diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:17:27 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:17:27 +0000 |
commit | f215e02bf85f68d3a6106c2a1f4f7f063f819064 (patch) | |
tree | 6bb5b92c046312c4e95ac2620b10ddf482d3fa8b /src/VBox/VMM/VMMAll/IEMAllAImplC.cpp | |
parent | Initial commit. (diff) | |
download | virtualbox-f215e02bf85f68d3a6106c2a1f4f7f063f819064.tar.xz virtualbox-f215e02bf85f68d3a6106c2a1f4f7f063f819064.zip |
Adding upstream version 7.0.14-dfsg.upstream/7.0.14-dfsg
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/VBox/VMM/VMMAll/IEMAllAImplC.cpp')
-rw-r--r-- | src/VBox/VMM/VMMAll/IEMAllAImplC.cpp | 17407 |
1 files changed, 17407 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMAll/IEMAllAImplC.cpp b/src/VBox/VMM/VMMAll/IEMAllAImplC.cpp new file mode 100644 index 00000000..1196f775 --- /dev/null +++ b/src/VBox/VMM/VMMAll/IEMAllAImplC.cpp @@ -0,0 +1,17407 @@ +/* $Id: IEMAllAImplC.cpp $ */ +/** @file + * IEM - Instruction Implementation in Assembly, portable C variant. + */ + +/* + * Copyright (C) 2011-2023 Oracle and/or its affiliates. + * + * This file is part of VirtualBox base platform packages, as + * available from https://www.virtualbox.org. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation, in version 3 of the + * License. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, see <https://www.gnu.org/licenses>. + * + * SPDX-License-Identifier: GPL-3.0-only + */ + + +/********************************************************************************************************************************* +* Header Files * +*********************************************************************************************************************************/ +#include "IEMInternal.h" +#include <VBox/vmm/vmcc.h> +#include <iprt/errcore.h> +#include <iprt/x86.h> +#include <iprt/uint128.h> +#include <iprt/uint256.h> +#include <iprt/crc.h> + +RT_C_DECLS_BEGIN +#include <softfloat.h> +RT_C_DECLS_END + + +/********************************************************************************************************************************* +* Defined Constants And Macros * +*********************************************************************************************************************************/ +/** @def IEM_WITHOUT_ASSEMBLY + * Enables all the code in this file. + */ +#if !defined(IEM_WITHOUT_ASSEMBLY) +# if defined(RT_ARCH_ARM32) || defined(RT_ARCH_ARM64) || defined(DOXYGEN_RUNNING) +# define IEM_WITHOUT_ASSEMBLY +# endif +#endif +/* IEM_WITH_ASSEMBLY trumps IEM_WITHOUT_ASSEMBLY for tstIEMAImplAsm purposes. */ +#ifdef IEM_WITH_ASSEMBLY +# undef IEM_WITHOUT_ASSEMBLY +#endif + +/** + * Calculates the signed flag value given a result and it's bit width. + * + * The signed flag (SF) is a duplication of the most significant bit in the + * result. + * + * @returns X86_EFL_SF or 0. + * @param a_uResult Unsigned result value. + * @param a_cBitsWidth The width of the result (8, 16, 32, 64). + */ +#define X86_EFL_CALC_SF(a_uResult, a_cBitsWidth) \ + ( (uint32_t)((a_uResult) >> ((a_cBitsWidth) - X86_EFL_SF_BIT - 1)) & X86_EFL_SF ) + +/** + * Calculates the zero flag value given a result. + * + * The zero flag (ZF) indicates whether the result is zero or not. + * + * @returns X86_EFL_ZF or 0. + * @param a_uResult Unsigned result value. + */ +#define X86_EFL_CALC_ZF(a_uResult) \ + ( (uint32_t)((a_uResult) == 0) << X86_EFL_ZF_BIT ) + +/** + * Extracts the OF flag from a OF calculation result. + * + * These are typically used by concating with a bitcount. The problem is that + * 8-bit values needs shifting in the other direction than the others. + */ +#define X86_EFL_GET_OF_8(a_uValue) (((uint32_t)(a_uValue) << (X86_EFL_OF_BIT - 8 + 1)) & X86_EFL_OF) +#define X86_EFL_GET_OF_16(a_uValue) ((uint32_t)((a_uValue) >> (16 - X86_EFL_OF_BIT - 1)) & X86_EFL_OF) +#define X86_EFL_GET_OF_32(a_uValue) ((uint32_t)((a_uValue) >> (32 - X86_EFL_OF_BIT - 1)) & X86_EFL_OF) +#define X86_EFL_GET_OF_64(a_uValue) ((uint32_t)((a_uValue) >> (64 - X86_EFL_OF_BIT - 1)) & X86_EFL_OF) + +/** + * Updates the status bits (CF, PF, AF, ZF, SF, and OF) after arithmetic op. + * + * @returns Status bits. + * @param a_pfEFlags Pointer to the 32-bit EFLAGS value to update. + * @param a_uResult Unsigned result value. + * @param a_uSrc The source value (for AF calc). + * @param a_uDst The original destination value (for AF calc). + * @param a_cBitsWidth The width of the result (8, 16, 32, 64). + * @param a_CfExpr Bool expression for the carry flag (CF). + * @param a_uSrcOf The a_uSrc value to use for overflow calculation. + */ +#define IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(a_pfEFlags, a_uResult, a_uDst, a_uSrc, a_cBitsWidth, a_CfExpr, a_uSrcOf) \ + do { \ + uint32_t fEflTmp = *(a_pfEFlags); \ + fEflTmp &= ~X86_EFL_STATUS_BITS; \ + fEflTmp |= (a_CfExpr) << X86_EFL_CF_BIT; \ + fEflTmp |= g_afParity[(a_uResult) & 0xff]; \ + fEflTmp |= ((uint32_t)(a_uResult) ^ (uint32_t)(a_uSrc) ^ (uint32_t)(a_uDst)) & X86_EFL_AF; \ + fEflTmp |= X86_EFL_CALC_ZF(a_uResult); \ + fEflTmp |= X86_EFL_CALC_SF(a_uResult, a_cBitsWidth); \ + \ + /* Overflow during ADDition happens when both inputs have the same signed \ + bit value and the result has a different sign bit value. \ + \ + Since subtraction can be rewritten as addition: 2 - 1 == 2 + -1, it \ + follows that for SUBtraction the signed bit value must differ between \ + the two inputs and the result's signed bit diff from the first input. \ + Note! Must xor with sign bit to convert, not do (0 - a_uSrc). \ + \ + See also: http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt */ \ + fEflTmp |= X86_EFL_GET_OF_ ## a_cBitsWidth( ( ((uint ## a_cBitsWidth ## _t)~((a_uDst) ^ (a_uSrcOf))) \ + & RT_BIT_64(a_cBitsWidth - 1)) \ + & ((a_uResult) ^ (a_uDst)) ); \ + *(a_pfEFlags) = fEflTmp; \ + } while (0) + +/** + * Updates the status bits (CF, PF, AF, ZF, SF, and OF) after a logical op. + * + * CF and OF are defined to be 0 by logical operations. AF on the other hand is + * undefined. We do not set AF, as that seems to make the most sense (which + * probably makes it the most wrong in real life). + * + * @returns Status bits. + * @param a_pfEFlags Pointer to the 32-bit EFLAGS value to update. + * @param a_uResult Unsigned result value. + * @param a_cBitsWidth The width of the result (8, 16, 32, 64). + * @param a_fExtra Additional bits to set. + */ +#define IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(a_pfEFlags, a_uResult, a_cBitsWidth, a_fExtra) \ + do { \ + uint32_t fEflTmp = *(a_pfEFlags); \ + fEflTmp &= ~X86_EFL_STATUS_BITS; \ + fEflTmp |= g_afParity[(a_uResult) & 0xff]; \ + fEflTmp |= X86_EFL_CALC_ZF(a_uResult); \ + fEflTmp |= X86_EFL_CALC_SF(a_uResult, a_cBitsWidth); \ + fEflTmp |= (a_fExtra); \ + *(a_pfEFlags) = fEflTmp; \ + } while (0) + + +/********************************************************************************************************************************* +* Global Variables * +*********************************************************************************************************************************/ +/** + * Parity calculation table. + * + * This is also used by iemAllAImpl.asm. + * + * The generator code: + * @code + * #include <stdio.h> + * + * int main() + * { + * unsigned b; + * for (b = 0; b < 256; b++) + * { + * int cOnes = ( b & 1) + * + ((b >> 1) & 1) + * + ((b >> 2) & 1) + * + ((b >> 3) & 1) + * + ((b >> 4) & 1) + * + ((b >> 5) & 1) + * + ((b >> 6) & 1) + * + ((b >> 7) & 1); + * printf(" /" "* %#04x = %u%u%u%u%u%u%u%ub *" "/ %s,\n", + * b, + * (b >> 7) & 1, + * (b >> 6) & 1, + * (b >> 5) & 1, + * (b >> 4) & 1, + * (b >> 3) & 1, + * (b >> 2) & 1, + * (b >> 1) & 1, + * b & 1, + * cOnes & 1 ? "0" : "X86_EFL_PF"); + * } + * return 0; + * } + * @endcode + */ +uint8_t const g_afParity[256] = +{ + /* 0000 = 00000000b */ X86_EFL_PF, + /* 0x01 = 00000001b */ 0, + /* 0x02 = 00000010b */ 0, + /* 0x03 = 00000011b */ X86_EFL_PF, + /* 0x04 = 00000100b */ 0, + /* 0x05 = 00000101b */ X86_EFL_PF, + /* 0x06 = 00000110b */ X86_EFL_PF, + /* 0x07 = 00000111b */ 0, + /* 0x08 = 00001000b */ 0, + /* 0x09 = 00001001b */ X86_EFL_PF, + /* 0x0a = 00001010b */ X86_EFL_PF, + /* 0x0b = 00001011b */ 0, + /* 0x0c = 00001100b */ X86_EFL_PF, + /* 0x0d = 00001101b */ 0, + /* 0x0e = 00001110b */ 0, + /* 0x0f = 00001111b */ X86_EFL_PF, + /* 0x10 = 00010000b */ 0, + /* 0x11 = 00010001b */ X86_EFL_PF, + /* 0x12 = 00010010b */ X86_EFL_PF, + /* 0x13 = 00010011b */ 0, + /* 0x14 = 00010100b */ X86_EFL_PF, + /* 0x15 = 00010101b */ 0, + /* 0x16 = 00010110b */ 0, + /* 0x17 = 00010111b */ X86_EFL_PF, + /* 0x18 = 00011000b */ X86_EFL_PF, + /* 0x19 = 00011001b */ 0, + /* 0x1a = 00011010b */ 0, + /* 0x1b = 00011011b */ X86_EFL_PF, + /* 0x1c = 00011100b */ 0, + /* 0x1d = 00011101b */ X86_EFL_PF, + /* 0x1e = 00011110b */ X86_EFL_PF, + /* 0x1f = 00011111b */ 0, + /* 0x20 = 00100000b */ 0, + /* 0x21 = 00100001b */ X86_EFL_PF, + /* 0x22 = 00100010b */ X86_EFL_PF, + /* 0x23 = 00100011b */ 0, + /* 0x24 = 00100100b */ X86_EFL_PF, + /* 0x25 = 00100101b */ 0, + /* 0x26 = 00100110b */ 0, + /* 0x27 = 00100111b */ X86_EFL_PF, + /* 0x28 = 00101000b */ X86_EFL_PF, + /* 0x29 = 00101001b */ 0, + /* 0x2a = 00101010b */ 0, + /* 0x2b = 00101011b */ X86_EFL_PF, + /* 0x2c = 00101100b */ 0, + /* 0x2d = 00101101b */ X86_EFL_PF, + /* 0x2e = 00101110b */ X86_EFL_PF, + /* 0x2f = 00101111b */ 0, + /* 0x30 = 00110000b */ X86_EFL_PF, + /* 0x31 = 00110001b */ 0, + /* 0x32 = 00110010b */ 0, + /* 0x33 = 00110011b */ X86_EFL_PF, + /* 0x34 = 00110100b */ 0, + /* 0x35 = 00110101b */ X86_EFL_PF, + /* 0x36 = 00110110b */ X86_EFL_PF, + /* 0x37 = 00110111b */ 0, + /* 0x38 = 00111000b */ 0, + /* 0x39 = 00111001b */ X86_EFL_PF, + /* 0x3a = 00111010b */ X86_EFL_PF, + /* 0x3b = 00111011b */ 0, + /* 0x3c = 00111100b */ X86_EFL_PF, + /* 0x3d = 00111101b */ 0, + /* 0x3e = 00111110b */ 0, + /* 0x3f = 00111111b */ X86_EFL_PF, + /* 0x40 = 01000000b */ 0, + /* 0x41 = 01000001b */ X86_EFL_PF, + /* 0x42 = 01000010b */ X86_EFL_PF, + /* 0x43 = 01000011b */ 0, + /* 0x44 = 01000100b */ X86_EFL_PF, + /* 0x45 = 01000101b */ 0, + /* 0x46 = 01000110b */ 0, + /* 0x47 = 01000111b */ X86_EFL_PF, + /* 0x48 = 01001000b */ X86_EFL_PF, + /* 0x49 = 01001001b */ 0, + /* 0x4a = 01001010b */ 0, + /* 0x4b = 01001011b */ X86_EFL_PF, + /* 0x4c = 01001100b */ 0, + /* 0x4d = 01001101b */ X86_EFL_PF, + /* 0x4e = 01001110b */ X86_EFL_PF, + /* 0x4f = 01001111b */ 0, + /* 0x50 = 01010000b */ X86_EFL_PF, + /* 0x51 = 01010001b */ 0, + /* 0x52 = 01010010b */ 0, + /* 0x53 = 01010011b */ X86_EFL_PF, + /* 0x54 = 01010100b */ 0, + /* 0x55 = 01010101b */ X86_EFL_PF, + /* 0x56 = 01010110b */ X86_EFL_PF, + /* 0x57 = 01010111b */ 0, + /* 0x58 = 01011000b */ 0, + /* 0x59 = 01011001b */ X86_EFL_PF, + /* 0x5a = 01011010b */ X86_EFL_PF, + /* 0x5b = 01011011b */ 0, + /* 0x5c = 01011100b */ X86_EFL_PF, + /* 0x5d = 01011101b */ 0, + /* 0x5e = 01011110b */ 0, + /* 0x5f = 01011111b */ X86_EFL_PF, + /* 0x60 = 01100000b */ X86_EFL_PF, + /* 0x61 = 01100001b */ 0, + /* 0x62 = 01100010b */ 0, + /* 0x63 = 01100011b */ X86_EFL_PF, + /* 0x64 = 01100100b */ 0, + /* 0x65 = 01100101b */ X86_EFL_PF, + /* 0x66 = 01100110b */ X86_EFL_PF, + /* 0x67 = 01100111b */ 0, + /* 0x68 = 01101000b */ 0, + /* 0x69 = 01101001b */ X86_EFL_PF, + /* 0x6a = 01101010b */ X86_EFL_PF, + /* 0x6b = 01101011b */ 0, + /* 0x6c = 01101100b */ X86_EFL_PF, + /* 0x6d = 01101101b */ 0, + /* 0x6e = 01101110b */ 0, + /* 0x6f = 01101111b */ X86_EFL_PF, + /* 0x70 = 01110000b */ 0, + /* 0x71 = 01110001b */ X86_EFL_PF, + /* 0x72 = 01110010b */ X86_EFL_PF, + /* 0x73 = 01110011b */ 0, + /* 0x74 = 01110100b */ X86_EFL_PF, + /* 0x75 = 01110101b */ 0, + /* 0x76 = 01110110b */ 0, + /* 0x77 = 01110111b */ X86_EFL_PF, + /* 0x78 = 01111000b */ X86_EFL_PF, + /* 0x79 = 01111001b */ 0, + /* 0x7a = 01111010b */ 0, + /* 0x7b = 01111011b */ X86_EFL_PF, + /* 0x7c = 01111100b */ 0, + /* 0x7d = 01111101b */ X86_EFL_PF, + /* 0x7e = 01111110b */ X86_EFL_PF, + /* 0x7f = 01111111b */ 0, + /* 0x80 = 10000000b */ 0, + /* 0x81 = 10000001b */ X86_EFL_PF, + /* 0x82 = 10000010b */ X86_EFL_PF, + /* 0x83 = 10000011b */ 0, + /* 0x84 = 10000100b */ X86_EFL_PF, + /* 0x85 = 10000101b */ 0, + /* 0x86 = 10000110b */ 0, + /* 0x87 = 10000111b */ X86_EFL_PF, + /* 0x88 = 10001000b */ X86_EFL_PF, + /* 0x89 = 10001001b */ 0, + /* 0x8a = 10001010b */ 0, + /* 0x8b = 10001011b */ X86_EFL_PF, + /* 0x8c = 10001100b */ 0, + /* 0x8d = 10001101b */ X86_EFL_PF, + /* 0x8e = 10001110b */ X86_EFL_PF, + /* 0x8f = 10001111b */ 0, + /* 0x90 = 10010000b */ X86_EFL_PF, + /* 0x91 = 10010001b */ 0, + /* 0x92 = 10010010b */ 0, + /* 0x93 = 10010011b */ X86_EFL_PF, + /* 0x94 = 10010100b */ 0, + /* 0x95 = 10010101b */ X86_EFL_PF, + /* 0x96 = 10010110b */ X86_EFL_PF, + /* 0x97 = 10010111b */ 0, + /* 0x98 = 10011000b */ 0, + /* 0x99 = 10011001b */ X86_EFL_PF, + /* 0x9a = 10011010b */ X86_EFL_PF, + /* 0x9b = 10011011b */ 0, + /* 0x9c = 10011100b */ X86_EFL_PF, + /* 0x9d = 10011101b */ 0, + /* 0x9e = 10011110b */ 0, + /* 0x9f = 10011111b */ X86_EFL_PF, + /* 0xa0 = 10100000b */ X86_EFL_PF, + /* 0xa1 = 10100001b */ 0, + /* 0xa2 = 10100010b */ 0, + /* 0xa3 = 10100011b */ X86_EFL_PF, + /* 0xa4 = 10100100b */ 0, + /* 0xa5 = 10100101b */ X86_EFL_PF, + /* 0xa6 = 10100110b */ X86_EFL_PF, + /* 0xa7 = 10100111b */ 0, + /* 0xa8 = 10101000b */ 0, + /* 0xa9 = 10101001b */ X86_EFL_PF, + /* 0xaa = 10101010b */ X86_EFL_PF, + /* 0xab = 10101011b */ 0, + /* 0xac = 10101100b */ X86_EFL_PF, + /* 0xad = 10101101b */ 0, + /* 0xae = 10101110b */ 0, + /* 0xaf = 10101111b */ X86_EFL_PF, + /* 0xb0 = 10110000b */ 0, + /* 0xb1 = 10110001b */ X86_EFL_PF, + /* 0xb2 = 10110010b */ X86_EFL_PF, + /* 0xb3 = 10110011b */ 0, + /* 0xb4 = 10110100b */ X86_EFL_PF, + /* 0xb5 = 10110101b */ 0, + /* 0xb6 = 10110110b */ 0, + /* 0xb7 = 10110111b */ X86_EFL_PF, + /* 0xb8 = 10111000b */ X86_EFL_PF, + /* 0xb9 = 10111001b */ 0, + /* 0xba = 10111010b */ 0, + /* 0xbb = 10111011b */ X86_EFL_PF, + /* 0xbc = 10111100b */ 0, + /* 0xbd = 10111101b */ X86_EFL_PF, + /* 0xbe = 10111110b */ X86_EFL_PF, + /* 0xbf = 10111111b */ 0, + /* 0xc0 = 11000000b */ X86_EFL_PF, + /* 0xc1 = 11000001b */ 0, + /* 0xc2 = 11000010b */ 0, + /* 0xc3 = 11000011b */ X86_EFL_PF, + /* 0xc4 = 11000100b */ 0, + /* 0xc5 = 11000101b */ X86_EFL_PF, + /* 0xc6 = 11000110b */ X86_EFL_PF, + /* 0xc7 = 11000111b */ 0, + /* 0xc8 = 11001000b */ 0, + /* 0xc9 = 11001001b */ X86_EFL_PF, + /* 0xca = 11001010b */ X86_EFL_PF, + /* 0xcb = 11001011b */ 0, + /* 0xcc = 11001100b */ X86_EFL_PF, + /* 0xcd = 11001101b */ 0, + /* 0xce = 11001110b */ 0, + /* 0xcf = 11001111b */ X86_EFL_PF, + /* 0xd0 = 11010000b */ 0, + /* 0xd1 = 11010001b */ X86_EFL_PF, + /* 0xd2 = 11010010b */ X86_EFL_PF, + /* 0xd3 = 11010011b */ 0, + /* 0xd4 = 11010100b */ X86_EFL_PF, + /* 0xd5 = 11010101b */ 0, + /* 0xd6 = 11010110b */ 0, + /* 0xd7 = 11010111b */ X86_EFL_PF, + /* 0xd8 = 11011000b */ X86_EFL_PF, + /* 0xd9 = 11011001b */ 0, + /* 0xda = 11011010b */ 0, + /* 0xdb = 11011011b */ X86_EFL_PF, + /* 0xdc = 11011100b */ 0, + /* 0xdd = 11011101b */ X86_EFL_PF, + /* 0xde = 11011110b */ X86_EFL_PF, + /* 0xdf = 11011111b */ 0, + /* 0xe0 = 11100000b */ 0, + /* 0xe1 = 11100001b */ X86_EFL_PF, + /* 0xe2 = 11100010b */ X86_EFL_PF, + /* 0xe3 = 11100011b */ 0, + /* 0xe4 = 11100100b */ X86_EFL_PF, + /* 0xe5 = 11100101b */ 0, + /* 0xe6 = 11100110b */ 0, + /* 0xe7 = 11100111b */ X86_EFL_PF, + /* 0xe8 = 11101000b */ X86_EFL_PF, + /* 0xe9 = 11101001b */ 0, + /* 0xea = 11101010b */ 0, + /* 0xeb = 11101011b */ X86_EFL_PF, + /* 0xec = 11101100b */ 0, + /* 0xed = 11101101b */ X86_EFL_PF, + /* 0xee = 11101110b */ X86_EFL_PF, + /* 0xef = 11101111b */ 0, + /* 0xf0 = 11110000b */ X86_EFL_PF, + /* 0xf1 = 11110001b */ 0, + /* 0xf2 = 11110010b */ 0, + /* 0xf3 = 11110011b */ X86_EFL_PF, + /* 0xf4 = 11110100b */ 0, + /* 0xf5 = 11110101b */ X86_EFL_PF, + /* 0xf6 = 11110110b */ X86_EFL_PF, + /* 0xf7 = 11110111b */ 0, + /* 0xf8 = 11111000b */ 0, + /* 0xf9 = 11111001b */ X86_EFL_PF, + /* 0xfa = 11111010b */ X86_EFL_PF, + /* 0xfb = 11111011b */ 0, + /* 0xfc = 11111100b */ X86_EFL_PF, + /* 0xfd = 11111101b */ 0, + /* 0xfe = 11111110b */ 0, + /* 0xff = 11111111b */ X86_EFL_PF, +}; + +/* for clang: */ +extern const RTFLOAT32U g_ar32Zero[]; +extern const RTFLOAT64U g_ar64Zero[]; +extern const RTFLOAT80U g_ar80Zero[]; +extern const RTFLOAT80U g_ar80One[]; +extern const RTFLOAT80U g_r80Indefinite; +extern const RTFLOAT32U g_ar32Infinity[]; +extern const RTFLOAT64U g_ar64Infinity[]; +extern const RTFLOAT80U g_ar80Infinity[]; +extern const RTFLOAT128U g_r128Ln2; +extern const RTUINT128U g_u128Ln2Mantissa; +extern const RTUINT128U g_u128Ln2MantissaIntel; +extern const RTFLOAT128U g_ar128F2xm1HornerConsts[]; +extern const RTFLOAT32U g_ar32QNaN[]; +extern const RTFLOAT64U g_ar64QNaN[]; + +/** Zero values (indexed by fSign). */ +RTFLOAT32U const g_ar32Zero[] = { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(1) }; +RTFLOAT64U const g_ar64Zero[] = { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(1) }; +RTFLOAT80U const g_ar80Zero[] = { RTFLOAT80U_INIT_ZERO(0), RTFLOAT80U_INIT_ZERO(1) }; + +/** One values (indexed by fSign). */ +RTFLOAT80U const g_ar80One[] = +{ RTFLOAT80U_INIT(0, RT_BIT_64(63), RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT(1, RT_BIT_64(63), RTFLOAT80U_EXP_BIAS) }; + +/** Indefinite (negative). */ +RTFLOAT80U const g_r80Indefinite = RTFLOAT80U_INIT_INDEFINITE(1); + +/** Infinities (indexed by fSign). */ +RTFLOAT32U const g_ar32Infinity[] = { RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(1) }; +RTFLOAT64U const g_ar64Infinity[] = { RTFLOAT64U_INIT_INF(0), RTFLOAT64U_INIT_INF(1) }; +RTFLOAT80U const g_ar80Infinity[] = { RTFLOAT80U_INIT_INF(0), RTFLOAT80U_INIT_INF(1) }; + +/** Default QNaNs (indexed by fSign). */ +RTFLOAT32U const g_ar32QNaN[] = { RTFLOAT32U_INIT_QNAN(0), RTFLOAT32U_INIT_QNAN(1) }; +RTFLOAT64U const g_ar64QNaN[] = { RTFLOAT64U_INIT_QNAN(0), RTFLOAT64U_INIT_QNAN(1) }; + + +#if 0 +/** 128-bit floating point constant: 2.0 */ +const RTFLOAT128U g_r128Two = RTFLOAT128U_INIT_C(0, 0, 0, RTFLOAT128U_EXP_BIAS + 1); +#endif + + +/* The next section is generated by tools/IEMGenFpuConstants: */ + +/** The ln2 constant as 128-bit floating point value. + * base-10: 6.93147180559945309417232121458176575e-1 + * base-16: b.17217f7d1cf79abc9e3b39803f30@-1 + * base-2 : 1.0110001011100100001011111110111110100011100111101111001101010111100100111100011101100111001100000000011111100110e-1 */ +//const RTFLOAT128U g_r128Ln2 = RTFLOAT128U_INIT_C(0, 0x62e42fefa39e, 0xf35793c7673007e6, 0x3ffe); +const RTFLOAT128U g_r128Ln2 = RTFLOAT128U_INIT_C(0, 0x62e42fefa39e, 0xf357900000000000, 0x3ffe); +/** High precision ln2 value. + * base-10: 6.931471805599453094172321214581765680747e-1 + * base-16: b.17217f7d1cf79abc9e3b39803f2f6af0@-1 + * base-2 : 1.0110001011100100001011111110111110100011100111101111001101010111100100111100011101100111001100000000011111100101111011010101111e-1 */ +const RTUINT128U g_u128Ln2Mantissa = RTUINT128_INIT_C(0xb17217f7d1cf79ab, 0xc9e3b39803f2f6af); +/** High precision ln2 value, compatible with f2xm1 results on intel 10980XE. + * base-10: 6.931471805599453094151379470289064954613e-1 + * base-16: b.17217f7d1cf79abc0000000000000000@-1 + * base-2 : 1.0110001011100100001011111110111110100011100111101111001101010111100000000000000000000000000000000000000000000000000000000000000e-1 */ +const RTUINT128U g_u128Ln2MantissaIntel = RTUINT128_INIT_C(0xb17217f7d1cf79ab, 0xc000000000000000); + +/** Horner constants for f2xm1 */ +const RTFLOAT128U g_ar128F2xm1HornerConsts[] = +{ + /* a0 + * base-10: 1.00000000000000000000000000000000000e0 + * base-16: 1.0000000000000000000000000000@0 + * base-2 : 1.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e0 */ + RTFLOAT128U_INIT_C(0, 0x000000000000, 0x0000000000000000, 0x3fff), + /* a1 + * base-10: 5.00000000000000000000000000000000000e-1 + * base-16: 8.0000000000000000000000000000@-1 + * base-2 : 1.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e-1 */ + RTFLOAT128U_INIT_C(0, 0x000000000000, 0x0000000000000000, 0x3ffe), + /* a2 + * base-10: 1.66666666666666666666666666666666658e-1 + * base-16: 2.aaaaaaaaaaaaaaaaaaaaaaaaaaaa@-1 + * base-2 : 1.0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101e-3 */ + RTFLOAT128U_INIT_C(0, 0x555555555555, 0x5555555555555555, 0x3ffc), + /* a3 + * base-10: 4.16666666666666666666666666666666646e-2 + * base-16: a.aaaaaaaaaaaaaaaaaaaaaaaaaaa8@-2 + * base-2 : 1.0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101e-5 */ + RTFLOAT128U_INIT_C(0, 0x555555555555, 0x5555555555555555, 0x3ffa), + /* a4 + * base-10: 8.33333333333333333333333333333333323e-3 + * base-16: 2.2222222222222222222222222222@-2 + * base-2 : 1.0001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001e-7 */ + RTFLOAT128U_INIT_C(0, 0x111111111111, 0x1111111111111111, 0x3ff8), + /* a5 + * base-10: 1.38888888888888888888888888888888874e-3 + * base-16: 5.b05b05b05b05b05b05b05b05b058@-3 + * base-2 : 1.0110110000010110110000010110110000010110110000010110110000010110110000010110110000010110110000010110110000010110e-10 */ + RTFLOAT128U_INIT_C(0, 0x6c16c16c16c1, 0x6c16c16c16c16c16, 0x3ff5), + /* a6 + * base-10: 1.98412698412698412698412698412698412e-4 + * base-16: d.00d00d00d00d00d00d00d00d00d0@-4 + * base-2 : 1.1010000000011010000000011010000000011010000000011010000000011010000000011010000000011010000000011010000000011010e-13 */ + RTFLOAT128U_INIT_C(0, 0xa01a01a01a01, 0xa01a01a01a01a01a, 0x3ff2), + /* a7 + * base-10: 2.48015873015873015873015873015873015e-5 + * base-16: 1.a01a01a01a01a01a01a01a01a01a@-4 + * base-2 : 1.1010000000011010000000011010000000011010000000011010000000011010000000011010000000011010000000011010000000011010e-16 */ + RTFLOAT128U_INIT_C(0, 0xa01a01a01a01, 0xa01a01a01a01a01a, 0x3fef), + /* a8 + * base-10: 2.75573192239858906525573192239858902e-6 + * base-16: 2.e3bc74aad8e671f5583911ca002e@-5 + * base-2 : 1.0111000111011110001110100101010101101100011100110011100011111010101011000001110010001000111001010000000000010111e-19 */ + RTFLOAT128U_INIT_C(0, 0x71de3a556c73, 0x38faac1c88e50017, 0x3fec), + /* a9 + * base-10: 2.75573192239858906525573192239858865e-7 + * base-16: 4.9f93edde27d71cbbc05b4fa999e0@-6 + * base-2 : 1.0010011111100100111110110111011110001001111101011100011100101110111100000001011011010011111010100110011001111000e-22 */ + RTFLOAT128U_INIT_C(0, 0x27e4fb7789f5, 0xc72ef016d3ea6678, 0x3fe9), + /* a10 + * base-10: 2.50521083854417187750521083854417184e-8 + * base-16: 6.b99159fd5138e3f9d1f92e0df71c@-7 + * base-2 : 1.1010111001100100010101100111111101010100010011100011100011111110011101000111111001001011100000110111110111000111e-26 */ + RTFLOAT128U_INIT_C(0, 0xae64567f544e, 0x38fe747e4b837dc7, 0x3fe5), + /* a11 + * base-10: 2.08767569878680989792100903212014296e-9 + * base-16: 8.f76c77fc6c4bdaa26d4c3d67f420@-8 + * base-2 : 1.0001111011101101100011101111111110001101100010010111101101010100010011011010100110000111101011001111111010000100e-29 */ + RTFLOAT128U_INIT_C(0, 0x1eed8eff8d89, 0x7b544da987acfe84, 0x3fe2), + /* a12 + * base-10: 1.60590438368216145993923771701549472e-10 + * base-16: b.092309d43684be51c198e91d7b40@-9 + * base-2 : 1.0110000100100100011000010011101010000110110100001001011111001010001110000011001100011101001000111010111101101000e-33 */ + RTFLOAT128U_INIT_C(0, 0x6124613a86d0, 0x97ca38331d23af68, 0x3fde), + /* a13 + * base-10: 1.14707455977297247138516979786821043e-11 + * base-16: c.9cba54603e4e905d6f8a2efd1f20@-10 + * base-2 : 1.1001001110010111010010101000110000000111110010011101001000001011101011011111000101000101110111111010001111100100e-37 */ + RTFLOAT128U_INIT_C(0, 0x93974a8c07c9, 0xd20badf145dfa3e4, 0x3fda), + /* a14 + * base-10: 7.64716373181981647590113198578806964e-13 + * base-16: d.73f9f399dc0f88ec32b587746578@-11 + * base-2 : 1.1010111001111111001111100111001100111011100000011111000100011101100001100101011010110000111011101000110010101111e-41 */ + RTFLOAT128U_INIT_C(0, 0xae7f3e733b81, 0xf11d8656b0ee8caf, 0x3fd6), + /* a15 + * base-10: 4.77947733238738529743820749111754352e-14 + * base-16: d.73f9f399dc0f88ec32b587746578@-12 + * base-2 : 1.1010111001111111001111100111001100111011100000011111000100011101100001100101011010110000111011101000110010101111e-45 */ + RTFLOAT128U_INIT_C(0, 0xae7f3e733b81, 0xf11d8656b0ee8caf, 0x3fd2), + /* a16 + * base-10: 2.81145725434552076319894558301031970e-15 + * base-16: c.a963b81856a53593028cbbb8d7f8@-13 + * base-2 : 1.1001010100101100011101110000001100001010110101001010011010110010011000000101000110010111011101110001101011111111e-49 */ + RTFLOAT128U_INIT_C(0, 0x952c77030ad4, 0xa6b2605197771aff, 0x3fce), + /* a17 + * base-10: 1.56192069685862264622163643500573321e-16 + * base-16: b.413c31dcbecbbdd8024435161550@-14 + * base-2 : 1.0110100000100111100001100011101110010111110110010111011110111011000000000100100010000110101000101100001010101010e-53 */ + RTFLOAT128U_INIT_C(0, 0x6827863b97d9, 0x77bb004886a2c2aa, 0x3fca), + /* a18 + * base-10: 8.22063524662432971695598123687227980e-18 + * base-16: 9.7a4da340a0ab92650f61dbdcb3a0@-15 + * base-2 : 1.0010111101001001101101000110100000010100000101010111001001001100101000011110110000111011011110111001011001110100e-57 */ + RTFLOAT128U_INIT_C(0, 0x2f49b4681415, 0x724ca1ec3b7b9674, 0x3fc6), + /* a19 + * base-10: 4.11031762331216485847799061843614006e-19 + * base-16: 7.950ae900808941ea72b4afe3c2e8@-16 + * base-2 : 1.1110010101000010101110100100000000100000001000100101000001111010100111001010110100101011111110001111000010111010e-62 */ + RTFLOAT128U_INIT_C(0, 0xe542ba402022, 0x507a9cad2bf8f0ba, 0x3fc1), + /* a20 + * base-10: 1.95729410633912612308475743735054143e-20 + * base-16: 5.c6e3bdb73d5c62fbc51bf3b9b8fc@-17 + * base-2 : 1.0111000110111000111011110110110111001111010101110001100010111110111100010100011011111100111011100110111000111111e-66 */ + RTFLOAT128U_INIT_C(0, 0x71b8ef6dcf57, 0x18bef146fcee6e3f, 0x3fbd), + /* a21 + * base-10: 8.89679139245057328674889744250246106e-22 + * base-16: 4.338e5b6dfe14a5143242dfcce3a0@-18 + * base-2 : 1.0000110011100011100101101101101101111111100001010010100101000101000011001001000010110111111100110011100011101000e-70 */ + RTFLOAT128U_INIT_C(0, 0x0ce396db7f85, 0x29450c90b7f338e8, 0x3fb9), +}; + + +/* + * There are a few 64-bit on 32-bit things we'd rather do in C. Actually, doing + * it all in C is probably safer atm., optimize what's necessary later, maybe. + */ +#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) + + +/********************************************************************************************************************************* +* Binary Operations * +*********************************************************************************************************************************/ + +/* + * ADD + */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_add_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + uint64_t uDst = *puDst; + uint64_t uResult = uDst + uSrc; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 64, uResult < uDst, uSrc); +} + +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_add_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + uint32_t uDst = *puDst; + uint32_t uResult = uDst + uSrc; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 32, uResult < uDst, uSrc); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_add_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + uint16_t uDst = *puDst; + uint16_t uResult = uDst + uSrc; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 16, uResult < uDst, uSrc); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_add_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags)) +{ + uint8_t uDst = *puDst; + uint8_t uResult = uDst + uSrc; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 8, uResult < uDst, uSrc); +} + +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + +/* + * ADC + */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + if (!(*pfEFlags & X86_EFL_CF)) + iemAImpl_add_u64(puDst, uSrc, pfEFlags); + else + { + uint64_t uDst = *puDst; + uint64_t uResult = uDst + uSrc + 1; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 64, uResult <= uDst, uSrc); + } +} + +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + if (!(*pfEFlags & X86_EFL_CF)) + iemAImpl_add_u32(puDst, uSrc, pfEFlags); + else + { + uint32_t uDst = *puDst; + uint32_t uResult = uDst + uSrc + 1; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 32, uResult <= uDst, uSrc); + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + if (!(*pfEFlags & X86_EFL_CF)) + iemAImpl_add_u16(puDst, uSrc, pfEFlags); + else + { + uint16_t uDst = *puDst; + uint16_t uResult = uDst + uSrc + 1; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 16, uResult <= uDst, uSrc); + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags)) +{ + if (!(*pfEFlags & X86_EFL_CF)) + iemAImpl_add_u8(puDst, uSrc, pfEFlags); + else + { + uint8_t uDst = *puDst; + uint8_t uResult = uDst + uSrc + 1; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 8, uResult <= uDst, uSrc); + } +} + +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + +/* + * SUB + */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + uint64_t uDst = *puDst; + uint64_t uResult = uDst - uSrc; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 64, uDst < uSrc, uSrc ^ RT_BIT_64(63)); +} + +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + uint32_t uDst = *puDst; + uint32_t uResult = uDst - uSrc; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 32, uDst < uSrc, uSrc ^ RT_BIT_32(31)); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + uint16_t uDst = *puDst; + uint16_t uResult = uDst - uSrc; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 16, uDst < uSrc, uSrc ^ (uint16_t)0x8000); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags)) +{ + uint8_t uDst = *puDst; + uint8_t uResult = uDst - uSrc; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 8, uDst < uSrc, uSrc ^ (uint8_t)0x80); +} + +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + +/* + * SBB + */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + if (!(*pfEFlags & X86_EFL_CF)) + iemAImpl_sub_u64(puDst, uSrc, pfEFlags); + else + { + uint64_t uDst = *puDst; + uint64_t uResult = uDst - uSrc - 1; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 64, uDst <= uSrc, uSrc ^ RT_BIT_64(63)); + } +} + +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + if (!(*pfEFlags & X86_EFL_CF)) + iemAImpl_sub_u32(puDst, uSrc, pfEFlags); + else + { + uint32_t uDst = *puDst; + uint32_t uResult = uDst - uSrc - 1; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 32, uDst <= uSrc, uSrc ^ RT_BIT_32(31)); + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + if (!(*pfEFlags & X86_EFL_CF)) + iemAImpl_sub_u16(puDst, uSrc, pfEFlags); + else + { + uint16_t uDst = *puDst; + uint16_t uResult = uDst - uSrc - 1; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 16, uDst <= uSrc, uSrc ^ (uint16_t)0x8000); + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags)) +{ + if (!(*pfEFlags & X86_EFL_CF)) + iemAImpl_sub_u8(puDst, uSrc, pfEFlags); + else + { + uint8_t uDst = *puDst; + uint8_t uResult = uDst - uSrc - 1; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 8, uDst <= uSrc, uSrc ^ (uint8_t)0x80); + } +} + +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + + +/* + * OR + */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_or_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + uint64_t uResult = *puDst | uSrc; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0); +} + +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_or_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + uint32_t uResult = *puDst | uSrc; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 32, 0); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_or_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + uint16_t uResult = *puDst | uSrc; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 16, 0); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_or_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags)) +{ + uint8_t uResult = *puDst | uSrc; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 8, 0); +} + +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + +/* + * XOR + */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + uint64_t uResult = *puDst ^ uSrc; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0); +} + +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + uint32_t uResult = *puDst ^ uSrc; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 32, 0); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + uint16_t uResult = *puDst ^ uSrc; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 16, 0); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags)) +{ + uint8_t uResult = *puDst ^ uSrc; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 8, 0); +} + +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + +/* + * AND + */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_and_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + uint64_t const uResult = *puDst & uSrc; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0); +} + +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_and_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + uint32_t const uResult = *puDst & uSrc; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 32, 0); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_and_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + uint16_t const uResult = *puDst & uSrc; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 16, 0); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_and_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags)) +{ + uint8_t const uResult = *puDst & uSrc; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 8, 0); +} + +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ +#endif /* !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) */ + +/* + * ANDN (BMI1 instruction) + */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_andn_u64_fallback,(uint64_t *puDst, uint64_t uSrc1, uint64_t uSrc2, uint32_t *pfEFlags)) +{ + uint64_t const uResult = ~uSrc1 & uSrc2; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_andn_u32_fallback,(uint32_t *puDst, uint32_t uSrc1, uint32_t uSrc2, uint32_t *pfEFlags)) +{ + uint32_t const uResult = ~uSrc1 & uSrc2; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 32, 0); +} + + +#if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) +IEM_DECL_IMPL_DEF(void, iemAImpl_andn_u64,(uint64_t *puDst, uint64_t uSrc1, uint64_t uSrc2, uint32_t *pfEFlags)) +{ + iemAImpl_andn_u64_fallback(puDst, uSrc1, uSrc2, pfEFlags); +} +#endif + + +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +IEM_DECL_IMPL_DEF(void, iemAImpl_andn_u32,(uint32_t *puDst, uint32_t uSrc1, uint32_t uSrc2, uint32_t *pfEFlags)) +{ + iemAImpl_andn_u32_fallback(puDst, uSrc1, uSrc2, pfEFlags); +} +#endif + +#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) + +/* + * CMP + */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_cmp_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + uint64_t uDstTmp = *puDst; + iemAImpl_sub_u64(&uDstTmp, uSrc, pfEFlags); +} + +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_cmp_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + uint32_t uDstTmp = *puDst; + iemAImpl_sub_u32(&uDstTmp, uSrc, pfEFlags); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cmp_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + uint16_t uDstTmp = *puDst; + iemAImpl_sub_u16(&uDstTmp, uSrc, pfEFlags); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cmp_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags)) +{ + uint8_t uDstTmp = *puDst; + iemAImpl_sub_u8(&uDstTmp, uSrc, pfEFlags); +} + +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + +/* + * TEST + */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_test_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + uint64_t uResult = *puDst & uSrc; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0); +} + +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_test_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + uint32_t uResult = *puDst & uSrc; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 32, 0); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_test_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + uint16_t uResult = *puDst & uSrc; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 16, 0); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_test_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags)) +{ + uint8_t uResult = *puDst & uSrc; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 8, 0); +} + +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + + +/* + * LOCK prefixed variants of the above + */ + +/** 64-bit locked binary operand operation. */ +# define DO_LOCKED_BIN_OP(a_Mnemonic, a_cBitsWidth) \ + do { \ + uint ## a_cBitsWidth ## _t uOld = ASMAtomicUoReadU ## a_cBitsWidth(puDst); \ + uint ## a_cBitsWidth ## _t uTmp; \ + uint32_t fEflTmp; \ + do \ + { \ + uTmp = uOld; \ + fEflTmp = *pfEFlags; \ + iemAImpl_ ## a_Mnemonic ## _u ## a_cBitsWidth(&uTmp, uSrc, &fEflTmp); \ + } while (!ASMAtomicCmpXchgExU ## a_cBitsWidth(puDst, uTmp, uOld, &uOld)); \ + *pfEFlags = fEflTmp; \ + } while (0) + + +#define EMIT_LOCKED_BIN_OP(a_Mnemonic, a_cBitsWidth) \ + IEM_DECL_IMPL_DEF(void, iemAImpl_ ## a_Mnemonic ## _u ## a_cBitsWidth ## _locked,(uint ## a_cBitsWidth ## _t *puDst, \ + uint ## a_cBitsWidth ## _t uSrc, \ + uint32_t *pfEFlags)) \ + { \ + DO_LOCKED_BIN_OP(a_Mnemonic, a_cBitsWidth); \ + } + +EMIT_LOCKED_BIN_OP(add, 64) +EMIT_LOCKED_BIN_OP(adc, 64) +EMIT_LOCKED_BIN_OP(sub, 64) +EMIT_LOCKED_BIN_OP(sbb, 64) +EMIT_LOCKED_BIN_OP(or, 64) +EMIT_LOCKED_BIN_OP(xor, 64) +EMIT_LOCKED_BIN_OP(and, 64) +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_LOCKED_BIN_OP(add, 32) +EMIT_LOCKED_BIN_OP(adc, 32) +EMIT_LOCKED_BIN_OP(sub, 32) +EMIT_LOCKED_BIN_OP(sbb, 32) +EMIT_LOCKED_BIN_OP(or, 32) +EMIT_LOCKED_BIN_OP(xor, 32) +EMIT_LOCKED_BIN_OP(and, 32) + +EMIT_LOCKED_BIN_OP(add, 16) +EMIT_LOCKED_BIN_OP(adc, 16) +EMIT_LOCKED_BIN_OP(sub, 16) +EMIT_LOCKED_BIN_OP(sbb, 16) +EMIT_LOCKED_BIN_OP(or, 16) +EMIT_LOCKED_BIN_OP(xor, 16) +EMIT_LOCKED_BIN_OP(and, 16) + +EMIT_LOCKED_BIN_OP(add, 8) +EMIT_LOCKED_BIN_OP(adc, 8) +EMIT_LOCKED_BIN_OP(sub, 8) +EMIT_LOCKED_BIN_OP(sbb, 8) +EMIT_LOCKED_BIN_OP(or, 8) +EMIT_LOCKED_BIN_OP(xor, 8) +EMIT_LOCKED_BIN_OP(and, 8) +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + + +/* + * Bit operations (same signature as above). + */ + +/* + * BT + */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_bt_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + /* Note! "undefined" flags: OF, SF, ZF, AF, PF. However, it seems they're + not modified by either AMD (3990x) or Intel (i9-9980HK). */ + Assert(uSrc < 64); + uint64_t uDst = *puDst; + if (uDst & RT_BIT_64(uSrc)) + *pfEFlags |= X86_EFL_CF; + else + *pfEFlags &= ~X86_EFL_CF; +} + +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_bt_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + /* Note! "undefined" flags: OF, SF, ZF, AF, PF. However, it seems they're + not modified by either AMD (3990x) or Intel (i9-9980HK). */ + Assert(uSrc < 32); + uint32_t uDst = *puDst; + if (uDst & RT_BIT_32(uSrc)) + *pfEFlags |= X86_EFL_CF; + else + *pfEFlags &= ~X86_EFL_CF; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_bt_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + /* Note! "undefined" flags: OF, SF, ZF, AF, PF. However, it seems they're + not modified by either AMD (3990x) or Intel (i9-9980HK). */ + Assert(uSrc < 16); + uint16_t uDst = *puDst; + if (uDst & RT_BIT_32(uSrc)) + *pfEFlags |= X86_EFL_CF; + else + *pfEFlags &= ~X86_EFL_CF; +} + +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + +/* + * BTC + */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_btc_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + /* Note! "undefined" flags: OF, SF, ZF, AF, PF. However, it seems they're + not modified by either AMD (3990x) or Intel (i9-9980HK). */ + Assert(uSrc < 64); + uint64_t fMask = RT_BIT_64(uSrc); + uint64_t uDst = *puDst; + if (uDst & fMask) + { + uDst &= ~fMask; + *puDst = uDst; + *pfEFlags |= X86_EFL_CF; + } + else + { + uDst |= fMask; + *puDst = uDst; + *pfEFlags &= ~X86_EFL_CF; + } +} + +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_btc_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + /* Note! "undefined" flags: OF, SF, ZF, AF, PF. However, it seems they're + not modified by either AMD (3990x) or Intel (i9-9980HK). */ + Assert(uSrc < 32); + uint32_t fMask = RT_BIT_32(uSrc); + uint32_t uDst = *puDst; + if (uDst & fMask) + { + uDst &= ~fMask; + *puDst = uDst; + *pfEFlags |= X86_EFL_CF; + } + else + { + uDst |= fMask; + *puDst = uDst; + *pfEFlags &= ~X86_EFL_CF; + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_btc_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + /* Note! "undefined" flags: OF, SF, ZF, AF, PF. However, it seems they're + not modified by either AMD (3990x) or Intel (i9-9980HK). */ + Assert(uSrc < 16); + uint16_t fMask = RT_BIT_32(uSrc); + uint16_t uDst = *puDst; + if (uDst & fMask) + { + uDst &= ~fMask; + *puDst = uDst; + *pfEFlags |= X86_EFL_CF; + } + else + { + uDst |= fMask; + *puDst = uDst; + *pfEFlags &= ~X86_EFL_CF; + } +} + +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + +/* + * BTR + */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_btr_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an + logical operation (AND/OR/whatever). */ + Assert(uSrc < 64); + uint64_t fMask = RT_BIT_64(uSrc); + uint64_t uDst = *puDst; + if (uDst & fMask) + { + uDst &= ~fMask; + *puDst = uDst; + *pfEFlags |= X86_EFL_CF; + } + else + *pfEFlags &= ~X86_EFL_CF; +} + +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_btr_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an + logical operation (AND/OR/whatever). */ + Assert(uSrc < 32); + uint32_t fMask = RT_BIT_32(uSrc); + uint32_t uDst = *puDst; + if (uDst & fMask) + { + uDst &= ~fMask; + *puDst = uDst; + *pfEFlags |= X86_EFL_CF; + } + else + *pfEFlags &= ~X86_EFL_CF; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_btr_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an + logical operation (AND/OR/whatever). */ + Assert(uSrc < 16); + uint16_t fMask = RT_BIT_32(uSrc); + uint16_t uDst = *puDst; + if (uDst & fMask) + { + uDst &= ~fMask; + *puDst = uDst; + *pfEFlags |= X86_EFL_CF; + } + else + *pfEFlags &= ~X86_EFL_CF; +} + +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + +/* + * BTS + */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_bts_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an + logical operation (AND/OR/whatever). */ + Assert(uSrc < 64); + uint64_t fMask = RT_BIT_64(uSrc); + uint64_t uDst = *puDst; + if (uDst & fMask) + *pfEFlags |= X86_EFL_CF; + else + { + uDst |= fMask; + *puDst = uDst; + *pfEFlags &= ~X86_EFL_CF; + } +} + +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_bts_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an + logical operation (AND/OR/whatever). */ + Assert(uSrc < 32); + uint32_t fMask = RT_BIT_32(uSrc); + uint32_t uDst = *puDst; + if (uDst & fMask) + *pfEFlags |= X86_EFL_CF; + else + { + uDst |= fMask; + *puDst = uDst; + *pfEFlags &= ~X86_EFL_CF; + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_bts_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an + logical operation (AND/OR/whatever). */ + Assert(uSrc < 16); + uint16_t fMask = RT_BIT_32(uSrc); + uint32_t uDst = *puDst; + if (uDst & fMask) + *pfEFlags |= X86_EFL_CF; + else + { + uDst |= fMask; + *puDst = uDst; + *pfEFlags &= ~X86_EFL_CF; + } +} + +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + + +EMIT_LOCKED_BIN_OP(btc, 64) +EMIT_LOCKED_BIN_OP(btr, 64) +EMIT_LOCKED_BIN_OP(bts, 64) +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_LOCKED_BIN_OP(btc, 32) +EMIT_LOCKED_BIN_OP(btr, 32) +EMIT_LOCKED_BIN_OP(bts, 32) + +EMIT_LOCKED_BIN_OP(btc, 16) +EMIT_LOCKED_BIN_OP(btr, 16) +EMIT_LOCKED_BIN_OP(bts, 16) +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + + +/* + * Helpers for BSR and BSF. + * + * Note! "undefined" flags: OF, SF, AF, PF, CF. + * Intel behavior modelled on 10980xe, AMD on 3990X. Other marchs may + * produce different result (see https://www.sandpile.org/x86/flags.htm), + * but we restrict ourselves to emulating these recent marchs. + */ +#define SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlag, a_iBit) do { \ + unsigned iBit = (a_iBit); \ + uint32_t fEfl = *pfEFlags & ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF); \ + if (iBit) \ + { \ + *puDst = --iBit; \ + fEfl |= g_afParity[iBit]; \ + } \ + else \ + fEfl |= X86_EFL_ZF | X86_EFL_PF; \ + *pfEFlags = fEfl; \ + } while (0) +#define SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlag, a_iBit) do { \ + unsigned const iBit = (a_iBit); \ + if (iBit) \ + { \ + *puDst = iBit - 1; \ + *pfEFlags &= ~X86_EFL_ZF; \ + } \ + else \ + *pfEFlags |= X86_EFL_ZF; \ + } while (0) + + +/* + * BSF - first (least significant) bit set + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitFirstSetU64(uSrc)); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u64_intel,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitFirstSetU64(uSrc)); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u64_amd,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlags, ASMBitFirstSetU64(uSrc)); +} + +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitFirstSetU32(uSrc)); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u32_intel,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitFirstSetU32(uSrc)); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u32_amd,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlags, ASMBitFirstSetU32(uSrc)); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitFirstSetU16(uSrc)); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u16_intel,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitFirstSetU16(uSrc)); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u16_amd,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlags, ASMBitFirstSetU16(uSrc)); +} + +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + + +/* + * BSR - last (most significant) bit set + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitLastSetU64(uSrc)); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u64_intel,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitLastSetU64(uSrc)); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u64_amd,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlags, ASMBitLastSetU64(uSrc)); +} + +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitLastSetU32(uSrc)); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u32_intel,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitLastSetU32(uSrc)); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u32_amd,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlags, ASMBitLastSetU32(uSrc)); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitLastSetU16(uSrc)); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u16_intel,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitLastSetU16(uSrc)); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u16_amd,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlags, ASMBitLastSetU16(uSrc)); +} + +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + + +/* + * Helpers for LZCNT and TZCNT. + */ +#define SET_BIT_CNT_SEARCH_RESULT_INTEL(a_puDst, a_uSrc, a_pfEFlags, a_uResult) do { \ + unsigned const uResult = (a_uResult); \ + *(a_puDst) = uResult; \ + uint32_t fEfl = *(a_pfEFlags) & ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF); \ + if (uResult) \ + fEfl |= g_afParity[uResult]; \ + else \ + fEfl |= X86_EFL_ZF | X86_EFL_PF; \ + if (!a_uSrc) \ + fEfl |= X86_EFL_CF; \ + *(a_pfEFlags) = fEfl; \ + } while (0) +#define SET_BIT_CNT_SEARCH_RESULT_AMD(a_puDst, a_uSrc, a_pfEFlags, a_uResult) do { \ + unsigned const uResult = (a_uResult); \ + *(a_puDst) = uResult; \ + uint32_t fEfl = *(a_pfEFlags) & ~(X86_EFL_ZF | X86_EFL_CF); \ + if (!uResult) \ + fEfl |= X86_EFL_ZF; \ + if (!a_uSrc) \ + fEfl |= X86_EFL_CF; \ + *(a_pfEFlags) = fEfl; \ + } while (0) + + +/* + * LZCNT - count leading zero bits. + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + iemAImpl_lzcnt_u64_intel(puDst, uSrc, pfEFlags); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u64_intel,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_CNT_SEARCH_RESULT_INTEL(puDst, uSrc, pfEFlags, ASMCountLeadingZerosU64(uSrc)); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u64_amd,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_CNT_SEARCH_RESULT_AMD(puDst, uSrc, pfEFlags, ASMCountLeadingZerosU64(uSrc)); +} + +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + iemAImpl_lzcnt_u32_intel(puDst, uSrc, pfEFlags); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u32_intel,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_CNT_SEARCH_RESULT_INTEL(puDst, uSrc, pfEFlags, ASMCountLeadingZerosU32(uSrc)); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u32_amd,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_CNT_SEARCH_RESULT_AMD(puDst, uSrc, pfEFlags, ASMCountLeadingZerosU32(uSrc)); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + iemAImpl_lzcnt_u16_intel(puDst, uSrc, pfEFlags); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u16_intel,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_CNT_SEARCH_RESULT_INTEL(puDst, uSrc, pfEFlags, ASMCountLeadingZerosU16(uSrc)); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u16_amd,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_CNT_SEARCH_RESULT_AMD(puDst, uSrc, pfEFlags, ASMCountLeadingZerosU16(uSrc)); +} + +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + + +/* + * TZCNT - count leading zero bits. + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + iemAImpl_tzcnt_u64_intel(puDst, uSrc, pfEFlags); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u64_intel,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_CNT_SEARCH_RESULT_INTEL(puDst, uSrc, pfEFlags, ASMCountTrailingZerosU64(uSrc)); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u64_amd,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_CNT_SEARCH_RESULT_AMD(puDst, uSrc, pfEFlags, ASMCountTrailingZerosU64(uSrc)); +} + +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + iemAImpl_tzcnt_u32_intel(puDst, uSrc, pfEFlags); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u32_intel,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_CNT_SEARCH_RESULT_INTEL(puDst, uSrc, pfEFlags, ASMCountTrailingZerosU32(uSrc)); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u32_amd,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_CNT_SEARCH_RESULT_AMD(puDst, uSrc, pfEFlags, ASMCountTrailingZerosU32(uSrc)); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + iemAImpl_tzcnt_u16_intel(puDst, uSrc, pfEFlags); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u16_intel,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_CNT_SEARCH_RESULT_INTEL(puDst, uSrc, pfEFlags, ASMCountTrailingZerosU16(uSrc)); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u16_amd,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) +{ + SET_BIT_CNT_SEARCH_RESULT_AMD(puDst, uSrc, pfEFlags, ASMCountTrailingZerosU16(uSrc)); +} + +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ +#endif /* !