8[ 5], puSrc->ai8[ 5]);
+ puDst->ai8[ 6] = RT_MIN(uSrc1.ai8[ 6], puSrc->ai8[ 6]);
+ puDst->ai8[ 7] = RT_MIN(uSrc1.ai8[ 7], puSrc->ai8[ 7]);
+ puDst->ai8[ 8] = RT_MIN(uSrc1.ai8[ 8], puSrc->ai8[ 8]);
+ puDst->ai8[ 9] = RT_MIN(uSrc1.ai8[ 9], puSrc->ai8[ 9]);
+ puDst->ai8[10] = RT_MIN(uSrc1.ai8[10], puSrc->ai8[10]);
+ puDst->ai8[11] = RT_MIN(uSrc1.ai8[11], puSrc->ai8[11]);
+ puDst->ai8[12] = RT_MIN(uSrc1.ai8[12], puSrc->ai8[12]);
+ puDst->ai8[13] = RT_MIN(uSrc1.ai8[13], puSrc->ai8[13]);
+ puDst->ai8[14] = RT_MIN(uSrc1.ai8[14], puSrc->ai8[14]);
+ puDst->ai8[15] = RT_MIN(uSrc1.ai8[15], puSrc->ai8[15]);
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pminsd_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->ai32[ 0] = RT_MIN(uSrc1.ai32[ 0], puSrc->ai32[ 0]);
+ puDst->ai32[ 1] = RT_MIN(uSrc1.ai32[ 1], puSrc->ai32[ 1]);
+ puDst->ai32[ 2] = RT_MIN(uSrc1.ai32[ 2], puSrc->ai32[ 2]);
+ puDst->ai32[ 3] = RT_MIN(uSrc1.ai32[ 3], puSrc->ai32[ 3]);
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpminsb_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ puDst->ai8[ 0] = RT_MIN(puSrc1->ai8[ 0], puSrc2->ai8[ 0]);
+ puDst->ai8[ 1] = RT_MIN(puSrc1->ai8[ 1], puSrc2->ai8[ 1]);
+ puDst->ai8[ 2] = RT_MIN(puSrc1->ai8[ 2], puSrc2->ai8[ 2]);
+ puDst->ai8[ 3] = RT_MIN(puSrc1->ai8[ 3], puSrc2->ai8[ 3]);
+ puDst->ai8[ 4] = RT_MIN(puSrc1->ai8[ 4], puSrc2->ai8[ 4]);
+ puDst->ai8[ 5] = RT_MIN(puSrc1->ai8[ 5], puSrc2->ai8[ 5]);
+ puDst->ai8[ 6] = RT_MIN(puSrc1->ai8[ 6], puSrc2->ai8[ 6]);
+ puDst->ai8[ 7] = RT_MIN(puSrc1->ai8[ 7], puSrc2->ai8[ 7]);
+ puDst->ai8[ 8] = RT_MIN(puSrc1->ai8[ 8], puSrc2->ai8[ 8]);
+ puDst->ai8[ 9] = RT_MIN(puSrc1->ai8[ 9], puSrc2->ai8[ 9]);
+ puDst->ai8[10] = RT_MIN(puSrc1->ai8[10], puSrc2->ai8[10]);
+ puDst->ai8[11] = RT_MIN(puSrc1->ai8[11], puSrc2->ai8[11]);
+ puDst->ai8[12] = RT_MIN(puSrc1->ai8[12], puSrc2->ai8[12]);
+ puDst->ai8[13] = RT_MIN(puSrc1->ai8[13], puSrc2->ai8[13]);
+ puDst->ai8[14] = RT_MIN(puSrc1->ai8[14], puSrc2->ai8[14]);
+ puDst->ai8[15] = RT_MIN(puSrc1->ai8[15], puSrc2->ai8[15]);
+ RT_NOREF(pExtState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpminsb_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ puDst->ai8[ 0] = RT_MIN(puSrc1->ai8[ 0], puSrc2->ai8[ 0]);
+ puDst->ai8[ 1] = RT_MIN(puSrc1->ai8[ 1], puSrc2->ai8[ 1]);
+ puDst->ai8[ 2] = RT_MIN(puSrc1->ai8[ 2], puSrc2->ai8[ 2]);
+ puDst->ai8[ 3] = RT_MIN(puSrc1->ai8[ 3], puSrc2->ai8[ 3]);
+ puDst->ai8[ 4] = RT_MIN(puSrc1->ai8[ 4], puSrc2->ai8[ 4]);
+ puDst->ai8[ 5] = RT_MIN(puSrc1->ai8[ 5], puSrc2->ai8[ 5]);
+ puDst->ai8[ 6] = RT_MIN(puSrc1->ai8[ 6], puSrc2->ai8[ 6]);
+ puDst->ai8[ 7] = RT_MIN(puSrc1->ai8[ 7], puSrc2->ai8[ 7]);
+ puDst->ai8[ 8] = RT_MIN(puSrc1->ai8[ 8], puSrc2->ai8[ 8]);
+ puDst->ai8[ 9] = RT_MIN(puSrc1->ai8[ 9], puSrc2->ai8[ 9]);
+ puDst->ai8[10] = RT_MIN(puSrc1->ai8[10], puSrc2->ai8[10]);
+ puDst->ai8[11] = RT_MIN(puSrc1->ai8[11], puSrc2->ai8[11]);
+ puDst->ai8[12] = RT_MIN(puSrc1->ai8[12], puSrc2->ai8[12]);
+ puDst->ai8[13] = RT_MIN(puSrc1->ai8[13], puSrc2->ai8[13]);
+ puDst->ai8[14] = RT_MIN(puSrc1->ai8[14], puSrc2->ai8[14]);
+ puDst->ai8[15] = RT_MIN(puSrc1->ai8[15], puSrc2->ai8[15]);
+ puDst->ai8[16] = RT_MIN(puSrc1->ai8[16], puSrc2->ai8[16]);
+ puDst->ai8[17] = RT_MIN(puSrc1->ai8[17], puSrc2->ai8[17]);
+ puDst->ai8[18] = RT_MIN(puSrc1->ai8[18], puSrc2->ai8[18]);
+ puDst->ai8[19] = RT_MIN(puSrc1->ai8[19], puSrc2->ai8[19]);
+ puDst->ai8[20] = RT_MIN(puSrc1->ai8[20], puSrc2->ai8[20]);
+ puDst->ai8[21] = RT_MIN(puSrc1->ai8[21], puSrc2->ai8[21]);
+ puDst->ai8[22] = RT_MIN(puSrc1->ai8[22], puSrc2->ai8[22]);
+ puDst->ai8[23] = RT_MIN(puSrc1->ai8[23], puSrc2->ai8[23]);
+ puDst->ai8[24] = RT_MIN(puSrc1->ai8[24], puSrc2->ai8[24]);
+ puDst->ai8[25] = RT_MIN(puSrc1->ai8[25], puSrc2->ai8[25]);
+ puDst->ai8[26] = RT_MIN(puSrc1->ai8[26], puSrc2->ai8[26]);
+ puDst->ai8[27] = RT_MIN(puSrc1->ai8[27], puSrc2->ai8[27]);
+ puDst->ai8[28] = RT_MIN(puSrc1->ai8[28], puSrc2->ai8[28]);
+ puDst->ai8[29] = RT_MIN(puSrc1->ai8[29], puSrc2->ai8[29]);
+ puDst->ai8[30] = RT_MIN(puSrc1->ai8[30], puSrc2->ai8[30]);
+ puDst->ai8[31] = RT_MIN(puSrc1->ai8[31], puSrc2->ai8[31]);
+ RT_NOREF(pExtState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpminsw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ puDst->ai16[ 0] = RT_MIN(puSrc1->ai16[ 0], puSrc2->ai16[ 0]);
+ puDst->ai16[ 1] = RT_MIN(puSrc1->ai16[ 1], puSrc2->ai16[ 1]);
+ puDst->ai16[ 2] = RT_MIN(puSrc1->ai16[ 2], puSrc2->ai16[ 2]);
+ puDst->ai16[ 3] = RT_MIN(puSrc1->ai16[ 3], puSrc2->ai16[ 3]);
+ puDst->ai16[ 4] = RT_MIN(puSrc1->ai16[ 4], puSrc2->ai16[ 4]);
+ puDst->ai16[ 5] = RT_MIN(puSrc1->ai16[ 5], puSrc2->ai16[ 5]);
+ puDst->ai16[ 6] = RT_MIN(puSrc1->ai16[ 6], puSrc2->ai16[ 6]);
+ puDst->ai16[ 7] = RT_MIN(puSrc1->ai16[ 7], puSrc2->ai16[ 7]);
+ RT_NOREF(pExtState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpminsw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ puDst->ai16[ 0] = RT_MIN(puSrc1->ai16[ 0], puSrc2->ai16[ 0]);
+ puDst->ai16[ 1] = RT_MIN(puSrc1->ai16[ 1], puSrc2->ai16[ 1]);
+ puDst->ai16[ 2] = RT_MIN(puSrc1->ai16[ 2], puSrc2->ai16[ 2]);
+ puDst->ai16[ 3] = RT_MIN(puSrc1->ai16[ 3], puSrc2->ai16[ 3]);
+ puDst->ai16[ 4] = RT_MIN(puSrc1->ai16[ 4], puSrc2->ai16[ 4]);
+ puDst->ai16[ 5] = RT_MIN(puSrc1->ai16[ 5], puSrc2->ai16[ 5]);
+ puDst->ai16[ 6] = RT_MIN(puSrc1->ai16[ 6], puSrc2->ai16[ 6]);
+ puDst->ai16[ 7] = RT_MIN(puSrc1->ai16[ 7], puSrc2->ai16[ 7]);
+ puDst->ai16[ 8] = RT_MIN(puSrc1->ai16[ 8], puSrc2->ai16[ 8]);
+ puDst->ai16[ 9] = RT_MIN(puSrc1->ai16[ 9], puSrc2->ai16[ 9]);
+ puDst->ai16[10] = RT_MIN(puSrc1->ai16[10], puSrc2->ai16[10]);
+ puDst->ai16[11] = RT_MIN(puSrc1->ai16[11], puSrc2->ai16[11]);
+ puDst->ai16[12] = RT_MIN(puSrc1->ai16[12], puSrc2->ai16[12]);
+ puDst->ai16[13] = RT_MIN(puSrc1->ai16[13], puSrc2->ai16[13]);
+ puDst->ai16[14] = RT_MIN(puSrc1->ai16[14], puSrc2->ai16[14]);
+ puDst->ai16[15] = RT_MIN(puSrc1->ai16[15], puSrc2->ai16[15]);
+ RT_NOREF(pExtState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpminsd_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ puDst->ai32[ 0] = RT_MIN(puSrc1->ai32[ 0], puSrc2->ai32[ 0]);
+ puDst->ai32[ 1] = RT_MIN(puSrc1->ai32[ 1], puSrc2->ai32[ 1]);
+ puDst->ai32[ 2] = RT_MIN(puSrc1->ai32[ 2], puSrc2->ai32[ 2]);
+ puDst->ai32[ 3] = RT_MIN(puSrc1->ai32[ 3], puSrc2->ai32[ 3]);
+ RT_NOREF(pExtState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpminsd_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ puDst->ai32[ 0] = RT_MIN(puSrc1->ai32[ 0], puSrc2->ai32[ 0]);
+ puDst->ai32[ 1] = RT_MIN(puSrc1->ai32[ 1], puSrc2->ai32[ 1]);
+ puDst->ai32[ 2] = RT_MIN(puSrc1->ai32[ 2], puSrc2->ai32[ 2]);
+ puDst->ai32[ 3] = RT_MIN(puSrc1->ai32[ 3], puSrc2->ai32[ 3]);
+ puDst->ai32[ 4] = RT_MIN(puSrc1->ai32[ 4], puSrc2->ai32[ 4]);
+ puDst->ai32[ 5] = RT_MIN(puSrc1->ai32[ 5], puSrc2->ai32[ 5]);
+ puDst->ai32[ 6] = RT_MIN(puSrc1->ai32[ 6], puSrc2->ai32[ 6]);
+ puDst->ai32[ 7] = RT_MIN(puSrc1->ai32[ 7], puSrc2->ai32[ 7]);
+ RT_NOREF(pExtState);
+}
+
+
+/*
+ * PAVGB / VPAVGB / PAVGW / VPAVGW
+ */
+#define PAVGB_EXEC(a_Src1, a_Src2) ((uint8_t)(((uint16_t)(a_Src1) + (a_Src2) + 1) >> 1))
+#define PAVGW_EXEC(a_Src1, a_Src2) ((uint16_t)(((uint32_t)(a_Src1) + (a_Src2) + 1) >> 1))
+
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pavgb_u64,(uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+
+ uDst.au8[0] = PAVGB_EXEC(uSrc1.au8[0], uSrc2.au8[0]);
+ uDst.au8[1] = PAVGB_EXEC(uSrc1.au8[1], uSrc2.au8[1]);
+ uDst.au8[2] = PAVGB_EXEC(uSrc1.au8[2], uSrc2.au8[2]);
+ uDst.au8[3] = PAVGB_EXEC(uSrc1.au8[3], uSrc2.au8[3]);
+ uDst.au8[4] = PAVGB_EXEC(uSrc1.au8[4], uSrc2.au8[4]);
+ uDst.au8[5] = PAVGB_EXEC(uSrc1.au8[5], uSrc2.au8[5]);
+ uDst.au8[6] = PAVGB_EXEC(uSrc1.au8[6], uSrc2.au8[6]);
+ uDst.au8[7] = PAVGB_EXEC(uSrc1.au8[7], uSrc2.au8[7]);
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pavgb_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->au8[ 0] = PAVGB_EXEC(uSrc1.au8[ 0], puSrc->au8[ 0]);
+ puDst->au8[ 1] = PAVGB_EXEC(uSrc1.au8[ 1], puSrc->au8[ 1]);
+ puDst->au8[ 2] = PAVGB_EXEC(uSrc1.au8[ 2], puSrc->au8[ 2]);
+ puDst->au8[ 3] = PAVGB_EXEC(uSrc1.au8[ 3], puSrc->au8[ 3]);
+ puDst->au8[ 4] = PAVGB_EXEC(uSrc1.au8[ 4], puSrc->au8[ 4]);
+ puDst->au8[ 5] = PAVGB_EXEC(uSrc1.au8[ 5], puSrc->au8[ 5]);
+ puDst->au8[ 6] = PAVGB_EXEC(uSrc1.au8[ 6], puSrc->au8[ 6]);
+ puDst->au8[ 7] = PAVGB_EXEC(uSrc1.au8[ 7], puSrc->au8[ 7]);
+ puDst->au8[ 8] = PAVGB_EXEC(uSrc1.au8[ 8], puSrc->au8[ 8]);
+ puDst->au8[ 9] = PAVGB_EXEC(uSrc1.au8[ 9], puSrc->au8[ 9]);
+ puDst->au8[10] = PAVGB_EXEC(uSrc1.au8[10], puSrc->au8[10]);
+ puDst->au8[11] = PAVGB_EXEC(uSrc1.au8[11], puSrc->au8[11]);
+ puDst->au8[12] = PAVGB_EXEC(uSrc1.au8[12], puSrc->au8[12]);
+ puDst->au8[13] = PAVGB_EXEC(uSrc1.au8[13], puSrc->au8[13]);
+ puDst->au8[14] = PAVGB_EXEC(uSrc1.au8[14], puSrc->au8[14]);
+ puDst->au8[15] = PAVGB_EXEC(uSrc1.au8[15], puSrc->au8[15]);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pavgw_u64,(uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+
+ uDst.au16[0] = PAVGW_EXEC(uSrc1.au16[0], uSrc2.au16[0]);
+ uDst.au16[1] = PAVGW_EXEC(uSrc1.au16[1], uSrc2.au16[1]);
+ uDst.au16[2] = PAVGW_EXEC(uSrc1.au16[2], uSrc2.au16[2]);
+ uDst.au16[3] = PAVGW_EXEC(uSrc1.au16[3], uSrc2.au16[3]);
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pavgw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->au16[0] = PAVGW_EXEC(uSrc1.au16[0], puSrc->au16[0]);
+ puDst->au16[1] = PAVGW_EXEC(uSrc1.au16[1], puSrc->au16[1]);
+ puDst->au16[2] = PAVGW_EXEC(uSrc1.au16[2], puSrc->au16[2]);
+ puDst->au16[3] = PAVGW_EXEC(uSrc1.au16[3], puSrc->au16[3]);
+ puDst->au16[4] = PAVGW_EXEC(uSrc1.au16[4], puSrc->au16[4]);
+ puDst->au16[5] = PAVGW_EXEC(uSrc1.au16[5], puSrc->au16[5]);
+ puDst->au16[6] = PAVGW_EXEC(uSrc1.au16[6], puSrc->au16[6]);
+ puDst->au16[7] = PAVGW_EXEC(uSrc1.au16[7], puSrc->au16[7]);
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pavgb_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->au8[ 0] = PAVGB_EXEC(uSrc1.au8[ 0], puSrc->au8[ 0]);
+ puDst->au8[ 1] = PAVGB_EXEC(uSrc1.au8[ 1], puSrc->au8[ 1]);
+ puDst->au8[ 2] = PAVGB_EXEC(uSrc1.au8[ 2], puSrc->au8[ 2]);
+ puDst->au8[ 3] = PAVGB_EXEC(uSrc1.au8[ 3], puSrc->au8[ 3]);
+ puDst->au8[ 4] = PAVGB_EXEC(uSrc1.au8[ 4], puSrc->au8[ 4]);
+ puDst->au8[ 5] = PAVGB_EXEC(uSrc1.au8[ 5], puSrc->au8[ 5]);
+ puDst->au8[ 6] = PAVGB_EXEC(uSrc1.au8[ 6], puSrc->au8[ 6]);
+ puDst->au8[ 7] = PAVGB_EXEC(uSrc1.au8[ 7], puSrc->au8[ 7]);
+ puDst->au8[ 8] = PAVGB_EXEC(uSrc1.au8[ 8], puSrc->au8[ 8]);
+ puDst->au8[ 9] = PAVGB_EXEC(uSrc1.au8[ 9], puSrc->au8[ 9]);
+ puDst->au8[10] = PAVGB_EXEC(uSrc1.au8[10], puSrc->au8[10]);
+ puDst->au8[11] = PAVGB_EXEC(uSrc1.au8[11], puSrc->au8[11]);
+ puDst->au8[12] = PAVGB_EXEC(uSrc1.au8[12], puSrc->au8[12]);
+ puDst->au8[13] = PAVGB_EXEC(uSrc1.au8[13], puSrc->au8[13]);
+ puDst->au8[14] = PAVGB_EXEC(uSrc1.au8[14], puSrc->au8[14]);
+ puDst->au8[15] = PAVGB_EXEC(uSrc1.au8[15], puSrc->au8[15]);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pavgw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->au8[ 0] = PAVGW_EXEC(uSrc1.au8[ 0], puSrc->au8[ 0]);
+ puDst->au8[ 1] = PAVGW_EXEC(uSrc1.au8[ 1], puSrc->au8[ 1]);
+ puDst->au8[ 2] = PAVGW_EXEC(uSrc1.au8[ 2], puSrc->au8[ 2]);
+ puDst->au8[ 3] = PAVGW_EXEC(uSrc1.au8[ 3], puSrc->au8[ 3]);
+ puDst->au8[ 4] = PAVGW_EXEC(uSrc1.au8[ 4], puSrc->au8[ 4]);
+ puDst->au8[ 5] = PAVGW_EXEC(uSrc1.au8[ 5], puSrc->au8[ 5]);
+ puDst->au8[ 6] = PAVGW_EXEC(uSrc1.au8[ 6], puSrc->au8[ 6]);
+ puDst->au8[ 7] = PAVGW_EXEC(uSrc1.au8[ 7], puSrc->au8[ 7]);
+ puDst->au8[ 8] = PAVGW_EXEC(uSrc1.au8[ 8], puSrc->au8[ 8]);
+ puDst->au8[ 9] = PAVGW_EXEC(uSrc1.au8[ 9], puSrc->au8[ 9]);
+ puDst->au8[10] = PAVGW_EXEC(uSrc1.au8[10], puSrc->au8[10]);
+ puDst->au8[11] = PAVGW_EXEC(uSrc1.au8[11], puSrc->au8[11]);
+ puDst->au8[12] = PAVGW_EXEC(uSrc1.au8[12], puSrc->au8[12]);
+ puDst->au8[13] = PAVGW_EXEC(uSrc1.au8[13], puSrc->au8[13]);
+ puDst->au8[14] = PAVGW_EXEC(uSrc1.au8[14], puSrc->au8[14]);
+ puDst->au8[15] = PAVGW_EXEC(uSrc1.au8[15], puSrc->au8[15]);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpavgb_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ puDst->au8[ 0] = PAVGB_EXEC(puSrc1->au8[ 0], puSrc2->au8[ 0]);
+ puDst->au8[ 1] = PAVGB_EXEC(puSrc1->au8[ 1], puSrc2->au8[ 1]);
+ puDst->au8[ 2] = PAVGB_EXEC(puSrc1->au8[ 2], puSrc2->au8[ 2]);
+ puDst->au8[ 3] = PAVGB_EXEC(puSrc1->au8[ 3], puSrc2->au8[ 3]);
+ puDst->au8[ 4] = PAVGB_EXEC(puSrc1->au8[ 4], puSrc2->au8[ 4]);
+ puDst->au8[ 5] = PAVGB_EXEC(puSrc1->au8[ 5], puSrc2->au8[ 5]);
+ puDst->au8[ 6] = PAVGB_EXEC(puSrc1->au8[ 6], puSrc2->au8[ 6]);
+ puDst->au8[ 7] = PAVGB_EXEC(puSrc1->au8[ 7], puSrc2->au8[ 7]);
+ puDst->au8[ 8] = PAVGB_EXEC(puSrc1->au8[ 8], puSrc2->au8[ 8]);
+ puDst->au8[ 9] = PAVGB_EXEC(puSrc1->au8[ 9], puSrc2->au8[ 9]);
+ puDst->au8[10] = PAVGB_EXEC(puSrc1->au8[10], puSrc2->au8[10]);
+ puDst->au8[11] = PAVGB_EXEC(puSrc1->au8[11], puSrc2->au8[11]);
+ puDst->au8[12] = PAVGB_EXEC(puSrc1->au8[12], puSrc2->au8[12]);
+ puDst->au8[13] = PAVGB_EXEC(puSrc1->au8[13], puSrc2->au8[13]);
+ puDst->au8[14] = PAVGB_EXEC(puSrc1->au8[14], puSrc2->au8[14]);
+ puDst->au8[15] = PAVGB_EXEC(puSrc1->au8[15], puSrc2->au8[15]);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpavgb_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ puDst->au8[ 0] = PAVGB_EXEC(puSrc1->au8[ 0], puSrc2->au8[ 0]);
+ puDst->au8[ 1] = PAVGB_EXEC(puSrc1->au8[ 1], puSrc2->au8[ 1]);
+ puDst->au8[ 2] = PAVGB_EXEC(puSrc1->au8[ 2], puSrc2->au8[ 2]);
+ puDst->au8[ 3] = PAVGB_EXEC(puSrc1->au8[ 3], puSrc2->au8[ 3]);
+ puDst->au8[ 4] = PAVGB_EXEC(puSrc1->au8[ 4], puSrc2->au8[ 4]);
+ puDst->au8[ 5] = PAVGB_EXEC(puSrc1->au8[ 5], puSrc2->au8[ 5]);
+ puDst->au8[ 6] = PAVGB_EXEC(puSrc1->au8[ 6], puSrc2->au8[ 6]);
+ puDst->au8[ 7] = PAVGB_EXEC(puSrc1->au8[ 7], puSrc2->au8[ 7]);
+ puDst->au8[ 8] = PAVGB_EXEC(puSrc1->au8[ 8], puSrc2->au8[ 8]);
+ puDst->au8[ 9] = PAVGB_EXEC(puSrc1->au8[ 9], puSrc2->au8[ 9]);
+ puDst->au8[10] = PAVGB_EXEC(puSrc1->au8[10], puSrc2->au8[10]);
+ puDst->au8[11] = PAVGB_EXEC(puSrc1->au8[11], puSrc2->au8[11]);
+ puDst->au8[12] = PAVGB_EXEC(puSrc1->au8[12], puSrc2->au8[12]);
+ puDst->au8[13] = PAVGB_EXEC(puSrc1->au8[13], puSrc2->au8[13]);
+ puDst->au8[14] = PAVGB_EXEC(puSrc1->au8[14], puSrc2->au8[14]);
+ puDst->au8[15] = PAVGB_EXEC(puSrc1->au8[15], puSrc2->au8[15]);
+ puDst->au8[16] = PAVGB_EXEC(puSrc1->au8[16], puSrc2->au8[16]);
+ puDst->au8[17] = PAVGB_EXEC(puSrc1->au8[17], puSrc2->au8[17]);
+ puDst->au8[18] = PAVGB_EXEC(puSrc1->au8[18], puSrc2->au8[18]);
+ puDst->au8[19] = PAVGB_EXEC(puSrc1->au8[19], puSrc2->au8[19]);
+ puDst->au8[20] = PAVGB_EXEC(puSrc1->au8[20], puSrc2->au8[20]);
+ puDst->au8[21] = PAVGB_EXEC(puSrc1->au8[21], puSrc2->au8[21]);
+ puDst->au8[22] = PAVGB_EXEC(puSrc1->au8[22], puSrc2->au8[22]);
+ puDst->au8[23] = PAVGB_EXEC(puSrc1->au8[23], puSrc2->au8[23]);
+ puDst->au8[24] = PAVGB_EXEC(puSrc1->au8[24], puSrc2->au8[24]);
+ puDst->au8[25] = PAVGB_EXEC(puSrc1->au8[25], puSrc2->au8[25]);
+ puDst->au8[26] = PAVGB_EXEC(puSrc1->au8[26], puSrc2->au8[26]);
+ puDst->au8[27] = PAVGB_EXEC(puSrc1->au8[27], puSrc2->au8[27]);
+ puDst->au8[28] = PAVGB_EXEC(puSrc1->au8[28], puSrc2->au8[28]);
+ puDst->au8[29] = PAVGB_EXEC(puSrc1->au8[29], puSrc2->au8[29]);
+ puDst->au8[30] = PAVGB_EXEC(puSrc1->au8[30], puSrc2->au8[30]);
+ puDst->au8[31] = PAVGB_EXEC(puSrc1->au8[31], puSrc2->au8[31]);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpavgw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ puDst->au16[ 0] = PAVGW_EXEC(puSrc1->au16[ 0], puSrc2->au16[ 0]);
+ puDst->au16[ 1] = PAVGW_EXEC(puSrc1->au16[ 1], puSrc2->au16[ 1]);
+ puDst->au16[ 2] = PAVGW_EXEC(puSrc1->au16[ 2], puSrc2->au16[ 2]);
+ puDst->au16[ 3] = PAVGW_EXEC(puSrc1->au16[ 3], puSrc2->au16[ 3]);
+ puDst->au16[ 4] = PAVGW_EXEC(puSrc1->au16[ 4], puSrc2->au16[ 4]);
+ puDst->au16[ 5] = PAVGW_EXEC(puSrc1->au16[ 5], puSrc2->au16[ 5]);
+ puDst->au16[ 6] = PAVGW_EXEC(puSrc1->au16[ 6], puSrc2->au16[ 6]);
+ puDst->au16[ 7] = PAVGW_EXEC(puSrc1->au16[ 7], puSrc2->au16[ 7]);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpavgw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ puDst->au16[ 0] = PAVGW_EXEC(puSrc1->au16[ 0], puSrc2->au16[ 0]);
+ puDst->au16[ 1] = PAVGW_EXEC(puSrc1->au16[ 1], puSrc2->au16[ 1]);
+ puDst->au16[ 2] = PAVGW_EXEC(puSrc1->au16[ 2], puSrc2->au16[ 2]);
+ puDst->au16[ 3] = PAVGW_EXEC(puSrc1->au16[ 3], puSrc2->au16[ 3]);
+ puDst->au16[ 4] = PAVGW_EXEC(puSrc1->au16[ 4], puSrc2->au16[ 4]);
+ puDst->au16[ 5] = PAVGW_EXEC(puSrc1->au16[ 5], puSrc2->au16[ 5]);
+ puDst->au16[ 6] = PAVGW_EXEC(puSrc1->au16[ 6], puSrc2->au16[ 6]);
+ puDst->au16[ 7] = PAVGW_EXEC(puSrc1->au16[ 7], puSrc2->au16[ 7]);
+ puDst->au16[ 8] = PAVGW_EXEC(puSrc1->au16[ 8], puSrc2->au16[ 8]);
+ puDst->au16[ 9] = PAVGW_EXEC(puSrc1->au16[ 9], puSrc2->au16[ 9]);
+ puDst->au16[10] = PAVGW_EXEC(puSrc1->au16[10], puSrc2->au16[10]);
+ puDst->au16[11] = PAVGW_EXEC(puSrc1->au16[11], puSrc2->au16[11]);
+ puDst->au16[12] = PAVGW_EXEC(puSrc1->au16[12], puSrc2->au16[12]);
+ puDst->au16[13] = PAVGW_EXEC(puSrc1->au16[13], puSrc2->au16[13]);
+ puDst->au16[14] = PAVGW_EXEC(puSrc1->au16[14], puSrc2->au16[14]);
+ puDst->au16[15] = PAVGW_EXEC(puSrc1->au16[15], puSrc2->au16[15]);
+}
+
+#undef PAVGB_EXEC
+#undef PAVGW_EXEC
+
+
+/*
+ * PMOVMSKB / VPMOVMSKB
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(uint64_t *pu64Dst, uint64_t const *pu64Src))
+{
+ /* The the most signficant bit from each byte and store them in the given general purpose register. */
+ uint64_t const uSrc = *pu64Src;
+ *pu64Dst = ((uSrc >> ( 7-0)) & RT_BIT_64(0))
+ | ((uSrc >> (15-1)) & RT_BIT_64(1))
+ | ((uSrc >> (23-2)) & RT_BIT_64(2))
+ | ((uSrc >> (31-3)) & RT_BIT_64(3))
+ | ((uSrc >> (39-4)) & RT_BIT_64(4))
+ | ((uSrc >> (47-5)) & RT_BIT_64(5))
+ | ((uSrc >> (55-6)) & RT_BIT_64(6))
+ | ((uSrc >> (63-7)) & RT_BIT_64(7));
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(uint64_t *pu64Dst, PCRTUINT128U pu128Src))
+{
+ /* The the most signficant bit from each byte and store them in the given general purpose register. */
+ uint64_t const uSrc0 = pu128Src->QWords.qw0;
+ uint64_t const uSrc1 = pu128Src->QWords.qw1;
+ *pu64Dst = ((uSrc0 >> ( 7-0)) & RT_BIT_64(0))
+ | ((uSrc0 >> (15-1)) & RT_BIT_64(1))
+ | ((uSrc0 >> (23-2)) & RT_BIT_64(2))
+ | ((uSrc0 >> (31-3)) & RT_BIT_64(3))
+ | ((uSrc0 >> (39-4)) & RT_BIT_64(4))
+ | ((uSrc0 >> (47-5)) & RT_BIT_64(5))
+ | ((uSrc0 >> (55-6)) & RT_BIT_64(6))
+ | ((uSrc0 >> (63-7)) & RT_BIT_64(7))
+ | ((uSrc1 << (1 /*7-8*/)) & RT_BIT_64(8))
+ | ((uSrc1 >> (15-9)) & RT_BIT_64(9))
+ | ((uSrc1 >> (23-10)) & RT_BIT_64(10))
+ | ((uSrc1 >> (31-11)) & RT_BIT_64(11))
+ | ((uSrc1 >> (39-12)) & RT_BIT_64(12))
+ | ((uSrc1 >> (47-13)) & RT_BIT_64(13))
+ | ((uSrc1 >> (55-14)) & RT_BIT_64(14))
+ | ((uSrc1 >> (63-15)) & RT_BIT_64(15));
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256_fallback,(uint64_t *pu64Dst, PCRTUINT256U puSrc))
+{
+ /* The the most signficant bit from each byte and store them in the given general purpose register. */
+ uint64_t const uSrc0 = puSrc->QWords.qw0;
+ uint64_t const uSrc1 = puSrc->QWords.qw1;
+ uint64_t const uSrc2 = puSrc->QWords.qw2;
+ uint64_t const uSrc3 = puSrc->QWords.qw3;
+ *pu64Dst = ((uSrc0 >> ( 7-0)) & RT_BIT_64(0))
+ | ((uSrc0 >> (15-1)) & RT_BIT_64(1))
+ | ((uSrc0 >> (23-2)) & RT_BIT_64(2))
+ | ((uSrc0 >> (31-3)) & RT_BIT_64(3))
+ | ((uSrc0 >> (39-4)) & RT_BIT_64(4))
+ | ((uSrc0 >> (47-5)) & RT_BIT_64(5))
+ | ((uSrc0 >> (55-6)) & RT_BIT_64(6))
+ | ((uSrc0 >> (63-7)) & RT_BIT_64(7))
+ | ((uSrc1 << (1 /*7-8*/)) & RT_BIT_64(8))
+ | ((uSrc1 >> (15-9)) & RT_BIT_64(9))
+ | ((uSrc1 >> (23-10)) & RT_BIT_64(10))
+ | ((uSrc1 >> (31-11)) & RT_BIT_64(11))
+ | ((uSrc1 >> (39-12)) & RT_BIT_64(12))
+ | ((uSrc1 >> (47-13)) & RT_BIT_64(13))
+ | ((uSrc1 >> (55-14)) & RT_BIT_64(14))
+ | ((uSrc1 >> (63-15)) & RT_BIT_64(15))
+ | ((uSrc2 << (9 /* 7-16*/)) & RT_BIT_64(16))
+ | ((uSrc2 << (2 /*15-17*/)) & RT_BIT_64(17))
+ | ((uSrc2 >> (23-18)) & RT_BIT_64(18))
+ | ((uSrc2 >> (31-19)) & RT_BIT_64(19))
+ | ((uSrc2 >> (39-20)) & RT_BIT_64(20))
+ | ((uSrc2 >> (47-21)) & RT_BIT_64(21))
+ | ((uSrc2 >> (55-22)) & RT_BIT_64(22))
+ | ((uSrc2 >> (63-23)) & RT_BIT_64(23))
+ | ((uSrc3 << (17 /* 7-24*/)) & RT_BIT_64(24))
+ | ((uSrc3 << (10 /*15-25*/)) & RT_BIT_64(25))
+ | ((uSrc3 << (3 /*23-26*/)) & RT_BIT_64(26))
+ | ((uSrc3 >> (31-27)) & RT_BIT_64(27))
+ | ((uSrc3 >> (39-28)) & RT_BIT_64(28))
+ | ((uSrc3 >> (47-29)) & RT_BIT_64(29))
+ | ((uSrc3 >> (55-30)) & RT_BIT_64(30))
+ | ((uSrc3 >> (63-31)) & RT_BIT_64(31));
+}
+
+
+/*
+ * [V]PSHUFB
+ */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pshufb_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U const uSrc = { *puSrc };
+ RTUINT64U const uDstIn = { *puDst };
+ ASMCompilerBarrier();
+ RTUINT64U uDstOut = { 0 };
+ for (unsigned iByte = 0; iByte < RT_ELEMENTS(uDstIn.au8); iByte++)
+ {
+ uint8_t idxSrc = uSrc.au8[iByte];
+ if (!(idxSrc & 0x80))
+ uDstOut.au8[iByte] = uDstIn.au8[idxSrc & 7];
+ }
+ *puDst = uDstOut.u;
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pshufb_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U const uSrc = *puSrc;
+ RTUINT128U const uDstIn = *puDst;
+ ASMCompilerBarrier();
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ for (unsigned iByte = 0; iByte < RT_ELEMENTS(puDst->au8); iByte++)
+ {
+ uint8_t idxSrc = uSrc.au8[iByte];
+ if (!(idxSrc & 0x80))
+ puDst->au8[iByte] = uDstIn.au8[idxSrc & 15];
+ }
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpshufb_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
+ PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U const uSrc1 = *puSrc1; /* could be same as puDst */
+ RTUINT128U const uSrc2 = *puSrc2; /* could be same as puDst */
+ ASMCompilerBarrier();
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ for (unsigned iByte = 0; iByte < 16; iByte++)
+ {
+ uint8_t idxSrc = uSrc2.au8[iByte];
+ if (!(idxSrc & 0x80))
+ puDst->au8[iByte] = uSrc1.au8[(idxSrc & 15)];
+ }
+ RT_NOREF(pExtState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpshufb_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
+ PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U const uSrc1 = *puSrc1; /* could be same as puDst */
+ RTUINT256U const uSrc2 = *puSrc2; /* could be same as puDst */
+ ASMCompilerBarrier();
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ puDst->au64[2] = 0;
+ puDst->au64[3] = 0;
+ for (unsigned iByte = 0; iByte < 16; iByte++)
+ {
+ uint8_t idxSrc = uSrc2.au8[iByte];
+ if (!(idxSrc & 0x80))
+ puDst->au8[iByte] = uSrc1.au8[(idxSrc & 15)];
+ }
+ for (unsigned iByte = 16; iByte < RT_ELEMENTS(puDst->au8); iByte++)
+ {
+ uint8_t idxSrc = uSrc2.au8[iByte];
+ if (!(idxSrc & 0x80))
+ puDst->au8[iByte] = uSrc1.au8[(idxSrc & 15) + 16]; /* baka intel */
+ }
+ RT_NOREF(pExtState);
+}
+
+
+/*
+ * PSHUFW, [V]PSHUFHW, [V]PSHUFLW, [V]PSHUFD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw_u64,(uint64_t *puDst, uint64_t const *puSrc, uint8_t bEvil))
+{
+ uint64_t const uSrc = *puSrc;
+ ASMCompilerBarrier();
+ *puDst = RT_MAKE_U64_FROM_U16(uSrc >> (( bEvil & 3) * 16),
+ uSrc >> (((bEvil >> 2) & 3) * 16),
+ uSrc >> (((bEvil >> 4) & 3) * 16),
+ uSrc >> (((bEvil >> 6) & 3) * 16));
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pshufhw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil))
+{
+ puDst->QWords.qw0 = puSrc->QWords.qw0;
+ uint64_t const uSrc = puSrc->QWords.qw1;
+ ASMCompilerBarrier();
+ puDst->QWords.qw1 = RT_MAKE_U64_FROM_U16(uSrc >> (( bEvil & 3) * 16),
+ uSrc >> (((bEvil >> 2) & 3) * 16),
+ uSrc >> (((bEvil >> 4) & 3) * 16),
+ uSrc >> (((bEvil >> 6) & 3) * 16));
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpshufhw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil))
+{
+ puDst->QWords.qw0 = puSrc->QWords.qw0;
+ uint64_t const uSrc1 = puSrc->QWords.qw1;
+ puDst->QWords.qw2 = puSrc->QWords.qw2;
+ uint64_t const uSrc3 = puSrc->QWords.qw3;
+ ASMCompilerBarrier();
+ puDst->QWords.qw1 = RT_MAKE_U64_FROM_U16(uSrc1 >> (( bEvil & 3) * 16),
+ uSrc1 >> (((bEvil >> 2) & 3) * 16),
+ uSrc1 >> (((bEvil >> 4) & 3) * 16),
+ uSrc1 >> (((bEvil >> 6) & 3) * 16));
+ puDst->QWords.qw3 = RT_MAKE_U64_FROM_U16(uSrc3 >> (( bEvil & 3) * 16),
+ uSrc3 >> (((bEvil >> 2) & 3) * 16),
+ uSrc3 >> (((bEvil >> 4) & 3) * 16),
+ uSrc3 >> (((bEvil >> 6) & 3) * 16));
+}
+
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_pshuflw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil))
+{
+ puDst->QWords.qw1 = puSrc->QWords.qw1;
+ uint64_t const uSrc = puSrc->QWords.qw0;
+ ASMCompilerBarrier();
+ puDst->QWords.qw0 = RT_MAKE_U64_FROM_U16(uSrc >> (( bEvil & 3) * 16),
+ uSrc >> (((bEvil >> 2) & 3) * 16),
+ uSrc >> (((bEvil >> 4) & 3) * 16),
+ uSrc >> (((bEvil >> 6) & 3) * 16));
+
+}
+#endif
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpshuflw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil))
+{
+ puDst->QWords.qw3 = puSrc->QWords.qw3;
+ uint64_t const uSrc2 = puSrc->QWords.qw2;
+ puDst->QWords.qw1 = puSrc->QWords.qw1;
+ uint64_t const uSrc0 = puSrc->QWords.qw0;
+ ASMCompilerBarrier();
+ puDst->QWords.qw0 = RT_MAKE_U64_FROM_U16(uSrc0 >> (( bEvil & 3) * 16),
+ uSrc0 >> (((bEvil >> 2) & 3) * 16),
+ uSrc0 >> (((bEvil >> 4) & 3) * 16),
+ uSrc0 >> (((bEvil >> 6) & 3) * 16));
+ puDst->QWords.qw2 = RT_MAKE_U64_FROM_U16(uSrc2 >> (( bEvil & 3) * 16),
+ uSrc2 >> (((bEvil >> 2) & 3) * 16),
+ uSrc2 >> (((bEvil >> 4) & 3) * 16),
+ uSrc2 >> (((bEvil >> 6) & 3) * 16));
+
+}
+
+
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_pshufd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil))
+{
+ RTUINT128U const uSrc = *puSrc;
+ ASMCompilerBarrier();
+ puDst->au32[0] = uSrc.au32[bEvil & 3];
+ puDst->au32[1] = uSrc.au32[(bEvil >> 2) & 3];
+ puDst->au32[2] = uSrc.au32[(bEvil >> 4) & 3];
+ puDst->au32[3] = uSrc.au32[(bEvil >> 6) & 3];
+}
+#endif
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpshufd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil))
+{
+ RTUINT256U const uSrc = *puSrc;
+ ASMCompilerBarrier();
+ puDst->au128[0].au32[0] = uSrc.au128[0].au32[bEvil & 3];
+ puDst->au128[0].au32[1] = uSrc.au128[0].au32[(bEvil >> 2) & 3];
+ puDst->au128[0].au32[2] = uSrc.au128[0].au32[(bEvil >> 4) & 3];
+ puDst->au128[0].au32[3] = uSrc.au128[0].au32[(bEvil >> 6) & 3];
+ puDst->au128[1].au32[0] = uSrc.au128[1].au32[bEvil & 3];
+ puDst->au128[1].au32[1] = uSrc.au128[1].au32[(bEvil >> 2) & 3];
+ puDst->au128[1].au32[2] = uSrc.au128[1].au32[(bEvil >> 4) & 3];
+ puDst->au128[1].au32[3] = uSrc.au128[1].au32[(bEvil >> 6) & 3];
+}
+
+
+/*
+ * PUNPCKHBW - high bytes -> words
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhbw_u64,(uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U const uSrc2 = { *puSrc };
+ RTUINT64U const uSrc1 = { *puDst };
+ ASMCompilerBarrier();
+ RTUINT64U uDstOut;
+ uDstOut.au8[0] = uSrc1.au8[4];
+ uDstOut.au8[1] = uSrc2.au8[4];
+ uDstOut.au8[2] = uSrc1.au8[5];
+ uDstOut.au8[3] = uSrc2.au8[5];
+ uDstOut.au8[4] = uSrc1.au8[6];
+ uDstOut.au8[5] = uSrc2.au8[6];
+ uDstOut.au8[6] = uSrc1.au8[7];
+ uDstOut.au8[7] = uSrc2.au8[7];
+ *puDst = uDstOut.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhbw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U const uSrc2 = *puSrc;
+ RTUINT128U const uSrc1 = *puDst;
+ ASMCompilerBarrier();
+ RTUINT128U uDstOut;
+ uDstOut.au8[ 0] = uSrc1.au8[ 8];
+ uDstOut.au8[ 1] = uSrc2.au8[ 8];
+ uDstOut.au8[ 2] = uSrc1.au8[ 9];
+ uDstOut.au8[ 3] = uSrc2.au8[ 9];
+ uDstOut.au8[ 4] = uSrc1.au8[10];
+ uDstOut.au8[ 5] = uSrc2.au8[10];
+ uDstOut.au8[ 6] = uSrc1.au8[11];
+ uDstOut.au8[ 7] = uSrc2.au8[11];
+ uDstOut.au8[ 8] = uSrc1.au8[12];
+ uDstOut.au8[ 9] = uSrc2.au8[12];
+ uDstOut.au8[10] = uSrc1.au8[13];
+ uDstOut.au8[11] = uSrc2.au8[13];
+ uDstOut.au8[12] = uSrc1.au8[14];
+ uDstOut.au8[13] = uSrc2.au8[14];
+ uDstOut.au8[14] = uSrc1.au8[15];
+ uDstOut.au8[15] = uSrc2.au8[15];
+ *puDst = uDstOut;
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckhbw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U const uSrc2 = *puSrc2;
+ RTUINT128U const uSrc1 = *puSrc1;
+ ASMCompilerBarrier();
+ RTUINT128U uDstOut;
+ uDstOut.au8[ 0] = uSrc1.au8[ 8];
+ uDstOut.au8[ 1] = uSrc2.au8[ 8];
+ uDstOut.au8[ 2] = uSrc1.au8[ 9];
+ uDstOut.au8[ 3] = uSrc2.au8[ 9];
+ uDstOut.au8[ 4] = uSrc1.au8[10];
+ uDstOut.au8[ 5] = uSrc2.au8[10];
+ uDstOut.au8[ 6] = uSrc1.au8[11];
+ uDstOut.au8[ 7] = uSrc2.au8[11];
+ uDstOut.au8[ 8] = uSrc1.au8[12];
+ uDstOut.au8[ 9] = uSrc2.au8[12];
+ uDstOut.au8[10] = uSrc1.au8[13];
+ uDstOut.au8[11] = uSrc2.au8[13];
+ uDstOut.au8[12] = uSrc1.au8[14];
+ uDstOut.au8[13] = uSrc2.au8[14];
+ uDstOut.au8[14] = uSrc1.au8[15];
+ uDstOut.au8[15] = uSrc2.au8[15];
+ *puDst = uDstOut;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckhbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U const uSrc2 = *puSrc2;
+ RTUINT256U const uSrc1 = *puSrc1;
+ ASMCompilerBarrier();
+ RTUINT256U uDstOut;
+ uDstOut.au8[ 0] = uSrc1.au8[ 8];
+ uDstOut.au8[ 1] = uSrc2.au8[ 8];
+ uDstOut.au8[ 2] = uSrc1.au8[ 9];
+ uDstOut.au8[ 3] = uSrc2.au8[ 9];
+ uDstOut.au8[ 4] = uSrc1.au8[10];
+ uDstOut.au8[ 5] = uSrc2.au8[10];
+ uDstOut.au8[ 6] = uSrc1.au8[11];
+ uDstOut.au8[ 7] = uSrc2.au8[11];
+ uDstOut.au8[ 8] = uSrc1.au8[12];
+ uDstOut.au8[ 9] = uSrc2.au8[12];
+ uDstOut.au8[10] = uSrc1.au8[13];
+ uDstOut.au8[11] = uSrc2.au8[13];
+ uDstOut.au8[12] = uSrc1.au8[14];
+ uDstOut.au8[13] = uSrc2.au8[14];
+ uDstOut.au8[14] = uSrc1.au8[15];
+ uDstOut.au8[15] = uSrc2.au8[15];
+ /* As usual, the upper 128-bits are treated like a parallel register to the lower half. */
+ uDstOut.au8[16] = uSrc1.au8[24];
+ uDstOut.au8[17] = uSrc2.au8[24];
+ uDstOut.au8[18] = uSrc1.au8[25];
+ uDstOut.au8[19] = uSrc2.au8[25];
+ uDstOut.au8[20] = uSrc1.au8[26];
+ uDstOut.au8[21] = uSrc2.au8[26];
+ uDstOut.au8[22] = uSrc1.au8[27];
+ uDstOut.au8[23] = uSrc2.au8[27];
+ uDstOut.au8[24] = uSrc1.au8[28];
+ uDstOut.au8[25] = uSrc2.au8[28];
+ uDstOut.au8[26] = uSrc1.au8[29];
+ uDstOut.au8[27] = uSrc2.au8[29];
+ uDstOut.au8[28] = uSrc1.au8[30];
+ uDstOut.au8[29] = uSrc2.au8[30];
+ uDstOut.au8[30] = uSrc1.au8[31];
+ uDstOut.au8[31] = uSrc2.au8[31];
+ *puDst = uDstOut;
+}
+
+
+/*
+ * PUNPCKHBW - high words -> dwords
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhwd_u64,(uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U const uSrc2 = { *puSrc };
+ RTUINT64U const uSrc1 = { *puDst };
+ ASMCompilerBarrier();
+ RTUINT64U uDstOut;
+ uDstOut.au16[0] = uSrc1.au16[2];
+ uDstOut.au16[1] = uSrc2.au16[2];
+ uDstOut.au16[2] = uSrc1.au16[3];
+ uDstOut.au16[3] = uSrc2.au16[3];
+ *puDst = uDstOut.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhwd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U const uSrc2 = *puSrc;
+ RTUINT128U const uSrc1 = *puDst;
+ ASMCompilerBarrier();
+ RTUINT128U uDstOut;
+ uDstOut.au16[0] = uSrc1.au16[4];
+ uDstOut.au16[1] = uSrc2.au16[4];
+ uDstOut.au16[2] = uSrc1.au16[5];
+ uDstOut.au16[3] = uSrc2.au16[5];
+ uDstOut.au16[4] = uSrc1.au16[6];
+ uDstOut.au16[5] = uSrc2.au16[6];
+ uDstOut.au16[6] = uSrc1.au16[7];
+ uDstOut.au16[7] = uSrc2.au16[7];
+ *puDst = uDstOut;
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckhwd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U const uSrc2 = *puSrc2;
+ RTUINT128U const uSrc1 = *puSrc1;
+ ASMCompilerBarrier();
+ RTUINT128U uDstOut;
+ uDstOut.au16[0] = uSrc1.au16[4];
+ uDstOut.au16[1] = uSrc2.au16[4];
+ uDstOut.au16[2] = uSrc1.au16[5];
+ uDstOut.au16[3] = uSrc2.au16[5];
+ uDstOut.au16[4] = uSrc1.au16[6];
+ uDstOut.au16[5] = uSrc2.au16[6];
+ uDstOut.au16[6] = uSrc1.au16[7];
+ uDstOut.au16[7] = uSrc2.au16[7];
+ *puDst = uDstOut;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckhwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U const uSrc2 = *puSrc2;
+ RTUINT256U const uSrc1 = *puSrc1;
+ ASMCompilerBarrier();
+ RTUINT256U uDstOut;
+ uDstOut.au16[0] = uSrc1.au16[4];
+ uDstOut.au16[1] = uSrc2.au16[4];
+ uDstOut.au16[2] = uSrc1.au16[5];
+ uDstOut.au16[3] = uSrc2.au16[5];
+ uDstOut.au16[4] = uSrc1.au16[6];
+ uDstOut.au16[5] = uSrc2.au16[6];
+ uDstOut.au16[6] = uSrc1.au16[7];
+ uDstOut.au16[7] = uSrc2.au16[7];
+
+ uDstOut.au16[8] = uSrc1.au16[12];
+ uDstOut.au16[9] = uSrc2.au16[12];
+ uDstOut.au16[10] = uSrc1.au16[13];
+ uDstOut.au16[11] = uSrc2.au16[13];
+ uDstOut.au16[12] = uSrc1.au16[14];
+ uDstOut.au16[13] = uSrc2.au16[14];
+ uDstOut.au16[14] = uSrc1.au16[15];
+ uDstOut.au16[15] = uSrc2.au16[15];
+ *puDst = uDstOut;
+}
+
+
+/*
+ * PUNPCKHBW - high dwords -> qword(s)
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhdq_u64,(uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U const uSrc2 = { *puSrc };
+ RTUINT64U const uSrc1 = { *puDst };
+ ASMCompilerBarrier();
+ RTUINT64U uDstOut;
+ uDstOut.au32[0] = uSrc1.au32[1];
+ uDstOut.au32[1] = uSrc2.au32[1];
+ *puDst = uDstOut.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhdq_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U const uSrc2 = *puSrc;
+ RTUINT128U const uSrc1 = *puDst;
+ ASMCompilerBarrier();
+ RTUINT128U uDstOut;
+ uDstOut.au32[0] = uSrc1.au32[2];
+ uDstOut.au32[1] = uSrc2.au32[2];
+ uDstOut.au32[2] = uSrc1.au32[3];
+ uDstOut.au32[3] = uSrc2.au32[3];
+ *puDst = uDstOut;
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckhdq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U const uSrc2 = *puSrc2;
+ RTUINT128U const uSrc1 = *puSrc1;
+ ASMCompilerBarrier();
+ RTUINT128U uDstOut;
+ uDstOut.au32[0] = uSrc1.au32[2];
+ uDstOut.au32[1] = uSrc2.au32[2];
+ uDstOut.au32[2] = uSrc1.au32[3];
+ uDstOut.au32[3] = uSrc2.au32[3];
+ *puDst = uDstOut;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckhdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U const uSrc2 = *puSrc2;
+ RTUINT256U const uSrc1 = *puSrc1;
+ ASMCompilerBarrier();
+ RTUINT256U uDstOut;
+ uDstOut.au32[0] = uSrc1.au32[2];
+ uDstOut.au32[1] = uSrc2.au32[2];
+ uDstOut.au32[2] = uSrc1.au32[3];
+ uDstOut.au32[3] = uSrc2.au32[3];
+
+ uDstOut.au32[4] = uSrc1.au32[6];
+ uDstOut.au32[5] = uSrc2.au32[6];
+ uDstOut.au32[6] = uSrc1.au32[7];
+ uDstOut.au32[7] = uSrc2.au32[7];
+ *puDst = uDstOut;
+}
+
+
+/*
+ * PUNPCKHQDQ -> High qwords -> double qword(s).
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhqdq_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U const uSrc2 = *puSrc;
+ RTUINT128U const uSrc1 = *puDst;
+ ASMCompilerBarrier();
+ RTUINT128U uDstOut;
+ uDstOut.au64[0] = uSrc1.au64[1];
+ uDstOut.au64[1] = uSrc2.au64[1];
+ *puDst = uDstOut;
+}
+#endif
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckhqdq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U const uSrc2 = *puSrc2;
+ RTUINT128U const uSrc1 = *puSrc1;
+ ASMCompilerBarrier();
+ RTUINT128U uDstOut;
+ uDstOut.au64[0] = uSrc1.au64[1];
+ uDstOut.au64[1] = uSrc2.au64[1];
+ *puDst = uDstOut;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckhqdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U const uSrc2 = *puSrc2;
+ RTUINT256U const uSrc1 = *puSrc1;
+ ASMCompilerBarrier();
+ RTUINT256U uDstOut;
+ uDstOut.au64[0] = uSrc1.au64[1];
+ uDstOut.au64[1] = uSrc2.au64[1];
+
+ uDstOut.au64[2] = uSrc1.au64[3];
+ uDstOut.au64[3] = uSrc2.au64[3];
+ *puDst = uDstOut;
+}
+
+
+/*
+ * PUNPCKLBW - low bytes -> words
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_punpcklbw_u64,(uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U const uSrc2 = { *puSrc };
+ RTUINT64U const uSrc1 = { *puDst };
+ ASMCompilerBarrier();
+ RTUINT64U uDstOut;
+ uDstOut.au8[0] = uSrc1.au8[0];
+ uDstOut.au8[1] = uSrc2.au8[0];
+ uDstOut.au8[2] = uSrc1.au8[1];
+ uDstOut.au8[3] = uSrc2.au8[1];
+ uDstOut.au8[4] = uSrc1.au8[2];
+ uDstOut.au8[5] = uSrc2.au8[2];
+ uDstOut.au8[6] = uSrc1.au8[3];
+ uDstOut.au8[7] = uSrc2.au8[3];
+ *puDst = uDstOut.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_punpcklbw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U const uSrc2 = *puSrc;
+ RTUINT128U const uSrc1 = *puDst;
+ ASMCompilerBarrier();
+ RTUINT128U uDstOut;
+ uDstOut.au8[ 0] = uSrc1.au8[0];
+ uDstOut.au8[ 1] = uSrc2.au8[0];
+ uDstOut.au8[ 2] = uSrc1.au8[1];
+ uDstOut.au8[ 3] = uSrc2.au8[1];
+ uDstOut.au8[ 4] = uSrc1.au8[2];
+ uDstOut.au8[ 5] = uSrc2.au8[2];
+ uDstOut.au8[ 6] = uSrc1.au8[3];
+ uDstOut.au8[ 7] = uSrc2.au8[3];
+ uDstOut.au8[ 8] = uSrc1.au8[4];
+ uDstOut.au8[ 9] = uSrc2.au8[4];
+ uDstOut.au8[10] = uSrc1.au8[5];
+ uDstOut.au8[11] = uSrc2.au8[5];
+ uDstOut.au8[12] = uSrc1.au8[6];
+ uDstOut.au8[13] = uSrc2.au8[6];
+ uDstOut.au8[14] = uSrc1.au8[7];
+ uDstOut.au8[15] = uSrc2.au8[7];
+ *puDst = uDstOut;
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpcklbw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U const uSrc2 = *puSrc2;
+ RTUINT128U const uSrc1 = *puSrc1;
+ ASMCompilerBarrier();
+ RTUINT128U uDstOut;
+ uDstOut.au8[ 0] = uSrc1.au8[0];
+ uDstOut.au8[ 1] = uSrc2.au8[0];
+ uDstOut.au8[ 2] = uSrc1.au8[1];
+ uDstOut.au8[ 3] = uSrc2.au8[1];
+ uDstOut.au8[ 4] = uSrc1.au8[2];
+ uDstOut.au8[ 5] = uSrc2.au8[2];
+ uDstOut.au8[ 6] = uSrc1.au8[3];
+ uDstOut.au8[ 7] = uSrc2.au8[3];
+ uDstOut.au8[ 8] = uSrc1.au8[4];
+ uDstOut.au8[ 9] = uSrc2.au8[4];
+ uDstOut.au8[10] = uSrc1.au8[5];
+ uDstOut.au8[11] = uSrc2.au8[5];
+ uDstOut.au8[12] = uSrc1.au8[6];
+ uDstOut.au8[13] = uSrc2.au8[6];
+ uDstOut.au8[14] = uSrc1.au8[7];
+ uDstOut.au8[15] = uSrc2.au8[7];
+ *puDst = uDstOut;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpcklbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U const uSrc2 = *puSrc2;
+ RTUINT256U const uSrc1 = *puSrc1;
+ ASMCompilerBarrier();
+ RTUINT256U uDstOut;
+ uDstOut.au8[ 0] = uSrc1.au8[0];
+ uDstOut.au8[ 1] = uSrc2.au8[0];
+ uDstOut.au8[ 2] = uSrc1.au8[1];
+ uDstOut.au8[ 3] = uSrc2.au8[1];
+ uDstOut.au8[ 4] = uSrc1.au8[2];
+ uDstOut.au8[ 5] = uSrc2.au8[2];
+ uDstOut.au8[ 6] = uSrc1.au8[3];
+ uDstOut.au8[ 7] = uSrc2.au8[3];
+ uDstOut.au8[ 8] = uSrc1.au8[4];
+ uDstOut.au8[ 9] = uSrc2.au8[4];
+ uDstOut.au8[10] = uSrc1.au8[5];
+ uDstOut.au8[11] = uSrc2.au8[5];
+ uDstOut.au8[12] = uSrc1.au8[6];
+ uDstOut.au8[13] = uSrc2.au8[6];
+ uDstOut.au8[14] = uSrc1.au8[7];
+ uDstOut.au8[15] = uSrc2.au8[7];
+ /* As usual, the upper 128-bits are treated like a parallel register to the lower half. */
+ uDstOut.au8[16] = uSrc1.au8[16];
+ uDstOut.au8[17] = uSrc2.au8[16];
+ uDstOut.au8[18] = uSrc1.au8[17];
+ uDstOut.au8[19] = uSrc2.au8[17];
+ uDstOut.au8[20] = uSrc1.au8[18];
+ uDstOut.au8[21] = uSrc2.au8[18];
+ uDstOut.au8[22] = uSrc1.au8[19];
+ uDstOut.au8[23] = uSrc2.au8[19];
+ uDstOut.au8[24] = uSrc1.au8[20];
+ uDstOut.au8[25] = uSrc2.au8[20];
+ uDstOut.au8[26] = uSrc1.au8[21];
+ uDstOut.au8[27] = uSrc2.au8[21];
+ uDstOut.au8[28] = uSrc1.au8[22];
+ uDstOut.au8[29] = uSrc2.au8[22];
+ uDstOut.au8[30] = uSrc1.au8[23];
+ uDstOut.au8[31] = uSrc2.au8[23];
+ *puDst = uDstOut;
+}
+
+
+/*
+ * PUNPCKLBW - low words -> dwords
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_punpcklwd_u64,(uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U const uSrc2 = { *puSrc };
+ RTUINT64U const uSrc1 = { *puDst };
+ ASMCompilerBarrier();
+ RTUINT64U uDstOut;
+ uDstOut.au16[0] = uSrc1.au16[0];
+ uDstOut.au16[1] = uSrc2.au16[0];
+ uDstOut.au16[2] = uSrc1.au16[1];
+ uDstOut.au16[3] = uSrc2.au16[1];
+ *puDst = uDstOut.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_punpcklwd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U const uSrc2 = *puSrc;
+ RTUINT128U const uSrc1 = *puDst;
+ ASMCompilerBarrier();
+ RTUINT128U uDstOut;
+ uDstOut.au16[0] = uSrc1.au16[0];
+ uDstOut.au16[1] = uSrc2.au16[0];
+ uDstOut.au16[2] = uSrc1.au16[1];
+ uDstOut.au16[3] = uSrc2.au16[1];
+ uDstOut.au16[4] = uSrc1.au16[2];
+ uDstOut.au16[5] = uSrc2.au16[2];
+ uDstOut.au16[6] = uSrc1.au16[3];
+ uDstOut.au16[7] = uSrc2.au16[3];
+ *puDst = uDstOut;
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpcklwd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U const uSrc2 = *puSrc2;
+ RTUINT128U const uSrc1 = *puSrc1;
+ ASMCompilerBarrier();
+ RTUINT128U uDstOut;
+ uDstOut.au16[0] = uSrc1.au16[0];
+ uDstOut.au16[1] = uSrc2.au16[0];
+ uDstOut.au16[2] = uSrc1.au16[1];
+ uDstOut.au16[3] = uSrc2.au16[1];
+ uDstOut.au16[4] = uSrc1.au16[2];
+ uDstOut.au16[5] = uSrc2.au16[2];
+ uDstOut.au16[6] = uSrc1.au16[3];
+ uDstOut.au16[7] = uSrc2.au16[3];
+ *puDst = uDstOut;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpcklwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U const uSrc2 = *puSrc2;
+ RTUINT256U const uSrc1 = *puSrc1;
+ ASMCompilerBarrier();
+ RTUINT256U uDstOut;
+ uDstOut.au16[0] = uSrc1.au16[0];
+ uDstOut.au16[1] = uSrc2.au16[0];
+ uDstOut.au16[2] = uSrc1.au16[1];
+ uDstOut.au16[3] = uSrc2.au16[1];
+ uDstOut.au16[4] = uSrc1.au16[2];
+ uDstOut.au16[5] = uSrc2.au16[2];
+ uDstOut.au16[6] = uSrc1.au16[3];
+ uDstOut.au16[7] = uSrc2.au16[3];
+
+ uDstOut.au16[8] = uSrc1.au16[8];
+ uDstOut.au16[9] = uSrc2.au16[8];
+ uDstOut.au16[10] = uSrc1.au16[9];
+ uDstOut.au16[11] = uSrc2.au16[9];
+ uDstOut.au16[12] = uSrc1.au16[10];
+ uDstOut.au16[13] = uSrc2.au16[10];
+ uDstOut.au16[14] = uSrc1.au16[11];
+ uDstOut.au16[15] = uSrc2.au16[11];
+ *puDst = uDstOut;
+}
+
+
+/*
+ * PUNPCKLBW - low dwords -> qword(s)
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_punpckldq_u64,(uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U const uSrc2 = { *puSrc };
+ RTUINT64U const uSrc1 = { *puDst };
+ ASMCompilerBarrier();
+ RTUINT64U uDstOut;
+ uDstOut.au32[0] = uSrc1.au32[0];
+ uDstOut.au32[1] = uSrc2.au32[0];
+ *puDst = uDstOut.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_punpckldq_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U const uSrc2 = *puSrc;
+ RTUINT128U const uSrc1 = *puDst;
+ ASMCompilerBarrier();
+ RTUINT128U uDstOut;
+ uDstOut.au32[0] = uSrc1.au32[0];
+ uDstOut.au32[1] = uSrc2.au32[0];
+ uDstOut.au32[2] = uSrc1.au32[1];
+ uDstOut.au32[3] = uSrc2.au32[1];
+ *puDst = uDstOut;
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckldq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U const uSrc2 = *puSrc2;
+ RTUINT128U const uSrc1 = *puSrc1;
+ ASMCompilerBarrier();
+ RTUINT128U uDstOut;
+ uDstOut.au32[0] = uSrc1.au32[0];
+ uDstOut.au32[1] = uSrc2.au32[0];
+ uDstOut.au32[2] = uSrc1.au32[1];
+ uDstOut.au32[3] = uSrc2.au32[1];
+ *puDst = uDstOut;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckldq_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U const uSrc2 = *puSrc2;
+ RTUINT256U const uSrc1 = *puSrc1;
+ ASMCompilerBarrier();
+ RTUINT256U uDstOut;
+ uDstOut.au32[0] = uSrc1.au32[0];
+ uDstOut.au32[1] = uSrc2.au32[0];
+ uDstOut.au32[2] = uSrc1.au32[1];
+ uDstOut.au32[3] = uSrc2.au32[1];
+
+ uDstOut.au32[4] = uSrc1.au32[4];
+ uDstOut.au32[5] = uSrc2.au32[4];
+ uDstOut.au32[6] = uSrc1.au32[5];
+ uDstOut.au32[7] = uSrc2.au32[5];
+ *puDst = uDstOut;
+}
+
+
+/*
+ * PUNPCKLQDQ -> Low qwords -> double qword(s).