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) */ + +/* + * BEXTR (BMI1 instruction) + */ +#define EMIT_BEXTR(a_cBits, a_Type, a_Suffix) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_bextr_u,a_cBits,a_Suffix),(a_Type *puDst, a_Type uSrc1, \ + a_Type uSrc2, uint32_t *pfEFlags)) \ +{ \ + /* uSrc1 is considered virtually zero extended to 512 bits width. */ \ + uint32_t fEfl = *pfEFlags & ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF); \ + a_Type uResult; \ + uint8_t const iFirstBit = (uint8_t)uSrc2; \ + if (iFirstBit < a_cBits) \ + { \ + uResult = uSrc1 >> iFirstBit; \ + uint8_t const cBits = (uint8_t)(uSrc2 >> 8); \ + if (cBits < a_cBits) \ + uResult &= RT_CONCAT(RT_BIT_,a_cBits)(cBits) - 1; \ + *puDst = uResult; \ + if (!uResult) \ + fEfl |= X86_EFL_ZF; \ + } \ + else \ + { \ + *puDst = uResult = 0; \ + fEfl |= X86_EFL_ZF; \ + } \ + /** @todo complete flag calculations. */ \ + *pfEFlags = fEfl; \ +} + +EMIT_BEXTR(64, uint64_t, _fallback) +EMIT_BEXTR(32, uint32_t, _fallback) +#if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_BEXTR(64, uint64_t, RT_NOTHING) +#endif +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_BEXTR(32, uint32_t, RT_NOTHING) +#endif + +/* + * BLSR (BMI1 instruction) + */ +#define EMIT_BLSR(a_cBits, a_Type, a_Suffix) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_blsr_u,a_cBits,a_Suffix),(a_Type *puDst, a_Type uSrc, uint32_t *pfEFlags)) \ +{ \ + uint32_t fEfl1 = *pfEFlags; \ + uint32_t fEfl2 = fEfl1; \ + *puDst = uSrc; \ + iemAImpl_sub_u ## a_cBits(&uSrc, 1, &fEfl1); \ + iemAImpl_and_u ## a_cBits(puDst, uSrc, &fEfl2); \ + \ + /* AMD: The carry flag is from the SUB operation. */ \ + /* 10890xe: PF always cleared? */ \ + fEfl2 &= ~(X86_EFL_CF | X86_EFL_PF); \ + fEfl2 |= fEfl1 & X86_EFL_CF; \ + *pfEFlags = fEfl2; \ +} + +EMIT_BLSR(64, uint64_t, _fallback) +EMIT_BLSR(32, uint32_t, _fallback) +#if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_BLSR(64, uint64_t, RT_NOTHING) +#endif +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_BLSR(32, uint32_t, RT_NOTHING) +#endif + +/* + * BLSMSK (BMI1 instruction) + */ +#define EMIT_BLSMSK(a_cBits, a_Type, a_Suffix) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_blsmsk_u,a_cBits,a_Suffix),(a_Type *puDst, a_Type uSrc, uint32_t *pfEFlags)) \ +{ \ + uint32_t fEfl1 = *pfEFlags; \ + uint32_t fEfl2 = fEfl1; \ + *puDst = uSrc; \ + iemAImpl_sub_u ## a_cBits(&uSrc, 1, &fEfl1); \ + iemAImpl_xor_u ## a_cBits(puDst, uSrc, &fEfl2); \ + \ + /* AMD: The carry flag is from the SUB operation. */ \ + /* 10890xe: PF always cleared? */ \ + fEfl2 &= ~(X86_EFL_CF | X86_EFL_PF); \ + fEfl2 |= fEfl1 & X86_EFL_CF; \ + *pfEFlags = fEfl2; \ +} + +EMIT_BLSMSK(64, uint64_t, _fallback) +EMIT_BLSMSK(32, uint32_t, _fallback) +#if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_BLSMSK(64, uint64_t, RT_NOTHING) +#endif +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_BLSMSK(32, uint32_t, RT_NOTHING) +#endif + +/* + * BLSI (BMI1 instruction) + */ +#define EMIT_BLSI(a_cBits, a_Type, a_Suffix) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_blsi_u,a_cBits,a_Suffix),(a_Type *puDst, a_Type uSrc, uint32_t *pfEFlags)) \ +{ \ + uint32_t fEfl1 = *pfEFlags; \ + uint32_t fEfl2 = fEfl1; \ + *puDst = uSrc; \ + iemAImpl_neg_u ## a_cBits(&uSrc, &fEfl1); \ + iemAImpl_and_u ## a_cBits(puDst, uSrc, &fEfl2); \ + \ + /* AMD: The carry flag is from the SUB operation. */ \ + /* 10890xe: PF always cleared? */ \ + fEfl2 &= ~(X86_EFL_CF | X86_EFL_PF); \ + fEfl2 |= fEfl1 & X86_EFL_CF; \ + *pfEFlags = fEfl2; \ +} + +EMIT_BLSI(64, uint64_t, _fallback) +EMIT_BLSI(32, uint32_t, _fallback) +#if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_BLSI(64, uint64_t, RT_NOTHING) +#endif +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_BLSI(32, uint32_t, RT_NOTHING) +#endif + +/* + * BZHI (BMI2 instruction) + */ +#define EMIT_BZHI(a_cBits, a_Type, a_Suffix) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_bzhi_u,a_cBits,a_Suffix),(a_Type *puDst, a_Type uSrc1, \ + a_Type uSrc2, uint32_t *pfEFlags)) \ +{ \ + uint32_t fEfl = *pfEFlags & ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF); \ + a_Type uResult; \ + uint8_t const iFirstBit = (uint8_t)uSrc2; \ + if (iFirstBit < a_cBits) \ + uResult = uSrc1 & (((a_Type)1 << iFirstBit) - 1); \ + else \ + { \ + uResult = uSrc1; \ + fEfl |= X86_EFL_CF; \ + } \ + *puDst = uResult; \ + fEfl |= X86_EFL_CALC_ZF(uResult); \ + fEfl |= X86_EFL_CALC_SF(uResult, a_cBits); \ + *pfEFlags = fEfl; \ +} + +EMIT_BZHI(64, uint64_t, _fallback) +EMIT_BZHI(32, uint32_t, _fallback) +#if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_BZHI(64, uint64_t, RT_NOTHING) +#endif +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_BZHI(32, uint32_t, RT_NOTHING) +#endif + +/* + * POPCNT + */ +RT_ALIGNAS_VAR(64) static uint8_t const g_abBitCounts6[64] = +{ + 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, +}; + +/** @todo Use native popcount where possible and employ some more efficient + * algorithm here (or in asm.h fallback)! */ + +DECLINLINE(uint8_t) iemPopCountU16(uint16_t u16) +{ + return g_abBitCounts6[ u16 & 0x3f] + + g_abBitCounts6[(u16 >> 6) & 0x3f] + + g_abBitCounts6[(u16 >> 12) & 0x3f]; +} + +DECLINLINE(uint8_t) iemPopCountU32(uint32_t u32) +{ + return g_abBitCounts6[ u32 & 0x3f] + + g_abBitCounts6[(u32 >> 6) & 0x3f] + + g_abBitCounts6[(u32 >> 12) & 0x3f] + + g_abBitCounts6[(u32 >> 18) & 0x3f] + + g_abBitCounts6[(u32 >> 24) & 0x3f] + + g_abBitCounts6[(u32 >> 30) & 0x3f]; +} + +DECLINLINE(uint8_t) iemPopCountU64(uint64_t u64) +{ + return g_abBitCounts6[ u64 & 0x3f] + + g_abBitCounts6[(u64 >> 6) & 0x3f] + + g_abBitCounts6[(u64 >> 12) & 0x3f] + + g_abBitCounts6[(u64 >> 18) & 0x3f] + + g_abBitCounts6[(u64 >> 24) & 0x3f] + + g_abBitCounts6[(u64 >> 30) & 0x3f] + + g_abBitCounts6[(u64 >> 36) & 0x3f] + + g_abBitCounts6[(u64 >> 42) & 0x3f] + + g_abBitCounts6[(u64 >> 48) & 0x3f] + + g_abBitCounts6[(u64 >> 54) & 0x3f] + + g_abBitCounts6[(u64 >> 60) & 0x3f]; +} + +#define EMIT_POPCNT(a_cBits, a_Type, a_Suffix) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_popcnt_u,a_cBits,a_Suffix),(a_Type *puDst, a_Type uSrc, uint32_t *pfEFlags)) \ +{ \ + uint32_t fEfl = *pfEFlags & ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF); \ + a_Type uResult; \ + if (uSrc) \ + uResult = iemPopCountU ## a_cBits(uSrc); \ + else \ + { \ + fEfl |= X86_EFL_ZF; \ + uResult = 0; \ + } \ + *puDst = uResult; \ + *pfEFlags = fEfl; \ +} + +EMIT_POPCNT(64, uint64_t, _fallback) +EMIT_POPCNT(32, uint32_t, _fallback) +EMIT_POPCNT(16, uint16_t, _fallback) +#if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_POPCNT(64, uint64_t, RT_NOTHING) +#endif +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_POPCNT(32, uint32_t, RT_NOTHING) +EMIT_POPCNT(16, uint16_t, RT_NOTHING) +#endif + + +#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) + +/* + * XCHG + */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *puMem, uint64_t *puReg)) +{ +#if ARCH_BITS >= 64 + *puReg = ASMAtomicXchgU64(puMem, *puReg); +#else + uint64_t uOldMem = *puMem; + while (!ASMAtomicCmpXchgExU64(puMem, *puReg, uOldMem, &uOldMem)) + ASMNopPause(); + *puReg = uOldMem; +#endif +} + +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *puMem, uint32_t *puReg)) +{ + *puReg = ASMAtomicXchgU32(puMem, *puReg); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *puMem, uint16_t *puReg)) +{ + *puReg = ASMAtomicXchgU16(puMem, *puReg); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked,(uint8_t *puMem, uint8_t *puReg)) +{ + *puReg = ASMAtomicXchgU8(puMem, *puReg); +} + +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + + +/* Unlocked variants for fDisregardLock mode: */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *puMem, uint64_t *puReg)) +{ + uint64_t const uOld = *puMem; + *puMem = *puReg; + *puReg = uOld; +} + +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *puMem, uint32_t *puReg)) +{ + uint32_t const uOld = *puMem; + *puMem = *puReg; + *puReg = uOld; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *puMem, uint16_t *puReg)) +{ + uint16_t const uOld = *puMem; + *puMem = *puReg; + *puReg = uOld; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked,(uint8_t *puMem, uint8_t *puReg)) +{ + uint8_t const uOld = *puMem; + *puMem = *puReg; + *puReg = uOld; +} + +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + + +/* + * XADD and LOCK XADD. + */ +#define EMIT_XADD(a_cBitsWidth, a_Type) \ +IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u ## a_cBitsWidth,(a_Type *puDst, a_Type *puReg, uint32_t *pfEFlags)) \ +{ \ + a_Type uDst = *puDst; \ + a_Type uResult = uDst; \ + iemAImpl_add_u ## a_cBitsWidth(&uResult, *puReg, pfEFlags); \ + *puDst = uResult; \ + *puReg = uDst; \ +} \ +\ +IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u ## a_cBitsWidth ## _locked,(a_Type *puDst, a_Type *puReg, uint32_t *pfEFlags)) \ +{ \ + a_Type uOld = ASMAtomicUoReadU ## a_cBitsWidth(puDst); \ + a_Type uResult; \ + uint32_t fEflTmp; \ + do \ + { \ + uResult = uOld; \ + fEflTmp = *pfEFlags; \ + iemAImpl_add_u ## a_cBitsWidth(&uResult, *puReg, &fEflTmp); \ + } while (!ASMAtomicCmpXchgExU ## a_cBitsWidth(puDst, uResult, uOld, &uOld)); \ + *puReg = uOld; \ + *pfEFlags = fEflTmp; \ +} +EMIT_XADD(64, uint64_t) +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_XADD(32, uint32_t) +EMIT_XADD(16, uint16_t) +EMIT_XADD(8, uint8_t) +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + +#endif + +/* + * CMPXCHG, CMPXCHG8B, CMPXCHG16B + * + * Note! We don't have non-locking/atomic cmpxchg primitives, so all cmpxchg + * instructions are emulated as locked. + */ +#if defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags)) +{ + uint8_t uOld = *puAl; + if (ASMAtomicCmpXchgExU8(pu8Dst, uSrcReg, uOld, puAl)) + Assert(*puAl == uOld); + iemAImpl_cmp_u8(&uOld, *puAl, pEFlags); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags)) +{ + uint16_t uOld = *puAx; + if (ASMAtomicCmpXchgExU16(pu16Dst, uSrcReg, uOld, puAx)) + Assert(*puAx == uOld); + iemAImpl_cmp_u16(&uOld, *puAx, pEFlags); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags)) +{ + uint32_t uOld = *puEax; + if (ASMAtomicCmpXchgExU32(pu32Dst, uSrcReg, uOld, puEax)) + Assert(*puEax == uOld); + iemAImpl_cmp_u32(&uOld, *puEax, pEFlags); +} + + +# if ARCH_BITS == 32 +IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags)) +# else +IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags)) +# endif +{ +# if ARCH_BITS == 32 + uint64_t const uSrcReg = *puSrcReg; +# endif + uint64_t uOld = *puRax; + if (ASMAtomicCmpXchgExU64(pu64Dst, uSrcReg, uOld, puRax)) + Assert(*puRax == uOld); + iemAImpl_cmp_u64(&uOld, *puRax, pEFlags); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx, + uint32_t *pEFlags)) +{ + uint64_t const uNew = pu64EbxEcx->u; + uint64_t const uOld = pu64EaxEdx->u; + if (ASMAtomicCmpXchgExU64(pu64Dst, uNew, uOld, &pu64EaxEdx->u)) + { + Assert(pu64EaxEdx->u == uOld); + *pEFlags |= X86_EFL_ZF; + } + else + *pEFlags &= ~X86_EFL_ZF; +} + + +# if defined(RT_ARCH_AMD64) || defined(RT_ARCH_ARM64) +IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx, + uint32_t *pEFlags)) +{ +# ifdef VBOX_STRICT + RTUINT128U const uOld = *pu128RaxRdx; +# endif +# if defined(RT_ARCH_AMD64) + if (ASMAtomicCmpXchgU128v2(&pu128Dst->u, pu128RbxRcx->s.Hi, pu128RbxRcx->s.Lo, pu128RaxRdx->s.Hi, pu128RaxRdx->s.Lo, + &pu128RaxRdx->u)) +# else + if (ASMAtomicCmpXchgU128(&pu128Dst->u, pu128RbxRcx->u, pu128RaxRdx->u, &pu128RaxRdx->u)) +# endif + { + Assert(pu128RaxRdx->s.Lo == uOld.s.Lo && pu128RaxRdx->s.Hi == uOld.s.Hi); + *pEFlags |= X86_EFL_ZF; + } + else + *pEFlags &= ~X86_EFL_ZF; +} +# endif + +#endif /* defined(IEM_WITHOUT_ASSEMBLY) */ + +# if !defined(RT_ARCH_ARM64) /** @todo may need this for unaligned accesses... */ +IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, + PRTUINT128U pu128RbxRcx, uint32_t *pEFlags)) +{ + RTUINT128U u128Tmp = *pu128Dst; + if ( u128Tmp.s.Lo == pu128RaxRdx->s.Lo + && u128Tmp.s.Hi == pu128RaxRdx->s.Hi) + { + *pu128Dst = *pu128RbxRcx; + *pEFlags |= X86_EFL_ZF; + } + else + { + *pu128RaxRdx = u128Tmp; + *pEFlags &= ~X86_EFL_ZF; + } +} +#endif /* !RT_ARCH_ARM64 */ + +#if defined(IEM_WITHOUT_ASSEMBLY) + +/* Unlocked versions mapped to the locked ones: */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags)) +{ + iemAImpl_cmpxchg_u8_locked(pu8Dst, puAl, uSrcReg, pEFlags); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags)) +{ + iemAImpl_cmpxchg_u16_locked(pu16Dst, puAx, uSrcReg, pEFlags); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags)) +{ + iemAImpl_cmpxchg_u32_locked(pu32Dst, puEax, uSrcReg, pEFlags); +} + + +# if ARCH_BITS == 32 +IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags)) +{ + iemAImpl_cmpxchg_u64_locked(pu64Dst, puRax, puSrcReg, pEFlags); +} +# else +IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags)) +{ + iemAImpl_cmpxchg_u64_locked(pu64Dst, puRax, uSrcReg, pEFlags); +} +# endif + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx, uint32_t *pEFlags)) +{ + iemAImpl_cmpxchg8b_locked(pu64Dst, pu64EaxEdx, pu64EbxEcx, pEFlags); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx, + uint32_t *pEFlags)) +{ + iemAImpl_cmpxchg16b_locked(pu128Dst, pu128RaxRdx, pu128RbxRcx, pEFlags); +} + +#endif /* defined(IEM_WITHOUT_ASSEMBLY) */ + +#if (!defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)) \ + && !defined(DOXYGEN_RUNNING) /* Doxygen has some groking issues here and ends up mixing up input. Not worth tracking down now. */ + +/* + * MUL, IMUL, DIV and IDIV helpers. + * + * - The U64 versions must use 128-bit intermediates, so we need to abstract the + * division step so we can select between using C operators and + * RTUInt128DivRem/RTUInt128MulU64ByU64. + * + * - The U8 versions work returns output in AL + AH instead of xDX + xAX, with the + * IDIV/DIV taking all the input in AX too. This means we have to abstract some + * input loads and the result storing. + */ + +DECLINLINE(void) RTUInt128DivRemByU64(PRTUINT128U pQuotient, PRTUINT128U pRemainder, PCRTUINT128U pDividend, uint64_t u64Divisor) +{ +# ifdef __GNUC__ /* GCC maybe really annoying in function. */ + pQuotient->s.Lo = 0; + pQuotient->s.Hi = 0; +# endif + RTUINT128U Divisor; + Divisor.s.Lo = u64Divisor; + Divisor.s.Hi = 0; + RTUInt128DivRem(pQuotient, pRemainder, pDividend, &Divisor); +} + +# define DIV_LOAD(a_Dividend) \ + a_Dividend.s.Lo = *puA, a_Dividend.s.Hi = *puD +# define DIV_LOAD_U8(a_Dividend) \ + a_Dividend.u = *puAX + +# define DIV_STORE(a_Quotient, a_uReminder) *puA = (a_Quotient), *puD = (a_uReminder) +# define DIV_STORE_U8(a_Quotient, a_uReminder) *puAX = (uint8_t)(a_Quotient) | ((uint16_t)(a_uReminder) << 8) + +# define MUL_LOAD_F1() *puA +# define MUL_LOAD_F1_U8() ((uint8_t)*puAX) + +# define MUL_STORE(a_Result) *puA = (a_Result).s.Lo, *puD = (a_Result).s.Hi +# define MUL_STORE_U8(a_Result) *puAX = a_Result.u + +# define MULDIV_NEG(a_Value, a_cBitsWidth2x) \ + (a_Value).u = UINT ## a_cBitsWidth2x ## _C(0) - (a_Value).u +# define MULDIV_NEG_U128(a_Value, a_cBitsWidth2x) \ + RTUInt128AssignNeg(&(a_Value)) + +# define MULDIV_MUL(a_Result, a_Factor1, a_Factor2, a_cBitsWidth2x) \ + (a_Result).u = (uint ## a_cBitsWidth2x ## _t)(a_Factor1) * (a_Factor2) +# define MULDIV_MUL_U128(a_Result, a_Factor1, a_Factor2, a_cBitsWidth2x) \ + RTUInt128MulU64ByU64(&(a_Result), a_Factor1, a_Factor2); + +# define MULDIV_MODDIV(a_Quotient, a_Remainder, a_Dividend, a_uDivisor) \ + a_Quotient.u = (a_Dividend).u / (a_uDivisor), \ + a_Remainder.u = (a_Dividend).u % (a_uDivisor) +# define MULDIV_MODDIV_U128(a_Quotient, a_Remainder, a_Dividend, a_uDivisor) \ + RTUInt128DivRemByU64(&a_Quotient, &a_Remainder, &a_Dividend, a_uDivisor) + + +/* + * MUL + */ +# define EMIT_MUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnMul, a_Suffix, a_fIntelFlags) \ +IEM_DECL_IMPL_DEF(int, RT_CONCAT3(iemAImpl_mul_u,a_cBitsWidth,a_Suffix), a_Args) \ +{ \ + RTUINT ## a_cBitsWidth2x ## U Result; \ + a_fnMul(Result, a_fnLoadF1(), uFactor, a_cBitsWidth2x); \ + a_fnStore(Result); \ + \ + /* Calc EFLAGS: */ \ + uint32_t fEfl = *pfEFlags; \ + if (a_fIntelFlags) \ + { /* Intel: 6700K and 10980XE behavior */ \ + fEfl &= ~(X86_EFL_SF | X86_EFL_CF | X86_EFL_OF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF); \ + if (Result.s.Lo & RT_BIT_64(a_cBitsWidth - 1)) \ + fEfl |= X86_EFL_SF; \ + fEfl |= g_afParity[Result.s.Lo & 0xff]; \ + if (Result.s.Hi != 0) \ + fEfl |= X86_EFL_CF | X86_EFL_OF; \ + } \ + else \ + { /* AMD: 3990X */ \ + if (Result.s.Hi != 0) \ + fEfl |= X86_EFL_CF | X86_EFL_OF; \ + else \ + fEfl &= ~(X86_EFL_CF | X86_EFL_OF); \ + } \ + *pfEFlags = fEfl; \ + return 0; \ +} \ + +# define EMIT_MUL(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnMul) \ + EMIT_MUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnMul, RT_NOTHING, 1) \ + EMIT_MUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnMul, _intel, 1) \ + EMIT_MUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnMul, _amd, 0) \ + +# ifndef DOXYGEN_RUNNING /* this totally confuses doxygen for some reason */ +EMIT_MUL(64, 128, (uint64_t *puA, uint64_t *puD, uint64_t uFactor, uint32_t *pfEFlags), (puA, puD, uFactor, pfEFlags), + MUL_LOAD_F1, MUL_STORE, MULDIV_MUL_U128) +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_MUL(32, 64, (uint32_t *puA, uint32_t *puD, uint32_t uFactor, uint32_t *pfEFlags), (puA, puD, uFactor, pfEFlags), + MUL_LOAD_F1, MUL_STORE, MULDIV_MUL) +EMIT_MUL(16, 32, (uint16_t *puA, uint16_t *puD, uint16_t uFactor, uint32_t *pfEFlags), (puA, puD, uFactor, pfEFlags), + MUL_LOAD_F1, MUL_STORE, MULDIV_MUL) +EMIT_MUL(8, 16, (uint16_t *puAX, uint8_t uFactor, uint32_t *pfEFlags), (puAX, uFactor, pfEFlags), + MUL_LOAD_F1_U8, MUL_STORE_U8, MULDIV_MUL) +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ +# endif /* !DOXYGEN_RUNNING */ + +/* + * MULX + */ +# define EMIT_MULX(a_cBitsWidth, a_cBitsWidth2x, a_uType, a_fnMul, a_Suffix) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_mulx_u,a_cBitsWidth,a_Suffix), \ + (a_uType *puDst1, a_uType *puDst2, a_uType uSrc1, a_uType uSrc2)) \ +{ \ + RTUINT ## a_cBitsWidth2x ## U Result; \ + a_fnMul(Result, uSrc1, uSrc2, a_cBitsWidth2x); \ + *puDst2 = Result.s.Lo; /* Lower part first, as we should return the high part when puDst2 == puDst1. */ \ + *puDst1 = Result.s.Hi; \ +} \ + +# ifndef DOXYGEN_RUNNING /* this totally confuses doxygen for some reason */ +EMIT_MULX(64, 128, uint64_t, MULDIV_MUL_U128, RT_NOTHING) +EMIT_MULX(64, 128, uint64_t, MULDIV_MUL_U128, _fallback) +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_MULX(32, 64, uint32_t, MULDIV_MUL, RT_NOTHING) +EMIT_MULX(32, 64, uint32_t, MULDIV_MUL, _fallback) +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ +# endif /* !DOXYGEN_RUNNING */ + + +/* + * IMUL + * + * The SF, ZF, AF and PF flags are "undefined". AMD (3990x) leaves these + * flags as is. Whereas Intel skylake (6700K and 10980X (Cascade Lake)) always + * clear AF and ZF and calculates SF and PF as per the lower half of the result. + */ +# define EMIT_IMUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnNeg, a_fnMul, \ + a_Suffix, a_fIntelFlags) \ +IEM_DECL_IMPL_DEF(int, RT_CONCAT3(iemAImpl_imul_u,a_cBitsWidth,a_Suffix),a_Args) \ +{ \ + RTUINT ## a_cBitsWidth2x ## U Result; \ + uint32_t fEfl = *pfEFlags & ~(X86_EFL_CF | X86_EFL_OF); \ + \ + uint ## a_cBitsWidth ## _t const uFactor1 = a_fnLoadF1(); \ + if (!(uFactor1 & RT_BIT_64(a_cBitsWidth - 1))) \ + { \ + if (!(uFactor2 & RT_BIT_64(a_cBitsWidth - 1))) \ + { \ + a_fnMul(Result, uFactor1, uFactor2, a_cBitsWidth2x); \ + if (Result.s.Hi != 0 || Result.s.Lo >= RT_BIT_64(a_cBitsWidth - 1)) \ + fEfl |= X86_EFL_CF | X86_EFL_OF; \ + } \ + else \ + { \ + uint ## a_cBitsWidth ## _t const uPositiveFactor2 = UINT ## a_cBitsWidth ## _C(0) - uFactor2; \ + a_fnMul(Result, uFactor1, uPositiveFactor2, a_cBitsWidth2x); \ + if (Result.s.Hi != 0 || Result.s.Lo > RT_BIT_64(a_cBitsWidth - 1)) \ + fEfl |= X86_EFL_CF | X86_EFL_OF; \ + a_fnNeg(Result, a_cBitsWidth2x); \ + } \ + } \ + else \ + { \ + if (!(uFactor2 & RT_BIT_64(a_cBitsWidth - 1))) \ + { \ + uint ## a_cBitsWidth ## _t const uPositiveFactor1 = UINT ## a_cBitsWidth ## _C(0) - uFactor1; \ + a_fnMul(Result, uPositiveFactor1, uFactor2, a_cBitsWidth2x); \ + if (Result.s.Hi != 0 || Result.s.Lo > RT_BIT_64(a_cBitsWidth - 1)) \ + fEfl |= X86_EFL_CF | X86_EFL_OF; \ + a_fnNeg(Result, a_cBitsWidth2x); \ + } \ + else \ + { \ + uint ## a_cBitsWidth ## _t const uPositiveFactor1 = UINT ## a_cBitsWidth ## _C(0) - uFactor1; \ + uint ## a_cBitsWidth ## _t const uPositiveFactor2 = UINT ## a_cBitsWidth ## _C(0) - uFactor2; \ + a_fnMul(Result, uPositiveFactor1, uPositiveFactor2, a_cBitsWidth2x); \ + if (Result.s.Hi != 0 || Result.s.Lo >= RT_BIT_64(a_cBitsWidth - 1)) \ + fEfl |= X86_EFL_CF | X86_EFL_OF; \ + } \ + } \ + a_fnStore(Result); \ + \ + if (a_fIntelFlags) \ + { \ + fEfl &= ~(X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_PF); \ + if (Result.s.Lo & RT_BIT_64(a_cBitsWidth - 1)) \ + fEfl |= X86_EFL_SF; \ + fEfl |= g_afParity[Result.s.Lo & 0xff]; \ + } \ + *pfEFlags = fEfl; \ + return 0; \ +} +# define EMIT_IMUL(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnNeg, a_fnMul) \ + EMIT_IMUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnNeg, a_fnMul, RT_NOTHING, 1) \ + EMIT_IMUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnNeg, a_fnMul, _intel, 1) \ + EMIT_IMUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnNeg, a_fnMul, _amd, 0) + +# ifndef DOXYGEN_RUNNING /* this totally confuses doxygen for some reason */ +EMIT_IMUL(64, 128, (uint64_t *puA, uint64_t *puD, uint64_t uFactor2, uint32_t *pfEFlags), (puA, puD, uFactor2, pfEFlags), + MUL_LOAD_F1, MUL_STORE, MULDIV_NEG_U128, MULDIV_MUL_U128) +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_IMUL(32, 64, (uint32_t *puA, uint32_t *puD, uint32_t uFactor2, uint32_t *pfEFlags), (puA, puD, uFactor2, pfEFlags), + MUL_LOAD_F1, MUL_STORE, MULDIV_NEG, MULDIV_MUL) +EMIT_IMUL(16, 32, (uint16_t *puA, uint16_t *puD, uint16_t uFactor2, uint32_t *pfEFlags), (puA, puD, uFactor2, pfEFlags), + MUL_LOAD_F1, MUL_STORE, MULDIV_NEG, MULDIV_MUL) +EMIT_IMUL(8, 16, (uint16_t *puAX, uint8_t uFactor2, uint32_t *pfEFlags), (puAX, uFactor2, pfEFlags), + MUL_LOAD_F1_U8, MUL_STORE_U8, MULDIV_NEG, MULDIV_MUL) +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ +# endif /* !DOXYGEN_RUNNING */ + + +/* + * IMUL with two operands are mapped onto the three operand variant, ignoring + * the high part of the product. + */ +# define EMIT_IMUL_TWO(a_cBits, a_uType) \ +IEM_DECL_IMPL_DEF(void, iemAImpl_imul_two_u ## a_cBits,(a_uType *puDst, a_uType uSrc, uint32_t *pfEFlags)) \ +{ \ + a_uType uIgn; \ + iemAImpl_imul_u ## a_cBits(puDst, &uIgn, uSrc, pfEFlags); \ +} \ +\ +IEM_DECL_IMPL_DEF(void, iemAImpl_imul_two_u ## a_cBits ## _intel,(a_uType *puDst, a_uType uSrc, uint32_t *pfEFlags)) \ +{ \ + a_uType uIgn; \ + iemAImpl_imul_u ## a_cBits ## _intel(puDst, &uIgn, uSrc, pfEFlags); \ +} \ +\ +IEM_DECL_IMPL_DEF(void, iemAImpl_imul_two_u ## a_cBits ## _amd,(a_uType *puDst, a_uType uSrc, uint32_t *pfEFlags)) \ +{ \ + a_uType uIgn; \ + iemAImpl_imul_u ## a_cBits ## _amd(puDst, &uIgn, uSrc, pfEFlags); \ +} + +EMIT_IMUL_TWO(64, uint64_t) +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_IMUL_TWO(32, uint32_t) +EMIT_IMUL_TWO(16, uint16_t) +# endif + + +/* + * DIV + */ +# define EMIT_DIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnDivRem, \ + a_Suffix, a_fIntelFlags) \ +IEM_DECL_IMPL_DEF(int, RT_CONCAT3(iemAImpl_div_u,a_cBitsWidth,a_Suffix),a_Args) \ +{ \ + RTUINT ## a_cBitsWidth2x ## U Dividend; \ + a_fnLoad(Dividend); \ + if ( uDivisor != 0 \ + && Dividend.s.Hi < uDivisor) \ + { \ + RTUINT ## a_cBitsWidth2x ## U Remainder, Quotient; \ + a_fnDivRem(Quotient, Remainder, Dividend, uDivisor); \ + a_fnStore(Quotient.s.Lo, Remainder.s.Lo); \ + \ + /* Calc EFLAGS: Intel 6700K and 10980XE leaves them alone. AMD 3990X sets AF and clears PF, ZF and SF. */ \ + if (!a_fIntelFlags) \ + *pfEFlags = (*pfEFlags & ~(X86_EFL_PF | X86_EFL_ZF | X86_EFL_SF)) | X86_EFL_AF; \ + return 0; \ + } \ + /* #DE */ \ + return -1; \ +} +# define EMIT_DIV(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnDivRem) \ + EMIT_DIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnDivRem, RT_NOTHING, 1) \ + EMIT_DIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnDivRem, _intel, 1) \ + EMIT_DIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnDivRem, _amd, 0) + +# ifndef DOXYGEN_RUNNING /* this totally confuses doxygen for some reason */ +EMIT_DIV(64,128,(uint64_t *puA, uint64_t *puD, uint64_t uDivisor, uint32_t *pfEFlags), (puA, puD, uDivisor, pfEFlags), + DIV_LOAD, DIV_STORE, MULDIV_MODDIV_U128) +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_DIV(32,64, (uint32_t *puA, uint32_t *puD, uint32_t uDivisor, uint32_t *pfEFlags), (puA, puD, uDivisor, pfEFlags), + DIV_LOAD, DIV_STORE, MULDIV_MODDIV) +EMIT_DIV(16,32, (uint16_t *puA, uint16_t *puD, uint16_t uDivisor, uint32_t *pfEFlags), (puA, puD, uDivisor, pfEFlags), + DIV_LOAD, DIV_STORE, MULDIV_MODDIV) +EMIT_DIV(8,16, (uint16_t *puAX, uint8_t uDivisor, uint32_t *pfEFlags), (puAX, uDivisor, pfEFlags), + DIV_LOAD_U8, DIV_STORE_U8, MULDIV_MODDIV) +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ +# endif /* !DOXYGEN_RUNNING */ + + +/* + * IDIV + * + * EFLAGS are ignored and left as-is by Intel 6700K and 10980XE. AMD 3990X will + * set AF and clear PF, ZF and SF just like it does for DIV. + * + */ +# define EMIT_IDIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnNeg, a_fnDivRem, \ + a_Suffix, a_fIntelFlags) \ +IEM_DECL_IMPL_DEF(int, RT_CONCAT3(iemAImpl_idiv_u,a_cBitsWidth,a_Suffix),a_Args) \ +{ \ + /* Note! Skylake leaves all flags alone. */ \ + \ + /** @todo overflow checks */ \ + if (uDivisor != 0) \ + { \ + /* \ + * Convert to unsigned division. \ + */ \ + RTUINT ## a_cBitsWidth2x ## U Dividend; \ + a_fnLoad(Dividend); \ + bool const fSignedDividend = RT_BOOL(Dividend.s.Hi & RT_BIT_64(a_cBitsWidth - 1)); \ + if (fSignedDividend) \ + a_fnNeg(Dividend, a_cBitsWidth2x); \ + \ + uint ## a_cBitsWidth ## _t uDivisorPositive; \ + if (!(uDivisor & RT_BIT_64(a_cBitsWidth - 1))) \ + uDivisorPositive = uDivisor; \ + else \ + uDivisorPositive = UINT ## a_cBitsWidth ## _C(0) - uDivisor; \ + \ + RTUINT ## a_cBitsWidth2x ## U Remainder, Quotient; \ + a_fnDivRem(Quotient, Remainder, Dividend, uDivisorPositive); \ + \ + /* \ + * Setup the result, checking for overflows. \ + */ \ + if (!(uDivisor & RT_BIT_64(a_cBitsWidth - 1))) \ + { \ + if (!fSignedDividend) \ + { \ + /* Positive divisor, positive dividend => result positive. */ \ + if (Quotient.s.Hi == 0 && Quotient.s.Lo <= (uint ## a_cBitsWidth ## _t)INT ## a_cBitsWidth ## _MAX) \ + { \ + a_fnStore(Quotient.s.Lo, Remainder.s.Lo); \ + if (!a_fIntelFlags) \ + *pfEFlags = (*pfEFlags & ~(X86_EFL_PF | X86_EFL_ZF | X86_EFL_SF)) | X86_EFL_AF; \ + return 0; \ + } \ + } \ + else \ + { \ + /* Positive divisor, negative dividend => result negative. */ \ + if (Quotient.s.Hi == 0 && Quotient.s.Lo <= RT_BIT_64(a_cBitsWidth - 1)) \ + { \ + a_fnStore(UINT ## a_cBitsWidth ## _C(0) - Quotient.s.Lo, UINT ## a_cBitsWidth ## _C(0) - Remainder.s.Lo); \ + if (!a_fIntelFlags) \ + *pfEFlags = (*pfEFlags & ~(X86_EFL_PF | X86_EFL_ZF | X86_EFL_SF)) | X86_EFL_AF; \ + return 0; \ + } \ + } \ + } \ + else \ + { \ + if (!fSignedDividend) \ + { \ + /* Negative divisor, positive dividend => negative quotient, positive remainder. */ \ + if (Quotient.s.Hi == 0 && Quotient.s.Lo <= RT_BIT_64(a_cBitsWidth - 1)) \ + { \ + a_fnStore(UINT ## a_cBitsWidth ## _C(0) - Quotient.s.Lo, Remainder.s.Lo); \ + if (!a_fIntelFlags) \ + *pfEFlags = (*pfEFlags & ~(X86_EFL_PF | X86_EFL_ZF | X86_EFL_SF)) | X86_EFL_AF; \ + return 0; \ + } \ + } \ + else \ + { \ + /* Negative divisor, negative dividend => positive quotient, negative remainder. */ \ + if (Quotient.s.Hi == 0 && Quotient.s.Lo <= (uint ## a_cBitsWidth ## _t)INT ## a_cBitsWidth ## _MAX) \ + { \ + a_fnStore(Quotient.s.Lo, UINT ## a_cBitsWidth ## _C(0) - Remainder.s.Lo); \ + if (!a_fIntelFlags) \ + *pfEFlags = (*pfEFlags & ~(X86_EFL_PF | X86_EFL_ZF | X86_EFL_SF)) | X86_EFL_AF; \ + return 0; \ + } \ + } \ + } \ + } \ + /* #DE */ \ + return -1; \ +} +# define EMIT_IDIV(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnNeg, a_fnDivRem) \ + EMIT_IDIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnNeg, a_fnDivRem, RT_NOTHING, 1) \ + EMIT_IDIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnNeg, a_fnDivRem, _intel, 1) \ + EMIT_IDIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnNeg, a_fnDivRem, _amd, 0) + +# ifndef DOXYGEN_RUNNING /* this totally confuses doxygen for some reason */ +EMIT_IDIV(64,128,(uint64_t *puA, uint64_t *puD, uint64_t uDivisor, uint32_t *pfEFlags), (puA, puD, uDivisor, pfEFlags), + DIV_LOAD, DIV_STORE, MULDIV_NEG_U128, MULDIV_MODDIV_U128) +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_IDIV(32,64,(uint32_t *puA, uint32_t *puD, uint32_t uDivisor, uint32_t *pfEFlags), (puA, puD, uDivisor, pfEFlags), + DIV_LOAD, DIV_STORE, MULDIV_NEG, MULDIV_MODDIV) +EMIT_IDIV(16,32,(uint16_t *puA, uint16_t *puD, uint16_t uDivisor, uint32_t *pfEFlags), (puA, puD, uDivisor, pfEFlags), + DIV_LOAD, DIV_STORE, MULDIV_NEG, MULDIV_MODDIV) +EMIT_IDIV(8,16,(uint16_t *puAX, uint8_t uDivisor, uint32_t *pfEFlags), (puAX, uDivisor, pfEFlags), + DIV_LOAD_U8, DIV_STORE_U8, MULDIV_NEG, MULDIV_MODDIV) +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ +# endif /* !DOXYGEN_RUNNING */ + +#endif /* (!defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)) && !defined(DOXYGEN_RUNNING) */ + + +/********************************************************************************************************************************* +* Unary operations. * +*********************************************************************************************************************************/ +#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) + +/** @def IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC + * Updates the status bits (CF, PF, AF, ZF, SF, and OF) for an INC or DEC instruction. + * + * CF is NOT modified for hysterical raisins (allegedly for carrying and + * borrowing in arithmetic loops on intel 8008). + * + * @returns Status bits. + * @param a_pfEFlags Pointer to the 32-bit EFLAGS value to update. + * @param a_uResult Unsigned result value. + * @param a_uDst The original destination value (for AF calc). + * @param a_cBitsWidth The width of the result (8, 16, 32, 64). + * @param a_OfMethod 0 for INC-style, 1 for DEC-style. + */ +#define IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(a_pfEFlags, a_uResult, a_uDst, a_cBitsWidth, a_OfMethod) \ + do { \ + uint32_t fEflTmp = *(a_pfEFlags); \ + fEflTmp &= ~X86_EFL_STATUS_BITS | X86_EFL_CF; \ + fEflTmp |= g_afParity[(a_uResult) & 0xff]; \ + fEflTmp |= ((uint32_t)(a_uResult) ^ (uint32_t)(a_uDst)) & X86_EFL_AF; \ + fEflTmp |= X86_EFL_CALC_ZF(a_uResult); \ + fEflTmp |= X86_EFL_CALC_SF(a_uResult, a_cBitsWidth); \ + fEflTmp |= X86_EFL_GET_OF_ ## a_cBitsWidth(a_OfMethod == 0 ? (((a_uDst) ^ RT_BIT_64(a_cBitsWidth - 1)) & (a_uResult)) \ + : ((a_uDst) & ((a_uResult) ^ RT_BIT_64(a_cBitsWidth - 1))) ); \ + *(a_pfEFlags) = fEflTmp; \ + } while (0) + +/* + * INC + */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u64,(uint64_t *puDst, uint32_t *pfEFlags)) +{ + uint64_t uDst = *puDst; + uint64_t uResult = uDst + 1; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 64, 0 /*INC*/); +} + +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u32,(uint32_t *puDst, uint32_t *pfEFlags)) +{ + uint32_t uDst = *puDst; + uint32_t uResult = uDst + 1; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 32, 0 /*INC*/); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u16,(uint16_t *puDst, uint32_t *pfEFlags)) +{ + uint16_t uDst = *puDst; + uint16_t uResult = uDst + 1; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 16, 0 /*INC*/); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u8,(uint8_t *puDst, uint32_t *pfEFlags)) +{ + uint8_t uDst = *puDst; + uint8_t uResult = uDst + 1; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 8, 0 /*INC*/); +} + +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + + +/* + * DEC + */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u64,(uint64_t *puDst, uint32_t *pfEFlags)) +{ + uint64_t uDst = *puDst; + uint64_t uResult = uDst - 1; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 64, 1 /*INC*/); +} + +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u32,(uint32_t *puDst, uint32_t *pfEFlags)) +{ + uint32_t uDst = *puDst; + uint32_t uResult = uDst - 1; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 32, 1 /*INC*/); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u16,(uint16_t *puDst, uint32_t *pfEFlags)) +{ + uint16_t uDst = *puDst; + uint16_t uResult = uDst - 1; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 16, 1 /*INC*/); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u8,(uint8_t *puDst, uint32_t *pfEFlags)) +{ + uint8_t uDst = *puDst; + uint8_t uResult = uDst - 1; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 8, 1 /*INC*/); +} + +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + + +/* + * NOT + */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_not_u64,(uint64_t *puDst, uint32_t *pfEFlags)) +{ + uint64_t uDst = *puDst; + uint64_t uResult = ~uDst; + *puDst = uResult; + /* EFLAGS are not modified. */ + RT_NOREF_PV(pfEFlags); +} + +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_not_u32,(uint32_t *puDst, uint32_t *pfEFlags)) +{ + uint32_t uDst = *puDst; + uint32_t uResult = ~uDst; + *puDst = uResult; + /* EFLAGS are not modified. */ + RT_NOREF_PV(pfEFlags); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_not_u16,(uint16_t *puDst, uint32_t *pfEFlags)) +{ + uint16_t uDst = *puDst; + uint16_t uResult = ~uDst; + *puDst = uResult; + /* EFLAGS are not modified. */ + RT_NOREF_PV(pfEFlags); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_not_u8,(uint8_t *puDst, uint32_t *pfEFlags)) +{ + uint8_t uDst = *puDst; + uint8_t uResult = ~uDst; + *puDst = uResult; + /* EFLAGS are not modified. */ + RT_NOREF_PV(pfEFlags); +} + +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + + +/* + * NEG + */ + +/** + * Updates the status bits (CF, PF, AF, ZF, SF, and OF) for an NEG instruction. + * + * @returns Status bits. + * @param a_pfEFlags Pointer to the 32-bit EFLAGS value to update. + * @param a_uResult Unsigned result value. + * @param a_uDst The original destination value (for AF calc). + * @param a_cBitsWidth The width of the result (8, 16, 32, 64). + */ +#define IEM_EFL_UPDATE_STATUS_BITS_FOR_NEG(a_pfEFlags, a_uResult, a_uDst, a_cBitsWidth) \ + do { \ + uint32_t fEflTmp = *(a_pfEFlags); \ + fEflTmp &= ~X86_EFL_STATUS_BITS & ~X86_EFL_CF; \ + fEflTmp |= ((a_uDst) != 0) << X86_EFL_CF_BIT; \ + fEflTmp |= g_afParity[(a_uResult) & 0xff]; \ + fEflTmp |= ((uint32_t)(a_uResult) ^ (uint32_t)(a_uDst)) & X86_EFL_AF; \ + fEflTmp |= X86_EFL_CALC_ZF(a_uResult); \ + fEflTmp |= X86_EFL_CALC_SF(a_uResult, a_cBitsWidth); \ + fEflTmp |= X86_EFL_GET_OF_ ## a_cBitsWidth((a_uDst) & (a_uResult)); \ + *(a_pfEFlags) = fEflTmp; \ + } while (0) + +IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u64,(uint64_t *puDst, uint32_t *pfEFlags)) +{ + uint64_t uDst = *puDst; + uint64_t uResult = (uint64_t)0 - uDst; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_NEG(pfEFlags, uResult, uDst, 64); +} + +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u32,(uint32_t *puDst, uint32_t *pfEFlags)) +{ + uint32_t uDst = *puDst; + uint32_t uResult = (uint32_t)0 - uDst; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_NEG(pfEFlags, uResult, uDst, 32); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u16,(uint16_t *puDst, uint32_t *pfEFlags)) +{ + uint16_t uDst = *puDst; + uint16_t uResult = (uint16_t)0 - uDst; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_NEG(pfEFlags, uResult, uDst, 16); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u8,(uint8_t *puDst, uint32_t *pfEFlags)) +{ + uint8_t uDst = *puDst; + uint8_t uResult = (uint8_t)0 - uDst; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_NEG(pfEFlags, uResult, uDst, 8); +} + +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + +/* + * Locked variants. + */ + +/** Emit a function for doing a locked unary operand operation. */ +# define EMIT_LOCKED_UNARY_OP(a_Mnemonic, a_cBitsWidth) \ + IEM_DECL_IMPL_DEF(void, iemAImpl_ ## a_Mnemonic ## _u ## a_cBitsWidth ## _locked,(uint ## a_cBitsWidth ## _t *puDst, \ + uint32_t *pfEFlags)) \ + { \ + uint ## a_cBitsWidth ## _t uOld = ASMAtomicUoReadU ## a_cBitsWidth(puDst); \ + uint ## a_cBitsWidth ## _t uTmp; \ + uint32_t fEflTmp; \ + do \ + { \ + uTmp = uOld; \ + fEflTmp = *pfEFlags; \ + iemAImpl_ ## a_Mnemonic ## _u ## a_cBitsWidth(&uTmp, &fEflTmp); \ + } while (!ASMAtomicCmpXchgExU ## a_cBitsWidth(puDst, uTmp, uOld, &uOld)); \ + *pfEFlags = fEflTmp; \ + } + +EMIT_LOCKED_UNARY_OP(inc, 64) +EMIT_LOCKED_UNARY_OP(dec, 64) +EMIT_LOCKED_UNARY_OP(not, 64) +EMIT_LOCKED_UNARY_OP(neg, 64) +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_LOCKED_UNARY_OP(inc, 32) +EMIT_LOCKED_UNARY_OP(dec, 32) +EMIT_LOCKED_UNARY_OP(not, 32) +EMIT_LOCKED_UNARY_OP(neg, 32) + +EMIT_LOCKED_UNARY_OP(inc, 16) +EMIT_LOCKED_UNARY_OP(dec, 16) +EMIT_LOCKED_UNARY_OP(not, 16) +EMIT_LOCKED_UNARY_OP(neg, 16) + +EMIT_LOCKED_UNARY_OP(inc, 8) +EMIT_LOCKED_UNARY_OP(dec, 8) +EMIT_LOCKED_UNARY_OP(not, 8) +EMIT_LOCKED_UNARY_OP(neg, 8) +# endif + +#endif /* !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) */ + + +/********************************************************************************************************************************* +* Shifting and Rotating * +*********************************************************************************************************************************/ + +/* + * ROL + */ +#define EMIT_ROL(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags, a_fnHlp) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_rol_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \ +{ \ + cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \ + if (cShift) \ + { \ + if (a_cBitsWidth < 32) \ + cShift &= a_cBitsWidth - 1; \ + a_uType const uDst = *puDst; \ + a_uType const uResult = a_fnHlp(uDst, cShift); \ + *puDst = uResult; \ + \ + /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement \ + it the same way as for 1 bit shifts. */ \ + AssertCompile(X86_EFL_CF_BIT == 0); \ + uint32_t fEfl = *pfEFlags; \ + fEfl &= ~(X86_EFL_CF | X86_EFL_OF); \ + uint32_t const fCarry = (uResult & X86_EFL_CF); \ + fEfl |= fCarry; \ + if (!a_fIntelFlags) /* AMD 3990X: According to the last sub-shift: */ \ + fEfl |= ((uResult >> (a_cBitsWidth - 1)) ^ fCarry) << X86_EFL_OF_BIT; \ + else /* Intel 10980XE: According to the first sub-shift: */ \ + fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ (uDst << 1)); \ + *pfEFlags = fEfl; \ + } \ +} + +#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_ROL(64, uint64_t, RT_NOTHING, 1, ASMRotateLeftU64) +#endif +EMIT_ROL(64, uint64_t, _intel, 1, ASMRotateLeftU64) +EMIT_ROL(64, uint64_t, _amd, 0, ASMRotateLeftU64) + +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_ROL(32, uint32_t, RT_NOTHING, 1, ASMRotateLeftU32) +#endif +EMIT_ROL(32, uint32_t, _intel, 1, ASMRotateLeftU32) +EMIT_ROL(32, uint32_t, _amd, 0, ASMRotateLeftU32) + +DECL_FORCE_INLINE(uint16_t) iemAImpl_rol_u16_hlp(uint16_t uValue, uint8_t cShift) +{ + return (uValue << cShift) | (uValue >> (16 - cShift)); +} +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_ROL(16, uint16_t, RT_NOTHING, 1, iemAImpl_rol_u16_hlp) +#endif +EMIT_ROL(16, uint16_t, _intel, 1, iemAImpl_rol_u16_hlp) +EMIT_ROL(16, uint16_t, _amd, 0, iemAImpl_rol_u16_hlp) + +DECL_FORCE_INLINE(uint8_t) iemAImpl_rol_u8_hlp(uint8_t uValue, uint8_t cShift) +{ + return (uValue << cShift) | (uValue >> (8 - cShift)); +} +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_ROL(8, uint8_t, RT_NOTHING, 1, iemAImpl_rol_u8_hlp) +#endif +EMIT_ROL(8, uint8_t, _intel, 1, iemAImpl_rol_u8_hlp) +EMIT_ROL(8, uint8_t, _amd, 0, iemAImpl_rol_u8_hlp) + + +/* + * ROR + */ +#define EMIT_ROR(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags, a_fnHlp) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_ror_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \ +{ \ + cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \ + if (cShift) \ + { \ + if (a_cBitsWidth < 32) \ + cShift &= a_cBitsWidth - 1; \ + a_uType const uDst = *puDst; \ + a_uType const uResult = a_fnHlp(uDst, cShift); \ + *puDst = uResult; \ + \ + /* Calc EFLAGS: */ \ + AssertCompile(X86_EFL_CF_BIT == 0); \ + uint32_t fEfl = *pfEFlags; \ + fEfl &= ~(X86_EFL_CF | X86_EFL_OF); \ + uint32_t const fCarry = (uResult >> ((a_cBitsWidth) - 1)) & X86_EFL_CF; \ + fEfl |= fCarry; \ + if (!a_fIntelFlags) /* AMD 3990X: According to the last sub-shift: */ \ + fEfl |= (((uResult >> ((a_cBitsWidth) - 2)) ^ fCarry) & 1) << X86_EFL_OF_BIT; \ + else /* Intel 10980XE: According to the first sub-shift: */ \ + fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ (uDst << (a_cBitsWidth - 1))); \ + *pfEFlags = fEfl; \ + } \ +} + +#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_ROR(64, uint64_t, RT_NOTHING, 1, ASMRotateRightU64) +#endif +EMIT_ROR(64, uint64_t, _intel, 1, ASMRotateRightU64) +EMIT_ROR(64, uint64_t, _amd, 0, ASMRotateRightU64) + +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_ROR(32, uint32_t, RT_NOTHING, 1, ASMRotateRightU32) +#endif +EMIT_ROR(32, uint32_t, _intel, 1, ASMRotateRightU32) +EMIT_ROR(32, uint32_t, _amd, 0, ASMRotateRightU32) + +DECL_FORCE_INLINE(uint16_t) iemAImpl_ror_u16_hlp(uint16_t uValue, uint8_t cShift) +{ + return (uValue >> cShift) | (uValue << (16 - cShift)); +} +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_ROR(16, uint16_t, RT_NOTHING, 1, iemAImpl_ror_u16_hlp) +#endif +EMIT_ROR(16, uint16_t, _intel, 1, iemAImpl_ror_u16_hlp) +EMIT_ROR(16, uint16_t, _amd, 0, iemAImpl_ror_u16_hlp) + +DECL_FORCE_INLINE(uint8_t) iemAImpl_ror_u8_hlp(uint8_t uValue, uint8_t cShift) +{ + return (uValue >> cShift) | (uValue << (8 - cShift)); +} +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_ROR(8, uint8_t, RT_NOTHING, 1, iemAImpl_ror_u8_hlp) +#endif +EMIT_ROR(8, uint8_t, _intel, 1, iemAImpl_ror_u8_hlp) +EMIT_ROR(8, uint8_t, _amd, 0, iemAImpl_ror_u8_hlp) + + +/* + * RCL + */ +#define EMIT_RCL(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_rcl_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \ +{ \ + cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \ + if (a_cBitsWidth < 32 && a_fIntelFlags) \ + cShift %= a_cBitsWidth + 1; \ + if (cShift) \ + { \ + if (a_cBitsWidth < 32 && !a_fIntelFlags) \ + cShift %= a_cBitsWidth + 1; \ + a_uType const uDst = *puDst; \ + a_uType uResult = uDst << cShift; \ + if (cShift > 1) \ + uResult |= uDst >> (a_cBitsWidth + 1 - cShift); \ + \ + AssertCompile(X86_EFL_CF_BIT == 0); \ + uint32_t fEfl = *pfEFlags; \ + uint32_t fInCarry = fEfl & X86_EFL_CF; \ + uResult |= (a_uType)fInCarry << (cShift - 1); \ + \ + *puDst = uResult; \ + \ + /* Calc EFLAGS. */ \ + fEfl &= ~(X86_EFL_CF | X86_EFL_OF); \ + uint32_t const fOutCarry = a_cBitsWidth >= 32 || a_fIntelFlags || cShift \ + ? (uDst >> (a_cBitsWidth - cShift)) & X86_EFL_CF : fInCarry; \ + fEfl |= fOutCarry; \ + if (!a_fIntelFlags) /* AMD 3990X: According to the last sub-shift: */ \ + fEfl |= ((uResult >> (a_cBitsWidth - 1)) ^ fOutCarry) << X86_EFL_OF_BIT; \ + else /* Intel 10980XE: According to the first sub-shift: */ \ + fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ (uDst << 1)); \ + *pfEFlags = fEfl; \ + } \ +} + +#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_RCL(64, uint64_t, RT_NOTHING, 1) +#endif +EMIT_RCL(64, uint64_t, _intel, 1) +EMIT_RCL(64, uint64_t, _amd, 0) + +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_RCL(32, uint32_t, RT_NOTHING, 1) +#endif +EMIT_RCL(32, uint32_t, _intel, 1) +EMIT_RCL(32, uint32_t, _amd, 0) + +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_RCL(16, uint16_t, RT_NOTHING, 1) +#endif +EMIT_RCL(16, uint16_t, _intel, 1) +EMIT_RCL(16, uint16_t, _amd, 0) + +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_RCL(8, uint8_t, RT_NOTHING, 1) +#endif +EMIT_RCL(8, uint8_t, _intel, 1) +EMIT_RCL(8, uint8_t, _amd, 0) + + +/* + * RCR + */ +#define EMIT_RCR(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_rcr_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \ +{ \ + cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \ + if (a_cBitsWidth < 32 && a_fIntelFlags) \ + cShift %= a_cBitsWidth + 1; \ + if (cShift) \ + { \ + if (a_cBitsWidth < 32 && !a_fIntelFlags) \ + cShift %= a_cBitsWidth + 1; \ + a_uType const uDst = *puDst; \ + a_uType uResult = uDst >> cShift; \ + if (cShift > 1) \ + uResult |= uDst << (a_cBitsWidth + 1 - cShift); \ + \ + AssertCompile(X86_EFL_CF_BIT == 0); \ + uint32_t fEfl = *pfEFlags; \ + uint32_t fInCarry = fEfl & X86_EFL_CF; \ + uResult |= (a_uType)fInCarry << (a_cBitsWidth - cShift); \ + *puDst = uResult; \ + \ + /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement \ + it the same way as for 1 bit shifts. */ \ + fEfl &= ~(X86_EFL_CF | X86_EFL_OF); \ + uint32_t const fOutCarry = a_cBitsWidth >= 32 || a_fIntelFlags || cShift \ + ? (uDst >> (cShift - 1)) & X86_EFL_CF : fInCarry; \ + fEfl |= fOutCarry; \ + if (!a_fIntelFlags) /* AMD 3990X: XOR two most signficant bits of the result: */ \ + fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uResult ^ (uResult << 1)); \ + else /* Intel 10980XE: same as AMD, but only for the first sub-shift: */ \ + fEfl |= (fInCarry ^ (uint32_t)(uDst >> (a_cBitsWidth - 1))) << X86_EFL_OF_BIT; \ + *pfEFlags = fEfl; \ + } \ +} + +#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_RCR(64, uint64_t, RT_NOTHING, 1) +#endif +EMIT_RCR(64, uint64_t, _intel, 1) +EMIT_RCR(64, uint64_t, _amd, 0) + +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_RCR(32, uint32_t, RT_NOTHING, 1) +#endif +EMIT_RCR(32, uint32_t, _intel, 1) +EMIT_RCR(32, uint32_t, _amd, 0) + +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_RCR(16, uint16_t, RT_NOTHING, 1) +#endif +EMIT_RCR(16, uint16_t, _intel, 1) +EMIT_RCR(16, uint16_t, _amd, 0) + +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_RCR(8, uint8_t, RT_NOTHING, 1) +#endif +EMIT_RCR(8, uint8_t, _intel, 1) +EMIT_RCR(8, uint8_t, _amd, 0) + + +/* + * SHL + */ +#define EMIT_SHL(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_shl_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \ +{ \ + cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \ + if (cShift) \ + { \ + a_uType const uDst = *puDst; \ + a_uType uResult = uDst << cShift; \ + *puDst = uResult; \ + \ + /* Calc EFLAGS. */ \ + AssertCompile(X86_EFL_CF_BIT == 0); \ + uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \ + uint32_t fCarry = (uDst >> (a_cBitsWidth - cShift)) & X86_EFL_CF; \ + fEfl |= fCarry; \ + if (!a_fIntelFlags) \ + fEfl |= ((uResult >> (a_cBitsWidth - 1)) ^ fCarry) << X86_EFL_OF_BIT; /* AMD 3990X: Last shift result. */ \ + else \ + fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ (uDst << 1)); /* Intel 10980XE: First shift result. */ \ + fEfl |= X86_EFL_CALC_SF(uResult, a_cBitsWidth); \ + fEfl |= X86_EFL_CALC_ZF(uResult); \ + fEfl |= g_afParity[uResult & 0xff]; \ + if (!a_fIntelFlags) \ + fEfl |= X86_EFL_AF; /* AMD 3990x sets it unconditionally, Intel 10980XE does the oposite */ \ + *pfEFlags = fEfl; \ + } \ +} + +#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_SHL(64, uint64_t, RT_NOTHING, 1) +#endif +EMIT_SHL(64, uint64_t, _intel, 1) +EMIT_SHL(64, uint64_t, _amd, 0) + +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_SHL(32, uint32_t, RT_NOTHING, 1) +#endif +EMIT_SHL(32, uint32_t, _intel, 1) +EMIT_SHL(32, uint32_t, _amd, 0) + +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_SHL(16, uint16_t, RT_NOTHING, 1) +#endif +EMIT_SHL(16, uint16_t, _intel, 1) +EMIT_SHL(16, uint16_t, _amd, 0) + +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_SHL(8, uint8_t, RT_NOTHING, 1) +#endif +EMIT_SHL(8, uint8_t, _intel, 1) +EMIT_SHL(8, uint8_t, _amd, 0) + + +/* + * SHR + */ +#define EMIT_SHR(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_shr_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \ +{ \ + cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \ + if (cShift) \ + { \ + a_uType const uDst = *puDst; \ + a_uType uResult = uDst >> cShift; \ + *puDst = uResult; \ + \ + /* Calc EFLAGS. */ \ + AssertCompile(X86_EFL_CF_BIT == 0); \ + uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \ + fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF; \ + if (a_fIntelFlags || cShift == 1) /* AMD 3990x does what intel documents; Intel 10980XE does this for all shift counts. */ \ + fEfl |= (uDst >> (a_cBitsWidth - 1)) << X86_EFL_OF_BIT; \ + fEfl |= X86_EFL_CALC_SF(uResult, a_cBitsWidth); \ + fEfl |= X86_EFL_CALC_ZF(uResult); \ + fEfl |= g_afParity[uResult & 0xff]; \ + if (!a_fIntelFlags) \ + fEfl |= X86_EFL_AF; /* AMD 3990x sets it unconditionally, Intel 10980XE does the oposite */ \ + *pfEFlags = fEfl; \ + } \ +} + +#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_SHR(64, uint64_t, RT_NOTHING, 1) +#endif +EMIT_SHR(64, uint64_t, _intel, 1) +EMIT_SHR(64, uint64_t, _amd, 0) + +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_SHR(32, uint32_t, RT_NOTHING, 1) +#endif +EMIT_SHR(32, uint32_t, _intel, 1) +EMIT_SHR(32, uint32_t, _amd, 0) + +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_SHR(16, uint16_t, RT_NOTHING, 1) +#endif +EMIT_SHR(16, uint16_t, _intel, 1) +EMIT_SHR(16, uint16_t, _amd, 0) + +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_SHR(8, uint8_t, RT_NOTHING, 1) +#endif +EMIT_SHR(8, uint8_t, _intel, 1) +EMIT_SHR(8, uint8_t, _amd, 0) + + +/* + * SAR + */ +#define EMIT_SAR(a_cBitsWidth, a_uType, a_iType, a_Suffix, a_fIntelFlags) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_sar_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \ +{ \ + cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \ + if (cShift) \ + { \ + a_iType const iDst = (a_iType)*puDst; \ + a_uType uResult = iDst >> cShift; \ + *puDst = uResult; \ + \ + /* Calc EFLAGS. \ + Note! The OF flag is always zero because the result never differs from the input. */ \ + AssertCompile(X86_EFL_CF_BIT == 0); \ + uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \ + fEfl |= (iDst >> (cShift - 1)) & X86_EFL_CF; \ + fEfl |= X86_EFL_CALC_SF(uResult, a_cBitsWidth); \ + fEfl |= X86_EFL_CALC_ZF(uResult); \ + fEfl |= g_afParity[uResult & 0xff]; \ + if (!a_fIntelFlags) \ + fEfl |= X86_EFL_AF; /* AMD 3990x sets it unconditionally, Intel 10980XE does the oposite */ \ + *pfEFlags = fEfl; \ + } \ +} + +#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_SAR(64, uint64_t, int64_t, RT_NOTHING, 1) +#endif +EMIT_SAR(64, uint64_t, int64_t, _intel, 1) +EMIT_SAR(64, uint64_t, int64_t, _amd, 0) + +#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_SAR(32, uint32_t, int32_t, RT_NOTHING, 1) +#endif +EMIT_SAR(32, uint32_t, int32_t, _intel, 1) +EMIT_SAR(32, uint32_t, int32_t, _amd, 0) + +#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_SAR(16, uint16_t, int16_t, RT_NOTHING, 1) +#endif +EMIT_SAR(16, uint16_t, int16_t, _intel, 1) +EMIT_SAR(16, uint16_t, int16_t, _amd, 0) + +#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_SAR(8, uint8_t, int8_t, RT_NOTHING, 1) +#endif +EMIT_SAR(8, uint8_t, int8_t, _intel, 1) +EMIT_SAR(8, uint8_t, int8_t, _amd, 0) + + +/* + * SHLD + * + * - CF is the last bit shifted out of puDst. + * - AF is always cleared by Intel 10980XE. + * - AF is always set by AMD 3990X. + * - OF is set according to the first shift on Intel 10980XE, it seems. + * - OF is set according to the last sub-shift on AMD 3990X. + * - ZF, SF and PF are calculated according to the result by both vendors. + * + * For 16-bit shifts the count mask isn't 15, but 31, and the CPU will + * pick either the source register or the destination register for input bits + * when going beyond 16. According to https://www.sandpile.org/x86/flags.htm + * intel has changed behaviour here several times. We implement what current + * skylake based does for now, we can extend this later as needed. + */ +#define EMIT_SHLD(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_shld_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, uint8_t cShift, \ + uint32_t *pfEFlags)) \ +{ \ + cShift &= a_cBitsWidth - 1; \ + if (cShift) \ + { \ + a_uType const uDst = *puDst; \ + a_uType uResult = uDst << cShift; \ + uResult |= uSrc >> (a_cBitsWidth - cShift); \ + *puDst = uResult; \ + \ + /* CALC EFLAGS: */ \ + uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \ + if (a_fIntelFlags) \ + /* Intel 6700K & 10980XE: Set according to the first shift. AF always cleared. */ \ + fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ (uDst << 1)); \ + else \ + { /* AMD 3990X: Set according to last shift. AF always set. */ \ + fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth((uDst << (cShift - 1)) ^ uResult); \ + fEfl |= X86_EFL_AF; \ + } \ + AssertCompile(X86_EFL_CF_BIT == 0); \ + fEfl |= (uDst >> (a_cBitsWidth - cShift)) & X86_EFL_CF; /* CF = last bit shifted out */ \ + fEfl |= g_afParity[uResult & 0xff]; \ + fEfl |= X86_EFL_CALC_SF(uResult, a_cBitsWidth); \ + fEfl |= X86_EFL_CALC_ZF(uResult); \ + *pfEFlags = fEfl; \ + } \ +} + +#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_SHLD(64, uint64_t, RT_NOTHING, 1) +#endif +EMIT_SHLD(64, uint64_t, _intel, 1) +EMIT_SHLD(64, uint64_t, _amd, 0) + +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_SHLD(32, uint32_t, RT_NOTHING, 1) +#endif +EMIT_SHLD(32, uint32_t, _intel, 1) +EMIT_SHLD(32, uint32_t, _amd, 0) + +#define EMIT_SHLD_16(a_Suffix, a_fIntelFlags) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT(iemAImpl_shld_u16,a_Suffix),(uint16_t *puDst, uint16_t uSrc, uint8_t cShift, uint32_t *pfEFlags)) \ +{ \ + cShift &= 31; \ + if (cShift) \ + { \ + uint16_t const uDst = *puDst; \ + uint64_t const uTmp = a_fIntelFlags \ + ? ((uint64_t)uDst << 32) | ((uint32_t)uSrc << 16) | uDst \ + : ((uint64_t)uDst << 32) | ((uint32_t)uSrc << 16) | uSrc; \ + uint16_t const uResult = (uint16_t)((uTmp << cShift) >> 32); \ + *puDst = uResult; \ + \ + /* CALC EFLAGS: */ \ + uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \ + AssertCompile(X86_EFL_CF_BIT == 0); \ + if (a_fIntelFlags) \ + { \ + fEfl |= (uTmp >> (48 - cShift)) & X86_EFL_CF; /* CF = last bit shifted out of the combined operand */ \ + /* Intel 6700K & 10980XE: OF is et according to the first shift. AF always cleared. */ \ + fEfl |= X86_EFL_GET_OF_16(uDst ^ (uDst << 1)); \ + } \ + else \ + { \ + /* AMD 3990X: OF is set according to last shift, with some weirdness. AF always set. CF = last bit shifted out of uDst. */ \ + if (cShift < 16) \ + { \ + fEfl |= (uDst >> (16 - cShift)) & X86_EFL_CF; \ + fEfl |= X86_EFL_GET_OF_16((uDst << (cShift - 1)) ^ uResult); \ + } \ + else \ + { \ + if (cShift == 16) \ + fEfl |= uDst & X86_EFL_CF; \ + fEfl |= X86_EFL_GET_OF_16((uDst << (cShift - 1)) ^ 0); \ + } \ + fEfl |= X86_EFL_AF; \ + } \ + fEfl |= g_afParity[uResult & 0xff]; \ + fEfl |= X86_EFL_CALC_SF(uResult, 16); \ + fEfl |= X86_EFL_CALC_ZF(uResult); \ + *pfEFlags = fEfl; \ + } \ +} + +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_SHLD_16(RT_NOTHING, 1) +#endif +EMIT_SHLD_16(_intel, 1) +EMIT_SHLD_16(_amd, 0) + + +/* + * SHRD + * + * EFLAGS behaviour seems to be the same as with SHLD: + * - CF is the last bit shifted out of puDst. + * - AF is always cleared by Intel 10980XE. + * - AF is always set by AMD 3990X. + * - OF is set according to the first shift on Intel 10980XE, it seems. + * - OF is set according to the last sub-shift on AMD 3990X. + * - ZF, SF and PF are calculated according to the result by both vendors. + * + * For 16-bit shifts the count mask isn't 15, but 31, and the CPU will + * pick either the source register or the destination register for input bits + * when going beyond 16. According to https://www.sandpile.org/x86/flags.htm + * intel has changed behaviour here several times. We implement what current + * skylake based does for now, we can extend this later as needed. + */ +#define EMIT_SHRD(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_shrd_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, uint8_t cShift, uint32_t *pfEFlags)) \ +{ \ + cShift &= a_cBitsWidth - 1; \ + if (cShift) \ + { \ + a_uType const uDst = *puDst; \ + a_uType uResult = uDst >> cShift; \ + uResult |= uSrc << (a_cBitsWidth - cShift); \ + *puDst = uResult; \ + \ + uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \ + AssertCompile(X86_EFL_CF_BIT == 0); \ + fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF; \ + if (a_fIntelFlags) \ + /* Intel 6700K & 10980XE: Set according to the first shift. AF always cleared. */ \ + fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ (uSrc << (a_cBitsWidth - 1))); \ + else \ + { /* AMD 3990X: Set according to last shift. AF always set. */ \ + if (cShift > 1) /* Set according to last shift. */ \ + fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth((uSrc << (a_cBitsWidth - cShift + 1)) ^ uResult); \ + else \ + fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ uResult); \ + fEfl |= X86_EFL_AF; \ + } \ + fEfl |= X86_EFL_CALC_SF(uResult, a_cBitsWidth); \ + fEfl |= X86_EFL_CALC_ZF(uResult); \ + fEfl |= g_afParity[uResult & 0xff]; \ + *pfEFlags = fEfl; \ + } \ +} + +#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_SHRD(64, uint64_t, RT_NOTHING, 1) +#endif +EMIT_SHRD(64, uint64_t, _intel, 1) +EMIT_SHRD(64, uint64_t, _amd, 0) + +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_SHRD(32, uint32_t, RT_NOTHING, 1) +#endif +EMIT_SHRD(32, uint32_t, _intel, 1) +EMIT_SHRD(32, uint32_t, _amd, 0) + +#define EMIT_SHRD_16(a_Suffix, a_fIntelFlags) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT(iemAImpl_shrd_u16,a_Suffix),(uint16_t *puDst, uint16_t uSrc, uint8_t cShift, uint32_t *pfEFlags)) \ +{ \ + cShift &= 31; \ + if (cShift) \ + { \ + uint16_t const uDst = *puDst; \ + uint64_t const uTmp = a_fIntelFlags \ + ? uDst | ((uint32_t)uSrc << 16) | ((uint64_t)uDst << 32) \ + : uDst | ((uint32_t)uSrc << 16) | ((uint64_t)uSrc << 32); \ + uint16_t const uResult = (uint16_t)(uTmp >> cShift); \ + *puDst = uResult; \ + \ + uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \ + AssertCompile(X86_EFL_CF_BIT == 0); \ + if (a_fIntelFlags) \ + { \ + /* Intel 10980XE: The CF is the last shifted out of the combined uTmp operand. */ \ + fEfl |= (uTmp >> (cShift - 1)) & X86_EFL_CF; \ + /* Intel 6700K & 10980XE: Set according to the first shift. AF always cleared. */ \ + fEfl |= X86_EFL_GET_OF_16(uDst ^ (uSrc << 15)); \ + } \ + else \ + { \ + /* AMD 3990X: CF flag seems to be last bit shifted out of uDst, not the combined uSrc:uSrc:uDst operand. */ \ + fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF; \ + /* AMD 3990X: Set according to last shift. AF always set. */ \ + if (cShift > 1) /* Set according to last shift. */ \ + fEfl |= X86_EFL_GET_OF_16((uint16_t)(uTmp >> (cShift - 1)) ^ uResult); \ + else \ + fEfl |= X86_EFL_GET_OF_16(uDst ^ uResult); \ + fEfl |= X86_EFL_AF; \ + } \ + fEfl |= X86_EFL_CALC_SF(uResult, 16); \ + fEfl |= X86_EFL_CALC_ZF(uResult); \ + fEfl |= g_afParity[uResult & 0xff]; \ + *pfEFlags = fEfl; \ + } \ +} + +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_SHRD_16(RT_NOTHING, 1) +#endif +EMIT_SHRD_16(_intel, 1) +EMIT_SHRD_16(_amd, 0) + + +/* + * RORX (BMI2) + */ +#define EMIT_RORX(a_cBitsWidth, a_uType, a_fnHlp) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT(iemAImpl_rorx_u,a_cBitsWidth),(a_uType *puDst, a_uType uSrc, a_uType cShift)) \ +{ \ + *puDst = a_fnHlp(uSrc, cShift & (a_cBitsWidth - 1)); \ +} + +#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_RORX(64, uint64_t, ASMRotateRightU64) +#endif +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_RORX(32, uint32_t, ASMRotateRightU32) +#endif + + +/* + * SHLX (BMI2) + */ +#define EMIT_SHLX(a_cBitsWidth, a_uType, a_Suffix) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_shlx_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, a_uType cShift)) \ +{ \ + cShift &= a_cBitsWidth - 1; \ + *puDst = uSrc << cShift; \ +} + +#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_SHLX(64, uint64_t, RT_NOTHING) +EMIT_SHLX(64, uint64_t, _fallback) +#endif +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_SHLX(32, uint32_t, RT_NOTHING) +EMIT_SHLX(32, uint32_t, _fallback) +#endif + + +/* + * SHRX (BMI2) + */ +#define EMIT_SHRX(a_cBitsWidth, a_uType, a_Suffix) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_shrx_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, a_uType cShift)) \ +{ \ + cShift &= a_cBitsWidth - 1; \ + *puDst = uSrc >> cShift; \ +} + +#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_SHRX(64, uint64_t, RT_NOTHING) +EMIT_SHRX(64, uint64_t, _fallback) +#endif +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_SHRX(32, uint32_t, RT_NOTHING) +EMIT_SHRX(32, uint32_t, _fallback) +#endif + + +/* + * SARX (BMI2) + */ +#define EMIT_SARX(a_cBitsWidth, a_uType, a_iType, a_Suffix) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_sarx_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, a_uType cShift)) \ +{ \ + cShift &= a_cBitsWidth - 1; \ + *puDst = (a_iType)uSrc >> cShift; \ +} + +#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_SARX(64, uint64_t, int64_t, RT_NOTHING) +EMIT_SARX(64, uint64_t, int64_t, _fallback) +#endif +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_SARX(32, uint32_t, int32_t, RT_NOTHING) +EMIT_SARX(32, uint32_t, int32_t, _fallback) +#endif + + +/* + * PDEP (BMI2) + */ +#define EMIT_PDEP(a_cBitsWidth, a_uType, a_Suffix) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_pdep_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, a_uType fMask)) \ +{ \ + a_uType uResult = 0; \ + for (unsigned iMaskBit = 0, iBit = 0; iMaskBit < a_cBitsWidth; iMaskBit++) \ + if (fMask & ((a_uType)1 << iMaskBit)) \ + { \ + uResult |= ((uSrc >> iBit) & 1) << iMaskBit; \ + iBit++; \ + } \ + *puDst = uResult; \ +} + +#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_PDEP(64, uint64_t, RT_NOTHING) +#endif +EMIT_PDEP(64, uint64_t, _fallback) +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_PDEP(32, uint32_t, RT_NOTHING) +#endif +EMIT_PDEP(32, uint32_t, _fallback) + +/* + * PEXT (BMI2) + */ +#define EMIT_PEXT(a_cBitsWidth, a_uType, a_Suffix) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_pext_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, a_uType fMask)) \ +{ \ + a_uType uResult = 0; \ + for (unsigned iMaskBit = 0, iBit = 0; iMaskBit < a_cBitsWidth; iMaskBit++) \ + if (fMask & ((a_uType)1 << iMaskBit)) \ + { \ + uResult |= ((uSrc >> iMaskBit) & 1) << iBit; \ + iBit++; \ + } \ + *puDst = uResult; \ +} + +#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_PEXT(64, uint64_t, RT_NOTHING) +#endif +EMIT_PEXT(64, uint64_t, _fallback) +#if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) +EMIT_PEXT(32, uint32_t, RT_NOTHING) +#endif +EMIT_PEXT(32, uint32_t, _fallback) + + +#if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) + +# if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) +/* + * BSWAP + */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_bswap_u64,(uint64_t *puDst)) +{ + *puDst = ASMByteSwapU64(*puDst); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_bswap_u32,(uint32_t *puDst)) +{ + *puDst = ASMByteSwapU32(*puDst); +} + + +/* Note! undocument, so 32-bit arg */ +IEM_DECL_IMPL_DEF(void, iemAImpl_bswap_u16,(uint32_t *puDst)) +{ +#if 0 + *(uint16_t *)puDst = ASMByteSwapU16(*(uint16_t *)puDst); +#else + /* This is the behaviour AMD 3990x (64-bit mode): */ + *(uint16_t *)puDst = 0; +#endif +} + +# endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ + + + +# if defined(IEM_WITHOUT_ASSEMBLY) + +/* + * LFENCE, SFENCE & MFENCE. + */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void)) +{ + ASMReadFence(); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void)) +{ + ASMWriteFence(); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void)) +{ + ASMMemoryFence(); +} + + +# ifndef RT_ARCH_ARM64 +IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void)) +{ + ASMMemoryFence(); +} +# endif + +# endif + +#endif /* !RT_ARCH_AMD64 || IEM_WITHOUT_ASSEMBLY */ + + +IEM_DECL_IMPL_DEF(void, iemAImpl_arpl,(uint16_t *pu16Dst, uint16_t u16Src, uint32_t *pfEFlags)) +{ + if ((*pu16Dst & X86_SEL_RPL) < (u16Src & X86_SEL_RPL)) + { + *pu16Dst &= X86_SEL_MASK_OFF_RPL; + *pu16Dst |= u16Src & X86_SEL_RPL; + + *pfEFlags |= X86_EFL_ZF; + } + else + *pfEFlags &= ~X86_EFL_ZF; +} + + +#if defined(IEM_WITHOUT_ASSEMBLY) + +/********************************************************************************************************************************* +* x87 FPU Loads * +*********************************************************************************************************************************/ + +IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val)) +{ + pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */ + if (RTFLOAT32U_IS_NORMAL(pr32Val)) + { + pFpuRes->r80Result.sj64.fSign = pr32Val->s.fSign; + pFpuRes->r80Result.sj64.fInteger = 1; + pFpuRes->r80Result.sj64.uFraction = (uint64_t)pr32Val->s.uFraction + << (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS); + pFpuRes->r80Result.sj64.uExponent = pr32Val->s.uExponent - RTFLOAT32U_EXP_BIAS + RTFLOAT80U_EXP_BIAS; + Assert(RTFLOAT80U_IS_NORMAL(&pFpuRes->r80Result)); + } + else if (RTFLOAT32U_IS_ZERO(pr32Val)) + { + pFpuRes->r80Result.s.fSign = pr32Val->s.fSign; + pFpuRes->r80Result.s.uExponent = 0; + pFpuRes->r80Result.s.uMantissa = 0; + Assert(RTFLOAT80U_IS_ZERO(&pFpuRes->r80Result)); + } + else if (RTFLOAT32U_IS_SUBNORMAL(pr32Val)) + { + /* Subnormal values gets normalized. */ + pFpuRes->r80Result.sj64.fSign = pr32Val->s.fSign; + pFpuRes->r80Result.sj64.fInteger = 1; + unsigned const cExtraShift = RTFLOAT32U_FRACTION_BITS - ASMBitLastSetU32(pr32Val->s.uFraction); + pFpuRes->r80Result.sj64.uFraction = (uint64_t)pr32Val->s.uFraction + << (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS + cExtraShift + 1); + pFpuRes->r80Result.sj64.uExponent = pr32Val->s.uExponent - RTFLOAT32U_EXP_BIAS + RTFLOAT80U_EXP_BIAS - cExtraShift; + pFpuRes->FSW |= X86_FSW_DE; + if (!(pFpuState->FCW & X86_FCW_DM)) + pFpuRes->FSW |= X86_FSW_ES | X86_FSW_B; /* The value is still pushed. */ + } + else if (RTFLOAT32U_IS_INF(pr32Val)) + { + pFpuRes->r80Result.s.fSign = pr32Val->s.fSign; + pFpuRes->r80Result.s.uExponent = RTFLOAT80U_EXP_MAX; + pFpuRes->r80Result.s.uMantissa = RT_BIT_64(63); + Assert(RTFLOAT80U_IS_INF(&pFpuRes->r80Result)); + } + else + { + /* Signalling and quiet NaNs, both turn into quiet ones when loaded (weird). */ + Assert(RTFLOAT32U_IS_NAN(pr32Val)); + pFpuRes->r80Result.sj64.fSign = pr32Val->s.fSign; + pFpuRes->r80Result.sj64.uExponent = RTFLOAT80U_EXP_MAX; + pFpuRes->r80Result.sj64.fInteger = 1; + pFpuRes->r80Result.sj64.uFraction = (uint64_t)pr32Val->s.uFraction + << (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS); + if (RTFLOAT32U_IS_SIGNALLING_NAN(pr32Val)) + { + pFpuRes->r80Result.sj64.uFraction |= RT_BIT_64(62); /* make quiet */ + Assert(RTFLOAT80U_IS_QUIET_NAN(&pFpuRes->r80Result)); + pFpuRes->FSW |= X86_FSW_IE; + + if (!(pFpuState->FCW & X86_FCW_IM)) + { + /* The value is not pushed. */ + pFpuRes->FSW &= ~X86_FSW_TOP_MASK; + pFpuRes->FSW |= X86_FSW_ES | X86_FSW_B; + pFpuRes->r80Result.au64[0] = 0; + pFpuRes->r80Result.au16[4] = 0; + } + } + else + Assert(RTFLOAT80U_IS_QUIET_NAN(&pFpuRes->r80Result)); + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val)) +{ + pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */ + if (RTFLOAT64U_IS_NORMAL(pr64Val)) + { + pFpuRes->r80Result.sj64.fSign = pr64Val->s.fSign; + pFpuRes->r80Result.sj64.fInteger = 1; + pFpuRes->r80Result.sj64.uFraction = pr64Val->s64.uFraction << (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS); + pFpuRes->r80Result.sj64.uExponent = pr64Val->s.uExponent - RTFLOAT64U_EXP_BIAS + RTFLOAT80U_EXP_BIAS; + Assert(RTFLOAT80U_IS_NORMAL(&pFpuRes->r80Result)); + } + else if (RTFLOAT64U_IS_ZERO(pr64Val)) + { + pFpuRes->r80Result.s.fSign = pr64Val->s.fSign; + pFpuRes->r80Result.s.uExponent = 0; + pFpuRes->r80Result.s.uMantissa = 0; + Assert(RTFLOAT80U_IS_ZERO(&pFpuRes->r80Result)); + } + else if (RTFLOAT64U_IS_SUBNORMAL(pr64Val)) + { + /* Subnormal values gets normalized. */ + pFpuRes->r80Result.sj64.fSign = pr64Val->s.fSign; + pFpuRes->r80Result.sj64.fInteger = 1; + unsigned const cExtraShift = RTFLOAT64U_FRACTION_BITS - ASMBitLastSetU64(pr64Val->s64.uFraction); + pFpuRes->r80Result.sj64.uFraction = pr64Val->s64.uFraction + << (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS + cExtraShift + 1); + pFpuRes->r80Result.sj64.uExponent = pr64Val->s.uExponent - RTFLOAT64U_EXP_BIAS + RTFLOAT80U_EXP_BIAS - cExtraShift; + pFpuRes->FSW |= X86_FSW_DE; + if (!(pFpuState->FCW & X86_FCW_DM)) + pFpuRes->FSW |= X86_FSW_ES | X86_FSW_B; /* The value is still pushed. */ + } + else if (RTFLOAT64U_IS_INF(pr64Val)) + { + pFpuRes->r80Result.s.fSign = pr64Val->s.fSign; + pFpuRes->r80Result.s.uExponent = RTFLOAT80U_EXP_MAX; + pFpuRes->r80Result.s.uMantissa = RT_BIT_64(63); + Assert(RTFLOAT80U_IS_INF(&pFpuRes->r80Result)); + } + else + { + /* Signalling and quiet NaNs, both turn into quiet ones when loaded (weird). */ + Assert(RTFLOAT64U_IS_NAN(pr64Val)); + pFpuRes->r80Result.sj64.fSign = pr64Val->s.fSign; + pFpuRes->r80Result.sj64.uExponent = RTFLOAT80U_EXP_MAX; + pFpuRes->r80Result.sj64.fInteger = 1; + pFpuRes->r80Result.sj64.uFraction = pr64Val->s64.uFraction << (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS); + if (RTFLOAT64U_IS_SIGNALLING_NAN(pr64Val)) + { + pFpuRes->r80Result.sj64.uFraction |= RT_BIT_64(62); /* make quiet */ + Assert(RTFLOAT80U_IS_QUIET_NAN(&pFpuRes->r80Result)); + pFpuRes->FSW |= X86_FSW_IE; + + if (!(pFpuState->FCW & X86_FCW_IM)) + { + /* The value is not pushed. */ + pFpuRes->FSW &= ~X86_FSW_TOP_MASK; + pFpuRes->FSW |= X86_FSW_ES | X86_FSW_B; + pFpuRes->r80Result.au64[0] = 0; + pFpuRes->r80Result.au16[4] = 0; + } + } + else + Assert(RTFLOAT80U_IS_QUIET_NAN(&pFpuRes->r80Result)); + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) +{ + pFpuRes->r80Result.au64[0] = pr80Val->au64[0]; + pFpuRes->r80Result.au16[4] = pr80Val->au16[4]; + /* Raises no exceptions. */ + pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */ +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fld1,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes)) +{ + pFpuRes->r80Result.sj64.fSign = 0; + pFpuRes->r80Result.sj64.uExponent = 0 + 16383; + pFpuRes->r80Result.sj64.fInteger = 1; + pFpuRes->r80Result.sj64.uFraction = 0; + + /* + * FPU status word: + * - TOP is irrelevant, but we must match x86 assembly version. + * - C1 is always cleared as we don't have any stack overflows. + * - C0, C2, and C3 are undefined and Intel 10980XE does not touch them. + */ + pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fldl2e,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes)) +{ + pFpuRes->r80Result.sj64.fSign = 0; + pFpuRes->r80Result.sj64.uExponent = 0 + 16383; + pFpuRes->r80Result.sj64.fInteger = 1; + pFpuRes->r80Result.sj64.uFraction = (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST + || (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_UP + ? UINT64_C(0x38aa3b295c17f0bc) : UINT64_C(0x38aa3b295c17f0bb); + pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */ +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fldl2t,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes)) +{ + pFpuRes->r80Result.sj64.fSign = 0; + pFpuRes->r80Result.sj64.uExponent = 1 + 16383; + pFpuRes->r80Result.sj64.fInteger = 1; + pFpuRes->r80Result.sj64.uFraction = (pFpuState->FCW & X86_FCW_RC_MASK) != X86_FCW_RC_UP + ? UINT64_C(0x549a784bcd1b8afe) : UINT64_C(0x549a784bcd1b8aff); + pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */ +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fldlg2,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes)) +{ + pFpuRes->r80Result.sj64.fSign = 0; + pFpuRes->r80Result.sj64.uExponent = -2 + 16383; + pFpuRes->r80Result.sj64.fInteger = 1; + pFpuRes->r80Result.sj64.uFraction = (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST + || (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_UP + ? UINT64_C(0x1a209a84fbcff799) : UINT64_C(0x1a209a84fbcff798); + pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */ +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fldln2,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes)) +{ + pFpuRes->r80Result.sj64.fSign = 0; + pFpuRes->r80Result.sj64.uExponent = -1 + 16383; + pFpuRes->r80Result.sj64.fInteger = 1; + pFpuRes->r80Result.sj64.uFraction = (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST + || (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_UP + ? UINT64_C(0x317217f7d1cf79ac) : UINT64_C(0x317217f7d1cf79ab); + pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */ +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fldpi,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes)) +{ + pFpuRes->r80Result.sj64.fSign = 0; + pFpuRes->r80Result.sj64.uExponent = 1 + 16383; + pFpuRes->r80Result.sj64.fInteger = 1; + pFpuRes->r80Result.sj64.uFraction = (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST + || (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_UP + ? UINT64_C(0x490fdaa22168c235) : UINT64_C(0x490fdaa22168c234); + pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */ +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fldz,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes)) +{ + pFpuRes->r80Result.s.fSign = 0; + pFpuRes->r80Result.s.uExponent = 0; + pFpuRes->r80Result.s.uMantissa = 0; + pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */ +} + +#define EMIT_FILD(a_cBits) \ +IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i ## a_cBits,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, \ + int ## a_cBits ## _t const *piVal)) \ +{ \ + int ## a_cBits ## _t iVal = *piVal; \ + if (iVal == 0) \ + { \ + pFpuRes->r80Result.s.fSign = 0; \ + pFpuRes->r80Result.s.uExponent = 0; \ + pFpuRes->r80Result.s.uMantissa = 0; \ + } \ + else \ + { \ + if (iVal > 0) \ + pFpuRes->r80Result.s.fSign = 0; \ + else \ + { \ + pFpuRes->r80Result.s.fSign = 1; \ + iVal = -iVal; \ + } \ + unsigned const cBits = ASMBitLastSetU ## a_cBits((uint ## a_cBits ## _t)iVal); \ + pFpuRes->r80Result.s.uExponent = cBits - 1 + RTFLOAT80U_EXP_BIAS; \ + pFpuRes->r80Result.s.uMantissa = (uint64_t)iVal << (RTFLOAT80U_FRACTION_BITS + 1 - cBits); \ + } \ + pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */ \ +} +EMIT_FILD(16) +EMIT_FILD(32) +EMIT_FILD(64) + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val)) +{ + pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */ + if ( pd80Val->s.abPairs[0] == 0 + && pd80Val->s.abPairs[1] == 0 + && pd80Val->s.abPairs[2] == 0 + && pd80Val->s.abPairs[3] == 0 + && pd80Val->s.abPairs[4] == 0 + && pd80Val->s.abPairs[5] == 0 + && pd80Val->s.abPairs[6] == 0 + && pd80Val->s.abPairs[7] == 0 + && pd80Val->s.abPairs[8] == 0) + { + pFpuRes->r80Result.s.fSign = pd80Val->s.fSign; + pFpuRes->r80Result.s.uExponent = 0; + pFpuRes->r80Result.s.uMantissa = 0; + } + else + { + pFpuRes->r80Result.s.fSign = pd80Val->s.fSign; + + size_t cPairs = RT_ELEMENTS(pd80Val->s.abPairs); + while (cPairs > 0 && pd80Val->s.abPairs[cPairs - 1] == 0) + cPairs--; + + uint64_t uVal = 0; + uint64_t uFactor = 1; + for (size_t iPair = 0; iPair < cPairs; iPair++, uFactor *= 100) + uVal += RTPBCD80U_LO_DIGIT(pd80Val->s.abPairs[iPair]) * uFactor + + RTPBCD80U_HI_DIGIT(pd80Val->s.abPairs[iPair]) * uFactor * 10; + + unsigned const cBits = ASMBitLastSetU64(uVal); + pFpuRes->r80Result.s.uExponent = cBits - 1 + RTFLOAT80U_EXP_BIAS; + pFpuRes->r80Result.s.uMantissa = uVal << (RTFLOAT80U_FRACTION_BITS + 1 - cBits); + } +} + + +/********************************************************************************************************************************* +* x87 FPU Stores * +*********************************************************************************************************************************/ + +/** + * Helper for storing a deconstructed and normal R80 value as a 64-bit one. + * + * This uses the rounding rules indicated by fFcw and returns updated fFsw. + * + * @returns Updated FPU status word value. + * @param fSignIn Incoming sign indicator. + * @param uMantissaIn Incoming mantissa (dot between bit 63 and 62). + * @param iExponentIn Unbiased exponent. + * @param fFcw The FPU control word. + * @param fFsw Prepped FPU status word, i.e. exceptions and C1 clear. + * @param pr32Dst Where to return the output value, if one should be + * returned. + * + * @note Tailored as a helper for iemAImpl_fst_r80_to_r32 right now. + * @note Exact same logic as iemAImpl_StoreNormalR80AsR64. + */ +static uint16_t iemAImpl_StoreNormalR80AsR32(bool fSignIn, uint64_t uMantissaIn, int32_t iExponentIn, + uint16_t fFcw, uint16_t fFsw, PRTFLOAT32U pr32Dst) +{ + uint64_t const fRoundingOffMask = RT_BIT_64(RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS) - 1; /* 0x7ff */ + uint64_t const uRoundingAdd = (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST + ? RT_BIT_64(RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS - 1) /* 0x400 */ + : (fFcw & X86_FCW_RC_MASK) == (fSignIn ? X86_FCW_RC_DOWN : X86_FCW_RC_UP) + ? fRoundingOffMask + : 0; + uint64_t fRoundedOff = uMantissaIn & fRoundingOffMask; + + /* + * Deal with potential overflows/underflows first, optimizing for none. + * 0 and MAX are used for special values; MAX-1 may be rounded up to MAX. + */ + int32_t iExponentOut = (int32_t)iExponentIn + RTFLOAT32U_EXP_BIAS; + if ((uint32_t)iExponentOut - 1 < (uint32_t)(RTFLOAT32U_EXP_MAX - 3)) + { /* likely? */ } + /* + * Underflow if the exponent zero or negative. This is attempted mapped + * to a subnormal number when possible, with some additional trickery ofc. + */ + else if (iExponentOut <= 0) + { + bool const fIsTiny = iExponentOut < 0 + || UINT64_MAX - uMantissaIn > uRoundingAdd; + if (!(fFcw & X86_FCW_UM) && fIsTiny) + /* Note! 754-1985 sec 7.4 has something about bias adjust of 192 here, not in 2008 & 2019. Perhaps only 8087 & 287? */ + return fFsw | X86_FSW_UE | X86_FSW_ES | X86_FSW_B; + + if (iExponentOut <= 0) + { + uMantissaIn = iExponentOut <= -63 + ? uMantissaIn != 0 + : (uMantissaIn >> (-iExponentOut + 1)) | ((uMantissaIn & (RT_BIT_64(-iExponentOut + 1) - 1)) != 0); + fRoundedOff = uMantissaIn & fRoundingOffMask; + if (fRoundedOff && fIsTiny) + fFsw |= X86_FSW_UE; + iExponentOut = 0; + } + } + /* + * Overflow if at or above max exponent value or if we will reach max + * when rounding. Will return +/-zero or +/-max value depending on + * whether we're rounding or not. + */ + else if ( iExponentOut >= RTFLOAT32U_EXP_MAX + || ( iExponentOut == RTFLOAT32U_EXP_MAX - 1 + && UINT64_MAX - uMantissaIn <= uRoundingAdd)) + { + fFsw |= X86_FSW_OE; + if (!(fFcw & X86_FCW_OM)) + return fFsw | X86_FSW_ES | X86_FSW_B; + fFsw |= X86_FSW_PE; + if (uRoundingAdd) + fFsw |= X86_FSW_C1; + if (!(fFcw & X86_FCW_PM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + + pr32Dst->s.fSign = fSignIn; + if (uRoundingAdd) + { /* Zero */ + pr32Dst->s.uExponent = RTFLOAT32U_EXP_MAX; + pr32Dst->s.uFraction = 0; + } + else + { /* Max */ + pr32Dst->s.uExponent = RTFLOAT32U_EXP_MAX - 1; + pr32Dst->s.uFraction = RT_BIT_32(RTFLOAT32U_FRACTION_BITS) - 1; + } + return fFsw; + } + + /* + * Normal or subnormal number. + */ + /* Do rounding - just truncate in near mode when midway on an even outcome. */ + uint64_t uMantissaOut = uMantissaIn; + if ( (fFcw & X86_FCW_RC_MASK) != X86_FCW_RC_NEAREST + || (uMantissaIn & RT_BIT_64(RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS)) + || fRoundedOff != uRoundingAdd) + { + uMantissaOut = uMantissaIn + uRoundingAdd; + if (uMantissaOut >= uMantissaIn) + { /* likely */ } + else + { + uMantissaOut >>= 1; /* (We don't need to add bit 63 here (the integer bit), as it will be chopped off below.) */ + iExponentOut++; + Assert(iExponentOut < RTFLOAT32U_EXP_MAX); /* checked above */ + fFsw |= X86_FSW_C1; + } + } + else + uMantissaOut = uMantissaIn; + + /* Truncate the mantissa and set the return value. */ + uMantissaOut >>= RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS; + + pr32Dst->s.uFraction = (uint32_t)uMantissaOut; /* Note! too big for bitfield if normal. */ + pr32Dst->s.uExponent = iExponentOut; + pr32Dst->s.fSign = fSignIn; + + /* Set status flags realted to rounding. */ + if (fRoundedOff) + { + fFsw |= X86_FSW_PE; + if (uMantissaOut > (uMantissaIn >> (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS))) + fFsw |= X86_FSW_C1; + if (!(fFcw & X86_FCW_PM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + + return fFsw; +} + + +/** + * @note Exact same logic as iemAImpl_fst_r80_to_r64. + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, + PRTFLOAT32U pr32Dst, PCRTFLOAT80U pr80Src)) +{ + uint16_t const fFcw = pFpuState->FCW; + uint16_t fFsw = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); + if (RTFLOAT80U_IS_NORMAL(pr80Src)) + fFsw = iemAImpl_StoreNormalR80AsR32(pr80Src->s.fSign, pr80Src->s.uMantissa, + (int32_t)pr80Src->s.uExponent - RTFLOAT80U_EXP_BIAS, fFcw, fFsw, pr32Dst); + else if (RTFLOAT80U_IS_ZERO(pr80Src)) + { + pr32Dst->s.fSign = pr80Src->s.fSign; + pr32Dst->s.uExponent = 0; + pr32Dst->s.uFraction = 0; + Assert(RTFLOAT32U_IS_ZERO(pr32Dst)); + } + else if (RTFLOAT80U_IS_INF(pr80Src)) + { + pr32Dst->s.fSign = pr80Src->s.fSign; + pr32Dst->s.uExponent = RTFLOAT32U_EXP_MAX; + pr32Dst->s.uFraction = 0; + Assert(RTFLOAT32U_IS_INF(pr32Dst)); + } + else if (RTFLOAT80U_IS_INDEFINITE(pr80Src)) + { + /* Mapped to +/-QNaN */ + pr32Dst->s.fSign = pr80Src->s.fSign; + pr32Dst->s.uExponent = RTFLOAT32U_EXP_MAX; + pr32Dst->s.uFraction = RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1); + } + else if (RTFLOAT80U_IS_PSEUDO_INF(pr80Src) || RTFLOAT80U_IS_UNNORMAL(pr80Src) || RTFLOAT80U_IS_PSEUDO_NAN(pr80Src)) + { + /* Pseudo-Inf / Pseudo-Nan / Unnormal -> QNaN (during load, probably) */ + if (fFcw & X86_FCW_IM) + { + pr32Dst->s.fSign = 1; + pr32Dst->s.uExponent = RTFLOAT32U_EXP_MAX; + pr32Dst->s.uFraction = RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1); + fFsw |= X86_FSW_IE; + } + else + fFsw |= X86_FSW_IE | X86_FSW_ES | X86_FSW_B;; + } + else if (RTFLOAT80U_IS_NAN(pr80Src)) + { + /* IM applies to signalled NaN input only. Everything is converted to quiet NaN. */ + if ((fFcw & X86_FCW_IM) || !RTFLOAT80U_IS_SIGNALLING_NAN(pr80Src)) + { + pr32Dst->s.fSign = pr80Src->s.fSign; + pr32Dst->s.uExponent = RTFLOAT32U_EXP_MAX; + pr32Dst->s.uFraction = (uint32_t)(pr80Src->sj64.uFraction >> (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS)); + pr32Dst->s.uFraction |= RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1); + if (RTFLOAT80U_IS_SIGNALLING_NAN(pr80Src)) + fFsw |= X86_FSW_IE; + } + else + fFsw |= X86_FSW_IE | X86_FSW_ES | X86_FSW_B; + } + else + { + /* Denormal values causes both an underflow and precision exception. */ + Assert(RTFLOAT80U_IS_DENORMAL(pr80Src) || RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Src)); + if (fFcw & X86_FCW_UM) + { + pr32Dst->s.fSign = pr80Src->s.fSign; + pr32Dst->s.uExponent = 0; + if ((fFcw & X86_FCW_RC_MASK) == (!pr80Src->s.fSign ? X86_FCW_RC_UP : X86_FCW_RC_DOWN)) + { + pr32Dst->s.uFraction = 1; + fFsw |= X86_FSW_UE | X86_FSW_PE | X86_FSW_C1; + if (!(fFcw & X86_FCW_PM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + else + { + pr32Dst->s.uFraction = 0; + fFsw |= X86_FSW_UE | X86_FSW_PE; + if (!(fFcw & X86_FCW_PM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + } + else + fFsw |= X86_FSW_UE | X86_FSW_ES | X86_FSW_B; + } + *pu16FSW = fFsw; +} + + +/** + * Helper for storing a deconstructed and normal R80 value as a 64-bit one. + * + * This uses the rounding rules indicated by fFcw and returns updated fFsw. + * + * @returns Updated FPU status word value. + * @param fSignIn Incoming sign indicator. + * @param uMantissaIn Incoming mantissa (dot between bit 63 and 62). + * @param iExponentIn Unbiased exponent. + * @param fFcw The FPU control word. + * @param fFsw Prepped FPU status word, i.e. exceptions and C1 clear. + * @param pr64Dst Where to return the output value, if one should be + * returned. + * + * @note Tailored as a helper for iemAImpl_fst_r80_to_r64 right now. + * @note Exact same logic as iemAImpl_StoreNormalR80AsR32. + */ +static uint16_t iemAImpl_StoreNormalR80AsR64(bool fSignIn, uint64_t uMantissaIn, int32_t iExponentIn, + uint16_t fFcw, uint16_t fFsw, PRTFLOAT64U pr64Dst) +{ + uint64_t const fRoundingOffMask = RT_BIT_64(RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS) - 1; /* 0x7ff */ + uint32_t const uRoundingAdd = (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST + ? RT_BIT_64(RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS - 1) /* 0x400 */ + : (fFcw & X86_FCW_RC_MASK) == (fSignIn ? X86_FCW_RC_DOWN : X86_FCW_RC_UP) + ? fRoundingOffMask + : 0; + uint32_t fRoundedOff = uMantissaIn & fRoundingOffMask; + + /* + * Deal with potential overflows/underflows first, optimizing for none. + * 0 and MAX are used for special values; MAX-1 may be rounded up to MAX. + */ + int32_t iExponentOut = (int32_t)iExponentIn + RTFLOAT64U_EXP_BIAS; + if ((uint32_t)iExponentOut - 1 < (uint32_t)(RTFLOAT64U_EXP_MAX - 3)) + { /* likely? */ } + /* + * Underflow if the exponent zero or negative. This is attempted mapped + * to a subnormal number when possible, with some additional trickery ofc. + */ + else if (iExponentOut <= 0) + { + bool const fIsTiny = iExponentOut < 0 + || UINT64_MAX - uMantissaIn > uRoundingAdd; + if (!(fFcw & X86_FCW_UM) && fIsTiny) + /* Note! 754-1985 sec 7.4 has something about bias adjust of 1536 here, not in 2008 & 2019. Perhaps only 8087 & 287? */ + return fFsw | X86_FSW_UE | X86_FSW_ES | X86_FSW_B; + + if (iExponentOut <= 0) + { + uMantissaIn = iExponentOut <= -63 + ? uMantissaIn != 0 + : (uMantissaIn >> (-iExponentOut + 1)) | ((uMantissaIn & (RT_BIT_64(-iExponentOut + 1) - 1)) != 0); + fRoundedOff = uMantissaIn & fRoundingOffMask; + if (fRoundedOff && fIsTiny) + fFsw |= X86_FSW_UE; + iExponentOut = 0; + } + } + /* + * Overflow if at or above max exponent value or if we will reach max + * when rounding. Will return +/-zero or +/-max value depending on + * whether we're rounding or not. + */ + else if ( iExponentOut >= RTFLOAT64U_EXP_MAX + || ( iExponentOut == RTFLOAT64U_EXP_MAX - 1 + && UINT64_MAX - uMantissaIn <= uRoundingAdd)) + { + fFsw |= X86_FSW_OE; + if (!(fFcw & X86_FCW_OM)) + return fFsw | X86_FSW_ES | X86_FSW_B; + fFsw |= X86_FSW_PE; + if (uRoundingAdd) + fFsw |= X86_FSW_C1; + if (!(fFcw & X86_FCW_PM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + + pr64Dst->s64.fSign = fSignIn; + if (uRoundingAdd) + { /* Zero */ + pr64Dst->s64.uExponent = RTFLOAT64U_EXP_MAX; + pr64Dst->s64.uFraction = 0; + } + else + { /* Max */ + pr64Dst->s64.uExponent = RTFLOAT64U_EXP_MAX - 1; + pr64Dst->s64.uFraction = RT_BIT_64(RTFLOAT64U_FRACTION_BITS) - 1; + } + return fFsw; + } + + /* + * Normal or subnormal number. + */ + /* Do rounding - just truncate in near mode when midway on an even outcome. */ + uint64_t uMantissaOut = uMantissaIn; + if ( (fFcw & X86_FCW_RC_MASK) != X86_FCW_RC_NEAREST + || (uMantissaIn & RT_BIT_32(RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS)) + || fRoundedOff != uRoundingAdd) + { + uMantissaOut = uMantissaIn + uRoundingAdd; + if (uMantissaOut >= uMantissaIn) + { /* likely */ } + else + { + uMantissaOut >>= 1; /* (We don't need to add bit 63 here (the integer bit), as it will be chopped off below.) */ + iExponentOut++; + Assert(iExponentOut < RTFLOAT64U_EXP_MAX); /* checked above */ + fFsw |= X86_FSW_C1; + } + } + else + uMantissaOut = uMantissaIn; + + /* Truncate the mantissa and set the return value. */ + uMantissaOut >>= RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS; + + pr64Dst->s64.uFraction = uMantissaOut; /* Note! too big for bitfield if normal. */ + pr64Dst->s64.uExponent = iExponentOut; + pr64Dst->s64.fSign = fSignIn; + + /* Set status flags realted to rounding. */ + if (fRoundedOff) + { + fFsw |= X86_FSW_PE; + if (uMantissaOut > (uMantissaIn >> (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS))) + fFsw |= X86_FSW_C1; + if (!(fFcw & X86_FCW_PM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + + return fFsw; +} + + +/** + * @note Exact same logic as iemAImpl_fst_r80_to_r32. + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, + PRTFLOAT64U pr64Dst, PCRTFLOAT80U pr80Src)) +{ + uint16_t const fFcw = pFpuState->FCW; + uint16_t fFsw = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); + if (RTFLOAT80U_IS_NORMAL(pr80Src)) + fFsw = iemAImpl_StoreNormalR80AsR64(pr80Src->s.fSign, pr80Src->s.uMantissa, + (int32_t)pr80Src->s.uExponent - RTFLOAT80U_EXP_BIAS, fFcw, fFsw, pr64Dst); + else if (RTFLOAT80U_IS_ZERO(pr80Src)) + { + pr64Dst->s64.fSign = pr80Src->s.fSign; + pr64Dst->s64.uExponent = 0; + pr64Dst->s64.uFraction = 0; + Assert(RTFLOAT64U_IS_ZERO(pr64Dst)); + } + else if (RTFLOAT80U_IS_INF(pr80Src)) + { + pr64Dst->s64.fSign = pr80Src->s.fSign; + pr64Dst->s64.uExponent = RTFLOAT64U_EXP_MAX; + pr64Dst->s64.uFraction = 0; + Assert(RTFLOAT64U_IS_INF(pr64Dst)); + } + else if (RTFLOAT80U_IS_INDEFINITE(pr80Src)) + { + /* Mapped to +/-QNaN */ + pr64Dst->s64.fSign = pr80Src->s.fSign; + pr64Dst->s64.uExponent = RTFLOAT64U_EXP_MAX; + pr64Dst->s64.uFraction = RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1); + } + else if (RTFLOAT80U_IS_PSEUDO_INF(pr80Src) || RTFLOAT80U_IS_UNNORMAL(pr80Src) || RTFLOAT80U_IS_PSEUDO_NAN(pr80Src)) + { + /* Pseudo-Inf / Pseudo-Nan / Unnormal -> QNaN (during load, probably) */ + if (fFcw & X86_FCW_IM) + { + pr64Dst->s64.fSign = 1; + pr64Dst->s64.uExponent = RTFLOAT64U_EXP_MAX; + pr64Dst->s64.uFraction = RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1); + fFsw |= X86_FSW_IE; + } + else + fFsw |= X86_FSW_IE | X86_FSW_ES | X86_FSW_B;; + } + else if (RTFLOAT80U_IS_NAN(pr80Src)) + { + /* IM applies to signalled NaN input only. Everything is converted to quiet NaN. */ + if ((fFcw & X86_FCW_IM) || !RTFLOAT80U_IS_SIGNALLING_NAN(pr80Src)) + { + pr64Dst->s64.fSign = pr80Src->s.fSign; + pr64Dst->s64.uExponent = RTFLOAT64U_EXP_MAX; + pr64Dst->s64.uFraction = pr80Src->sj64.uFraction >> (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS); + pr64Dst->s64.uFraction |= RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1); + if (RTFLOAT80U_IS_SIGNALLING_NAN(pr80Src)) + fFsw |= X86_FSW_IE; + } + else + fFsw |= X86_FSW_IE | X86_FSW_ES | X86_FSW_B; + } + else + { + /* Denormal values causes both an underflow and precision exception. */ + Assert(RTFLOAT80U_IS_DENORMAL(pr80Src) || RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Src)); + if (fFcw & X86_FCW_UM) + { + pr64Dst->s64.fSign = pr80Src->s.fSign; + pr64Dst->s64.uExponent = 0; + if ((fFcw & X86_FCW_RC_MASK) == (!pr80Src->s.fSign ? X86_FCW_RC_UP : X86_FCW_RC_DOWN)) + { + pr64Dst->s64.uFraction = 1; + fFsw |= X86_FSW_UE | X86_FSW_PE | X86_FSW_C1; + if (!(fFcw & X86_FCW_PM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + else + { + pr64Dst->s64.uFraction = 0; + fFsw |= X86_FSW_UE | X86_FSW_PE; + if (!(fFcw & X86_FCW_PM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + } + else + fFsw |= X86_FSW_UE | X86_FSW_ES | X86_FSW_B; + } + *pu16FSW = fFsw; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, + PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src)) +{ + /* + * FPU status word: + * - TOP is irrelevant, but we must match x86 assembly version (0). + * - C1 is always cleared as we don't have any stack overflows. + * - C0, C2, and C3 are undefined and Intel 10980XE does not touch them. + */ + *pu16FSW = pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3); /* see iemAImpl_fld1 */ + *pr80Dst = *pr80Src; +} + + +/* + * + * Mantissa: + * 63 56 48 40 32 24 16 8 0 + * v v v v v v v v v + * 1[.]111 0000 1111 0000 1111 0000 1111 0000 1111 0000 1111 0000 1111 0000 1111 0000 + * \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ + * Exp: 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 + * + * int64_t has the same width, only bit 63 is the sign bit. So, the max we can map over + * are bits 1 thru 63, dropping off bit 0, with an exponent of 62. The number of bits we + * drop off from the mantissa increases with decreasing exponent, till an exponent of 0 + * where we'll drop off all but bit 63. + */ +#define EMIT_FIST(a_cBits, a_iType, a_iTypeMin, a_iTypeIndefinite) \ +IEM_DECL_IMPL_DEF(void, iemAImpl_fist_r80_to_i ## a_cBits,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, \ + a_iType *piDst, PCRTFLOAT80U pr80Val)) \ +{ \ + uint16_t const fFcw = pFpuState->FCW; \ + uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); \ + bool const fSignIn = pr80Val->s.fSign; \ + \ + /* \ + * Deal with normal numbers first. \ + */ \ + if (RTFLOAT80U_IS_NORMAL(pr80Val)) \ + { \ + uint64_t uMantissa = pr80Val->s.uMantissa; \ + int32_t iExponent = (int32_t)pr80Val->s.uExponent - RTFLOAT80U_EXP_BIAS; \ + \ + if ((uint32_t)iExponent <= a_cBits - 2) \ + { \ + unsigned const cShiftOff = 63 - iExponent; \ + uint64_t const fRoundingOffMask = RT_BIT_64(cShiftOff) - 1; \ + uint64_t const uRoundingAdd = (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST \ + ? RT_BIT_64(cShiftOff - 1) \ + : (fFcw & X86_FCW_RC_MASK) == (fSignIn ? X86_FCW_RC_DOWN : X86_FCW_RC_UP) \ + ? fRoundingOffMask \ + : 0; \ + uint64_t fRoundedOff = uMantissa & fRoundingOffMask; \ + \ + uMantissa >>= cShiftOff; \ + uint64_t const uRounding = (fRoundedOff + uRoundingAdd) >> cShiftOff; \ + uMantissa += uRounding; \ + if (!