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_punpcklqdq_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U const uSrc2 = *puSrc;
+ RTUINT128U const uSrc1 = *puDst;
+ ASMCompilerBarrier();
+ RTUINT128U uDstOut;
+ uDstOut.au64[0] = uSrc1.au64[0];
+ uDstOut.au64[1] = uSrc2.au64[0];
+ *puDst = uDstOut;
+}
+#endif
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpcklqdq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U const uSrc2 = *puSrc2;
+ RTUINT128U const uSrc1 = *puSrc1;
+ ASMCompilerBarrier();
+ RTUINT128U uDstOut;
+ uDstOut.au64[0] = uSrc1.au64[0];
+ uDstOut.au64[1] = uSrc2.au64[0];
+ *puDst = uDstOut;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpcklqdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U const uSrc2 = *puSrc2;
+ RTUINT256U const uSrc1 = *puSrc1;
+ ASMCompilerBarrier();
+ RTUINT256U uDstOut;
+ uDstOut.au64[0] = uSrc1.au64[0];
+ uDstOut.au64[1] = uSrc2.au64[0];
+
+ uDstOut.au64[2] = uSrc1.au64[2];
+ uDstOut.au64[3] = uSrc2.au64[2];
+ *puDst = uDstOut;
+}
+
+
+/*
+ * PACKSSWB - signed words -> signed bytes
+ */
+
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_packsswb_u64,(uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U const uSrc2 = { *puSrc };
+ RTUINT64U const uSrc1 = { *puDst };
+ ASMCompilerBarrier();
+ RTUINT64U uDstOut;
+ uDstOut.au8[0] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[0]);
+ uDstOut.au8[1] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[1]);
+ uDstOut.au8[2] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[2]);
+ uDstOut.au8[3] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[3]);
+ uDstOut.au8[4] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[0]);
+ uDstOut.au8[5] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[1]);
+ uDstOut.au8[6] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[2]);
+ uDstOut.au8[7] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[3]);
+ *puDst = uDstOut.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_packsswb_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U const uSrc2 = *puSrc;
+ RTUINT128U const uSrc1 = *puDst;
+ ASMCompilerBarrier();
+ RTUINT128U uDstOut;
+ uDstOut.au8[ 0] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[0]);
+ uDstOut.au8[ 1] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[1]);
+ uDstOut.au8[ 2] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[2]);
+ uDstOut.au8[ 3] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[3]);
+ uDstOut.au8[ 4] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[4]);
+ uDstOut.au8[ 5] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[5]);
+ uDstOut.au8[ 6] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[6]);
+ uDstOut.au8[ 7] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[7]);
+ uDstOut.au8[ 8] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[0]);
+ uDstOut.au8[ 9] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[1]);
+ uDstOut.au8[10] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[2]);
+ uDstOut.au8[11] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[3]);
+ uDstOut.au8[12] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[4]);
+ uDstOut.au8[13] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[5]);
+ uDstOut.au8[14] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[6]);
+ uDstOut.au8[15] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[7]);
+ *puDst = uDstOut;
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpacksswb_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U const uSrc2 = *puSrc2;
+ RTUINT128U const uSrc1 = *puSrc1;
+ ASMCompilerBarrier();
+ RTUINT128U uDstOut;
+ uDstOut.au8[ 0] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[0]);
+ uDstOut.au8[ 1] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[1]);
+ uDstOut.au8[ 2] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[2]);
+ uDstOut.au8[ 3] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[3]);
+ uDstOut.au8[ 4] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[4]);
+ uDstOut.au8[ 5] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[5]);
+ uDstOut.au8[ 6] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[6]);
+ uDstOut.au8[ 7] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[7]);
+ uDstOut.au8[ 8] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[0]);
+ uDstOut.au8[ 9] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[1]);
+ uDstOut.au8[10] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[2]);
+ uDstOut.au8[11] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[3]);
+ uDstOut.au8[12] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[4]);
+ uDstOut.au8[13] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[5]);
+ uDstOut.au8[14] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[6]);
+ uDstOut.au8[15] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[7]);
+ *puDst = uDstOut;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpacksswb_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U const uSrc2 = *puSrc2;
+ RTUINT256U const uSrc1 = *puSrc1;
+ ASMCompilerBarrier();
+ RTUINT256U uDstOut;
+ uDstOut.au8[ 0] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[0]);
+ uDstOut.au8[ 1] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[1]);
+ uDstOut.au8[ 2] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[2]);
+ uDstOut.au8[ 3] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[3]);
+ uDstOut.au8[ 4] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[4]);
+ uDstOut.au8[ 5] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[5]);
+ uDstOut.au8[ 6] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[6]);
+ uDstOut.au8[ 7] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[7]);
+ uDstOut.au8[ 8] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[0]);
+ uDstOut.au8[ 9] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[1]);
+ uDstOut.au8[10] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[2]);
+ uDstOut.au8[11] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[3]);
+ uDstOut.au8[12] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[4]);
+ uDstOut.au8[13] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[5]);
+ uDstOut.au8[14] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[6]);
+ uDstOut.au8[15] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[7]);
+
+ uDstOut.au8[16] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[ 8]);
+ uDstOut.au8[17] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[ 9]);
+ uDstOut.au8[18] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[10]);
+ uDstOut.au8[19] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[11]);
+ uDstOut.au8[20] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[12]);
+ uDstOut.au8[21] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[13]);
+ uDstOut.au8[22] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[14]);
+ uDstOut.au8[23] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[15]);
+ uDstOut.au8[24] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[ 8]);
+ uDstOut.au8[25] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[ 9]);
+ uDstOut.au8[26] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[10]);
+ uDstOut.au8[27] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[11]);
+ uDstOut.au8[28] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[12]);
+ uDstOut.au8[29] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[13]);
+ uDstOut.au8[30] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[14]);
+ uDstOut.au8[31] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[15]);
+ *puDst = uDstOut;
+}
+
+
+/*
+ * PACKUSWB - signed words -> unsigned bytes
+ */
+#define SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(a_iWord) \
+ ( (uint16_t)(a_iWord) <= (uint16_t)0xff \
+ ? (uint8_t)(a_iWord) \
+ : (uint8_t)0xff * (uint8_t)((((a_iWord) >> 15) & 1) ^ 1) ) /* 0xff = UINT8_MAX; 0x00 == UINT8_MIN; source bit 15 = sign */
+
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_packuswb_u64,(uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U const uSrc2 = { *puSrc };
+ RTUINT64U const uSrc1 = { *puDst };
+ ASMCompilerBarrier();
+ RTUINT64U uDstOut;
+ uDstOut.au8[0] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[0]);
+ uDstOut.au8[1] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[1]);
+ uDstOut.au8[2] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[2]);
+ uDstOut.au8[3] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[3]);
+ uDstOut.au8[4] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[0]);
+ uDstOut.au8[5] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[1]);
+ uDstOut.au8[6] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[2]);
+ uDstOut.au8[7] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[3]);
+ *puDst = uDstOut.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_packuswb_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U const uSrc2 = *puSrc;
+ RTUINT128U const uSrc1 = *puDst;
+ ASMCompilerBarrier();
+ RTUINT128U uDstOut;
+ uDstOut.au8[ 0] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[0]);
+ uDstOut.au8[ 1] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[1]);
+ uDstOut.au8[ 2] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[2]);
+ uDstOut.au8[ 3] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[3]);
+ uDstOut.au8[ 4] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[4]);
+ uDstOut.au8[ 5] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[5]);
+ uDstOut.au8[ 6] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[6]);
+ uDstOut.au8[ 7] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[7]);
+ uDstOut.au8[ 8] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[0]);
+ uDstOut.au8[ 9] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[1]);
+ uDstOut.au8[10] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[2]);
+ uDstOut.au8[11] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[3]);
+ uDstOut.au8[12] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[4]);
+ uDstOut.au8[13] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[5]);
+ uDstOut.au8[14] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[6]);
+ uDstOut.au8[15] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[7]);
+ *puDst = uDstOut;
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpackuswb_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U const uSrc2 = *puSrc2;
+ RTUINT128U const uSrc1 = *puSrc1;
+ ASMCompilerBarrier();
+ RTUINT128U uDstOut;
+ uDstOut.au8[ 0] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[0]);
+ uDstOut.au8[ 1] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[1]);
+ uDstOut.au8[ 2] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[2]);
+ uDstOut.au8[ 3] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[3]);
+ uDstOut.au8[ 4] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[4]);
+ uDstOut.au8[ 5] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[5]);
+ uDstOut.au8[ 6] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[6]);
+ uDstOut.au8[ 7] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[7]);
+ uDstOut.au8[ 8] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[0]);
+ uDstOut.au8[ 9] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[1]);
+ uDstOut.au8[10] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[2]);
+ uDstOut.au8[11] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[3]);
+ uDstOut.au8[12] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[4]);
+ uDstOut.au8[13] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[5]);
+ uDstOut.au8[14] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[6]);
+ uDstOut.au8[15] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[7]);
+ *puDst = uDstOut;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpackuswb_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U const uSrc2 = *puSrc2;
+ RTUINT256U const uSrc1 = *puSrc1;
+ ASMCompilerBarrier();
+ RTUINT256U uDstOut;
+ uDstOut.au8[ 0] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[0]);
+ uDstOut.au8[ 1] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[1]);
+ uDstOut.au8[ 2] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[2]);
+ uDstOut.au8[ 3] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[3]);
+ uDstOut.au8[ 4] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[4]);
+ uDstOut.au8[ 5] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[5]);
+ uDstOut.au8[ 6] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[6]);
+ uDstOut.au8[ 7] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[7]);
+ uDstOut.au8[ 8] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[0]);
+ uDstOut.au8[ 9] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[1]);
+ uDstOut.au8[10] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[2]);
+ uDstOut.au8[11] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[3]);
+ uDstOut.au8[12] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[4]);
+ uDstOut.au8[13] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[5]);
+ uDstOut.au8[14] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[6]);
+ uDstOut.au8[15] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[7]);
+
+ uDstOut.au8[16] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[ 8]);
+ uDstOut.au8[17] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[ 9]);
+ uDstOut.au8[18] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[10]);
+ uDstOut.au8[19] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[11]);
+ uDstOut.au8[20] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[12]);
+ uDstOut.au8[21] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[13]);
+ uDstOut.au8[22] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[14]);
+ uDstOut.au8[23] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[15]);
+ uDstOut.au8[24] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[ 8]);
+ uDstOut.au8[25] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[ 9]);
+ uDstOut.au8[26] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[10]);
+ uDstOut.au8[27] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[11]);
+ uDstOut.au8[28] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[12]);
+ uDstOut.au8[29] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[13]);
+ uDstOut.au8[30] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[14]);
+ uDstOut.au8[31] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[15]);
+ *puDst = uDstOut;
+}
+
+
+/*
+ * PACKSSDW - signed dwords -> signed words
+ */
+
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_packssdw_u64,(uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U const uSrc2 = { *puSrc };
+ RTUINT64U const uSrc1 = { *puDst };
+ ASMCompilerBarrier();
+ RTUINT64U uDstOut;
+ uDstOut.au16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[0]);
+ uDstOut.au16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[1]);
+ uDstOut.au16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[0]);
+ uDstOut.au16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[1]);
+ *puDst = uDstOut.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_packssdw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U const uSrc2 = *puSrc;
+ RTUINT128U const uSrc1 = *puDst;
+ ASMCompilerBarrier();
+ RTUINT128U uDstOut;
+ uDstOut.au16[ 0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[0]);
+ uDstOut.au16[ 1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[1]);
+ uDstOut.au16[ 2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[2]);
+ uDstOut.au16[ 3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[3]);
+ uDstOut.au16[ 4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[0]);
+ uDstOut.au16[ 5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[1]);
+ uDstOut.au16[ 6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[2]);
+ uDstOut.au16[ 7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[3]);
+ *puDst = uDstOut;
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpackssdw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U const uSrc2 = *puSrc2;
+ RTUINT128U const uSrc1 = *puSrc1;
+ ASMCompilerBarrier();
+ RTUINT128U uDstOut;
+ uDstOut.au16[ 0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[0]);
+ uDstOut.au16[ 1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[1]);
+ uDstOut.au16[ 2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[2]);
+ uDstOut.au16[ 3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[3]);
+ uDstOut.au16[ 4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[0]);
+ uDstOut.au16[ 5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[1]);
+ uDstOut.au16[ 6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[2]);
+ uDstOut.au16[ 7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[3]);
+ *puDst = uDstOut;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpackssdw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U const uSrc2 = *puSrc2;
+ RTUINT256U const uSrc1 = *puSrc1;
+ ASMCompilerBarrier();
+ RTUINT256U uDstOut;
+ uDstOut.au16[ 0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[0]);
+ uDstOut.au16[ 1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[1]);
+ uDstOut.au16[ 2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[2]);
+ uDstOut.au16[ 3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[3]);
+ uDstOut.au16[ 4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[0]);
+ uDstOut.au16[ 5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[1]);
+ uDstOut.au16[ 6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[2]);
+ uDstOut.au16[ 7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[3]);
+
+ uDstOut.au16[ 8] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[4]);
+ uDstOut.au16[ 9] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[5]);
+ uDstOut.au16[10] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[6]);
+ uDstOut.au16[11] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[7]);
+ uDstOut.au16[12] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[4]);
+ uDstOut.au16[13] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[5]);
+ uDstOut.au16[14] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[6]);
+ uDstOut.au16[15] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[7]);
+ *puDst = uDstOut;
+}
+
+
+/*
+ * PACKUSDW - signed dwords -> unsigned words
+ */
+#define SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(a_iDword) \
+ ( (uint32_t)(a_iDword) <= (uint16_t)0xffff \
+ ? (uint16_t)(a_iDword) \
+ : (uint16_t)0xffff * (uint16_t)((((a_iDword) >> 31) & 1) ^ 1) ) /* 0xffff = UINT16_MAX; source bit 31 = sign */
+
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_packusdw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U const uSrc2 = *puSrc;
+ RTUINT128U const uSrc1 = *puDst;
+ ASMCompilerBarrier();
+ RTUINT128U uDstOut;
+ uDstOut.au16[ 0] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[0]);
+ uDstOut.au16[ 1] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[1]);
+ uDstOut.au16[ 2] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[2]);
+ uDstOut.au16[ 3] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[3]);
+ uDstOut.au16[ 4] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[0]);
+ uDstOut.au16[ 5] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[1]);
+ uDstOut.au16[ 6] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[2]);
+ uDstOut.au16[ 7] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[3]);
+ *puDst = uDstOut;
+}
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpackusdw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U const uSrc2 = *puSrc2;
+ RTUINT128U const uSrc1 = *puSrc1;
+ ASMCompilerBarrier();
+ RTUINT128U uDstOut;
+ uDstOut.au16[ 0] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[0]);
+ uDstOut.au16[ 1] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[1]);
+ uDstOut.au16[ 2] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[2]);
+ uDstOut.au16[ 3] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[3]);
+ uDstOut.au16[ 4] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[0]);
+ uDstOut.au16[ 5] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[1]);
+ uDstOut.au16[ 6] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[2]);
+ uDstOut.au16[ 7] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[3]);
+ *puDst = uDstOut;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpackusdw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U const uSrc2 = *puSrc2;
+ RTUINT256U const uSrc1 = *puSrc1;
+ ASMCompilerBarrier();
+ RTUINT256U uDstOut;
+ uDstOut.au16[ 0] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[0]);
+ uDstOut.au16[ 1] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[1]);
+ uDstOut.au16[ 2] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[2]);
+ uDstOut.au16[ 3] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[3]);
+ uDstOut.au16[ 4] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[0]);
+ uDstOut.au16[ 5] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[1]);
+ uDstOut.au16[ 6] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[2]);
+ uDstOut.au16[ 7] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[3]);
+
+ uDstOut.au16[ 8] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[4]);
+ uDstOut.au16[ 9] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[5]);
+ uDstOut.au16[10] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[6]);
+ uDstOut.au16[11] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[7]);
+ uDstOut.au16[12] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[4]);
+ uDstOut.au16[13] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[5]);
+ uDstOut.au16[14] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[6]);
+ uDstOut.au16[15] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[7]);
+ *puDst = uDstOut;
+}
+
+
+/*
+ * [V]PABSB / [V]PABSW / [V]PABSD
+ */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pabsb_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U const uSrc = { *puSrc };
+ RTUINT64U uDstOut = { 0 };
+
+ uDstOut.au8[0] = RT_ABS(uSrc.ai8[0]);
+ uDstOut.au8[1] = RT_ABS(uSrc.ai8[1]);
+ uDstOut.au8[2] = RT_ABS(uSrc.ai8[2]);
+ uDstOut.au8[3] = RT_ABS(uSrc.ai8[3]);
+ uDstOut.au8[4] = RT_ABS(uSrc.ai8[4]);
+ uDstOut.au8[5] = RT_ABS(uSrc.ai8[5]);
+ uDstOut.au8[6] = RT_ABS(uSrc.ai8[6]);
+ uDstOut.au8[7] = RT_ABS(uSrc.ai8[7]);
+ *puDst = uDstOut.u;
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pabsb_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ puDst->au8[ 0] = RT_ABS(puSrc->ai8[ 0]);
+ puDst->au8[ 1] = RT_ABS(puSrc->ai8[ 1]);
+ puDst->au8[ 2] = RT_ABS(puSrc->ai8[ 2]);
+ puDst->au8[ 3] = RT_ABS(puSrc->ai8[ 3]);
+ puDst->au8[ 4] = RT_ABS(puSrc->ai8[ 4]);
+ puDst->au8[ 5] = RT_ABS(puSrc->ai8[ 5]);
+ puDst->au8[ 6] = RT_ABS(puSrc->ai8[ 6]);
+ puDst->au8[ 7] = RT_ABS(puSrc->ai8[ 7]);
+ puDst->au8[ 8] = RT_ABS(puSrc->ai8[ 8]);
+ puDst->au8[ 9] = RT_ABS(puSrc->ai8[ 9]);
+ puDst->au8[10] = RT_ABS(puSrc->ai8[10]);
+ puDst->au8[11] = RT_ABS(puSrc->ai8[11]);
+ puDst->au8[12] = RT_ABS(puSrc->ai8[12]);
+ puDst->au8[13] = RT_ABS(puSrc->ai8[13]);
+ puDst->au8[14] = RT_ABS(puSrc->ai8[14]);
+ puDst->au8[15] = RT_ABS(puSrc->ai8[15]);
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pabsw_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U const uSrc = { *puSrc };
+ RTUINT64U uDstOut = { 0 };
+
+ uDstOut.au16[0] = RT_ABS(uSrc.ai16[0]);
+ uDstOut.au16[1] = RT_ABS(uSrc.ai16[1]);
+ uDstOut.au16[2] = RT_ABS(uSrc.ai16[2]);
+ uDstOut.au16[3] = RT_ABS(uSrc.ai16[3]);
+ *puDst = uDstOut.u;
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pabsw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ puDst->au16[ 0] = RT_ABS(puSrc->ai16[ 0]);
+ puDst->au16[ 1] = RT_ABS(puSrc->ai16[ 1]);
+ puDst->au16[ 2] = RT_ABS(puSrc->ai16[ 2]);
+ puDst->au16[ 3] = RT_ABS(puSrc->ai16[ 3]);
+ puDst->au16[ 4] = RT_ABS(puSrc->ai16[ 4]);
+ puDst->au16[ 5] = RT_ABS(puSrc->ai16[ 5]);
+ puDst->au16[ 6] = RT_ABS(puSrc->ai16[ 6]);
+ puDst->au16[ 7] = RT_ABS(puSrc->ai16[ 7]);
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pabsd_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U const uSrc = { *puSrc };
+ RTUINT64U uDstOut = { 0 };
+
+ uDstOut.au32[0] = RT_ABS(uSrc.ai32[0]);
+ uDstOut.au32[1] = RT_ABS(uSrc.ai32[1]);
+ *puDst = uDstOut.u;
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pabsd_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ puDst->au32[ 0] = RT_ABS(puSrc->ai32[ 0]);
+ puDst->au32[ 1] = RT_ABS(puSrc->ai32[ 1]);
+ puDst->au32[ 2] = RT_ABS(puSrc->ai32[ 2]);
+ puDst->au32[ 3] = RT_ABS(puSrc->ai32[ 3]);
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpabsb_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ puDst->au8[ 0] = RT_ABS(puSrc->ai8[ 0]);
+ puDst->au8[ 1] = RT_ABS(puSrc->ai8[ 1]);
+ puDst->au8[ 2] = RT_ABS(puSrc->ai8[ 2]);
+ puDst->au8[ 3] = RT_ABS(puSrc->ai8[ 3]);
+ puDst->au8[ 4] = RT_ABS(puSrc->ai8[ 4]);
+ puDst->au8[ 5] = RT_ABS(puSrc->ai8[ 5]);
+ puDst->au8[ 6] = RT_ABS(puSrc->ai8[ 6]);
+ puDst->au8[ 7] = RT_ABS(puSrc->ai8[ 7]);
+ puDst->au8[ 8] = RT_ABS(puSrc->ai8[ 8]);
+ puDst->au8[ 9] = RT_ABS(puSrc->ai8[ 9]);
+ puDst->au8[10] = RT_ABS(puSrc->ai8[10]);
+ puDst->au8[11] = RT_ABS(puSrc->ai8[11]);
+ puDst->au8[12] = RT_ABS(puSrc->ai8[12]);
+ puDst->au8[13] = RT_ABS(puSrc->ai8[13]);
+ puDst->au8[14] = RT_ABS(puSrc->ai8[14]);
+ puDst->au8[15] = RT_ABS(puSrc->ai8[15]);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpabsb_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc))
+{
+ puDst->au8[ 0] = RT_ABS(puSrc->ai8[ 0]);
+ puDst->au8[ 1] = RT_ABS(puSrc->ai8[ 1]);
+ puDst->au8[ 2] = RT_ABS(puSrc->ai8[ 2]);
+ puDst->au8[ 3] = RT_ABS(puSrc->ai8[ 3]);
+ puDst->au8[ 4] = RT_ABS(puSrc->ai8[ 4]);
+ puDst->au8[ 5] = RT_ABS(puSrc->ai8[ 5]);
+ puDst->au8[ 6] = RT_ABS(puSrc->ai8[ 6]);
+ puDst->au8[ 7] = RT_ABS(puSrc->ai8[ 7]);
+ puDst->au8[ 8] = RT_ABS(puSrc->ai8[ 8]);
+ puDst->au8[ 9] = RT_ABS(puSrc->ai8[ 9]);
+ puDst->au8[10] = RT_ABS(puSrc->ai8[10]);
+ puDst->au8[11] = RT_ABS(puSrc->ai8[11]);
+ puDst->au8[12] = RT_ABS(puSrc->ai8[12]);
+ puDst->au8[13] = RT_ABS(puSrc->ai8[13]);
+ puDst->au8[14] = RT_ABS(puSrc->ai8[14]);
+ puDst->au8[15] = RT_ABS(puSrc->ai8[15]);
+ puDst->au8[16] = RT_ABS(puSrc->ai8[16]);
+ puDst->au8[17] = RT_ABS(puSrc->ai8[17]);
+ puDst->au8[18] = RT_ABS(puSrc->ai8[18]);
+ puDst->au8[19] = RT_ABS(puSrc->ai8[19]);
+ puDst->au8[20] = RT_ABS(puSrc->ai8[20]);
+ puDst->au8[21] = RT_ABS(puSrc->ai8[21]);
+ puDst->au8[22] = RT_ABS(puSrc->ai8[22]);
+ puDst->au8[23] = RT_ABS(puSrc->ai8[23]);
+ puDst->au8[24] = RT_ABS(puSrc->ai8[24]);
+ puDst->au8[25] = RT_ABS(puSrc->ai8[25]);
+ puDst->au8[26] = RT_ABS(puSrc->ai8[26]);
+ puDst->au8[27] = RT_ABS(puSrc->ai8[27]);
+ puDst->au8[28] = RT_ABS(puSrc->ai8[28]);
+ puDst->au8[29] = RT_ABS(puSrc->ai8[29]);
+ puDst->au8[30] = RT_ABS(puSrc->ai8[30]);
+ puDst->au8[31] = RT_ABS(puSrc->ai8[31]);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpabsw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ puDst->au16[ 0] = RT_ABS(puSrc->ai16[ 0]);
+ puDst->au16[ 1] = RT_ABS(puSrc->ai16[ 1]);
+ puDst->au16[ 2] = RT_ABS(puSrc->ai16[ 2]);
+ puDst->au16[ 3] = RT_ABS(puSrc->ai16[ 3]);
+ puDst->au16[ 4] = RT_ABS(puSrc->ai16[ 4]);
+ puDst->au16[ 5] = RT_ABS(puSrc->ai16[ 5]);
+ puDst->au16[ 6] = RT_ABS(puSrc->ai16[ 6]);
+ puDst->au16[ 7] = RT_ABS(puSrc->ai16[ 7]);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpabsw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc))
+{
+ puDst->au16[ 0] = RT_ABS(puSrc->ai16[ 0]);
+ puDst->au16[ 1] = RT_ABS(puSrc->ai16[ 1]);
+ puDst->au16[ 2] = RT_ABS(puSrc->ai16[ 2]);
+ puDst->au16[ 3] = RT_ABS(puSrc->ai16[ 3]);
+ puDst->au16[ 4] = RT_ABS(puSrc->ai16[ 4]);
+ puDst->au16[ 5] = RT_ABS(puSrc->ai16[ 5]);
+ puDst->au16[ 6] = RT_ABS(puSrc->ai16[ 6]);
+ puDst->au16[ 7] = RT_ABS(puSrc->ai16[ 7]);
+ puDst->au16[ 8] = RT_ABS(puSrc->ai16[ 8]);
+ puDst->au16[ 9] = RT_ABS(puSrc->ai16[ 9]);
+ puDst->au16[10] = RT_ABS(puSrc->ai16[10]);
+ puDst->au16[11] = RT_ABS(puSrc->ai16[11]);
+ puDst->au16[12] = RT_ABS(puSrc->ai16[12]);
+ puDst->au16[13] = RT_ABS(puSrc->ai16[13]);
+ puDst->au16[14] = RT_ABS(puSrc->ai16[14]);
+ puDst->au16[15] = RT_ABS(puSrc->ai16[15]);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpabsd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ puDst->au32[ 0] = RT_ABS(puSrc->ai32[ 0]);
+ puDst->au32[ 1] = RT_ABS(puSrc->ai32[ 1]);
+ puDst->au32[ 2] = RT_ABS(puSrc->ai32[ 2]);
+ puDst->au32[ 3] = RT_ABS(puSrc->ai32[ 3]);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpabsd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc))
+{
+ puDst->au32[ 0] = RT_ABS(puSrc->ai32[ 0]);
+ puDst->au32[ 1] = RT_ABS(puSrc->ai32[ 1]);
+ puDst->au32[ 2] = RT_ABS(puSrc->ai32[ 2]);
+ puDst->au32[ 3] = RT_ABS(puSrc->ai32[ 3]);
+ puDst->au32[ 4] = RT_ABS(puSrc->ai32[ 4]);
+ puDst->au32[ 5] = RT_ABS(puSrc->ai32[ 5]);
+ puDst->au32[ 6] = RT_ABS(puSrc->ai32[ 6]);
+ puDst->au32[ 7] = RT_ABS(puSrc->ai32[ 7]);
+}
+
+
+/*
+ * PSIGNB / VPSIGNB / PSIGNW / VPSIGNW / PSIGND / VPSIGND
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_psignb_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst = { 0 }; /* Shut up MSVC. */
+
+ for (uint32_t i = 0; i < RT_ELEMENTS(uDst.ai8); i++)
+ {
+ if (uSrc2.ai8[i] < 0)
+ uDst.ai8[i] = -uSrc1.ai8[i];
+ else if (uSrc2.ai8[i] == 0)
+ uDst.ai8[i] = 0;
+ else /* uSrc2.ai8[i] > 0 */
+ uDst.ai8[i] = uSrc1.ai8[i];
+ }
+
+ *puDst = uDst.u;
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psignb_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai8); i++)
+ {
+ if (puSrc->ai8[i] < 0)
+ puDst->ai8[i] = -uSrc1.ai8[i];
+ else if (puSrc->ai8[i] == 0)
+ puDst->ai8[i] = 0;
+ else /* puSrc->ai8[i] > 0 */
+ puDst->ai8[i] = uSrc1.ai8[i];
+ }
+
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psignw_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst = { 0 }; /* Shut up MSVC. */
+
+ for (uint32_t i = 0; i < RT_ELEMENTS(uDst.ai16); i++)
+ {
+ if (uSrc2.ai16[i] < 0)
+ uDst.ai16[i] = -uSrc1.ai16[i];
+ else if (uSrc2.ai16[i] == 0)
+ uDst.ai16[i] = 0;
+ else /* uSrc2.ai16[i] > 0 */
+ uDst.ai16[i] = uSrc1.ai16[i];
+ }
+
+ *puDst = uDst.u;
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psignw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai16); i++)
+ {
+ if (puSrc->ai16[i] < 0)
+ puDst->ai16[i] = -uSrc1.ai16[i];
+ else if (puSrc->ai16[i] == 0)
+ puDst->ai16[i] = 0;
+ else /* puSrc->ai16[i] > 0 */
+ puDst->ai16[i] = uSrc1.ai16[i];
+ }
+
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psignd_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst = { 0 }; /* Shut up MSVC. */
+
+ for (uint32_t i = 0; i < RT_ELEMENTS(uDst.ai32); i++)
+ {
+ if (uSrc2.ai32[i] < 0)
+ uDst.ai32[i] = -uSrc1.ai32[i];
+ else if (uSrc2.ai32[i] == 0)
+ uDst.ai32[i] = 0;
+ else /* uSrc2.ai32[i] > 0 */
+ uDst.ai32[i] = uSrc1.ai32[i];
+ }
+
+ *puDst = uDst.u;
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psignd_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai32); i++)
+ {
+ if (puSrc->ai32[i] < 0)
+ puDst->ai32[i] = -uSrc1.ai32[i];
+ else if (puSrc->ai32[i] == 0)
+ puDst->ai32[i] = 0;
+ else /* puSrc->ai32[i] > 0 */
+ puDst->ai32[i] = uSrc1.ai32[i];
+ }
+
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpsignb_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai8); i++)
+ {
+ if (puSrc2->ai8[i] < 0)
+ puDst->ai8[i] = -puSrc1->ai8[i];
+ else if (puSrc2->ai8[i] == 0)
+ puDst->ai8[i] = 0;
+ else /* puSrc2->ai8[i] > 0 */
+ puDst->ai8[i] = puSrc1->ai8[i];
+ }
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpsignb_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai8); i++)
+ {
+ if (puSrc2->ai8[i] < 0)
+ puDst->ai8[i] = -puSrc1->ai8[i];
+ else if (puSrc2->ai8[i] == 0)
+ puDst->ai8[i] = 0;
+ else /* puSrc2->ai8[i] > 0 */
+ puDst->ai8[i] = puSrc1->ai8[i];
+ }
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpsignw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai16); i++)
+ {
+ if (puSrc2->ai16[i] < 0)
+ puDst->ai16[i] = -puSrc1->ai16[i];
+ else if (puSrc2->ai16[i] == 0)
+ puDst->ai16[i] = 0;
+ else /* puSrc2->ai16[i] > 0 */
+ puDst->ai16[i] = puSrc1->ai16[i];
+ }
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpsignw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai16); i++)
+ {
+ if (puSrc2->ai16[i] < 0)
+ puDst->ai16[i] = -puSrc1->ai16[i];
+ else if (puSrc2->ai16[i] == 0)
+ puDst->ai16[i] = 0;
+ else /* puSrc2->ai16[i] > 0 */
+ puDst->ai16[i] = puSrc1->ai16[i];
+ }
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpsignd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai32); i++)
+ {
+ if (puSrc2->ai32[i] < 0)
+ puDst->ai32[i] = -puSrc1->ai32[i];
+ else if (puSrc2->ai32[i] == 0)
+ puDst->ai32[i] = 0;
+ else /* puSrc2->ai32[i] > 0 */
+ puDst->ai32[i] = puSrc1->ai32[i];
+ }
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpsignd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai32); i++)
+ {
+ if (puSrc2->ai32[i] < 0)
+ puDst->ai32[i] = -puSrc1->ai32[i];
+ else if (puSrc2->ai32[i] == 0)
+ puDst->ai32[i] = 0;
+ else /* puSrc2->ai32[i] > 0 */
+ puDst->ai32[i] = puSrc1->ai32[i];
+ }
+}
+
+
+/*
+ * PHADDW / VPHADDW / PHADDD / VPHADDD
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_phaddw_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst = { 0 }; /* Shut up MSVC. */
+
+ uDst.ai16[0] = uSrc1.ai16[0] + uSrc1.ai16[1];
+ uDst.ai16[1] = uSrc1.ai16[2] + uSrc1.ai16[3];
+ uDst.ai16[2] = uSrc2.ai16[0] + uSrc2.ai16[1];
+ uDst.ai16[3] = uSrc2.ai16[2] + uSrc2.ai16[3];
+ *puDst = uDst.u;
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_phaddw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->ai16[0] = uSrc1.ai16[0] + uSrc1.ai16[1];
+ puDst->ai16[1] = uSrc1.ai16[2] + uSrc1.ai16[3];
+ puDst->ai16[2] = uSrc1.ai16[4] + uSrc1.ai16[5];
+ puDst->ai16[3] = uSrc1.ai16[6] + uSrc1.ai16[7];
+
+ puDst->ai16[4] = puSrc->ai16[0] + puSrc->ai16[1];
+ puDst->ai16[5] = puSrc->ai16[2] + puSrc->ai16[3];
+ puDst->ai16[6] = puSrc->ai16[4] + puSrc->ai16[5];
+ puDst->ai16[7] = puSrc->ai16[6] + puSrc->ai16[7];
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_phaddd_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst = { 0 }; /* Shut up MSVC. */
+
+ uDst.ai32[0] = uSrc1.ai32[0] + uSrc1.ai32[1];
+ uDst.ai32[1] = uSrc2.ai32[0] + uSrc2.ai32[1];
+ *puDst = uDst.u;
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_phaddd_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->ai32[0] = uSrc1.ai32[0] + uSrc1.ai32[1];
+ puDst->ai32[1] = uSrc1.ai32[2] + uSrc1.ai32[3];
+
+ puDst->ai32[2] = puSrc->ai32[0] + puSrc->ai32[1];
+ puDst->ai32[3] = puSrc->ai32[2] + puSrc->ai32[3];
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vphaddw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U uDst; /* puDst can be the same as one of the source operands. */
+
+ uDst.ai16[0] = puSrc1->ai16[0] + puSrc1->ai16[1];
+ uDst.ai16[1] = puSrc1->ai16[2] + puSrc1->ai16[3];
+ uDst.ai16[2] = puSrc1->ai16[4] + puSrc1->ai16[5];
+ uDst.ai16[3] = puSrc1->ai16[6] + puSrc1->ai16[7];
+
+ uDst.ai16[4] = puSrc2->ai16[0] + puSrc2->ai16[1];
+ uDst.ai16[5] = puSrc2->ai16[2] + puSrc2->ai16[3];
+ uDst.ai16[6] = puSrc2->ai16[4] + puSrc2->ai16[5];
+ uDst.ai16[7] = puSrc2->ai16[6] + puSrc2->ai16[7];
+
+ puDst->au64[0] = uDst.au64[0];
+ puDst->au64[1] = uDst.au64[1];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vphaddw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U uDst; /* puDst can be the same as one of the source operands. */
+
+ uDst.ai16[ 0] = puSrc1->ai16[ 0] + puSrc1->ai16[ 1];
+ uDst.ai16[ 1] = puSrc1->ai16[ 2] + puSrc1->ai16[ 3];
+ uDst.ai16[ 2] = puSrc1->ai16[ 4] + puSrc1->ai16[ 5];
+ uDst.ai16[ 3] = puSrc1->ai16[ 6] + puSrc1->ai16[ 7];
+ uDst.ai16[ 4] = puSrc2->ai16[ 0] + puSrc2->ai16[ 1];
+ uDst.ai16[ 5] = puSrc2->ai16[ 2] + puSrc2->ai16[ 3];
+ uDst.ai16[ 6] = puSrc2->ai16[ 4] + puSrc2->ai16[ 5];
+ uDst.ai16[ 7] = puSrc2->ai16[ 6] + puSrc2->ai16[ 7];
+
+ uDst.ai16[ 8] = puSrc1->ai16[ 8] + puSrc1->ai16[ 9];
+ uDst.ai16[ 9] = puSrc1->ai16[10] + puSrc1->ai16[11];
+ uDst.ai16[10] = puSrc1->ai16[12] + puSrc1->ai16[13];
+ uDst.ai16[11] = puSrc1->ai16[14] + puSrc1->ai16[15];
+ uDst.ai16[12] = puSrc2->ai16[ 8] + puSrc2->ai16[ 9];
+ uDst.ai16[13] = puSrc2->ai16[10] + puSrc2->ai16[11];
+ uDst.ai16[14] = puSrc2->ai16[12] + puSrc2->ai16[13];
+ uDst.ai16[15] = puSrc2->ai16[14] + puSrc2->ai16[15];