(uMantissa & RT_BIT_64(a_cBits - 1))) \ + { \ + if (fRoundedOff) \ + { \ + if ((uMantissa & 1) && (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST && fRoundedOff == uRoundingAdd) \ + uMantissa &= ~(uint64_t)1; /* round to even number if equal distance between up/down. */ \ + else if (uRounding) \ + fFsw |= X86_FSW_C1; \ + fFsw |= X86_FSW_PE; \ + if (!(fFcw & X86_FCW_PM)) \ + fFsw |= X86_FSW_ES | X86_FSW_B; \ + } \ + \ + if (!fSignIn) \ + *piDst = (a_iType)uMantissa; \ + else \ + *piDst = -(a_iType)uMantissa; \ + } \ + else \ + { \ + /* overflowed after rounding. */ \ + AssertMsg(iExponent == a_cBits - 2 && uMantissa == RT_BIT_64(a_cBits - 1), \ + ("e=%d m=%#RX64 (org %#RX64) s=%d; shift=%d ro=%#RX64 rm=%#RX64 ra=%#RX64\n", iExponent, uMantissa, \ + pr80Val->s.uMantissa, fSignIn, cShiftOff, fRoundedOff, fRoundingOffMask, uRoundingAdd)); \ + \ + /* Special case for the integer minimum value. */ \ + if (fSignIn) \ + { \ + *piDst = a_iTypeMin; \ + fFsw |= X86_FSW_PE | X86_FSW_C1; \ + if (!(fFcw & X86_FCW_PM)) \ + fFsw |= X86_FSW_ES | X86_FSW_B; \ + } \ + else \ + { \ + fFsw |= X86_FSW_IE; \ + if (fFcw & X86_FCW_IM) \ + *piDst = a_iTypeMin; \ + else \ + fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); \ + } \ + } \ + } \ + /* \ + * Tiny sub-zero numbers. \ + */ \ + else if (iExponent < 0) \ + { \ + if (!fSignIn) \ + { \ + if ( (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_UP \ + || (iExponent == -1 && (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST)) \ + { \ + *piDst = 1; \ + fFsw |= X86_FSW_C1; \ + } \ + else \ + *piDst = 0; \ + } \ + else \ + { \ + if ( (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_UP \ + || (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_ZERO \ + || (iExponent < -1 && (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST)) \ + *piDst = 0; \ + else \ + { \ + *piDst = -1; \ + fFsw |= X86_FSW_C1; \ + } \ + } \ + fFsw |= X86_FSW_PE; \ + if (!(fFcw & X86_FCW_PM)) \ + fFsw |= X86_FSW_ES | X86_FSW_B; \ + } \ + /* \ + * Special MIN case. \ + */ \ + else if ( fSignIn && iExponent == a_cBits - 1 \ + && ( a_cBits < 64 && (fFcw & X86_FCW_RC_MASK) != X86_FCW_RC_DOWN \ + ? uMantissa < (RT_BIT_64(63) | RT_BIT_64(65 - a_cBits)) \ + : uMantissa == RT_BIT_64(63))) \ + { \ + *piDst = a_iTypeMin; \ + if (uMantissa & (RT_BIT_64(64 - a_cBits + 1) - 1)) \ + { \ + fFsw |= X86_FSW_PE; \ + if (!(fFcw & X86_FCW_PM)) \ + fFsw |= X86_FSW_ES | X86_FSW_B; \ + } \ + } \ + /* \ + * Too large/small number outside the target integer range. \ + */ \ + else \ + { \ + fFsw |= X86_FSW_IE; \ + if (fFcw & X86_FCW_IM) \ + *piDst = a_iTypeIndefinite; \ + else \ + fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); \ + } \ + } \ + /* \ + * Map both +0 and -0 to integer zero (signless/+). \ + */ \ + else if (RTFLOAT80U_IS_ZERO(pr80Val)) \ + *piDst = 0; \ + /* \ + * Denormals are just really tiny sub-zero numbers that are either rounded \ + * to zero, 1 or -1 depending on sign and rounding control. \ + */ \ + else if (RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val) || RTFLOAT80U_IS_DENORMAL(pr80Val)) \ + { \ + if ((fFcw & X86_FCW_RC_MASK) != (fSignIn ? X86_FCW_RC_DOWN : X86_FCW_RC_UP)) \ + *piDst = 0; \ + else \ + { \ + *piDst = fSignIn ? -1 : 1; \ + fFsw |= X86_FSW_C1; \ + } \ + fFsw |= X86_FSW_PE; \ + if (!(fFcw & X86_FCW_PM)) \ + fFsw |= X86_FSW_ES | X86_FSW_B; \ + } \ + /* \ + * All other special values are considered invalid arguments and result \ + * in an IE exception and indefinite value if masked. \ + */ \ + else \ + { \ + fFsw |= X86_FSW_IE; \ + if (fFcw & X86_FCW_IM) \ + *piDst = a_iTypeIndefinite; \ + else \ + fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); \ + } \ + *pu16FSW = fFsw; \ +} +EMIT_FIST(64, int64_t, INT64_MIN, X86_FPU_INT64_INDEFINITE) +EMIT_FIST(32, int32_t, INT32_MIN, X86_FPU_INT32_INDEFINITE) +EMIT_FIST(16, int16_t, INT16_MIN, X86_FPU_INT16_INDEFINITE) + +#endif /*IEM_WITHOUT_ASSEMBLY */ + + +/* + * The FISTT instruction was added with SSE3 and are a lot simpler than FIST. + * + * The 16-bit version is a bit peculiar, though, as it seems to be raising IE + * as if it was the 32-bit version (i.e. starting with exp 31 instead of 15), + * thus the @a a_cBitsIn. + */ +#define EMIT_FISTT(a_cBits, a_cBitsIn, a_iType, a_iTypeMin, a_iTypeMax, a_iTypeIndefinite, a_Suffix, a_fIntelVersion) \ +IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_fistt_r80_to_i,a_cBits,a_Suffix),(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, \ + a_iType *piDst, PCRTFLOAT80U pr80Val)) \ +{ \ + uint16_t const fFcw = pFpuState->FCW; \ + uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); \ + bool const fSignIn = pr80Val->s.fSign; \ + \ + /* \ + * Deal with normal numbers first. \ + */ \ + if (RTFLOAT80U_IS_NORMAL(pr80Val)) \ + { \ + uint64_t uMantissa = pr80Val->s.uMantissa; \ + int32_t iExponent = (int32_t)pr80Val->s.uExponent - RTFLOAT80U_EXP_BIAS; \ + \ + if ((uint32_t)iExponent <= a_cBitsIn - 2) \ + { \ + unsigned const cShiftOff = 63 - iExponent; \ + uint64_t const fRoundingOffMask = RT_BIT_64(cShiftOff) - 1; \ + uint64_t const fRoundedOff = uMantissa & fRoundingOffMask; \ + uMantissa >>= cShiftOff; \ + /*Assert(!(uMantissa & RT_BIT_64(a_cBits - 1)));*/ \ + if (!fSignIn) \ + *piDst = (a_iType)uMantissa; \ + else \ + *piDst = -(a_iType)uMantissa; \ + \ + if (fRoundedOff) \ + { \ + fFsw |= X86_FSW_PE; \ + if (!(fFcw & X86_FCW_PM)) \ + fFsw |= X86_FSW_ES | X86_FSW_B; \ + } \ + } \ + /* \ + * Tiny sub-zero numbers. \ + */ \ + else if (iExponent < 0) \ + { \ + *piDst = 0; \ + fFsw |= X86_FSW_PE; \ + if (!(fFcw & X86_FCW_PM)) \ + fFsw |= X86_FSW_ES | X86_FSW_B; \ + } \ + /* \ + * Special MIN case. \ + */ \ + else if ( fSignIn && iExponent == a_cBits - 1 \ + && (a_cBits < 64 \ + ? uMantissa < (RT_BIT_64(63) | RT_BIT_64(65 - a_cBits)) \ + : uMantissa == RT_BIT_64(63)) ) \ + { \ + *piDst = a_iTypeMin; \ + if (uMantissa & (RT_BIT_64(64 - a_cBits + 1) - 1)) \ + { \ + fFsw |= X86_FSW_PE; \ + if (!(fFcw & X86_FCW_PM)) \ + fFsw |= X86_FSW_ES | X86_FSW_B; \ + } \ + } \ + /* \ + * Figure this weirdness. \ + */ \ + else if (0 /* huh? gone? */ && a_cBits == 16 && fSignIn && iExponent == 31 && uMantissa < UINT64_C(0x8000100000000000) ) \ + { \ + *piDst = 0; \ + if (uMantissa & (RT_BIT_64(64 - a_cBits + 1) - 1)) \ + { \ + fFsw |= X86_FSW_PE; \ + if (!(fFcw & X86_FCW_PM)) \ + fFsw |= X86_FSW_ES | X86_FSW_B; \ + } \ + } \ + /* \ + * Too large/small number outside the target integer range. \ + */ \ + else \ + { \ + fFsw |= X86_FSW_IE; \ + if (fFcw & X86_FCW_IM) \ + *piDst = a_iTypeIndefinite; \ + else \ + fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); \ + } \ + } \ + /* \ + * Map both +0 and -0 to integer zero (signless/+). \ + */ \ + else if (RTFLOAT80U_IS_ZERO(pr80Val)) \ + *piDst = 0; \ + /* \ + * Denormals are just really tiny sub-zero numbers that are trucated to zero. \ + */ \ + else if (RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val) || RTFLOAT80U_IS_DENORMAL(pr80Val)) \ + { \ + *piDst = 0; \ + fFsw |= X86_FSW_PE; \ + if (!(fFcw & X86_FCW_PM)) \ + fFsw |= X86_FSW_ES | X86_FSW_B; \ + } \ + /* \ + * All other special values are considered invalid arguments and result \ + * in an IE exception and indefinite value if masked. \ + */ \ + else \ + { \ + fFsw |= X86_FSW_IE; \ + if (fFcw & X86_FCW_IM) \ + *piDst = a_iTypeIndefinite; \ + else \ + fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); \ + } \ + *pu16FSW = fFsw; \ +} +#if defined(IEM_WITHOUT_ASSEMBLY) +EMIT_FISTT(64, 64, int64_t, INT64_MIN, INT64_MAX, X86_FPU_INT64_INDEFINITE, RT_NOTHING, 1) +EMIT_FISTT(32, 32, int32_t, INT32_MIN, INT32_MAX, X86_FPU_INT32_INDEFINITE, RT_NOTHING, 1) +EMIT_FISTT(16, 16, int16_t, INT16_MIN, INT16_MAX, X86_FPU_INT16_INDEFINITE, RT_NOTHING, 1) +#endif +EMIT_FISTT(16, 16, int16_t, INT16_MIN, INT16_MAX, X86_FPU_INT16_INDEFINITE, _intel, 1) +EMIT_FISTT(16, 16, int16_t, INT16_MIN, INT16_MAX, X86_FPU_INT16_INDEFINITE, _amd, 0) + + +#if defined(IEM_WITHOUT_ASSEMBLY) + +IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, + PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src)) +{ + /*static RTPBCD80U const s_ad80MaxMin[2] = { RTPBCD80U_INIT_MAX(), RTPBCD80U_INIT_MIN() };*/ + static RTPBCD80U const s_ad80Zeros[2] = { RTPBCD80U_INIT_ZERO(0), RTPBCD80U_INIT_ZERO(1) }; + static RTPBCD80U const s_ad80One[2] = { RTPBCD80U_INIT_C(0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,1), + RTPBCD80U_INIT_C(1, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,1) }; + static RTPBCD80U const s_d80Indefinite = RTPBCD80U_INIT_INDEFINITE(); + + uint16_t const fFcw = pFpuState->FCW; + uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); + bool const fSignIn = pr80Src->s.fSign; + + /* + * Deal with normal numbers first. + */ + if (RTFLOAT80U_IS_NORMAL(pr80Src)) + { + uint64_t uMantissa = pr80Src->s.uMantissa; + int32_t iExponent = (int32_t)pr80Src->s.uExponent - RTFLOAT80U_EXP_BIAS; + if ( (uint32_t)iExponent <= 58 + || ((uint32_t)iExponent == 59 && uMantissa <= UINT64_C(0xde0b6b3a763fffff)) ) + { + unsigned const cShiftOff = 63 - iExponent; + uint64_t const fRoundingOffMask = RT_BIT_64(cShiftOff) - 1; + uint64_t const uRoundingAdd = (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST + ? RT_BIT_64(cShiftOff - 1) + : (fFcw & X86_FCW_RC_MASK) == (fSignIn ? X86_FCW_RC_DOWN : X86_FCW_RC_UP) + ? fRoundingOffMask + : 0; + uint64_t fRoundedOff = uMantissa & fRoundingOffMask; + + uMantissa >>= cShiftOff; + uint64_t const uRounding = (fRoundedOff + uRoundingAdd) >> cShiftOff; + uMantissa += uRounding; + if (uMantissa <= (uint64_t)RTPBCD80U_MAX) + { + if (fRoundedOff) + { + if ((uMantissa & 1) && (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST && fRoundedOff == uRoundingAdd) + uMantissa &= ~(uint64_t)1; /* round to even number if equal distance between up/down. */ + else if (uRounding) + fFsw |= X86_FSW_C1; + fFsw |= X86_FSW_PE; + if (!(fFcw & X86_FCW_PM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + + pd80Dst->s.fSign = fSignIn; + pd80Dst->s.uPad = 0; + for (size_t iPair = 0; iPair < RT_ELEMENTS(pd80Dst->s.abPairs); iPair++) + { + unsigned const uDigits = uMantissa % 100; + uMantissa /= 100; + uint8_t const bLo = uDigits % 10; + uint8_t const bHi = uDigits / 10; + pd80Dst->s.abPairs[iPair] = RTPBCD80U_MAKE_PAIR(bHi, bLo); + } + } + else + { + /* overflowed after rounding. */ + fFsw |= X86_FSW_IE; + if (fFcw & X86_FCW_IM) + *pd80Dst = s_d80Indefinite; + else + fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); + } + } + /* + * Tiny sub-zero numbers. + */ + else if (iExponent < 0) + { + if (!fSignIn) + { + if ( (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_UP + || (iExponent == -1 && (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST)) + { + *pd80Dst = s_ad80One[fSignIn]; + fFsw |= X86_FSW_C1; + } + else + *pd80Dst = s_ad80Zeros[fSignIn]; + } + else + { + if ( (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_UP + || (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_ZERO + || (iExponent < -1 && (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST)) + *pd80Dst = s_ad80Zeros[fSignIn]; + else + { + *pd80Dst = s_ad80One[fSignIn]; + fFsw |= X86_FSW_C1; + } + } + fFsw |= X86_FSW_PE; + if (!(fFcw & X86_FCW_PM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + /* + * Too large/small number outside the target integer range. + */ + else + { + fFsw |= X86_FSW_IE; + if (fFcw & X86_FCW_IM) + *pd80Dst = s_d80Indefinite; + else + fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); + } + } + /* + * Map both +0 and -0 to integer zero (signless/+). + */ + else if (RTFLOAT80U_IS_ZERO(pr80Src)) + *pd80Dst = s_ad80Zeros[fSignIn]; + /* + * Denormals are just really tiny sub-zero numbers that are either rounded + * to zero, 1 or -1 depending on sign and rounding control. + */ + else if (RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Src) || RTFLOAT80U_IS_DENORMAL(pr80Src)) + { + if ((fFcw & X86_FCW_RC_MASK) != (fSignIn ? X86_FCW_RC_DOWN : X86_FCW_RC_UP)) + *pd80Dst = s_ad80Zeros[fSignIn]; + else + { + *pd80Dst = s_ad80One[fSignIn]; + fFsw |= X86_FSW_C1; + } + fFsw |= X86_FSW_PE; + if (!(fFcw & X86_FCW_PM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + /* + * All other special values are considered invalid arguments and result + * in an IE exception and indefinite value if masked. + */ + else + { + fFsw |= X86_FSW_IE; + if (fFcw & X86_FCW_IM) + *pd80Dst = s_d80Indefinite; + else + fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); + } + *pu16FSW = fFsw; +} + + +/********************************************************************************************************************************* +* FPU Helpers * +*********************************************************************************************************************************/ +AssertCompileSize(RTFLOAT128U, 16); +AssertCompileSize(RTFLOAT80U, 10); +AssertCompileSize(RTFLOAT64U, 8); +AssertCompileSize(RTFLOAT32U, 4); + +/** + * Normalizes a possible pseudo-normal value. + * + * Psuedo-normal values are some oddities from the 8087 & 287 days. They are + * denormals with the J-bit set, so they can simply be rewritten as 2**-16382, + * i.e. changing uExponent from 0 to 1. + * + * This macro will declare a RTFLOAT80U with the name given by + * @a a_r80ValNormalized and update the @a a_pr80Val variable to point to it if + * a normalization was performed. + * + * @note This must be applied before calling SoftFloat with a value that couldbe + * a pseudo-denormal, as SoftFloat doesn't handle pseudo-denormals + * correctly. + */ +#define IEM_NORMALIZE_PSEUDO_DENORMAL(a_pr80Val, a_r80ValNormalized) \ + RTFLOAT80U a_r80ValNormalized; \ + if (RTFLOAT80U_IS_PSEUDO_DENORMAL(a_pr80Val)) \ + { \ + a_r80ValNormalized = *a_pr80Val; \ + a_r80ValNormalized.s.uExponent = 1; \ + a_pr80Val = &a_r80ValNormalized; \ + } else do {} while (0) + +#ifdef IEM_WITH_FLOAT128_FOR_FPU + +DECLINLINE(int) iemFpuF128SetRounding(uint16_t fFcw) +{ + int fNew; + switch (fFcw & X86_FCW_RC_MASK) + { + default: + case X86_FCW_RC_NEAREST: fNew = FE_TONEAREST; break; + case X86_FCW_RC_ZERO: fNew = FE_TOWARDZERO; break; + case X86_FCW_RC_UP: fNew = FE_UPWARD; break; + case X86_FCW_RC_DOWN: fNew = FE_DOWNWARD; break; + } + int fOld = fegetround(); + fesetround(fNew); + return fOld; +} + + +DECLINLINE(void) iemFpuF128RestoreRounding(int fOld) +{ + fesetround(fOld); +} + +DECLINLINE(_Float128) iemFpuF128FromFloat80(PCRTFLOAT80U pr80Val, uint16_t fFcw) +{ + RT_NOREF(fFcw); + RTFLOAT128U Tmp; + Tmp.s2.uSignAndExponent = pr80Val->s2.uSignAndExponent; + Tmp.s2.uFractionHigh = (uint16_t)((pr80Val->s2.uMantissa & (RT_BIT_64(63) - 1)) >> 48); + Tmp.s2.uFractionMid = (uint32_t)((pr80Val->s2.uMantissa & UINT32_MAX) >> 16); + Tmp.s2.uFractionLow = pr80Val->s2.uMantissa << 48; + if (RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val)) + { + Assert(Tmp.s.uExponent == 0); + Tmp.s2.uSignAndExponent++; + } + return *(_Float128 *)&Tmp; +} + + +DECLINLINE(uint16_t) iemFpuF128ToFloat80(PRTFLOAT80U pr80Dst, _Float128 rd128ValSrc, uint16_t fFcw, uint16_t fFsw) +{ + RT_NOREF(fFcw); + RTFLOAT128U Tmp; + *(_Float128 *)&Tmp = rd128ValSrc; + ASMCompilerBarrier(); + if (RTFLOAT128U_IS_NORMAL(&Tmp)) + { + pr80Dst->s.fSign = Tmp.s64.fSign; + pr80Dst->s.uExponent = Tmp.s64.uExponent; + uint64_t uFraction = Tmp.s64.uFractionHi << (63 - 48) + | Tmp.s64.uFractionLo >> (64 - 15); + + /* Do rounding - just truncate in near mode when midway on an even outcome. */ + unsigned const cShiftOff = 64 - 15; + uint64_t const fRoundingOffMask = RT_BIT_64(cShiftOff) - 1; + uint64_t const uRoundedOff = Tmp.s64.uFractionLo & fRoundingOffMask; + if (uRoundedOff) + { + uint64_t const uRoundingAdd = (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST + ? RT_BIT_64(cShiftOff - 1) + : (fFcw & X86_FCW_RC_MASK) == (Tmp.s64.fSign ? X86_FCW_RC_DOWN : X86_FCW_RC_UP) + ? fRoundingOffMask + : 0; + if ( (fFcw & X86_FCW_RC_MASK) != X86_FCW_RC_NEAREST + || (Tmp.s64.uFractionLo & RT_BIT_64(cShiftOff)) + || uRoundedOff != uRoundingAdd) + { + if ((uRoundedOff + uRoundingAdd) >> cShiftOff) + { + uFraction += 1; + if (!(uFraction & RT_BIT_64(63))) + { /* likely */ } + else + { + uFraction >>= 1; + pr80Dst->s.uExponent++; + if (pr80Dst->s.uExponent == RTFLOAT64U_EXP_MAX) + return fFsw; + } + fFsw |= X86_FSW_C1; + } + } + fFsw |= X86_FSW_PE; + if (!(fFcw & X86_FCW_PM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + pr80Dst->s.uMantissa = RT_BIT_64(63) | uFraction; + } + else if (RTFLOAT128U_IS_ZERO(&Tmp)) + { + pr80Dst->s.fSign = Tmp.s64.fSign; + pr80Dst->s.uExponent = 0; + pr80Dst->s.uMantissa = 0; + } + else if (RTFLOAT128U_IS_INF(&Tmp)) + { + pr80Dst->s.fSign = Tmp.s64.fSign; + pr80Dst->s.uExponent = 0; + pr80Dst->s.uMantissa = 0; + } + return fFsw; +} + + +#else /* !IEM_WITH_FLOAT128_FOR_FPU - SoftFloat */ + +/** Initializer for the SoftFloat state structure. */ +# define IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(a_fFcw) \ + { \ + softfloat_tininess_afterRounding, \ + ((a_fFcw) & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST ? (uint8_t)softfloat_round_near_even \ + : ((a_fFcw) & X86_FCW_RC_MASK) == X86_FCW_RC_UP ? (uint8_t)softfloat_round_max \ + : ((a_fFcw) & X86_FCW_RC_MASK) == X86_FCW_RC_DOWN ? (uint8_t)softfloat_round_min \ + : (uint8_t)softfloat_round_minMag, \ + 0, \ + (uint8_t)((a_fFcw) & X86_FCW_XCPT_MASK), \ + ((a_fFcw) & X86_FCW_PC_MASK) == X86_FCW_PC_53 ? (uint8_t)64 \ + : ((a_fFcw) & X86_FCW_PC_MASK) == X86_FCW_PC_24 ? (uint8_t)32 : (uint8_t)80 \ + } + +/** Returns updated FSW from a SoftFloat state and exception mask (FCW). */ +# define IEM_SOFTFLOAT_STATE_TO_FSW(a_fFsw, a_pSoftState, a_fFcw) \ + ( (a_fFsw) \ + | (uint16_t)(((a_pSoftState)->exceptionFlags & softfloat_flag_c1) << 2) \ + | ((a_pSoftState)->exceptionFlags & X86_FSW_XCPT_MASK) \ + | ( ((a_pSoftState)->exceptionFlags & X86_FSW_XCPT_MASK) & (~(a_fFcw) & X86_FSW_XCPT_MASK) \ + ? X86_FSW_ES | X86_FSW_B : 0) ) + + +DECLINLINE(float128_t) iemFpuSoftF128Precision(float128_t r128, unsigned cBits, uint16_t fFcw = X86_FCW_RC_NEAREST) +{ + RT_NOREF(fFcw); + Assert(cBits > 64); +# if 0 /* rounding does not seem to help */ + uint64_t off = r128.v[0] & (RT_BIT_64(1 + 112 - cBits) - 1); + r128.v[0] &= ~(RT_BIT_64(1 + 112 - cBits) - 1); + if (off >= RT_BIT_64(1 + 112 - cBits - 1) + && (r128.v[0] & RT_BIT_64(1 + 112 - cBits))) + { + uint64_t uOld = r128.v[0]; + r128.v[0] += RT_BIT_64(1 + 112 - cBits); + if (r128.v[0] < uOld) + r128.v[1] += 1; + } +# else + r128.v[0] &= ~(RT_BIT_64(1 + 112 - cBits) - 1); +# endif + return r128; +} + + +DECLINLINE(float128_t) iemFpuSoftF128PrecisionIprt(PCRTFLOAT128U pr128, unsigned cBits, uint16_t fFcw = X86_FCW_RC_NEAREST) +{ + RT_NOREF(fFcw); + Assert(cBits > 64); +# if 0 /* rounding does not seem to help, not even on constants */ + float128_t r128 = { pr128->au64[0], pr128->au64[1] }; + uint64_t off = r128.v[0] & (RT_BIT_64(1 + 112 - cBits) - 1); + r128.v[0] &= ~(RT_BIT_64(1 + 112 - cBits) - 1); + if (off >= RT_BIT_64(1 + 112 - cBits - 1) + && (r128.v[0] & RT_BIT_64(1 + 112 - cBits))) + { + uint64_t uOld = r128.v[0]; + r128.v[0] += RT_BIT_64(1 + 112 - cBits); + if (r128.v[0] < uOld) + r128.v[1] += 1; + } + return r128; +# else + float128_t r128 = { { pr128->au64[0] & ~(RT_BIT_64(1 + 112 - cBits) - 1), pr128->au64[1] } }; + return r128; +# endif +} + + +# if 0 /* unused */ +DECLINLINE(float128_t) iemFpuSoftF128FromIprt(PCRTFLOAT128U pr128) +{ + float128_t r128 = { { pr128->au64[0], pr128->au64[1] } }; + return r128; +} +# endif + + +/** Converts a 80-bit floating point value to SoftFloat 128-bit floating point. */ +DECLINLINE(float128_t) iemFpuSoftF128FromFloat80(PCRTFLOAT80U pr80Val) +{ + extFloat80_t Tmp; + Tmp.signExp = pr80Val->s2.uSignAndExponent; + Tmp.signif = pr80Val->s2.uMantissa; + softfloat_state_t Ignored = SOFTFLOAT_STATE_INIT_DEFAULTS(); + return extF80_to_f128(Tmp, &Ignored); +} + + +/** + * Converts from the packed IPRT 80-bit floating point (RTFLOAT80U) format to + * the SoftFloat extended 80-bit floating point format (extFloat80_t). + * + * This is only a structure format conversion, nothing else. + */ +DECLINLINE(extFloat80_t) iemFpuSoftF80FromIprt(PCRTFLOAT80U pr80Val) +{ + extFloat80_t Tmp; + Tmp.signExp = pr80Val->s2.uSignAndExponent; + Tmp.signif = pr80Val->s2.uMantissa; + return Tmp; +} + + +/** + * Converts from SoftFloat extended 80-bit floating point format (extFloat80_t) + * to the packed IPRT 80-bit floating point (RTFLOAT80U) format. + * + * This is only a structure format conversion, nothing else. + */ +DECLINLINE(PRTFLOAT80U) iemFpuSoftF80ToIprt(PRTFLOAT80U pr80Dst, extFloat80_t const r80XSrc) +{ + pr80Dst->s2.uSignAndExponent = r80XSrc.signExp; + pr80Dst->s2.uMantissa = r80XSrc.signif; + return pr80Dst; +} + + +DECLINLINE(uint16_t) iemFpuSoftF128ToFloat80(PRTFLOAT80U pr80Dst, float128_t r128Src, uint16_t fFcw, uint16_t fFsw) +{ + RT_NOREF(fFcw); + RTFLOAT128U Tmp; + *(float128_t *)&Tmp = r128Src; + ASMCompilerBarrier(); + + if (RTFLOAT128U_IS_NORMAL(&Tmp)) + { + pr80Dst->s.fSign = Tmp.s64.fSign; + pr80Dst->s.uExponent = Tmp.s64.uExponent; + uint64_t uFraction = Tmp.s64.uFractionHi << (63 - 48) + | Tmp.s64.uFractionLo >> (64 - 15); + + /* Do rounding - just truncate in near mode when midway on an even outcome. */ + unsigned const cShiftOff = 64 - 15; + uint64_t const fRoundingOffMask = RT_BIT_64(cShiftOff) - 1; + uint64_t const uRoundedOff = Tmp.s64.uFractionLo & fRoundingOffMask; + if (uRoundedOff) + { + uint64_t const uRoundingAdd = (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST + ? RT_BIT_64(cShiftOff - 1) + : (fFcw & X86_FCW_RC_MASK) == (Tmp.s64.fSign ? X86_FCW_RC_DOWN : X86_FCW_RC_UP) + ? fRoundingOffMask + : 0; + if ( (fFcw & X86_FCW_RC_MASK) != X86_FCW_RC_NEAREST + || (Tmp.s64.uFractionLo & RT_BIT_64(cShiftOff)) + || uRoundedOff != uRoundingAdd) + { + if ((uRoundedOff + uRoundingAdd) >> cShiftOff) + { + uFraction += 1; + if (!(uFraction & RT_BIT_64(63))) + { /* likely */ } + else + { + uFraction >>= 1; + pr80Dst->s.uExponent++; + if (pr80Dst->s.uExponent == RTFLOAT64U_EXP_MAX) + return fFsw; + } + fFsw |= X86_FSW_C1; + } + } + fFsw |= X86_FSW_PE; + if (!(fFcw & X86_FCW_PM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + + pr80Dst->s.uMantissa = RT_BIT_64(63) | uFraction; + } + else if (RTFLOAT128U_IS_ZERO(&Tmp)) + { + pr80Dst->s.fSign = Tmp.s64.fSign; + pr80Dst->s.uExponent = 0; + pr80Dst->s.uMantissa = 0; + } + else if (RTFLOAT128U_IS_INF(&Tmp)) + { + pr80Dst->s.fSign = Tmp.s64.fSign; + pr80Dst->s.uExponent = 0x7fff; + pr80Dst->s.uMantissa = 0; + } + return fFsw; +} + + +/** + * Helper for transfering exception and C1 to FSW and setting the result value + * accordingly. + * + * @returns Updated FSW. + * @param pSoftState The SoftFloat state following the operation. + * @param r80XResult The result of the SoftFloat operation. + * @param pr80Result Where to store the result for IEM. + * @param fFcw The FPU control word. + * @param fFsw The FSW before the operation, with necessary bits + * cleared and such. + * @param pr80XcptResult Alternative return value for use an unmasked \#IE is + * raised. + */ +DECLINLINE(uint16_t) iemFpuSoftStateAndF80ToFswAndIprtResult(softfloat_state_t const *pSoftState, extFloat80_t r80XResult, + PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw, + PCRTFLOAT80U pr80XcptResult) +{ + fFsw |= (pSoftState->exceptionFlags & X86_FSW_XCPT_MASK) + | (uint16_t)((pSoftState->exceptionFlags & softfloat_flag_c1) << 2); + if (fFsw & ~fFcw & X86_FSW_XCPT_MASK) + fFsw |= X86_FSW_ES | X86_FSW_B; + + if (!(fFsw & ~fFcw & (X86_FSW_IE | X86_FSW_DE))) + iemFpuSoftF80ToIprt(pr80Result, r80XResult); + else + { + fFsw &= ~(X86_FSW_OE | X86_FSW_UE | X86_FSW_PE | X86_FSW_ZE | X86_FSW_C1); + *pr80Result = *pr80XcptResult; + } + return fFsw; +} + + +/** + * Helper doing polynomial evaluation using Horner's method. + * + * See https://en.wikipedia.org/wiki/Horner%27s_method for details. + */ +float128_t iemFpuSoftF128HornerPoly(float128_t z, PCRTFLOAT128U g_par128HornerConsts, size_t cHornerConsts, + unsigned cPrecision, softfloat_state_t *pSoftState) +{ + Assert(cHornerConsts > 1); + size_t i = cHornerConsts - 1; + float128_t r128Result = iemFpuSoftF128PrecisionIprt(&g_par128HornerConsts[i], cPrecision); + while (i-- > 0) + { + r128Result = iemFpuSoftF128Precision(f128_mul(r128Result, z, pSoftState), cPrecision); + r128Result = f128_add(r128Result, iemFpuSoftF128PrecisionIprt(&g_par128HornerConsts[i], cPrecision), pSoftState); + r128Result = iemFpuSoftF128Precision(r128Result, cPrecision); + } + return r128Result; +} + +#endif /* !IEM_WITH_FLOAT128_FOR_FPU - SoftFloat */ + + +/** + * Composes a normalized and rounded RTFLOAT80U result from a 192 bit wide + * mantissa, exponent and sign. + * + * @returns Updated FSW. + * @param pr80Dst Where to return the composed value. + * @param fSign The sign. + * @param puMantissa The mantissa, 256-bit type but the to 64-bits are + * ignored and should be zero. This will probably be + * modified during normalization and rounding. + * @param iExponent Unbiased exponent. + * @param fFcw The FPU control word. + * @param fFsw The FPU status word. + */ +static uint16_t iemFpuFloat80RoundAndComposeFrom192(PRTFLOAT80U pr80Dst, bool fSign, PRTUINT256U puMantissa, + int32_t iExponent, uint16_t fFcw, uint16_t fFsw) +{ + AssertStmt(puMantissa->QWords.qw3 == 0, puMantissa->QWords.qw3 = 0); + + iExponent += RTFLOAT80U_EXP_BIAS; + + /* Do normalization if necessary and possible. */ + if (!(puMantissa->QWords.qw2 & RT_BIT_64(63))) + { + int cShift = 192 - RTUInt256BitCount(puMantissa); + if (iExponent > cShift) + iExponent -= cShift; + else + { + if (fFcw & X86_FCW_UM) + { + if (iExponent > 0) + cShift = --iExponent; + else + cShift = 0; + } + iExponent -= cShift; + } + RTUInt256AssignShiftLeft(puMantissa, cShift); + } + + /* Do rounding. */ + uint64_t uMantissa = puMantissa->QWords.qw2; + if (puMantissa->QWords.qw1 || puMantissa->QWords.qw0) + { + bool fAdd; + switch (fFcw & X86_FCW_RC_MASK) + { + default: /* (for the simple-minded MSC which otherwise things fAdd would be used uninitialized) */ + case X86_FCW_RC_NEAREST: + if (puMantissa->QWords.qw1 & RT_BIT_64(63)) + { + if ( (uMantissa & 1) + || puMantissa->QWords.qw0 != 0 + || puMantissa->QWords.qw1 != RT_BIT_64(63)) + { + fAdd = true; + break; + } + uMantissa &= ~(uint64_t)1; + } + fAdd = false; + break; + case X86_FCW_RC_ZERO: + fAdd = false; + break; + case X86_FCW_RC_UP: + fAdd = !fSign; + break; + case X86_FCW_RC_DOWN: + fAdd = fSign; + break; + } + if (fAdd) + { + uint64_t const uTmp = uMantissa; + uMantissa = uTmp + 1; + if (uMantissa < uTmp) + { + uMantissa >>= 1; + uMantissa |= RT_BIT_64(63); + iExponent++; + } + fFsw |= X86_FSW_C1; + } + fFsw |= X86_FSW_PE; + if (!(fFcw & X86_FCW_PM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + + /* Check for underflow (denormals). */ + if (iExponent <= 0) + { + if (fFcw & X86_FCW_UM) + { + if (uMantissa & RT_BIT_64(63)) + uMantissa >>= 1; + iExponent = 0; + } + else + { + iExponent += RTFLOAT80U_EXP_BIAS_ADJUST; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + fFsw |= X86_FSW_UE; + } + /* Check for overflow */ + else if (iExponent >= RTFLOAT80U_EXP_MAX) + { + Assert(iExponent < RTFLOAT80U_EXP_MAX); + } + + /* Compose the result. */ + pr80Dst->s.uMantissa = uMantissa; + pr80Dst->s.uExponent = iExponent; + pr80Dst->s.fSign = fSign; + return fFsw; +} + + +/** + * See also iemAImpl_fld_r80_from_r32 + */ +static uint16_t iemAImplConvertR32ToR80(PCRTFLOAT32U pr32Val, PRTFLOAT80U pr80Dst) +{ + uint16_t fFsw = 0; + if (RTFLOAT32U_IS_NORMAL(pr32Val)) + { + pr80Dst->sj64.fSign = pr32Val->s.fSign; + pr80Dst->sj64.fInteger = 1; + pr80Dst->sj64.uFraction = (uint64_t)pr32Val->s.uFraction + << (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS); + pr80Dst->sj64.uExponent = pr32Val->s.uExponent - RTFLOAT32U_EXP_BIAS + RTFLOAT80U_EXP_BIAS; + Assert(RTFLOAT80U_IS_NORMAL(pr80Dst)); + } + else if (RTFLOAT32U_IS_ZERO(pr32Val)) + { + pr80Dst->s.fSign = pr32Val->s.fSign; + pr80Dst->s.uExponent = 0; + pr80Dst->s.uMantissa = 0; + Assert(RTFLOAT80U_IS_ZERO(pr80Dst)); + } + else if (RTFLOAT32U_IS_SUBNORMAL(pr32Val)) + { + /* Subnormal -> normalized + X86_FSW_DE return. */ + pr80Dst->sj64.fSign = pr32Val->s.fSign; + pr80Dst->sj64.fInteger = 1; + unsigned const cExtraShift = RTFLOAT32U_FRACTION_BITS - ASMBitLastSetU32(pr32Val->s.uFraction); + pr80Dst->sj64.uFraction = (uint64_t)pr32Val->s.uFraction + << (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS + cExtraShift + 1); + pr80Dst->sj64.uExponent = pr32Val->s.uExponent - RTFLOAT32U_EXP_BIAS + RTFLOAT80U_EXP_BIAS - cExtraShift; + fFsw = X86_FSW_DE; + } + else if (RTFLOAT32U_IS_INF(pr32Val)) + { + pr80Dst->s.fSign = pr32Val->s.fSign; + pr80Dst->s.uExponent = RTFLOAT80U_EXP_MAX; + pr80Dst->s.uMantissa = RT_BIT_64(63); + Assert(RTFLOAT80U_IS_INF(pr80Dst)); + } + else + { + Assert(RTFLOAT32U_IS_NAN(pr32Val)); + pr80Dst->sj64.fSign = pr32Val->s.fSign; + pr80Dst->sj64.uExponent = RTFLOAT80U_EXP_MAX; + pr80Dst->sj64.fInteger = 1; + pr80Dst->sj64.uFraction = (uint64_t)pr32Val->s.uFraction + << (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS); + Assert(RTFLOAT80U_IS_NAN(pr80Dst)); + Assert(RTFLOAT80U_IS_SIGNALLING_NAN(pr80Dst) == RTFLOAT32U_IS_SIGNALLING_NAN(pr32Val)); + } + return fFsw; +} + + +/** + * See also iemAImpl_fld_r80_from_r64 + */ +static uint16_t iemAImplConvertR64ToR80(PCRTFLOAT64U pr64Val, PRTFLOAT80U pr80Dst) +{ + uint16_t fFsw = 0; + if (RTFLOAT64U_IS_NORMAL(pr64Val)) + { + pr80Dst->sj64.fSign = pr64Val->s.fSign; + pr80Dst->sj64.fInteger = 1; + pr80Dst->sj64.uFraction = pr64Val->s64.uFraction << (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS); + pr80Dst->sj64.uExponent = pr64Val->s.uExponent - RTFLOAT64U_EXP_BIAS + RTFLOAT80U_EXP_BIAS; + Assert(RTFLOAT80U_IS_NORMAL(pr80Dst)); + } + else if (RTFLOAT64U_IS_ZERO(pr64Val)) + { + pr80Dst->s.fSign = pr64Val->s.fSign; + pr80Dst->s.uExponent = 0; + pr80Dst->s.uMantissa = 0; + Assert(RTFLOAT80U_IS_ZERO(pr80Dst)); + } + else if (RTFLOAT64U_IS_SUBNORMAL(pr64Val)) + { + /* Subnormal values gets normalized. */ + pr80Dst->sj64.fSign = pr64Val->s.fSign; + pr80Dst->sj64.fInteger = 1; + unsigned const cExtraShift = RTFLOAT64U_FRACTION_BITS - ASMBitLastSetU64(pr64Val->s64.uFraction); + pr80Dst->sj64.uFraction = pr64Val->s64.uFraction + << (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS + cExtraShift + 1); + pr80Dst->sj64.uExponent = pr64Val->s.uExponent - RTFLOAT64U_EXP_BIAS + RTFLOAT80U_EXP_BIAS - cExtraShift; + fFsw = X86_FSW_DE; + } + else if (RTFLOAT64U_IS_INF(pr64Val)) + { + pr80Dst->s.fSign = pr64Val->s.fSign; + pr80Dst->s.uExponent = RTFLOAT80U_EXP_MAX; + pr80Dst->s.uMantissa = RT_BIT_64(63); + Assert(RTFLOAT80U_IS_INF(pr80Dst)); + } + else + { + /* Signalling and quiet NaNs, both turn into quiet ones when loaded (weird). */ + Assert(RTFLOAT64U_IS_NAN(pr64Val)); + pr80Dst->sj64.fSign = pr64Val->s.fSign; + pr80Dst->sj64.uExponent = RTFLOAT80U_EXP_MAX; + pr80Dst->sj64.fInteger = 1; + pr80Dst->sj64.uFraction = pr64Val->s64.uFraction << (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS); + Assert(RTFLOAT80U_IS_NAN(pr80Dst)); + Assert(RTFLOAT80U_IS_SIGNALLING_NAN(pr80Dst) == RTFLOAT64U_IS_SIGNALLING_NAN(pr64Val)); + } + return fFsw; +} + + +/** + * See also EMIT_FILD. + */ +#define EMIT_CONVERT_IXX_TO_R80(a_cBits) \ +static PRTFLOAT80U iemAImplConvertI ## a_cBits ## ToR80(int ## a_cBits ## _t iVal, PRTFLOAT80U pr80Dst) \ +{ \ + if (iVal == 0) \ + { \ + pr80Dst->s.fSign = 0; \ + pr80Dst->s.uExponent = 0; \ + pr80Dst->s.uMantissa = 0; \ + } \ + else \ + { \ + if (iVal > 0) \ + pr80Dst->s.fSign = 0; \ + else \ + { \ + pr80Dst->s.fSign = 1; \ + iVal = -iVal; \ + } \ + unsigned const cBits = ASMBitLastSetU ## a_cBits((uint ## a_cBits ## _t)iVal); \ + pr80Dst->s.uExponent = cBits - 1 + RTFLOAT80U_EXP_BIAS; \ + pr80Dst->s.uMantissa = (uint64_t)iVal << (RTFLOAT80U_FRACTION_BITS + 1 - cBits); \ + } \ + return pr80Dst; \ +} +EMIT_CONVERT_IXX_TO_R80(16) +EMIT_CONVERT_IXX_TO_R80(32) +//EMIT_CONVERT_IXX_TO_R80(64) + +/** For implementing iemAImpl_fmul_r80_by_r64 and such. */ +#define EMIT_R80_BY_R64(a_Name, a_fnR80ByR80, a_DenormalException) \ +IEM_DECL_IMPL_DEF(void, a_Name,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2)) \ +{ \ + RTFLOAT80U r80Val2; \ + uint16_t fFsw = iemAImplConvertR64ToR80(pr64Val2, &r80Val2); \ + Assert(!fFsw || fFsw == X86_FSW_DE); \ + if (fFsw) \ + { \ + if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_NAN(pr80Val1) || (a_DenormalException)) \ + fFsw = 0; \ + else if (!(pFpuState->FCW & X86_FCW_DM)) \ + { \ + pFpuRes->r80Result = *pr80Val1; \ + pFpuRes->FSW = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT) \ + | X86_FSW_DE | X86_FSW_ES | X86_FSW_B; \ + return; \ + } \ + } \ + a_fnR80ByR80(pFpuState, pFpuRes, pr80Val1, &r80Val2); \ + pFpuRes->FSW = (pFpuRes->FSW & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT) | fFsw; \ +} + +/** For implementing iemAImpl_fmul_r80_by_r32 and such. */ +#define EMIT_R80_BY_R32(a_Name, a_fnR80ByR80, a_DenormalException) \ +IEM_DECL_IMPL_DEF(void, a_Name,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2)) \ +{ \ + RTFLOAT80U r80Val2; \ + uint16_t fFsw = iemAImplConvertR32ToR80(pr32Val2, &r80Val2); \ + Assert(!fFsw || fFsw == X86_FSW_DE); \ + if (fFsw) \ + { \ + if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_NAN(pr80Val1) || (a_DenormalException)) \ + fFsw = 0; \ + else if (!(pFpuState->FCW & X86_FCW_DM)) \ + { \ + pFpuRes->r80Result = *pr80Val1; \ + pFpuRes->FSW = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT) \ + | X86_FSW_DE | X86_FSW_ES | X86_FSW_B; \ + return; \ + } \ + } \ + a_fnR80ByR80(pFpuState, pFpuRes, pr80Val1, &r80Val2); \ + pFpuRes->FSW = (pFpuRes->FSW & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT) | fFsw; \ +} + +/** For implementing iemAImpl_fimul_r80_by_i32 and such. */ +#define EMIT_R80_BY_I32(a_Name, a_fnR80ByR80) \ +IEM_DECL_IMPL_DEF(void, a_Name,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2)) \ +{ \ + RTFLOAT80U r80Val2; \ + a_fnR80ByR80(pFpuState, pFpuRes, pr80Val1, iemAImplConvertI32ToR80(*pi32Val2, &r80Val2)); \ + pFpuRes->FSW = (pFpuRes->FSW & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT); \ +} + +/** For implementing iemAImpl_fimul_r80_by_i16 and such. */ +#define EMIT_R80_BY_I16(a_Name, a_fnR80ByR80) \ +IEM_DECL_IMPL_DEF(void, a_Name,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2)) \ +{ \ + RTFLOAT80U r80Val2; \ + a_fnR80ByR80(pFpuState, pFpuRes, pr80Val1, iemAImplConvertI16ToR80(*pi16Val2, &r80Val2)); \ + pFpuRes->FSW = (pFpuRes->FSW & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT); \ +} + + + +/********************************************************************************************************************************* +* x86 FPU Division Operations * +*********************************************************************************************************************************/ + +/** Worker for iemAImpl_fdiv_r80_by_r80 & iemAImpl_fdivr_r80_by_r80. */ +static uint16_t iemAImpl_fdiv_f80_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PRTFLOAT80U pr80Result, + uint16_t fFcw, uint16_t fFsw, PCRTFLOAT80U pr80Val1Org) +{ + if (!RTFLOAT80U_IS_ZERO(pr80Val2) || RTFLOAT80U_IS_NAN(pr80Val1) || RTFLOAT80U_IS_INF(pr80Val1)) + { + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw); + extFloat80_t r80XResult = extF80_div(iemFpuSoftF80FromIprt(pr80Val1), iemFpuSoftF80FromIprt(pr80Val2), &SoftState); + return iemFpuSoftStateAndF80ToFswAndIprtResult(&SoftState, r80XResult, pr80Result, fFcw, fFsw, pr80Val1Org); + } + if (!RTFLOAT80U_IS_ZERO(pr80Val1)) + { /* Div by zero. */ + if (fFcw & X86_FCW_ZM) + *pr80Result = g_ar80Infinity[pr80Val1->s.fSign != pr80Val2->s.fSign]; + else + { + *pr80Result = *pr80Val1Org; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + fFsw |= X86_FSW_ZE; + } + else + { /* Invalid operand */ + if (fFcw & X86_FCW_IM) + *pr80Result = g_r80Indefinite; + else + { + *pr80Result = *pr80Val1Org; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + fFsw |= X86_FSW_IE; + } + return fFsw; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fdiv_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, + PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) +{ + uint16_t const fFcw = pFpuState->FCW; + uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT); + + /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. */ + if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2)) + { + if (fFcw & X86_FCW_IM) + pFpuRes->r80Result = g_r80Indefinite; + else + { + pFpuRes->r80Result = *pr80Val1; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + fFsw |= X86_FSW_IE; + } + /* SoftFloat does not check for denormals and certainly not report them to us. NaNs & /0 trumps denormals. */ + else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2) && !RTFLOAT80U_IS_ZERO(pr80Val2)) + || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1)) ) + { + if (fFcw & X86_FCW_DM) + { + PCRTFLOAT80U const pr80Val1Org = pr80Val1; + IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized); + IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized); + fFsw = iemAImpl_fdiv_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org); + } + else + { + pFpuRes->r80Result = *pr80Val1; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + fFsw |= X86_FSW_DE; + } + /* SoftFloat can handle the rest: */ + else + fFsw = iemAImpl_fdiv_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1); + + pFpuRes->FSW = fFsw; +} + + +EMIT_R80_BY_R64(iemAImpl_fdiv_r80_by_r64, iemAImpl_fdiv_r80_by_r80, 0) +EMIT_R80_BY_R32(iemAImpl_fdiv_r80_by_r32, iemAImpl_fdiv_r80_by_r80, 0) +EMIT_R80_BY_I32(iemAImpl_fidiv_r80_by_i32, iemAImpl_fdiv_r80_by_r80) +EMIT_R80_BY_I16(iemAImpl_fidiv_r80_by_i16, iemAImpl_fdiv_r80_by_r80) + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fdivr_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, + PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) +{ + uint16_t const fFcw = pFpuState->FCW; + uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT); + + /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. */ + if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2)) + { + if (fFcw & X86_FCW_IM) + pFpuRes->r80Result = g_r80Indefinite; + else + { + pFpuRes->r80Result = *pr80Val1; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + fFsw |= X86_FSW_IE; + } + /* SoftFloat does not check for denormals and certainly not report them to us. NaNs & /0 trumps denormals. */ + else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2)) + || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1) && !RTFLOAT80U_IS_ZERO(pr80Val1)) ) + { + if (fFcw & X86_FCW_DM) + { + PCRTFLOAT80U const pr80Val1Org = pr80Val1; + IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized); + IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized); + fFsw = iemAImpl_fdiv_f80_r80_worker(pr80Val2, pr80Val1, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org); + } + else + { + pFpuRes->r80Result = *pr80Val1; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + fFsw |= X86_FSW_DE; + } + /* SoftFloat can handle the rest: */ + else + fFsw = iemAImpl_fdiv_f80_r80_worker(pr80Val2, pr80Val1, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1); + + pFpuRes->FSW = fFsw; +} + + +EMIT_R80_BY_R64(iemAImpl_fdivr_r80_by_r64, iemAImpl_fdivr_r80_by_r80, RTFLOAT80U_IS_ZERO(pr80Val1)) +EMIT_R80_BY_R32(iemAImpl_fdivr_r80_by_r32, iemAImpl_fdivr_r80_by_r80, RTFLOAT80U_IS_ZERO(pr80Val1)) +EMIT_R80_BY_I32(iemAImpl_fidivr_r80_by_i32, iemAImpl_fdivr_r80_by_r80) +EMIT_R80_BY_I16(iemAImpl_fidivr_r80_by_i16, iemAImpl_fdivr_r80_by_r80) + + +/** Worker for iemAImpl_fprem_r80_by_r80 & iemAImpl_fprem1_r80_by_r80. */ +static uint16_t iemAImpl_fprem_fprem1_r80_by_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PRTFLOAT80U pr80Result, + uint16_t fFcw, uint16_t fFsw, PCRTFLOAT80U pr80Val1Org, bool fLegacyInstr) +{ + if (!RTFLOAT80U_IS_ZERO(pr80Val2) || RTFLOAT80U_IS_NAN(pr80Val1) || RTFLOAT80U_IS_INF(pr80Val1)) + { + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw); + uint16_t fCxFlags = 0; + extFloat80_t r80XResult = extF80_partialRem(iemFpuSoftF80FromIprt(pr80Val1), iemFpuSoftF80FromIprt(pr80Val2), + fLegacyInstr ? softfloat_round_minMag : softfloat_round_near_even, + &fCxFlags, &SoftState); + Assert(!(fCxFlags & ~X86_FSW_C_MASK)); + fFsw = iemFpuSoftStateAndF80ToFswAndIprtResult(&SoftState, r80XResult, pr80Result, fFcw, fFsw, pr80Val1Org); + if ( !(fFsw & X86_FSW_IE) + && !RTFLOAT80U_IS_NAN(pr80Result) + && !RTFLOAT80U_IS_INDEFINITE(pr80Result)) + { + fFsw &= ~(uint16_t)X86_FSW_C_MASK; + fFsw |= fCxFlags & X86_FSW_C_MASK; + } + return fFsw; + } + + /* Invalid operand */ + if (fFcw & X86_FCW_IM) + *pr80Result = g_r80Indefinite; + else + { + *pr80Result = *pr80Val1Org; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + return fFsw | X86_FSW_IE; +} + + +static void iemAImpl_fprem_fprem1_r80_by_r80(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, + PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, bool fLegacyInstr) +{ + uint16_t const fFcw = pFpuState->FCW; + uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 /*| X86_FSW_C2*/ | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT); + + /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. + In addition, we'd like to handle zero ST(1) now as SoftFloat returns Inf instead + of Indefinite. (Note! There is no #Z like the footnotes to tables 3-31 and 3-32 + for the FPREM1 & FPREM1 instructions in the intel reference manual claims!) */ + if ( RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2) + || (RTFLOAT80U_IS_ZERO(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1) && !RTFLOAT80U_IS_INDEFINITE(pr80Val1))) + { + if (fFcw & X86_FCW_IM) + pFpuRes->r80Result = g_r80Indefinite; + else + { + pFpuRes->r80Result = *pr80Val1; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + fFsw |= X86_FSW_IE; + } + /* SoftFloat does not check for denormals and certainly not report them to us. NaNs & /0 trumps denormals. */ + else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2) && !RTFLOAT80U_IS_ZERO(pr80Val2)) + || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1) && !RTFLOAT80U_IS_INF(pr80Val1)) ) + { + if (fFcw & X86_FCW_DM) + { + PCRTFLOAT80U const pr80Val1Org = pr80Val1; + IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized); + IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized); + fFsw = iemAImpl_fprem_fprem1_r80_by_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, + pr80Val1Org, fLegacyInstr); + } + else + { + pFpuRes->r80Result = *pr80Val1; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + fFsw |= X86_FSW_DE; + } + /* SoftFloat can handle the rest: */ + else + fFsw = iemAImpl_fprem_fprem1_r80_by_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, + pr80Val1, fLegacyInstr); + + pFpuRes->FSW = fFsw; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fprem_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, + PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) +{ + iemAImpl_fprem_fprem1_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2, true /*fLegacyInstr*/); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fprem1_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, + PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) +{ + iemAImpl_fprem_fprem1_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2, false /*fLegacyInstr*/); +} + + +/********************************************************************************************************************************* +* x87 FPU Multiplication Operations * +*********************************************************************************************************************************/ + +/** Worker for iemAImpl_fmul_r80_by_r80. */ +static uint16_t iemAImpl_fmul_f80_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PRTFLOAT80U pr80Result, + uint16_t fFcw, uint16_t fFsw, PCRTFLOAT80U pr80Val1Org) +{ + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw); + extFloat80_t r80XResult = extF80_mul(iemFpuSoftF80FromIprt(pr80Val1), iemFpuSoftF80FromIprt(pr80Val2), &SoftState); + return iemFpuSoftStateAndF80ToFswAndIprtResult(&SoftState, r80XResult, pr80Result, fFcw, fFsw, pr80Val1Org); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fmul_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, + PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) +{ + uint16_t const fFcw = pFpuState->FCW; + uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT); + + /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. */ + if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2)) + { + if (fFcw & X86_FCW_IM) + pFpuRes->r80Result = g_r80Indefinite; + else + { + pFpuRes->r80Result = *pr80Val1; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + fFsw |= X86_FSW_IE; + } + /* SoftFloat does not check for denormals and certainly not report them to us. NaNs trumps denormals. */ + else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2)) + || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1)) ) + { + if (fFcw & X86_FCW_DM) + { + PCRTFLOAT80U const pr80Val1Org = pr80Val1; + IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized); + IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized); + fFsw = iemAImpl_fmul_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org); + } + else + { + pFpuRes->r80Result = *pr80Val1; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + fFsw |= X86_FSW_DE; + } + /* SoftFloat can handle the rest: */ + else + fFsw = iemAImpl_fmul_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1); + + pFpuRes->FSW = fFsw; +} + + +EMIT_R80_BY_R64(iemAImpl_fmul_r80_by_r64, iemAImpl_fmul_r80_by_r80, 0) +EMIT_R80_BY_R32(iemAImpl_fmul_r80_by_r32, iemAImpl_fmul_r80_by_r80, 0) +EMIT_R80_BY_I32(iemAImpl_fimul_r80_by_i32, iemAImpl_fmul_r80_by_r80) +EMIT_R80_BY_I16(iemAImpl_fimul_r80_by_i16, iemAImpl_fmul_r80_by_r80) + + +/********************************************************************************************************************************* +* x87 FPU Addition * +*********************************************************************************************************************************/ + +/** Worker for iemAImpl_fadd_r80_by_r80. */ +static uint16_t iemAImpl_fadd_f80_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PRTFLOAT80U pr80Result, + uint16_t fFcw, uint16_t fFsw, PCRTFLOAT80U pr80Val1Org) +{ + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw); + extFloat80_t r80XResult = extF80_add(iemFpuSoftF80FromIprt(pr80Val1), iemFpuSoftF80FromIprt(pr80Val2), &SoftState); + return iemFpuSoftStateAndF80ToFswAndIprtResult(&SoftState, r80XResult, pr80Result, fFcw, fFsw, pr80Val1Org); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fadd_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, + PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) +{ + uint16_t const fFcw = pFpuState->FCW; + uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT); + + /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. */ + if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2)) + { + if (fFcw & X86_FCW_IM) + pFpuRes->r80Result = g_r80Indefinite; + else + { + pFpuRes->r80Result = *pr80Val1; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + fFsw |= X86_FSW_IE; + } + /* SoftFloat does not check for denormals and certainly not report them to us. NaNs trumps denormals. */ + else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2)) + || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1)) ) + { + if (fFcw & X86_FCW_DM) + { + PCRTFLOAT80U const pr80Val1Org = pr80Val1; + IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized); + IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized); + fFsw = iemAImpl_fadd_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org); + } + else + { + pFpuRes->r80Result = *pr80Val1; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + fFsw |= X86_FSW_DE; + } + /* SoftFloat can handle the rest: */ + else + fFsw = iemAImpl_fadd_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1); + + pFpuRes->FSW = fFsw; +} + + +EMIT_R80_BY_R64(iemAImpl_fadd_r80_by_r64, iemAImpl_fadd_r80_by_r80, 0) +EMIT_R80_BY_R32(iemAImpl_fadd_r80_by_r32, iemAImpl_fadd_r80_by_r80, 0) +EMIT_R80_BY_I32(iemAImpl_fiadd_r80_by_i32, iemAImpl_fadd_r80_by_r80) +EMIT_R80_BY_I16(iemAImpl_fiadd_r80_by_i16, iemAImpl_fadd_r80_by_r80) + + +/********************************************************************************************************************************* +* x87 FPU Subtraction * +*********************************************************************************************************************************/ + +/** Worker for iemAImpl_fsub_r80_by_r80 and iemAImpl_fsubr_r80_by_r80. */ +static uint16_t iemAImpl_fsub_f80_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PRTFLOAT80U pr80Result, + uint16_t fFcw, uint16_t fFsw, PCRTFLOAT80U pr80Val1Org) +{ + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw); + extFloat80_t r80XResult = extF80_sub(iemFpuSoftF80FromIprt(pr80Val1), iemFpuSoftF80FromIprt(pr80Val2), &SoftState); + return iemFpuSoftStateAndF80ToFswAndIprtResult(&SoftState, r80XResult, pr80Result, fFcw, fFsw, pr80Val1Org); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fsub_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, + PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) +{ + uint16_t const fFcw = pFpuState->FCW; + uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT); + + /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. */ + if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2)) + { + if (fFcw & X86_FCW_IM) + pFpuRes->r80Result = g_r80Indefinite; + else + { + pFpuRes->r80Result = *pr80Val1; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + fFsw |= X86_FSW_IE; + } + /* SoftFloat does not check for denormals and certainly not report them to us. NaNs trumps denormals. */ + else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2)) + || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1)) ) + { + if (fFcw & X86_FCW_DM) + { + PCRTFLOAT80U const pr80Val1Org = pr80Val1; + IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized); + IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized); + fFsw = iemAImpl_fsub_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org); + } + else + { + pFpuRes->r80Result = *pr80Val1; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + fFsw |= X86_FSW_DE; + } + /* SoftFloat can handle the rest: */ + else + fFsw = iemAImpl_fsub_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1); + + pFpuRes->FSW = fFsw; +} + + +EMIT_R80_BY_R64(iemAImpl_fsub_r80_by_r64, iemAImpl_fsub_r80_by_r80, 0) +EMIT_R80_BY_R32(iemAImpl_fsub_r80_by_r32, iemAImpl_fsub_r80_by_r80, 0) +EMIT_R80_BY_I32(iemAImpl_fisub_r80_by_i32, iemAImpl_fsub_r80_by_r80) +EMIT_R80_BY_I16(iemAImpl_fisub_r80_by_i16, iemAImpl_fsub_r80_by_r80) + + +/* Same as iemAImpl_fsub_r80_by_r80, but with input operands switched. */ +IEM_DECL_IMPL_DEF(void, iemAImpl_fsubr_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, + PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) +{ + uint16_t const fFcw = pFpuState->FCW; + uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT); + + /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. */ + if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2)) + { + if (fFcw & X86_FCW_IM) + pFpuRes->r80Result = g_r80Indefinite; + else + { + pFpuRes->r80Result = *pr80Val1; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + fFsw |= X86_FSW_IE; + } + /* SoftFloat does not check for denormals and certainly not report them to us. NaNs trumps denormals. */ + else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2)) + || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1)) ) + { + if (fFcw & X86_FCW_DM) + { + PCRTFLOAT80U const pr80Val1Org = pr80Val1; + IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized); + IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized); + fFsw = iemAImpl_fsub_f80_r80_worker(pr80Val2, pr80Val1, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org); + } + else + { + pFpuRes->r80Result = *pr80Val1; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + fFsw |= X86_FSW_DE; + } + /* SoftFloat can handle the rest: */ + else + fFsw = iemAImpl_fsub_f80_r80_worker(pr80Val2, pr80Val1, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1); + + pFpuRes->FSW = fFsw; +} + + +EMIT_R80_BY_R64(iemAImpl_fsubr_r80_by_r64, iemAImpl_fsubr_r80_by_r80, 0) +EMIT_R80_BY_R32(iemAImpl_fsubr_r80_by_r32, iemAImpl_fsubr_r80_by_r80, 0) +EMIT_R80_BY_I32(iemAImpl_fisubr_r80_by_i32, iemAImpl_fsubr_r80_by_r80) +EMIT_R80_BY_I16(iemAImpl_fisubr_r80_by_i16, iemAImpl_fsubr_r80_by_r80) + + +/********************************************************************************************************************************* +* x87 FPU Trigometric Operations * +*********************************************************************************************************************************/ +static uint16_t iemAImpl_fpatan_r80_by_r80_normal(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PIEMFPURESULT pFpuRes, uint16_t fFcw, uint16_t fFsw) +{ + softfloat_state_t SoftState = SOFTFLOAT_STATE_INIT_DEFAULTS(); + extFloat80_t y = iemFpuSoftF80FromIprt(pr80Val1); + extFloat80_t x = iemFpuSoftF80FromIprt(pr80Val2); + extFloat80_t v; + (void)fFcw; + + v = extF80_atan2(y, x, &SoftState); + + iemFpuSoftF80ToIprt(&pFpuRes->r80Result, v); + return fFsw; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_fpatan_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, + PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) +{ + uint16_t const fFcw = pFpuState->FCW; + uint16_t fFsw = pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3); + + if (RTFLOAT80U_IS_NORMAL(pr80Val1) && RTFLOAT80U_IS_NORMAL(pr80Val2)) + { + fFsw = iemAImpl_fpatan_r80_by_r80_normal(pr80Val1, pr80Val2, pFpuRes, fFcw, fFsw); + + fFsw |= X86_FSW_PE | (7 << X86_FSW_TOP_SHIFT); + if (!(fFcw & X86_FCW_PM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + else + { + fFsw |= X86_FSW_IE; + if (!(fFcw & X86_FCW_IM)) + { + pFpuRes->r80Result = *pr80Val2; + fFsw |= X86_FSW_ES | X86_FSW_B | (6 << X86_FSW_TOP_SHIFT); + } + else + { + pFpuRes->r80Result = g_r80Indefinite; + fFsw |= (7 << X86_FSW_TOP_SHIFT); + } + } + + pFpuRes->FSW = fFsw; +} +#endif /* IEM_WITHOUT_ASSEMBLY */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_fpatan_r80_by_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, + PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) +{ + iemAImpl_fpatan_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_fpatan_r80_by_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, + PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) +{ + iemAImpl_fpatan_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2); +} + + +#if defined(IEM_WITHOUT_ASSEMBLY) +static uint16_t iemAImpl_fptan_r80_r80_normal(PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val, uint16_t fFcw, uint16_t fFsw) +{ + softfloat_state_t SoftState = SOFTFLOAT_STATE_INIT_DEFAULTS(); + extFloat80_t x = iemFpuSoftF80FromIprt(pr80Val); + extFloat80_t v; + (void)fFcw; + + v = extF80_tan(x, &SoftState); + + iemFpuSoftF80ToIprt(&pFpuResTwo->r80Result1, v); + return fFsw; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_fptan_r80_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val)) +{ + uint16_t const fFcw = pFpuState->FCW; + uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | /*X86_FSW_C2 |*/ X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT); + + if (RTFLOAT80U_IS_ZERO(pr80Val)) + { + pFpuResTwo->r80Result1 = *pr80Val; + pFpuResTwo->r80Result2 = g_ar80One[0]; + } + else if (RTFLOAT80U_IS_NORMAL(pr80Val)) + { + if (pr80Val->s.uExponent >= RTFLOAT80U_EXP_BIAS + 63) + { + fFsw |= X86_FSW_C2 | (7 << X86_FSW_TOP_SHIFT); + pFpuResTwo->r80Result1 = *pr80Val; + } + else + { + if (pr80Val->s.uExponent <= RTFLOAT80U_EXP_BIAS - 63) + { + pFpuResTwo->r80Result1 = *pr80Val; + } + else + { + fFsw = iemAImpl_fptan_r80_r80_normal(pFpuResTwo, pr80Val, fFcw, fFsw); + } + + pFpuResTwo->r80Result2 = g_ar80One[0]; + + fFsw |= X86_FSW_PE; + if (!(fFcw & X86_FCW_PM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + } + else + { + fFsw |= X86_FSW_IE; + if (!(fFcw & X86_FCW_IM)) + fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); + } + + pFpuResTwo->FSW = fFsw; +} +#endif /* IEM_WITHOUT_ASSEMBLY */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_fptan_r80_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val)) +{ + iemAImpl_fptan_r80_r80(pFpuState, pFpuResTwo, pr80Val); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_fptan_r80_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val)) +{ + iemAImpl_fptan_r80_r80(pFpuState, pFpuResTwo, pr80Val); +} + +#ifdef IEM_WITHOUT_ASSEMBLY + +static uint16_t iemAImpl_fsin_r80_normal(PCRTFLOAT80U pr80Val, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw) +{ + softfloat_state_t SoftState = SOFTFLOAT_STATE_INIT_DEFAULTS(); + extFloat80_t x = iemFpuSoftF80FromIprt(pr80Val); + extFloat80_t v; + (void)fFcw; + + v = extF80_sin(x, &SoftState); + + iemFpuSoftF80ToIprt(pr80Result, v); + + return fFsw; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_fsin_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) +{ + uint16_t const fFcw = pFpuState->FCW; + uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | /*X86_FSW_C2 |*/ X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT); + + if (RTFLOAT80U_IS_ZERO(pr80Val)) + { + pFpuRes->r80Result = *pr80Val; + } + else if (RTFLOAT80U_IS_NORMAL(pr80Val)) + { + if (pr80Val->s.uExponent >= RTFLOAT80U_EXP_BIAS + 63) + { + fFsw |= X86_FSW_C2; + pFpuRes->r80Result = *pr80Val; + } + else + { + if (pr80Val->s.uExponent <= RTFLOAT80U_EXP_BIAS - 63) + { + pFpuRes->r80Result = *pr80Val; + } + else + { + fFsw = iemAImpl_fsin_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw); + } + fFsw |= X86_FSW_PE; + if (!(fFcw & X86_FCW_PM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + } + else if (RTFLOAT80U_IS_INF(pr80Val)) + { + fFsw |= X86_FSW_IE; + if (!(fFcw & X86_FCW_IM)) + { + fFsw |= X86_FSW_ES | X86_FSW_B; + pFpuRes->r80Result = *pr80Val; + } + else + { + pFpuRes->r80Result = g_r80Indefinite; + } + } + else if (RTFLOAT80U_IS_DENORMAL(pr80Val)) + { + fFsw |= X86_FSW_DE; + + if (fFcw & X86_FCW_DM) + { + if (fFcw & X86_FCW_UM) + { + pFpuRes->r80Result = *pr80Val; + } + else + { + /* Underflow signalling as described at 7.4 section of 1985 IEEE 754*/ + uint64_t uMantissa = pr80Val->s.uMantissa; + uint32_t uExponent = ASMBitLastSetU64(uMantissa); + + uExponent = 64 - uExponent; + uMantissa <<= uExponent; + uExponent = RTFLOAT128U_EXP_BIAS_ADJUST - uExponent + 1; + + pFpuRes->r80Result.s.fSign = pr80Val->s.fSign; + pFpuRes->r80Result.s.uMantissa = uMantissa; + pFpuRes->r80Result.s.uExponent = uExponent; + } + + fFsw |= X86_FSW_UE | X86_FSW_PE; + + if ((fFcw & X86_FCW_UM) && (fFcw & X86_FCW_PM)) + { + /* All the exceptions are masked. */ + } + else + { + fFsw |= X86_FSW_ES | X86_FSW_B; + } + } + else + { + pFpuRes->r80Result = *pr80Val; + + fFsw |= X86_FSW_ES | X86_FSW_B; + } + } + else if (RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val)) + { + pFpuRes->r80Result = *pr80Val; + fFsw |= X86_FSW_DE; + + if (fFcw & X86_FCW_DM) + { + if (fFcw & X86_FCW_PM) + { + fFsw |= X86_FSW_PE; + } + else + { + fFsw |= X86_FSW_ES | X86_FSW_B | X86_FSW_PE; + } + + pFpuRes->r80Result.sj64.uExponent = 1; + } + else + { + fFsw |= X86_FSW_ES | X86_FSW_B; + } + } else if ( RTFLOAT80U_IS_QUIET_NAN(pr80Val) + || RTFLOAT80U_IS_INDEFINITE(pr80Val)) + { + pFpuRes->r80Result = *pr80Val; + } else { + if ( ( RTFLOAT80U_IS_UNNORMAL(pr80Val) + || RTFLOAT80U_IS_PSEUDO_NAN(pr80Val)) + && (fFcw & X86_FCW_IM)) + pFpuRes->r80Result = g_r80Indefinite; + else + { + pFpuRes->r80Result = *pr80Val; + if (RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val) && (fFcw & X86_FCW_IM)) + pFpuRes->r80Result.s.uMantissa |= RT_BIT_64(62); /* make it quiet */ + } + + fFsw |= X86_FSW_IE; + if (!(fFcw & X86_FCW_IM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + + pFpuRes->FSW = fFsw; +} +#endif /* IEM_WITHOUT_ASSEMBLY */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_fsin_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) +{ + iemAImpl_fsin_r80(pFpuState, pFpuRes, pr80Val); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_fsin_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) +{ + iemAImpl_fsin_r80(pFpuState, pFpuRes, pr80Val); +} + +#ifdef IEM_WITHOUT_ASSEMBLY + +static uint16_t iemAImpl_fcos_r80_normal(PCRTFLOAT80U pr80Val, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw) +{ + softfloat_state_t SoftState = SOFTFLOAT_STATE_INIT_DEFAULTS(); + extFloat80_t x = iemFpuSoftF80FromIprt(pr80Val); + extFloat80_t v; + (void)fFcw; + + v = extF80_cos(x, &SoftState); + + iemFpuSoftF80ToIprt(pr80Result, v); + + return fFsw; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_fcos_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) +{ + uint16_t const fFcw = pFpuState->FCW; + uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | /*X86_FSW_C2 |*/ X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT); + + if (RTFLOAT80U_IS_ZERO(pr80Val)) + { + pFpuRes->r80Result = g_ar80One[0]; + } + else if (RTFLOAT80U_IS_NORMAL(pr80Val)) + { + if (pr80Val->s.uExponent >= RTFLOAT80U_EXP_BIAS + 63) + { + fFsw |= X86_FSW_C2; + pFpuRes->r80Result = *pr80Val; + } + else + { + if (pr80Val->s.uExponent <= RTFLOAT80U_EXP_BIAS - 63) + { + pFpuRes->r80Result = g_ar80One[0]; + + } + else + { + fFsw = iemAImpl_fcos_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw); + fFsw |= X86_FSW_C1; // TBD: If the inexact result was rounded up (C1 is set) or “not rounded up” (C1 is cleared). + } + fFsw |= X86_FSW_PE; + if (!(fFcw & X86_FCW_PM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + } + else if (RTFLOAT80U_IS_INF(pr80Val)) + { + fFsw |= X86_FSW_IE; + if (!(fFcw & X86_FCW_IM)) + { + fFsw |= X86_FSW_ES | X86_FSW_B; + pFpuRes->r80Result = *pr80Val; + } + else + { + pFpuRes->r80Result = g_r80Indefinite; + } + } + else if (RTFLOAT80U_IS_DENORMAL(pr80Val) || RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val)) + { + fFsw |= X86_FSW_DE; + + if (fFcw & X86_FCW_DM) + { + pFpuRes->r80Result = g_ar80One[0]; + + if (fFcw & X86_FCW_PM) + { + fFsw |= X86_FSW_PE; + } + else + { + fFsw |= X86_FSW_PE | X86_FSW_ES | X86_FSW_B; + } + } + else + { + pFpuRes->r80Result = *pr80Val; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + } else if ( RTFLOAT80U_IS_QUIET_NAN(pr80Val) + || RTFLOAT80U_IS_INDEFINITE(pr80Val)) + { + pFpuRes->r80Result = *pr80Val; + } else { + if ( ( RTFLOAT80U_IS_UNNORMAL(pr80Val) + || RTFLOAT80U_IS_PSEUDO_NAN(pr80Val)) + && (fFcw & X86_FCW_IM)) + pFpuRes->r80Result = g_r80Indefinite; + else + { + pFpuRes->r80Result = *pr80Val; + if (RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val) && (fFcw & X86_FCW_IM)) + pFpuRes->r80Result.s.uMantissa |= RT_BIT_64(62); /* make it quiet */ + } + + fFsw |= X86_FSW_IE; + if (!(fFcw & X86_FCW_IM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + + pFpuRes->FSW = fFsw; +} +#endif /* IEM_WITHOUT_ASSEMBLY */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_fcos_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) +{ + iemAImpl_fcos_r80(pFpuState, pFpuRes, pr80Val); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_fcos_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) +{ + iemAImpl_fcos_r80(pFpuState, pFpuRes, pr80Val); +} + +#ifdef IEM_WITHOUT_ASSEMBLY + +static uint16_t iemAImpl_fsincos_r80_r80_normal(PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val, uint16_t fFcw, uint16_t fFsw) +{ + softfloat_state_t SoftState = SOFTFLOAT_STATE_INIT_DEFAULTS(); + extFloat80_t x = iemFpuSoftF80FromIprt(pr80Val); + extFloat80_t r80Sin, r80Cos; + (void)fFcw; + + extF80_sincos(x, &r80Sin, &r80Cos, &SoftState); + + iemFpuSoftF80ToIprt(&pFpuResTwo->r80Result1, r80Sin); + iemFpuSoftF80ToIprt(&pFpuResTwo->r80Result2, r80Cos); + + return fFsw; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_fsincos_r80_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val)) +{ + uint16_t const fFcw = pFpuState->FCW; + uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | /*X86_FSW_C2 |*/ X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT); + + if (RTFLOAT80U_IS_ZERO(pr80Val)) + { + pFpuResTwo->r80Result1 = *pr80Val; + pFpuResTwo->r80Result2 = g_ar80One[0]; + fFsw &= ~X86_FSW_TOP_MASK | (6 << X86_FSW_TOP_SHIFT); + } + else if (RTFLOAT80U_IS_NORMAL(pr80Val)) + { + if (pr80Val->s.uExponent >= RTFLOAT80U_EXP_BIAS + 63) + { + fFsw |= X86_FSW_C2; + + if (fFcw & X86_FCW_IM) + { + pFpuResTwo->r80Result1 = g_r80Indefinite; + } + else + { + pFpuResTwo->r80Result1 = g_ar80Zero[0]; + } + + pFpuResTwo->r80Result2 = *pr80Val; + } + else + { + fFsw &= ~X86_FSW_TOP_MASK | (6 << X86_FSW_TOP_SHIFT); + + if (pr80Val->s.uExponent <= RTFLOAT80U_EXP_BIAS - 63) + { + pFpuResTwo->r80Result1 = *pr80Val; + pFpuResTwo->r80Result2 = g_ar80One[0]; + } + else + { + fFsw = iemAImpl_fsincos_r80_r80_normal(pFpuResTwo, pr80Val, fFcw, fFsw); + fFsw |= X86_FSW_C1; // TBD: If the inexact result was rounded up (C1 is set) or “not rounded up” (C1 is cleared). + } + fFsw |= X86_FSW_PE; + if (!(fFcw & X86_FCW_PM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + } + else if (RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val)) + { + fFsw |= X86_FSW_DE; + + if (fFcw & X86_FCW_DM) + { + pFpuResTwo->r80Result1 = *pr80Val; + pFpuResTwo->r80Result2 = g_ar80One[0]; + fFsw &= ~X86_FSW_TOP_MASK | (6 << X86_FSW_TOP_SHIFT); + + if (fFcw & X86_FCW_PM) + { + fFsw |= X86_FSW_PE; + } + else + { + fFsw |= X86_FSW_PE | X86_FSW_ES | X86_FSW_B; + } + + pFpuResTwo->r80Result1.sj64.uExponent = 1; + } + else + { + pFpuResTwo->r80Result1 = g_ar80Zero[0]; + pFpuResTwo->r80Result2 = *pr80Val; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + } + else if (RTFLOAT80U_IS_DENORMAL(pr80Val)) + { + fFsw |= X86_FSW_DE; + + if (fFcw & X86_FCW_DM) + { + pFpuResTwo->r80Result2 = g_ar80One[0]; + + if (fFcw & X86_FCW_UM) + { + pFpuResTwo->r80Result1 = *pr80Val; + } + else + { + /* Underflow signalling as described at 7.4 section of 1985 IEEE 754*/ + uint64_t uMantissa = pr80Val->s.uMantissa; + uint32_t uExponent = ASMBitLastSetU64(uMantissa); + + uExponent = 64 - uExponent; + uMantissa <<= uExponent; + uExponent = RTFLOAT128U_EXP_BIAS_ADJUST - uExponent + 1; + + pFpuResTwo->r80Result1.s.fSign = pr80Val->s.fSign; + pFpuResTwo->r80Result1.s.uMantissa = uMantissa; + pFpuResTwo->r80Result1.s.uExponent = uExponent; + } + + fFsw &= ~X86_FSW_TOP_MASK | (6 << X86_FSW_TOP_SHIFT); + fFsw |= X86_FSW_UE | X86_FSW_PE; + + if ((fFcw & X86_FCW_UM) && (fFcw & X86_FCW_PM)) + { + /* All the exceptions are masked. */ + } + else + { + fFsw |= X86_FSW_ES | X86_FSW_B; + } + } + else + { + pFpuResTwo->r80Result1 = g_ar80Zero[0]; + pFpuResTwo->r80Result2 = *pr80Val; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + } + else if (RTFLOAT80U_IS_QUIET_NAN(pr80Val) || RTFLOAT80U_IS_INDEFINITE(pr80Val)) + { + pFpuResTwo->r80Result1 = *pr80Val; + pFpuResTwo->r80Result2 = *pr80Val; + fFsw &= ~X86_FSW_TOP_MASK | (6 << X86_FSW_TOP_SHIFT); + } + else if (RTFLOAT80U_IS_UNNORMAL(pr80Val) || RTFLOAT80U_IS_PSEUDO_NAN(pr80Val)) + { + if (fFcw & X86_FCW_IM) + { + pFpuResTwo->r80Result1 = g_r80Indefinite; + pFpuResTwo->r80Result2 = g_r80Indefinite; + fFsw &= ~X86_FSW_TOP_MASK | (6 << X86_FSW_TOP_SHIFT); + } + else + { + pFpuResTwo->r80Result1 = g_ar80Zero[0]; + pFpuResTwo->r80Result2 = *pr80Val; + } + + fFsw |= X86_FSW_IE; + if (!(fFcw & X86_FCW_IM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + else if (RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val)) + { + pFpuResTwo->r80Result1 = *pr80Val; + pFpuResTwo->r80Result2 = *pr80Val; + + if (fFcw & X86_FCW_IM) + { + pFpuResTwo->r80Result1.s.uMantissa |= RT_BIT_64(62); /* make it quiet */ + pFpuResTwo->r80Result2.s.uMantissa |= RT_BIT_64(62); + fFsw &= ~X86_FSW_TOP_MASK | (6 << X86_FSW_TOP_SHIFT); + } + else + { + pFpuResTwo->r80Result1 = g_ar80Zero[0]; + pFpuResTwo->r80Result2 = *pr80Val; + } + + fFsw |= X86_FSW_IE; + if (!(fFcw & X86_FCW_IM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + else if (RTFLOAT80U_IS_INF(pr80Val)) + { + if (fFcw & X86_FCW_IM) + { + pFpuResTwo->r80Result1 = g_r80Indefinite; + pFpuResTwo->r80Result2 = g_r80Indefinite; + fFsw &= ~X86_FSW_TOP_MASK | (6 << X86_FSW_TOP_SHIFT); + } + else + { + pFpuResTwo->r80Result1 = g_ar80Zero[0]; + pFpuResTwo->r80Result2 = *pr80Val; + } + + fFsw |= X86_FSW_IE; + if (!(fFcw & X86_FCW_IM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + + pFpuResTwo->FSW = fFsw; +} +#endif /* IEM_WITHOUT_ASSEMBLY */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_fsincos_r80_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val)) +{ + iemAImpl_fsincos_r80_r80(pFpuState, pFpuResTwo, pr80Val); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_fsincos_r80_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val)) +{ + iemAImpl_fsincos_r80_r80(pFpuState, pFpuResTwo, pr80Val); +} + +#ifdef IEM_WITHOUT_ASSEMBLY + + +/********************************************************************************************************************************* +* x87 FPU Compare and Testing Operations * +*********************************************************************************************************************************/ + +IEM_DECL_IMPL_DEF(void, iemAImpl_ftst_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val)) +{ + uint16_t fFsw = (7 << X86_FSW_TOP_SHIFT); + + if (RTFLOAT80U_IS_ZERO(pr80Val)) + fFsw |= X86_FSW_C3; + else if (RTFLOAT80U_IS_NORMAL(pr80Val) || RTFLOAT80U_IS_INF(pr80Val)) + fFsw |= pr80Val->s.fSign ? X86_FSW_C0 : 0; + else if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val)) + { + fFsw |= pr80Val->s.fSign ? X86_FSW_C0 | X86_FSW_DE : X86_FSW_DE; + if (!(pFpuState->FCW & X86_FCW_DM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + else + { + fFsw |= X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3 | X86_FSW_IE; + if (!(pFpuState->FCW & X86_FCW_IM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + + *pu16Fsw = fFsw; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fxam_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val)) +{ + RT_NOREF(pFpuState); + uint16_t fFsw = (7 << X86_FSW_TOP_SHIFT); + + /* C1 = sign bit (always, even if empty Intel says). */ + if (pr80Val->s.fSign) + fFsw |= X86_FSW_C1; + + /* Classify the value in C0, C2, C3. */ + if (!(pFpuState->FTW & RT_BIT_32(X86_FSW_TOP_GET(pFpuState->FSW)))) + fFsw |= X86_FSW_C0 | X86_FSW_C3; /* empty */ + else if (RTFLOAT80U_IS_NORMAL(pr80Val)) + fFsw |= X86_FSW_C2; + else if (RTFLOAT80U_IS_ZERO(pr80Val)) + fFsw |= X86_FSW_C3; + else if (RTFLOAT80U_IS_QUIET_OR_SIGNALLING_NAN(pr80Val)) + fFsw |= X86_FSW_C0; + else if (RTFLOAT80U_IS_INF(pr80Val)) + fFsw |= X86_FSW_C0 | X86_FSW_C2; + else if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val)) + fFsw |= X86_FSW_C2 | X86_FSW_C3; + /* whatever else: 0 */ + + *pu16Fsw = fFsw; +} + + +/** + * Worker for fcom, fucom, and friends. + */ +static uint16_t iemAImpl_fcom_r80_by_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, + uint16_t fFcw, uint16_t fFsw, bool fIeOnAllNaNs) +{ + /* + * Unpack the values. + */ + bool const fSign1 = pr80Val1->s.fSign; + int32_t iExponent1 = pr80Val1->s.uExponent; + uint64_t uMantissa1 = pr80Val1->s.uMantissa; + + bool const fSign2 = pr80Val2->s.fSign; + int32_t iExponent2 = pr80Val2->s.uExponent; + uint64_t uMantissa2 = pr80Val2->s.uMantissa; + + /* + * Check for invalid inputs. + */ + if ( RTFLOAT80U_IS_387_INVALID_EX(uMantissa1, iExponent1) + || RTFLOAT80U_IS_387_INVALID_EX(uMantissa2, iExponent2)) + { + if (!(fFcw & X86_FCW_IM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + return fFsw | X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3 | X86_FSW_IE; + } + + /* + * Check for NaNs and indefinites, they are all unordered and trumps #DE. + */ + if ( RTFLOAT80U_IS_INDEFINITE_OR_QUIET_OR_SIGNALLING_NAN_EX(uMantissa1, iExponent1) + || RTFLOAT80U_IS_INDEFINITE_OR_QUIET_OR_SIGNALLING_NAN_EX(uMantissa2, iExponent2)) + { + if ( fIeOnAllNaNs + || RTFLOAT80U_IS_SIGNALLING_NAN_EX(uMantissa1, iExponent1) + || RTFLOAT80U_IS_SIGNALLING_NAN_EX(uMantissa2, iExponent2)) + { + fFsw |= X86_FSW_IE; + if (!(fFcw & X86_FCW_IM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + return fFsw | X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3; + } + + /* + * Normalize the values. + */ + if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL_EX(uMantissa1, iExponent1)) + { + if (RTFLOAT80U_IS_PSEUDO_DENORMAL_EX(uMantissa1, iExponent1)) + iExponent1 = 1; + else + { + iExponent1 = 64 - ASMBitLastSetU64(uMantissa1); + uMantissa1 <<= iExponent1; + iExponent1 = 1 - iExponent1; + } + fFsw |= X86_FSW_DE; + if (!(fFcw & X86_FCW_DM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + + if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL_EX(uMantissa2, iExponent2)) + { + if (RTFLOAT80U_IS_PSEUDO_DENORMAL_EX(uMantissa2, iExponent2)) + iExponent2 = 1; + else + { + iExponent2 = 64 - ASMBitLastSetU64(uMantissa2); + uMantissa2 <<= iExponent2; + iExponent2 = 1 - iExponent2; + } + fFsw |= X86_FSW_DE; + if (!(fFcw & X86_FCW_DM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + + /* + * Test if equal (val1 == val2): + */ + if ( uMantissa1 == uMantissa2 + && iExponent1 == iExponent2 + && ( fSign1 == fSign2 + || (uMantissa1 == 0 && iExponent1 == 0) /* ignore sign for zero */ ) ) + fFsw |= X86_FSW_C3; + /* + * Test if less than (val1 < val2): + */ + else if (fSign1 && !fSign2) + fFsw |= X86_FSW_C0; + else if (fSign1 == fSign2) + { + /* Zeros are problematic, however at the most one can be zero here. */ + if (RTFLOAT80U_IS_ZERO_EX(uMantissa1, iExponent1)) + return !fSign1 ? fFsw | X86_FSW_C0 : fFsw; + if (RTFLOAT80U_IS_ZERO_EX(uMantissa2, iExponent2)) + return fSign1 ? fFsw | X86_FSW_C0 : fFsw; + + if ( fSign1 + ^ ( iExponent1 < iExponent2 + || ( iExponent1 == iExponent2 + && uMantissa1 < uMantissa2 ) ) ) + fFsw |= X86_FSW_C0; + } + /* else: No flags set if greater. */ + + return fFsw; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fcom_r80_by_r80,(PCX86FXSTATE pFpuState, uint16_t *pfFsw, + PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) +{ + *pfFsw = iemAImpl_fcom_r80_by_r80_worker(pr80Val1, pr80Val2, pFpuState->FCW, 6 << X86_FSW_TOP_SHIFT, true /*fIeOnAllNaNs*/); +} + + + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fucom_r80_by_r80,(PCX86FXSTATE pFpuState, uint16_t *pfFsw, + PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) +{ + *pfFsw = iemAImpl_fcom_r80_by_r80_worker(pr80Val1, pr80Val2, pFpuState->FCW, 6 << X86_FSW_TOP_SHIFT, false /*fIeOnAllNaNs*/); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fcom_r80_by_r64,(PCX86FXSTATE pFpuState, uint16_t *pfFsw, + PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2)) +{ + RTFLOAT80U r80Val2; + uint16_t fFsw = iemAImplConvertR64ToR80(pr64Val2, &r80Val2); + Assert(!fFsw || fFsw == X86_FSW_DE); + *pfFsw = iemAImpl_fcom_r80_by_r80_worker(pr80Val1, &r80Val2, pFpuState->FCW, 7 << X86_FSW_TOP_SHIFT, true /*fIeOnAllNaNs*/); + if (fFsw != 0 && !(*pfFsw & X86_FSW_IE)) + { + if (!(pFpuState->FCW & X86_FCW_DM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + *pfFsw |= fFsw; + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fcom_r80_by_r32,(PCX86FXSTATE pFpuState, uint16_t *pfFsw, + PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2)) +{ + RTFLOAT80U r80Val2; + uint16_t fFsw = iemAImplConvertR32ToR80(pr32Val2, &r80Val2); + Assert(!fFsw || fFsw == X86_FSW_DE); + *pfFsw = iemAImpl_fcom_r80_by_r80_worker(pr80Val1, &r80Val2, pFpuState->FCW, 7 << X86_FSW_TOP_SHIFT, true /*fIeOnAllNaNs*/); + if (fFsw != 0 && !(*pfFsw & X86_FSW_IE)) + { + if (!(pFpuState->FCW & X86_FCW_DM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + *pfFsw |= fFsw; + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_ficom_r80_by_i32,(PCX86FXSTATE pFpuState, uint16_t *pfFsw, + PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2)) +{ + RTFLOAT80U r80Val2; + iemAImpl_fcom_r80_by_r80(pFpuState, pfFsw, pr80Val1, iemAImplConvertI32ToR80(*pi32Val2, &r80Val2)); + *pfFsw = (*pfFsw & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_ficom_r80_by_i16,(PCX86FXSTATE pFpuState, uint16_t *pfFsw, + PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2)) +{ + RTFLOAT80U r80Val2; + iemAImpl_fcom_r80_by_r80(pFpuState, pfFsw, pr80Val1, iemAImplConvertI16ToR80(*pi16Val2, &r80Val2)); + *pfFsw = (*pfFsw & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT); +} + + +/** + * Worker for fcomi & fucomi. + */ +static uint32_t iemAImpl_fcomi_r80_by_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, + uint16_t fFcw, uint16_t fFswIn, bool fIeOnAllNaNs, uint16_t *pfFsw) +{ + uint16_t fFsw = iemAImpl_fcom_r80_by_r80_worker(pr80Val1, pr80Val2, fFcw, 6 << X86_FSW_TOP_SHIFT, fIeOnAllNaNs); + uint32_t fEflags = ((fFsw & X86_FSW_C3) >> (X86_FSW_C3_BIT - X86_EFL_ZF_BIT)) + | ((fFsw & X86_FSW_C2) >> (X86_FSW_C2_BIT - X86_EFL_PF_BIT)) + | ((fFsw & X86_FSW_C0) >> (X86_FSW_C0_BIT - X86_EFL_CF_BIT)); + + /* Note! C1 is not cleared as per docs! Everything is preserved. */ + *pfFsw = (fFsw & ~X86_FSW_C_MASK) | (fFswIn & X86_FSW_C_MASK); + return fEflags | X86_EFL_IF | X86_EFL_RA1_MASK; +} + + +IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_fcomi_r80_by_r80,(PCX86FXSTATE pFpuState, uint16_t *pfFsw, + PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) +{ + return iemAImpl_fcomi_r80_by_r80_worker(pr80Val1, pr80Val2, pFpuState->FCW, pFpuState->FSW, true /*fIeOnAllNaNs*/, pfFsw); +} + + +IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_fucomi_r80_by_r80,(PCX86FXSTATE pFpuState, uint16_t *pfFsw, + PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) +{ + return iemAImpl_fcomi_r80_by_r80_worker(pr80Val1, pr80Val2, pFpuState->FCW, pFpuState->FSW, false /*fIeOnAllNaNs*/, pfFsw); +} + + +/********************************************************************************************************************************* +* x87 FPU Other Operations * +*********************************************************************************************************************************/ + +/** + * Helper for iemAImpl_frndint_r80, called both on normal and denormal numbers. + */ +static uint16_t iemAImpl_frndint_r80_normal(PCRTFLOAT80U pr80Val, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw) +{ + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw); + iemFpuSoftF80ToIprt(pr80Result, extF80_roundToInt(iemFpuSoftF80FromIprt(pr80Val), SoftState.roundingMode, + true /*exact / generate #PE */, &SoftState)); + return IEM_SOFTFLOAT_STATE_TO_FSW(fFsw, &SoftState, fFcw); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_frndint_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) +{ + uint16_t const fFcw = pFpuState->FCW; + uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT); + + if (RTFLOAT80U_IS_NORMAL(pr80Val)) + fFsw = iemAImpl_frndint_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw); + else if ( RTFLOAT80U_IS_ZERO(pr80Val) + || RTFLOAT80U_IS_QUIET_NAN(pr80Val) + || RTFLOAT80U_IS_INDEFINITE(pr80Val) + || RTFLOAT80U_IS_INF(pr80Val)) + pFpuRes->r80Result = *pr80Val; + else if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val)) + { + fFsw |= X86_FSW_DE; + if (fFcw & X86_FCW_DM) + fFsw = iemAImpl_frndint_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw); + else + { + pFpuRes->r80Result = *pr80Val; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + } + else + { + if (fFcw & X86_FCW_IM) + { + if (!RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val)) + pFpuRes->r80Result = g_r80Indefinite; + else + { + pFpuRes->r80Result = *pr80Val; + pFpuRes->r80Result.s.uMantissa |= RT_BIT_64(62); /* make it quiet */ + } + } + else + { + pFpuRes->r80Result = *pr80Val; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + fFsw |= X86_FSW_IE; + } + pFpuRes->FSW = fFsw; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fscale_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, + PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) +{ + /* The SoftFloat worker function extF80_scale_extF80 is of our creation, so + it does everything we need it to do. */ + uint16_t const fFcw = pFpuState->FCW; + uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT); + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw); + extFloat80_t r80XResult = extF80_scale_extF80(iemFpuSoftF80FromIprt(pr80Val1), iemFpuSoftF80FromIprt(pr80Val2), &SoftState); + pFpuRes->FSW = iemFpuSoftStateAndF80ToFswAndIprtResult(&SoftState, r80XResult, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1); +} + + +/** + * Helper for iemAImpl_fsqrt_r80, called both on normal and denormal numbers. + */ +static uint16_t iemAImpl_fsqrt_r80_normal(PCRTFLOAT80U pr80Val, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw) +{ + Assert(!pr80Val->s.fSign); + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw); + iemFpuSoftF80ToIprt(pr80Result, extF80_sqrt(iemFpuSoftF80FromIprt(pr80Val), &SoftState)); + return IEM_SOFTFLOAT_STATE_TO_FSW(fFsw, &SoftState, fFcw); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fsqrt_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) +{ + uint16_t const fFcw = pFpuState->FCW; + uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT); + + if (RTFLOAT80U_IS_NORMAL(pr80Val) && !pr80Val->s.fSign) + fFsw = iemAImpl_fsqrt_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw); + else if ( RTFLOAT80U_IS_ZERO(pr80Val) + || RTFLOAT80U_IS_QUIET_NAN(pr80Val) + || RTFLOAT80U_IS_INDEFINITE(pr80Val) + || (RTFLOAT80U_IS_INF(pr80Val) && !pr80Val->s.fSign)) + pFpuRes->r80Result = *pr80Val; + else if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val) && !pr80Val->s.fSign) /* Negative denormals only generate #IE! */ + { + fFsw |= X86_FSW_DE; + if (fFcw & X86_FCW_DM) + fFsw = iemAImpl_fsqrt_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw); + else + { + pFpuRes->r80Result = *pr80Val; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + } + else + { + if (fFcw & X86_FCW_IM) + { + if (!RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val)) + pFpuRes->r80Result = g_r80Indefinite; + else + { + pFpuRes->r80Result = *pr80Val; + pFpuRes->r80Result.s.uMantissa |= RT_BIT_64(62); /* make it quiet */ + } + } + else + { + pFpuRes->r80Result = *pr80Val; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + fFsw |= X86_FSW_IE; + } + pFpuRes->FSW = fFsw; +} + + +/** + * @code{.unparsed} + * x x * ln2 + * f(x) = 2 - 1 = e - 1 + * + * @endcode + * + * We can approximate e^x by a Taylor/Maclaurin series (see + * https://en.wikipedia.org/wiki/Taylor_series#Exponential_function): + * @code{.unparsed} + * n 0 1 2 3 4 + * inf x x x x x x + * SUM ----- = --- + --- + --- + --- + --- + ... + * n=0 n! 0! 1! 2! 3! 4! + * + * 2 3 4 + * x x x + * = 1 + x + --- + --- + --- + ... + * 2! 3! 4! + * @endcode + * + * Given z = x * ln2, we get: + * @code{.unparsed} + * 2 3 4 n + * z z z z z + * e - 1 = z + --- + --- + --- + ... + --- + * 2! 3! 4! n! + * @endcode + * + * Wanting to use Horner's method, we move one z outside and get: + * @code{.unparsed} + * 2 3 (n-1) + * z z z z + * = z ( 1 + --- + --- + --- + ... + ------- ) + * 2! 3! 4! n! + * @endcode + * + * The constants we need for using Horner's methods are 1 and 1 / n!. + * + * For very tiny x values, we can get away with f(x) = x * ln 2, because + * because we don't have the necessary precision to represent 1.0 + z/3 + ... + * and can approximate it to be 1.0. For a visual demonstration of this + * check out https://www.desmos.com/calculator/vidcdxizd9 (for as long + * as it valid), plotting f(x) = 2^x - 1 and f(x) = x * ln2. + * + * + * As constant accuracy goes, figure 0.1 "80387 Block Diagram" in the "80387 + * Data Sheet" (order 231920-002; Appendix E in 80387 PRM 231917-001; Military + * i387SX 271166-002), indicates that constants are 67-bit (constant rom block) + * and the internal mantissa size is 68-bit (mantissa adder & barrel shifter + * blocks). (The one bit difference is probably an implicit one missing from + * the constant ROM.) A paper on division and sqrt on the AMD-K7 by Stuart F. + * Oberman states that it internally used a 68 bit mantissa with a 18-bit + * exponent. + * + * However, even when sticking to 67 constants / 68 mantissas, I have not yet + * successfully reproduced the exact results from an Intel 10980XE, there is + * always a portition of rounding differences. Not going to spend too much time + * on getting this 100% the same, at least not now. + * + * P.S. If someone are really curious about 8087 and its contstants: + * http://www.righto.com/2020/05/extracting-rom-constants-from-8087-math.html + * + * + * @param pr80Val The exponent value (x), less than 1.0, greater than + * -1.0 and not zero. This can be a normal, denormal + * or pseudo-denormal value. + * @param pr80Result Where to return the result. + * @param fFcw FPU control word. + * @param fFsw FPU status word. + */ +static uint16_t iemAImpl_f2xm1_r80_normal(PCRTFLOAT80U pr80Val, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw) +{ + /* As mentioned above, we can skip the expensive polynomial calculation + as it will be close enough to 1.0 that it makes no difference. + + The cutoff point for intel 10980XE is exponents >= -69. Intel + also seems to be using a 67-bit or 68-bit constant value, and we get + a smattering of rounding differences if we go for higher precision. */ + if (pr80Val->s.uExponent <= RTFLOAT80U_EXP_BIAS - 69) + { + RTUINT256U u256; + RTUInt128MulByU64Ex(&u256, &g_u128Ln2MantissaIntel, pr80Val->s.uMantissa); + u256.QWords.qw0 |= 1; /* force #PE */ + fFsw = iemFpuFloat80RoundAndComposeFrom192(pr80Result, pr80Val->s.fSign, &u256, + !RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val) && !RTFLOAT80U_IS_DENORMAL(pr80Val) + ? (int32_t)pr80Val->s.uExponent - RTFLOAT80U_EXP_BIAS + : 1 - RTFLOAT80U_EXP_BIAS, + fFcw, fFsw); + } + else + { +#ifdef IEM_WITH_FLOAT128_FOR_FPU + /* This approach is not good enough for small values, we end up with zero. */ + int const fOldRounding = iemFpuF128SetRounding(fFcw); + _Float128 rd128Val = iemFpuF128FromFloat80(pr80Val, fFcw); + _Float128 rd128Result = powf128(2.0L, rd128Val); + rd128Result -= 1.0L; + fFsw = iemFpuF128ToFloat80(pr80Result, rd128Result, fFcw, fFsw); + iemFpuF128RestoreRounding(fOldRounding); + +# else + softfloat_state_t SoftState = SOFTFLOAT_STATE_INIT_DEFAULTS(); + float128_t const x = iemFpuSoftF128FromFloat80(pr80Val); + + /* As mentioned above, enforce 68-bit internal mantissa width to better + match the Intel 10980XE results. */ + unsigned const cPrecision = 68; + + /* first calculate z = x * ln2 */ + float128_t z = iemFpuSoftF128Precision(f128_mul(x, iemFpuSoftF128PrecisionIprt(&g_r128Ln2, cPrecision), &SoftState), + cPrecision); + + /* Then do the polynomial evaluation. */ + float128_t r = iemFpuSoftF128HornerPoly(z, g_ar128F2xm1HornerConsts, RT_ELEMENTS(g_ar128F2xm1HornerConsts), + cPrecision, &SoftState); + r = f128_mul(z, r, &SoftState); + + /* Output the result. */ + fFsw = iemFpuSoftF128ToFloat80(pr80Result, r, fFcw, fFsw); +# endif + } + return fFsw; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_f2xm1_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) +{ + uint16_t const fFcw = pFpuState->FCW; + uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT); + + if (RTFLOAT80U_IS_NORMAL(pr80Val)) + { + if (pr80Val->s.uExponent < RTFLOAT80U_EXP_BIAS) + fFsw = iemAImpl_f2xm1_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw); + else + { + /* Special case: + 2^+1.0 - 1.0 = 1.0 + 2^-1.0 - 1.0 = -0.5 */ + if ( pr80Val->s.uExponent == RTFLOAT80U_EXP_BIAS + && pr80Val->s.uMantissa == RT_BIT_64(63)) + { + pFpuRes->r80Result.s.uMantissa = RT_BIT_64(63); + pFpuRes->r80Result.s.uExponent = RTFLOAT80U_EXP_BIAS - pr80Val->s.fSign; + pFpuRes->r80Result.s.fSign = pr80Val->s.fSign; + } + /* ST(0) > 1.0 || ST(0) < -1.0: undefined behavior */ + /** @todo 287 is documented to only accept values 0 <= ST(0) <= 0.5. */ + else + pFpuRes->r80Result = *pr80Val; + fFsw |= X86_FSW_PE; + if (!(fFcw & X86_FCW_PM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + } + else if ( RTFLOAT80U_IS_ZERO(pr80Val) + || RTFLOAT80U_IS_QUIET_NAN(pr80Val) + || RTFLOAT80U_IS_INDEFINITE(pr80Val)) + pFpuRes->r80Result = *pr80Val; + else if (RTFLOAT80U_IS_INF(pr80Val)) + pFpuRes->r80Result = pr80Val->s.fSign ? g_ar80One[1] : *pr80Val; + else if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val)) + { + fFsw |= X86_FSW_DE; + if (fFcw & X86_FCW_DM) + fFsw = iemAImpl_f2xm1_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw); + else + { + pFpuRes->r80Result = *pr80Val; + fFsw |= X86_FSW_ES | X86_FSW_B; + } + } + else + { + if ( ( RTFLOAT80U_IS_UNNORMAL(pr80Val) + || RTFLOAT80U_IS_PSEUDO_NAN(pr80Val)) + && (fFcw & X86_FCW_IM)) + pFpuRes->r80Result = g_r80Indefinite; + else + { + pFpuRes->r80Result = *pr80Val; + if (RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val) && (fFcw & X86_FCW_IM)) + pFpuRes->r80Result.s.uMantissa |= RT_BIT_64(62); /* make it quiet */ + } + fFsw |= X86_FSW_IE; + if (!(fFcw & X86_FCW_IM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + pFpuRes->FSW = fFsw; +} + +#endif /* IEM_WITHOUT_ASSEMBLY */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_f2xm1_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) +{ + iemAImpl_f2xm1_r80(pFpuState, pFpuRes, pr80Val); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_f2xm1_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) +{ + iemAImpl_f2xm1_r80(pFpuState, pFpuRes, pr80Val); +} + +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_fabs_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) +{ + pFpuRes->FSW = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT); + pFpuRes->r80Result = *pr80Val; + pFpuRes->r80Result.s.fSign = 0; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fchs_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) +{ + pFpuRes->FSW = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT); + pFpuRes->r80Result = *pr80Val; + pFpuRes->r80Result.s.fSign = !pr80Val->s.fSign; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_fxtract_r80_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val)) +{ + uint16_t const fFcw = pFpuState->FCW; + uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT); + + if (RTFLOAT80U_IS_NORMAL(pr80Val)) + { + softfloat_state_t Ignored = SOFTFLOAT_STATE_INIT_DEFAULTS(); + iemFpuSoftF80ToIprt(&pFpuResTwo->r80Result1, i32_to_extF80((int32_t)pr80Val->s.uExponent - RTFLOAT80U_EXP_BIAS, &Ignored)); + + pFpuResTwo->r80Result2.s.fSign = pr80Val->s.fSign; + pFpuResTwo->r80Result2.s.uExponent = RTFLOAT80U_EXP_BIAS; + pFpuResTwo->r80Result2.s.uMantissa = pr80Val->s.uMantissa; + } + else if (RTFLOAT80U_IS_ZERO(pr80Val)) + { + fFsw |= X86_FSW_ZE; + if (fFcw & X86_FCW_ZM) + { + pFpuResTwo->r80Result1 = g_ar80Infinity[1]; + pFpuResTwo->r80Result2 = *pr80Val; + } + else + { + pFpuResTwo->r80Result2 = *pr80Val; + fFsw = X86_FSW_ES | X86_FSW_B | (fFsw & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT); + } + } + else if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val)) + { + fFsw |= X86_FSW_DE; + if (fFcw & X86_FCW_DM) + { + pFpuResTwo->r80Result2.s.fSign = pr80Val->s.fSign; + pFpuResTwo->r80Result2.s.uExponent = RTFLOAT80U_EXP_BIAS; + pFpuResTwo->r80Result2.s.uMantissa = pr80Val->s.uMantissa; + int32_t iExponent = -16382; + while (!(pFpuResTwo->r80Result2.s.uMantissa & RT_BIT_64(63))) + { + pFpuResTwo->r80Result2.s.uMantissa <<= 1; + iExponent--; + } + + softfloat_state_t Ignored = SOFTFLOAT_STATE_INIT_DEFAULTS(); + iemFpuSoftF80ToIprt(&pFpuResTwo->r80Result1, i32_to_extF80(iExponent, &Ignored)); + } + else + { + pFpuResTwo->r80Result2 = *pr80Val; + fFsw = X86_FSW_ES | X86_FSW_B | (fFsw & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT); + } + } + else if ( RTFLOAT80U_IS_QUIET_NAN(pr80Val) + || RTFLOAT80U_IS_INDEFINITE(pr80Val)) + { + pFpuResTwo->r80Result1 = *pr80Val; + pFpuResTwo->r80Result2 = *pr80Val; + } + else if (RTFLOAT80U_IS_INF(pr80Val)) + { + pFpuResTwo->r80Result1 = g_ar80Infinity[0]; + pFpuResTwo->r80Result2 = *pr80Val; + } + else + { + if (fFcw & X86_FCW_IM) + { + if (!RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val)) + pFpuResTwo->r80Result1 = g_r80Indefinite; + else + { + pFpuResTwo->r80Result1 = *pr80Val; + pFpuResTwo->r80Result1.s.uMantissa |= RT_BIT_64(62); /* make it quiet */ + } + pFpuResTwo->r80Result2 = pFpuResTwo->r80Result1; + } + else + { + pFpuResTwo->r80Result2 = *pr80Val; + fFsw = X86_FSW_ES | X86_FSW_B | (fFsw & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT); + } + fFsw |= X86_FSW_IE; + } + pFpuResTwo->FSW = fFsw; +} +#endif /* IEM_WITHOUT_ASSEMBLY */ + +#if defined(IEM_WITHOUT_ASSEMBLY) + +static uint16_t iemAImpl_fyl2x_r80_by_r80_normal(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw) +{ + softfloat_state_t SoftState = SOFTFLOAT_STATE_INIT_DEFAULTS(); + extFloat80_t y = iemFpuSoftF80FromIprt(pr80Val1); + extFloat80_t x = iemFpuSoftF80FromIprt(pr80Val2); + extFloat80_t v; + (void)fFcw; + + v = extF80_ylog2x(y, x, &SoftState); + iemFpuSoftF80ToIprt(pr80Result, v); + + return fFsw; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_fyl2x_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, + PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) +{ + uint16_t const fFcw = pFpuState->FCW; + uint16_t fFsw = pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3); + + if (RTFLOAT80U_IS_NORMAL(pr80Val1) && RTFLOAT80U_IS_NORMAL(pr80Val2) && !pr80Val2->s.fSign) + { + fFsw |= iemAImpl_fyl2x_r80_by_r80_normal(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw); + + fFsw |= X86_FSW_PE | (7 << X86_FSW_TOP_SHIFT); + if (!(fFcw & X86_FCW_PM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + else + { + fFsw |= X86_FSW_IE; + + if (!(fFcw & X86_FCW_IM)) + { + pFpuRes->r80Result = *pr80Val2; + fFsw |= X86_FSW_ES | X86_FSW_B | (6 << X86_FSW_TOP_SHIFT); + } + else + { + pFpuRes->r80Result = g_r80Indefinite; + fFsw |= (7 << X86_FSW_TOP_SHIFT); + } + } + + pFpuRes->FSW = fFsw; +} +#endif /* IEM_WITHOUT_ASSEMBLY */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_fyl2x_r80_by_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, + PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) +{ + iemAImpl_fyl2x_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_fyl2x_r80_by_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, + PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) +{ + iemAImpl_fyl2x_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2); +} + +#if defined(IEM_WITHOUT_ASSEMBLY) + +static uint16_t iemAImpl_fyl2xp1_r80_by_r80_normal(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw) +{ + softfloat_state_t SoftState = SOFTFLOAT_STATE_INIT_DEFAULTS(); + extFloat80_t y = iemFpuSoftF80FromIprt(pr80Val1); + extFloat80_t x = iemFpuSoftF80FromIprt(pr80Val2); + extFloat80_t v; + (void)fFcw; + + v = extF80_ylog2xp1(y, x, &SoftState); + iemFpuSoftF80ToIprt(pr80Result, v); + + return fFsw; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_fyl2xp1_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, + PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) +{ + uint16_t const fFcw = pFpuState->FCW; + uint16_t fFsw = pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3); + + if (RTFLOAT80U_IS_NORMAL(pr80Val1) && RTFLOAT80U_IS_NORMAL(pr80Val2) && pr80Val2->s.uExponent < RTFLOAT80U_EXP_BIAS) + { + fFsw = iemAImpl_fyl2xp1_r80_by_r80_normal(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw); + + fFsw |= X86_FSW_PE | (7 << X86_FSW_TOP_SHIFT); + if (!