+
+ puDst->au64[0] = uDst.au64[0];
+ puDst->au64[1] = uDst.au64[1];
+ puDst->au64[2] = uDst.au64[2];
+ puDst->au64[3] = uDst.au64[3];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vphaddd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U uDst; /* puDst can be the same as one of the source operands. */
+
+ uDst.ai32[0] = puSrc1->ai32[0] + puSrc1->ai32[1];
+ uDst.ai32[1] = puSrc1->ai32[2] + puSrc1->ai32[3];
+
+ uDst.ai32[2] = puSrc2->ai32[0] + puSrc2->ai32[1];
+ uDst.ai32[3] = puSrc2->ai32[2] + puSrc2->ai32[3];
+
+ puDst->au64[0] = uDst.au64[0];
+ puDst->au64[1] = uDst.au64[1];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vphaddd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U uDst; /* puDst can be the same as one of the source operands. */
+
+ uDst.ai32[0] = puSrc1->ai32[ 0] + puSrc1->ai32[ 1];
+ uDst.ai32[1] = puSrc1->ai32[ 2] + puSrc1->ai32[ 3];
+ uDst.ai32[2] = puSrc2->ai32[ 0] + puSrc2->ai32[ 1];
+ uDst.ai32[3] = puSrc2->ai32[ 2] + puSrc2->ai32[ 3];
+
+ uDst.ai32[4] = puSrc1->ai32[ 4] + puSrc1->ai32[ 5];
+ uDst.ai32[5] = puSrc1->ai32[ 6] + puSrc1->ai32[ 7];
+ uDst.ai32[6] = puSrc2->ai32[ 4] + puSrc2->ai32[ 5];
+ uDst.ai32[7] = puSrc2->ai32[ 6] + puSrc2->ai32[ 7];
+
+ puDst->au64[0] = uDst.au64[0];
+ puDst->au64[1] = uDst.au64[1];
+ puDst->au64[2] = uDst.au64[2];
+ puDst->au64[3] = uDst.au64[3];
+}
+
+
+/*
+ * PHSUBW / VPHSUBW / PHSUBD / VPHSUBD
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_phsubw_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst = { 0 }; /* Shut up MSVC. */
+
+ uDst.ai16[0] = uSrc1.ai16[0] - uSrc1.ai16[1];
+ uDst.ai16[1] = uSrc1.ai16[2] - uSrc1.ai16[3];
+ uDst.ai16[2] = uSrc2.ai16[0] - uSrc2.ai16[1];
+ uDst.ai16[3] = uSrc2.ai16[2] - uSrc2.ai16[3];
+ *puDst = uDst.u;
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_phsubw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->ai16[0] = uSrc1.ai16[0] - uSrc1.ai16[1];
+ puDst->ai16[1] = uSrc1.ai16[2] - uSrc1.ai16[3];
+ puDst->ai16[2] = uSrc1.ai16[4] - uSrc1.ai16[5];
+ puDst->ai16[3] = uSrc1.ai16[6] - uSrc1.ai16[7];
+
+ puDst->ai16[4] = puSrc->ai16[0] - puSrc->ai16[1];
+ puDst->ai16[5] = puSrc->ai16[2] - puSrc->ai16[3];
+ puDst->ai16[6] = puSrc->ai16[4] - puSrc->ai16[5];
+ puDst->ai16[7] = puSrc->ai16[6] - puSrc->ai16[7];
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_phsubd_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst = { 0 }; /* Shut up MSVC. */
+
+ uDst.ai32[0] = uSrc1.ai32[0] - uSrc1.ai32[1];
+ uDst.ai32[1] = uSrc2.ai32[0] - uSrc2.ai32[1];
+ *puDst = uDst.u;
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_phsubd_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->ai32[0] = uSrc1.ai32[0] - uSrc1.ai32[1];
+ puDst->ai32[1] = uSrc1.ai32[2] - uSrc1.ai32[3];
+
+ puDst->ai32[2] = puSrc->ai32[0] - puSrc->ai32[1];
+ puDst->ai32[3] = puSrc->ai32[2] - puSrc->ai32[3];
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vphsubw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U uDst; /* puDst can be the same as one of the source operands. */
+
+ uDst.ai16[0] = puSrc1->ai16[0] - puSrc1->ai16[1];
+ uDst.ai16[1] = puSrc1->ai16[2] - puSrc1->ai16[3];
+ uDst.ai16[2] = puSrc1->ai16[4] - puSrc1->ai16[5];
+ uDst.ai16[3] = puSrc1->ai16[6] - puSrc1->ai16[7];
+
+ uDst.ai16[4] = puSrc2->ai16[0] - puSrc2->ai16[1];
+ uDst.ai16[5] = puSrc2->ai16[2] - puSrc2->ai16[3];
+ uDst.ai16[6] = puSrc2->ai16[4] - puSrc2->ai16[5];
+ uDst.ai16[7] = puSrc2->ai16[6] - puSrc2->ai16[7];
+
+ puDst->au64[0] = uDst.au64[0];
+ puDst->au64[1] = uDst.au64[1];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vphsubw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U uDst; /* puDst can be the same as one of the source operands. */
+
+ uDst.ai16[ 0] = puSrc1->ai16[ 0] - puSrc1->ai16[ 1];
+ uDst.ai16[ 1] = puSrc1->ai16[ 2] - puSrc1->ai16[ 3];
+ uDst.ai16[ 2] = puSrc1->ai16[ 4] - puSrc1->ai16[ 5];
+ uDst.ai16[ 3] = puSrc1->ai16[ 6] - puSrc1->ai16[ 7];
+ uDst.ai16[ 4] = puSrc2->ai16[ 0] - puSrc2->ai16[ 1];
+ uDst.ai16[ 5] = puSrc2->ai16[ 2] - puSrc2->ai16[ 3];
+ uDst.ai16[ 6] = puSrc2->ai16[ 4] - puSrc2->ai16[ 5];
+ uDst.ai16[ 7] = puSrc2->ai16[ 6] - puSrc2->ai16[ 7];
+
+ uDst.ai16[ 8] = puSrc1->ai16[ 8] - puSrc1->ai16[ 9];
+ uDst.ai16[ 9] = puSrc1->ai16[10] - puSrc1->ai16[11];
+ uDst.ai16[10] = puSrc1->ai16[12] - puSrc1->ai16[13];
+ uDst.ai16[11] = puSrc1->ai16[14] - puSrc1->ai16[15];
+ uDst.ai16[12] = puSrc2->ai16[ 8] - puSrc2->ai16[ 9];
+ uDst.ai16[13] = puSrc2->ai16[10] - puSrc2->ai16[11];
+ uDst.ai16[14] = puSrc2->ai16[12] - puSrc2->ai16[13];
+ uDst.ai16[15] = puSrc2->ai16[14] - puSrc2->ai16[15];
+
+ puDst->au64[0] = uDst.au64[0];
+ puDst->au64[1] = uDst.au64[1];
+ puDst->au64[2] = uDst.au64[2];
+ puDst->au64[3] = uDst.au64[3];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vphsubd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U uDst; /* puDst can be the same as one of the source operands. */
+
+ uDst.ai32[0] = puSrc1->ai32[0] - puSrc1->ai32[1];
+ uDst.ai32[1] = puSrc1->ai32[2] - puSrc1->ai32[3];
+
+ uDst.ai32[2] = puSrc2->ai32[0] - puSrc2->ai32[1];
+ uDst.ai32[3] = puSrc2->ai32[2] - puSrc2->ai32[3];
+
+ puDst->au64[0] = uDst.au64[0];
+ puDst->au64[1] = uDst.au64[1];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vphsubd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U uDst; /* puDst can be the same as one of the source operands. */
+
+ uDst.ai32[0] = puSrc1->ai32[ 0] - puSrc1->ai32[ 1];
+ uDst.ai32[1] = puSrc1->ai32[ 2] - puSrc1->ai32[ 3];
+ uDst.ai32[2] = puSrc2->ai32[ 0] - puSrc2->ai32[ 1];
+ uDst.ai32[3] = puSrc2->ai32[ 2] - puSrc2->ai32[ 3];
+
+ uDst.ai32[4] = puSrc1->ai32[ 4] - puSrc1->ai32[ 5];
+ uDst.ai32[5] = puSrc1->ai32[ 6] - puSrc1->ai32[ 7];
+ uDst.ai32[6] = puSrc2->ai32[ 4] - puSrc2->ai32[ 5];
+ uDst.ai32[7] = puSrc2->ai32[ 6] - puSrc2->ai32[ 7];
+
+ puDst->au64[0] = uDst.au64[0];
+ puDst->au64[1] = uDst.au64[1];
+ puDst->au64[2] = uDst.au64[2];
+ puDst->au64[3] = uDst.au64[3];
+}
+
+
+/*
+ * PHADDSW / VPHADDSW
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_phaddsw_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst = { 0 }; /* Shut up MSVC. */
+
+ uDst.ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[0] + uSrc1.ai16[1]);
+ uDst.ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[2] + uSrc1.ai16[3]);
+ uDst.ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.ai16[0] + uSrc2.ai16[1]);
+ uDst.ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.ai16[2] + uSrc2.ai16[3]);
+ *puDst = uDst.u;
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_phaddsw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[0] + uSrc1.ai16[1]);
+ puDst->ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[2] + uSrc1.ai16[3]);
+ puDst->ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[4] + uSrc1.ai16[5]);
+ puDst->ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[6] + uSrc1.ai16[7]);
+
+ puDst->ai16[4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc->ai16[0] + puSrc->ai16[1]);
+ puDst->ai16[5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc->ai16[2] + puSrc->ai16[3]);
+ puDst->ai16[6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc->ai16[4] + puSrc->ai16[5]);
+ puDst->ai16[7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc->ai16[6] + puSrc->ai16[7]);
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vphaddsw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U uDst; /* puDst can be the same as one of the source operands. */
+
+ uDst.ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[0] + puSrc1->ai16[1]);
+ uDst.ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[2] + puSrc1->ai16[3]);
+ uDst.ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[4] + puSrc1->ai16[5]);
+ uDst.ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[6] + puSrc1->ai16[7]);
+
+ uDst.ai16[4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[0] + puSrc2->ai16[1]);
+ uDst.ai16[5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[2] + puSrc2->ai16[3]);
+ uDst.ai16[6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[4] + puSrc2->ai16[5]);
+ uDst.ai16[7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[6] + puSrc2->ai16[7]);
+
+ puDst->au64[0] = uDst.au64[0];
+ puDst->au64[1] = uDst.au64[1];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vphaddsw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U uDst; /* puDst can be the same as one of the source operands. */
+
+ uDst.ai16[ 0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 0] + puSrc1->ai16[ 1]);
+ uDst.ai16[ 1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 2] + puSrc1->ai16[ 3]);
+ uDst.ai16[ 2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 4] + puSrc1->ai16[ 5]);
+ uDst.ai16[ 3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 6] + puSrc1->ai16[ 7]);
+ uDst.ai16[ 4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 0] + puSrc2->ai16[ 1]);
+ uDst.ai16[ 5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 2] + puSrc2->ai16[ 3]);
+ uDst.ai16[ 6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 4] + puSrc2->ai16[ 5]);
+ uDst.ai16[ 7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 6] + puSrc2->ai16[ 7]);
+
+ uDst.ai16[ 8] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 8] + puSrc1->ai16[ 9]);
+ uDst.ai16[ 9] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[10] + puSrc1->ai16[11]);
+ uDst.ai16[10] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[12] + puSrc1->ai16[13]);
+ uDst.ai16[11] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[14] + puSrc1->ai16[15]);
+ uDst.ai16[12] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 8] + puSrc2->ai16[ 9]);
+ uDst.ai16[13] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[10] + puSrc2->ai16[11]);
+ uDst.ai16[14] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[12] + puSrc2->ai16[13]);
+ uDst.ai16[15] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[14] + puSrc2->ai16[15]);
+
+ puDst->au64[0] = uDst.au64[0];
+ puDst->au64[1] = uDst.au64[1];
+ puDst->au64[2] = uDst.au64[2];
+ puDst->au64[3] = uDst.au64[3];
+}
+
+
+/*
+ * PHSUBSW / VPHSUBSW
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_phsubsw_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst = { 0 }; /* Shut up MSVC. */
+
+ uDst.ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[0] - uSrc1.ai16[1]);
+ uDst.ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[2] - uSrc1.ai16[3]);
+ uDst.ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.ai16[0] - uSrc2.ai16[1]);
+ uDst.ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.ai16[2] - uSrc2.ai16[3]);
+ *puDst = uDst.u;
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_phsubsw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[0] - uSrc1.ai16[1]);
+ puDst->ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[2] - uSrc1.ai16[3]);
+ puDst->ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[4] - uSrc1.ai16[5]);
+ puDst->ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[6] - uSrc1.ai16[7]);
+
+ puDst->ai16[4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc->ai16[0] - puSrc->ai16[1]);
+ puDst->ai16[5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc->ai16[2] - puSrc->ai16[3]);
+ puDst->ai16[6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc->ai16[4] - puSrc->ai16[5]);
+ puDst->ai16[7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc->ai16[6] - puSrc->ai16[7]);
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vphsubsw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U uDst; /* puDst can be the same as one of the source operands. */
+
+ uDst.ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[0] - puSrc1->ai16[1]);
+ uDst.ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[2] - puSrc1->ai16[3]);
+ uDst.ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[4] - puSrc1->ai16[5]);
+ uDst.ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[6] - puSrc1->ai16[7]);
+
+ uDst.ai16[4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[0] - puSrc2->ai16[1]);
+ uDst.ai16[5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[2] - puSrc2->ai16[3]);
+ uDst.ai16[6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[4] - puSrc2->ai16[5]);
+ uDst.ai16[7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[6] - puSrc2->ai16[7]);
+
+ puDst->au64[0] = uDst.au64[0];
+ puDst->au64[1] = uDst.au64[1];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vphsubsw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U uDst; /* puDst can be the same as one of the source operands. */
+
+ uDst.ai16[ 0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 0] - puSrc1->ai16[ 1]);
+ uDst.ai16[ 1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 2] - puSrc1->ai16[ 3]);
+ uDst.ai16[ 2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 4] - puSrc1->ai16[ 5]);
+ uDst.ai16[ 3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 6] - puSrc1->ai16[ 7]);
+ uDst.ai16[ 4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 0] - puSrc2->ai16[ 1]);
+ uDst.ai16[ 5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 2] - puSrc2->ai16[ 3]);
+ uDst.ai16[ 6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 4] - puSrc2->ai16[ 5]);
+ uDst.ai16[ 7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 6] - puSrc2->ai16[ 7]);
+
+ uDst.ai16[ 8] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 8] - puSrc1->ai16[ 9]);
+ uDst.ai16[ 9] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[10] - puSrc1->ai16[11]);
+ uDst.ai16[10] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[12] - puSrc1->ai16[13]);
+ uDst.ai16[11] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[14] - puSrc1->ai16[15]);
+ uDst.ai16[12] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 8] - puSrc2->ai16[ 9]);
+ uDst.ai16[13] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[10] - puSrc2->ai16[11]);
+ uDst.ai16[14] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[12] - puSrc2->ai16[13]);
+ uDst.ai16[15] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[14] - puSrc2->ai16[15]);
+
+ puDst->au64[0] = uDst.au64[0];
+ puDst->au64[1] = uDst.au64[1];
+ puDst->au64[2] = uDst.au64[2];
+ puDst->au64[3] = uDst.au64[3];
+}
+
+
+/*
+ * PMADDUBSW / VPMADDUBSW
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmaddubsw_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst = { 0 }; /* Shut up MSVC. */
+
+ uDst.ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[0] * uSrc2.ai8[0] + (uint16_t)uSrc1.au8[1] * uSrc2.ai8[1]);
+ uDst.ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[2] * uSrc2.ai8[2] + (uint16_t)uSrc1.au8[3] * uSrc2.ai8[3]);
+ uDst.ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[4] * uSrc2.ai8[4] + (uint16_t)uSrc1.au8[5] * uSrc2.ai8[5]);
+ uDst.ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[6] * uSrc2.ai8[6] + (uint16_t)uSrc1.au8[7] * uSrc2.ai8[7]);
+ *puDst = uDst.u;
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmaddubsw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[ 0] * puSrc->ai8[ 0] + (uint16_t)uSrc1.au8[ 1] * puSrc->ai8[ 1]);
+ puDst->ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[ 2] * puSrc->ai8[ 2] + (uint16_t)uSrc1.au8[ 3] * puSrc->ai8[ 3]);
+ puDst->ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[ 4] * puSrc->ai8[ 4] + (uint16_t)uSrc1.au8[ 5] * puSrc->ai8[ 5]);
+ puDst->ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[ 6] * puSrc->ai8[ 6] + (uint16_t)uSrc1.au8[ 7] * puSrc->ai8[ 7]);
+ puDst->ai16[4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[ 8] * puSrc->ai8[ 8] + (uint16_t)uSrc1.au8[ 9] * puSrc->ai8[ 9]);
+ puDst->ai16[5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[10] * puSrc->ai8[10] + (uint16_t)uSrc1.au8[11] * puSrc->ai8[11]);
+ puDst->ai16[6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[12] * puSrc->ai8[12] + (uint16_t)uSrc1.au8[13] * puSrc->ai8[13]);
+ puDst->ai16[7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[14] * puSrc->ai8[14] + (uint16_t)uSrc1.au8[15] * puSrc->ai8[15]);
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaddubsw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U uDst; /* puDst can be the same as one of the source operands. */
+
+ uDst.ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 0] * puSrc2->ai8[ 0] + (uint16_t)puSrc1->au8[ 1] * puSrc2->ai8[ 1]);
+ uDst.ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 2] * puSrc2->ai8[ 2] + (uint16_t)puSrc1->au8[ 3] * puSrc2->ai8[ 3]);
+ uDst.ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 4] * puSrc2->ai8[ 4] + (uint16_t)puSrc1->au8[ 5] * puSrc2->ai8[ 5]);
+ uDst.ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 6] * puSrc2->ai8[ 6] + (uint16_t)puSrc1->au8[ 7] * puSrc2->ai8[ 7]);
+ uDst.ai16[4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 8] * puSrc2->ai8[ 8] + (uint16_t)puSrc1->au8[ 9] * puSrc2->ai8[ 9]);
+ uDst.ai16[5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[10] * puSrc2->ai8[10] + (uint16_t)puSrc1->au8[11] * puSrc2->ai8[11]);
+ uDst.ai16[6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[12] * puSrc2->ai8[12] + (uint16_t)puSrc1->au8[13] * puSrc2->ai8[13]);
+ uDst.ai16[7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[14] * puSrc2->ai8[14] + (uint16_t)puSrc1->au8[15] * puSrc2->ai8[15]);
+
+ puDst->au64[0] = uDst.au64[0];
+ puDst->au64[1] = uDst.au64[1];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaddubsw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U uDst; /* puDst can be the same as one of the source operands. */
+
+ uDst.ai16[ 0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 0] * puSrc2->ai8[ 0] + (uint16_t)puSrc1->au8[ 1] * puSrc2->ai8[ 1]);
+ uDst.ai16[ 1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 2] * puSrc2->ai8[ 2] + (uint16_t)puSrc1->au8[ 3] * puSrc2->ai8[ 3]);
+ uDst.ai16[ 2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 4] * puSrc2->ai8[ 4] + (uint16_t)puSrc1->au8[ 5] * puSrc2->ai8[ 5]);
+ uDst.ai16[ 3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 6] * puSrc2->ai8[ 6] + (uint16_t)puSrc1->au8[ 7] * puSrc2->ai8[ 7]);
+ uDst.ai16[ 4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 8] * puSrc2->ai8[ 8] + (uint16_t)puSrc1->au8[ 9] * puSrc2->ai8[ 9]);
+ uDst.ai16[ 5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[10] * puSrc2->ai8[10] + (uint16_t)puSrc1->au8[11] * puSrc2->ai8[11]);
+ uDst.ai16[ 6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[12] * puSrc2->ai8[12] + (uint16_t)puSrc1->au8[13] * puSrc2->ai8[13]);
+ uDst.ai16[ 7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[14] * puSrc2->ai8[14] + (uint16_t)puSrc1->au8[15] * puSrc2->ai8[15]);
+ uDst.ai16[ 8] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[16] * puSrc2->ai8[16] + (uint16_t)puSrc1->au8[17] * puSrc2->ai8[17]);
+ uDst.ai16[ 9] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[18] * puSrc2->ai8[18] + (uint16_t)puSrc1->au8[19] * puSrc2->ai8[19]);
+ uDst.ai16[10] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[20] * puSrc2->ai8[20] + (uint16_t)puSrc1->au8[21] * puSrc2->ai8[21]);
+ uDst.ai16[11] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[22] * puSrc2->ai8[22] + (uint16_t)puSrc1->au8[23] * puSrc2->ai8[23]);
+ uDst.ai16[12] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[24] * puSrc2->ai8[24] + (uint16_t)puSrc1->au8[25] * puSrc2->ai8[25]);
+ uDst.ai16[13] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[26] * puSrc2->ai8[26] + (uint16_t)puSrc1->au8[27] * puSrc2->ai8[27]);
+ uDst.ai16[14] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[28] * puSrc2->ai8[28] + (uint16_t)puSrc1->au8[29] * puSrc2->ai8[29]);
+ uDst.ai16[15] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[30] * puSrc2->ai8[30] + (uint16_t)puSrc1->au8[31] * puSrc2->ai8[31]);
+
+ puDst->au64[0] = uDst.au64[0];
+ puDst->au64[1] = uDst.au64[1];
+ puDst->au64[2] = uDst.au64[2];
+ puDst->au64[3] = uDst.au64[3];
+}
+
+
+/*
+ * PMULHRSW / VPMULHRSW
+ */
+#define DO_PMULHRSW(a_Src1, a_Src2) \
+ (uint16_t)(((((int32_t)(a_Src1) * (a_Src2)) >> 14 ) + 1) >> 1)
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmulhrsw_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+
+ uDst.au16[0] = DO_PMULHRSW(uSrc1.ai16[0], uSrc2.ai16[0]);
+ uDst.au16[1] = DO_PMULHRSW(uSrc1.ai16[1], uSrc2.ai16[1]);
+ uDst.au16[2] = DO_PMULHRSW(uSrc1.ai16[2], uSrc2.ai16[2]);
+ uDst.au16[3] = DO_PMULHRSW(uSrc1.ai16[3], uSrc2.ai16[3]);
+ *puDst = uDst.u;
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmulhrsw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->ai16[0] = DO_PMULHRSW(uSrc1.ai16[0], puSrc->ai16[0]);
+ puDst->ai16[1] = DO_PMULHRSW(uSrc1.ai16[1], puSrc->ai16[1]);
+ puDst->ai16[2] = DO_PMULHRSW(uSrc1.ai16[2], puSrc->ai16[2]);
+ puDst->ai16[3] = DO_PMULHRSW(uSrc1.ai16[3], puSrc->ai16[3]);
+ puDst->ai16[4] = DO_PMULHRSW(uSrc1.ai16[4], puSrc->ai16[4]);
+ puDst->ai16[5] = DO_PMULHRSW(uSrc1.ai16[5], puSrc->ai16[5]);
+ puDst->ai16[6] = DO_PMULHRSW(uSrc1.ai16[6], puSrc->ai16[6]);
+ puDst->ai16[7] = DO_PMULHRSW(uSrc1.ai16[7], puSrc->ai16[7]);
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmulhrsw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U uDst; /* puDst can be the same as one of the source operands. */
+
+ uDst.ai16[0] = DO_PMULHRSW(puSrc1->ai16[0], puSrc2->ai16[0]);
+ uDst.ai16[1] = DO_PMULHRSW(puSrc1->ai16[1], puSrc2->ai16[1]);
+ uDst.ai16[2] = DO_PMULHRSW(puSrc1->ai16[2], puSrc2->ai16[2]);
+ uDst.ai16[3] = DO_PMULHRSW(puSrc1->ai16[3], puSrc2->ai16[3]);
+ uDst.ai16[4] = DO_PMULHRSW(puSrc1->ai16[4], puSrc2->ai16[4]);
+ uDst.ai16[5] = DO_PMULHRSW(puSrc1->ai16[5], puSrc2->ai16[5]);
+ uDst.ai16[6] = DO_PMULHRSW(puSrc1->ai16[6], puSrc2->ai16[6]);
+ uDst.ai16[7] = DO_PMULHRSW(puSrc1->ai16[7], puSrc2->ai16[7]);
+
+ puDst->au64[0] = uDst.au64[0];
+ puDst->au64[1] = uDst.au64[1];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmulhrsw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U uDst; /* puDst can be the same as one of the source operands. */
+
+ uDst.ai16[ 0] = DO_PMULHRSW(puSrc1->ai16[ 0], puSrc2->ai16[ 0]);
+ uDst.ai16[ 1] = DO_PMULHRSW(puSrc1->ai16[ 1], puSrc2->ai16[ 1]);
+ uDst.ai16[ 2] = DO_PMULHRSW(puSrc1->ai16[ 2], puSrc2->ai16[ 2]);
+ uDst.ai16[ 3] = DO_PMULHRSW(puSrc1->ai16[ 3], puSrc2->ai16[ 3]);
+ uDst.ai16[ 4] = DO_PMULHRSW(puSrc1->ai16[ 4], puSrc2->ai16[ 4]);
+ uDst.ai16[ 5] = DO_PMULHRSW(puSrc1->ai16[ 5], puSrc2->ai16[ 5]);
+ uDst.ai16[ 6] = DO_PMULHRSW(puSrc1->ai16[ 6], puSrc2->ai16[ 6]);
+ uDst.ai16[ 7] = DO_PMULHRSW(puSrc1->ai16[ 7], puSrc2->ai16[ 7]);
+ uDst.ai16[ 8] = DO_PMULHRSW(puSrc1->ai16[ 8], puSrc2->ai16[ 8]);
+ uDst.ai16[ 9] = DO_PMULHRSW(puSrc1->ai16[ 9], puSrc2->ai16[ 9]);
+ uDst.ai16[10] = DO_PMULHRSW(puSrc1->ai16[10], puSrc2->ai16[10]);
+ uDst.ai16[11] = DO_PMULHRSW(puSrc1->ai16[11], puSrc2->ai16[11]);
+ uDst.ai16[12] = DO_PMULHRSW(puSrc1->ai16[12], puSrc2->ai16[12]);
+ uDst.ai16[13] = DO_PMULHRSW(puSrc1->ai16[13], puSrc2->ai16[13]);
+ uDst.ai16[14] = DO_PMULHRSW(puSrc1->ai16[14], puSrc2->ai16[14]);
+ uDst.ai16[15] = DO_PMULHRSW(puSrc1->ai16[15], puSrc2->ai16[15]);
+
+ puDst->au64[0] = uDst.au64[0];
+ puDst->au64[1] = uDst.au64[1];
+ puDst->au64[2] = uDst.au64[2];
+ puDst->au64[3] = uDst.au64[3];
+}
+
+
+/*
+ * PSADBW / VPSADBW
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psadbw_u64,(uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ RTUINT64U uDst;
+ uint16_t uSum = RT_ABS((int16_t)uSrc1.au8[0] - uSrc2.au8[0]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[1] - uSrc2.au8[1]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[2] - uSrc2.au8[2]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[3] - uSrc2.au8[3]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[4] - uSrc2.au8[4]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[5] - uSrc2.au8[5]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[6] - uSrc2.au8[6]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[7] - uSrc2.au8[7]);
+
+ uDst.au64[0] = 0;
+ uDst.au16[0] = uSum;
+ *puDst = uDst.u;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_psadbw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+
+ uint16_t uSum = RT_ABS((int16_t)uSrc1.ai8[0] - puSrc->ai8[0]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[1] - puSrc->au8[1]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[2] - puSrc->au8[2]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[3] - puSrc->au8[3]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[4] - puSrc->au8[4]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[5] - puSrc->au8[5]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[6] - puSrc->au8[6]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[7] - puSrc->au8[7]);
+ puDst->au16[0] = uSum;
+
+ uSum = RT_ABS((int16_t)uSrc1.au8[ 8] - puSrc->au8[ 8]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[ 9] - puSrc->au8[ 9]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[10] - puSrc->au8[10]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[11] - puSrc->au8[11]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[12] - puSrc->au8[12]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[13] - puSrc->au8[13]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[14] - puSrc->au8[14]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[15] - puSrc->au8[15]);
+ puDst->au16[4] = uSum;
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpsadbw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U uSrc1 = *puSrc1;
+ RTUINT128U uSrc2 = *puSrc2;
+
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+
+ uint16_t uSum = RT_ABS((int16_t)uSrc1.ai8[0] - uSrc2.ai8[0]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[1] - uSrc2.au8[1]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[2] - uSrc2.au8[2]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[3] - uSrc2.au8[3]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[4] - uSrc2.au8[4]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[5] - uSrc2.au8[5]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[6] - uSrc2.au8[6]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[7] - uSrc2.au8[7]);
+ puDst->au16[0] = uSum;
+
+ uSum = RT_ABS((int16_t)uSrc1.au8[ 8] - uSrc2.au8[ 8]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[ 9] - uSrc2.au8[ 9]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[10] - uSrc2.au8[10]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[11] - uSrc2.au8[11]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[12] - uSrc2.au8[12]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[13] - uSrc2.au8[13]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[14] - uSrc2.au8[14]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[15] - uSrc2.au8[15]);
+ puDst->au16[4] = uSum;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpsadbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U uSrc1 = *puSrc1;
+ RTUINT256U uSrc2 = *puSrc2;
+
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ puDst->au64[2] = 0;
+ puDst->au64[3] = 0;
+
+ uint16_t uSum = RT_ABS((int16_t)uSrc1.au8[0] - uSrc2.au8[0]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[1] - uSrc2.au8[1]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[2] - uSrc2.au8[2]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[3] - uSrc2.au8[3]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[4] - uSrc2.au8[4]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[5] - uSrc2.au8[5]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[6] - uSrc2.au8[6]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[7] - uSrc2.au8[7]);
+ puDst->au16[0] = uSum;
+
+ uSum = RT_ABS((int16_t)uSrc1.au8[ 8] - uSrc2.au8[ 8]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[ 9] - uSrc2.au8[ 9]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[10] - uSrc2.au8[10]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[11] - uSrc2.au8[11]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[12] - uSrc2.au8[12]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[13] - uSrc2.au8[13]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[14] - uSrc2.au8[14]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[15] - uSrc2.au8[15]);
+ puDst->au16[4] = uSum;
+
+ uSum = RT_ABS((int16_t)uSrc1.au8[16] - uSrc2.au8[16]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[17] - uSrc2.au8[17]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[18] - uSrc2.au8[18]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[19] - uSrc2.au8[19]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[20] - uSrc2.au8[20]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[21] - uSrc2.au8[21]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[22] - uSrc2.au8[22]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[23] - uSrc2.au8[23]);
+ puDst->au16[8] = uSum;
+
+ uSum = RT_ABS((int16_t)uSrc1.au8[24] - uSrc2.au8[24]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[25] - uSrc2.au8[25]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[26] - uSrc2.au8[26]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[27] - uSrc2.au8[27]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[28] - uSrc2.au8[28]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[29] - uSrc2.au8[29]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[30] - uSrc2.au8[30]);
+ uSum += RT_ABS((int16_t)uSrc1.au8[31] - uSrc2.au8[31]);
+ puDst->au16[12] = uSum;
+}
+
+
+/*
+ * PMULDQ / VPMULDQ
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmuldq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+
+ puDst->au64[0] = (int64_t)uSrc1.ai32[0] * puSrc->ai32[0];
+ puDst->au64[1] = (int64_t)uSrc1.ai32[2] * puSrc->ai32[2];
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmuldq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U uSrc1 = *puSrc1;
+ RTUINT128U uSrc2 = *puSrc2;
+
+ puDst->au64[0] = (int64_t)uSrc1.ai32[0] * uSrc2.ai32[0];
+ puDst->au64[1] = (int64_t)uSrc1.ai32[2] * uSrc2.ai32[2];
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmuldq_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U uSrc1 = *puSrc1;
+ RTUINT256U uSrc2 = *puSrc2;
+
+ puDst->au64[0] = (int64_t)uSrc1.ai32[0] * uSrc2.ai32[0];
+ puDst->au64[1] = (int64_t)uSrc1.ai32[2] * uSrc2.ai32[2];
+ puDst->au64[2] = (int64_t)uSrc1.ai32[4] * uSrc2.ai32[4];
+ puDst->au64[3] = (int64_t)uSrc1.ai32[6] * uSrc2.ai32[6];
+}
+
+
+/*
+ * PMULUDQ / VPMULUDQ
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmuludq_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
+{
+ RTUINT64U uSrc1 = { *puDst };
+ RTUINT64U uSrc2 = { *puSrc };
+ ASMCompilerBarrier();
+ *puDst = (uint64_t)uSrc1.au32[0] * uSrc2.au32[0];
+ RT_NOREF(pFpuState);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pmuludq_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+ RTUINT128U uSrc2 = *puSrc;
+ ASMCompilerBarrier();
+ puDst->au64[0] = (uint64_t)uSrc1.au32[0] * uSrc2.au32[0];
+ puDst->au64[1] = (uint64_t)uSrc1.au32[2] * uSrc2.au32[2];
+ RT_NOREF(pFpuState);
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmuludq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U uSrc1 = *puSrc1; /* Could overlap with puDst */
+ RTUINT128U uSrc2 = *puSrc2; /* Could overlap with puDst */
+ ASMCompilerBarrier();
+ puDst->au64[0] = (uint64_t)uSrc1.au32[0] * uSrc2.au32[0];
+ puDst->au64[1] = (uint64_t)uSrc1.au32[2] * uSrc2.au32[2];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmuludq_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U uSrc1 = *puSrc1; /* Could overlap with puDst */
+ RTUINT256U uSrc2 = *puSrc2; /* Could overlap with puDst */
+ ASMCompilerBarrier();
+ puDst->au64[0] = (uint64_t)uSrc1.au32[0] * uSrc2.au32[0];
+ puDst->au64[1] = (uint64_t)uSrc1.au32[2] * uSrc2.au32[2];
+ puDst->au64[2] = (uint64_t)uSrc1.au32[4] * uSrc2.au32[4];
+ puDst->au64[3] = (uint64_t)uSrc1.au32[6] * uSrc2.au32[6];
+}
+
+
+/*
+ * UNPCKLPS / VUNPCKLPS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_unpcklps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+ RTUINT128U uSrc2 = *puSrc;
+ ASMCompilerBarrier();
+ puDst->au32[0] = uSrc1.au32[0];
+ puDst->au32[1] = uSrc2.au32[0];
+ puDst->au32[2] = uSrc1.au32[1];
+ puDst->au32[3] = uSrc2.au32[1];
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vunpcklps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U uSrc1 = *puSrc1; /* Could overlap with puDst */
+ RTUINT128U uSrc2 = *puSrc2; /* Could overlap with puDst */
+ ASMCompilerBarrier();
+ puDst->au32[0] = uSrc1.au32[0];
+ puDst->au32[1] = uSrc2.au32[0];
+ puDst->au32[2] = uSrc1.au32[1];
+ puDst->au32[3] = uSrc2.au32[1];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vunpcklps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U uSrc1 = *puSrc1; /* Could overlap with puDst */
+ RTUINT256U uSrc2 = *puSrc2; /* Could overlap with puDst */
+ ASMCompilerBarrier();
+ puDst->au32[0] = uSrc1.au32[0];
+ puDst->au32[1] = uSrc2.au32[0];
+ puDst->au32[2] = uSrc1.au32[1];
+ puDst->au32[3] = uSrc2.au32[1];
+
+ puDst->au32[4] = uSrc1.au32[4];
+ puDst->au32[5] = uSrc2.au32[4];
+ puDst->au32[6] = uSrc1.au32[5];
+ puDst->au32[7] = uSrc2.au32[5];
+}
+
+
+/*
+ * UNPCKLPD / VUNPCKLPD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_unpcklpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+ RTUINT128U uSrc2 = *puSrc;
+ ASMCompilerBarrier();
+ puDst->au64[0] = uSrc1.au64[0];
+ puDst->au64[1] = uSrc2.au64[0];
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vunpcklpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U uSrc1 = *puSrc1; /* Could overlap with puDst */
+ RTUINT128U uSrc2 = *puSrc2; /* Could overlap with puDst */
+ ASMCompilerBarrier();
+ puDst->au64[0] = uSrc1.au64[0];
+ puDst->au64[1] = uSrc2.au64[0];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vunpcklpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U uSrc1 = *puSrc1; /* Could overlap with puDst */
+ RTUINT256U uSrc2 = *puSrc2; /* Could overlap with puDst */
+ ASMCompilerBarrier();
+ puDst->au64[0] = uSrc1.au64[0];
+ puDst->au64[1] = uSrc2.au64[0];
+ puDst->au64[2] = uSrc1.au64[2];
+ puDst->au64[3] = uSrc2.au64[2];
+}
+
+
+/*
+ * UNPCKHPS / VUNPCKHPS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_unpckhps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+ RTUINT128U uSrc2 = *puSrc;
+ ASMCompilerBarrier();
+ puDst->au32[0] = uSrc1.au32[2];
+ puDst->au32[1] = uSrc2.au32[2];
+ puDst->au32[2] = uSrc1.au32[3];
+ puDst->au32[3] = uSrc2.au32[3];
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vunpckhps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U uSrc1 = *puSrc1; /* Could overlap with puDst */
+ RTUINT128U uSrc2 = *puSrc2; /* Could overlap with puDst */
+ ASMCompilerBarrier();
+ puDst->au32[0] = uSrc1.au32[2];
+ puDst->au32[1] = uSrc2.au32[2];
+ puDst->au32[2] = uSrc1.au32[3];
+ puDst->au32[3] = uSrc2.au32[3];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vunpckhps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U uSrc1 = *puSrc1; /* Could overlap with puDst */
+ RTUINT256U uSrc2 = *puSrc2; /* Could overlap with puDst */
+ ASMCompilerBarrier();
+ puDst->au32[0] = uSrc1.au32[2];
+ puDst->au32[1] = uSrc2.au32[2];
+ puDst->au32[2] = uSrc1.au32[3];
+ puDst->au32[3] = uSrc2.au32[3];
+
+ puDst->au32[4] = uSrc1.au32[6];
+ puDst->au32[5] = uSrc2.au32[6];
+ puDst->au32[6] = uSrc1.au32[7];
+ puDst->au32[7] = uSrc2.au32[7];
+}
+
+
+/*
+ * UNPCKHPD / VUNPCKHPD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_unpckhpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puDst;
+ RTUINT128U uSrc2 = *puSrc;
+ ASMCompilerBarrier();
+ puDst->au64[0] = uSrc1.au64[1];
+ puDst->au64[1] = uSrc2.au64[1];
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vunpckhpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
+{
+ RTUINT128U uSrc1 = *puSrc1; /* Could overlap with puDst */
+ RTUINT128U uSrc2 = *puSrc2; /* Could overlap with puDst */
+ ASMCompilerBarrier();
+ puDst->au64[0] = uSrc1.au64[1];
+ puDst->au64[1] = uSrc2.au64[1];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vunpckhpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
+{
+ RTUINT256U uSrc1 = *puSrc1; /* Could overlap with puDst */
+ RTUINT256U uSrc2 = *puSrc2; /* Could overlap with puDst */
+ ASMCompilerBarrier();
+ puDst->au64[0] = uSrc1.au64[1];
+ puDst->au64[1] = uSrc2.au64[1];
+ puDst->au64[2] = uSrc1.au64[3];
+ puDst->au64[3] = uSrc2.au64[3];
+}
+
+
+/*
+ * CRC32 (SEE 4.2).