(fFcw & X86_FCW_PM)) + fFsw |= X86_FSW_ES | X86_FSW_B; + } + else + { + fFsw |= X86_FSW_IE; + + if (!(fFcw & X86_FCW_IM)) + { + pFpuRes->r80Result = *pr80Val2; + fFsw |= X86_FSW_ES | X86_FSW_B | (6 << X86_FSW_TOP_SHIFT); + } + else + { + pFpuRes->r80Result = g_r80Indefinite; + fFsw |= (7 << X86_FSW_TOP_SHIFT); + } + } + + pFpuRes->FSW = fFsw; +} + +#endif /* IEM_WITHOUT_ASSEMBLY */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_fyl2xp1_r80_by_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, + PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) +{ + iemAImpl_fyl2xp1_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_fyl2xp1_r80_by_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, + PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) +{ + iemAImpl_fyl2xp1_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2); +} + + +/********************************************************************************************************************************* +* MMX, SSE & AVX * +*********************************************************************************************************************************/ + +#ifdef IEM_WITH_VEX + +/* + * VMOVSLDUP + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc)) +{ + pXState->x87.aXMM[iYRegDst].au32[0] = pXState->x87.aXMM[iYRegSrc].au32[0]; + pXState->x87.aXMM[iYRegDst].au32[1] = pXState->x87.aXMM[iYRegSrc].au32[0]; + pXState->x87.aXMM[iYRegDst].au32[2] = pXState->x87.aXMM[iYRegSrc].au32[2]; + pXState->x87.aXMM[iYRegDst].au32[3] = pXState->x87.aXMM[iYRegSrc].au32[2]; + pXState->u.YmmHi.aYmmHi[iYRegDst].au32[0] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[0]; + pXState->u.YmmHi.aYmmHi[iYRegDst].au32[1] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[0]; + pXState->u.YmmHi.aYmmHi[iYRegDst].au32[2] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[2]; + pXState->u.YmmHi.aYmmHi[iYRegDst].au32[3] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[2]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc)) +{ + pXState->x87.aXMM[iYRegDst].au32[0] = pSrc->au32[0]; + pXState->x87.aXMM[iYRegDst].au32[1] = pSrc->au32[0]; + pXState->x87.aXMM[iYRegDst].au32[2] = pSrc->au32[2]; + pXState->x87.aXMM[iYRegDst].au32[3] = pSrc->au32[2]; + pXState->u.YmmHi.aYmmHi[iYRegDst].au32[0] = pSrc->au32[4]; + pXState->u.YmmHi.aYmmHi[iYRegDst].au32[1] = pSrc->au32[4]; + pXState->u.YmmHi.aYmmHi[iYRegDst].au32[2] = pSrc->au32[6]; + pXState->u.YmmHi.aYmmHi[iYRegDst].au32[3] = pSrc->au32[6]; +} + +#endif /* IEM_WITH_VEX */ + + +#ifdef IEM_WITH_VEX + +/* + * VMOVSHDUP + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_vmovshdup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc)) +{ + pXState->x87.aXMM[iYRegDst].au32[0] = pXState->x87.aXMM[iYRegSrc].au32[1]; + pXState->x87.aXMM[iYRegDst].au32[1] = pXState->x87.aXMM[iYRegSrc].au32[1]; + pXState->x87.aXMM[iYRegDst].au32[2] = pXState->x87.aXMM[iYRegSrc].au32[3]; + pXState->x87.aXMM[iYRegDst].au32[3] = pXState->x87.aXMM[iYRegSrc].au32[3]; + pXState->u.YmmHi.aYmmHi[iYRegDst].au32[0] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[1]; + pXState->u.YmmHi.aYmmHi[iYRegDst].au32[1] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[1]; + pXState->u.YmmHi.aYmmHi[iYRegDst].au32[2] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[3]; + pXState->u.YmmHi.aYmmHi[iYRegDst].au32[3] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[3]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vmovshdup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc)) +{ + pXState->x87.aXMM[iYRegDst].au32[0] = pSrc->au32[1]; + pXState->x87.aXMM[iYRegDst].au32[1] = pSrc->au32[1]; + pXState->x87.aXMM[iYRegDst].au32[2] = pSrc->au32[3]; + pXState->x87.aXMM[iYRegDst].au32[3] = pSrc->au32[3]; + pXState->u.YmmHi.aYmmHi[iYRegDst].au32[0] = pSrc->au32[5]; + pXState->u.YmmHi.aYmmHi[iYRegDst].au32[1] = pSrc->au32[5]; + pXState->u.YmmHi.aYmmHi[iYRegDst].au32[2] = pSrc->au32[7]; + pXState->u.YmmHi.aYmmHi[iYRegDst].au32[3] = pSrc->au32[7]; +} + +#endif /* IEM_WITH_VEX */ + + +#ifdef IEM_WITH_VEX + +/* + * VMOVDDUP + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc)) +{ + pXState->x87.aXMM[iYRegDst].au64[0] = pXState->x87.aXMM[iYRegSrc].au64[0]; + pXState->x87.aXMM[iYRegDst].au64[1] = pXState->x87.aXMM[iYRegSrc].au64[0]; + pXState->u.YmmHi.aYmmHi[iYRegDst].au64[0] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au64[0]; + pXState->u.YmmHi.aYmmHi[iYRegDst].au64[1] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au64[0]; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc)) +{ + pXState->x87.aXMM[iYRegDst].au64[0] = pSrc->au64[0]; + pXState->x87.aXMM[iYRegDst].au64[1] = pSrc->au64[0]; + pXState->u.YmmHi.aYmmHi[iYRegDst].au64[0] = pSrc->au64[2]; + pXState->u.YmmHi.aYmmHi[iYRegDst].au64[1] = pSrc->au64[2]; +} + +#endif /* IEM_WITH_VEX */ + + +/* + * PAND / VPAND / PANDPS / VPANDPS / PANDPD / VPANDPD + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_pand_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + *puDst &= *puSrc; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pand_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + puDst->au64[0] &= puSrc->au64[0]; + puDst->au64[1] &= puSrc->au64[1]; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpand_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au64[0] = puSrc1->au64[0] & puSrc2->au64[0]; + puDst->au64[1] = puSrc1->au64[1] & puSrc2->au64[1]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpand_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au64[0] = puSrc1->au64[0] & puSrc2->au64[0]; + puDst->au64[1] = puSrc1->au64[1] & puSrc2->au64[1]; + puDst->au64[2] = puSrc1->au64[2] & puSrc2->au64[2]; + puDst->au64[3] = puSrc1->au64[3] & puSrc2->au64[3]; +} + + +/* + * PANDN / VPANDN / PANDNPS / VPANDNPS / PANDNPD / VPANDNPD + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_pandn_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + *puDst = ~*puDst & *puSrc; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pandn_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + puDst->au64[0] = ~puDst->au64[0] & puSrc->au64[0]; + puDst->au64[1] = ~puDst->au64[1] & puSrc->au64[1]; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpandn_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au64[0] = ~puSrc1->au64[0] & puSrc2->au64[0]; + puDst->au64[1] = ~puSrc1->au64[1] & puSrc2->au64[1]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpandn_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au64[0] = ~puSrc1->au64[0] & puSrc2->au64[0]; + puDst->au64[1] = ~puSrc1->au64[1] & puSrc2->au64[1]; + puDst->au64[2] = ~puSrc1->au64[2] & puSrc2->au64[2]; + puDst->au64[3] = ~puSrc1->au64[3] & puSrc2->au64[3]; +} + + +/* + * POR / VPOR / PORPS / VPORPS / PORPD / VPORPD + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_por_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + *puDst |= *puSrc; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_por_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + puDst->au64[0] |= puSrc->au64[0]; + puDst->au64[1] |= puSrc->au64[1]; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpor_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au64[0] = puSrc1->au64[0] | puSrc2->au64[0]; + puDst->au64[1] = puSrc1->au64[1] | puSrc2->au64[1]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpor_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au64[0] = puSrc1->au64[0] | puSrc2->au64[0]; + puDst->au64[1] = puSrc1->au64[1] | puSrc2->au64[1]; + puDst->au64[2] = puSrc1->au64[2] | puSrc2->au64[2]; + puDst->au64[3] = puSrc1->au64[3] | puSrc2->au64[3]; +} + + +/* + * PXOR / VPXOR / PXORPS / VPXORPS / PXORPD / VPXORPD + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_pxor_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + *puDst ^= *puSrc; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pxor_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + puDst->au64[0] ^= puSrc->au64[0]; + puDst->au64[1] ^= puSrc->au64[1]; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpxor_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au64[0] = puSrc1->au64[0] ^ puSrc2->au64[0]; + puDst->au64[1] = puSrc1->au64[1] ^ puSrc2->au64[1]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpxor_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au64[0] = puSrc1->au64[0] ^ puSrc2->au64[0]; + puDst->au64[1] = puSrc1->au64[1] ^ puSrc2->au64[1]; + puDst->au64[2] = puSrc1->au64[2] ^ puSrc2->au64[2]; + puDst->au64[3] = puSrc1->au64[3] ^ puSrc2->au64[3]; +} + + +/* + * PCMPEQB / VPCMPEQB + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + uDst.au8[0] = uSrc1.au8[0] == uSrc2.au8[0] ? 0xff : 0; + uDst.au8[1] = uSrc1.au8[1] == uSrc2.au8[1] ? 0xff : 0; + uDst.au8[2] = uSrc1.au8[2] == uSrc2.au8[2] ? 0xff : 0; + uDst.au8[3] = uSrc1.au8[3] == uSrc2.au8[3] ? 0xff : 0; + uDst.au8[4] = uSrc1.au8[4] == uSrc2.au8[4] ? 0xff : 0; + uDst.au8[5] = uSrc1.au8[5] == uSrc2.au8[5] ? 0xff : 0; + uDst.au8[6] = uSrc1.au8[6] == uSrc2.au8[6] ? 0xff : 0; + uDst.au8[7] = uSrc1.au8[7] == uSrc2.au8[7] ? 0xff : 0; + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->au8[0] = uSrc1.au8[0] == puSrc->au8[0] ? UINT8_MAX : 0; + puDst->au8[1] = uSrc1.au8[1] == puSrc->au8[1] ? UINT8_MAX : 0; + puDst->au8[2] = uSrc1.au8[2] == puSrc->au8[2] ? UINT8_MAX : 0; + puDst->au8[3] = uSrc1.au8[3] == puSrc->au8[3] ? UINT8_MAX : 0; + puDst->au8[4] = uSrc1.au8[4] == puSrc->au8[4] ? UINT8_MAX : 0; + puDst->au8[5] = uSrc1.au8[5] == puSrc->au8[5] ? UINT8_MAX : 0; + puDst->au8[6] = uSrc1.au8[6] == puSrc->au8[6] ? UINT8_MAX : 0; + puDst->au8[7] = uSrc1.au8[7] == puSrc->au8[7] ? UINT8_MAX : 0; + puDst->au8[8] = uSrc1.au8[8] == puSrc->au8[8] ? UINT8_MAX : 0; + puDst->au8[9] = uSrc1.au8[9] == puSrc->au8[9] ? UINT8_MAX : 0; + puDst->au8[10] = uSrc1.au8[10] == puSrc->au8[10] ? UINT8_MAX : 0; + puDst->au8[11] = uSrc1.au8[11] == puSrc->au8[11] ? UINT8_MAX : 0; + puDst->au8[12] = uSrc1.au8[12] == puSrc->au8[12] ? UINT8_MAX : 0; + puDst->au8[13] = uSrc1.au8[13] == puSrc->au8[13] ? UINT8_MAX : 0; + puDst->au8[14] = uSrc1.au8[14] == puSrc->au8[14] ? UINT8_MAX : 0; + puDst->au8[15] = uSrc1.au8[15] == puSrc->au8[15] ? UINT8_MAX : 0; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqb_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au8[0] = puSrc1->au8[0] == puSrc2->au8[0] ? UINT8_MAX : 0; + puDst->au8[1] = puSrc1->au8[1] == puSrc2->au8[1] ? UINT8_MAX : 0; + puDst->au8[2] = puSrc1->au8[2] == puSrc2->au8[2] ? UINT8_MAX : 0; + puDst->au8[3] = puSrc1->au8[3] == puSrc2->au8[3] ? UINT8_MAX : 0; + puDst->au8[4] = puSrc1->au8[4] == puSrc2->au8[4] ? UINT8_MAX : 0; + puDst->au8[5] = puSrc1->au8[5] == puSrc2->au8[5] ? UINT8_MAX : 0; + puDst->au8[6] = puSrc1->au8[6] == puSrc2->au8[6] ? UINT8_MAX : 0; + puDst->au8[7] = puSrc1->au8[7] == puSrc2->au8[7] ? UINT8_MAX : 0; + puDst->au8[8] = puSrc1->au8[8] == puSrc2->au8[8] ? UINT8_MAX : 0; + puDst->au8[9] = puSrc1->au8[9] == puSrc2->au8[9] ? UINT8_MAX : 0; + puDst->au8[10] = puSrc1->au8[10] == puSrc2->au8[10] ? UINT8_MAX : 0; + puDst->au8[11] = puSrc1->au8[11] == puSrc2->au8[11] ? UINT8_MAX : 0; + puDst->au8[12] = puSrc1->au8[12] == puSrc2->au8[12] ? UINT8_MAX : 0; + puDst->au8[13] = puSrc1->au8[13] == puSrc2->au8[13] ? UINT8_MAX : 0; + puDst->au8[14] = puSrc1->au8[14] == puSrc2->au8[14] ? UINT8_MAX : 0; + puDst->au8[15] = puSrc1->au8[15] == puSrc2->au8[15] ? UINT8_MAX : 0; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqb_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au8[0] = puSrc1->au8[0] == puSrc2->au8[0] ? UINT8_MAX : 0; + puDst->au8[1] = puSrc1->au8[1] == puSrc2->au8[1] ? UINT8_MAX : 0; + puDst->au8[2] = puSrc1->au8[2] == puSrc2->au8[2] ? UINT8_MAX : 0; + puDst->au8[3] = puSrc1->au8[3] == puSrc2->au8[3] ? UINT8_MAX : 0; + puDst->au8[4] = puSrc1->au8[4] == puSrc2->au8[4] ? UINT8_MAX : 0; + puDst->au8[5] = puSrc1->au8[5] == puSrc2->au8[5] ? UINT8_MAX : 0; + puDst->au8[6] = puSrc1->au8[6] == puSrc2->au8[6] ? UINT8_MAX : 0; + puDst->au8[7] = puSrc1->au8[7] == puSrc2->au8[7] ? UINT8_MAX : 0; + puDst->au8[8] = puSrc1->au8[8] == puSrc2->au8[8] ? UINT8_MAX : 0; + puDst->au8[9] = puSrc1->au8[9] == puSrc2->au8[9] ? UINT8_MAX : 0; + puDst->au8[10] = puSrc1->au8[10] == puSrc2->au8[10] ? UINT8_MAX : 0; + puDst->au8[11] = puSrc1->au8[11] == puSrc2->au8[11] ? UINT8_MAX : 0; + puDst->au8[12] = puSrc1->au8[12] == puSrc2->au8[12] ? UINT8_MAX : 0; + puDst->au8[13] = puSrc1->au8[13] == puSrc2->au8[13] ? UINT8_MAX : 0; + puDst->au8[14] = puSrc1->au8[14] == puSrc2->au8[14] ? UINT8_MAX : 0; + puDst->au8[15] = puSrc1->au8[15] == puSrc2->au8[15] ? UINT8_MAX : 0; + puDst->au8[16] = puSrc1->au8[16] == puSrc2->au8[16] ? UINT8_MAX : 0; + puDst->au8[17] = puSrc1->au8[17] == puSrc2->au8[17] ? UINT8_MAX : 0; + puDst->au8[18] = puSrc1->au8[18] == puSrc2->au8[18] ? UINT8_MAX : 0; + puDst->au8[19] = puSrc1->au8[19] == puSrc2->au8[19] ? UINT8_MAX : 0; + puDst->au8[20] = puSrc1->au8[20] == puSrc2->au8[20] ? UINT8_MAX : 0; + puDst->au8[21] = puSrc1->au8[21] == puSrc2->au8[21] ? UINT8_MAX : 0; + puDst->au8[22] = puSrc1->au8[22] == puSrc2->au8[22] ? UINT8_MAX : 0; + puDst->au8[23] = puSrc1->au8[23] == puSrc2->au8[23] ? UINT8_MAX : 0; + puDst->au8[24] = puSrc1->au8[24] == puSrc2->au8[24] ? UINT8_MAX : 0; + puDst->au8[25] = puSrc1->au8[25] == puSrc2->au8[25] ? UINT8_MAX : 0; + puDst->au8[26] = puSrc1->au8[26] == puSrc2->au8[26] ? UINT8_MAX : 0; + puDst->au8[27] = puSrc1->au8[27] == puSrc2->au8[27] ? UINT8_MAX : 0; + puDst->au8[28] = puSrc1->au8[28] == puSrc2->au8[28] ? UINT8_MAX : 0; + puDst->au8[29] = puSrc1->au8[29] == puSrc2->au8[29] ? UINT8_MAX : 0; + puDst->au8[30] = puSrc1->au8[30] == puSrc2->au8[30] ? UINT8_MAX : 0; + puDst->au8[31] = puSrc1->au8[31] == puSrc2->au8[31] ? UINT8_MAX : 0; +} + + +/* + * PCMPEQW / VPCMPEQW + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + uDst.au16[0] = uSrc1.au16[0] == uSrc2.au16[0] ? UINT16_MAX : 0; + uDst.au16[1] = uSrc1.au16[1] == uSrc2.au16[1] ? UINT16_MAX : 0; + uDst.au16[2] = uSrc1.au16[2] == uSrc2.au16[2] ? UINT16_MAX : 0; + uDst.au16[3] = uSrc1.au16[3] == uSrc2.au16[3] ? UINT16_MAX : 0; + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->au16[0] = uSrc1.au16[0] == puSrc->au16[0] ? UINT16_MAX : 0; + puDst->au16[1] = uSrc1.au16[1] == puSrc->au16[1] ? UINT16_MAX : 0; + puDst->au16[2] = uSrc1.au16[2] == puSrc->au16[2] ? UINT16_MAX : 0; + puDst->au16[3] = uSrc1.au16[3] == puSrc->au16[3] ? UINT16_MAX : 0; + puDst->au16[4] = uSrc1.au16[4] == puSrc->au16[4] ? UINT16_MAX : 0; + puDst->au16[5] = uSrc1.au16[5] == puSrc->au16[5] ? UINT16_MAX : 0; + puDst->au16[6] = uSrc1.au16[6] == puSrc->au16[6] ? UINT16_MAX : 0; + puDst->au16[7] = uSrc1.au16[7] == puSrc->au16[7] ? UINT16_MAX : 0; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au16[0] = puSrc1->au16[0] == puSrc2->au16[0] ? UINT16_MAX : 0; + puDst->au16[1] = puSrc1->au16[1] == puSrc2->au16[1] ? UINT16_MAX : 0; + puDst->au16[2] = puSrc1->au16[2] == puSrc2->au16[2] ? UINT16_MAX : 0; + puDst->au16[3] = puSrc1->au16[3] == puSrc2->au16[3] ? UINT16_MAX : 0; + puDst->au16[4] = puSrc1->au16[4] == puSrc2->au16[4] ? UINT16_MAX : 0; + puDst->au16[5] = puSrc1->au16[5] == puSrc2->au16[5] ? UINT16_MAX : 0; + puDst->au16[6] = puSrc1->au16[6] == puSrc2->au16[6] ? UINT16_MAX : 0; + puDst->au16[7] = puSrc1->au16[7] == puSrc2->au16[7] ? UINT16_MAX : 0; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au16[0] = puSrc1->au16[0] == puSrc2->au16[0] ? UINT16_MAX : 0; + puDst->au16[1] = puSrc1->au16[1] == puSrc2->au16[1] ? UINT16_MAX : 0; + puDst->au16[2] = puSrc1->au16[2] == puSrc2->au16[2] ? UINT16_MAX : 0; + puDst->au16[3] = puSrc1->au16[3] == puSrc2->au16[3] ? UINT16_MAX : 0; + puDst->au16[4] = puSrc1->au16[4] == puSrc2->au16[4] ? UINT16_MAX : 0; + puDst->au16[5] = puSrc1->au16[5] == puSrc2->au16[5] ? UINT16_MAX : 0; + puDst->au16[6] = puSrc1->au16[6] == puSrc2->au16[6] ? UINT16_MAX : 0; + puDst->au16[7] = puSrc1->au16[7] == puSrc2->au16[7] ? UINT16_MAX : 0; + puDst->au16[8] = puSrc1->au16[8] == puSrc2->au16[8] ? UINT16_MAX : 0; + puDst->au16[9] = puSrc1->au16[9] == puSrc2->au16[9] ? UINT16_MAX : 0; + puDst->au16[10] = puSrc1->au16[10] == puSrc2->au16[10] ? UINT16_MAX : 0; + puDst->au16[11] = puSrc1->au16[11] == puSrc2->au16[11] ? UINT16_MAX : 0; + puDst->au16[12] = puSrc1->au16[12] == puSrc2->au16[12] ? UINT16_MAX : 0; + puDst->au16[13] = puSrc1->au16[13] == puSrc2->au16[13] ? UINT16_MAX : 0; + puDst->au16[14] = puSrc1->au16[14] == puSrc2->au16[14] ? UINT16_MAX : 0; + puDst->au16[15] = puSrc1->au16[15] == puSrc2->au16[15] ? UINT16_MAX : 0; +} + + +/* + * PCMPEQD / VPCMPEQD. + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqd_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + uDst.au32[0] = uSrc1.au32[0] == uSrc2.au32[0] ? UINT32_MAX : 0; + uDst.au32[1] = uSrc1.au32[1] == uSrc2.au32[1] ? UINT32_MAX : 0; + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqd_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->au32[0] = uSrc1.au32[0] == puSrc->au32[0] ? UINT32_MAX : 0; + puDst->au32[1] = uSrc1.au32[1] == puSrc->au32[1] ? UINT32_MAX : 0; + puDst->au32[2] = uSrc1.au32[2] == puSrc->au32[2] ? UINT32_MAX : 0; + puDst->au32[3] = uSrc1.au32[3] == puSrc->au32[3] ? UINT32_MAX : 0; +} + +#endif /* IEM_WITHOUT_ASSEMBLY */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqd_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au32[0] = puSrc1->au32[0] == puSrc2->au32[0] ? UINT32_MAX : 0; + puDst->au32[1] = puSrc1->au32[1] == puSrc2->au32[1] ? UINT32_MAX : 0; + puDst->au32[2] = puSrc1->au32[2] == puSrc2->au32[2] ? UINT32_MAX : 0; + puDst->au32[3] = puSrc1->au32[3] == puSrc2->au32[3] ? UINT32_MAX : 0; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqd_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au32[0] = puSrc1->au32[0] == puSrc2->au32[0] ? UINT32_MAX : 0; + puDst->au32[1] = puSrc1->au32[1] == puSrc2->au32[1] ? UINT32_MAX : 0; + puDst->au32[2] = puSrc1->au32[2] == puSrc2->au32[2] ? UINT32_MAX : 0; + puDst->au32[3] = puSrc1->au32[3] == puSrc2->au32[3] ? UINT32_MAX : 0; + puDst->au32[4] = puSrc1->au32[4] == puSrc2->au32[4] ? UINT32_MAX : 0; + puDst->au32[5] = puSrc1->au32[5] == puSrc2->au32[5] ? UINT32_MAX : 0; + puDst->au32[6] = puSrc1->au32[6] == puSrc2->au32[6] ? UINT32_MAX : 0; + puDst->au32[7] = puSrc1->au32[7] == puSrc2->au32[7] ? UINT32_MAX : 0; +} + + +/* + * PCMPEQQ / VPCMPEQQ. + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqq_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->au64[0] = uSrc1.au64[0] == puSrc->au64[0] ? UINT64_MAX : 0; + puDst->au64[1] = uSrc1.au64[1] == puSrc->au64[1] ? UINT64_MAX : 0; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqq_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au64[0] = puSrc1->au64[0] == puSrc2->au64[0] ? UINT64_MAX : 0; + puDst->au64[1] = puSrc1->au64[1] == puSrc2->au64[1] ? UINT64_MAX : 0; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqq_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au64[0] = puSrc1->au64[0] == puSrc2->au64[0] ? UINT64_MAX : 0; + puDst->au64[1] = puSrc1->au64[1] == puSrc2->au64[1] ? UINT64_MAX : 0; + puDst->au64[2] = puSrc1->au64[2] == puSrc2->au64[2] ? UINT64_MAX : 0; + puDst->au64[3] = puSrc1->au64[3] == puSrc2->au64[3] ? UINT64_MAX : 0; +} + + +/* + * PCMPGTB / VPCMPGTB + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + uDst.au8[0] = uSrc1.ai8[0] > uSrc2.ai8[0] ? UINT8_MAX : 0; + uDst.au8[1] = uSrc1.ai8[1] > uSrc2.ai8[1] ? UINT8_MAX : 0; + uDst.au8[2] = uSrc1.ai8[2] > uSrc2.ai8[2] ? UINT8_MAX : 0; + uDst.au8[3] = uSrc1.ai8[3] > uSrc2.ai8[3] ? UINT8_MAX : 0; + uDst.au8[4] = uSrc1.ai8[4] > uSrc2.ai8[4] ? UINT8_MAX : 0; + uDst.au8[5] = uSrc1.ai8[5] > uSrc2.ai8[5] ? UINT8_MAX : 0; + uDst.au8[6] = uSrc1.ai8[6] > uSrc2.ai8[6] ? UINT8_MAX : 0; + uDst.au8[7] = uSrc1.ai8[7] > uSrc2.ai8[7] ? UINT8_MAX : 0; + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->au8[0] = uSrc1.ai8[0] > puSrc->ai8[0] ? UINT8_MAX : 0; + puDst->au8[1] = uSrc1.ai8[1] > puSrc->ai8[1] ? UINT8_MAX : 0; + puDst->au8[2] = uSrc1.ai8[2] > puSrc->ai8[2] ? UINT8_MAX : 0; + puDst->au8[3] = uSrc1.ai8[3] > puSrc->ai8[3] ? UINT8_MAX : 0; + puDst->au8[4] = uSrc1.ai8[4] > puSrc->ai8[4] ? UINT8_MAX : 0; + puDst->au8[5] = uSrc1.ai8[5] > puSrc->ai8[5] ? UINT8_MAX : 0; + puDst->au8[6] = uSrc1.ai8[6] > puSrc->ai8[6] ? UINT8_MAX : 0; + puDst->au8[7] = uSrc1.ai8[7] > puSrc->ai8[7] ? UINT8_MAX : 0; + puDst->au8[8] = uSrc1.ai8[8] > puSrc->ai8[8] ? UINT8_MAX : 0; + puDst->au8[9] = uSrc1.ai8[9] > puSrc->ai8[9] ? UINT8_MAX : 0; + puDst->au8[10] = uSrc1.ai8[10] > puSrc->ai8[10] ? UINT8_MAX : 0; + puDst->au8[11] = uSrc1.ai8[11] > puSrc->ai8[11] ? UINT8_MAX : 0; + puDst->au8[12] = uSrc1.ai8[12] > puSrc->ai8[12] ? UINT8_MAX : 0; + puDst->au8[13] = uSrc1.ai8[13] > puSrc->ai8[13] ? UINT8_MAX : 0; + puDst->au8[14] = uSrc1.ai8[14] > puSrc->ai8[14] ? UINT8_MAX : 0; + puDst->au8[15] = uSrc1.ai8[15] > puSrc->ai8[15] ? UINT8_MAX : 0; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtb_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au8[0] = puSrc1->ai8[0] > puSrc2->ai8[0] ? UINT8_MAX : 0; + puDst->au8[1] = puSrc1->ai8[1] > puSrc2->ai8[1] ? UINT8_MAX : 0; + puDst->au8[2] = puSrc1->ai8[2] > puSrc2->ai8[2] ? UINT8_MAX : 0; + puDst->au8[3] = puSrc1->ai8[3] > puSrc2->ai8[3] ? UINT8_MAX : 0; + puDst->au8[4] = puSrc1->ai8[4] > puSrc2->ai8[4] ? UINT8_MAX : 0; + puDst->au8[5] = puSrc1->ai8[5] > puSrc2->ai8[5] ? UINT8_MAX : 0; + puDst->au8[6] = puSrc1->ai8[6] > puSrc2->ai8[6] ? UINT8_MAX : 0; + puDst->au8[7] = puSrc1->ai8[7] > puSrc2->ai8[7] ? UINT8_MAX : 0; + puDst->au8[8] = puSrc1->ai8[8] > puSrc2->ai8[8] ? UINT8_MAX : 0; + puDst->au8[9] = puSrc1->ai8[9] > puSrc2->ai8[9] ? UINT8_MAX : 0; + puDst->au8[10] = puSrc1->ai8[10] > puSrc2->ai8[10] ? UINT8_MAX : 0; + puDst->au8[11] = puSrc1->ai8[11] > puSrc2->ai8[11] ? UINT8_MAX : 0; + puDst->au8[12] = puSrc1->ai8[12] > puSrc2->ai8[12] ? UINT8_MAX : 0; + puDst->au8[13] = puSrc1->ai8[13] > puSrc2->ai8[13] ? UINT8_MAX : 0; + puDst->au8[14] = puSrc1->ai8[14] > puSrc2->ai8[14] ? UINT8_MAX : 0; + puDst->au8[15] = puSrc1->ai8[15] > puSrc2->ai8[15] ? UINT8_MAX : 0; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtb_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au8[0] = puSrc1->ai8[0] > puSrc2->ai8[0] ? UINT8_MAX : 0; + puDst->au8[1] = puSrc1->ai8[1] > puSrc2->ai8[1] ? UINT8_MAX : 0; + puDst->au8[2] = puSrc1->ai8[2] > puSrc2->ai8[2] ? UINT8_MAX : 0; + puDst->au8[3] = puSrc1->ai8[3] > puSrc2->ai8[3] ? UINT8_MAX : 0; + puDst->au8[4] = puSrc1->ai8[4] > puSrc2->ai8[4] ? UINT8_MAX : 0; + puDst->au8[5] = puSrc1->ai8[5] > puSrc2->ai8[5] ? UINT8_MAX : 0; + puDst->au8[6] = puSrc1->ai8[6] > puSrc2->ai8[6] ? UINT8_MAX : 0; + puDst->au8[7] = puSrc1->ai8[7] > puSrc2->ai8[7] ? UINT8_MAX : 0; + puDst->au8[8] = puSrc1->ai8[8] > puSrc2->ai8[8] ? UINT8_MAX : 0; + puDst->au8[9] = puSrc1->ai8[9] > puSrc2->ai8[9] ? UINT8_MAX : 0; + puDst->au8[10] = puSrc1->ai8[10] > puSrc2->ai8[10] ? UINT8_MAX : 0; + puDst->au8[11] = puSrc1->ai8[11] > puSrc2->ai8[11] ? UINT8_MAX : 0; + puDst->au8[12] = puSrc1->ai8[12] > puSrc2->ai8[12] ? UINT8_MAX : 0; + puDst->au8[13] = puSrc1->ai8[13] > puSrc2->ai8[13] ? UINT8_MAX : 0; + puDst->au8[14] = puSrc1->ai8[14] > puSrc2->ai8[14] ? UINT8_MAX : 0; + puDst->au8[15] = puSrc1->ai8[15] > puSrc2->ai8[15] ? UINT8_MAX : 0; + puDst->au8[16] = puSrc1->ai8[16] > puSrc2->ai8[16] ? UINT8_MAX : 0; + puDst->au8[17] = puSrc1->ai8[17] > puSrc2->ai8[17] ? UINT8_MAX : 0; + puDst->au8[18] = puSrc1->ai8[18] > puSrc2->ai8[18] ? UINT8_MAX : 0; + puDst->au8[19] = puSrc1->ai8[19] > puSrc2->ai8[19] ? UINT8_MAX : 0; + puDst->au8[20] = puSrc1->ai8[20] > puSrc2->ai8[20] ? UINT8_MAX : 0; + puDst->au8[21] = puSrc1->ai8[21] > puSrc2->ai8[21] ? UINT8_MAX : 0; + puDst->au8[22] = puSrc1->ai8[22] > puSrc2->ai8[22] ? UINT8_MAX : 0; + puDst->au8[23] = puSrc1->ai8[23] > puSrc2->ai8[23] ? UINT8_MAX : 0; + puDst->au8[24] = puSrc1->ai8[24] > puSrc2->ai8[24] ? UINT8_MAX : 0; + puDst->au8[25] = puSrc1->ai8[25] > puSrc2->ai8[25] ? UINT8_MAX : 0; + puDst->au8[26] = puSrc1->ai8[26] > puSrc2->ai8[26] ? UINT8_MAX : 0; + puDst->au8[27] = puSrc1->ai8[27] > puSrc2->ai8[27] ? UINT8_MAX : 0; + puDst->au8[28] = puSrc1->ai8[28] > puSrc2->ai8[28] ? UINT8_MAX : 0; + puDst->au8[29] = puSrc1->ai8[29] > puSrc2->ai8[29] ? UINT8_MAX : 0; + puDst->au8[30] = puSrc1->ai8[30] > puSrc2->ai8[30] ? UINT8_MAX : 0; + puDst->au8[31] = puSrc1->ai8[31] > puSrc2->ai8[31] ? UINT8_MAX : 0; +} + + +/* + * PCMPGTW / VPCMPGTW + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + uDst.au16[0] = uSrc1.ai16[0] > uSrc2.ai16[0] ? UINT16_MAX : 0; + uDst.au16[1] = uSrc1.ai16[1] > uSrc2.ai16[1] ? UINT16_MAX : 0; + uDst.au16[2] = uSrc1.ai16[2] > uSrc2.ai16[2] ? UINT16_MAX : 0; + uDst.au16[3] = uSrc1.ai16[3] > uSrc2.ai16[3] ? UINT16_MAX : 0; + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->au16[0] = uSrc1.ai16[0] > puSrc->ai16[0] ? UINT16_MAX : 0; + puDst->au16[1] = uSrc1.ai16[1] > puSrc->ai16[1] ? UINT16_MAX : 0; + puDst->au16[2] = uSrc1.ai16[2] > puSrc->ai16[2] ? UINT16_MAX : 0; + puDst->au16[3] = uSrc1.ai16[3] > puSrc->ai16[3] ? UINT16_MAX : 0; + puDst->au16[4] = uSrc1.ai16[4] > puSrc->ai16[4] ? UINT16_MAX : 0; + puDst->au16[5] = uSrc1.ai16[5] > puSrc->ai16[5] ? UINT16_MAX : 0; + puDst->au16[6] = uSrc1.ai16[6] > puSrc->ai16[6] ? UINT16_MAX : 0; + puDst->au16[7] = uSrc1.ai16[7] > puSrc->ai16[7] ? UINT16_MAX : 0; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au16[0] = puSrc1->ai16[0] > puSrc2->ai16[0] ? UINT16_MAX : 0; + puDst->au16[1] = puSrc1->ai16[1] > puSrc2->ai16[1] ? UINT16_MAX : 0; + puDst->au16[2] = puSrc1->ai16[2] > puSrc2->ai16[2] ? UINT16_MAX : 0; + puDst->au16[3] = puSrc1->ai16[3] > puSrc2->ai16[3] ? UINT16_MAX : 0; + puDst->au16[4] = puSrc1->ai16[4] > puSrc2->ai16[4] ? UINT16_MAX : 0; + puDst->au16[5] = puSrc1->ai16[5] > puSrc2->ai16[5] ? UINT16_MAX : 0; + puDst->au16[6] = puSrc1->ai16[6] > puSrc2->ai16[6] ? UINT16_MAX : 0; + puDst->au16[7] = puSrc1->ai16[7] > puSrc2->ai16[7] ? UINT16_MAX : 0; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au16[0] = puSrc1->ai16[0] > puSrc2->ai16[0] ? UINT16_MAX : 0; + puDst->au16[1] = puSrc1->ai16[1] > puSrc2->ai16[1] ? UINT16_MAX : 0; + puDst->au16[2] = puSrc1->ai16[2] > puSrc2->ai16[2] ? UINT16_MAX : 0; + puDst->au16[3] = puSrc1->ai16[3] > puSrc2->ai16[3] ? UINT16_MAX : 0; + puDst->au16[4] = puSrc1->ai16[4] > puSrc2->ai16[4] ? UINT16_MAX : 0; + puDst->au16[5] = puSrc1->ai16[5] > puSrc2->ai16[5] ? UINT16_MAX : 0; + puDst->au16[6] = puSrc1->ai16[6] > puSrc2->ai16[6] ? UINT16_MAX : 0; + puDst->au16[7] = puSrc1->ai16[7] > puSrc2->ai16[7] ? UINT16_MAX : 0; + puDst->au16[8] = puSrc1->ai16[8] > puSrc2->ai16[8] ? UINT16_MAX : 0; + puDst->au16[9] = puSrc1->ai16[9] > puSrc2->ai16[9] ? UINT16_MAX : 0; + puDst->au16[10] = puSrc1->ai16[10] > puSrc2->ai16[10] ? UINT16_MAX : 0; + puDst->au16[11] = puSrc1->ai16[11] > puSrc2->ai16[11] ? UINT16_MAX : 0; + puDst->au16[12] = puSrc1->ai16[12] > puSrc2->ai16[12] ? UINT16_MAX : 0; + puDst->au16[13] = puSrc1->ai16[13] > puSrc2->ai16[13] ? UINT16_MAX : 0; + puDst->au16[14] = puSrc1->ai16[14] > puSrc2->ai16[14] ? UINT16_MAX : 0; + puDst->au16[15] = puSrc1->ai16[15] > puSrc2->ai16[15] ? UINT16_MAX : 0; +} + + +/* + * PCMPGTD / VPCMPGTD. + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtd_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + uDst.au32[0] = uSrc1.ai32[0] > uSrc2.ai32[0] ? UINT32_MAX : 0; + uDst.au32[1] = uSrc1.ai32[1] > uSrc2.ai32[1] ? UINT32_MAX : 0; + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtd_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->au32[0] = uSrc1.ai32[0] > puSrc->ai32[0] ? UINT32_MAX : 0; + puDst->au32[1] = uSrc1.ai32[1] > puSrc->ai32[1] ? UINT32_MAX : 0; + puDst->au32[2] = uSrc1.ai32[2] > puSrc->ai32[2] ? UINT32_MAX : 0; + puDst->au32[3] = uSrc1.ai32[3] > puSrc->ai32[3] ? UINT32_MAX : 0; +} + +#endif /* IEM_WITHOUT_ASSEMBLY */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtd_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au32[0] = puSrc1->ai32[0] > puSrc2->ai32[0] ? UINT32_MAX : 0; + puDst->au32[1] = puSrc1->ai32[1] > puSrc2->ai32[1] ? UINT32_MAX : 0; + puDst->au32[2] = puSrc1->ai32[2] > puSrc2->ai32[2] ? UINT32_MAX : 0; + puDst->au32[3] = puSrc1->ai32[3] > puSrc2->ai32[3] ? UINT32_MAX : 0; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtd_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au32[0] = puSrc1->ai32[0] > puSrc2->ai32[0] ? UINT32_MAX : 0; + puDst->au32[1] = puSrc1->ai32[1] > puSrc2->ai32[1] ? UINT32_MAX : 0; + puDst->au32[2] = puSrc1->ai32[2] > puSrc2->ai32[2] ? UINT32_MAX : 0; + puDst->au32[3] = puSrc1->ai32[3] > puSrc2->ai32[3] ? UINT32_MAX : 0; + puDst->au32[4] = puSrc1->ai32[4] > puSrc2->ai32[4] ? UINT32_MAX : 0; + puDst->au32[5] = puSrc1->ai32[5] > puSrc2->ai32[5] ? UINT32_MAX : 0; + puDst->au32[6] = puSrc1->ai32[6] > puSrc2->ai32[6] ? UINT32_MAX : 0; + puDst->au32[7] = puSrc1->ai32[7] > puSrc2->ai32[7] ? UINT32_MAX : 0; +} + + +/* + * PCMPGTQ / VPCMPGTQ. + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtq_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->au64[0] = uSrc1.ai64[0] > puSrc->ai64[0] ? UINT64_MAX : 0; + puDst->au64[1] = uSrc1.ai64[1] > puSrc->ai64[1] ? UINT64_MAX : 0; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtq_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au64[0] = puSrc1->ai64[0] > puSrc2->ai64[0] ? UINT64_MAX : 0; + puDst->au64[1] = puSrc1->ai64[1] > puSrc2->ai64[1] ? UINT64_MAX : 0; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtq_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au64[0] = puSrc1->ai64[0] > puSrc2->ai64[0] ? UINT64_MAX : 0; + puDst->au64[1] = puSrc1->ai64[1] > puSrc2->ai64[1] ? UINT64_MAX : 0; + puDst->au64[2] = puSrc1->ai64[2] > puSrc2->ai64[2] ? UINT64_MAX : 0; + puDst->au64[3] = puSrc1->ai64[3] > puSrc2->ai64[3] ? UINT64_MAX : 0; +} + + +/* + * PADDB / VPADDB + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_paddb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + uDst.au8[0] = uSrc1.au8[0] + uSrc2.au8[0]; + uDst.au8[1] = uSrc1.au8[1] + uSrc2.au8[1]; + uDst.au8[2] = uSrc1.au8[2] + uSrc2.au8[2]; + uDst.au8[3] = uSrc1.au8[3] + uSrc2.au8[3]; + uDst.au8[4] = uSrc1.au8[4] + uSrc2.au8[4]; + uDst.au8[5] = uSrc1.au8[5] + uSrc2.au8[5]; + uDst.au8[6] = uSrc1.au8[6] + uSrc2.au8[6]; + uDst.au8[7] = uSrc1.au8[7] + uSrc2.au8[7]; + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_paddb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->au8[0] = uSrc1.au8[0] + puSrc->au8[0]; + puDst->au8[1] = uSrc1.au8[1] + puSrc->au8[1]; + puDst->au8[2] = uSrc1.au8[2] + puSrc->au8[2]; + puDst->au8[3] = uSrc1.au8[3] + puSrc->au8[3]; + puDst->au8[4] = uSrc1.au8[4] + puSrc->au8[4]; + puDst->au8[5] = uSrc1.au8[5] + puSrc->au8[5]; + puDst->au8[6] = uSrc1.au8[6] + puSrc->au8[6]; + puDst->au8[7] = uSrc1.au8[7] + puSrc->au8[7]; + puDst->au8[8] = uSrc1.au8[8] + puSrc->au8[8]; + puDst->au8[9] = uSrc1.au8[9] + puSrc->au8[9]; + puDst->au8[10] = uSrc1.au8[10] + puSrc->au8[10]; + puDst->au8[11] = uSrc1.au8[11] + puSrc->au8[11]; + puDst->au8[12] = uSrc1.au8[12] + puSrc->au8[12]; + puDst->au8[13] = uSrc1.au8[13] + puSrc->au8[13]; + puDst->au8[14] = uSrc1.au8[14] + puSrc->au8[14]; + puDst->au8[15] = uSrc1.au8[15] + puSrc->au8[15]; +} + +#endif + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddb_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au8[0] = puSrc1->au8[0] + puSrc2->au8[0]; + puDst->au8[1] = puSrc1->au8[1] + puSrc2->au8[1]; + puDst->au8[2] = puSrc1->au8[2] + puSrc2->au8[2]; + puDst->au8[3] = puSrc1->au8[3] + puSrc2->au8[3]; + puDst->au8[4] = puSrc1->au8[4] + puSrc2->au8[4]; + puDst->au8[5] = puSrc1->au8[5] + puSrc2->au8[5]; + puDst->au8[6] = puSrc1->au8[6] + puSrc2->au8[6]; + puDst->au8[7] = puSrc1->au8[7] + puSrc2->au8[7]; + puDst->au8[8] = puSrc1->au8[8] + puSrc2->au8[8]; + puDst->au8[9] = puSrc1->au8[9] + puSrc2->au8[9]; + puDst->au8[10] = puSrc1->au8[10] + puSrc2->au8[10]; + puDst->au8[11] = puSrc1->au8[11] + puSrc2->au8[11]; + puDst->au8[12] = puSrc1->au8[12] + puSrc2->au8[12]; + puDst->au8[13] = puSrc1->au8[13] + puSrc2->au8[13]; + puDst->au8[14] = puSrc1->au8[14] + puSrc2->au8[14]; + puDst->au8[15] = puSrc1->au8[15] + puSrc2->au8[15]; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddb_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au8[0] = puSrc1->au8[0] + puSrc2->au8[0]; + puDst->au8[1] = puSrc1->au8[1] + puSrc2->au8[1]; + puDst->au8[2] = puSrc1->au8[2] + puSrc2->au8[2]; + puDst->au8[3] = puSrc1->au8[3] + puSrc2->au8[3]; + puDst->au8[4] = puSrc1->au8[4] + puSrc2->au8[4]; + puDst->au8[5] = puSrc1->au8[5] + puSrc2->au8[5]; + puDst->au8[6] = puSrc1->au8[6] + puSrc2->au8[6]; + puDst->au8[7] = puSrc1->au8[7] + puSrc2->au8[7]; + puDst->au8[8] = puSrc1->au8[8] + puSrc2->au8[8]; + puDst->au8[9] = puSrc1->au8[9] + puSrc2->au8[9]; + puDst->au8[10] = puSrc1->au8[10] + puSrc2->au8[10]; + puDst->au8[11] = puSrc1->au8[11] + puSrc2->au8[11]; + puDst->au8[12] = puSrc1->au8[12] + puSrc2->au8[12]; + puDst->au8[13] = puSrc1->au8[13] + puSrc2->au8[13]; + puDst->au8[14] = puSrc1->au8[14] + puSrc2->au8[14]; + puDst->au8[15] = puSrc1->au8[15] + puSrc2->au8[15]; + puDst->au8[16] = puSrc1->au8[16] + puSrc2->au8[16]; + puDst->au8[17] = puSrc1->au8[17] + puSrc2->au8[17]; + puDst->au8[18] = puSrc1->au8[18] + puSrc2->au8[18]; + puDst->au8[19] = puSrc1->au8[19] + puSrc2->au8[19]; + puDst->au8[20] = puSrc1->au8[20] + puSrc2->au8[20]; + puDst->au8[21] = puSrc1->au8[21] + puSrc2->au8[21]; + puDst->au8[22] = puSrc1->au8[22] + puSrc2->au8[22]; + puDst->au8[23] = puSrc1->au8[23] + puSrc2->au8[23]; + puDst->au8[24] = puSrc1->au8[24] + puSrc2->au8[24]; + puDst->au8[25] = puSrc1->au8[25] + puSrc2->au8[25]; + puDst->au8[26] = puSrc1->au8[26] + puSrc2->au8[26]; + puDst->au8[27] = puSrc1->au8[27] + puSrc2->au8[27]; + puDst->au8[28] = puSrc1->au8[28] + puSrc2->au8[28]; + puDst->au8[29] = puSrc1->au8[29] + puSrc2->au8[29]; + puDst->au8[30] = puSrc1->au8[30] + puSrc2->au8[30]; + puDst->au8[31] = puSrc1->au8[31] + puSrc2->au8[31]; +} + + +/* + * PADDSB / VPADDSB + */ +#define SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(a_iWord) \ + ( (uint16_t)((a_iWord) + 0x80) <= (uint16_t)0xff \ + ? (uint8_t)(a_iWord) \ + : (uint8_t)0x7f + (uint8_t)(((a_iWord) >> 15) & 1) ) /* 0x7f = INT8_MAX; 0x80 = INT8_MIN; source bit 15 = sign */ + +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_paddsb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + uDst.au8[0] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[0] + uSrc2.ai8[0]); + uDst.au8[1] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[1] + uSrc2.ai8[1]); + uDst.au8[2] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[2] + uSrc2.ai8[2]); + uDst.au8[3] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[3] + uSrc2.ai8[3]); + uDst.au8[4] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[4] + uSrc2.ai8[4]); + uDst.au8[5] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[5] + uSrc2.ai8[5]); + uDst.au8[6] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[6] + uSrc2.ai8[6]); + uDst.au8[7] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[7] + uSrc2.ai8[7]); + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_paddsb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->au8[0] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[0] + puSrc->ai8[0]); + puDst->au8[1] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[1] + puSrc->ai8[1]); + puDst->au8[2] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[2] + puSrc->ai8[2]); + puDst->au8[3] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[3] + puSrc->ai8[3]); + puDst->au8[4] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[4] + puSrc->ai8[4]); + puDst->au8[5] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[5] + puSrc->ai8[5]); + puDst->au8[6] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[6] + puSrc->ai8[6]); + puDst->au8[7] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[7] + puSrc->ai8[7]); + puDst->au8[8] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[8] + puSrc->ai8[8]); + puDst->au8[9] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[9] + puSrc->ai8[9]); + puDst->au8[10] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[10] + puSrc->ai8[10]); + puDst->au8[11] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[11] + puSrc->ai8[11]); + puDst->au8[12] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[12] + puSrc->ai8[12]); + puDst->au8[13] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[13] + puSrc->ai8[13]); + puDst->au8[14] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[14] + puSrc->ai8[14]); + puDst->au8[15] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[15] + puSrc->ai8[15]); +} + +#endif + + +/* + * PADDSB / VPADDSB + */ +#define SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(a_uWord) \ + ( (uint16_t)(a_uWord) <= (uint16_t)0xff \ + ? (uint8_t)(a_uWord) \ + : (uint8_t)0xff ) /* 0xff = UINT8_MAX */ + +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_paddusb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + uDst.au8[0] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[0] + uSrc2.au8[0]); + uDst.au8[1] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[1] + uSrc2.au8[1]); + uDst.au8[2] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[2] + uSrc2.au8[2]); + uDst.au8[3] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[3] + uSrc2.au8[3]); + uDst.au8[4] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[4] + uSrc2.au8[4]); + uDst.au8[5] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[5] + uSrc2.au8[5]); + uDst.au8[6] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[6] + uSrc2.au8[6]); + uDst.au8[7] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[7] + uSrc2.au8[7]); + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_paddusb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->au8[0] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[0] + puSrc->au8[0]); + puDst->au8[1] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[1] + puSrc->au8[1]); + puDst->au8[2] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[2] + puSrc->au8[2]); + puDst->au8[3] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[3] + puSrc->au8[3]); + puDst->au8[4] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[4] + puSrc->au8[4]); + puDst->au8[5] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[5] + puSrc->au8[5]); + puDst->au8[6] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[6] + puSrc->au8[6]); + puDst->au8[7] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[7] + puSrc->au8[7]); + puDst->au8[8] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[8] + puSrc->au8[8]); + puDst->au8[9] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[9] + puSrc->au8[9]); + puDst->au8[10] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[10] + puSrc->au8[10]); + puDst->au8[11] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[11] + puSrc->au8[11]); + puDst->au8[12] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[12] + puSrc->au8[12]); + puDst->au8[13] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[13] + puSrc->au8[13]); + puDst->au8[14] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[14] + puSrc->au8[14]); + puDst->au8[15] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[15] + puSrc->au8[15]); +} + +#endif + + +/* + * PADDW / VPADDW + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_paddw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + uDst.au16[0] = uSrc1.au16[0] + uSrc2.au16[0]; + uDst.au16[1] = uSrc1.au16[1] + uSrc2.au16[1]; + uDst.au16[2] = uSrc1.au16[2] + uSrc2.au16[2]; + uDst.au16[3] = uSrc1.au16[3] + uSrc2.au16[3]; + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_paddw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->au16[0] = uSrc1.au16[0] + puSrc->au16[0]; + puDst->au16[1] = uSrc1.au16[1] + puSrc->au16[1]; + puDst->au16[2] = uSrc1.au16[2] + puSrc->au16[2]; + puDst->au16[3] = uSrc1.au16[3] + puSrc->au16[3]; + puDst->au16[4] = uSrc1.au16[4] + puSrc->au16[4]; + puDst->au16[5] = uSrc1.au16[5] + puSrc->au16[5]; + puDst->au16[6] = uSrc1.au16[6] + puSrc->au16[6]; + puDst->au16[7] = uSrc1.au16[7] + puSrc->au16[7]; +} + +#endif + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au16[0] = puSrc1->au16[0] + puSrc2->au16[0]; + puDst->au16[1] = puSrc1->au16[1] + puSrc2->au16[1]; + puDst->au16[2] = puSrc1->au16[2] + puSrc2->au16[2]; + puDst->au16[3] = puSrc1->au16[3] + puSrc2->au16[3]; + puDst->au16[4] = puSrc1->au16[4] + puSrc2->au16[4]; + puDst->au16[5] = puSrc1->au16[5] + puSrc2->au16[5]; + puDst->au16[6] = puSrc1->au16[6] + puSrc2->au16[6]; + puDst->au16[7] = puSrc1->au16[7] + puSrc2->au16[7]; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au16[0] = puSrc1->au16[0] + puSrc2->au16[0]; + puDst->au16[1] = puSrc1->au16[1] + puSrc2->au16[1]; + puDst->au16[2] = puSrc1->au16[2] + puSrc2->au16[2]; + puDst->au16[3] = puSrc1->au16[3] + puSrc2->au16[3]; + puDst->au16[4] = puSrc1->au16[4] + puSrc2->au16[4]; + puDst->au16[5] = puSrc1->au16[5] + puSrc2->au16[5]; + puDst->au16[6] = puSrc1->au16[6] + puSrc2->au16[6]; + puDst->au16[7] = puSrc1->au16[7] + puSrc2->au16[7]; + puDst->au16[8] = puSrc1->au16[8] + puSrc2->au16[8]; + puDst->au16[9] = puSrc1->au16[9] + puSrc2->au16[9]; + puDst->au16[10] = puSrc1->au16[10] + puSrc2->au16[10]; + puDst->au16[11] = puSrc1->au16[11] + puSrc2->au16[11]; + puDst->au16[12] = puSrc1->au16[12] + puSrc2->au16[12]; + puDst->au16[13] = puSrc1->au16[13] + puSrc2->au16[13]; + puDst->au16[14] = puSrc1->au16[14] + puSrc2->au16[14]; + puDst->au16[15] = puSrc1->au16[15] + puSrc2->au16[15]; +} + + +/* + * PADDSW / VPADDSW + */ +#define SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(a_iDword) \ + ( (uint32_t)((a_iDword) + 0x8000) <= (uint16_t)0xffff \ + ? (uint16_t)(a_iDword) \ + : (uint16_t)0x7fff + (uint16_t)(((a_iDword) >> 31) & 1) ) /* 0x7fff = INT16_MAX; 0x8000 = INT16_MIN; source bit 31 = sign */ + +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_paddsw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + uDst.au16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[0] + uSrc2.ai16[0]); + uDst.au16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[1] + uSrc2.ai16[1]); + uDst.au16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[2] + uSrc2.ai16[2]); + uDst.au16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[3] + uSrc2.ai16[3]); + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_paddsw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->au16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[0] + puSrc->ai16[0]); + puDst->au16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[1] + puSrc->ai16[1]); + puDst->au16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[2] + puSrc->ai16[2]); + puDst->au16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[3] + puSrc->ai16[3]); + puDst->au16[4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[4] + puSrc->ai16[4]); + puDst->au16[5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[5] + puSrc->ai16[5]); + puDst->au16[6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[6] + puSrc->ai16[6]); + puDst->au16[7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[7] + puSrc->ai16[7]); +} + +#endif + + +/* + * PADDUSW / VPADDUSW + */ +#define SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(a_uDword) \ + ( (uint32_t)(a_uDword) <= (uint16_t)0xffff \ + ? (uint16_t)(a_uDword) \ + : (uint16_t)0xffff ) /* 0xffff = UINT16_MAX */ + +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_paddusw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + uDst.au16[0] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[0] + uSrc2.au16[0]); + uDst.au16[1] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[1] + uSrc2.au16[1]); + uDst.au16[2] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[2] + uSrc2.au16[2]); + uDst.au16[3] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[3] + uSrc2.au16[3]); + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_paddusw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->au16[0] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[0] + puSrc->au16[0]); + puDst->au16[1] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[1] + puSrc->au16[1]); + puDst->au16[2] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[2] + puSrc->au16[2]); + puDst->au16[3] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[3] + puSrc->au16[3]); + puDst->au16[4] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[4] + puSrc->au16[4]); + puDst->au16[5] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[5] + puSrc->au16[5]); + puDst->au16[6] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[6] + puSrc->au16[6]); + puDst->au16[7] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[7] + puSrc->au16[7]); +} + +#endif + + +/* + * PADDD / VPADDD. + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_paddd_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + uDst.au32[0] = uSrc1.au32[0] + uSrc2.au32[0]; + uDst.au32[1] = uSrc1.au32[1] + uSrc2.au32[1]; + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_paddd_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->au32[0] = uSrc1.au32[0] + puSrc->au32[0]; + puDst->au32[1] = uSrc1.au32[1] + puSrc->au32[1]; + puDst->au32[2] = uSrc1.au32[2] + puSrc->au32[2]; + puDst->au32[3] = uSrc1.au32[3] + puSrc->au32[3]; +} + +#endif /* IEM_WITHOUT_ASSEMBLY */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddd_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au32[0] = puSrc1->au32[0] + puSrc2->au32[0]; + puDst->au32[1] = puSrc1->au32[1] + puSrc2->au32[1]; + puDst->au32[2] = puSrc1->au32[2] + puSrc2->au32[2]; + puDst->au32[3] = puSrc1->au32[3] + puSrc2->au32[3]; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddd_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au32[0] = puSrc1->au32[0] + puSrc2->au32[0]; + puDst->au32[1] = puSrc1->au32[1] + puSrc2->au32[1]; + puDst->au32[2] = puSrc1->au32[2] + puSrc2->au32[2]; + puDst->au32[3] = puSrc1->au32[3] + puSrc2->au32[3]; + puDst->au32[4] = puSrc1->au32[4] + puSrc2->au32[4]; + puDst->au32[5] = puSrc1->au32[5] + puSrc2->au32[5]; + puDst->au32[6] = puSrc1->au32[6] + puSrc2->au32[6]; + puDst->au32[7] = puSrc1->au32[7] + puSrc2->au32[7]; +} + + +/* + * PADDQ / VPADDQ. + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_paddq_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + *puDst = *puDst + *puSrc; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_paddq_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->au64[0] = uSrc1.au64[0] + puSrc->au64[0]; + puDst->au64[1] = uSrc1.au64[1] + puSrc->au64[1]; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddq_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au64[0] = puSrc1->au64[0] + puSrc2->au64[0]; + puDst->au64[1] = puSrc1->au64[1] + puSrc2->au64[1]; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddq_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au64[0] = puSrc1->au64[0] + puSrc2->au64[0]; + puDst->au64[1] = puSrc1->au64[1] + puSrc2->au64[1]; + puDst->au64[2] = puSrc1->au64[2] + puSrc2->au64[2]; + puDst->au64[3] = puSrc1->au64[3] + puSrc2->au64[3]; +} + + +/* + * PSUBB / VPSUBB + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_psubb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + uDst.au8[0] = uSrc1.au8[0] - uSrc2.au8[0]; + uDst.au8[1] = uSrc1.au8[1] - uSrc2.au8[1]; + uDst.au8[2] = uSrc1.au8[2] - uSrc2.au8[2]; + uDst.au8[3] = uSrc1.au8[3] - uSrc2.au8[3]; + uDst.au8[4] = uSrc1.au8[4] - uSrc2.au8[4]; + uDst.au8[5] = uSrc1.au8[5] - uSrc2.au8[5]; + uDst.au8[6] = uSrc1.au8[6] - uSrc2.au8[6]; + uDst.au8[7] = uSrc1.au8[7] - uSrc2.au8[7]; + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psubb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->au8[0] = uSrc1.au8[0] - puSrc->au8[0]; + puDst->au8[1] = uSrc1.au8[1] - puSrc->au8[1]; + puDst->au8[2] = uSrc1.au8[2] - puSrc->au8[2]; + puDst->au8[3] = uSrc1.au8[3] - puSrc->au8[3]; + puDst->au8[4] = uSrc1.au8[4] - puSrc->au8[4]; + puDst->au8[5] = uSrc1.au8[5] - puSrc->au8[5]; + puDst->au8[6] = uSrc1.au8[6] - puSrc->au8[6]; + puDst->au8[7] = uSrc1.au8[7] - puSrc->au8[7]; + puDst->au8[8] = uSrc1.au8[8] - puSrc->au8[8]; + puDst->au8[9] = uSrc1.au8[9] - puSrc->au8[9]; + puDst->au8[10] = uSrc1.au8[10] - puSrc->au8[10]; + puDst->au8[11] = uSrc1.au8[11] - puSrc->au8[11]; + puDst->au8[12] = uSrc1.au8[12] - puSrc->au8[12]; + puDst->au8[13] = uSrc1.au8[13] - puSrc->au8[13]; + puDst->au8[14] = uSrc1.au8[14] - puSrc->au8[14]; + puDst->au8[15] = uSrc1.au8[15] - puSrc->au8[15]; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpsubb_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au8[0] = puSrc1->au8[0] - puSrc2->au8[0]; + puDst->au8[1] = puSrc1->au8[1] - puSrc2->au8[1]; + puDst->au8[2] = puSrc1->au8[2] - puSrc2->au8[2]; + puDst->au8[3] = puSrc1->au8[3] - puSrc2->au8[3]; + puDst->au8[4] = puSrc1->au8[4] - puSrc2->au8[4]; + puDst->au8[5] = puSrc1->au8[5] - puSrc2->au8[5]; + puDst->au8[6] = puSrc1->au8[6] - puSrc2->au8[6]; + puDst->au8[7] = puSrc1->au8[7] - puSrc2->au8[7]; + puDst->au8[8] = puSrc1->au8[8] - puSrc2->au8[8]; + puDst->au8[9] = puSrc1->au8[9] - puSrc2->au8[9]; + puDst->au8[10] = puSrc1->au8[10] - puSrc2->au8[10]; + puDst->au8[11] = puSrc1->au8[11] - puSrc2->au8[11]; + puDst->au8[12] = puSrc1->au8[12] - puSrc2->au8[12]; + puDst->au8[13] = puSrc1->au8[13] - puSrc2->au8[13]; + puDst->au8[14] = puSrc1->au8[14] - puSrc2->au8[14]; + puDst->au8[15] = puSrc1->au8[15] - puSrc2->au8[15]; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpsubb_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au8[0] = puSrc1->au8[0] - puSrc2->au8[0]; + puDst->au8[1] = puSrc1->au8[1] - puSrc2->au8[1]; + puDst->au8[2] = puSrc1->au8[2] - puSrc2->au8[2]; + puDst->au8[3] = puSrc1->au8[3] - puSrc2->au8[3]; + puDst->au8[4] = puSrc1->au8[4] - puSrc2->au8[4]; + puDst->au8[5] = puSrc1->au8[5] - puSrc2->au8[5]; + puDst->au8[6] = puSrc1->au8[6] - puSrc2->au8[6]; + puDst->au8[7] = puSrc1->au8[7] - puSrc2->au8[7]; + puDst->au8[8] = puSrc1->au8[8] - puSrc2->au8[8]; + puDst->au8[9] = puSrc1->au8[9] - puSrc2->au8[9]; + puDst->au8[10] = puSrc1->au8[10] - puSrc2->au8[10]; + puDst->au8[11] = puSrc1->au8[11] - puSrc2->au8[11]; + puDst->au8[12] = puSrc1->au8[12] - puSrc2->au8[12]; + puDst->au8[13] = puSrc1->au8[13] - puSrc2->au8[13]; + puDst->au8[14] = puSrc1->au8[14] - puSrc2->au8[14]; + puDst->au8[15] = puSrc1->au8[15] - puSrc2->au8[15]; + puDst->au8[16] = puSrc1->au8[16] - puSrc2->au8[16]; + puDst->au8[17] = puSrc1->au8[17] - puSrc2->au8[17]; + puDst->au8[18] = puSrc1->au8[18] - puSrc2->au8[18]; + puDst->au8[19] = puSrc1->au8[19] - puSrc2->au8[19]; + puDst->au8[20] = puSrc1->au8[20] - puSrc2->au8[20]; + puDst->au8[21] = puSrc1->au8[21] - puSrc2->au8[21]; + puDst->au8[22] = puSrc1->au8[22] - puSrc2->au8[22]; + puDst->au8[23] = puSrc1->au8[23] - puSrc2->au8[23]; + puDst->au8[24] = puSrc1->au8[24] - puSrc2->au8[24]; + puDst->au8[25] = puSrc1->au8[25] - puSrc2->au8[25]; + puDst->au8[26] = puSrc1->au8[26] - puSrc2->au8[26]; + puDst->au8[27] = puSrc1->au8[27] - puSrc2->au8[27]; + puDst->au8[28] = puSrc1->au8[28] - puSrc2->au8[28]; + puDst->au8[29] = puSrc1->au8[29] - puSrc2->au8[29]; + puDst->au8[30] = puSrc1->au8[30] - puSrc2->au8[30]; + puDst->au8[31] = puSrc1->au8[31] - puSrc2->au8[31]; +} + + +/* + * PSUBSB / VSUBSB + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_psubsb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + uDst.au8[0] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[0] - uSrc2.ai8[0]); + uDst.au8[1] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[1] - uSrc2.ai8[1]); + uDst.au8[2] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[2] - uSrc2.ai8[2]); + uDst.au8[3] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[3] - uSrc2.ai8[3]); + uDst.au8[4] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[4] - uSrc2.ai8[4]); + uDst.au8[5] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[5] - uSrc2.ai8[5]); + uDst.au8[6] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[6] - uSrc2.ai8[6]); + uDst.au8[7] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[7] - uSrc2.ai8[7]); + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psubsb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->au8[0] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[0] - puSrc->ai8[0]); + puDst->au8[1] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[1] - puSrc->ai8[1]); + puDst->au8[2] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[2] - puSrc->ai8[2]); + puDst->au8[3] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[3] - puSrc->ai8[3]); + puDst->au8[4] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[4] - puSrc->ai8[4]); + puDst->au8[5] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[5] - puSrc->ai8[5]); + puDst->au8[6] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[6] - puSrc->ai8[6]); + puDst->au8[7] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[7] - puSrc->ai8[7]); + puDst->au8[8] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[8] - puSrc->ai8[8]); + puDst->au8[9] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[9] - puSrc->ai8[9]); + puDst->au8[10] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[10] - puSrc->ai8[10]); + puDst->au8[11] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[11] - puSrc->ai8[11]); + puDst->au8[12] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[12] - puSrc->ai8[12]); + puDst->au8[13] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[13] - puSrc->ai8[13]); + puDst->au8[14] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[14] - puSrc->ai8[14]); + puDst->au8[15] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[15] - puSrc->ai8[15]); +} + +#endif + + +/* + * PADDSB / VPADDSB + */ +#define SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(a_uWord) \ + ( (uint16_t)(a_uWord) <= (uint16_t)0xff \ + ? (uint8_t)(a_uWord) \ + : (uint8_t)0 ) + +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_psubusb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + uDst.au8[0] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[0] - uSrc2.au8[0]); + uDst.au8[1] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[1] - uSrc2.au8[1]); + uDst.au8[2] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[2] - uSrc2.au8[2]); + uDst.au8[3] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[3] - uSrc2.au8[3]); + uDst.au8[4] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[4] - uSrc2.au8[4]); + uDst.au8[5] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[5] - uSrc2.au8[5]); + uDst.au8[6] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[6] - uSrc2.au8[6]); + uDst.au8[7] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[7] - uSrc2.au8[7]); + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psubusb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->au8[0] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[0] - puSrc->au8[0]); + puDst->au8[1] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[1] - puSrc->au8[1]); + puDst->au8[2] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[2] - puSrc->au8[2]); + puDst->au8[3] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[3] - puSrc->au8[3]); + puDst->au8[4] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[4] - puSrc->au8[4]); + puDst->au8[5] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[5] - puSrc->au8[5]); + puDst->au8[6] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[6] - puSrc->au8[6]); + puDst->au8[7] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[7] - puSrc->au8[7]); + puDst->au8[8] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[8] - puSrc->au8[8]); + puDst->au8[9] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[9] - puSrc->au8[9]); + puDst->au8[10] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[10] - puSrc->au8[10]); + puDst->au8[11] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[11] - puSrc->au8[11]); + puDst->au8[12] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[12] - puSrc->au8[12]); + puDst->au8[13] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[13] - puSrc->au8[13]); + puDst->au8[14] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[14] - puSrc->au8[14]); + puDst->au8[15] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[15] - puSrc->au8[15]); +} + +#endif + + +/* + * PSUBW / VPSUBW + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_psubw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + uDst.au16[0] = uSrc1.au16[0] - uSrc2.au16[0]; + uDst.au16[1] = uSrc1.au16[1] - uSrc2.au16[1]; + uDst.au16[2] = uSrc1.au16[2] - uSrc2.au16[2]; + uDst.au16[3] = uSrc1.au16[3] - uSrc2.au16[3]; + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psubw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->au16[0] = uSrc1.au16[0] - puSrc->au16[0]; + puDst->au16[1] = uSrc1.au16[1] - puSrc->au16[1]; + puDst->au16[2] = uSrc1.au16[2] - puSrc->au16[2]; + puDst->au16[3] = uSrc1.au16[3] - puSrc->au16[3]; + puDst->au16[4] = uSrc1.au16[4] - puSrc->au16[4]; + puDst->au16[5] = uSrc1.au16[5] - puSrc->au16[5]; + puDst->au16[6] = uSrc1.au16[6] - puSrc->au16[6]; + puDst->au16[7] = uSrc1.au16[7] - puSrc->au16[7]; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpsubw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au16[0] = puSrc1->au16[0] - puSrc2->au16[0]; + puDst->au16[1] = puSrc1->au16[1] - puSrc2->au16[1]; + puDst->au16[2] = puSrc1->au16[2] - puSrc2->au16[2]; + puDst->au16[3] = puSrc1->au16[3] - puSrc2->au16[3]; + puDst->au16[4] = puSrc1->au16[4] - puSrc2->au16[4]; + puDst->au16[5] = puSrc1->au16[5] - puSrc2->au16[5]; + puDst->au16[6] = puSrc1->au16[6] - puSrc2->au16[6]; + puDst->au16[7] = puSrc1->au16[7] - puSrc2->au16[7]; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpsubw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au16[0] = puSrc1->au16[0] - puSrc2->au16[0]; + puDst->au16[1] = puSrc1->au16[1] - puSrc2->au16[1]; + puDst->au16[2] = puSrc1->au16[2] - puSrc2->au16[2]; + puDst->au16[3] = puSrc1->au16[3] - puSrc2->au16[3]; + puDst->au16[4] = puSrc1->au16[4] - puSrc2->au16[4]; + puDst->au16[5] = puSrc1->au16[5] - puSrc2->au16[5]; + puDst->au16[6] = puSrc1->au16[6] - puSrc2->au16[6]; + puDst->au16[7] = puSrc1->au16[7] - puSrc2->au16[7]; + puDst->au16[8] = puSrc1->au16[8] - puSrc2->au16[8]; + puDst->au16[9] = puSrc1->au16[9] - puSrc2->au16[9]; + puDst->au16[10] = puSrc1->au16[10] - puSrc2->au16[10]; + puDst->au16[11] = puSrc1->au16[11] - puSrc2->au16[11]; + puDst->au16[12] = puSrc1->au16[12] - puSrc2->au16[12]; + puDst->au16[13] = puSrc1->au16[13] - puSrc2->au16[13]; + puDst->au16[14] = puSrc1->au16[14] - puSrc2->au16[14]; + puDst->au16[15] = puSrc1->au16[15] - puSrc2->au16[15]; +} + + +/* + * PSUBSW / VPSUBSW + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_psubsw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + uDst.au16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[0] - uSrc2.ai16[0]); + uDst.au16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[1] - uSrc2.ai16[1]); + uDst.au16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[2] - uSrc2.ai16[2]); + uDst.au16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[3] - uSrc2.ai16[3]); + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psubsw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->au16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[0] - puSrc->ai16[0]); + puDst->au16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[1] - puSrc->ai16[1]); + puDst->au16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[2] - puSrc->ai16[2]); + puDst->au16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[3] - puSrc->ai16[3]); + puDst->au16[4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[4] - puSrc->ai16[4]); + puDst->au16[5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[5] - puSrc->ai16[5]); + puDst->au16[6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[6] - puSrc->ai16[6]); + puDst->au16[7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[7] - puSrc->ai16[7]); +} + +#endif + + +/* + * PSUBUSW / VPSUBUSW + */ +#define SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(a_uDword) \ + ( (uint32_t)(a_uDword) <= (uint16_t)0xffff \ + ? (uint16_t)(a_uDword) \ + : (uint16_t)0 ) + +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_psubusw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + uDst.au16[0] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[0] - uSrc2.au16[0]); + uDst.au16[1] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[1] - uSrc2.au16[1]); + uDst.au16[2] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[2] - uSrc2.au16[2]); + uDst.au16[3] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[3] - uSrc2.au16[3]); + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psubusw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->au16[0] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[0] - puSrc->au16[0]); + puDst->au16[1] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[1] - puSrc->au16[1]); + puDst->au16[2] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[2] - puSrc->au16[2]); + puDst->au16[3] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[3] - puSrc->au16[3]); + puDst->au16[4] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[4] - puSrc->au16[4]); + puDst->au16[5] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[5] - puSrc->au16[5]); + puDst->au16[6] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[6] - puSrc->au16[6]); + puDst->au16[7] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[7] - puSrc->au16[7]); +} + +#endif + + +/* + * PSUBD / VPSUBD. + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_psubd_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + uDst.au32[0] = uSrc1.au32[0] - uSrc2.au32[0]; + uDst.au32[1] = uSrc1.au32[1] - uSrc2.au32[1]; + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psubd_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->au32[0] = uSrc1.au32[0] - puSrc->au32[0]; + puDst->au32[1] = uSrc1.au32[1] - puSrc->au32[1]; + puDst->au32[2] = uSrc1.au32[2] - puSrc->au32[2]; + puDst->au32[3] = uSrc1.au32[3] - puSrc->au32[3]; +} + +#endif /* IEM_WITHOUT_ASSEMBLY */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpsubd_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au32[0] = puSrc1->au32[0] - puSrc2->au32[0]; + puDst->au32[1] = puSrc1->au32[1] - puSrc2->au32[1]; + puDst->au32[2] = puSrc1->au32[2] - puSrc2->au32[2]; + puDst->au32[3] = puSrc1->au32[3] - puSrc2->au32[3]; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpsubd_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au32[0] = puSrc1->au32[0] - puSrc2->au32[0]; + puDst->au32[1] = puSrc1->au32[1] - puSrc2->au32[1]; + puDst->au32[2] = puSrc1->au32[2] - puSrc2->au32[2]; + puDst->au32[3] = puSrc1->au32[3] - puSrc2->au32[3]; + puDst->au32[4] = puSrc1->au32[4] - puSrc2->au32[4]; + puDst->au32[5] = puSrc1->au32[5] - puSrc2->au32[5]; + puDst->au32[6] = puSrc1->au32[6] - puSrc2->au32[6]; + puDst->au32[7] = puSrc1->au32[7] - puSrc2->au32[7]; +} + + +/* + * PSUBQ / VPSUBQ. + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_psubq_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + *puDst = *puDst - *puSrc; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_psubq_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->au64[0] = uSrc1.au64[0] - puSrc->au64[0]; + puDst->au64[1] = uSrc1.au64[1] - puSrc->au64[1]; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpsubq_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au64[0] = puSrc1->au64[0] - puSrc2->au64[0]; + puDst->au64[1] = puSrc1->au64[1] - puSrc2->au64[1]; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpsubq_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RT_NOREF(pExtState); + puDst->au64[0] = puSrc1->au64[0] - puSrc2->au64[0]; + puDst->au64[1] = puSrc1->au64[1] - puSrc2->au64[1]; + puDst->au64[2] = puSrc1->au64[2] - puSrc2->au64[2]; + puDst->au64[3] = puSrc1->au64[3] - puSrc2->au64[3]; +} + + + +/* + * PMULLW / VPMULLW / PMULLD / VPMULLD + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_pmullw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + uDst.ai16[0] = uSrc1.ai16[0] * uSrc2.ai16[0]; + uDst.ai16[1] = uSrc1.ai16[1] * uSrc2.ai16[1]; + uDst.ai16[2] = uSrc1.ai16[2] * uSrc2.ai16[2]; + uDst.ai16[3] = uSrc1.ai16[3] * uSrc2.ai16[3]; + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pmullw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->ai16[0] = uSrc1.ai16[0] * puSrc->ai16[0]; + puDst->ai16[1] = uSrc1.ai16[1] * puSrc->ai16[1]; + puDst->ai16[2] = uSrc1.ai16[2] * puSrc->ai16[2]; + puDst->ai16[3] = uSrc1.ai16[3] * puSrc->ai16[3]; + puDst->ai16[4] = uSrc1.ai16[4] * puSrc->ai16[4]; + puDst->ai16[5] = uSrc1.ai16[5] * puSrc->ai16[5]; + puDst->ai16[6] = uSrc1.ai16[6] * puSrc->ai16[6]; + puDst->ai16[7] = uSrc1.ai16[7] * puSrc->ai16[7]; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_pmulld_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->ai32[0] = uSrc1.ai32[0] * puSrc->ai32[0]; + puDst->ai32[1] = uSrc1.ai32[1] * puSrc->ai32[1]; + puDst->ai32[2] = uSrc1.ai32[2] * puSrc->ai32[2]; + puDst->ai32[3] = uSrc1.ai32[3] * puSrc->ai32[3]; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmullw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + puDst->ai16[0] = puSrc1->ai16[0] * puSrc2->ai16[0]; + puDst->ai16[1] = puSrc1->ai16[1] * puSrc2->ai16[1]; + puDst->ai16[2] = puSrc1->ai16[2] * puSrc2->ai16[2]; + puDst->ai16[3] = puSrc1->ai16[3] * puSrc2->ai16[3]; + puDst->ai16[4] = puSrc1->ai16[4] * puSrc2->ai16[4]; + puDst->ai16[5] = puSrc1->ai16[5] * puSrc2->ai16[5]; + puDst->ai16[6] = puSrc1->ai16[6] * puSrc2->ai16[6]; + puDst->ai16[7] = puSrc1->ai16[7] * puSrc2->ai16[7]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmullw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + puDst->ai16[ 0] = puSrc1->ai16[ 0] * puSrc2->ai16[ 0]; + puDst->ai16[ 1] = puSrc1->ai16[ 1] * puSrc2->ai16[ 1]; + puDst->ai16[ 2] = puSrc1->ai16[ 2] * puSrc2->ai16[ 2]; + puDst->ai16[ 3] = puSrc1->ai16[ 3] * puSrc2->ai16[ 3]; + puDst->ai16[ 4] = puSrc1->ai16[ 4] * puSrc2->ai16[ 4]; + puDst->ai16[ 5] = puSrc1->ai16[ 5] * puSrc2->ai16[ 5]; + puDst->ai16[ 6] = puSrc1->ai16[ 6] * puSrc2->ai16[ 6]; + puDst->ai16[ 7] = puSrc1->ai16[ 7] * puSrc2->ai16[ 7]; + puDst->ai16[ 8] = puSrc1->ai16[ 8] * puSrc2->ai16[ 8]; + puDst->ai16[ 9] = puSrc1->ai16[ 9] * puSrc2->ai16[ 9]; + puDst->ai16[10] = puSrc1->ai16[10] * puSrc2->ai16[10]; + puDst->ai16[11] = puSrc1->ai16[11] * puSrc2->ai16[11]; + puDst->ai16[12] = puSrc1->ai16[12] * puSrc2->ai16[12]; + puDst->ai16[13] = puSrc1->ai16[13] * puSrc2->ai16[13]; + puDst->ai16[14] = puSrc1->ai16[14] * puSrc2->ai16[14]; + puDst->ai16[15] = puSrc1->ai16[15] * puSrc2->ai16[15]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmulld_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + puDst->ai32[0] = puSrc1->ai32[0] * puSrc2->ai32[0]; + puDst->ai32[1] = puSrc1->ai32[1] * puSrc2->ai32[1]; + puDst->ai32[2] = puSrc1->ai32[2] * puSrc2->ai32[2]; + puDst->ai32[3] = puSrc1->ai32[3] * puSrc2->ai32[3]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmulld_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + puDst->ai32[0] = puSrc1->ai32[0] * puSrc2->ai32[0]; + puDst->ai32[1] = puSrc1->ai32[1] * puSrc2->ai32[1]; + puDst->ai32[2] = puSrc1->ai32[2] * puSrc2->ai32[2]; + puDst->ai32[3] = puSrc1->ai32[3] * puSrc2->ai32[3]; + puDst->ai32[4] = puSrc1->ai32[4] * puSrc2->ai32[4]; + puDst->ai32[5] = puSrc1->ai32[5] * puSrc2->ai32[5]; + puDst->ai32[6] = puSrc1->ai32[6] * puSrc2->ai32[6]; + puDst->ai32[7] = puSrc1->ai32[7] * puSrc2->ai32[7]; +} + + +/* + * PMULHW / VPMULHW + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_pmulhw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + uDst.ai16[0] = RT_HIWORD(uSrc1.ai16[0] * uSrc2.ai16[0]); + uDst.ai16[1] = RT_HIWORD(uSrc1.ai16[1] * uSrc2.ai16[1]); + uDst.ai16[2] = RT_HIWORD(uSrc1.ai16[2] * uSrc2.ai16[2]); + uDst.ai16[3] = RT_HIWORD(uSrc1.ai16[3] * uSrc2.ai16[3]); + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pmulhw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RT_NOREF(pFpuState); + RTUINT128U uSrc1 = *puDst; + puDst->ai16[0] = RT_HIWORD(uSrc1.ai16[0] * puSrc->ai16[0]); + puDst->ai16[1] = RT_HIWORD(uSrc1.ai16[1] * puSrc->ai16[1]); + puDst->ai16[2] = RT_HIWORD(uSrc1.ai16[2] * puSrc->ai16[2]); + puDst->ai16[3] = RT_HIWORD(uSrc1.ai16[3] * puSrc->ai16[3]); + puDst->ai16[4] = RT_HIWORD(uSrc1.ai16[4] * puSrc->ai16[4]); + puDst->ai16[5] = RT_HIWORD(uSrc1.ai16[5] * puSrc->ai16[5]); + puDst->ai16[6] = RT_HIWORD(uSrc1.ai16[6] * puSrc->ai16[6]); + puDst->ai16[7] = RT_HIWORD(uSrc1.ai16[7] * puSrc->ai16[7]); +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmulhw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + puDst->ai16[0] = RT_HIWORD(puSrc1->ai16[0] * puSrc2->ai16[0]); + puDst->ai16[1] = RT_HIWORD(puSrc1->ai16[1] * puSrc2->ai16[1]); + puDst->ai16[2] = RT_HIWORD(puSrc1->ai16[2] * puSrc2->ai16[2]); + puDst->ai16[3] = RT_HIWORD(puSrc1->ai16[3] * puSrc2->ai16[3]); + puDst->ai16[4] = RT_HIWORD(puSrc1->ai16[4] * puSrc2->ai16[4]); + puDst->ai16[5] = RT_HIWORD(puSrc1->ai16[5] * puSrc2->ai16[5]); + puDst->ai16[6] = RT_HIWORD(puSrc1->ai16[6] * puSrc2->ai16[6]); + puDst->ai16[7] = RT_HIWORD(puSrc1->ai16[7] * puSrc2->ai16[7]); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmulhw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + puDst->ai16[ 0] = RT_HIWORD(puSrc1->ai16[ 0] * puSrc2->ai16[ 0]); + puDst->ai16[ 1] = RT_HIWORD(puSrc1->ai16[ 1] * puSrc2->ai16[ 1]); + puDst->ai16[ 2] = RT_HIWORD(puSrc1->ai16[ 2] * puSrc2->ai16[ 2]); + puDst->ai16[ 3] = RT_HIWORD(puSrc1->ai16[ 3] * puSrc2->ai16[ 3]); + puDst->ai16[ 4] = RT_HIWORD(puSrc1->ai16[ 4] * puSrc2->ai16[ 4]); + puDst->ai16[ 5] = RT_HIWORD(puSrc1->ai16[ 5] * puSrc2->ai16[ 5]); + puDst->ai16[ 6] = RT_HIWORD(puSrc1->ai16[ 6] * puSrc2->ai16[ 6]); + puDst->ai16[ 7] = RT_HIWORD(puSrc1->ai16[ 7] * puSrc2->ai16[ 7]); + puDst->ai16[ 8] = RT_HIWORD(puSrc1->ai16[ 8] * puSrc2->ai16[ 8]); + puDst->ai16[ 9] = RT_HIWORD(puSrc1->ai16[ 9] * puSrc2->ai16[ 9]); + puDst->ai16[10] = RT_HIWORD(puSrc1->ai16[10] * puSrc2->ai16[10]); + puDst->ai16[11] = RT_HIWORD(puSrc1->ai16[11] * puSrc2->ai16[11]); + puDst->ai16[12] = RT_HIWORD(puSrc1->ai16[12] * puSrc2->ai16[12]); + puDst->ai16[13] = RT_HIWORD(puSrc1->ai16[13] * puSrc2->ai16[13]); + puDst->ai16[14] = RT_HIWORD(puSrc1->ai16[14] * puSrc2->ai16[14]); + puDst->ai16[15] = RT_HIWORD(puSrc1->ai16[15] * puSrc2->ai16[15]); +} + + +/* + * PMULHUW / VPMULHUW + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_pmulhuw_u64,(uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + uDst.au16[0] = RT_HIWORD(uSrc1.au16[0] * uSrc2.au16[0]); + uDst.au16[1] = RT_HIWORD(uSrc1.au16[1] * uSrc2.au16[1]); + uDst.au16[2] = RT_HIWORD(uSrc1.au16[2] * uSrc2.au16[2]); + uDst.au16[3] = RT_HIWORD(uSrc1.au16[3] * uSrc2.au16[3]); + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pmulhuw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + puDst->au16[0] = RT_HIWORD(uSrc1.au16[0] * puSrc->au16[0]); + puDst->au16[1] = RT_HIWORD(uSrc1.au16[1] * puSrc->au16[1]); + puDst->au16[2] = RT_HIWORD(uSrc1.au16[2] * puSrc->au16[2]); + puDst->au16[3] = RT_HIWORD(uSrc1.au16[3] * puSrc->au16[3]); + puDst->au16[4] = RT_HIWORD(uSrc1.au16[4] * puSrc->au16[4]); + puDst->au16[5] = RT_HIWORD(uSrc1.au16[5] * puSrc->au16[5]); + puDst->au16[6] = RT_HIWORD(uSrc1.au16[6] * puSrc->au16[6]); + puDst->au16[7] = RT_HIWORD(uSrc1.au16[7] * puSrc->au16[7]); +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmulhuw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + puDst->au16[0] = RT_HIWORD(puSrc1->au16[0] * puSrc2->au16[0]); + puDst->au16[1] = RT_HIWORD(puSrc1->au16[1] * puSrc2->au16[1]); + puDst->au16[2] = RT_HIWORD(puSrc1->au16[2] * puSrc2->au16[2]); + puDst->au16[3] = RT_HIWORD(puSrc1->au16[3] * puSrc2->au16[3]); + puDst->au16[4] = RT_HIWORD(puSrc1->au16[4] * puSrc2->au16[4]); + puDst->au16[5] = RT_HIWORD(puSrc1->au16[5] * puSrc2->au16[5]); + puDst->au16[6] = RT_HIWORD(puSrc1->au16[6] * puSrc2->au16[6]); + puDst->au16[7] = RT_HIWORD(puSrc1->au16[7] * puSrc2->au16[7]); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmulhuw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + puDst->au16[ 0] = RT_HIWORD(puSrc1->au16[ 0] * puSrc2->au16[ 0]); + puDst->au16[ 1] = RT_HIWORD(puSrc1->au16[ 1] * puSrc2->au16[ 1]); + puDst->au16[ 2] = RT_HIWORD(puSrc1->au16[ 2] * puSrc2->au16[ 2]); + puDst->au16[ 3] = RT_HIWORD(puSrc1->au16[ 3] * puSrc2->au16[ 3]); + puDst->au16[ 4] = RT_HIWORD(puSrc1->au16[ 4] * puSrc2->au16[ 4]); + puDst->au16[ 5] = RT_HIWORD(puSrc1->au16[ 5] * puSrc2->au16[ 5]); + puDst->au16[ 6] = RT_HIWORD(puSrc1->au16[ 6] * puSrc2->au16[ 6]); + puDst->au16[ 7] = RT_HIWORD(puSrc1->au16[ 7] * puSrc2->au16[ 7]); + puDst->au16[ 8] = RT_HIWORD(puSrc1->au16[ 8] * puSrc2->au16[ 8]); + puDst->au16[ 9] = RT_HIWORD(puSrc1->au16[ 9] * puSrc2->au16[ 9]); + puDst->au16[10] = RT_HIWORD(puSrc1->au16[10] * puSrc2->au16[10]); + puDst->au16[11] = RT_HIWORD(puSrc1->au16[11] * puSrc2->au16[11]); + puDst->au16[12] = RT_HIWORD(puSrc1->au16[12] * puSrc2->au16[12]); + puDst->au16[13] = RT_HIWORD(puSrc1->au16[13] * puSrc2->au16[13]); + puDst->au16[14] = RT_HIWORD(puSrc1->au16[14] * puSrc2->au16[14]); + puDst->au16[15] = RT_HIWORD(puSrc1->au16[15] * puSrc2->au16[15]); +} + + +/* + * PSRLW / VPSRLW + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_psrlw_u64,(uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + + if (uSrc2.au64[0] <= 15) + { + uDst.au16[0] = uSrc1.au16[0] >> uSrc2.au8[0]; + uDst.au16[1] = uSrc1.au16[1] >> uSrc2.au8[0]; + uDst.au16[2] = uSrc1.au16[2] >> uSrc2.au8[0]; + uDst.au16[3] = uSrc1.au16[3] >> uSrc2.au8[0]; + } + else + { + uDst.au64[0] = 0; + } + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psrlw_imm_u64,(uint64_t *puDst, uint8_t uShift)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uDst; + + if (uShift <= 15) + { + uDst.au16[0] = uSrc1.au16[0] >> uShift; + uDst.au16[1] = uSrc1.au16[1] >> uShift; + uDst.au16[2] = uSrc1.au16[2] >> uShift; + uDst.au16[3] = uSrc1.au16[3] >> uShift; + } + else + { + uDst.au64[0] = 0; + } + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psrlw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + if (puSrc->au64[0] <= 15) + { + puDst->au16[0] = uSrc1.au16[0] >> puSrc->au8[0]; + puDst->au16[1] = uSrc1.au16[1] >> puSrc->au8[0]; + puDst->au16[2] = uSrc1.au16[2] >> puSrc->au8[0]; + puDst->au16[3] = uSrc1.au16[3] >> puSrc->au8[0]; + puDst->au16[4] = uSrc1.au16[4] >> puSrc->au8[0]; + puDst->au16[5] = uSrc1.au16[5] >> puSrc->au8[0]; + puDst->au16[6] = uSrc1.au16[6] >> puSrc->au8[0]; + puDst->au16[7] = uSrc1.au16[7] >> puSrc->au8[0]; + } + else + { + puDst->au64[0] = 0; + puDst->au64[1] = 0; + } +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_psrlw_imm_u128,(PRTUINT128U puDst, uint8_t uShift)) +{ + RTUINT128U uSrc1 = *puDst; + + if (uShift <= 15) + { + puDst->au16[0] = uSrc1.au16[0] >> uShift; + puDst->au16[1] = uSrc1.au16[1] >> uShift; + puDst->au16[2] = uSrc1.au16[2] >> uShift; + puDst->au16[3] = uSrc1.au16[3] >> uShift; + puDst->au16[4] = uSrc1.au16[4] >> uShift; + puDst->au16[5] = uSrc1.au16[5] >> uShift; + puDst->au16[6] = uSrc1.au16[6] >> uShift; + puDst->au16[7] = uSrc1.au16[7] >> uShift; + } + else + { + puDst->au64[0] = 0; + puDst->au64[1] = 0; + } +} + +#endif + + +/* + * PSRAW / VPSRAW + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_psraw_u64,(uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + + if (uSrc2.au64[0] <= 15) + { + uDst.ai16[0] = uSrc1.ai16[0] >> uSrc2.au8[0]; + uDst.ai16[1] = uSrc1.ai16[1] >> uSrc2.au8[0]; + uDst.ai16[2] = uSrc1.ai16[2] >> uSrc2.au8[0]; + uDst.ai16[3] = uSrc1.ai16[3] >> uSrc2.au8[0]; + } + else + { + uDst.au64[0] = 0; + } + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psraw_imm_u64,(uint64_t *puDst, uint8_t uShift)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uDst; + + if (uShift <= 15) + { + uDst.ai16[0] = uSrc1.ai16[0] >> uShift; + uDst.ai16[1] = uSrc1.ai16[1] >> uShift; + uDst.ai16[2] = uSrc1.ai16[2] >> uShift; + uDst.ai16[3] = uSrc1.ai16[3] >> uShift; + } + else + { + uDst.au64[0] = 0; + } + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psraw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + if (puSrc->au64[0] <= 15) + { + puDst->ai16[0] = uSrc1.ai16[0] >> puSrc->au8[0]; + puDst->ai16[1] = uSrc1.ai16[1] >> puSrc->au8[0]; + puDst->ai16[2] = uSrc1.ai16[2] >> puSrc->au8[0]; + puDst->ai16[3] = uSrc1.ai16[3] >> puSrc->au8[0]; + puDst->ai16[4] = uSrc1.ai16[4] >> puSrc->au8[0]; + puDst->ai16[5] = uSrc1.ai16[5] >> puSrc->au8[0]; + puDst->ai16[6] = uSrc1.ai16[6] >> puSrc->au8[0]; + puDst->ai16[7] = uSrc1.ai16[7] >> puSrc->au8[0]; + } + else + { + puDst->au64[0] = 0; + puDst->au64[1] = 0; + } +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_psraw_imm_u128,(PRTUINT128U puDst, uint8_t uShift)) +{ + RTUINT128U uSrc1 = *puDst; + + if (uShift <= 15) + { + puDst->ai16[0] = uSrc1.ai16[0] >> uShift; + puDst->ai16[1] = uSrc1.ai16[1] >> uShift; + puDst->ai16[2] = uSrc1.ai16[2] >> uShift; + puDst->ai16[3] = uSrc1.ai16[3] >> uShift; + puDst->ai16[4] = uSrc1.ai16[4] >> uShift; + puDst->ai16[5] = uSrc1.ai16[5] >> uShift; + puDst->ai16[6] = uSrc1.ai16[6] >> uShift; + puDst->ai16[7] = uSrc1.ai16[7] >> uShift; + } + else + { + puDst->au64[0] = 0; + puDst->au64[1] = 0; + } +} + +#endif + + +/* + * PSLLW / VPSLLW + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_psllw_u64,(uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + + if (uSrc2.au64[0] <= 15) + { + uDst.au16[0] = uSrc1.au16[0] << uSrc2.au8[0]; + uDst.au16[1] = uSrc1.au16[1] << uSrc2.au8[0]; + uDst.au16[2] = uSrc1.au16[2] << uSrc2.au8[0]; + uDst.au16[3] = uSrc1.au16[3] << uSrc2.au8[0]; + } + else + { + uDst.au64[0] = 0; + } + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psllw_imm_u64,(uint64_t *puDst, uint8_t uShift)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uDst; + + if (uShift <= 15) + { + uDst.au16[0] = uSrc1.au16[0] << uShift; + uDst.au16[1] = uSrc1.au16[1] << uShift; + uDst.au16[2] = uSrc1.au16[2] << uShift; + uDst.au16[3] = uSrc1.au16[3] << uShift; + } + else + { + uDst.au64[0] = 0; + } + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psllw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + if (puSrc->au64[0] <= 15) + { + puDst->au16[0] = uSrc1.au16[0] << puSrc->au8[0]; + puDst->au16[1] = uSrc1.au16[1] << puSrc->au8[0]; + puDst->au16[2] = uSrc1.au16[2] << puSrc->au8[0]; + puDst->au16[3] = uSrc1.au16[3] << puSrc->au8[0]; + puDst->au16[4] = uSrc1.au16[4] << puSrc->au8[0]; + puDst->au16[5] = uSrc1.au16[5] << puSrc->au8[0]; + puDst->au16[6] = uSrc1.au16[6] << puSrc->au8[0]; + puDst->au16[7] = uSrc1.au16[7] << puSrc->au8[0]; + } + else + { + puDst->au64[0] = 0; + puDst->au64[1] = 0; + } +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_psllw_imm_u128,(PRTUINT128U puDst, uint8_t uShift)) +{ + RTUINT128U uSrc1 = *puDst; + + if (uShift <= 15) + { + puDst->au16[0] = uSrc1.au16[0] << uShift; + puDst->au16[1] = uSrc1.au16[1] << uShift; + puDst->au16[2] = uSrc1.au16[2] << uShift; + puDst->au16[3] = uSrc1.au16[3] << uShift; + puDst->au16[4] = uSrc1.au16[4] << uShift; + puDst->au16[5] = uSrc1.au16[5] << uShift; + puDst->au16[6] = uSrc1.au16[6] << uShift; + puDst->au16[7] = uSrc1.au16[7] << uShift; + } + else + { + puDst->au64[0] = 0; + puDst->au64[1] = 0; + } +} + +#endif + + +/* + * PSRLD / VPSRLD + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_psrld_u64,(uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + + if (uSrc2.au64[0] <= 31) + { + uDst.au32[0] = uSrc1.au32[0] >> uSrc2.au8[0]; + uDst.au32[1] = uSrc1.au32[1] >> uSrc2.au8[0]; + } + else + { + uDst.au64[0] = 0; + } + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psrld_imm_u64,(uint64_t *puDst, uint8_t uShift)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uDst; + + if (uShift <= 31) + { + uDst.au32[0] = uSrc1.au32[0] >> uShift; + uDst.au32[1] = uSrc1.au32[1] >> uShift; + } + else + { + uDst.au64[0] = 0; + } + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psrld_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + if (puSrc->au64[0] <= 31) + { + puDst->au32[0] = uSrc1.au32[0] >> puSrc->au8[0]; + puDst->au32[1] = uSrc1.au32[1] >> puSrc->au8[0]; + puDst->au32[2] = uSrc1.au32[2] >> puSrc->au8[0]; + puDst->au32[3] = uSrc1.au32[3] >> puSrc->au8[0]; + } + else + { + puDst->au64[0] = 0; + puDst->au64[1] = 0; + } +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_psrld_imm_u128,(PRTUINT128U puDst, uint8_t uShift)) +{ + RTUINT128U uSrc1 = *puDst; + + if (uShift <= 31) + { + puDst->au32[0] = uSrc1.au32[0] >> uShift; + puDst->au32[1] = uSrc1.au32[1] >> uShift; + puDst->au32[2] = uSrc1.au32[2] >> uShift; + puDst->au32[3] = uSrc1.au32[3] >> uShift; + } + else + { + puDst->au64[0] = 0; + puDst->au64[1] = 0; + } +} + +#endif + + +/* + * PSRAD / VPSRAD + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_psrad_u64,(uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + + if (uSrc2.au64[0] <= 31) + { + uDst.ai32[0] = uSrc1.ai32[0] >> uSrc2.au8[0]; + uDst.ai32[1] = uSrc1.ai32[1] >> uSrc2.au8[0]; + } + else + { + uDst.au64[0] = 0; + } + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psrad_imm_u64,(uint64_t *puDst, uint8_t uShift)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uDst; + + if (uShift <= 31) + { + uDst.ai32[0] = uSrc1.ai32[0] >> uShift; + uDst.ai32[1] = uSrc1.ai32[1] >> uShift; + } + else + { + uDst.au64[0] = 0; + } + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psrad_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + if (puSrc->au64[0] <= 31) + { + puDst->ai32[0] = uSrc1.ai32[0] >> puSrc->au8[0]; + puDst->ai32[1] = uSrc1.ai32[1] >> puSrc->au8[0]; + puDst->ai32[2] = uSrc1.ai32[2] >> puSrc->au8[0]; + puDst->ai32[3] = uSrc1.ai32[3] >> puSrc->au8[0]; + } + else + { + puDst->au64[0] = 0; + puDst->au64[1] = 0; + } +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_psrad_imm_u128,(PRTUINT128U puDst, uint8_t uShift)) +{ + RTUINT128U uSrc1 = *puDst; + + if (uShift <= 31) + { + puDst->ai32[0] = uSrc1.ai32[0] >> uShift; + puDst->ai32[1] = uSrc1.ai32[1] >> uShift; + puDst->ai32[2] = uSrc1.ai32[2] >> uShift; + puDst->ai32[3] = uSrc1.ai32[3] >> uShift; + } + else + { + puDst->au64[0] = 0; + puDst->au64[1] = 0; + } +} + +#endif + + +/* + * PSLLD / VPSLLD + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_pslld_u64,(uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + + if (uSrc2.au64[0] <= 31) + { + uDst.au32[0] = uSrc1.au32[0] << uSrc2.au8[0]; + uDst.au32[1] = uSrc1.au32[1] << uSrc2.au8[0]; + } + else + { + uDst.au64[0] = 0; + } + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pslld_imm_u64,(uint64_t *puDst, uint8_t uShift)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uDst; + + if (uShift <= 31) + { + uDst.au32[0] = uSrc1.au32[0] << uShift; + uDst.au32[1] = uSrc1.au32[1] << uShift; + } + else + { + uDst.au64[0] = 0; + } + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pslld_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + if (puSrc->au64[0] <= 31) + { + puDst->au32[0] = uSrc1.au32[0] << puSrc->au8[0]; + puDst->au32[1] = uSrc1.au32[1] << puSrc->au8[0]; + puDst->au32[2] = uSrc1.au32[2] << puSrc->au8[0]; + puDst->au32[3] = uSrc1.au32[3] << puSrc->au8[0]; + } + else + { + puDst->au64[0] = 0; + puDst->au64[1] = 0; + } +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_pslld_imm_u128,(PRTUINT128U puDst, uint8_t uShift)) +{ + RTUINT128U uSrc1 = *puDst; + + if (uShift <= 31) + { + puDst->au32[0] = uSrc1.au32[0] << uShift; + puDst->au32[1] = uSrc1.au32[1] << uShift; + puDst->au32[2] = uSrc1.au32[2] << uShift; + puDst->au32[3] = uSrc1.au32[3] << uShift; + } + else + { + puDst->au64[0] = 0; + puDst->au64[1] = 0; + } +} + +#endif + + +/* + * PSRLQ / VPSRLQ + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_psrlq_u64,(uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + + if (uSrc2.au64[0] <= 63) + { + uDst.au64[0] = uSrc1.au64[0] >> uSrc2.au8[0]; + } + else + { + uDst.au64[0] = 0; + } + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psrlq_imm_u64,(uint64_t *puDst, uint8_t uShift)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uDst; + + if (uShift <= 63) + { + uDst.au64[0] = uSrc1.au64[0] >> uShift; + } + else + { + uDst.au64[0] = 0; + } + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psrlq_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + if (puSrc->au64[0] <= 63) + { + puDst->au64[0] = uSrc1.au64[0] >> puSrc->au8[0]; + puDst->au64[1] = uSrc1.au64[1] >> puSrc->au8[0]; + } + else + { + puDst->au64[0] = 0; + puDst->au64[1] = 0; + } +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_psrlq_imm_u128,(PRTUINT128U puDst, uint8_t uShift)) +{ + RTUINT128U uSrc1 = *puDst; + + if (uShift <= 63) + { + puDst->au64[0] = uSrc1.au64[0] >> uShift; + puDst->au64[1] = uSrc1.au64[1] >> uShift; + } + else + { + puDst->au64[0] = 0; + puDst->au64[1] = 0; + } +} + +#endif + + +/* + * PSLLQ / VPSLLQ + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_psllq_u64,(uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + + if (uSrc2.au64[0] <= 63) + { + uDst.au64[0] = uSrc1.au64[0] << uSrc2.au8[0]; + } + else + { + uDst.au64[0] = 0; + } + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psllq_imm_u64,(uint64_t *puDst, uint8_t uShift)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uDst; + + if (uShift <= 63) + { + uDst.au64[0] = uSrc1.au64[0] << uShift; + } + else + { + uDst.au64[0] = 0; + } + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psllq_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + if (puSrc->au64[0] <= 63) + { + puDst->au64[0] = uSrc1.au64[0] << puSrc->au8[0]; + puDst->au64[1] = uSrc1.au64[1] << puSrc->au8[0]; + } + else + { + puDst->au64[0] = 0; + puDst->au64[1] = 0; + } +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_psllq_imm_u128,(PRTUINT128U puDst, uint8_t uShift)) +{ + RTUINT128U uSrc1 = *puDst; + + if (uShift <= 63) + { + puDst->au64[0] = uSrc1.au64[0] << uShift; + puDst->au64[1] = uSrc1.au64[1] << uShift; + } + else + { + puDst->au64[0] = 0; + puDst->au64[1] = 0; + } +} + +#endif + + +/* + * PSRLDQ / VPSRLDQ + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_psrldq_imm_u128,(PRTUINT128U puDst, uint8_t uShift)) +{ + RTUINT128U uSrc1 = *puDst; + + if (uShift < 16) + { + int i; + + for (i = 0; i < 16 - uShift; ++i) + puDst->au8[i] = uSrc1.au8[i + uShift]; + for (i = 16 - uShift; i < 16; ++i) + puDst->au8[i] = 0; + } + else + { + puDst->au64[0] = 0; + puDst->au64[1] = 0; + } +} + +#endif + + +/* + * PSLLDQ / VPSLLDQ + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_pslldq_imm_u128,(PRTUINT128U puDst, uint8_t uShift)) +{ + RTUINT128U uSrc1 = *puDst; + + if (uShift < 16) + { + int i; + + for (i = 0; i < uShift; ++i) + puDst->au8[i] = 0; + for (i = uShift; i < 16; ++i) + puDst->au8[i] = uSrc1.au8[i - uShift]; + } + else + { + puDst->au64[0] = 0; + puDst->au64[1] = 0; + } +} + +#endif + + +/* + * PMADDWD / VPMADDWD + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_pmaddwd_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + + uDst.ai32[0] = (int32_t)uSrc1.ai16[0] * uSrc2.ai16[0] + (int32_t)uSrc1.ai16[1] * uSrc2.ai16[1]; + uDst.ai32[1] = (int32_t)uSrc1.ai16[2] * uSrc2.ai16[2] + (int32_t)uSrc1.ai16[3] * uSrc2.ai16[3]; + *puDst = uDst.u; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pmaddwd_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->ai32[0] = (int32_t)uSrc1.ai16[0] * puSrc->ai16[0] + (int32_t)uSrc1.ai16[1] * puSrc->ai16[1]; + puDst->ai32[1] = (int32_t)uSrc1.ai16[2] * puSrc->ai16[2] + (int32_t)uSrc1.ai16[3] * puSrc->ai16[3]; + puDst->ai32[2] = (int32_t)uSrc1.ai16[4] * puSrc->ai16[4] + (int32_t)uSrc1.ai16[5] * puSrc->ai16[5]; + puDst->ai32[3] = (int32_t)uSrc1.ai16[6] * puSrc->ai16[6] + (int32_t)uSrc1.ai16[7] * puSrc->ai16[7]; + RT_NOREF(pFpuState); +} + +#endif + + +/* + * PMAXUB / VPMAXUB / PMAXUW / VPMAXUW / PMAXUD / VPMAXUD + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_pmaxub_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + + uDst.au8[0] = RT_MAX(uSrc1.au8[0], uSrc2.au8[0]); + uDst.au8[1] = RT_MAX(uSrc1.au8[1], uSrc2.au8[1]); + uDst.au8[2] = RT_MAX(uSrc1.au8[2], uSrc2.au8[2]); + uDst.au8[3] = RT_MAX(uSrc1.au8[3], uSrc2.au8[3]); + uDst.au8[4] = RT_MAX(uSrc1.au8[4], uSrc2.au8[4]); + uDst.au8[5] = RT_MAX(uSrc1.au8[5], uSrc2.au8[5]); + uDst.au8[6] = RT_MAX(uSrc1.au8[6], uSrc2.au8[6]); + uDst.au8[7] = RT_MAX(uSrc1.au8[7], uSrc2.au8[7]); + *puDst = uDst.u; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pmaxub_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->au8[ 0] = RT_MAX(uSrc1.au8[ 0], puSrc->au8[ 0]); + puDst->au8[ 1] = RT_MAX(uSrc1.au8[ 1], puSrc->au8[ 1]); + puDst->au8[ 2] = RT_MAX(uSrc1.au8[ 2], puSrc->au8[ 2]); + puDst->au8[ 3] = RT_MAX(uSrc1.au8[ 3], puSrc->au8[ 3]); + puDst->au8[ 4] = RT_MAX(uSrc1.au8[ 4], puSrc->au8[ 4]); + puDst->au8[ 5] = RT_MAX(uSrc1.au8[ 5], puSrc->au8[ 5]); + puDst->au8[ 6] = RT_MAX(uSrc1.au8[ 6], puSrc->au8[ 6]); + puDst->au8[ 7] = RT_MAX(uSrc1.au8[ 7], puSrc->au8[ 7]); + puDst->au8[ 8] = RT_MAX(uSrc1.au8[ 8], puSrc->au8[ 8]); + puDst->au8[ 9] = RT_MAX(uSrc1.au8[ 9], puSrc->au8[ 9]); + puDst->au8[10] = RT_MAX(uSrc1.au8[10], puSrc->au8[10]); + puDst->au8[11] = RT_MAX(uSrc1.au8[11], puSrc->au8[11]); + puDst->au8[12] = RT_MAX(uSrc1.au8[12], puSrc->au8[12]); + puDst->au8[13] = RT_MAX(uSrc1.au8[13], puSrc->au8[13]); + puDst->au8[14] = RT_MAX(uSrc1.au8[14], puSrc->au8[14]); + puDst->au8[15] = RT_MAX(uSrc1.au8[15], puSrc->au8[15]); + RT_NOREF(pFpuState); +} + +#endif + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pmaxuw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->au16[ 0] = RT_MAX(uSrc1.au16[ 0], puSrc->au16[ 0]); + puDst->au16[ 1] = RT_MAX(uSrc1.au16[ 1], puSrc->au16[ 1]); + puDst->au16[ 2] = RT_MAX(uSrc1.au16[ 2], puSrc->au16[ 2]); + puDst->au16[ 3] = RT_MAX(uSrc1.au16[ 3], puSrc->au16[ 3]); + puDst->au16[ 4] = RT_MAX(uSrc1.au16[ 4], puSrc->au16[ 4]); + puDst->au16[ 5] = RT_MAX(uSrc1.au16[ 5], puSrc->au16[ 5]); + puDst->au16[ 6] = RT_MAX(uSrc1.au16[ 6], puSrc->au16[ 6]); + puDst->au16[ 7] = RT_MAX(uSrc1.au16[ 7], puSrc->au16[ 7]); + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pmaxud_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->au32[ 0] = RT_MAX(uSrc1.au32[ 0], puSrc->au32[ 0]); + puDst->au32[ 1] = RT_MAX(uSrc1.au32[ 1], puSrc->au32[ 1]); + puDst->au32[ 2] = RT_MAX(uSrc1.au32[ 2], puSrc->au32[ 2]); + puDst->au32[ 3] = RT_MAX(uSrc1.au32[ 3], puSrc->au32[ 3]); + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxub_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + puDst->au8[ 0] = RT_MAX(puSrc1->au8[ 0], puSrc2->au8[ 0]); + puDst->au8[ 1] = RT_MAX(puSrc1->au8[ 1], puSrc2->au8[ 1]); + puDst->au8[ 2] = RT_MAX(puSrc1->au8[ 2], puSrc2->au8[ 2]); + puDst->au8[ 3] = RT_MAX(puSrc1->au8[ 3], puSrc2->au8[ 3]); + puDst->au8[ 4] = RT_MAX(puSrc1->au8[ 4], puSrc2->au8[ 4]); + puDst->au8[ 5] = RT_MAX(puSrc1->au8[ 5], puSrc2->au8[ 5]); + puDst->au8[ 6] = RT_MAX(puSrc1->au8[ 6], puSrc2->au8[ 6]); + puDst->au8[ 7] = RT_MAX(puSrc1->au8[ 7], puSrc2->au8[ 7]); + puDst->au8[ 8] = RT_MAX(puSrc1->au8[ 8], puSrc2->au8[ 8]); + puDst->au8[ 9] = RT_MAX(puSrc1->au8[ 9], puSrc2->au8[ 9]); + puDst->au8[10] = RT_MAX(puSrc1->au8[10], puSrc2->au8[10]); + puDst->au8[11] = RT_MAX(puSrc1->au8[11], puSrc2->au8[11]); + puDst->au8[12] = RT_MAX(puSrc1->au8[12], puSrc2->au8[12]); + puDst->au8[13] = RT_MAX(puSrc1->au8[13], puSrc2->au8[13]); + puDst->au8[14] = RT_MAX(puSrc1->au8[14], puSrc2->au8[14]); + puDst->au8[15] = RT_MAX(puSrc1->au8[15], puSrc2->au8[15]); + RT_NOREF(pExtState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxub_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + puDst->au8[ 0] = RT_MAX(puSrc1->au8[ 0], puSrc2->au8[ 0]); + puDst->au8[ 1] = RT_MAX(puSrc1->au8[ 1], puSrc2->au8[ 1]); + puDst->au8[ 2] = RT_MAX(puSrc1->au8[ 2], puSrc2->au8[ 2]); + puDst->au8[ 3] = RT_MAX(puSrc1->au8[ 3], puSrc2->au8[ 3]); + puDst->au8[ 4] = RT_MAX(puSrc1->au8[ 4], puSrc2->au8[ 4]); + puDst->au8[ 5] = RT_MAX(puSrc1->au8[ 5], puSrc2->au8[ 5]); + puDst->au8[ 6] = RT_MAX(puSrc1->au8[ 6], puSrc2->au8[ 6]); + puDst->au8[ 7] = RT_MAX(puSrc1->au8[ 7], puSrc2->au8[ 7]); + puDst->au8[ 8] = RT_MAX(puSrc1->au8[ 8], puSrc2->au8[ 8]); + puDst->au8[ 9] = RT_MAX(puSrc1->au8[ 9], puSrc2->au8[ 9]); + puDst->au8[10] = RT_MAX(puSrc1->au8[10], puSrc2->au8[10]); + puDst->au8[11] = RT_MAX(puSrc1->au8[11], puSrc2->au8[11]); + puDst->au8[12] = RT_MAX(puSrc1->au8[12], puSrc2->au8[12]); + puDst->au8[13] = RT_MAX(puSrc1->au8[13], puSrc2->au8[13]); + puDst->au8[14] = RT_MAX(puSrc1->au8[14], puSrc2->au8[14]); + puDst->au8[15] = RT_MAX(puSrc1->au8[15], puSrc2->au8[15]); + puDst->au8[16] = RT_MAX(puSrc1->au8[16], puSrc2->au8[16]); + puDst->au8[17] = RT_MAX(puSrc1->au8[17], puSrc2->au8[17]); + puDst->au8[18] = RT_MAX(puSrc1->au8[18], puSrc2->au8[18]); + puDst->au8[19] = RT_MAX(puSrc1->au8[19], puSrc2->au8[19]); + puDst->au8[20] = RT_MAX(puSrc1->au8[20], puSrc2->au8[20]); + puDst->au8[21] = RT_MAX(puSrc1->au8[21], puSrc2->au8[21]); + puDst->au8[22] = RT_MAX(puSrc1->au8[22], puSrc2->au8[22]); + puDst->au8[23] = RT_MAX(puSrc1->au8[23], puSrc2->au8[23]); + puDst->au8[24] = RT_MAX(puSrc1->au8[24], puSrc2->au8[24]); + puDst->au8[25] = RT_MAX(puSrc1->au8[25], puSrc2->au8[25]); + puDst->au8[26] = RT_MAX(puSrc1->au8[26], puSrc2->au8[26]); + puDst->au8[27] = RT_MAX(puSrc1->au8[27], puSrc2->au8[27]); + puDst->au8[28] = RT_MAX(puSrc1->au8[28], puSrc2->au8[28]); + puDst->au8[29] = RT_MAX(puSrc1->au8[29], puSrc2->au8[29]); + puDst->au8[30] = RT_MAX(puSrc1->au8[30], puSrc2->au8[30]); + puDst->au8[31] = RT_MAX(puSrc1->au8[31], puSrc2->au8[31]); + RT_NOREF(pExtState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxuw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + puDst->au16[ 0] = RT_MAX(puSrc1->au16[ 0], puSrc2->au16[ 0]); + puDst->au16[ 1] = RT_MAX(puSrc1->au16[ 1], puSrc2->au16[ 1]); + puDst->au16[ 2] = RT_MAX(puSrc1->au16[ 2], puSrc2->au16[ 2]); + puDst->au16[ 3] = RT_MAX(puSrc1->au16[ 3], puSrc2->au16[ 3]); + puDst->au16[ 4] = RT_MAX(puSrc1->au16[ 4], puSrc2->au16[ 4]); + puDst->au16[ 5] = RT_MAX(puSrc1->au16[ 5], puSrc2->au16[ 5]); + puDst->au16[ 6] = RT_MAX(puSrc1->au16[ 6], puSrc2->au16[ 6]); + puDst->au16[ 7] = RT_MAX(puSrc1->au16[ 7], puSrc2->au16[ 7]); + RT_NOREF(pExtState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxuw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + puDst->au16[ 0] = RT_MAX(puSrc1->au16[ 0], puSrc2->au16[ 0]); + puDst->au16[ 1] = RT_MAX(puSrc1->au16[ 1], puSrc2->au16[ 1]); + puDst->au16[ 2] = RT_MAX(puSrc1->au16[ 2], puSrc2->au16[ 2]); + puDst->au16[ 3] = RT_MAX(puSrc1->au16[ 3], puSrc2->au16[ 3]); + puDst->au16[ 4] = RT_MAX(puSrc1->au16[ 4], puSrc2->au16[ 4]); + puDst->au16[ 5] = RT_MAX(puSrc1->au16[ 5], puSrc2->au16[ 5]); + puDst->au16[ 6] = RT_MAX(puSrc1->au16[ 6], puSrc2->au16[ 6]); + puDst->au16[ 7] = RT_MAX(puSrc1->au16[ 7], puSrc2->au16[ 7]); + puDst->au16[ 8] = RT_MAX(puSrc1->au16[ 8], puSrc2->au16[ 8]); + puDst->au16[ 9] = RT_MAX(puSrc1->au16[ 9], puSrc2->au16[ 9]); + puDst->au16[10] = RT_MAX(puSrc1->au16[10], puSrc2->au16[10]); + puDst->au16[11] = RT_MAX(puSrc1->au16[11], puSrc2->au16[11]); + puDst->au16[12] = RT_MAX(puSrc1->au16[12], puSrc2->au16[12]); + puDst->au16[13] = RT_MAX(puSrc1->au16[13], puSrc2->au16[13]); + puDst->au16[14] = RT_MAX(puSrc1->au16[14], puSrc2->au16[14]); + puDst->au16[15] = RT_MAX(puSrc1->au16[15], puSrc2->au16[15]); + RT_NOREF(pExtState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxud_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + puDst->au32[ 0] = RT_MAX(puSrc1->au32[ 0], puSrc2->au32[ 0]); + puDst->au32[ 1] = RT_MAX(puSrc1->au32[ 1], puSrc2->au32[ 1]); + puDst->au32[ 2] = RT_MAX(puSrc1->au32[ 2], puSrc2->au32[ 2]); + puDst->au32[ 3] = RT_MAX(puSrc1->au32[ 3], puSrc2->au32[ 3]); + RT_NOREF(pExtState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxud_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + puDst->au32[ 0] = RT_MAX(puSrc1->au32[ 0], puSrc2->au32[ 0]); + puDst->au32[ 1] = RT_MAX(puSrc1->au32[ 1], puSrc2->au32[ 1]); + puDst->au32[ 2] = RT_MAX(puSrc1->au32[ 2], puSrc2->au32[ 2]); + puDst->au32[ 3] = RT_MAX(puSrc1->au32[ 3], puSrc2->au32[ 3]); + puDst->au32[ 4] = RT_MAX(puSrc1->au32[ 4], puSrc2->au32[ 4]); + puDst->au32[ 5] = RT_MAX(puSrc1->au32[ 