+ */
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_crc32_u8_fallback,(uint32_t *puDst, uint8_t uSrc))
+{
+ *puDst = RTCrc32CProcess(*puDst, &uSrc, sizeof(uSrc));
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_crc32_u16_fallback,(uint32_t *puDst, uint16_t uSrc))
+{
+ *puDst = RTCrc32CProcess(*puDst, &uSrc, sizeof(uSrc));
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_crc32_u32_fallback,(uint32_t *puDst, uint32_t uSrc))
+{
+ *puDst = RTCrc32CProcess(*puDst, &uSrc, sizeof(uSrc));
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_crc32_u64_fallback,(uint32_t *puDst, uint64_t uSrc))
+{
+ *puDst = RTCrc32CProcess(*puDst, &uSrc, sizeof(uSrc));
+}
+
+
+/*
+ * PTEST (SSE 4.1) - special as it output only EFLAGS.
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_ptest_u128,(PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint32_t *pfEFlags))
+{
+ uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
+ if ( (puSrc1->au64[0] & puSrc2->au64[0]) == 0
+ && (puSrc1->au64[1] & puSrc2->au64[1]) == 0)
+ fEfl |= X86_EFL_ZF;
+ if ( (~puSrc1->au64[0] & puSrc2->au64[0]) == 0
+ && (~puSrc1->au64[1] & puSrc2->au64[1]) == 0)
+ fEfl |= X86_EFL_CF;
+ *pfEFlags = fEfl;
+}
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vptest_u256_fallback,(PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint32_t *pfEFlags))
+{
+ uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
+ if ( (puSrc1->au64[0] & puSrc2->au64[0]) == 0
+ && (puSrc1->au64[1] & puSrc2->au64[1]) == 0
+ && (puSrc1->au64[2] & puSrc2->au64[2]) == 0
+ && (puSrc1->au64[3] & puSrc2->au64[3]) == 0)
+ fEfl |= X86_EFL_ZF;
+ if ( (~puSrc1->au64[0] & puSrc2->au64[0]) == 0
+ && (~puSrc1->au64[1] & puSrc2->au64[1]) == 0
+ && (~puSrc1->au64[2] & puSrc2->au64[2]) == 0
+ && (~puSrc1->au64[3] & puSrc2->au64[3]) == 0)
+ fEfl |= X86_EFL_CF;
+ *pfEFlags = fEfl;
+}
+
+
+/*
+ * PMOVSXBW / VPMOVSXBW
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc))
+{
+ RTUINT64U uSrc1 = { uSrc };
+ puDst->ai16[0] = uSrc1.ai8[0];
+ puDst->ai16[1] = uSrc1.ai8[1];
+ puDst->ai16[2] = uSrc1.ai8[2];
+ puDst->ai16[3] = uSrc1.ai8[3];
+ puDst->ai16[4] = uSrc1.ai8[4];
+ puDst->ai16[5] = uSrc1.ai8[5];
+ puDst->ai16[6] = uSrc1.ai8[6];
+ puDst->ai16[7] = uSrc1.ai8[7];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */
+ puDst->ai16[ 0] = uSrc1.ai8[ 0];
+ puDst->ai16[ 1] = uSrc1.ai8[ 1];
+ puDst->ai16[ 2] = uSrc1.ai8[ 2];
+ puDst->ai16[ 3] = uSrc1.ai8[ 3];
+ puDst->ai16[ 4] = uSrc1.ai8[ 4];
+ puDst->ai16[ 5] = uSrc1.ai8[ 5];
+ puDst->ai16[ 6] = uSrc1.ai8[ 6];
+ puDst->ai16[ 7] = uSrc1.ai8[ 7];
+ puDst->ai16[ 8] = uSrc1.ai8[ 8];
+ puDst->ai16[ 9] = uSrc1.ai8[ 9];
+ puDst->ai16[10] = uSrc1.ai8[10];
+ puDst->ai16[11] = uSrc1.ai8[11];
+ puDst->ai16[12] = uSrc1.ai8[12];
+ puDst->ai16[13] = uSrc1.ai8[13];
+ puDst->ai16[14] = uSrc1.ai8[14];
+ puDst->ai16[15] = uSrc1.ai8[15];
+}
+
+
+/*
+ * PMOVSXBD / VPMOVSXBD
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc))
+{
+ RTUINT32U uSrc1 = { uSrc };
+ puDst->ai32[0] = uSrc1.ai8[0];
+ puDst->ai32[1] = uSrc1.ai8[1];
+ puDst->ai32[2] = uSrc1.ai8[2];
+ puDst->ai32[3] = uSrc1.ai8[3];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */
+ puDst->ai32[0] = uSrc1.ai8[0];
+ puDst->ai32[1] = uSrc1.ai8[1];
+ puDst->ai32[2] = uSrc1.ai8[2];
+ puDst->ai32[3] = uSrc1.ai8[3];
+ puDst->ai32[4] = uSrc1.ai8[4];
+ puDst->ai32[5] = uSrc1.ai8[5];
+ puDst->ai32[6] = uSrc1.ai8[6];
+ puDst->ai32[7] = uSrc1.ai8[7];
+}
+
+
+/*
+ * PMOVSXBQ / VPMOVSXBQ
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc))
+{
+ RTUINT16U uSrc1 = { uSrc };
+ puDst->ai64[0] = uSrc1.ai8[0];
+ puDst->ai64[1] = uSrc1.ai8[1];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */
+ puDst->ai64[0] = uSrc1.ai8[0];
+ puDst->ai64[1] = uSrc1.ai8[1];
+ puDst->ai64[2] = uSrc1.ai8[2];
+ puDst->ai64[3] = uSrc1.ai8[3];
+}
+
+
+/*
+ * PMOVSXWD / VPMOVSXWD
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc))
+{
+ RTUINT64U uSrc1 = { uSrc };
+ puDst->ai32[0] = uSrc1.ai16[0];
+ puDst->ai32[1] = uSrc1.ai16[1];
+ puDst->ai32[2] = uSrc1.ai16[2];
+ puDst->ai32[3] = uSrc1.ai16[3];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */
+ puDst->ai32[0] = uSrc1.ai16[0];
+ puDst->ai32[1] = uSrc1.ai16[1];
+ puDst->ai32[2] = uSrc1.ai16[2];
+ puDst->ai32[3] = uSrc1.ai16[3];
+ puDst->ai32[4] = uSrc1.ai16[4];
+ puDst->ai32[5] = uSrc1.ai16[5];
+ puDst->ai32[6] = uSrc1.ai16[6];
+ puDst->ai32[7] = uSrc1.ai16[7];
+}
+
+
+/*
+ * PMOVSXWQ / VPMOVSXWQ
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc))
+{
+ RTUINT32U uSrc1 = { uSrc };
+ puDst->ai64[0] = uSrc1.ai16[0];
+ puDst->ai64[1] = uSrc1.ai16[1];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */
+ puDst->ai64[0] = uSrc1.ai16[0];
+ puDst->ai64[1] = uSrc1.ai16[1];
+ puDst->ai64[2] = uSrc1.ai16[2];
+ puDst->ai64[3] = uSrc1.ai16[3];
+}
+
+
+/*
+ * PMOVSXDQ / VPMOVSXDQ
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc))
+{
+ RTUINT64U uSrc1 = { uSrc };
+ puDst->ai64[0] = uSrc1.ai32[0];
+ puDst->ai64[1] = uSrc1.ai32[1];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */
+ puDst->ai64[0] = uSrc1.ai32[0];
+ puDst->ai64[1] = uSrc1.ai32[1];
+ puDst->ai64[2] = uSrc1.ai32[2];
+ puDst->ai64[3] = uSrc1.ai32[3];
+}
+
+
+/*
+ * PMOVZXBW / VPMOVZXBW
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc))
+{
+ RTUINT64U uSrc1 = { uSrc };
+ puDst->au16[0] = uSrc1.au8[0];
+ puDst->au16[1] = uSrc1.au8[1];
+ puDst->au16[2] = uSrc1.au8[2];
+ puDst->au16[3] = uSrc1.au8[3];
+ puDst->au16[4] = uSrc1.au8[4];
+ puDst->au16[5] = uSrc1.au8[5];
+ puDst->au16[6] = uSrc1.au8[6];
+ puDst->au16[7] = uSrc1.au8[7];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */
+ puDst->au16[ 0] = uSrc1.au8[ 0];
+ puDst->au16[ 1] = uSrc1.au8[ 1];
+ puDst->au16[ 2] = uSrc1.au8[ 2];
+ puDst->au16[ 3] = uSrc1.au8[ 3];
+ puDst->au16[ 4] = uSrc1.au8[ 4];
+ puDst->au16[ 5] = uSrc1.au8[ 5];
+ puDst->au16[ 6] = uSrc1.au8[ 6];
+ puDst->au16[ 7] = uSrc1.au8[ 7];
+ puDst->au16[ 8] = uSrc1.au8[ 8];
+ puDst->au16[ 9] = uSrc1.au8[ 9];
+ puDst->au16[10] = uSrc1.au8[10];
+ puDst->au16[11] = uSrc1.au8[11];
+ puDst->au16[12] = uSrc1.au8[12];
+ puDst->au16[13] = uSrc1.au8[13];
+ puDst->au16[14] = uSrc1.au8[14];
+ puDst->au16[15] = uSrc1.au8[15];
+}
+
+
+/*
+ * PMOVZXBD / VPMOVZXBD
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc))
+{
+ RTUINT32U uSrc1 = { uSrc };
+ puDst->au32[0] = uSrc1.au8[0];
+ puDst->au32[1] = uSrc1.au8[1];
+ puDst->au32[2] = uSrc1.au8[2];
+ puDst->au32[3] = uSrc1.au8[3];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */
+ puDst->au32[0] = uSrc1.au8[0];
+ puDst->au32[1] = uSrc1.au8[1];
+ puDst->au32[2] = uSrc1.au8[2];
+ puDst->au32[3] = uSrc1.au8[3];
+ puDst->au32[4] = uSrc1.au8[4];
+ puDst->au32[5] = uSrc1.au8[5];
+ puDst->au32[6] = uSrc1.au8[6];
+ puDst->au32[7] = uSrc1.au8[7];
+}
+
+
+/*
+ * PMOVZXBQ / VPMOVZXBQ
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc))
+{
+ RTUINT16U uSrc1 = { uSrc };
+ puDst->au64[0] = uSrc1.au8[0];
+ puDst->au64[1] = uSrc1.au8[1];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */
+ puDst->au64[0] = uSrc1.au8[0];
+ puDst->au64[1] = uSrc1.au8[1];
+ puDst->au64[2] = uSrc1.au8[2];
+ puDst->au64[3] = uSrc1.au8[3];
+}
+
+
+/*
+ * PMOVZXWD / VPMOVZXWD
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc))
+{
+ RTUINT64U uSrc1 = { uSrc };
+ puDst->au32[0] = uSrc1.au16[0];
+ puDst->au32[1] = uSrc1.au16[1];
+ puDst->au32[2] = uSrc1.au16[2];
+ puDst->au32[3] = uSrc1.au16[3];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */
+ puDst->au32[0] = uSrc1.au16[0];
+ puDst->au32[1] = uSrc1.au16[1];
+ puDst->au32[2] = uSrc1.au16[2];
+ puDst->au32[3] = uSrc1.au16[3];
+ puDst->au32[4] = uSrc1.au16[4];
+ puDst->au32[5] = uSrc1.au16[5];
+ puDst->au32[6] = uSrc1.au16[6];
+ puDst->au32[7] = uSrc1.au16[7];
+}
+
+
+/*
+ * PMOVZXWQ / VPMOVZXWQ
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc))
+{
+ RTUINT32U uSrc1 = { uSrc };
+ puDst->au64[0] = uSrc1.au16[0];
+ puDst->au64[1] = uSrc1.au16[1];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */
+ puDst->au64[0] = uSrc1.au16[0];
+ puDst->au64[1] = uSrc1.au16[1];
+ puDst->au64[2] = uSrc1.au16[2];
+ puDst->au64[3] = uSrc1.au16[3];
+}
+
+
+/*
+ * PMOVZXDQ / VPMOVZXDQ
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc))
+{
+ RTUINT64U uSrc1 = { uSrc };
+ puDst->au64[0] = uSrc1.au32[0];
+ puDst->au64[1] = uSrc1.au32[1];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */
+ puDst->au64[0] = uSrc1.au32[0];
+ puDst->au64[1] = uSrc1.au32[1];
+ puDst->au64[2] = uSrc1.au32[2];
+ puDst->au64[3] = uSrc1.au32[3];
+}
+
+/**
+ * Converts from the packed IPRT 32-bit (single precision) floating point format to
+ * the SoftFloat 32-bit floating point format (float32_t).
+ *
+ * This is only a structure format conversion, nothing else.
+ */
+DECLINLINE(float32_t) iemFpSoftF32FromIprt(PCRTFLOAT32U pr32Val)
+{
+ float32_t Tmp;
+ Tmp.v = pr32Val->u;
+ return Tmp;
+}
+
+
+/**
+ * Converts from SoftFloat 32-bit floating point format (float32_t)
+ * to the packed IPRT 32-bit floating point (RTFLOAT32U) format.
+ *
+ * This is only a structure format conversion, nothing else.
+ */
+DECLINLINE(PRTFLOAT32U) iemFpSoftF32ToIprt(PRTFLOAT32U pr32Dst, float32_t const r32XSrc)
+{
+ pr32Dst->u = r32XSrc.v;
+ return pr32Dst;
+}
+
+
+/**
+ * Converts from the packed IPRT 64-bit (single precision) floating point format to
+ * the SoftFloat 64-bit floating point format (float64_t).
+ *
+ * This is only a structure format conversion, nothing else.
+ */
+DECLINLINE(float64_t) iemFpSoftF64FromIprt(PCRTFLOAT64U pr64Val)
+{
+ float64_t Tmp;
+ Tmp.v = pr64Val->u;
+ return Tmp;
+}
+
+
+/**
+ * Converts from SoftFloat 64-bit floating point format (float64_t)
+ * to the packed IPRT 64-bit floating point (RTFLOAT64U) format.
+ *
+ * This is only a structure format conversion, nothing else.
+ */
+DECLINLINE(PRTFLOAT64U) iemFpSoftF64ToIprt(PRTFLOAT64U pr64Dst, float64_t const r64XSrc)
+{
+ pr64Dst->u = r64XSrc.v;
+ return pr64Dst;
+}
+
+
+/** Initializer for the SoftFloat state structure. */
+# define IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(a_Mxcsr) \
+ { \
+ softfloat_tininess_afterRounding, \
+ ((a_Mxcsr) & X86_MXCSR_RC_MASK) == X86_MXCSR_RC_NEAREST ? (uint8_t)softfloat_round_near_even \
+ : ((a_Mxcsr) & X86_MXCSR_RC_MASK) == X86_MXCSR_RC_UP ? (uint8_t)softfloat_round_max \
+ : ((a_Mxcsr) & X86_MXCSR_RC_MASK) == X86_MXCSR_RC_DOWN ? (uint8_t)softfloat_round_min \
+ : (uint8_t)softfloat_round_minMag, \
+ 0, \
+ (uint8_t)(((a_Mxcsr) & X86_MXCSR_XCPT_MASK) >> X86_MXCSR_XCPT_MASK_SHIFT), /* Matches X86_FSW_?E */\
+ 32 /* Rounding precision, not relevant for SIMD. */ \
+ }
+
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+/**
+ * Helper for transfering exception to MXCSR and setting the result value
+ * accordingly.
+ *
+ * @returns Updated MXCSR.
+ * @param pSoftState The SoftFloat state following the operation.
+ * @param r32Result The result of the SoftFloat operation.
+ * @param pr32Result Where to store the result for IEM.
+ * @param fMxcsr The original MXCSR value.
+ */
+DECLINLINE(uint32_t) iemSseSoftStateAndR32ToMxcsrAndIprtResult(softfloat_state_t const *pSoftState, float32_t r32Result,
+ PRTFLOAT32U pr32Result, uint32_t fMxcsr)
+{
+ iemFpSoftF32ToIprt(pr32Result, r32Result);
+
+ uint8_t fXcpt = pSoftState->exceptionFlags;
+ if ( (fMxcsr & X86_MXCSR_FZ)
+ && RTFLOAT32U_IS_SUBNORMAL(pr32Result))
+ {
+ /* Underflow masked and flush to zero is set. */
+ pr32Result->s.uFraction = 0;
+ pr32Result->s.uExponent = 0;
+ fXcpt |= X86_MXCSR_UE | X86_MXCSR_PE;
+ }
+
+ /* If DAZ is set \#DE is never set. */
+ if ( fMxcsr & X86_MXCSR_DAZ
+ || ( (fXcpt & X86_MXCSR_DE) /* Softfloat sets DE for sub-normal values. */
+ && (RTFLOAT32U_IS_SUBNORMAL(pr32Result))))
+ fXcpt &= ~X86_MXCSR_DE;
+
+ return fMxcsr | (fXcpt & X86_MXCSR_XCPT_FLAGS);
+}
+
+
+/**
+ * Helper for transfering exception to MXCSR and setting the result value
+ * accordingly - ignores Flush-to-Zero.
+ *
+ * @returns Updated MXCSR.
+ * @param pSoftState The SoftFloat state following the operation.
+ * @param r32Result The result of the SoftFloat operation.
+ * @param pr32Result Where to store the result for IEM.
+ * @param fMxcsr The original MXCSR value.
+ */
+DECLINLINE(uint32_t) iemSseSoftStateAndR32ToMxcsrAndIprtResultNoFz(softfloat_state_t const *pSoftState, float32_t r32Result,
+ PRTFLOAT32U pr32Result, uint32_t fMxcsr)
+{
+ iemFpSoftF32ToIprt(pr32Result, r32Result);
+
+ uint8_t fXcpt = pSoftState->exceptionFlags;
+ /* If DAZ is set \#DE is never set. */
+ if ( fMxcsr & X86_MXCSR_DAZ
+ || ( (fXcpt & X86_MXCSR_DE) /* Softfloat sets DE for sub-normal values. */
+ && (RTFLOAT32U_IS_SUBNORMAL(pr32Result))))
+ fXcpt &= ~X86_MXCSR_DE;
+
+ return fMxcsr | (fXcpt & X86_MXCSR_XCPT_FLAGS);
+}
+
+
+/**
+ * Helper for transfering exception to MXCSR and setting the result value
+ * accordingly.
+ *
+ * @returns Updated MXCSR.
+ * @param pSoftState The SoftFloat state following the operation.
+ * @param r64Result The result of the SoftFloat operation.
+ * @param pr64Result Where to store the result for IEM.
+ * @param fMxcsr The original MXCSR value.
+ */
+DECLINLINE(uint32_t) iemSseSoftStateAndR64ToMxcsrAndIprtResult(softfloat_state_t const *pSoftState, float64_t r64Result,
+ PRTFLOAT64U pr64Result, uint32_t fMxcsr)
+{
+ iemFpSoftF64ToIprt(pr64Result, r64Result);
+ uint8_t fXcpt = pSoftState->exceptionFlags;
+ if ( (fMxcsr & X86_MXCSR_FZ)
+ && RTFLOAT64U_IS_SUBNORMAL(pr64Result))
+ {
+ /* Underflow masked and flush to zero is set. */
+ iemFpSoftF64ToIprt(pr64Result, r64Result);
+ pr64Result->s.uFractionHigh = 0;
+ pr64Result->s.uFractionLow = 0;
+ pr64Result->s.uExponent = 0;
+ fXcpt |= X86_MXCSR_UE | X86_MXCSR_PE;
+ }
+
+ /* If DAZ is set \#DE is never set. */
+ if ( fMxcsr & X86_MXCSR_DAZ
+ || ( (fXcpt & X86_MXCSR_DE) /* Softfloat sets DE for sub-normal values. */
+ && (RTFLOAT64U_IS_SUBNORMAL(pr64Result))))
+ fXcpt &= ~X86_MXCSR_DE;
+
+ return fMxcsr | (fXcpt & X86_MXCSR_XCPT_FLAGS);
+}
+
+
+/**
+ * Helper for transfering exception to MXCSR and setting the result value
+ * accordingly - ignores Flush-to-Zero.
+ *
+ * @returns Updated MXCSR.
+ * @param pSoftState The SoftFloat state following the operation.
+ * @param r64Result The result of the SoftFloat operation.
+ * @param pr64Result Where to store the result for IEM.
+ * @param fMxcsr The original MXCSR value.
+ */
+DECLINLINE(uint32_t) iemSseSoftStateAndR64ToMxcsrAndIprtResultNoFz(softfloat_state_t const *pSoftState, float64_t r64Result,
+ PRTFLOAT64U pr64Result, uint32_t fMxcsr)
+{
+ iemFpSoftF64ToIprt(pr64Result, r64Result);
+
+ uint8_t fXcpt = pSoftState->exceptionFlags;
+ /* If DAZ is set \#DE is never set. */
+ if ( fMxcsr & X86_MXCSR_DAZ
+ || ( (fXcpt & X86_MXCSR_DE) /* Softfloat sets DE for sub-normal values. */
+ && (RTFLOAT64U_IS_SUBNORMAL(pr64Result))))
+ fXcpt &= ~X86_MXCSR_DE;
+
+ return fMxcsr | (fXcpt & X86_MXCSR_XCPT_FLAGS);
+}
+
+#endif /* IEM_WITHOUT_ASSEMBLY */
+
+
+/**
+ * Sets the given single precision floating point input value to the given output taking the Denormals-as-zero flag
+ * in MXCSR into account.
+ *
+ * @returns The output MXCSR De-normal flag if the input is a de-normal and the DAZ flag is not set.
+ * @param pr32Val Where to store the result.
+ * @param fMxcsr The input MXCSR value.
+ * @param pr32Src The value to use.
+ */
+DECLINLINE(uint32_t) iemSsePrepareValueR32(PRTFLOAT32U pr32Val, uint32_t fMxcsr, PCRTFLOAT32U pr32Src)
+{
+ if (RTFLOAT32U_IS_SUBNORMAL(pr32Src))
+ {
+ if (fMxcsr & X86_MXCSR_DAZ)
+ {
+ /* De-normals are changed to 0. */
+ pr32Val->s.fSign = pr32Src->s.fSign;
+ pr32Val->s.uFraction = 0;
+ pr32Val->s.uExponent = 0;
+ return 0;
+ }
+
+ *pr32Val = *pr32Src;
+ return X86_MXCSR_DE;
+ }
+
+ *pr32Val = *pr32Src;
+ return 0;
+}
+
+
+/**
+ * Sets the given double precision floating point input value to the given output taking the Denormals-as-zero flag
+ * in MXCSR into account.
+ *
+ * @returns The output MXCSR De-normal flag if the input is a de-normal and the DAZ flag is not set.
+ * @param pr64Val Where to store the result.
+ * @param fMxcsr The input MXCSR value.
+ * @param pr64Src The value to use.
+ */
+DECLINLINE(uint32_t) iemSsePrepareValueR64(PRTFLOAT64U pr64Val, uint32_t fMxcsr, PCRTFLOAT64U pr64Src)
+{
+ if (RTFLOAT64U_IS_SUBNORMAL(pr64Src))
+ {
+ if (fMxcsr & X86_MXCSR_DAZ)
+ {
+ /* De-normals are changed to 0. */
+ pr64Val->s64.fSign = pr64Src->s.fSign;
+ pr64Val->s64.uFraction = 0;
+ pr64Val->s64.uExponent = 0;
+ return 0;
+ }
+
+ *pr64Val = *pr64Src;
+ return X86_MXCSR_DE;
+ }
+
+ *pr64Val = *pr64Src;
+ return 0;
+}
+
+#ifdef IEM_WITHOUT_ASSEMBLY
+
+/**
+ * Validates the given input operands returning whether the operation can continue or whether one
+ * of the source operands contains a NaN value, setting the output accordingly.
+ *
+ * @returns Flag whether the operation can continue (false) or whether a NaN value was detected in one of the operands (true).
+ * @param pr32Res Where to store the result in case the operation can't continue.
+ * @param pr32Val1 The first input operand.
+ * @param pr32Val2 The second input operand.
+ * @param pfMxcsr Where to return the modified MXCSR state when false is returned.
+ */
+DECLINLINE(bool) iemSseBinaryValIsNaNR32(PRTFLOAT32U pr32Res, PCRTFLOAT32U pr32Val1, PCRTFLOAT32U pr32Val2, uint32_t *pfMxcsr)
+{
+ uint8_t const cQNan = RTFLOAT32U_IS_QUIET_NAN(pr32Val1) + RTFLOAT32U_IS_QUIET_NAN(pr32Val2);
+ uint8_t const cSNan = RTFLOAT32U_IS_SIGNALLING_NAN(pr32Val1) + RTFLOAT32U_IS_SIGNALLING_NAN(pr32Val2);
+ if (cSNan + cQNan == 2)
+ {
+ /* Both values are either SNan or QNan, first operand is placed into the result and converted to a QNan. */
+ *pr32Res = *pr32Val1;
+ pr32Res->s.uFraction |= RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1);
+ *pfMxcsr |= (cSNan ? X86_MXCSR_IE : 0);
+ return true;
+ }
+ if (cSNan)
+ {
+ /* One operand is an SNan and placed into the result, converting it to a QNan. */
+ *pr32Res = RTFLOAT32U_IS_SIGNALLING_NAN(pr32Val1) ? *pr32Val1 : *pr32Val2;
+ pr32Res->s.uFraction |= RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1);
+ *pfMxcsr |= X86_MXCSR_IE;
+ return true;
+ }
+ if (cQNan)
+ {
+ /* The QNan operand is placed into the result. */
+ *pr32Res = RTFLOAT32U_IS_QUIET_NAN(pr32Val1) ? *pr32Val1 : *pr32Val2;
+ return true;
+ }
+
+ Assert(!cQNan && !cSNan);
+ return false;
+}
+
+
+/**
+ * Validates the given double precision input operands returning whether the operation can continue or whether one
+ * of the source operands contains a NaN value, setting the output accordingly.
+ *
+ * @returns Flag whether the operation can continue (false) or whether a NaN value was detected in one of the operands (true).
+ * @param pr64Res Where to store the result in case the operation can't continue.
+ * @param pr64Val1 The first input operand.
+ * @param pr64Val2 The second input operand.
+ * @param pfMxcsr Where to return the modified MXCSR state when false is returned.
+ */
+DECLINLINE(bool) iemSseBinaryValIsNaNR64(PRTFLOAT64U pr64Res, PCRTFLOAT64U pr64Val1, PCRTFLOAT64U pr64Val2, uint32_t *pfMxcsr)
+{
+ uint8_t const cQNan = RTFLOAT64U_IS_QUIET_NAN(pr64Val1) + RTFLOAT64U_IS_QUIET_NAN(pr64Val2);
+ uint8_t const cSNan = RTFLOAT64U_IS_SIGNALLING_NAN(pr64Val1) + RTFLOAT64U_IS_SIGNALLING_NAN(pr64Val2);
+ if (cSNan + cQNan == 2)
+ {
+ /* Both values are either SNan or QNan, first operand is placed into the result and converted to a QNan. */
+ *pr64Res = *pr64Val1;
+ pr64Res->s64.uFraction |= RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1);
+ *pfMxcsr |= (cSNan ? X86_MXCSR_IE : 0);
+ return true;
+ }
+ if (cSNan)
+ {
+ /* One operand is an SNan and placed into the result, converting it to a QNan. */
+ *pr64Res = RTFLOAT64U_IS_SIGNALLING_NAN(pr64Val1) ? *pr64Val1 : *pr64Val2;
+ pr64Res->s64.uFraction |= RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1);
+ *pfMxcsr |= X86_MXCSR_IE;
+ return true;
+ }
+ if (cQNan)
+ {
+ /* The QNan operand is placed into the result. */
+ *pr64Res = RTFLOAT64U_IS_QUIET_NAN(pr64Val1) ? *pr64Val1 : *pr64Val2;
+ return true;
+ }
+
+ Assert(!cQNan && !cSNan);
+ return false;
+}
+
+
+/**
+ * Validates the given single input operand returning whether the operation can continue or whether
+ * contains a NaN value, setting the output accordingly.
+ *
+ * @returns Flag whether the operation can continue (false) or whether a NaN value was detected in the operand (true).
+ * @param pr32Res Where to store the result in case the operation can't continue.
+ * @param pr32Val The input operand.
+ * @param pfMxcsr Where to return the modified MXCSR state when false is returned.
+ */
+DECLINLINE(bool) iemSseUnaryValIsNaNR32(PRTFLOAT32U pr32Res, PCRTFLOAT32U pr32Val, uint32_t *pfMxcsr)
+{
+ if (RTFLOAT32U_IS_SIGNALLING_NAN(pr32Val))
+ {
+ /* One operand is an SNan and placed into the result, converting it to a QNan. */
+ *pr32Res = *pr32Val;
+ pr32Res->s.uFraction |= RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1);
+ *pfMxcsr |= X86_MXCSR_IE;
+ return true;
+ }
+ if (RTFLOAT32U_IS_QUIET_NAN(pr32Val))
+ {
+ /* The QNan operand is placed into the result. */
+ *pr32Res = *pr32Val;
+ return true;
+ }
+
+ return false;
+}
+
+
+/**
+ * Validates the given double input operand returning whether the operation can continue or whether
+ * contains a NaN value, setting the output accordingly.
+ *
+ * @returns Flag whether the operation can continue (false) or whether a NaN value was detected in the operand (true).
+ * @param pr64Res Where to store the result in case the operation can't continue.
+ * @param pr64Val The input operand.
+ * @param pfMxcsr Where to return the modified MXCSR state when false is returned.
+ */
+DECLINLINE(bool) iemSseUnaryValIsNaNR64(PRTFLOAT64U pr64Res, PCRTFLOAT64U pr64Val, uint32_t *pfMxcsr)
+{
+ if (RTFLOAT64U_IS_SIGNALLING_NAN(pr64Val))
+ {
+ /* One operand is an SNan and placed into the result, converting it to a QNan. */
+ *pr64Res = *pr64Val;
+ pr64Res->s64.uFraction |= RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1);
+ *pfMxcsr |= X86_MXCSR_IE;
+ return true;
+ }
+ if (RTFLOAT64U_IS_QUIET_NAN(pr64Val))
+ {
+ /* The QNan operand is placed into the result. */
+ *pr64Res = *pr64Val;
+ return true;
+ }
+
+ return false;
+}
+
+#endif /* IEM_WITHOUT_ASSEMBLY */
+
+/**
+ * ADDPS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_addps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val1, PCRTFLOAT32U pr32Val2)
+{
+ if (iemSseBinaryValIsNaNR32(pr32Res, pr32Val1, pr32Val2, &fMxcsr))
+ return fMxcsr;
+
+ RTFLOAT32U r32Src1, r32Src2;
+ fMxcsr |= iemSsePrepareValueR32(&r32Src1, fMxcsr, pr32Val1);
+ fMxcsr |= iemSsePrepareValueR32(&r32Src2, fMxcsr, pr32Val2);
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ float32_t r32Result = f32_add(iemFpSoftF32FromIprt(&r32Src1), iemFpSoftF32FromIprt(&r32Src2), &SoftState);
+ return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Result, pr32Res, fMxcsr);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_addps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ pResult->MXCSR = iemAImpl_addps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc2->ar32[0]);
+ pResult->MXCSR |= iemAImpl_addps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[1], &puSrc2->ar32[1]);
+ pResult->MXCSR |= iemAImpl_addps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc2->ar32[2]);
+ pResult->MXCSR |= iemAImpl_addps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc1->ar32[3], &puSrc2->ar32[3]);
+}
+#endif
+
+
+/**
+ * ADDSS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_addss_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2))
+{
+ pResult->MXCSR = iemAImpl_addps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], pr32Src2);
+ pResult->uResult.ar32[1] = puSrc1->ar32[1];
+ pResult->uResult.ar32[2] = puSrc1->ar32[2];
+ pResult->uResult.ar32[3] = puSrc1->ar32[3];
+}
+#endif
+
+
+/**
+ * ADDPD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_addpd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val1, PCRTFLOAT64U pr64Val2)
+{
+ if (iemSseBinaryValIsNaNR64(pr64Res, pr64Val1, pr64Val2, &fMxcsr))
+ return fMxcsr;
+
+ RTFLOAT64U r64Src1, r64Src2;
+ fMxcsr |= iemSsePrepareValueR64(&r64Src1, fMxcsr, pr64Val1);
+ fMxcsr |= iemSsePrepareValueR64(&r64Src2, fMxcsr, pr64Val2);
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ float64_t r64Result = f64_add(iemFpSoftF64FromIprt(&r64Src1), iemFpSoftF64FromIprt(&r64Src2), &SoftState);
+ return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Result, pr64Res, fMxcsr);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_addpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ pResult->MXCSR = iemAImpl_addpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc2->ar64[0]);
+ pResult->MXCSR |= iemAImpl_addpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc1->ar64[1], &puSrc2->ar64[1]);
+}
+#endif
+
+
+/**
+ * ADDSD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_addsd_u128_r64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2))
+{
+ pResult->MXCSR = iemAImpl_addpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], pr64Src2);
+ pResult->uResult.ar64[1] = puSrc1->ar64[1];
+}
+#endif
+
+
+/**
+ * MULPS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_mulps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val1, PCRTFLOAT32U pr32Val2)
+{
+ if (iemSseBinaryValIsNaNR32(pr32Res, pr32Val1, pr32Val2, &fMxcsr))
+ return fMxcsr;
+
+ RTFLOAT32U r32Src1, r32Src2;
+ fMxcsr |= iemSsePrepareValueR32(&r32Src1, fMxcsr, pr32Val1);
+ fMxcsr |= iemSsePrepareValueR32(&r32Src2, fMxcsr, pr32Val2);
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ float32_t r32Result = f32_mul(iemFpSoftF32FromIprt(&r32Src1), iemFpSoftF32FromIprt(&r32Src2), &SoftState);
+ return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Result, pr32Res, fMxcsr);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_mulps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ pResult->MXCSR = iemAImpl_mulps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc2->ar32[0]);
+ pResult->MXCSR |= iemAImpl_mulps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[1], &puSrc2->ar32[1]);
+ pResult->MXCSR |= iemAImpl_mulps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc2->ar32[2]);
+ pResult->MXCSR |= iemAImpl_mulps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc1->ar32[3], &puSrc2->ar32[3]);
+}
+#endif
+
+
+/**
+ * MULSS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_mulss_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2))
+{
+ pResult->MXCSR = iemAImpl_mulps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], pr32Src2);
+ pResult->uResult.ar32[1] = puSrc1->ar32[1];
+ pResult->uResult.ar32[2] = puSrc1->ar32[2];
+ pResult->uResult.ar32[3] = puSrc1->ar32[3];
+}
+#endif
+
+
+/**
+ * MULPD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_mulpd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val1, PCRTFLOAT64U pr64Val2)
+{
+ if (iemSseBinaryValIsNaNR64(pr64Res, pr64Val1, pr64Val2, &fMxcsr))
+ return fMxcsr;
+
+ RTFLOAT64U r64Src1, r64Src2;
+ fMxcsr |= iemSsePrepareValueR64(&r64Src1, fMxcsr, pr64Val1);
+ fMxcsr |= iemSsePrepareValueR64(&r64Src2, fMxcsr, pr64Val2);
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ float64_t r64Result = f64_mul(iemFpSoftF64FromIprt(&r64Src1), iemFpSoftF64FromIprt(&r64Src2), &SoftState);
+ return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Result, pr64Res, fMxcsr);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_mulpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ pResult->MXCSR = iemAImpl_mulpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc2->ar64[0]);
+ pResult->MXCSR |= iemAImpl_mulpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc1->ar64[1], &puSrc2->ar64[1]);
+}
+#endif
+
+
+/**
+ * MULSD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_mulsd_u128_r64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2))
+{
+ pResult->MXCSR = iemAImpl_mulpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], pr64Src2);
+ pResult->uResult.ar64[1] = puSrc1->ar64[1];
+}
+#endif
+
+
+/**
+ * SUBPS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_subps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val1, PCRTFLOAT32U pr32Val2)
+{
+ if (iemSseBinaryValIsNaNR32(pr32Res, pr32Val1, pr32Val2, &fMxcsr))
+ return fMxcsr;
+
+ RTFLOAT32U r32Src1, r32Src2;
+ fMxcsr |= iemSsePrepareValueR32(&r32Src1, fMxcsr, pr32Val1);
+ fMxcsr |= iemSsePrepareValueR32(&r32Src2, fMxcsr, pr32Val2);
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ float32_t r32Result = f32_sub(iemFpSoftF32FromIprt(&r32Src1), iemFpSoftF32FromIprt(&r32Src2), &SoftState);
+ return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Result, pr32Res, fMxcsr);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_subps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ pResult->MXCSR = iemAImpl_subps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc2->ar32[0]);
+ pResult->MXCSR |= iemAImpl_subps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[1], &puSrc2->ar32[1]);
+ pResult->MXCSR |= iemAImpl_subps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc2->ar32[2]);
+ pResult->MXCSR |= iemAImpl_subps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc1->ar32[3], &puSrc2->ar32[3]);
+}
+#endif
+
+
+/**
+ * SUBSS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_subss_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2))
+{
+ pResult->MXCSR = iemAImpl_subps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], pr32Src2);
+ pResult->uResult.ar32[1] = puSrc1->ar32[1];
+ pResult->uResult.ar32[2] = puSrc1->ar32[2];
+ pResult->uResult.ar32[3] = puSrc1->ar32[3];
+}
+#endif
+
+
+/**
+ * SUBPD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_subpd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val1, PCRTFLOAT64U pr64Val2)
+{
+ if (iemSseBinaryValIsNaNR64(pr64Res, pr64Val1, pr64Val2, &fMxcsr))
+ return fMxcsr;
+
+ RTFLOAT64U r64Src1, r64Src2;
+ fMxcsr |= iemSsePrepareValueR64(&r64Src1, fMxcsr, pr64Val1);
+ fMxcsr |= iemSsePrepareValueR64(&r64Src2, fMxcsr, pr64Val2);
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ float64_t r64Result = f64_sub(iemFpSoftF64FromIprt(&r64Src1), iemFpSoftF64FromIprt(&r64Src2), &SoftState);
+ return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Result, pr64Res, fMxcsr);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_subpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ pResult->MXCSR = iemAImpl_subpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc2->ar64[0]);
+ pResult->MXCSR |= iemAImpl_subpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc1->ar64[1], &puSrc2->ar64[1]);
+}
+#endif
+
+
+/**
+ * SUBSD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_subsd_u128_r64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2))
+{
+ pResult->MXCSR = iemAImpl_subpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], pr64Src2);
+ pResult->uResult.ar64[1] = puSrc1->ar64[1];
+}
+#endif
+
+
+/**
+ * MINPS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_minps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val1, PCRTFLOAT32U pr32Val2)
+{
+ if (RTFLOAT32U_IS_NAN(pr32Val1) || RTFLOAT32U_IS_NAN(pr32Val2))
+ {
+ /* The DAZ flag gets honored but the DE flag will not get set because \#IE has higher priority. */
+ iemSsePrepareValueR32(pr32Res, fMxcsr, pr32Val2);
+ return fMxcsr | X86_MXCSR_IE;
+ }
+
+ RTFLOAT32U r32Src1, r32Src2;
+ fMxcsr |= iemSsePrepareValueR32(&r32Src1, fMxcsr, pr32Val1);
+ fMxcsr |= iemSsePrepareValueR32(&r32Src2, fMxcsr, pr32Val2);
+ if (RTFLOAT32U_IS_ZERO(&r32Src1) && RTFLOAT32U_IS_ZERO(&r32Src2))
+ {
+ *pr32Res = r32Src2;
+ return fMxcsr;
+ }
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ bool fLe = f32_le(iemFpSoftF32FromIprt(&r32Src1), iemFpSoftF32FromIprt(&r32Src2), &SoftState);
+ return iemSseSoftStateAndR32ToMxcsrAndIprtResultNoFz(&SoftState,
+ fLe
+ ? iemFpSoftF32FromIprt(&r32Src1)
+ : iemFpSoftF32FromIprt(&r32Src2),
+ pr32Res, fMxcsr);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_minps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ pResult->MXCSR = iemAImpl_minps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc2->ar32[0]);
+ pResult->MXCSR |= iemAImpl_minps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[1], &puSrc2->ar32[1]);
+ pResult->MXCSR |= iemAImpl_minps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc2->ar32[2]);
+ pResult->MXCSR |= iemAImpl_minps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc1->ar32[3], &puSrc2->ar32[3]);
+}
+#endif
+
+
+/**
+ * MINSS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_minss_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2))
+{
+ pResult->MXCSR = iemAImpl_minps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], pr32Src2);
+ pResult->uResult.ar32[1] = puSrc1->ar32[1];
+ pResult->uResult.ar32[2] = puSrc1->ar32[2];
+ pResult->uResult.ar32[3] = puSrc1->ar32[3];
+}
+#endif
+
+
+/**
+ * MINPD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_minpd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val1, PCRTFLOAT64U pr64Val2)
+{
+ if (RTFLOAT64U_IS_NAN(pr64Val1) || RTFLOAT64U_IS_NAN(pr64Val2))
+ {
+ /* The DAZ flag gets honored but the DE flag will not get set because \#IE has higher priority. */
+ iemSsePrepareValueR64(pr64Res, fMxcsr, pr64Val2);
+ return fMxcsr | X86_MXCSR_IE;
+ }
+
+ RTFLOAT64U r64Src1, r64Src2;
+ fMxcsr |= iemSsePrepareValueR64(&r64Src1, fMxcsr, pr64Val1);
+ fMxcsr |= iemSsePrepareValueR64(&r64Src2, fMxcsr, pr64Val2);
+ if (RTFLOAT64U_IS_ZERO(&r64Src1) && RTFLOAT64U_IS_ZERO(&r64Src2))
+ {
+ *pr64Res = r64Src2;
+ return fMxcsr;
+ }
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ bool fLe = f64_le(iemFpSoftF64FromIprt(&r64Src1), iemFpSoftF64FromIprt(&r64Src2), &SoftState);
+ return iemSseSoftStateAndR64ToMxcsrAndIprtResultNoFz(&SoftState,
+ fLe
+ ? iemFpSoftF64FromIprt(&r64Src1)
+ : iemFpSoftF64FromIprt(&r64Src2),
+ pr64Res, fMxcsr);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_minpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ pResult->MXCSR = iemAImpl_minpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc2->ar64[0]);
+ pResult->MXCSR |= iemAImpl_minpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc1->ar64[1], &puSrc2->ar64[1]);
+}
+#endif
+
+
+/**
+ * MINSD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_minsd_u128_r64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2))
+{
+ pResult->MXCSR = iemAImpl_minpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], pr64Src2);
+ pResult->uResult.ar64[1] = puSrc1->ar64[1];
+}
+#endif
+
+
+/**
+ * DIVPS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_divps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val1, PCRTFLOAT32U pr32Val2)
+{
+ if (iemSseBinaryValIsNaNR32(pr32Res, pr32Val1, pr32Val2, &fMxcsr))
+ return fMxcsr;
+
+ RTFLOAT32U r32Src1, r32Src2;
+ uint32_t fDe = iemSsePrepareValueR32(&r32Src1, fMxcsr, pr32Val1);
+ fDe |= iemSsePrepareValueR32(&r32Src2, fMxcsr, pr32Val2);
+ if (RTFLOAT32U_IS_ZERO(&r32Src2))
+ {
+ if ( RTFLOAT32U_IS_ZERO(&r32Src1)
+ || RTFLOAT32U_IS_QUIET_NAN(&r32Src1))
+ {
+ *pr32Res = g_ar32QNaN[1];
+ return fMxcsr | X86_MXCSR_IE;
+ }
+ else if (RTFLOAT32U_IS_INF(&r32Src1))
+ {
+ *pr32Res = g_ar32Infinity[r32Src1.s.fSign != r32Src2.s.fSign];
+ return fMxcsr;
+ }
+ else
+ {
+ *pr32Res = g_ar32Infinity[r32Src1.s.fSign != r32Src2.s.fSign];
+ return fMxcsr | X86_MXCSR_ZE;
+ }
+ }
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ float32_t r32Result = f32_div(iemFpSoftF32FromIprt(&r32Src1), iemFpSoftF32FromIprt(&r32Src2), &SoftState);
+ return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Result, pr32Res, fMxcsr | fDe);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_divps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ pResult->MXCSR = iemAImpl_divps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc2->ar32[0]);
+ pResult->MXCSR |= iemAImpl_divps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[1], &puSrc2->ar32[1]);
+ pResult->MXCSR |= iemAImpl_divps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc2->ar32[2]);
+ pResult->MXCSR |= iemAImpl_divps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc1->ar32[3], &puSrc2->ar32[3]);
+}
+#endif
+
+
+/**
+ * DIVSS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_divss_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2))
+{
+ pResult->MXCSR = iemAImpl_divps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], pr32Src2);
+ pResult->uResult.ar32[1] = puSrc1->ar32[1];
+ pResult->uResult.ar32[2] = puSrc1->ar32[2];
+ pResult->uResult.ar32[3] = puSrc1->ar32[3];
+}
+#endif
+
+
+/**
+ * DIVPD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_divpd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val1, PCRTFLOAT64U pr64Val2)
+{
+ if (iemSseBinaryValIsNaNR64(pr64Res, pr64Val1, pr64Val2, &fMxcsr))
+ return fMxcsr;
+
+ RTFLOAT64U r64Src1, r64Src2;
+ uint32_t fDe = iemSsePrepareValueR64(&r64Src1, fMxcsr, pr64Val1);
+ fDe |= iemSsePrepareValueR64(&r64Src2, fMxcsr, pr64Val2);
+ if (RTFLOAT64U_IS_ZERO(&r64Src2))
+ {
+ if ( RTFLOAT64U_IS_ZERO(&r64Src1)
+ || RTFLOAT64U_IS_QUIET_NAN(&r64Src1))
+ {
+ *pr64Res = g_ar64QNaN[1];
+ return fMxcsr | X86_MXCSR_IE;
+ }
+ else if (RTFLOAT64U_IS_INF(&r64Src1))
+ {
+ *pr64Res = g_ar64Infinity[r64Src1.s.fSign != r64Src2.s.fSign];
+ return fMxcsr;
+ }
+ else
+ {
+ *pr64Res = g_ar64Infinity[r64Src1.s.fSign != r64Src2.s.fSign];
+ return fMxcsr | X86_MXCSR_ZE;
+ }
+ }
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ float64_t r64Result = f64_div(iemFpSoftF64FromIprt(&r64Src1), iemFpSoftF64FromIprt(&r64Src2), &SoftState);
+ return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Result, pr64Res, fMxcsr | fDe);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_divpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ pResult->MXCSR = iemAImpl_divpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc2->ar64[0]);
+ pResult->MXCSR |= iemAImpl_divpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc1->ar64[1], &puSrc2->ar64[1]);
+}
+#endif
+
+
+/**
+ * DIVSD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_divsd_u128_r64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2))
+{
+ pResult->MXCSR = iemAImpl_divpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], pr64Src2);
+ pResult->uResult.ar64[1] = puSrc1->ar64[1];
+}
+#endif
+
+
+/**
+ * MAXPS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_maxps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val1, PCRTFLOAT32U pr32Val2)
+{
+ if (RTFLOAT32U_IS_NAN(pr32Val1) || RTFLOAT32U_IS_NAN(pr32Val2))
+ {
+ /* The DAZ flag gets honored but the DE flag will not get set because \#IE has higher priority. */
+ iemSsePrepareValueR32(pr32Res, fMxcsr, pr32Val2);
+ return fMxcsr | X86_MXCSR_IE;
+ }
+
+ RTFLOAT32U r32Src1, r32Src2;
+ fMxcsr |= iemSsePrepareValueR32(&r32Src1, fMxcsr, pr32Val1);
+ fMxcsr |= iemSsePrepareValueR32(&r32Src2, fMxcsr, pr32Val2);
+ if (RTFLOAT32U_IS_ZERO(&r32Src1) && RTFLOAT32U_IS_ZERO(&r32Src2))
+ {
+ *pr32Res = r32Src2;
+ return fMxcsr;
+ }
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ bool fLe = f32_le(iemFpSoftF32FromIprt(&r32Src1), iemFpSoftF32FromIprt(&r32Src2), &SoftState);
+ return iemSseSoftStateAndR32ToMxcsrAndIprtResultNoFz(&SoftState,
+ fLe
+ ? iemFpSoftF32FromIprt(&r32Src2)
+ : iemFpSoftF32FromIprt(&r32Src1),
+ pr32Res, fMxcsr);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_maxps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ pResult->MXCSR = iemAImpl_maxps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc2->ar32[0]);
+ pResult->MXCSR |= iemAImpl_maxps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[1], &puSrc2->ar32[1]);
+ pResult->MXCSR |= iemAImpl_maxps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc2->ar32[2]);
+ pResult->MXCSR |= iemAImpl_maxps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc1->ar32[3], &puSrc2->ar32[3]);
+}
+#endif
+
+
+/**
+ * MAXSS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_maxss_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2))
+{
+ pResult->MXCSR = iemAImpl_maxps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], pr32Src2);
+ pResult->uResult.ar32[1] = puSrc1->ar32[1];
+ pResult->uResult.ar32[2] = puSrc1->ar32[2];
+ pResult->uResult.ar32[3] = puSrc1->ar32[3];
+}
+#endif
+
+
+/**
+ * MAXPD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_maxpd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val1, PCRTFLOAT64U pr64Val2)
+{
+ if (RTFLOAT64U_IS_NAN(pr64Val1) || RTFLOAT64U_IS_NAN(pr64Val2))
+ {
+ /* The DAZ flag gets honored but the DE flag will not get set because \#IE has higher priority. */
+ iemSsePrepareValueR64(pr64Res, fMxcsr, pr64Val2);
+ return fMxcsr | X86_MXCSR_IE;
+ }
+
+ RTFLOAT64U r64Src1, r64Src2;
+ fMxcsr |= iemSsePrepareValueR64(&r64Src1, fMxcsr, pr64Val1);
+ fMxcsr |= iemSsePrepareValueR64(&r64Src2, fMxcsr, pr64Val2);
+ if (RTFLOAT64U_IS_ZERO(&r64Src1) && RTFLOAT64U_IS_ZERO(&r64Src2))
+ {
+ *pr64Res = r64Src2;
+ return fMxcsr;
+ }
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ bool fLe = f64_le(iemFpSoftF64FromIprt(&r64Src1), iemFpSoftF64FromIprt(&r64Src2), &SoftState);
+ return iemSseSoftStateAndR64ToMxcsrAndIprtResultNoFz(&SoftState,
+ fLe
+ ? iemFpSoftF64FromIprt(&r64Src2)
+ : iemFpSoftF64FromIprt(&r64Src1),
+ pr64Res, fMxcsr);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_maxpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ pResult->MXCSR = iemAImpl_maxpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc2->ar64[0]);
+ pResult->MXCSR |= iemAImpl_maxpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc1->ar64[1], &puSrc2->ar64[1]);
+}
+#endif
+
+
+/**
+ * MAXSD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_maxsd_u128_r64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2))
+{
+ pResult->MXCSR = iemAImpl_maxpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], pr64Src2);
+ pResult->uResult.ar64[1] = puSrc1->ar64[1];
+}
+#endif
+
+
+/**
+ * CVTSS2SD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_cvtss2sd_u128_r32_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val1)
+{
+ RTFLOAT32U r32Src1;
+ fMxcsr |= iemSsePrepareValueR32(&r32Src1, fMxcsr, pr32Val1);
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ float64_t r64Result = f32_to_f64(iemFpSoftF32FromIprt(&r32Src1), &SoftState);
+ return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Result, pr64Res, fMxcsr);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvtss2sd_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2))
+{
+ pResult->MXCSR = iemAImpl_cvtss2sd_u128_r32_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, pr32Src2);
+ pResult->uResult.ar64[1] = puSrc1->ar64[1];
+}
+#endif
+
+
+/**
+ * CVTSD2SS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_cvtsd2ss_u128_r64_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val1)
+{
+ RTFLOAT64U r64Src1;
+ fMxcsr |= iemSsePrepareValueR64(&r64Src1, fMxcsr, pr64Val1);
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ float32_t r32Result = f64_to_f32(iemFpSoftF64FromIprt(&r64Src1), &SoftState);
+ return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Result, pr32Res, fMxcsr);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvtsd2ss_u128_r64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2))
+{
+ pResult->MXCSR = iemAImpl_cvtsd2ss_u128_r64_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, pr64Src2);
+ pResult->uResult.ar32[1] = puSrc1->ar32[1];
+ pResult->uResult.ar32[2] = puSrc1->ar32[2];
+ pResult->uResult.ar32[3] = puSrc1->ar32[3];
+}
+#endif
+
+
+/**
+ * HADDPS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_haddps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ pResult->MXCSR = iemAImpl_addps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc1->ar32[1]);
+ pResult->MXCSR |= iemAImpl_addps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc1->ar32[3]);
+ pResult->MXCSR |= iemAImpl_addps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc2->ar32[0], &puSrc2->ar32[1]);
+ pResult->MXCSR |= iemAImpl_addps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc2->ar32[2], &puSrc2->ar32[3]);
+}
+#endif
+
+
+/**
+ * HADDPD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_haddpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ pResult->MXCSR = iemAImpl_addpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc1->ar64[1]);
+ pResult->MXCSR |= iemAImpl_addpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc2->ar64[0], &puSrc2->ar64[1]);
+}
+#endif
+
+
+/**
+ * HSUBPS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_hsubps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ pResult->MXCSR = iemAImpl_subps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc1->ar32[1]);
+ pResult->MXCSR |= iemAImpl_subps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc1->ar32[3]);
+ pResult->MXCSR |= iemAImpl_subps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc2->ar32[0], &puSrc2->ar32[1]);
+ pResult->MXCSR |= iemAImpl_subps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc2->ar32[2], &puSrc2->ar32[3]);
+}
+#endif
+
+
+/**
+ * HSUBPD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_hsubpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ pResult->MXCSR = iemAImpl_subpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc1->ar64[1]);
+ pResult->MXCSR |= iemAImpl_subpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc2->ar64[0], &puSrc2->ar64[1]);
+}
+#endif
+
+
+/**
+ * SQRTPS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_sqrtps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val)
+{
+ if (iemSseUnaryValIsNaNR32(pr32Res, pr32Val, &fMxcsr))
+ return fMxcsr;
+
+ RTFLOAT32U r32Src;
+ uint32_t fDe = iemSsePrepareValueR32(&r32Src, fMxcsr, pr32Val);
+ if (RTFLOAT32U_IS_ZERO(&r32Src))
+ {
+ *pr32Res = r32Src;
+ return fMxcsr;
+ }
+ else if (r32Src.s.fSign)
+ {
+ *pr32Res = g_ar32QNaN[1];
+ return fMxcsr | X86_MXCSR_IE;
+ }
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ float32_t r32Result = f32_sqrt(iemFpSoftF32FromIprt(&r32Src), &SoftState);
+ return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Result, pr32Res, fMxcsr | fDe);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_sqrtps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ RT_NOREF(puSrc1);
+
+ pResult->MXCSR = iemAImpl_sqrtps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc2->ar32[0]);
+ pResult->MXCSR |= iemAImpl_sqrtps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc2->ar32[1]);
+ pResult->MXCSR |= iemAImpl_sqrtps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc2->ar32[2]);
+ pResult->MXCSR |= iemAImpl_sqrtps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc2->ar32[3]);
+}
+#endif
+
+
+/**
+ * SQRTSS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_sqrtss_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2))
+{
+ pResult->MXCSR = iemAImpl_sqrtps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, pr32Src2);
+ pResult->uResult.ar32[1] = puSrc1->ar32[1];
+ pResult->uResult.ar32[2] = puSrc1->ar32[2];
+ pResult->uResult.ar32[3] = puSrc1->ar32[3];
+}
+#endif
+
+
+/**
+ * SQRTPD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_sqrtpd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val)
+{
+ if (iemSseUnaryValIsNaNR64(pr64Res, pr64Val, &fMxcsr))
+ return fMxcsr;
+
+ RTFLOAT64U r64Src;
+ uint32_t fDe = iemSsePrepareValueR64(&r64Src, fMxcsr, pr64Val);
+ if (RTFLOAT64U_IS_ZERO(&r64Src))
+ {
+ *pr64Res = r64Src;
+ return fMxcsr;
+ }
+ else if (r64Src.s.fSign)
+ {
+ *pr64Res = g_ar64QNaN[1];
+ return fMxcsr | X86_MXCSR_IE;
+ }
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ float64_t r64Result = f64_sqrt(iemFpSoftF64FromIprt(&r64Src), &SoftState);
+ return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Result, pr64Res, fMxcsr | fDe);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_sqrtpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ RT_NOREF(puSrc1);
+
+ pResult->MXCSR = iemAImpl_sqrtpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc2->ar64[0]);
+ pResult->MXCSR |= iemAImpl_sqrtpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc2->ar64[1]);
+}
+#endif
+
+
+/**
+ * SQRTSD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_sqrtsd_u128_r64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2))
+{
+ pResult->MXCSR = iemAImpl_sqrtpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, pr64Src2);
+ pResult->uResult.ar64[1] = puSrc1->ar64[1];
+}
+#endif
+
+
+#ifdef IEM_WITHOUT_ASSEMBLY
+/**
+ * RSQRTPS
+ */
+static uint32_t iemAImpl_rsqrt_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val)
+{
+ RT_NOREF(pr32Res);
+ RT_NOREF(pr32Val);
+ AssertReleaseFailed();
+ return fMxcsr;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_rsqrtps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ RT_NOREF(puSrc1);
+
+ pResult->MXCSR = iemAImpl_rsqrt_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc2->ar32[0]);
+ pResult->MXCSR |= iemAImpl_rsqrt_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc2->ar32[1]);
+ pResult->MXCSR |= iemAImpl_rsqrt_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc2->ar32[2]);
+ pResult->MXCSR |= iemAImpl_rsqrt_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc2->ar32[3]);
+}
+
+
+/**
+ * RSQRTSS
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_rsqrtss_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2))
+{
+ pResult->MXCSR = iemAImpl_rsqrt_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, pr32Src2);
+ pResult->uResult.ar32[1] = puSrc1->ar32[1];
+ pResult->uResult.ar32[2] = puSrc1->ar32[2];
+ pResult->uResult.ar32[3] = puSrc1->ar32[3];
+}
+#endif
+
+
+/**
+ * ADDSUBPS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_addsubps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ RT_NOREF(puSrc1);
+
+ pResult->MXCSR = iemAImpl_subps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc2->ar32[0]);
+ pResult->MXCSR |= iemAImpl_addps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[1], &puSrc2->ar32[1]);
+ pResult->MXCSR |= iemAImpl_subps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc2->ar32[2]);
+ pResult->MXCSR |= iemAImpl_addps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc1->ar32[3], &puSrc2->ar32[3]);
+}
+#endif
+
+
+/**
+ * ADDSUBPD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_addsubpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ RT_NOREF(puSrc1);
+
+ pResult->MXCSR = iemAImpl_subpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc2->ar64[0]);
+ pResult->MXCSR |= iemAImpl_addpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc1->ar64[1], &puSrc2->ar64[1]);
+}
+#endif
+
+
+/**
+ * CVTPD2PS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_cvtpd2ps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val1)
+{
+ RTFLOAT64U r64Src1;
+ fMxcsr |= iemSsePrepareValueR64(&r64Src1, fMxcsr, pr64Val1);
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ float32_t r32Result = f64_to_f32(iemFpSoftF64FromIprt(&r64Src1), &SoftState);
+ return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Result, pr32Res, fMxcsr);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvtpd2ps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ RT_NOREF(puSrc1);
+
+ pResult->MXCSR = iemAImpl_cvtpd2ps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc2->ar64[0]);
+ pResult->MXCSR |= iemAImpl_cvtpd2ps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc2->ar64[1]);
+ pResult->uResult.au32[2] = 0;
+ pResult->uResult.au32[3] = 0;
+}
+#endif
+
+
+/**
+ * CVTPS2PD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_cvtps2pd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val1)
+{
+ RTFLOAT32U r32Src1;
+ fMxcsr |= iemSsePrepareValueR32(&r32Src1, fMxcsr, pr32Val1);
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ float64_t r64Result = f32_to_f64(iemFpSoftF32FromIprt(&r32Src1), &SoftState);
+ return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Result, pr64Res, fMxcsr);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvtps2pd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ RT_NOREF(puSrc1);
+
+ pResult->MXCSR = iemAImpl_cvtps2pd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc2->ar32[0]);
+ pResult->MXCSR |= iemAImpl_cvtps2pd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc2->ar32[1]);
+}
+#endif
+
+
+/**
+ * CVTDQ2PS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_cvtdq2ps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, int32_t i32Val)
+{
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ float32_t r32Result = i32_to_f32(i32Val, &SoftState);
+ return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Result, pr32Res, fMxcsr);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvtdq2ps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ RT_NOREF(puSrc1);
+
+ pResult->MXCSR = iemAImpl_cvtdq2ps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, puSrc2->ai32[0]);
+ pResult->MXCSR |= iemAImpl_cvtdq2ps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, puSrc2->ai32[1]);
+ pResult->MXCSR |= iemAImpl_cvtdq2ps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, puSrc2->ai32[2]);
+ pResult->MXCSR |= iemAImpl_cvtdq2ps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, puSrc2->ai32[3]);
+}
+#endif
+
+
+/**
+ * CVTPS2DQ
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_cvtps2dq_u128_worker(int32_t *pi32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Src)
+{
+ RTFLOAT32U r32Src;
+ iemSsePrepareValueR32(&r32Src, fMxcsr, pr32Src); /* De-normal seems to be ignored. */
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ *pi32Res = f32_to_i32(iemFpSoftF32FromIprt(&r32Src), SoftState.roundingMode, true /*exact*/, &SoftState);
+ return fMxcsr | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvtps2dq_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ RT_NOREF(puSrc1);
+
+ pResult->MXCSR = iemAImpl_cvtps2dq_u128_worker(&pResult->uResult.ai32[0], pFpuState->MXCSR, &puSrc2->ar32[0]);
+ pResult->MXCSR |= iemAImpl_cvtps2dq_u128_worker(&pResult->uResult.ai32[1], pFpuState->MXCSR, &puSrc2->ar32[1]);
+ pResult->MXCSR |= iemAImpl_cvtps2dq_u128_worker(&pResult->uResult.ai32[2], pFpuState->MXCSR, &puSrc2->ar32[2]);
+ pResult->MXCSR |= iemAImpl_cvtps2dq_u128_worker(&pResult->uResult.ai32[3], pFpuState->MXCSR, &puSrc2->ar32[3]);
+}
+#endif
+
+
+/**
+ * CVTTPS2DQ
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_cvttps2dq_u128_worker(int32_t *pi32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Src)
+{
+ RTFLOAT32U r32Src;
+ iemSsePrepareValueR32(&r32Src, fMxcsr, pr32Src); /* De-normal seems to be ignored. */
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ SoftState.roundingMode = softfloat_round_minMag;
+ *pi32Res = f32_to_i32_r_minMag(iemFpSoftF32FromIprt(&r32Src), true /*exact*/, &SoftState);
+ return fMxcsr | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvttps2dq_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ RT_NOREF(puSrc1);
+
+ pResult->MXCSR = iemAImpl_cvttps2dq_u128_worker(&pResult->uResult.ai32[0], pFpuState->MXCSR, &puSrc2->ar32[0]);
+ pResult->MXCSR |= iemAImpl_cvttps2dq_u128_worker(&pResult->uResult.ai32[1], pFpuState->MXCSR, &puSrc2->ar32[1]);
+ pResult->MXCSR |= iemAImpl_cvttps2dq_u128_worker(&pResult->uResult.ai32[2], pFpuState->MXCSR, &puSrc2->ar32[2]);
+ pResult->MXCSR |= iemAImpl_cvttps2dq_u128_worker(&pResult->uResult.ai32[3], pFpuState->MXCSR, &puSrc2->ar32[3]);
+}
+#endif
+
+
+/**
+ * CVTTPD2DQ
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_cvttpd2dq_u128_worker(int32_t *pi32Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Src)
+{
+ RTFLOAT64U r64Src;
+ iemSsePrepareValueR64(&r64Src, fMxcsr, pr64Src); /* De-normal seems to be ignored. */
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ SoftState.roundingMode = softfloat_round_minMag;
+ *pi32Res = f64_to_i32(iemFpSoftF64FromIprt(&r64Src), SoftState.roundingMode, true /*exact*/, &SoftState);
+ return fMxcsr | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvttpd2dq_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ RT_NOREF(puSrc1);
+
+ pResult->MXCSR = iemAImpl_cvttpd2dq_u128_worker(&pResult->uResult.ai32[0], pFpuState->MXCSR, &puSrc2->ar64[0]);
+ pResult->MXCSR |= iemAImpl_cvttpd2dq_u128_worker(&pResult->uResult.ai32[1], pFpuState->MXCSR, &puSrc2->ar64[1]);
+ pResult->uResult.au64[1] = 0;
+}
+#endif
+
+
+/**
+ * CVTDQ2PD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_cvtdq2pd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, int32_t i32Val)
+{
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ float64_t r64Result = i32_to_f64(i32Val, &SoftState);
+ return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Result, pr64Res, fMxcsr);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvtdq2pd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ RT_NOREF(puSrc1);
+
+ pResult->MXCSR = iemAImpl_cvtdq2pd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, puSrc2->ai32[0]);
+ pResult->MXCSR |= iemAImpl_cvtdq2pd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, puSrc2->ai32[1]);
+}
+#endif
+
+
+/**
+ * CVTPD2DQ
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_cvtpd2dq_u128_worker(int32_t *pi32Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Src)
+{
+ RTFLOAT64U r64Src;
+ iemSsePrepareValueR64(&r64Src, fMxcsr, pr64Src); /* De-normal seems to be ignored. */
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ *pi32Res = f64_to_i32(iemFpSoftF64FromIprt(&r64Src), SoftState.roundingMode, true /*exact*/, &SoftState);
+ return fMxcsr | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvtpd2dq_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ RT_NOREF(puSrc1);
+
+ pResult->MXCSR = iemAImpl_cvtpd2dq_u128_worker(&pResult->uResult.ai32[0], pFpuState->MXCSR, &puSrc2->ar64[0]);
+ pResult->MXCSR |= iemAImpl_cvtpd2dq_u128_worker(&pResult->uResult.ai32[1], pFpuState->MXCSR, &puSrc2->ar64[1]);
+ pResult->uResult.au64[1] = 0;
+}
+#endif
+
+
+/**
+ * [V]SHUFPS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_shufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil))
+{
+ RTUINT128U const uSrc1 = *puDst;
+ RTUINT128U const uSrc2 = *puSrc;
+ ASMCompilerBarrier();
+ puDst->au32[0] = uSrc1.au32[bEvil & 0x3];
+ puDst->au32[1] = uSrc1.au32[(bEvil >> 2) & 0x3];
+ puDst->au32[2] = uSrc2.au32[(bEvil >> 4) & 0x3];
+ puDst->au32[3] = uSrc2.au32[(bEvil >> 6) & 0x3];
+}
+#endif
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil))
+{
+ RTUINT128U const uSrc1 = *puSrc1;
+ RTUINT128U const uSrc2 = *puSrc2;
+ ASMCompilerBarrier();
+ puDst->au32[0] = uSrc1.au32[bEvil & 0x3];
+ puDst->au32[1] = uSrc1.au32[(bEvil >> 2) & 0x3];
+ puDst->au32[2] = uSrc2.au32[(bEvil >> 4) & 0x3];
+ puDst->au32[3] = uSrc2.au32[(bEvil >> 6) & 0x3];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil))
+{
+ RTUINT256U const uSrc1 = *puSrc1;
+ RTUINT256U const uSrc2 = *puSrc2;
+ ASMCompilerBarrier();
+ puDst->au32[0] = uSrc1.au32[bEvil & 0x3];
+ puDst->au32[1] = uSrc1.au32[(bEvil >> 2) & 0x3];
+ puDst->au32[2] = uSrc2.au32[(bEvil >> 4) & 0x3];
+ puDst->au32[3] = uSrc2.au32[(bEvil >> 6) & 0x3];
+
+ puDst->au32[4] = uSrc1.au32[4 + (bEvil & 0x3)];
+ puDst->au32[5] = uSrc1.au32[4 + ((bEvil >> 2) & 0x3)];
+ puDst->au32[6] = uSrc2.au32[4 + ((bEvil >> 4) & 0x3)];
+ puDst->au32[7] = uSrc2.au32[4 + ((bEvil >> 6) & 0x3)];
+}
+
+
+/**
+ * [V]SHUFPD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_shufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil))
+{
+ RTUINT128U const uSrc1 = *puDst;
+ RTUINT128U const uSrc2 = *puSrc;
+ ASMCompilerBarrier();
+ puDst->au64[0] = (bEvil & RT_BIT(0)) ? uSrc1.au64[1] : uSrc1.au64[0];
+ puDst->au64[1] = (bEvil & RT_BIT(1)) ? uSrc2.au64[1] : uSrc2.au64[0];
+}
+#endif
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil))
+{
+ RTUINT128U const uSrc1 = *puSrc1;
+ RTUINT128U const uSrc2 = *puSrc2;
+ ASMCompilerBarrier();
+ puDst->au64[0] = (bEvil & RT_BIT(0)) ? uSrc1.au64[1] : uSrc1.au64[0];
+ puDst->au64[1] = (bEvil & RT_BIT(1)) ? uSrc2.au64[1] : uSrc2.au64[0];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil))
+{
+ RTUINT256U const uSrc1 = *puSrc1;
+ RTUINT256U const uSrc2 = *puSrc2;
+ ASMCompilerBarrier();
+ puDst->au64[0] = (bEvil & RT_BIT(0)) ? uSrc1.au64[1] : uSrc1.au64[0];
+ puDst->au64[1] = (bEvil & RT_BIT(1)) ? uSrc2.au64[1] : uSrc2.au64[0];
+ puDst->au64[2] = (bEvil & RT_BIT(2)) ? uSrc1.au64[3] : uSrc1.au64[2];
+ puDst->au64[3] = (bEvil & RT_BIT(3)) ? uSrc2.au64[3] : uSrc2.au64[2];
+}
+
+
+/*
+ * PHMINPOSUW / VPHMINPOSUW
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_phminposuw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ uint16_t u16Min = puSrc->au16[0];
+ uint8_t idxMin = 0;
+
+ for (uint8_t i = 1; i < RT_ELEMENTS(puSrc->au16); i++)
+ if (puSrc->au16[i] < u16Min)
+ {
+ u16Min = puSrc->au16[i];
+ idxMin = i;
+ }
+
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ puDst->au16[0] = u16Min;
+ puDst->au16[1] = idxMin;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vphminposuw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ iemAImpl_phminposuw_u128_fallback(puDst, puSrc);
+}
+
+
+/*
+ * [V]PBLENDVB
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_pblendvb_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask))
+{
+ for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au8); i++)
+ if (puMask->au8[i] & RT_BIT(7))
+ puDst->au8[i] = puSrc->au8[i];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpblendvb_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask))
+{
+ for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au8); i++)
+ puDst->au8[i] = puMask->au8[i] & RT_BIT(7) ? puSrc2->au8[i] : puSrc1->au8[i];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpblendvb_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask))
+{
+ for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au8); i++)
+ puDst->au8[i] = puMask->au8[i] & RT_BIT(7) ? puSrc2->au8[i] : puSrc1->au8[i];
+}
+
+
+/*
+ * [V]BLENDVPS
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_blendvps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask))
+{
+ for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au32); i++)
+ if (puMask->au32[i] & RT_BIT_32(31))
+ puDst->au32[i] = puSrc->au32[i];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vblendvps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask))
+{
+ for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au32); i++)
+ puDst->au32[i] = (puMask->au32[i] & RT_BIT_32(31)) ? puSrc2->au32[i] : puSrc1->au32[i];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vblendvps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask))
+{
+ for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au32); i++)
+ puDst->au32[i] = (puMask->au32[i] & RT_BIT_32(31)) ? puSrc2->au32[i] : puSrc1->au32[i];
+}
+
+
+/*
+ * [V]BLENDVPD
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_blendvpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask))
+{
+ if (puMask->au64[0] & RT_BIT_64(63)) puDst->au64[0] = puSrc->au64[0];
+ if (puMask->au64[1] & RT_BIT_64(63)) puDst->au64[1] = puSrc->au64[1];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vblendvpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask))
+{
+ for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au64); i++)
+ puDst->au64[i] = (puMask->au64[i] & RT_BIT_64(63)) ? puSrc2->au64[i] : puSrc1->au64[i];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vblendvpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask))
+{
+ for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au64); i++)
+ puDst->au64[i] = (puMask->au64[i] & RT_BIT_64(63)) ? puSrc2->au64[i] : puSrc1->au64[i];
+}
+
+
+/**
+ * [V]PALIGNR
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64_fallback,(uint64_t *pu64Dst, uint64_t u64Src2, uint8_t bEvil))
+{
+ uint64_t const u64Src1 = *pu64Dst;
+ ASMCompilerBarrier();
+
+ if (bEvil >= 16)
+ *pu64Dst = 0;
+ else if (bEvil >= 8)
+ *pu64Dst = u64Src1 >> ((bEvil - 8) * 8);
+ else
+ {
+ uint8_t cShift = bEvil * 8;
+ *pu64Dst = ((u64Src1 & (RT_BIT_64(cShift) - 1)) << ((8 - bEvil) * 8))
+ | (u64Src2 >> cShift);
+ }
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil))
+{
+ RTUINT128U const uSrc1 = *puDst;
+ RTUINT128U const uSrc2 = *puSrc;
+ ASMCompilerBarrier();
+
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ if (bEvil >= 32)
+ { /* Everything stays 0. */ }
+ else if (bEvil >= 16)
+ {
+ bEvil -= 16;
+ for (uint8_t i = bEvil; i < RT_ELEMENTS(puDst->au8); i++)
+ puDst->au8[i - bEvil] = uSrc1.au8[i];
+ }
+ else
+ {
+ for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au8) - bEvil; i++)
+ puDst->au8[i] = uSrc2.au8[i + bEvil];
+ for (uint8_t i = 0; i < bEvil; i++)
+ puDst->au8[i + RT_ELEMENTS(puDst->au8) - bEvil] = uSrc1.au8[i];
+ }
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpalignr_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil))
+{
+ RTUINT128U const uSrc1 = *puSrc1; /* Might overlap with destination. */
+ RTUINT128U const uSrc2 = *puSrc2;
+ ASMCompilerBarrier();
+
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+ if (bEvil >= 32)
+ { /* Everything stays 0. */ }
+ else if (bEvil >= 16)
+ {
+ bEvil -= 16;
+ for (uint8_t i = bEvil; i < RT_ELEMENTS(puDst->au8); i++)
+ puDst->au8[i - bEvil] = uSrc1.au8[i];
+ }
+ else
+ {
+ for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au8) - bEvil; i++)
+ puDst->au8[i] = uSrc2.au8[i + bEvil];
+ for (uint8_t i = 0; i < bEvil; i++)
+ puDst->au8[i + RT_ELEMENTS(puDst->au8) - bEvil] = uSrc1.au8[i];
+ }
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpalignr_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil))
+{
+ RTUINT256U const uSrc1 = *puSrc1; /* Might overlap with destination. */
+ RTUINT256U const uSrc2 = *puSrc2;
+ ASMCompilerBarrier();
+
+ iemAImpl_vpalignr_u128_fallback(&puDst->au128[0], &uSrc1.au128[0], &uSrc2.au128[0], bEvil);
+ iemAImpl_vpalignr_u128_fallback(&puDst->au128[1], &uSrc1.au128[1], &uSrc2.au128[1], bEvil);
+}
+
+
+/**
+ * [V]PBLENDW
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_pblendw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil))
+{
+ for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au16); i++)
+ if (bEvil & RT_BIT(i))
+ puDst->au16[i] = puSrc->au16[i];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpblendw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil))
+{
+ for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au16); i++)
+ if (bEvil & RT_BIT(i))
+ puDst->au16[i] = puSrc2->au16[i];
+ else
+ puDst->au16[i] = puSrc1->au16[i];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpblendw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil))
+{
+ for (uint8_t i = 0; i < 8; i++)
+ if (bEvil & RT_BIT(i))
+ {
+ puDst->au16[ i] = puSrc2->au16[ i];
+ puDst->au16[8 + i] = puSrc2->au16[8 + i];
+ }
+ else
+ {
+ puDst->au16[ i] = puSrc1->au16[ i];
+ puDst->au16[8 + i] = puSrc1->au16[8 + i];
+ }
+}
+
+
+/**
+ * [V]BLENDPS
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_blendps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil))
+{
+ for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au32); i++)
+ if (bEvil & RT_BIT(i))
+ puDst->au32[i] = puSrc->au32[i];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vblendps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil))
+{
+ for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au32); i++)
+ if (bEvil & RT_BIT(i))
+ puDst->au32[i] = puSrc2->au32[i];
+ else
+ puDst->au32[i] = puSrc1->au32[i];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vblendps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil))
+{
+ for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au32); i++)
+ if (bEvil & RT_BIT(i))
+ puDst->au32[i] = puSrc2->au32[i];
+ else
+ puDst->au32[i] = puSrc1->au32[i];
+}
+
+
+/**
+ * [V]BLENDPD
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_blendpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil))
+{
+ for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au64); i++)
+ if (bEvil & RT_BIT(i))
+ puDst->au64[i] = puSrc->au64[i];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vblendpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil))
+{
+ for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au64); i++)
+ if (bEvil & RT_BIT(i))
+ puDst->au64[i] = puSrc2->au64[i];
+ else
+ puDst->au64[i] = puSrc1->au64[i];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vblendpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil))
+{
+ for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au64); i++)
+ if (bEvil & RT_BIT(i))
+ puDst->au64[i] = puSrc2->au64[i];
+ else
+ puDst->au64[i] = puSrc1->au64[i];
+}
+
+
+/**
+ * AES tables and helper routines. Tables from Intel AES-NI whitepaper.
+ */
+
+static uint8_t iemAImpl_aes_sbox[] = {
+ 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
+ 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
+ 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
+ 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
+ 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
+ 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
+ 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
+ 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
+ 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
+ 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
+ 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
+ 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
+ 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
+ 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
+ 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
+ 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
+};
+
+/* The InvS-Box lookup table. */
+static uint8_t iemAImpl_aes_inv_sbox[] = {
+ 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
+ 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
+ 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
+ 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
+ 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
+ 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
+ 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
+ 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
+ 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
+ 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
+ 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
+ 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
+ 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
+ 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
+ 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
+ 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
+};
+
+/* The ShiftRows lookup table. */
+static uint8_t iemAImpl_aes_shift_rows_tbl[] = {
+ 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11
+};
+
+/* The InvShiftRows lookup table. */
+static uint8_t iemAImpl_aes_inv_shift_rows_tbl[] = {
+ 0, 13, 10, 7, 4, 1, 14, 11, 8, 5, 2, 15, 12, 9, 6, 3
+};
+
+static inline RTUINT128U iemAImpl_aes_sub_bytes(PCRTUINT128U puSrc, uint8_t abSubst[256])
+{
+ RTUINT128U uVal;
+ int i;
+
+ for (i = 0; i < 16; ++i)
+ uVal.au8[i] = abSubst[puSrc->au8[i]];
+
+ return uVal;
+}
+
+static inline uint8_t iemAImpl_aes_xtime(uint8_t u)
+{
+ return (u << 1) ^ (((u >> 7) & 1) * 27);
+}
+
+static RTUINT128U iemAImpl_aes_mix_col(PCRTUINT128U puSrc)
+{
+ RTUINT128U uVal;
+ int i;
+ uint8_t tmp;
+
+ for (i = 0; i < 16; i += 4) {
+ tmp = puSrc->au8[i+0] ^ puSrc->au8[i+1] ^ puSrc->au8[i+2] ^ puSrc->au8[i+3];
+ uVal.au8[i+0] = puSrc->au8[i+0] ^ tmp ^ iemAImpl_aes_xtime(puSrc->au8[i+0] ^ puSrc->au8[i+1]);
+ uVal.au8[i+1] = puSrc->au8[i+1] ^ tmp ^ iemAImpl_aes_xtime(puSrc->au8[i+1] ^ puSrc->au8[i+2]);
+ uVal.au8[i+2] = puSrc->au8[i+2] ^ tmp ^ iemAImpl_aes_xtime(puSrc->au8[i+2] ^ puSrc->au8[i+3]);
+ uVal.au8[i+3] = puSrc->au8[i+3] ^ tmp ^ iemAImpl_aes_xtime(puSrc->au8[i+3] ^ puSrc->au8[i+0]);
+ }
+
+ return uVal;
+}
+
+static inline RTUINT128U iemAImpl_aes_shift_rows(PCRTUINT128U puSrc, uint8_t abShift[16])
+{
+ RTUINT128U uVal;
+ int i;
+
+ for (i = 0; i < 16; ++i)
+ uVal.au8[i] = puSrc->au8[abShift[i]];
+
+ return uVal;
+}
+
+static uint8_t iemAImpl_aes_clmul(uint8_t a, uint8_t b)
+{
+ uint8_t val;
+
+ val = ((b >> 0) & 1) * a;
+ val ^= ((b >> 1) & 1) * iemAImpl_aes_xtime(a);
+ val ^= ((b >> 2) & 1) * iemAImpl_aes_xtime(iemAImpl_aes_xtime(a));
+ val ^= ((b >> 3) & 1) * iemAImpl_aes_xtime(iemAImpl_aes_xtime(iemAImpl_aes_xtime(a)));
+ val ^= ((b >> 4) & 1) * iemAImpl_aes_xtime(iemAImpl_aes_xtime(iemAImpl_aes_xtime(iemAImpl_aes_xtime(a))));
+
+ return val;
+}
+
+static RTUINT128U iemAImpl_aes_inv_mix_col(PCRTUINT128U puSrc)
+{
+ RTUINT128U uVal;
+ int i;
+
+ for (i = 0; i < 16; i += 4) {
+ uVal.au8[i+0] = iemAImpl_aes_clmul(puSrc->au8[i+0], 0x0e) ^ iemAImpl_aes_clmul(puSrc->au8[i+1], 0x0b)^ iemAImpl_aes_clmul(puSrc->au8[i+2], 0x0d) ^ iemAImpl_aes_clmul(puSrc->au8[i+3], 0x09);
+ uVal.au8[i+1] = iemAImpl_aes_clmul(puSrc->au8[i+0], 0x09) ^ iemAImpl_aes_clmul(puSrc->au8[i+1], 0x0e)^ iemAImpl_aes_clmul(puSrc->au8[i+2], 0x0b) ^ iemAImpl_aes_clmul(puSrc->au8[i+3], 0x0d);
+ uVal.au8[i+2] = iemAImpl_aes_clmul(puSrc->au8[i+0], 0x0d) ^ iemAImpl_aes_clmul(puSrc->au8[i+1], 0x09)^ iemAImpl_aes_clmul(puSrc->au8[i+2], 0x0e) ^ iemAImpl_aes_clmul(puSrc->au8[i+3], 0x0b);
+ uVal.au8[i+3] = iemAImpl_aes_clmul(puSrc->au8[i+0], 0x0b) ^ iemAImpl_aes_clmul(puSrc->au8[i+1], 0x0d)^ iemAImpl_aes_clmul(puSrc->au8[i+2], 0x09) ^ iemAImpl_aes_clmul(puSrc->au8[i+3], 0x0e);
+ }
+
+ return uVal;
+}
+
+static inline uint32_t iemAImpl_aes_sub_word(uint32_t w)
+{
+ RTUINT32U uTmp;
+
+ uTmp.au32[0] = w;
+ uTmp.au8[0] = iemAImpl_aes_sbox[uTmp.au8[0]];
+ uTmp.au8[1] = iemAImpl_aes_sbox[uTmp.au8[1]];
+ uTmp.au8[2] = iemAImpl_aes_sbox[uTmp.au8[2]];
+ uTmp.au8[3] = iemAImpl_aes_sbox[uTmp.au8[3]];
+
+ return uTmp.au32[0];
+}
+
+static inline uint32_t iemAImpl_aes_rot_word(uint32_t w)
+{
+ return (w << 24) | (w >> 8);
+}
+
+/**
+ * [V]AESKEYGENASSIST
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_aeskeygenassist_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bImm))
+{
+ RTUINT128U uTmp;
+ uint32_t uRCon = bImm; /* Round constant. */
+
+ uTmp.au32[0] = iemAImpl_aes_sub_word(puSrc->au32[1]); /* puSrc = KeyGen. */
+ uTmp.au32[1] = iemAImpl_aes_rot_word(iemAImpl_aes_sub_word(puSrc->au32[1])) ^ uRCon;
+ uTmp.au32[2] = iemAImpl_aes_sub_word(puSrc->au32[3]);
+ uTmp.au32[3] = iemAImpl_aes_rot_word(iemAImpl_aes_sub_word(puSrc->au32[3])) ^ uRCon;
+
+ *puDst = uTmp;
+}
+
+
+/**
+ * [V]AESIMC
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_aesimc_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ *puDst = iemAImpl_aes_inv_mix_col(puSrc); /* Src = Key. */
+}
+
+
+/**
+ * [V]AESENC
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_aesenc_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uTmp;
+
+ uTmp = iemAImpl_aes_shift_rows(puDst, iemAImpl_aes_shift_rows_tbl); /* Dst = state. */
+ uTmp = iemAImpl_aes_sub_bytes(&uTmp, iemAImpl_aes_sbox);
+ uTmp = iemAImpl_aes_mix_col(&uTmp);
+ uTmp.au64[0] ^= puSrc->au64[0]; /* Src = Round Key. */
+ uTmp.au64[1] ^= puSrc->au64[1];
+
+ *puDst = uTmp;
+}
+
+
+/**
+ * [V]AESENCLAST
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_aesenclast_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uTmp;
+
+ uTmp = iemAImpl_aes_shift_rows(puDst, iemAImpl_aes_shift_rows_tbl); /* Dst = state. */
+ uTmp = iemAImpl_aes_sub_bytes(&uTmp, iemAImpl_aes_sbox);
+ uTmp.au64[0] ^= puSrc->au64[0]; /* Src = Round Key. */
+ uTmp.au64[1] ^= puSrc->au64[1];
+
+ *puDst = uTmp;
+}
+
+
+/**
+ * [V]AESDEC
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_aesdec_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uTmp;
+
+ uTmp = iemAImpl_aes_shift_rows(puDst, iemAImpl_aes_inv_shift_rows_tbl); /* Dst = state. */
+ uTmp = iemAImpl_aes_sub_bytes(&uTmp, iemAImpl_aes_inv_sbox);
+ uTmp = iemAImpl_aes_inv_mix_col(&uTmp);
+ uTmp.au64[0] ^= puSrc->au64[0]; /* Src = Round Key. */
+ uTmp.au64[1] ^= puSrc->au64[1];
+
+ *puDst = uTmp;
+}
+
+
+/**
+ * [V]AESDECLAST
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_aesdeclast_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc))
+{
+ RTUINT128U uTmp;
+
+ uTmp = iemAImpl_aes_shift_rows(puDst, iemAImpl_aes_inv_shift_rows_tbl); /* Dst = state. */
+ uTmp = iemAImpl_aes_sub_bytes(&uTmp, iemAImpl_aes_inv_sbox);
+ uTmp.au64[0] ^= puSrc->au64[0]; /* Src = Round Key. */
+ uTmp.au64[1] ^= puSrc->au64[1];
+
+ *puDst = uTmp;
+}
+
+
+/**
+ * [V]PCMPISTRI
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpistri_u128_fallback,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPISTRISRC pSrc, uint8_t bEvil))
+{
+ RT_NOREF(pu32Ecx, pEFlags, pSrc, bEvil);
+ AssertReleaseFailed();
+}
+
+
+/*
+ * [V]PCLMULQDQ
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_pclmulqdq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil))
+{
+ iemAImpl_vpclmulqdq_u128_fallback(puDst, puDst, puSrc, bEvil);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpclmulqdq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil))
+{
+ uint64_t uSrc1 = puSrc1->au64[bEvil & 0x1];
+ uint64_t uSrc2 = puSrc2->au64[(bEvil >> 4) & 0x1];
+
+ puDst->au64[0] = 0;
+ puDst->au64[1] = 0;
+
+ /*
+ * See https://en.wikipedia.org/wiki/Carry-less_product#Example (as of 2022-09-08) for the algorithm.
+ * Do the first round outside the loop to avoid ASAN complaining about shift exponent being too large (64)
+ * and squeeze out some optimizations.
+ */
+ if (uSrc1 & 0x1)
+ puDst->au64[0] = uSrc2;
+
+ uSrc1 >>= 1;
+
+ uint8_t iDigit = 1;
+ while (uSrc1)
+ {
+ if (uSrc1 & 0x1)
+ {
+ puDst->au64[0] ^= (uSrc2 << iDigit);
+ puDst->au64[1] ^= uSrc2 >> (64 - iDigit);
+ }
+
+ uSrc1 >>= 1;
+ iDigit++;
+ }
+}
+
+
+/**
+ * [V]PINSRW
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_pinsrw_u64,(uint64_t *pu64Dst, uint16_t u16Src, uint8_t bEvil))
+{
+ uint8_t cShift = (bEvil & 0x3) * 16;
+ *pu64Dst = (*pu64Dst & ~(UINT64_C(0xffff) << cShift)) | ((uint64_t)u16Src << cShift);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pinsrw_u128,(PRTUINT128U puDst, uint16_t u16Src, uint8_t bEvil))
+{
+ puDst->au16[bEvil & 0x7] = u16Src;
+}
+#endif
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpinsrw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint16_t u16Src, uint8_t bEvil))
+{
+ *puDst = *puSrc;
+ puDst->au16[bEvil & 0x7] = u16Src;
+}
+
+
+/**
+ * [V]PEXTRW
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_pextrw_u64,(uint16_t *pu16Dst, uint64_t u64Src, uint8_t bEvil))
+{
+ *pu16Dst = (uint16_t)(u64Src >> ((bEvil & 0x3) * 16));
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_pextrw_u128,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil))
+{
+ *pu16Dst = puSrc->au16[bEvil & 0x7];
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vpextrw_u128_fallback,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil))
+{
+ *pu16Dst = puSrc->au16[bEvil & 0x7];
+}
+
+
+/**
+ * [V]MOVMSKPS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_movmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc))
+{
+ *pu8Dst = puSrc->au32[0] >> 31;
+ *pu8Dst |= (puSrc->au32[1] >> 31) << 1;
+ *pu8Dst |= (puSrc->au32[2] >> 31) << 2;
+ *pu8Dst |= (puSrc->au32[3] >> 31) << 3;
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc))
+{
+ *pu8Dst = puSrc->au32[0] >> 31;
+ *pu8Dst |= (puSrc->au32[1] >> 31) << 1;
+ *pu8Dst |= (puSrc->au32[2] >> 31) << 2;
+ *pu8Dst |= (puSrc->au32[3] >> 31) << 3;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc))
+{
+ *pu8Dst = puSrc->au32[0] >> 31;
+ *pu8Dst |= (puSrc->au32[1] >> 31) << 1;
+ *pu8Dst |= (puSrc->au32[2] >> 31) << 2;
+ *pu8Dst |= (puSrc->au32[3] >> 31) << 3;
+ *pu8Dst |= (puSrc->au32[4] >> 31) << 4;
+ *pu8Dst |= (puSrc->au32[5] >> 31) << 5;
+ *pu8Dst |= (puSrc->au32[6] >> 31) << 6;
+ *pu8Dst |= (puSrc->au32[7] >> 31) << 7;
+}
+
+
+/**
+ * [V]MOVMSKPD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_movmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc))
+{
+ *pu8Dst = puSrc->au64[0] >> 63;
+ *pu8Dst |= (puSrc->au64[1] >> 63) << 1;
+}
+
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc))
+{
+ *pu8Dst = puSrc->au64[0] >> 63;
+ *pu8Dst |= (puSrc->au64[1] >> 63) << 1;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc))
+{
+ *pu8Dst = puSrc->au64[0] >> 63;
+ *pu8Dst |= (puSrc->au64[1] >> 63) << 1;
+ *pu8Dst |= (puSrc->au64[2] >> 63) << 2;
+ *pu8Dst |= (puSrc->au64[3] >> 63) << 3;
+}
+
+
+/**
+ * CVTTSD2SI
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvttsd2si_i32_r64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint64_t *pu64Src))
+{
+ RTFLOAT64U r64Src;
+
+ r64Src.u = *pu64Src;
+ iemSsePrepareValueR64(&r64Src, pFpuState->MXCSR, &r64Src); /* The de-normal flag is not set. */
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(pFpuState->MXCSR);
+ *pi32Dst = f64_to_i32_r_minMag(iemFpSoftF64FromIprt(&r64Src), true /*exact*/, &SoftState);
+ *pfMxcsr = pFpuState->MXCSR | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvttsd2si_i64_r64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint64_t *pu64Src))
+{
+ RTFLOAT64U r64Src;
+
+ r64Src.u = *pu64Src;
+ iemSsePrepareValueR64(&r64Src, pFpuState->MXCSR, &r64Src); /* The de-normal flag is not set. */
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(pFpuState->MXCSR);
+ *pi64Dst = f64_to_i64_r_minMag(iemFpSoftF64FromIprt(&r64Src), true /*exact*/, &SoftState);
+ *pfMxcsr = pFpuState->MXCSR | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS);
+}
+#endif
+
+
+/**
+ * CVTSD2SI
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvtsd2si_i32_r64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint64_t *pu64Src))
+{
+ RTFLOAT64U r64Src;
+
+ r64Src.u = *pu64Src;
+ iemSsePrepareValueR64(&r64Src, pFpuState->MXCSR, &r64Src); /* The de-normal flag is not set. */
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(pFpuState->MXCSR);
+ *pi32Dst = f64_to_i32(iemFpSoftF64FromIprt(&r64Src), SoftState.roundingMode, true /*exact*/, &SoftState);
+ *pfMxcsr = pFpuState->MXCSR | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvtsd2si_i64_r64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint64_t *pu64Src))
+{
+ RTFLOAT64U r64Src;
+
+ r64Src.u = *pu64Src;
+ iemSsePrepareValueR64(&r64Src, pFpuState->MXCSR, &r64Src); /* The de-normal flag is not set. */
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(pFpuState->MXCSR);
+ *pi64Dst = f64_to_i64(iemFpSoftF64FromIprt(&r64Src), SoftState.roundingMode, true /*exact*/, &SoftState);
+ *pfMxcsr = pFpuState->MXCSR | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS);
+}
+#endif
+
+
+/**
+ * CVTTSS2SI
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvttss2si_i32_r32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint32_t *pu32Src))
+{
+ RTFLOAT32U r32Src;
+
+ r32Src.u = *pu32Src;
+ iemSsePrepareValueR32(&r32Src, pFpuState->MXCSR, &r32Src); /* The de-normal flag is not set. */
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(pFpuState->MXCSR);
+ *pi32Dst = f32_to_i32_r_minMag(iemFpSoftF32FromIprt(&r32Src), true /*exact*/, &SoftState);
+ *pfMxcsr = pFpuState->MXCSR | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvttss2si_i64_r32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint32_t *pu32Src))
+{
+ RTFLOAT32U r32Src;
+
+ r32Src.u = *pu32Src;
+ iemSsePrepareValueR32(&r32Src, pFpuState->MXCSR, &r32Src); /* The de-normal flag is not set. */
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(pFpuState->MXCSR);
+ *pi64Dst = f32_to_i64_r_minMag(iemFpSoftF32FromIprt(&r32Src), true /*exact*/, &SoftState);
+ *pfMxcsr = pFpuState->MXCSR | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS);
+}
+#endif
+
+
+/**
+ * CVTSS2SI
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvtss2si_i32_r32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint32_t *pu32Src))
+{
+ RTFLOAT32U r32Src;
+
+ r32Src.u = *pu32Src;
+ iemSsePrepareValueR32(&r32Src, pFpuState->MXCSR, &r32Src); /* The de-normal flag is not set. */
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(pFpuState->MXCSR);
+ *pi32Dst = f32_to_i32(iemFpSoftF32FromIprt(&r32Src), SoftState.roundingMode, true /*exact*/, &SoftState);
+ *pfMxcsr = pFpuState->MXCSR | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvtss2si_i64_r32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint32_t *pu32Src))
+{
+ RTFLOAT32U r32Src;
+
+ r32Src.u = *pu32Src;
+ iemSsePrepareValueR32(&r32Src, pFpuState->MXCSR, &r32Src); /* The de-normal flag is not set. */
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(pFpuState->MXCSR);
+ *pi64Dst = f32_to_i64(iemFpSoftF32FromIprt(&r32Src), SoftState.roundingMode, true /*exact*/, &SoftState);
+ *pfMxcsr = pFpuState->MXCSR | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS);
+}
+#endif
+
+
+/**
+ * CVTSI2SD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvtsi2sd_r64_i32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT64U pr64Dst, const int32_t *pi32Src))
+{
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(pFpuState->MXCSR);
+ float64_t r64Res = i32_to_f64(*pi32Src, &SoftState);
+ *pfMxcsr = iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Res, pr64Dst, pFpuState->MXCSR);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvtsi2sd_r64_i64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT64U pr64Dst, const int64_t *pi64Src))
+{
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(pFpuState->MXCSR);
+ float64_t r64Res = i64_to_f64(*pi64Src, &SoftState);
+ *pfMxcsr = iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Res, pr64Dst, pFpuState->MXCSR);
+}
+#endif
+
+
+/**
+ * CVTSI2SS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvtsi2ss_r32_i32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT32U pr32Dst, const int32_t *pi32Src))
+{
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(pFpuState->MXCSR);
+ float32_t r32Res = i32_to_f32(*pi32Src, &SoftState);
+ *pfMxcsr = iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Res, pr32Dst, pFpuState->MXCSR);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvtsi2ss_r32_i64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT32U pr32Dst, const int64_t *pi64Src))
+{
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(pFpuState->MXCSR);
+ float32_t r32Res = i64_to_f32(*pi64Src, &SoftState);
+ *pfMxcsr = iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Res, pr32Dst, pFpuState->MXCSR);
+}
+#endif
+
+
+/**
+ * [V]UCOMISS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_ucomiss_u128,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ uint32_t fEFlagsNew = *pfEFlags & ~X86_EFL_STATUS_BITS;
+
+ if (RTFLOAT32U_IS_SIGNALLING_NAN(&puSrc1->ar32[0]) || RTFLOAT32U_IS_SIGNALLING_NAN(&puSrc2->ar32[0]))
+ {
+ *pfMxcsr |= X86_MXCSR_IE;
+ fEFlagsNew |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF; /* UNORDERED 111 */
+ }
+ else if (RTFLOAT32U_IS_QUIET_NAN(&puSrc1->ar32[0]) || RTFLOAT32U_IS_QUIET_NAN(&puSrc2->ar32[0]))
+ {
+ /* ucomiss doesn't raise \#IE for quiet NaNs. */
+ fEFlagsNew |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF; /* UNORDERED 111 */
+ }
+ else
+ {
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(*pfMxcsr);
+
+ RTFLOAT32U r32Src1, r32Src2;
+ uint32_t fDe = iemSsePrepareValueR32(&r32Src1, *pfMxcsr, &puSrc1->ar32[0]);
+ fDe |= iemSsePrepareValueR32(&r32Src2, *pfMxcsr, &puSrc2->ar32[0]);
+
+ float32_t f32Src1 = iemFpSoftF32FromIprt(&r32Src1);
+ float32_t f32Src2 = iemFpSoftF32FromIprt(&r32Src2);
+ if (f32_eq(f32Src1, f32Src2, &SoftState))
+ fEFlagsNew |= X86_EFL_ZF; /* EQUAL 100 */
+ else if (f32_lt(f32Src1, f32Src2, &SoftState))
+ fEFlagsNew |= X86_EFL_CF; /* LESS_THAN 001 */
+ /* else: GREATER_THAN 000 */
+
+ *pfMxcsr |= fDe;
+ }
+
+ *pfEFlags = fEFlagsNew;
+}
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vucomiss_u128_fallback,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ iemAImpl_ucomiss_u128(pfMxcsr, pfEFlags, puSrc1, puSrc2);
+}
+
+
+/**
+ * [V]UCOMISD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_ucomisd_u128,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ uint32_t fEFlagsNew = *pfEFlags & ~X86_EFL_STATUS_BITS;
+
+ if (RTFLOAT64U_IS_SIGNALLING_NAN(&puSrc1->ar64[0]) || RTFLOAT64U_IS_SIGNALLING_NAN(&puSrc2->ar64[0]))
+ {
+ *pfMxcsr |= X86_MXCSR_IE;
+ fEFlagsNew |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF; /* UNORDERED 111 */
+ }
+ else if (RTFLOAT64U_IS_QUIET_NAN(&puSrc1->ar64[0]) || RTFLOAT64U_IS_QUIET_NAN(&puSrc2->ar64[0]))
+ {
+ /* ucomiss doesn't raise \#IE for quiet NaNs. */
+ fEFlagsNew |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF; /* UNORDERED 111 */
+ }
+ else
+ {
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(*pfMxcsr);
+
+ RTFLOAT64U r64Src1, r64Src2;
+ uint32_t fDe = iemSsePrepareValueR64(&r64Src1, *pfMxcsr, &puSrc1->ar64[0]);
+ fDe |= iemSsePrepareValueR64(&r64Src2, *pfMxcsr, &puSrc2->ar64[0]);
+
+ float64_t f64Src1 = iemFpSoftF64FromIprt(&r64Src1);
+ float64_t f64Src2 = iemFpSoftF64FromIprt(&r64Src2);
+ if (f64_eq(f64Src1, f64Src2, &SoftState))
+ fEFlagsNew |= X86_EFL_ZF; /* EQUAL 100 */
+ else if (f64_lt(f64Src1, f64Src2, &SoftState))
+ fEFlagsNew |= X86_EFL_CF; /* LESS_THAN 001 */
+ /* else: GREATER_THAN 000 */
+
+ *pfMxcsr |= fDe;
+ }
+
+ *pfEFlags = fEFlagsNew;
+}
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vucomisd_u128_fallback,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ iemAImpl_ucomisd_u128(pfMxcsr, pfEFlags, puSrc1, puSrc2);
+}
+
+
+/**
+ * [V]COMISS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_comiss_u128,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ uint32_t fEFlagsNew = *pfEFlags & ~X86_EFL_STATUS_BITS;
+
+ if ( RTFLOAT32U_IS_SIGNALLING_NAN(&puSrc1->ar32[0]) || RTFLOAT32U_IS_SIGNALLING_NAN(&puSrc2->ar32[0])
+ || RTFLOAT32U_IS_QUIET_NAN(&puSrc1->ar32[0]) || RTFLOAT32U_IS_QUIET_NAN(&puSrc2->ar32[0]))
+ {
+ *pfMxcsr |= X86_MXCSR_IE;
+ fEFlagsNew |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF; /* UNORDERED 111 */
+ }
+ else
+ {
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(*pfMxcsr);
+
+ RTFLOAT32U r32Src1, r32Src2;
+ uint32_t fDe = iemSsePrepareValueR32(&r32Src1, *pfMxcsr, &puSrc1->ar32[0]);
+ fDe |= iemSsePrepareValueR32(&r32Src2, *pfMxcsr, &puSrc2->ar32[0]);
+
+ float32_t f32Src1 = iemFpSoftF32FromIprt(&r32Src1);
+ float32_t f32Src2 = iemFpSoftF32FromIprt(&r32Src2);
+ if (f32_eq(f32Src1, f32Src2, &SoftState))
+ fEFlagsNew |= X86_EFL_ZF; /* EQUAL 100 */
+ else if (f32_lt(f32Src1, f32Src2, &SoftState))
+ fEFlagsNew |= X86_EFL_CF; /* LESS_THAN 001 */
+ /* else: GREATER_THAN 000 */
+
+ *pfMxcsr |= fDe;
+ }
+
+ *pfEFlags = fEFlagsNew;
+}
+#endif
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vcomiss_u128_fallback,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ iemAImpl_comiss_u128(pfMxcsr, pfEFlags, puSrc1, puSrc2);
+}
+
+
+/**
+ * [V]COMISD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_comisd_u128,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ uint32_t fEFlagsNew = *pfEFlags & ~X86_EFL_STATUS_BITS;
+
+ if ( RTFLOAT64U_IS_SIGNALLING_NAN(&puSrc1->ar64[0]) || RTFLOAT64U_IS_SIGNALLING_NAN(&puSrc2->ar64[0])
+ || RTFLOAT64U_IS_QUIET_NAN(&puSrc1->ar64[0]) || RTFLOAT64U_IS_QUIET_NAN(&puSrc2->ar64[0]))
+ {
+ *pfMxcsr |= X86_MXCSR_IE;
+ fEFlagsNew |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF; /* UNORDERED 111 */
+ }
+ else
+ {
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(*pfMxcsr);
+
+ RTFLOAT64U r64Src1, r64Src2;
+ uint32_t fDe = iemSsePrepareValueR64(&r64Src1, *pfMxcsr, &puSrc1->ar64[0]);
+ fDe |= iemSsePrepareValueR64(&r64Src2, *pfMxcsr, &puSrc2->ar64[0]);
+
+ float64_t f64Src1 = iemFpSoftF64FromIprt(&r64Src1);
+ float64_t f64Src2 = iemFpSoftF64FromIprt(&r64Src2);
+ if (f64_eq(f64Src1, f64Src2, &SoftState))
+ fEFlagsNew |= X86_EFL_ZF; /* EQUAL 100 */
+ else if (f64_lt(f64Src1, f64Src2, &SoftState))
+ fEFlagsNew |= X86_EFL_CF; /* LESS_THAN 001 */
+ /* else: GREATER_THAN 000 */
+
+ *pfMxcsr |= fDe;
+ }
+
+ *pfEFlags = fEFlagsNew;
+}
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_vcomisd_u128_fallback,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2))
+{
+ iemAImpl_comisd_u128(pfMxcsr, pfEFlags, puSrc1, puSrc2);
+}
+
+
+/**
+ * CMPPS / CMPPD / CMPSS / CMPSD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+/**
+ * A compare truth table entry.
+ */
+typedef struct CMPTRUTHTBLENTRY
+{
+ /** Flag whether the \#IA is signalled when one of the source oeprans is a QNaN */
+ bool fSignalsOnQNan;
+ /** The boolean result when the input operands are unordered. */
+ bool fUnordered;
+ /** The boolean result when A = B. */
+ bool fEqual;
+ /** The boolean result when A < B. */
+ bool fLowerThan;
+ /** The boolean result when A > B. */
+ bool fGreaterThan;
+} CMPTRUTHTBLENTRY;
+/** Pointer to a const truth table entry. */
+typedef const CMPTRUTHTBLENTRY *PCCMPTRUTHTBLENTRY;
+
+
+/** The compare truth table (indexed by immediate). */
+static const CMPTRUTHTBLENTRY g_aCmpTbl[] =
+{
+ /* fSignalsOnQNan fUnordered fEqual fLowerThan fGreaterThan */
+ /* 00H (EQ_OQ) */ { false, false, true, false, false },
+ /* 01H (LT_OS) */ { true, false, false, true, false },
+ /* 02H (LE_OS) */ { true, false, true, true, false },
+ /* 03H (UNORD_Q) */ { false, true, false, false, false },
+ /* 04H (NEQ_UQ) */ { false, true, false, true, true },
+ /* 05H (NLT_US) */ { true, true, true, false, true },
+ /* 06H (NLE_US) */ { true, true, false, false, true },
+ /* 07H (ORQ_Q) */ { false, false, true, true, true },
+ /** @todo AVX variants. */
+};
+
+
+static bool iemAImpl_cmp_worker_r32(uint32_t *pfMxcsr, PCRTFLOAT32U pr32Src1, PCRTFLOAT32U pr32Src2, uint8_t bEvil)
+{
+ bool fRes;
+ AssertRelease(bEvil < RT_ELEMENTS(g_aCmpTbl));
+
+ if (RTFLOAT32U_IS_SIGNALLING_NAN(pr32Src1) || RTFLOAT32U_IS_SIGNALLING_NAN(pr32Src2))
+ {
+ *pfMxcsr |= X86_MXCSR_IE;
+ fRes = g_aCmpTbl[bEvil].fUnordered;
+ }
+ else if (RTFLOAT32U_IS_QUIET_NAN(pr32Src1) || RTFLOAT32U_IS_QUIET_NAN(pr32Src2))
+ {
+ if (g_aCmpTbl[bEvil].fSignalsOnQNan)
+ *pfMxcsr |= X86_MXCSR_IE;
+ fRes = g_aCmpTbl[bEvil].fUnordered;
+ }
+ else
+ {
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(*pfMxcsr);
+
+ RTFLOAT32U r32Src1, r32Src2;
+ uint32_t fDe = iemSsePrepareValueR32(&r32Src1, *pfMxcsr, pr32Src1);
+ fDe |= iemSsePrepareValueR32(&r32Src2, *pfMxcsr, pr32Src2);
+
+ *pfMxcsr |= fDe;
+ float32_t f32Src1 = iemFpSoftF32FromIprt(&r32Src1);
+ float32_t f32Src2 = iemFpSoftF32FromIprt(&r32Src2);
+ if (f32_eq(f32Src1, f32Src2, &SoftState))
+ fRes = g_aCmpTbl[bEvil].fEqual;
+ else if (f32_lt(f32Src1, f32Src2, &SoftState))
+ fRes = g_aCmpTbl[bEvil].fLowerThan;
+ else
+ fRes = g_aCmpTbl[bEvil].fGreaterThan;
+ }
+
+ return fRes;
+}
+
+
+static bool iemAImpl_cmp_worker_r64(uint32_t *pfMxcsr, PCRTFLOAT64U pr64Src1, PCRTFLOAT64U pr64Src2, uint8_t bEvil)
+{
+ bool fRes;
+ AssertRelease(bEvil < RT_ELEMENTS(g_aCmpTbl));
+
+ if (RTFLOAT64U_IS_SIGNALLING_NAN(pr64Src1) || RTFLOAT64U_IS_SIGNALLING_NAN(pr64Src2))
+ {
+ *pfMxcsr |= X86_MXCSR_IE;
+ fRes = g_aCmpTbl[bEvil].fUnordered;
+ }
+ else if (RTFLOAT64U_IS_QUIET_NAN(pr64Src1) || RTFLOAT64U_IS_QUIET_NAN(pr64Src2))
+ {
+ if (g_aCmpTbl[bEvil].fSignalsOnQNan)
+ *pfMxcsr |= X86_MXCSR_IE;
+ fRes = g_aCmpTbl[bEvil].fUnordered;
+ }
+ else
+ {
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(*pfMxcsr);
+
+ RTFLOAT64U r64Src1, r64Src2;
+ uint32_t fDe = iemSsePrepareValueR64(&r64Src1, *pfMxcsr, pr64Src1)
+ | iemSsePrepareValueR64(&r64Src2, *pfMxcsr, pr64Src2);
+
+ *pfMxcsr |= fDe;
+ float64_t f64Src1 = iemFpSoftF64FromIprt(&r64Src1);
+ float64_t f64Src2 = iemFpSoftF64FromIprt(&r64Src2);
+ if (f64_eq(f64Src1, f64Src2, &SoftState))
+ fRes = g_aCmpTbl[bEvil].fEqual;
+ else if (f64_lt(f64Src1, f64Src2, &SoftState))
+ fRes = g_aCmpTbl[bEvil].fLowerThan;
+ else
+ fRes = g_aCmpTbl[bEvil].fGreaterThan;
+ }
+
+ return fRes;
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cmpps_u128,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC pSrc, uint8_t bEvil))
+{
+ for (uint8_t i = 0; i < RT_ELEMENTS(puDst->ar32); i++)
+ {
+ if (iemAImpl_cmp_worker_r32(pfMxcsr, &pSrc->uSrc1.ar32[i], &pSrc->uSrc2.ar32[i], bEvil & 0x7))
+ puDst->au32[i] = UINT32_MAX;
+ else
+ puDst->au32[i] = 0;
+ }
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cmppd_u128,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC pSrc, uint8_t bEvil))
+{
+ for (uint8_t i = 0; i < RT_ELEMENTS(puDst->ar64); i++)
+ {
+ if (iemAImpl_cmp_worker_r64(pfMxcsr, &pSrc->uSrc1.ar64[i], &pSrc->uSrc2.ar64[i], bEvil & 0x7))
+ puDst->au64[i] = UINT64_MAX;
+ else
+ puDst->au64[i] = 0;
+ }
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cmpss_u128,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC pSrc, uint8_t bEvil))
+{
+ if (iemAImpl_cmp_worker_r32(pfMxcsr, &pSrc->uSrc1.ar32[0], &pSrc->uSrc2.ar32[0], bEvil & 0x7))
+ puDst->au32[0] = UINT32_MAX;
+ else
+ puDst->au32[0] = 0;
+
+ puDst->au32[1] = pSrc->uSrc1.au32[1];
+ puDst->au64[1] = pSrc->uSrc1.au64[1];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cmpsd_u128,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC pSrc, uint8_t bEvil))
+{
+ if (iemAImpl_cmp_worker_r64(pfMxcsr, &pSrc->uSrc1.ar64[0], &pSrc->uSrc2.ar64[0], bEvil & 0x7))
+ puDst->au64[0] = UINT64_MAX;
+ else
+ puDst->au64[0] = 0;
+
+ puDst->au64[1] = pSrc->uSrc1.au64[1];
+}
+#endif
+
+
+/**
+ * ROUNDPS / ROUNDPD / ROUNDSS / ROUNDSD
+ */
+
+#define X86_SSE_ROUNDXX_IMM_RC_MASK UINT32_C(0x0003)
+#define X86_SSE_ROUNDXX_IMM_ROUND_SEL UINT32_C(0x0004)
+#define X86_SSE_ROUNDXX_IMM_PRECISION UINT32_C(0x0008)
+
+DECLINLINE(softfloat_state_t) iemSseRoundXXMxcsrAndImmToSoftState(uint32_t fMxcsr, uint8_t bImm)
+{
+ if (bImm & X86_SSE_ROUNDXX_IMM_ROUND_SEL)
+ return IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+
+ fMxcsr &= ~X86_MXCSR_RC_MASK;
+ fMxcsr |= (bImm & X86_SSE_ROUNDXX_IMM_RC_MASK) << X86_MXCSR_RC_SHIFT;
+ return IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+}
+
+static RTFLOAT32U iemAImpl_round_worker_r32(uint32_t *pfMxcsr, PCRTFLOAT32U pr32Src, uint8_t bImm)
+{
+ RTFLOAT32U r32Src, r32Dst;
+ float32_t f32Src;
+ softfloat_state_t SoftState = iemSseRoundXXMxcsrAndImmToSoftState(*pfMxcsr, bImm);
+ bool fExact = !RT_BOOL(bImm & X86_SSE_ROUNDXX_IMM_PRECISION);
+
+ iemSsePrepareValueR32(&r32Src, *pfMxcsr, pr32Src);
+ f32Src = f32_roundToInt(iemFpSoftF32FromIprt(&r32Src), SoftState.roundingMode, fExact, &SoftState);
+
+ iemFpSoftF32ToIprt(&r32Dst, f32Src);
+ return r32Dst;
+}
+
+static RTFLOAT64U iemAImpl_round_worker_r64(uint32_t *pfMxcsr, PCRTFLOAT64U pr64Src, uint8_t bImm)
+{
+ RTFLOAT64U r64Src, r64Dst;
+ float64_t f64Src;
+ softfloat_state_t SoftState = iemSseRoundXXMxcsrAndImmToSoftState(*pfMxcsr, bImm);
+ bool fExact = !RT_BOOL(bImm & X86_SSE_ROUNDXX_IMM_PRECISION);
+
+ iemSsePrepareValueR64(&r64Src, *pfMxcsr, pr64Src);
+ f64Src = f64_roundToInt(iemFpSoftF64FromIprt(&r64Src), SoftState.roundingMode, fExact, &SoftState);
+
+ iemFpSoftF64ToIprt(&r64Dst, f64Src);
+ return r64Dst;
+}
+
+#ifdef IEM_WITHOUT_ASSEMBLY
+IEM_DECL_IMPL_DEF(void, iemAImpl_roundss_u128,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC pSrc, uint8_t bImm))
+{
+ puDst->ar32[0] = iemAImpl_round_worker_r32(pfMxcsr, &pSrc->uSrc2.ar32[0], bImm & 0x7);
+ puDst->au32[1] = pSrc->uSrc1.au32[1];
+ puDst->au64[1] = pSrc->uSrc1.au64[1];
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_roundsd_u128,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC pSrc, uint8_t bImm))
+{
+ puDst->ar64[0] = iemAImpl_round_worker_r64(pfMxcsr, &pSrc->uSrc2.ar64[0], bImm & 0x7);
+ puDst->au64[1] = pSrc->uSrc1.au64[1];
+}
+#endif
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_roundps_u128_fallback,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC pSrc, uint8_t bImm))
+{
+ for (uint8_t i = 0; i < RT_ELEMENTS(puDst->ar32); i++)
+ {
+ puDst->ar32[i] = iemAImpl_round_worker_r32(pfMxcsr, &pSrc->uSrc2.ar32[i], bImm & 0x7);
+ }
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_roundpd_u128_fallback,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC pSrc, uint8_t bImm))
+{
+ for (uint8_t i = 0; i < RT_ELEMENTS(puDst->ar64); i++)
+ {
+ puDst->ar64[i] = iemAImpl_round_worker_r64(pfMxcsr, &pSrc->uSrc2.ar64[i], bImm & 0x7);
+ }
+}
+
+/**
+ * CVTPD2PI
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_cvtpd2pi_u128_worker(uint32_t fMxcsr, int32_t *pi32Dst, PCRTFLOAT64U pr64Src)
+{
+ RTFLOAT64U r64Src;
+ iemSsePrepareValueR64(&r64Src, fMxcsr, pr64Src); /* The de-normal flag is not set. */
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ *pi32Dst = f64_to_i32(iemFpSoftF64FromIprt(&r64Src), SoftState.roundingMode, true /*exact*/, &SoftState);
+ return fMxcsr | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvtpd2pi_u128,(uint32_t *pfMxcsr, uint64_t *pu64Dst, PCX86XMMREG pSrc))
+{
+ RTUINT64U u64Res;
+ uint32_t fMxcsrOut = iemAImpl_cvtpd2pi_u128_worker(*pfMxcsr, &u64Res.ai32[0], &pSrc->ar64[0]);
+ fMxcsrOut |= iemAImpl_cvtpd2pi_u128_worker(*pfMxcsr, &u64Res.ai32[1], &pSrc->ar64[1]);
+
+ *pu64Dst = u64Res.u;
+ *pfMxcsr = fMxcsrOut;
+}
+#endif
+
+
+/**
+ * CVTTPD2PI
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_cvttpd2pi_u128_worker(uint32_t fMxcsr, int32_t *pi32Dst, PCRTFLOAT64U pr64Src)
+{
+ RTFLOAT64U r64Src;
+ iemSsePrepareValueR64(&r64Src, fMxcsr, pr64Src); /* The de-normal flag is not set. */
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ *pi32Dst = f64_to_i32_r_minMag(iemFpSoftF64FromIprt(&r64Src), true /*exact*/, &SoftState);
+ return fMxcsr | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvttpd2pi_u128,(uint32_t *pfMxcsr, uint64_t *pu64Dst, PCX86XMMREG pSrc))
+{
+ RTUINT64U u64Res;
+ uint32_t fMxcsrOut = iemAImpl_cvttpd2pi_u128_worker(*pfMxcsr, &u64Res.ai32[0], &pSrc->ar64[0]);
+ fMxcsrOut |= iemAImpl_cvttpd2pi_u128_worker(*pfMxcsr, &u64Res.ai32[1], &pSrc->ar64[1]);
+
+ *pu64Dst = u64Res.u;
+ *pfMxcsr = fMxcsrOut;
+}
+#endif
+
+
+/**
+ * CVTPI2PS
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_cvtpi2ps_u128_worker(uint32_t fMxcsr, PRTFLOAT32U pr32Dst, int32_t i32Src)
+{
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ float32_t r32Res = i32_to_f32(i32Src, &SoftState);
+ return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Res, pr32Dst, fMxcsr);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvtpi2ps_u128,(uint32_t *pfMxcsr, PX86XMMREG pDst, uint64_t u64Src))
+{
+ RTUINT64U uSrc = { u64Src };
+ uint32_t fMxcsrOut = iemAImpl_cvtpi2ps_u128_worker(*pfMxcsr, &pDst->ar32[0], uSrc.ai32[0]);
+ fMxcsrOut |= iemAImpl_cvtpi2ps_u128_worker(*pfMxcsr, &pDst->ar32[1], uSrc.ai32[1]);
+ *pfMxcsr = fMxcsrOut;
+}
+#endif
+
+
+/**
+ * CVTPI2PD
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_cvtpi2pd_u128_worker(uint32_t fMxcsr, PRTFLOAT64U pr64Dst, int32_t i32Src)
+{
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ float64_t r64Res = i32_to_f64(i32Src, &SoftState);
+ return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Res, pr64Dst, fMxcsr);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvtpi2pd_u128,(uint32_t *pfMxcsr, PX86XMMREG pDst, uint64_t u64Src))
+{
+ RTUINT64U uSrc = { u64Src };
+ uint32_t fMxcsrOut = iemAImpl_cvtpi2pd_u128_worker(*pfMxcsr, &pDst->ar64[0], uSrc.ai32[0]);
+ fMxcsrOut |= iemAImpl_cvtpi2pd_u128_worker(*pfMxcsr, &pDst->ar64[1], uSrc.ai32[1]);
+ *pfMxcsr = fMxcsrOut;
+}
+#endif
+
+
+/**
+ * CVTPS2PI
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_cvtps2pi_u128_worker(uint32_t fMxcsr, int32_t *pi32Dst, PCRTFLOAT32U pr32Src)
+{
+ RTFLOAT32U r32Src;
+ iemSsePrepareValueR32(&r32Src, fMxcsr, pr32Src); /* The de-normal flag is not set. */
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ *pi32Dst = f32_to_i32(iemFpSoftF32FromIprt(&r32Src), SoftState.roundingMode, true /*exact*/, &SoftState);
+ return fMxcsr | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvtps2pi_u128,(uint32_t *pfMxcsr, uint64_t *pu64Dst, uint64_t u64Src))
+{
+ RTUINT64U uDst;
+ RTUINT64U uSrc = { u64Src };
+ uint32_t fMxcsrOut = iemAImpl_cvtps2pi_u128_worker(*pfMxcsr, &uDst.ai32[0], (PCRTFLOAT32U)&uSrc.au32[0]);
+ fMxcsrOut |= iemAImpl_cvtps2pi_u128_worker(*pfMxcsr, &uDst.ai32[1], (PCRTFLOAT32U)&uSrc.au32[1]);
+ *pu64Dst = uDst.u;
+ *pfMxcsr = fMxcsrOut;
+}
+#endif
+
+
+/**
+ * CVTTPS2PI
+ */
+#ifdef IEM_WITHOUT_ASSEMBLY
+static uint32_t iemAImpl_cvttps2pi_u128_worker(uint32_t fMxcsr, int32_t *pi32Dst, PCRTFLOAT32U pr32Src)
+{
+ RTFLOAT32U r32Src;
+ iemSsePrepareValueR32(&r32Src, fMxcsr, pr32Src); /* The de-normal flag is not set. */
+
+ softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr);
+ *pi32Dst = f32_to_i32_r_minMag(iemFpSoftF32FromIprt(&r32Src), true /*exact*/, &SoftState);
+ return fMxcsr | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS);
+}
+
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_cvttps2pi_u128,(uint32_t *pfMxcsr, uint64_t *pu64Dst, uint64_t u64Src))
+{
+ RTUINT64U uDst;
+ RTUINT64U uSrc = { u64Src };
+ uint32_t fMxcsrOut = iemAImpl_cvttps2pi_u128_worker(*pfMxcsr, &uDst.ai32[0], (PCRTFLOAT32U)&uSrc.au32[0]);
+ fMxcsrOut |= iemAImpl_cvttps2pi_u128_worker(*pfMxcsr, &uDst.ai32[1], (PCRTFLOAT32U)&uSrc.au32[1]);
+ *pu64Dst = uDst.u;
+ *pfMxcsr = fMxcsrOut;
+}
+#endif
+
+/**
+ * RDRAND
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_rdrand_u16_fallback,(uint16_t *puDst, uint32_t *pEFlags))
+{
+ *puDst = 0;
+ *pEFlags &= ~X86_EFL_STATUS_BITS;
+ *pEFlags |= X86_EFL_CF;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_rdrand_u32_fallback,(uint32_t *puDst, uint32_t *pEFlags))
+{
+ *puDst = 0;
+ *pEFlags &= ~X86_EFL_STATUS_BITS;
+ *pEFlags |= X86_EFL_CF;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_rdrand_u64_fallback,(uint64_t *puDst, uint32_t *pEFlags))
+{
+ *puDst = 0;
+ *pEFlags &= ~X86_EFL_STATUS_BITS;
+ *pEFlags |= X86_EFL_CF;
+}
+
+/**
+ * RDSEED
+ */
+IEM_DECL_IMPL_DEF(void, iemAImpl_rdseed_u16_fallback,(uint16_t *puDst, uint32_t *pEFlags))
+{
+ *puDst = 0;
+ *pEFlags &= ~X86_EFL_STATUS_BITS;
+ *pEFlags |= X86_EFL_CF;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_rdseed_u32_fallback,(uint32_t *puDst, uint32_t *pEFlags))
+{
+ *puDst = 0;
+ *pEFlags &= ~X86_EFL_STATUS_BITS;
+ *pEFlags |= X86_EFL_CF;
+}
+
+IEM_DECL_IMPL_DEF(void, iemAImpl_rdseed_u64_fallback,(uint64_t *puDst, uint32_t *pEFlags))
+{
+ *puDst = 0;
+ *pEFlags &= ~X86_EFL_STATUS_BITS;
+ *pEFlags |= X86_EFL_CF;
+}
+