5], puSrc2->au32[ 5]); + puDst->au32[ 6] = RT_MAX(puSrc1->au32[ 6], puSrc2->au32[ 6]); + puDst->au32[ 7] = RT_MAX(puSrc1->au32[ 7], puSrc2->au32[ 7]); + RT_NOREF(pExtState); +} + + +/* + * PMAXSB / VPMAXSB / PMAXSW / VPMAXSW / PMAXSD / VPMAXSD + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_pmaxsw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + + uDst.ai16[0] = RT_MAX(uSrc1.ai16[0], uSrc2.ai16[0]); + uDst.ai16[1] = RT_MAX(uSrc1.ai16[1], uSrc2.ai16[1]); + uDst.ai16[2] = RT_MAX(uSrc1.ai16[2], uSrc2.ai16[2]); + uDst.ai16[3] = RT_MAX(uSrc1.ai16[3], uSrc2.ai16[3]); + *puDst = uDst.u; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pmaxsw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->ai16[ 0] = RT_MAX(uSrc1.ai16[ 0], puSrc->ai16[ 0]); + puDst->ai16[ 1] = RT_MAX(uSrc1.ai16[ 1], puSrc->ai16[ 1]); + puDst->ai16[ 2] = RT_MAX(uSrc1.ai16[ 2], puSrc->ai16[ 2]); + puDst->ai16[ 3] = RT_MAX(uSrc1.ai16[ 3], puSrc->ai16[ 3]); + puDst->ai16[ 4] = RT_MAX(uSrc1.ai16[ 4], puSrc->ai16[ 4]); + puDst->ai16[ 5] = RT_MAX(uSrc1.ai16[ 5], puSrc->ai16[ 5]); + puDst->ai16[ 6] = RT_MAX(uSrc1.ai16[ 6], puSrc->ai16[ 6]); + puDst->ai16[ 7] = RT_MAX(uSrc1.ai16[ 7], puSrc->ai16[ 7]); + RT_NOREF(pFpuState); +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_pmaxsb_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->ai8[ 0] = RT_MAX(uSrc1.ai8[ 0], puSrc->ai8[ 0]); + puDst->ai8[ 1] = RT_MAX(uSrc1.ai8[ 1], puSrc->ai8[ 1]); + puDst->ai8[ 2] = RT_MAX(uSrc1.ai8[ 2], puSrc->ai8[ 2]); + puDst->ai8[ 3] = RT_MAX(uSrc1.ai8[ 3], puSrc->ai8[ 3]); + puDst->ai8[ 4] = RT_MAX(uSrc1.ai8[ 4], puSrc->ai8[ 4]); + puDst->ai8[ 5] = RT_MAX(uSrc1.ai8[ 5], puSrc->ai8[ 5]); + puDst->ai8[ 6] = RT_MAX(uSrc1.ai8[ 6], puSrc->ai8[ 6]); + puDst->ai8[ 7] = RT_MAX(uSrc1.ai8[ 7], puSrc->ai8[ 7]); + puDst->ai8[ 8] = RT_MAX(uSrc1.ai8[ 8], puSrc->ai8[ 8]); + puDst->ai8[ 9] = RT_MAX(uSrc1.ai8[ 9], puSrc->ai8[ 9]); + puDst->ai8[10] = RT_MAX(uSrc1.ai8[10], puSrc->ai8[10]); + puDst->ai8[11] = RT_MAX(uSrc1.ai8[11], puSrc->ai8[11]); + puDst->ai8[12] = RT_MAX(uSrc1.ai8[12], puSrc->ai8[12]); + puDst->ai8[13] = RT_MAX(uSrc1.ai8[13], puSrc->ai8[13]); + puDst->ai8[14] = RT_MAX(uSrc1.ai8[14], puSrc->ai8[14]); + puDst->ai8[15] = RT_MAX(uSrc1.ai8[15], puSrc->ai8[15]); + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pmaxsd_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->ai32[ 0] = RT_MAX(uSrc1.ai32[ 0], puSrc->ai32[ 0]); + puDst->ai32[ 1] = RT_MAX(uSrc1.ai32[ 1], puSrc->ai32[ 1]); + puDst->ai32[ 2] = RT_MAX(uSrc1.ai32[ 2], puSrc->ai32[ 2]); + puDst->ai32[ 3] = RT_MAX(uSrc1.ai32[ 3], puSrc->ai32[ 3]); + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxsb_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + puDst->ai8[ 0] = RT_MAX(puSrc1->ai8[ 0], puSrc2->ai8[ 0]); + puDst->ai8[ 1] = RT_MAX(puSrc1->ai8[ 1], puSrc2->ai8[ 1]); + puDst->ai8[ 2] = RT_MAX(puSrc1->ai8[ 2], puSrc2->ai8[ 2]); + puDst->ai8[ 3] = RT_MAX(puSrc1->ai8[ 3], puSrc2->ai8[ 3]); + puDst->ai8[ 4] = RT_MAX(puSrc1->ai8[ 4], puSrc2->ai8[ 4]); + puDst->ai8[ 5] = RT_MAX(puSrc1->ai8[ 5], puSrc2->ai8[ 5]); + puDst->ai8[ 6] = RT_MAX(puSrc1->ai8[ 6], puSrc2->ai8[ 6]); + puDst->ai8[ 7] = RT_MAX(puSrc1->ai8[ 7], puSrc2->ai8[ 7]); + puDst->ai8[ 8] = RT_MAX(puSrc1->ai8[ 8], puSrc2->ai8[ 8]); + puDst->ai8[ 9] = RT_MAX(puSrc1->ai8[ 9], puSrc2->ai8[ 9]); + puDst->ai8[10] = RT_MAX(puSrc1->ai8[10], puSrc2->ai8[10]); + puDst->ai8[11] = RT_MAX(puSrc1->ai8[11], puSrc2->ai8[11]); + puDst->ai8[12] = RT_MAX(puSrc1->ai8[12], puSrc2->ai8[12]); + puDst->ai8[13] = RT_MAX(puSrc1->ai8[13], puSrc2->ai8[13]); + puDst->ai8[14] = RT_MAX(puSrc1->ai8[14], puSrc2->ai8[14]); + puDst->ai8[15] = RT_MAX(puSrc1->ai8[15], puSrc2->ai8[15]); + RT_NOREF(pExtState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxsb_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + puDst->ai8[ 0] = RT_MAX(puSrc1->ai8[ 0], puSrc2->ai8[ 0]); + puDst->ai8[ 1] = RT_MAX(puSrc1->ai8[ 1], puSrc2->ai8[ 1]); + puDst->ai8[ 2] = RT_MAX(puSrc1->ai8[ 2], puSrc2->ai8[ 2]); + puDst->ai8[ 3] = RT_MAX(puSrc1->ai8[ 3], puSrc2->ai8[ 3]); + puDst->ai8[ 4] = RT_MAX(puSrc1->ai8[ 4], puSrc2->ai8[ 4]); + puDst->ai8[ 5] = RT_MAX(puSrc1->ai8[ 5], puSrc2->ai8[ 5]); + puDst->ai8[ 6] = RT_MAX(puSrc1->ai8[ 6], puSrc2->ai8[ 6]); + puDst->ai8[ 7] = RT_MAX(puSrc1->ai8[ 7], puSrc2->ai8[ 7]); + puDst->ai8[ 8] = RT_MAX(puSrc1->ai8[ 8], puSrc2->ai8[ 8]); + puDst->ai8[ 9] = RT_MAX(puSrc1->ai8[ 9], puSrc2->ai8[ 9]); + puDst->ai8[10] = RT_MAX(puSrc1->ai8[10], puSrc2->ai8[10]); + puDst->ai8[11] = RT_MAX(puSrc1->ai8[11], puSrc2->ai8[11]); + puDst->ai8[12] = RT_MAX(puSrc1->ai8[12], puSrc2->ai8[12]); + puDst->ai8[13] = RT_MAX(puSrc1->ai8[13], puSrc2->ai8[13]); + puDst->ai8[14] = RT_MAX(puSrc1->ai8[14], puSrc2->ai8[14]); + puDst->ai8[15] = RT_MAX(puSrc1->ai8[15], puSrc2->ai8[15]); + puDst->ai8[16] = RT_MAX(puSrc1->ai8[16], puSrc2->ai8[16]); + puDst->ai8[17] = RT_MAX(puSrc1->ai8[17], puSrc2->ai8[17]); + puDst->ai8[18] = RT_MAX(puSrc1->ai8[18], puSrc2->ai8[18]); + puDst->ai8[19] = RT_MAX(puSrc1->ai8[19], puSrc2->ai8[19]); + puDst->ai8[20] = RT_MAX(puSrc1->ai8[20], puSrc2->ai8[20]); + puDst->ai8[21] = RT_MAX(puSrc1->ai8[21], puSrc2->ai8[21]); + puDst->ai8[22] = RT_MAX(puSrc1->ai8[22], puSrc2->ai8[22]); + puDst->ai8[23] = RT_MAX(puSrc1->ai8[23], puSrc2->ai8[23]); + puDst->ai8[24] = RT_MAX(puSrc1->ai8[24], puSrc2->ai8[24]); + puDst->ai8[25] = RT_MAX(puSrc1->ai8[25], puSrc2->ai8[25]); + puDst->ai8[26] = RT_MAX(puSrc1->ai8[26], puSrc2->ai8[26]); + puDst->ai8[27] = RT_MAX(puSrc1->ai8[27], puSrc2->ai8[27]); + puDst->ai8[28] = RT_MAX(puSrc1->ai8[28], puSrc2->ai8[28]); + puDst->ai8[29] = RT_MAX(puSrc1->ai8[29], puSrc2->ai8[29]); + puDst->ai8[30] = RT_MAX(puSrc1->ai8[30], puSrc2->ai8[30]); + puDst->ai8[31] = RT_MAX(puSrc1->ai8[31], puSrc2->ai8[31]); + RT_NOREF(pExtState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxsw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + puDst->ai16[ 0] = RT_MAX(puSrc1->ai16[ 0], puSrc2->ai16[ 0]); + puDst->ai16[ 1] = RT_MAX(puSrc1->ai16[ 1], puSrc2->ai16[ 1]); + puDst->ai16[ 2] = RT_MAX(puSrc1->ai16[ 2], puSrc2->ai16[ 2]); + puDst->ai16[ 3] = RT_MAX(puSrc1->ai16[ 3], puSrc2->ai16[ 3]); + puDst->ai16[ 4] = RT_MAX(puSrc1->ai16[ 4], puSrc2->ai16[ 4]); + puDst->ai16[ 5] = RT_MAX(puSrc1->ai16[ 5], puSrc2->ai16[ 5]); + puDst->ai16[ 6] = RT_MAX(puSrc1->ai16[ 6], puSrc2->ai16[ 6]); + puDst->ai16[ 7] = RT_MAX(puSrc1->ai16[ 7], puSrc2->ai16[ 7]); + RT_NOREF(pExtState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxsw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + puDst->ai16[ 0] = RT_MAX(puSrc1->ai16[ 0], puSrc2->ai16[ 0]); + puDst->ai16[ 1] = RT_MAX(puSrc1->ai16[ 1], puSrc2->ai16[ 1]); + puDst->ai16[ 2] = RT_MAX(puSrc1->ai16[ 2], puSrc2->ai16[ 2]); + puDst->ai16[ 3] = RT_MAX(puSrc1->ai16[ 3], puSrc2->ai16[ 3]); + puDst->ai16[ 4] = RT_MAX(puSrc1->ai16[ 4], puSrc2->ai16[ 4]); + puDst->ai16[ 5] = RT_MAX(puSrc1->ai16[ 5], puSrc2->ai16[ 5]); + puDst->ai16[ 6] = RT_MAX(puSrc1->ai16[ 6], puSrc2->ai16[ 6]); + puDst->ai16[ 7] = RT_MAX(puSrc1->ai16[ 7], puSrc2->ai16[ 7]); + puDst->ai16[ 8] = RT_MAX(puSrc1->ai16[ 8], puSrc2->ai16[ 8]); + puDst->ai16[ 9] = RT_MAX(puSrc1->ai16[ 9], puSrc2->ai16[ 9]); + puDst->ai16[10] = RT_MAX(puSrc1->ai16[10], puSrc2->ai16[10]); + puDst->ai16[11] = RT_MAX(puSrc1->ai16[11], puSrc2->ai16[11]); + puDst->ai16[12] = RT_MAX(puSrc1->ai16[12], puSrc2->ai16[12]); + puDst->ai16[13] = RT_MAX(puSrc1->ai16[13], puSrc2->ai16[13]); + puDst->ai16[14] = RT_MAX(puSrc1->ai16[14], puSrc2->ai16[14]); + puDst->ai16[15] = RT_MAX(puSrc1->ai16[15], puSrc2->ai16[15]); + RT_NOREF(pExtState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxsd_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + puDst->ai32[ 0] = RT_MAX(puSrc1->ai32[ 0], puSrc2->ai32[ 0]); + puDst->ai32[ 1] = RT_MAX(puSrc1->ai32[ 1], puSrc2->ai32[ 1]); + puDst->ai32[ 2] = RT_MAX(puSrc1->ai32[ 2], puSrc2->ai32[ 2]); + puDst->ai32[ 3] = RT_MAX(puSrc1->ai32[ 3], puSrc2->ai32[ 3]); + RT_NOREF(pExtState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxsd_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + puDst->ai32[ 0] = RT_MAX(puSrc1->ai32[ 0], puSrc2->ai32[ 0]); + puDst->ai32[ 1] = RT_MAX(puSrc1->ai32[ 1], puSrc2->ai32[ 1]); + puDst->ai32[ 2] = RT_MAX(puSrc1->ai32[ 2], puSrc2->ai32[ 2]); + puDst->ai32[ 3] = RT_MAX(puSrc1->ai32[ 3], puSrc2->ai32[ 3]); + puDst->ai32[ 4] = RT_MAX(puSrc1->ai32[ 4], puSrc2->ai32[ 4]); + puDst->ai32[ 5] = RT_MAX(puSrc1->ai32[ 5], puSrc2->ai32[ 5]); + puDst->ai32[ 6] = RT_MAX(puSrc1->ai32[ 6], puSrc2->ai32[ 6]); + puDst->ai32[ 7] = RT_MAX(puSrc1->ai32[ 7], puSrc2->ai32[ 7]); + RT_NOREF(pExtState); +} + + +/* + * PMINUB / VPMINUB / PMINUW / VPMINUW / PMINUD / VPMINUD + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_pminub_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + + uDst.au8[0] = RT_MIN(uSrc1.au8[0], uSrc2.au8[0]); + uDst.au8[1] = RT_MIN(uSrc1.au8[1], uSrc2.au8[1]); + uDst.au8[2] = RT_MIN(uSrc1.au8[2], uSrc2.au8[2]); + uDst.au8[3] = RT_MIN(uSrc1.au8[3], uSrc2.au8[3]); + uDst.au8[4] = RT_MIN(uSrc1.au8[4], uSrc2.au8[4]); + uDst.au8[5] = RT_MIN(uSrc1.au8[5], uSrc2.au8[5]); + uDst.au8[6] = RT_MIN(uSrc1.au8[6], uSrc2.au8[6]); + uDst.au8[7] = RT_MIN(uSrc1.au8[7], uSrc2.au8[7]); + *puDst = uDst.u; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pminub_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->au8[ 0] = RT_MIN(uSrc1.au8[ 0], puSrc->au8[ 0]); + puDst->au8[ 1] = RT_MIN(uSrc1.au8[ 1], puSrc->au8[ 1]); + puDst->au8[ 2] = RT_MIN(uSrc1.au8[ 2], puSrc->au8[ 2]); + puDst->au8[ 3] = RT_MIN(uSrc1.au8[ 3], puSrc->au8[ 3]); + puDst->au8[ 4] = RT_MIN(uSrc1.au8[ 4], puSrc->au8[ 4]); + puDst->au8[ 5] = RT_MIN(uSrc1.au8[ 5], puSrc->au8[ 5]); + puDst->au8[ 6] = RT_MIN(uSrc1.au8[ 6], puSrc->au8[ 6]); + puDst->au8[ 7] = RT_MIN(uSrc1.au8[ 7], puSrc->au8[ 7]); + puDst->au8[ 8] = RT_MIN(uSrc1.au8[ 8], puSrc->au8[ 8]); + puDst->au8[ 9] = RT_MIN(uSrc1.au8[ 9], puSrc->au8[ 9]); + puDst->au8[10] = RT_MIN(uSrc1.au8[10], puSrc->au8[10]); + puDst->au8[11] = RT_MIN(uSrc1.au8[11], puSrc->au8[11]); + puDst->au8[12] = RT_MIN(uSrc1.au8[12], puSrc->au8[12]); + puDst->au8[13] = RT_MIN(uSrc1.au8[13], puSrc->au8[13]); + puDst->au8[14] = RT_MIN(uSrc1.au8[14], puSrc->au8[14]); + puDst->au8[15] = RT_MIN(uSrc1.au8[15], puSrc->au8[15]); + RT_NOREF(pFpuState); +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_pminuw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->au16[ 0] = RT_MIN(uSrc1.au16[ 0], puSrc->au16[ 0]); + puDst->au16[ 1] = RT_MIN(uSrc1.au16[ 1], puSrc->au16[ 1]); + puDst->au16[ 2] = RT_MIN(uSrc1.au16[ 2], puSrc->au16[ 2]); + puDst->au16[ 3] = RT_MIN(uSrc1.au16[ 3], puSrc->au16[ 3]); + puDst->au16[ 4] = RT_MIN(uSrc1.au16[ 4], puSrc->au16[ 4]); + puDst->au16[ 5] = RT_MIN(uSrc1.au16[ 5], puSrc->au16[ 5]); + puDst->au16[ 6] = RT_MIN(uSrc1.au16[ 6], puSrc->au16[ 6]); + puDst->au16[ 7] = RT_MIN(uSrc1.au16[ 7], puSrc->au16[ 7]); + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pminud_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->au32[ 0] = RT_MIN(uSrc1.au32[ 0], puSrc->au32[ 0]); + puDst->au32[ 1] = RT_MIN(uSrc1.au32[ 1], puSrc->au32[ 1]); + puDst->au32[ 2] = RT_MIN(uSrc1.au32[ 2], puSrc->au32[ 2]); + puDst->au32[ 3] = RT_MIN(uSrc1.au32[ 3], puSrc->au32[ 3]); + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpminub_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + puDst->au8[ 0] = RT_MIN(puSrc1->au8[ 0], puSrc2->au8[ 0]); + puDst->au8[ 1] = RT_MIN(puSrc1->au8[ 1], puSrc2->au8[ 1]); + puDst->au8[ 2] = RT_MIN(puSrc1->au8[ 2], puSrc2->au8[ 2]); + puDst->au8[ 3] = RT_MIN(puSrc1->au8[ 3], puSrc2->au8[ 3]); + puDst->au8[ 4] = RT_MIN(puSrc1->au8[ 4], puSrc2->au8[ 4]); + puDst->au8[ 5] = RT_MIN(puSrc1->au8[ 5], puSrc2->au8[ 5]); + puDst->au8[ 6] = RT_MIN(puSrc1->au8[ 6], puSrc2->au8[ 6]); + puDst->au8[ 7] = RT_MIN(puSrc1->au8[ 7], puSrc2->au8[ 7]); + puDst->au8[ 8] = RT_MIN(puSrc1->au8[ 8], puSrc2->au8[ 8]); + puDst->au8[ 9] = RT_MIN(puSrc1->au8[ 9], puSrc2->au8[ 9]); + puDst->au8[10] = RT_MIN(puSrc1->au8[10], puSrc2->au8[10]); + puDst->au8[11] = RT_MIN(puSrc1->au8[11], puSrc2->au8[11]); + puDst->au8[12] = RT_MIN(puSrc1->au8[12], puSrc2->au8[12]); + puDst->au8[13] = RT_MIN(puSrc1->au8[13], puSrc2->au8[13]); + puDst->au8[14] = RT_MIN(puSrc1->au8[14], puSrc2->au8[14]); + puDst->au8[15] = RT_MIN(puSrc1->au8[15], puSrc2->au8[15]); + RT_NOREF(pExtState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpminub_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + puDst->au8[ 0] = RT_MIN(puSrc1->au8[ 0], puSrc2->au8[ 0]); + puDst->au8[ 1] = RT_MIN(puSrc1->au8[ 1], puSrc2->au8[ 1]); + puDst->au8[ 2] = RT_MIN(puSrc1->au8[ 2], puSrc2->au8[ 2]); + puDst->au8[ 3] = RT_MIN(puSrc1->au8[ 3], puSrc2->au8[ 3]); + puDst->au8[ 4] = RT_MIN(puSrc1->au8[ 4], puSrc2->au8[ 4]); + puDst->au8[ 5] = RT_MIN(puSrc1->au8[ 5], puSrc2->au8[ 5]); + puDst->au8[ 6] = RT_MIN(puSrc1->au8[ 6], puSrc2->au8[ 6]); + puDst->au8[ 7] = RT_MIN(puSrc1->au8[ 7], puSrc2->au8[ 7]); + puDst->au8[ 8] = RT_MIN(puSrc1->au8[ 8], puSrc2->au8[ 8]); + puDst->au8[ 9] = RT_MIN(puSrc1->au8[ 9], puSrc2->au8[ 9]); + puDst->au8[10] = RT_MIN(puSrc1->au8[10], puSrc2->au8[10]); + puDst->au8[11] = RT_MIN(puSrc1->au8[11], puSrc2->au8[11]); + puDst->au8[12] = RT_MIN(puSrc1->au8[12], puSrc2->au8[12]); + puDst->au8[13] = RT_MIN(puSrc1->au8[13], puSrc2->au8[13]); + puDst->au8[14] = RT_MIN(puSrc1->au8[14], puSrc2->au8[14]); + puDst->au8[15] = RT_MIN(puSrc1->au8[15], puSrc2->au8[15]); + puDst->au8[16] = RT_MIN(puSrc1->au8[16], puSrc2->au8[16]); + puDst->au8[17] = RT_MIN(puSrc1->au8[17], puSrc2->au8[17]); + puDst->au8[18] = RT_MIN(puSrc1->au8[18], puSrc2->au8[18]); + puDst->au8[19] = RT_MIN(puSrc1->au8[19], puSrc2->au8[19]); + puDst->au8[20] = RT_MIN(puSrc1->au8[20], puSrc2->au8[20]); + puDst->au8[21] = RT_MIN(puSrc1->au8[21], puSrc2->au8[21]); + puDst->au8[22] = RT_MIN(puSrc1->au8[22], puSrc2->au8[22]); + puDst->au8[23] = RT_MIN(puSrc1->au8[23], puSrc2->au8[23]); + puDst->au8[24] = RT_MIN(puSrc1->au8[24], puSrc2->au8[24]); + puDst->au8[25] = RT_MIN(puSrc1->au8[25], puSrc2->au8[25]); + puDst->au8[26] = RT_MIN(puSrc1->au8[26], puSrc2->au8[26]); + puDst->au8[27] = RT_MIN(puSrc1->au8[27], puSrc2->au8[27]); + puDst->au8[28] = RT_MIN(puSrc1->au8[28], puSrc2->au8[28]); + puDst->au8[29] = RT_MIN(puSrc1->au8[29], puSrc2->au8[29]); + puDst->au8[30] = RT_MIN(puSrc1->au8[30], puSrc2->au8[30]); + puDst->au8[31] = RT_MIN(puSrc1->au8[31], puSrc2->au8[31]); + RT_NOREF(pExtState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpminuw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + puDst->au16[ 0] = RT_MIN(puSrc1->au16[ 0], puSrc2->au16[ 0]); + puDst->au16[ 1] = RT_MIN(puSrc1->au16[ 1], puSrc2->au16[ 1]); + puDst->au16[ 2] = RT_MIN(puSrc1->au16[ 2], puSrc2->au16[ 2]); + puDst->au16[ 3] = RT_MIN(puSrc1->au16[ 3], puSrc2->au16[ 3]); + puDst->au16[ 4] = RT_MIN(puSrc1->au16[ 4], puSrc2->au16[ 4]); + puDst->au16[ 5] = RT_MIN(puSrc1->au16[ 5], puSrc2->au16[ 5]); + puDst->au16[ 6] = RT_MIN(puSrc1->au16[ 6], puSrc2->au16[ 6]); + puDst->au16[ 7] = RT_MIN(puSrc1->au16[ 7], puSrc2->au16[ 7]); + RT_NOREF(pExtState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpminuw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + puDst->au16[ 0] = RT_MIN(puSrc1->au16[ 0], puSrc2->au16[ 0]); + puDst->au16[ 1] = RT_MIN(puSrc1->au16[ 1], puSrc2->au16[ 1]); + puDst->au16[ 2] = RT_MIN(puSrc1->au16[ 2], puSrc2->au16[ 2]); + puDst->au16[ 3] = RT_MIN(puSrc1->au16[ 3], puSrc2->au16[ 3]); + puDst->au16[ 4] = RT_MIN(puSrc1->au16[ 4], puSrc2->au16[ 4]); + puDst->au16[ 5] = RT_MIN(puSrc1->au16[ 5], puSrc2->au16[ 5]); + puDst->au16[ 6] = RT_MIN(puSrc1->au16[ 6], puSrc2->au16[ 6]); + puDst->au16[ 7] = RT_MIN(puSrc1->au16[ 7], puSrc2->au16[ 7]); + puDst->au16[ 8] = RT_MIN(puSrc1->au16[ 8], puSrc2->au16[ 8]); + puDst->au16[ 9] = RT_MIN(puSrc1->au16[ 9], puSrc2->au16[ 9]); + puDst->au16[10] = RT_MIN(puSrc1->au16[10], puSrc2->au16[10]); + puDst->au16[11] = RT_MIN(puSrc1->au16[11], puSrc2->au16[11]); + puDst->au16[12] = RT_MIN(puSrc1->au16[12], puSrc2->au16[12]); + puDst->au16[13] = RT_MIN(puSrc1->au16[13], puSrc2->au16[13]); + puDst->au16[14] = RT_MIN(puSrc1->au16[14], puSrc2->au16[14]); + puDst->au16[15] = RT_MIN(puSrc1->au16[15], puSrc2->au16[15]); + RT_NOREF(pExtState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpminud_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + puDst->au32[ 0] = RT_MIN(puSrc1->au32[ 0], puSrc2->au32[ 0]); + puDst->au32[ 1] = RT_MIN(puSrc1->au32[ 1], puSrc2->au32[ 1]); + puDst->au32[ 2] = RT_MIN(puSrc1->au32[ 2], puSrc2->au32[ 2]); + puDst->au32[ 3] = RT_MIN(puSrc1->au32[ 3], puSrc2->au32[ 3]); + RT_NOREF(pExtState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpminud_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + puDst->au32[ 0] = RT_MIN(puSrc1->au32[ 0], puSrc2->au32[ 0]); + puDst->au32[ 1] = RT_MIN(puSrc1->au32[ 1], puSrc2->au32[ 1]); + puDst->au32[ 2] = RT_MIN(puSrc1->au32[ 2], puSrc2->au32[ 2]); + puDst->au32[ 3] = RT_MIN(puSrc1->au32[ 3], puSrc2->au32[ 3]); + puDst->au32[ 4] = RT_MIN(puSrc1->au32[ 4], puSrc2->au32[ 4]); + puDst->au32[ 5] = RT_MIN(puSrc1->au32[ 5], puSrc2->au32[ 5]); + puDst->au32[ 6] = RT_MIN(puSrc1->au32[ 6], puSrc2->au32[ 6]); + puDst->au32[ 7] = RT_MIN(puSrc1->au32[ 7], puSrc2->au32[ 7]); + RT_NOREF(pExtState); +} + + +/* + * PMINSB / VPMINSB / PMINSW / VPMINSW / PMINSD / VPMINSD + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_pminsw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + + uDst.ai16[0] = RT_MIN(uSrc1.ai16[0], uSrc2.ai16[0]); + uDst.ai16[1] = RT_MIN(uSrc1.ai16[1], uSrc2.ai16[1]); + uDst.ai16[2] = RT_MIN(uSrc1.ai16[2], uSrc2.ai16[2]); + uDst.ai16[3] = RT_MIN(uSrc1.ai16[3], uSrc2.ai16[3]); + *puDst = uDst.u; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pminsw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->ai16[ 0] = RT_MIN(uSrc1.ai16[ 0], puSrc->ai16[ 0]); + puDst->ai16[ 1] = RT_MIN(uSrc1.ai16[ 1], puSrc->ai16[ 1]); + puDst->ai16[ 2] = RT_MIN(uSrc1.ai16[ 2], puSrc->ai16[ 2]); + puDst->ai16[ 3] = RT_MIN(uSrc1.ai16[ 3], puSrc->ai16[ 3]); + puDst->ai16[ 4] = RT_MIN(uSrc1.ai16[ 4], puSrc->ai16[ 4]); + puDst->ai16[ 5] = RT_MIN(uSrc1.ai16[ 5], puSrc->ai16[ 5]); + puDst->ai16[ 6] = RT_MIN(uSrc1.ai16[ 6], puSrc->ai16[ 6]); + puDst->ai16[ 7] = RT_MIN(uSrc1.ai16[ 7], puSrc->ai16[ 7]); + RT_NOREF(pFpuState); +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_pminsb_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->ai8[ 0] = RT_MIN(uSrc1.ai8[ 0], puSrc->ai8[ 0]); + puDst->ai8[ 1] = RT_MIN(uSrc1.ai8[ 1], puSrc->ai8[ 1]); + puDst->ai8[ 2] = RT_MIN(uSrc1.ai8[ 2], puSrc->ai8[ 2]); + puDst->ai8[ 3] = RT_MIN(uSrc1.ai8[ 3], puSrc->ai8[ 3]); + puDst->ai8[ 4] = RT_MIN(uSrc1.ai8[ 4], puSrc->ai8[ 4]); + puDst->ai8[ 5] = RT_MIN(uSrc1.ai8[ 5], puSrc->ai8[ 5]); + puDst->ai8[ 6] = RT_MIN(uSrc1.ai8[ 6], puSrc->ai8[ 6]); + puDst->ai8[ 7] = RT_MIN(uSrc1.ai8[ 7], puSrc->ai8[ 7]); + puDst->ai8[ 8] = RT_MIN(uSrc1.ai8[ 8], puSrc->ai8[ 8]); + puDst->ai8[ 9] = RT_MIN(uSrc1.ai8[ 9], puSrc->ai8[ 9]); + puDst->ai8[10] = RT_MIN(uSrc1.ai8[10], puSrc->ai8[10]); + puDst->ai8[11] = RT_MIN(uSrc1.ai8[11], puSrc->ai8[11]); + puDst->ai8[12] = RT_MIN(uSrc1.ai8[12], puSrc->ai8[12]); + puDst->ai8[13] = RT_MIN(uSrc1.ai8[13], puSrc->ai8[13]); + puDst->ai8[14] = RT_MIN(uSrc1.ai8[14], puSrc->ai8[14]); + puDst->ai8[15] = RT_MIN(uSrc1.ai8[15], puSrc->ai8[15]); + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pminsd_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->ai32[ 0] = RT_MIN(uSrc1.ai32[ 0], puSrc->ai32[ 0]); + puDst->ai32[ 1] = RT_MIN(uSrc1.ai32[ 1], puSrc->ai32[ 1]); + puDst->ai32[ 2] = RT_MIN(uSrc1.ai32[ 2], puSrc->ai32[ 2]); + puDst->ai32[ 3] = RT_MIN(uSrc1.ai32[ 3], puSrc->ai32[ 3]); + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpminsb_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + puDst->ai8[ 0] = RT_MIN(puSrc1->ai8[ 0], puSrc2->ai8[ 0]); + puDst->ai8[ 1] = RT_MIN(puSrc1->ai8[ 1], puSrc2->ai8[ 1]); + puDst->ai8[ 2] = RT_MIN(puSrc1->ai8[ 2], puSrc2->ai8[ 2]); + puDst->ai8[ 3] = RT_MIN(puSrc1->ai8[ 3], puSrc2->ai8[ 3]); + puDst->ai8[ 4] = RT_MIN(puSrc1->ai8[ 4], puSrc2->ai8[ 4]); + puDst->ai8[ 5] = RT_MIN(puSrc1->ai8[ 5], puSrc2->ai8[ 5]); + puDst->ai8[ 6] = RT_MIN(puSrc1->ai8[ 6], puSrc2->ai8[ 6]); + puDst->ai8[ 7] = RT_MIN(puSrc1->ai8[ 7], puSrc2->ai8[ 7]); + puDst->ai8[ 8] = RT_MIN(puSrc1->ai8[ 8], puSrc2->ai8[ 8]); + puDst->ai8[ 9] = RT_MIN(puSrc1->ai8[ 9], puSrc2->ai8[ 9]); + puDst->ai8[10] = RT_MIN(puSrc1->ai8[10], puSrc2->ai8[10]); + puDst->ai8[11] = RT_MIN(puSrc1->ai8[11], puSrc2->ai8[11]); + puDst->ai8[12] = RT_MIN(puSrc1->ai8[12], puSrc2->ai8[12]); + puDst->ai8[13] = RT_MIN(puSrc1->ai8[13], puSrc2->ai8[13]); + puDst->ai8[14] = RT_MIN(puSrc1->ai8[14], puSrc2->ai8[14]); + puDst->ai8[15] = RT_MIN(puSrc1->ai8[15], puSrc2->ai8[15]); + RT_NOREF(pExtState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpminsb_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + puDst->ai8[ 0] = RT_MIN(puSrc1->ai8[ 0], puSrc2->ai8[ 0]); + puDst->ai8[ 1] = RT_MIN(puSrc1->ai8[ 1], puSrc2->ai8[ 1]); + puDst->ai8[ 2] = RT_MIN(puSrc1->ai8[ 2], puSrc2->ai8[ 2]); + puDst->ai8[ 3] = RT_MIN(puSrc1->ai8[ 3], puSrc2->ai8[ 3]); + puDst->ai8[ 4] = RT_MIN(puSrc1->ai8[ 4], puSrc2->ai8[ 4]); + puDst->ai8[ 5] = RT_MIN(puSrc1->ai8[ 5], puSrc2->ai8[ 5]); + puDst->ai8[ 6] = RT_MIN(puSrc1->ai8[ 6], puSrc2->ai8[ 6]); + puDst->ai8[ 7] = RT_MIN(puSrc1->ai8[ 7], puSrc2->ai8[ 7]); + puDst->ai8[ 8] = RT_MIN(puSrc1->ai8[ 8], puSrc2->ai8[ 8]); + puDst->ai8[ 9] = RT_MIN(puSrc1->ai8[ 9], puSrc2->ai8[ 9]); + puDst->ai8[10] = RT_MIN(puSrc1->ai8[10], puSrc2->ai8[10]); + puDst->ai8[11] = RT_MIN(puSrc1->ai8[11], puSrc2->ai8[11]); + puDst->ai8[12] = RT_MIN(puSrc1->ai8[12], puSrc2->ai8[12]); + puDst->ai8[13] = RT_MIN(puSrc1->ai8[13], puSrc2->ai8[13]); + puDst->ai8[14] = RT_MIN(puSrc1->ai8[14], puSrc2->ai8[14]); + puDst->ai8[15] = RT_MIN(puSrc1->ai8[15], puSrc2->ai8[15]); + puDst->ai8[16] = RT_MIN(puSrc1->ai8[16], puSrc2->ai8[16]); + puDst->ai8[17] = RT_MIN(puSrc1->ai8[17], puSrc2->ai8[17]); + puDst->ai8[18] = RT_MIN(puSrc1->ai8[18], puSrc2->ai8[18]); + puDst->ai8[19] = RT_MIN(puSrc1->ai8[19], puSrc2->ai8[19]); + puDst->ai8[20] = RT_MIN(puSrc1->ai8[20], puSrc2->ai8[20]); + puDst->ai8[21] = RT_MIN(puSrc1->ai8[21], puSrc2->ai8[21]); + puDst->ai8[22] = RT_MIN(puSrc1->ai8[22], puSrc2->ai8[22]); + puDst->ai8[23] = RT_MIN(puSrc1->ai8[23], puSrc2->ai8[23]); + puDst->ai8[24] = RT_MIN(puSrc1->ai8[24], puSrc2->ai8[24]); + puDst->ai8[25] = RT_MIN(puSrc1->ai8[25], puSrc2->ai8[25]); + puDst->ai8[26] = RT_MIN(puSrc1->ai8[26], puSrc2->ai8[26]); + puDst->ai8[27] = RT_MIN(puSrc1->ai8[27], puSrc2->ai8[27]); + puDst->ai8[28] = RT_MIN(puSrc1->ai8[28], puSrc2->ai8[28]); + puDst->ai8[29] = RT_MIN(puSrc1->ai8[29], puSrc2->ai8[29]); + puDst->ai8[30] = RT_MIN(puSrc1->ai8[30], puSrc2->ai8[30]); + puDst->ai8[31] = RT_MIN(puSrc1->ai8[31], puSrc2->ai8[31]); + RT_NOREF(pExtState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpminsw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + puDst->ai16[ 0] = RT_MIN(puSrc1->ai16[ 0], puSrc2->ai16[ 0]); + puDst->ai16[ 1] = RT_MIN(puSrc1->ai16[ 1], puSrc2->ai16[ 1]); + puDst->ai16[ 2] = RT_MIN(puSrc1->ai16[ 2], puSrc2->ai16[ 2]); + puDst->ai16[ 3] = RT_MIN(puSrc1->ai16[ 3], puSrc2->ai16[ 3]); + puDst->ai16[ 4] = RT_MIN(puSrc1->ai16[ 4], puSrc2->ai16[ 4]); + puDst->ai16[ 5] = RT_MIN(puSrc1->ai16[ 5], puSrc2->ai16[ 5]); + puDst->ai16[ 6] = RT_MIN(puSrc1->ai16[ 6], puSrc2->ai16[ 6]); + puDst->ai16[ 7] = RT_MIN(puSrc1->ai16[ 7], puSrc2->ai16[ 7]); + RT_NOREF(pExtState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpminsw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + puDst->ai16[ 0] = RT_MIN(puSrc1->ai16[ 0], puSrc2->ai16[ 0]); + puDst->ai16[ 1] = RT_MIN(puSrc1->ai16[ 1], puSrc2->ai16[ 1]); + puDst->ai16[ 2] = RT_MIN(puSrc1->ai16[ 2], puSrc2->ai16[ 2]); + puDst->ai16[ 3] = RT_MIN(puSrc1->ai16[ 3], puSrc2->ai16[ 3]); + puDst->ai16[ 4] = RT_MIN(puSrc1->ai16[ 4], puSrc2->ai16[ 4]); + puDst->ai16[ 5] = RT_MIN(puSrc1->ai16[ 5], puSrc2->ai16[ 5]); + puDst->ai16[ 6] = RT_MIN(puSrc1->ai16[ 6], puSrc2->ai16[ 6]); + puDst->ai16[ 7] = RT_MIN(puSrc1->ai16[ 7], puSrc2->ai16[ 7]); + puDst->ai16[ 8] = RT_MIN(puSrc1->ai16[ 8], puSrc2->ai16[ 8]); + puDst->ai16[ 9] = RT_MIN(puSrc1->ai16[ 9], puSrc2->ai16[ 9]); + puDst->ai16[10] = RT_MIN(puSrc1->ai16[10], puSrc2->ai16[10]); + puDst->ai16[11] = RT_MIN(puSrc1->ai16[11], puSrc2->ai16[11]); + puDst->ai16[12] = RT_MIN(puSrc1->ai16[12], puSrc2->ai16[12]); + puDst->ai16[13] = RT_MIN(puSrc1->ai16[13], puSrc2->ai16[13]); + puDst->ai16[14] = RT_MIN(puSrc1->ai16[14], puSrc2->ai16[14]); + puDst->ai16[15] = RT_MIN(puSrc1->ai16[15], puSrc2->ai16[15]); + RT_NOREF(pExtState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpminsd_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + puDst->ai32[ 0] = RT_MIN(puSrc1->ai32[ 0], puSrc2->ai32[ 0]); + puDst->ai32[ 1] = RT_MIN(puSrc1->ai32[ 1], puSrc2->ai32[ 1]); + puDst->ai32[ 2] = RT_MIN(puSrc1->ai32[ 2], puSrc2->ai32[ 2]); + puDst->ai32[ 3] = RT_MIN(puSrc1->ai32[ 3], puSrc2->ai32[ 3]); + RT_NOREF(pExtState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpminsd_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + puDst->ai32[ 0] = RT_MIN(puSrc1->ai32[ 0], puSrc2->ai32[ 0]); + puDst->ai32[ 1] = RT_MIN(puSrc1->ai32[ 1], puSrc2->ai32[ 1]); + puDst->ai32[ 2] = RT_MIN(puSrc1->ai32[ 2], puSrc2->ai32[ 2]); + puDst->ai32[ 3] = RT_MIN(puSrc1->ai32[ 3], puSrc2->ai32[ 3]); + puDst->ai32[ 4] = RT_MIN(puSrc1->ai32[ 4], puSrc2->ai32[ 4]); + puDst->ai32[ 5] = RT_MIN(puSrc1->ai32[ 5], puSrc2->ai32[ 5]); + puDst->ai32[ 6] = RT_MIN(puSrc1->ai32[ 6], puSrc2->ai32[ 6]); + puDst->ai32[ 7] = RT_MIN(puSrc1->ai32[ 7], puSrc2->ai32[ 7]); + RT_NOREF(pExtState); +} + + +/* + * PAVGB / VPAVGB / PAVGW / VPAVGW + */ +#define PAVGB_EXEC(a_Src1, a_Src2) ((uint8_t)(((uint16_t)(a_Src1) + (a_Src2) + 1) >> 1)) +#define PAVGW_EXEC(a_Src1, a_Src2) ((uint16_t)(((uint32_t)(a_Src1) + (a_Src2) + 1) >> 1)) + +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_pavgb_u64,(uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + + uDst.au8[0] = PAVGB_EXEC(uSrc1.au8[0], uSrc2.au8[0]); + uDst.au8[1] = PAVGB_EXEC(uSrc1.au8[1], uSrc2.au8[1]); + uDst.au8[2] = PAVGB_EXEC(uSrc1.au8[2], uSrc2.au8[2]); + uDst.au8[3] = PAVGB_EXEC(uSrc1.au8[3], uSrc2.au8[3]); + uDst.au8[4] = PAVGB_EXEC(uSrc1.au8[4], uSrc2.au8[4]); + uDst.au8[5] = PAVGB_EXEC(uSrc1.au8[5], uSrc2.au8[5]); + uDst.au8[6] = PAVGB_EXEC(uSrc1.au8[6], uSrc2.au8[6]); + uDst.au8[7] = PAVGB_EXEC(uSrc1.au8[7], uSrc2.au8[7]); + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pavgb_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->au8[ 0] = PAVGB_EXEC(uSrc1.au8[ 0], puSrc->au8[ 0]); + puDst->au8[ 1] = PAVGB_EXEC(uSrc1.au8[ 1], puSrc->au8[ 1]); + puDst->au8[ 2] = PAVGB_EXEC(uSrc1.au8[ 2], puSrc->au8[ 2]); + puDst->au8[ 3] = PAVGB_EXEC(uSrc1.au8[ 3], puSrc->au8[ 3]); + puDst->au8[ 4] = PAVGB_EXEC(uSrc1.au8[ 4], puSrc->au8[ 4]); + puDst->au8[ 5] = PAVGB_EXEC(uSrc1.au8[ 5], puSrc->au8[ 5]); + puDst->au8[ 6] = PAVGB_EXEC(uSrc1.au8[ 6], puSrc->au8[ 6]); + puDst->au8[ 7] = PAVGB_EXEC(uSrc1.au8[ 7], puSrc->au8[ 7]); + puDst->au8[ 8] = PAVGB_EXEC(uSrc1.au8[ 8], puSrc->au8[ 8]); + puDst->au8[ 9] = PAVGB_EXEC(uSrc1.au8[ 9], puSrc->au8[ 9]); + puDst->au8[10] = PAVGB_EXEC(uSrc1.au8[10], puSrc->au8[10]); + puDst->au8[11] = PAVGB_EXEC(uSrc1.au8[11], puSrc->au8[11]); + puDst->au8[12] = PAVGB_EXEC(uSrc1.au8[12], puSrc->au8[12]); + puDst->au8[13] = PAVGB_EXEC(uSrc1.au8[13], puSrc->au8[13]); + puDst->au8[14] = PAVGB_EXEC(uSrc1.au8[14], puSrc->au8[14]); + puDst->au8[15] = PAVGB_EXEC(uSrc1.au8[15], puSrc->au8[15]); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pavgw_u64,(uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + + uDst.au16[0] = PAVGW_EXEC(uSrc1.au16[0], uSrc2.au16[0]); + uDst.au16[1] = PAVGW_EXEC(uSrc1.au16[1], uSrc2.au16[1]); + uDst.au16[2] = PAVGW_EXEC(uSrc1.au16[2], uSrc2.au16[2]); + uDst.au16[3] = PAVGW_EXEC(uSrc1.au16[3], uSrc2.au16[3]); + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pavgw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->au16[0] = PAVGW_EXEC(uSrc1.au16[0], puSrc->au16[0]); + puDst->au16[1] = PAVGW_EXEC(uSrc1.au16[1], puSrc->au16[1]); + puDst->au16[2] = PAVGW_EXEC(uSrc1.au16[2], puSrc->au16[2]); + puDst->au16[3] = PAVGW_EXEC(uSrc1.au16[3], puSrc->au16[3]); + puDst->au16[4] = PAVGW_EXEC(uSrc1.au16[4], puSrc->au16[4]); + puDst->au16[5] = PAVGW_EXEC(uSrc1.au16[5], puSrc->au16[5]); + puDst->au16[6] = PAVGW_EXEC(uSrc1.au16[6], puSrc->au16[6]); + puDst->au16[7] = PAVGW_EXEC(uSrc1.au16[7], puSrc->au16[7]); +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_pavgb_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->au8[ 0] = PAVGB_EXEC(uSrc1.au8[ 0], puSrc->au8[ 0]); + puDst->au8[ 1] = PAVGB_EXEC(uSrc1.au8[ 1], puSrc->au8[ 1]); + puDst->au8[ 2] = PAVGB_EXEC(uSrc1.au8[ 2], puSrc->au8[ 2]); + puDst->au8[ 3] = PAVGB_EXEC(uSrc1.au8[ 3], puSrc->au8[ 3]); + puDst->au8[ 4] = PAVGB_EXEC(uSrc1.au8[ 4], puSrc->au8[ 4]); + puDst->au8[ 5] = PAVGB_EXEC(uSrc1.au8[ 5], puSrc->au8[ 5]); + puDst->au8[ 6] = PAVGB_EXEC(uSrc1.au8[ 6], puSrc->au8[ 6]); + puDst->au8[ 7] = PAVGB_EXEC(uSrc1.au8[ 7], puSrc->au8[ 7]); + puDst->au8[ 8] = PAVGB_EXEC(uSrc1.au8[ 8], puSrc->au8[ 8]); + puDst->au8[ 9] = PAVGB_EXEC(uSrc1.au8[ 9], puSrc->au8[ 9]); + puDst->au8[10] = PAVGB_EXEC(uSrc1.au8[10], puSrc->au8[10]); + puDst->au8[11] = PAVGB_EXEC(uSrc1.au8[11], puSrc->au8[11]); + puDst->au8[12] = PAVGB_EXEC(uSrc1.au8[12], puSrc->au8[12]); + puDst->au8[13] = PAVGB_EXEC(uSrc1.au8[13], puSrc->au8[13]); + puDst->au8[14] = PAVGB_EXEC(uSrc1.au8[14], puSrc->au8[14]); + puDst->au8[15] = PAVGB_EXEC(uSrc1.au8[15], puSrc->au8[15]); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pavgw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->au8[ 0] = PAVGW_EXEC(uSrc1.au8[ 0], puSrc->au8[ 0]); + puDst->au8[ 1] = PAVGW_EXEC(uSrc1.au8[ 1], puSrc->au8[ 1]); + puDst->au8[ 2] = PAVGW_EXEC(uSrc1.au8[ 2], puSrc->au8[ 2]); + puDst->au8[ 3] = PAVGW_EXEC(uSrc1.au8[ 3], puSrc->au8[ 3]); + puDst->au8[ 4] = PAVGW_EXEC(uSrc1.au8[ 4], puSrc->au8[ 4]); + puDst->au8[ 5] = PAVGW_EXEC(uSrc1.au8[ 5], puSrc->au8[ 5]); + puDst->au8[ 6] = PAVGW_EXEC(uSrc1.au8[ 6], puSrc->au8[ 6]); + puDst->au8[ 7] = PAVGW_EXEC(uSrc1.au8[ 7], puSrc->au8[ 7]); + puDst->au8[ 8] = PAVGW_EXEC(uSrc1.au8[ 8], puSrc->au8[ 8]); + puDst->au8[ 9] = PAVGW_EXEC(uSrc1.au8[ 9], puSrc->au8[ 9]); + puDst->au8[10] = PAVGW_EXEC(uSrc1.au8[10], puSrc->au8[10]); + puDst->au8[11] = PAVGW_EXEC(uSrc1.au8[11], puSrc->au8[11]); + puDst->au8[12] = PAVGW_EXEC(uSrc1.au8[12], puSrc->au8[12]); + puDst->au8[13] = PAVGW_EXEC(uSrc1.au8[13], puSrc->au8[13]); + puDst->au8[14] = PAVGW_EXEC(uSrc1.au8[14], puSrc->au8[14]); + puDst->au8[15] = PAVGW_EXEC(uSrc1.au8[15], puSrc->au8[15]); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpavgb_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + puDst->au8[ 0] = PAVGB_EXEC(puSrc1->au8[ 0], puSrc2->au8[ 0]); + puDst->au8[ 1] = PAVGB_EXEC(puSrc1->au8[ 1], puSrc2->au8[ 1]); + puDst->au8[ 2] = PAVGB_EXEC(puSrc1->au8[ 2], puSrc2->au8[ 2]); + puDst->au8[ 3] = PAVGB_EXEC(puSrc1->au8[ 3], puSrc2->au8[ 3]); + puDst->au8[ 4] = PAVGB_EXEC(puSrc1->au8[ 4], puSrc2->au8[ 4]); + puDst->au8[ 5] = PAVGB_EXEC(puSrc1->au8[ 5], puSrc2->au8[ 5]); + puDst->au8[ 6] = PAVGB_EXEC(puSrc1->au8[ 6], puSrc2->au8[ 6]); + puDst->au8[ 7] = PAVGB_EXEC(puSrc1->au8[ 7], puSrc2->au8[ 7]); + puDst->au8[ 8] = PAVGB_EXEC(puSrc1->au8[ 8], puSrc2->au8[ 8]); + puDst->au8[ 9] = PAVGB_EXEC(puSrc1->au8[ 9], puSrc2->au8[ 9]); + puDst->au8[10] = PAVGB_EXEC(puSrc1->au8[10], puSrc2->au8[10]); + puDst->au8[11] = PAVGB_EXEC(puSrc1->au8[11], puSrc2->au8[11]); + puDst->au8[12] = PAVGB_EXEC(puSrc1->au8[12], puSrc2->au8[12]); + puDst->au8[13] = PAVGB_EXEC(puSrc1->au8[13], puSrc2->au8[13]); + puDst->au8[14] = PAVGB_EXEC(puSrc1->au8[14], puSrc2->au8[14]); + puDst->au8[15] = PAVGB_EXEC(puSrc1->au8[15], puSrc2->au8[15]); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpavgb_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + puDst->au8[ 0] = PAVGB_EXEC(puSrc1->au8[ 0], puSrc2->au8[ 0]); + puDst->au8[ 1] = PAVGB_EXEC(puSrc1->au8[ 1], puSrc2->au8[ 1]); + puDst->au8[ 2] = PAVGB_EXEC(puSrc1->au8[ 2], puSrc2->au8[ 2]); + puDst->au8[ 3] = PAVGB_EXEC(puSrc1->au8[ 3], puSrc2->au8[ 3]); + puDst->au8[ 4] = PAVGB_EXEC(puSrc1->au8[ 4], puSrc2->au8[ 4]); + puDst->au8[ 5] = PAVGB_EXEC(puSrc1->au8[ 5], puSrc2->au8[ 5]); + puDst->au8[ 6] = PAVGB_EXEC(puSrc1->au8[ 6], puSrc2->au8[ 6]); + puDst->au8[ 7] = PAVGB_EXEC(puSrc1->au8[ 7], puSrc2->au8[ 7]); + puDst->au8[ 8] = PAVGB_EXEC(puSrc1->au8[ 8], puSrc2->au8[ 8]); + puDst->au8[ 9] = PAVGB_EXEC(puSrc1->au8[ 9], puSrc2->au8[ 9]); + puDst->au8[10] = PAVGB_EXEC(puSrc1->au8[10], puSrc2->au8[10]); + puDst->au8[11] = PAVGB_EXEC(puSrc1->au8[11], puSrc2->au8[11]); + puDst->au8[12] = PAVGB_EXEC(puSrc1->au8[12], puSrc2->au8[12]); + puDst->au8[13] = PAVGB_EXEC(puSrc1->au8[13], puSrc2->au8[13]); + puDst->au8[14] = PAVGB_EXEC(puSrc1->au8[14], puSrc2->au8[14]); + puDst->au8[15] = PAVGB_EXEC(puSrc1->au8[15], puSrc2->au8[15]); + puDst->au8[16] = PAVGB_EXEC(puSrc1->au8[16], puSrc2->au8[16]); + puDst->au8[17] = PAVGB_EXEC(puSrc1->au8[17], puSrc2->au8[17]); + puDst->au8[18] = PAVGB_EXEC(puSrc1->au8[18], puSrc2->au8[18]); + puDst->au8[19] = PAVGB_EXEC(puSrc1->au8[19], puSrc2->au8[19]); + puDst->au8[20] = PAVGB_EXEC(puSrc1->au8[20], puSrc2->au8[20]); + puDst->au8[21] = PAVGB_EXEC(puSrc1->au8[21], puSrc2->au8[21]); + puDst->au8[22] = PAVGB_EXEC(puSrc1->au8[22], puSrc2->au8[22]); + puDst->au8[23] = PAVGB_EXEC(puSrc1->au8[23], puSrc2->au8[23]); + puDst->au8[24] = PAVGB_EXEC(puSrc1->au8[24], puSrc2->au8[24]); + puDst->au8[25] = PAVGB_EXEC(puSrc1->au8[25], puSrc2->au8[25]); + puDst->au8[26] = PAVGB_EXEC(puSrc1->au8[26], puSrc2->au8[26]); + puDst->au8[27] = PAVGB_EXEC(puSrc1->au8[27], puSrc2->au8[27]); + puDst->au8[28] = PAVGB_EXEC(puSrc1->au8[28], puSrc2->au8[28]); + puDst->au8[29] = PAVGB_EXEC(puSrc1->au8[29], puSrc2->au8[29]); + puDst->au8[30] = PAVGB_EXEC(puSrc1->au8[30], puSrc2->au8[30]); + puDst->au8[31] = PAVGB_EXEC(puSrc1->au8[31], puSrc2->au8[31]); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpavgw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + puDst->au16[ 0] = PAVGW_EXEC(puSrc1->au16[ 0], puSrc2->au16[ 0]); + puDst->au16[ 1] = PAVGW_EXEC(puSrc1->au16[ 1], puSrc2->au16[ 1]); + puDst->au16[ 2] = PAVGW_EXEC(puSrc1->au16[ 2], puSrc2->au16[ 2]); + puDst->au16[ 3] = PAVGW_EXEC(puSrc1->au16[ 3], puSrc2->au16[ 3]); + puDst->au16[ 4] = PAVGW_EXEC(puSrc1->au16[ 4], puSrc2->au16[ 4]); + puDst->au16[ 5] = PAVGW_EXEC(puSrc1->au16[ 5], puSrc2->au16[ 5]); + puDst->au16[ 6] = PAVGW_EXEC(puSrc1->au16[ 6], puSrc2->au16[ 6]); + puDst->au16[ 7] = PAVGW_EXEC(puSrc1->au16[ 7], puSrc2->au16[ 7]); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpavgw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + puDst->au16[ 0] = PAVGW_EXEC(puSrc1->au16[ 0], puSrc2->au16[ 0]); + puDst->au16[ 1] = PAVGW_EXEC(puSrc1->au16[ 1], puSrc2->au16[ 1]); + puDst->au16[ 2] = PAVGW_EXEC(puSrc1->au16[ 2], puSrc2->au16[ 2]); + puDst->au16[ 3] = PAVGW_EXEC(puSrc1->au16[ 3], puSrc2->au16[ 3]); + puDst->au16[ 4] = PAVGW_EXEC(puSrc1->au16[ 4], puSrc2->au16[ 4]); + puDst->au16[ 5] = PAVGW_EXEC(puSrc1->au16[ 5], puSrc2->au16[ 5]); + puDst->au16[ 6] = PAVGW_EXEC(puSrc1->au16[ 6], puSrc2->au16[ 6]); + puDst->au16[ 7] = PAVGW_EXEC(puSrc1->au16[ 7], puSrc2->au16[ 7]); + puDst->au16[ 8] = PAVGW_EXEC(puSrc1->au16[ 8], puSrc2->au16[ 8]); + puDst->au16[ 9] = PAVGW_EXEC(puSrc1->au16[ 9], puSrc2->au16[ 9]); + puDst->au16[10] = PAVGW_EXEC(puSrc1->au16[10], puSrc2->au16[10]); + puDst->au16[11] = PAVGW_EXEC(puSrc1->au16[11], puSrc2->au16[11]); + puDst->au16[12] = PAVGW_EXEC(puSrc1->au16[12], puSrc2->au16[12]); + puDst->au16[13] = PAVGW_EXEC(puSrc1->au16[13], puSrc2->au16[13]); + puDst->au16[14] = PAVGW_EXEC(puSrc1->au16[14], puSrc2->au16[14]); + puDst->au16[15] = PAVGW_EXEC(puSrc1->au16[15], puSrc2->au16[15]); +} + +#undef PAVGB_EXEC +#undef PAVGW_EXEC + + +/* + * PMOVMSKB / VPMOVMSKB + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(uint64_t *pu64Dst, uint64_t const *pu64Src)) +{ + /* The the most signficant bit from each byte and store them in the given general purpose register. */ + uint64_t const uSrc = *pu64Src; + *pu64Dst = ((uSrc >> ( 7-0)) & RT_BIT_64(0)) + | ((uSrc >> (15-1)) & RT_BIT_64(1)) + | ((uSrc >> (23-2)) & RT_BIT_64(2)) + | ((uSrc >> (31-3)) & RT_BIT_64(3)) + | ((uSrc >> (39-4)) & RT_BIT_64(4)) + | ((uSrc >> (47-5)) & RT_BIT_64(5)) + | ((uSrc >> (55-6)) & RT_BIT_64(6)) + | ((uSrc >> (63-7)) & RT_BIT_64(7)); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(uint64_t *pu64Dst, PCRTUINT128U pu128Src)) +{ + /* The the most signficant bit from each byte and store them in the given general purpose register. */ + uint64_t const uSrc0 = pu128Src->QWords.qw0; + uint64_t const uSrc1 = pu128Src->QWords.qw1; + *pu64Dst = ((uSrc0 >> ( 7-0)) & RT_BIT_64(0)) + | ((uSrc0 >> (15-1)) & RT_BIT_64(1)) + | ((uSrc0 >> (23-2)) & RT_BIT_64(2)) + | ((uSrc0 >> (31-3)) & RT_BIT_64(3)) + | ((uSrc0 >> (39-4)) & RT_BIT_64(4)) + | ((uSrc0 >> (47-5)) & RT_BIT_64(5)) + | ((uSrc0 >> (55-6)) & RT_BIT_64(6)) + | ((uSrc0 >> (63-7)) & RT_BIT_64(7)) + | ((uSrc1 << (1 /*7-8*/)) & RT_BIT_64(8)) + | ((uSrc1 >> (15-9)) & RT_BIT_64(9)) + | ((uSrc1 >> (23-10)) & RT_BIT_64(10)) + | ((uSrc1 >> (31-11)) & RT_BIT_64(11)) + | ((uSrc1 >> (39-12)) & RT_BIT_64(12)) + | ((uSrc1 >> (47-13)) & RT_BIT_64(13)) + | ((uSrc1 >> (55-14)) & RT_BIT_64(14)) + | ((uSrc1 >> (63-15)) & RT_BIT_64(15)); +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256_fallback,(uint64_t *pu64Dst, PCRTUINT256U puSrc)) +{ + /* The the most signficant bit from each byte and store them in the given general purpose register. */ + uint64_t const uSrc0 = puSrc->QWords.qw0; + uint64_t const uSrc1 = puSrc->QWords.qw1; + uint64_t const uSrc2 = puSrc->QWords.qw2; + uint64_t const uSrc3 = puSrc->QWords.qw3; + *pu64Dst = ((uSrc0 >> ( 7-0)) & RT_BIT_64(0)) + | ((uSrc0 >> (15-1)) & RT_BIT_64(1)) + | ((uSrc0 >> (23-2)) & RT_BIT_64(2)) + | ((uSrc0 >> (31-3)) & RT_BIT_64(3)) + | ((uSrc0 >> (39-4)) & RT_BIT_64(4)) + | ((uSrc0 >> (47-5)) & RT_BIT_64(5)) + | ((uSrc0 >> (55-6)) & RT_BIT_64(6)) + | ((uSrc0 >> (63-7)) & RT_BIT_64(7)) + | ((uSrc1 << (1 /*7-8*/)) & RT_BIT_64(8)) + | ((uSrc1 >> (15-9)) & RT_BIT_64(9)) + | ((uSrc1 >> (23-10)) & RT_BIT_64(10)) + | ((uSrc1 >> (31-11)) & RT_BIT_64(11)) + | ((uSrc1 >> (39-12)) & RT_BIT_64(12)) + | ((uSrc1 >> (47-13)) & RT_BIT_64(13)) + | ((uSrc1 >> (55-14)) & RT_BIT_64(14)) + | ((uSrc1 >> (63-15)) & RT_BIT_64(15)) + | ((uSrc2 << (9 /* 7-16*/)) & RT_BIT_64(16)) + | ((uSrc2 << (2 /*15-17*/)) & RT_BIT_64(17)) + | ((uSrc2 >> (23-18)) & RT_BIT_64(18)) + | ((uSrc2 >> (31-19)) & RT_BIT_64(19)) + | ((uSrc2 >> (39-20)) & RT_BIT_64(20)) + | ((uSrc2 >> (47-21)) & RT_BIT_64(21)) + | ((uSrc2 >> (55-22)) & RT_BIT_64(22)) + | ((uSrc2 >> (63-23)) & RT_BIT_64(23)) + | ((uSrc3 << (17 /* 7-24*/)) & RT_BIT_64(24)) + | ((uSrc3 << (10 /*15-25*/)) & RT_BIT_64(25)) + | ((uSrc3 << (3 /*23-26*/)) & RT_BIT_64(26)) + | ((uSrc3 >> (31-27)) & RT_BIT_64(27)) + | ((uSrc3 >> (39-28)) & RT_BIT_64(28)) + | ((uSrc3 >> (47-29)) & RT_BIT_64(29)) + | ((uSrc3 >> (55-30)) & RT_BIT_64(30)) + | ((uSrc3 >> (63-31)) & RT_BIT_64(31)); +} + + +/* + * [V]PSHUFB + */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_pshufb_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U const uSrc = { *puSrc }; + RTUINT64U const uDstIn = { *puDst }; + ASMCompilerBarrier(); + RTUINT64U uDstOut = { 0 }; + for (unsigned iByte = 0; iByte < RT_ELEMENTS(uDstIn.au8); iByte++) + { + uint8_t idxSrc = uSrc.au8[iByte]; + if (!(idxSrc & 0x80)) + uDstOut.au8[iByte] = uDstIn.au8[idxSrc & 7]; + } + *puDst = uDstOut.u; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pshufb_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U const uSrc = *puSrc; + RTUINT128U const uDstIn = *puDst; + ASMCompilerBarrier(); + puDst->au64[0] = 0; + puDst->au64[1] = 0; + for (unsigned iByte = 0; iByte < RT_ELEMENTS(puDst->au8); iByte++) + { + uint8_t idxSrc = uSrc.au8[iByte]; + if (!(idxSrc & 0x80)) + puDst->au8[iByte] = uDstIn.au8[idxSrc & 15]; + } + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpshufb_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, + PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U const uSrc1 = *puSrc1; /* could be same as puDst */ + RTUINT128U const uSrc2 = *puSrc2; /* could be same as puDst */ + ASMCompilerBarrier(); + puDst->au64[0] = 0; + puDst->au64[1] = 0; + for (unsigned iByte = 0; iByte < 16; iByte++) + { + uint8_t idxSrc = uSrc2.au8[iByte]; + if (!(idxSrc & 0x80)) + puDst->au8[iByte] = uSrc1.au8[(idxSrc & 15)]; + } + RT_NOREF(pExtState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpshufb_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, + PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U const uSrc1 = *puSrc1; /* could be same as puDst */ + RTUINT256U const uSrc2 = *puSrc2; /* could be same as puDst */ + ASMCompilerBarrier(); + puDst->au64[0] = 0; + puDst->au64[1] = 0; + puDst->au64[2] = 0; + puDst->au64[3] = 0; + for (unsigned iByte = 0; iByte < 16; iByte++) + { + uint8_t idxSrc = uSrc2.au8[iByte]; + if (!(idxSrc & 0x80)) + puDst->au8[iByte] = uSrc1.au8[(idxSrc & 15)]; + } + for (unsigned iByte = 16; iByte < RT_ELEMENTS(puDst->au8); iByte++) + { + uint8_t idxSrc = uSrc2.au8[iByte]; + if (!(idxSrc & 0x80)) + puDst->au8[iByte] = uSrc1.au8[(idxSrc & 15) + 16]; /* baka intel */ + } + RT_NOREF(pExtState); +} + + +/* + * PSHUFW, [V]PSHUFHW, [V]PSHUFLW, [V]PSHUFD + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw_u64,(uint64_t *puDst, uint64_t const *puSrc, uint8_t bEvil)) +{ + uint64_t const uSrc = *puSrc; + ASMCompilerBarrier(); + *puDst = RT_MAKE_U64_FROM_U16(uSrc >> (( bEvil & 3) * 16), + uSrc >> (((bEvil >> 2) & 3) * 16), + uSrc >> (((bEvil >> 4) & 3) * 16), + uSrc >> (((bEvil >> 6) & 3) * 16)); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pshufhw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil)) +{ + puDst->QWords.qw0 = puSrc->QWords.qw0; + uint64_t const uSrc = puSrc->QWords.qw1; + ASMCompilerBarrier(); + puDst->QWords.qw1 = RT_MAKE_U64_FROM_U16(uSrc >> (( bEvil & 3) * 16), + uSrc >> (((bEvil >> 2) & 3) * 16), + uSrc >> (((bEvil >> 4) & 3) * 16), + uSrc >> (((bEvil >> 6) & 3) * 16)); +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpshufhw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil)) +{ + puDst->QWords.qw0 = puSrc->QWords.qw0; + uint64_t const uSrc1 = puSrc->QWords.qw1; + puDst->QWords.qw2 = puSrc->QWords.qw2; + uint64_t const uSrc3 = puSrc->QWords.qw3; + ASMCompilerBarrier(); + puDst->QWords.qw1 = RT_MAKE_U64_FROM_U16(uSrc1 >> (( bEvil & 3) * 16), + uSrc1 >> (((bEvil >> 2) & 3) * 16), + uSrc1 >> (((bEvil >> 4) & 3) * 16), + uSrc1 >> (((bEvil >> 6) & 3) * 16)); + puDst->QWords.qw3 = RT_MAKE_U64_FROM_U16(uSrc3 >> (( bEvil & 3) * 16), + uSrc3 >> (((bEvil >> 2) & 3) * 16), + uSrc3 >> (((bEvil >> 4) & 3) * 16), + uSrc3 >> (((bEvil >> 6) & 3) * 16)); +} + +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_pshuflw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil)) +{ + puDst->QWords.qw1 = puSrc->QWords.qw1; + uint64_t const uSrc = puSrc->QWords.qw0; + ASMCompilerBarrier(); + puDst->QWords.qw0 = RT_MAKE_U64_FROM_U16(uSrc >> (( bEvil & 3) * 16), + uSrc >> (((bEvil >> 2) & 3) * 16), + uSrc >> (((bEvil >> 4) & 3) * 16), + uSrc >> (((bEvil >> 6) & 3) * 16)); + +} +#endif + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpshuflw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil)) +{ + puDst->QWords.qw3 = puSrc->QWords.qw3; + uint64_t const uSrc2 = puSrc->QWords.qw2; + puDst->QWords.qw1 = puSrc->QWords.qw1; + uint64_t const uSrc0 = puSrc->QWords.qw0; + ASMCompilerBarrier(); + puDst->QWords.qw0 = RT_MAKE_U64_FROM_U16(uSrc0 >> (( bEvil & 3) * 16), + uSrc0 >> (((bEvil >> 2) & 3) * 16), + uSrc0 >> (((bEvil >> 4) & 3) * 16), + uSrc0 >> (((bEvil >> 6) & 3) * 16)); + puDst->QWords.qw2 = RT_MAKE_U64_FROM_U16(uSrc2 >> (( bEvil & 3) * 16), + uSrc2 >> (((bEvil >> 2) & 3) * 16), + uSrc2 >> (((bEvil >> 4) & 3) * 16), + uSrc2 >> (((bEvil >> 6) & 3) * 16)); + +} + + +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_pshufd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil)) +{ + RTUINT128U const uSrc = *puSrc; + ASMCompilerBarrier(); + puDst->au32[0] = uSrc.au32[bEvil & 3]; + puDst->au32[1] = uSrc.au32[(bEvil >> 2) & 3]; + puDst->au32[2] = uSrc.au32[(bEvil >> 4) & 3]; + puDst->au32[3] = uSrc.au32[(bEvil >> 6) & 3]; +} +#endif + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpshufd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil)) +{ + RTUINT256U const uSrc = *puSrc; + ASMCompilerBarrier(); + puDst->au128[0].au32[0] = uSrc.au128[0].au32[bEvil & 3]; + puDst->au128[0].au32[1] = uSrc.au128[0].au32[(bEvil >> 2) & 3]; + puDst->au128[0].au32[2] = uSrc.au128[0].au32[(bEvil >> 4) & 3]; + puDst->au128[0].au32[3] = uSrc.au128[0].au32[(bEvil >> 6) & 3]; + puDst->au128[1].au32[0] = uSrc.au128[1].au32[bEvil & 3]; + puDst->au128[1].au32[1] = uSrc.au128[1].au32[(bEvil >> 2) & 3]; + puDst->au128[1].au32[2] = uSrc.au128[1].au32[(bEvil >> 4) & 3]; + puDst->au128[1].au32[3] = uSrc.au128[1].au32[(bEvil >> 6) & 3]; +} + + +/* + * PUNPCKHBW - high bytes -> words + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhbw_u64,(uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U const uSrc2 = { *puSrc }; + RTUINT64U const uSrc1 = { *puDst }; + ASMCompilerBarrier(); + RTUINT64U uDstOut; + uDstOut.au8[0] = uSrc1.au8[4]; + uDstOut.au8[1] = uSrc2.au8[4]; + uDstOut.au8[2] = uSrc1.au8[5]; + uDstOut.au8[3] = uSrc2.au8[5]; + uDstOut.au8[4] = uSrc1.au8[6]; + uDstOut.au8[5] = uSrc2.au8[6]; + uDstOut.au8[6] = uSrc1.au8[7]; + uDstOut.au8[7] = uSrc2.au8[7]; + *puDst = uDstOut.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhbw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U const uSrc2 = *puSrc; + RTUINT128U const uSrc1 = *puDst; + ASMCompilerBarrier(); + RTUINT128U uDstOut; + uDstOut.au8[ 0] = uSrc1.au8[ 8]; + uDstOut.au8[ 1] = uSrc2.au8[ 8]; + uDstOut.au8[ 2] = uSrc1.au8[ 9]; + uDstOut.au8[ 3] = uSrc2.au8[ 9]; + uDstOut.au8[ 4] = uSrc1.au8[10]; + uDstOut.au8[ 5] = uSrc2.au8[10]; + uDstOut.au8[ 6] = uSrc1.au8[11]; + uDstOut.au8[ 7] = uSrc2.au8[11]; + uDstOut.au8[ 8] = uSrc1.au8[12]; + uDstOut.au8[ 9] = uSrc2.au8[12]; + uDstOut.au8[10] = uSrc1.au8[13]; + uDstOut.au8[11] = uSrc2.au8[13]; + uDstOut.au8[12] = uSrc1.au8[14]; + uDstOut.au8[13] = uSrc2.au8[14]; + uDstOut.au8[14] = uSrc1.au8[15]; + uDstOut.au8[15] = uSrc2.au8[15]; + *puDst = uDstOut; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckhbw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U const uSrc2 = *puSrc2; + RTUINT128U const uSrc1 = *puSrc1; + ASMCompilerBarrier(); + RTUINT128U uDstOut; + uDstOut.au8[ 0] = uSrc1.au8[ 8]; + uDstOut.au8[ 1] = uSrc2.au8[ 8]; + uDstOut.au8[ 2] = uSrc1.au8[ 9]; + uDstOut.au8[ 3] = uSrc2.au8[ 9]; + uDstOut.au8[ 4] = uSrc1.au8[10]; + uDstOut.au8[ 5] = uSrc2.au8[10]; + uDstOut.au8[ 6] = uSrc1.au8[11]; + uDstOut.au8[ 7] = uSrc2.au8[11]; + uDstOut.au8[ 8] = uSrc1.au8[12]; + uDstOut.au8[ 9] = uSrc2.au8[12]; + uDstOut.au8[10] = uSrc1.au8[13]; + uDstOut.au8[11] = uSrc2.au8[13]; + uDstOut.au8[12] = uSrc1.au8[14]; + uDstOut.au8[13] = uSrc2.au8[14]; + uDstOut.au8[14] = uSrc1.au8[15]; + uDstOut.au8[15] = uSrc2.au8[15]; + *puDst = uDstOut; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckhbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U const uSrc2 = *puSrc2; + RTUINT256U const uSrc1 = *puSrc1; + ASMCompilerBarrier(); + RTUINT256U uDstOut; + uDstOut.au8[ 0] = uSrc1.au8[ 8]; + uDstOut.au8[ 1] = uSrc2.au8[ 8]; + uDstOut.au8[ 2] = uSrc1.au8[ 9]; + uDstOut.au8[ 3] = uSrc2.au8[ 9]; + uDstOut.au8[ 4] = uSrc1.au8[10]; + uDstOut.au8[ 5] = uSrc2.au8[10]; + uDstOut.au8[ 6] = uSrc1.au8[11]; + uDstOut.au8[ 7] = uSrc2.au8[11]; + uDstOut.au8[ 8] = uSrc1.au8[12]; + uDstOut.au8[ 9] = uSrc2.au8[12]; + uDstOut.au8[10] = uSrc1.au8[13]; + uDstOut.au8[11] = uSrc2.au8[13]; + uDstOut.au8[12] = uSrc1.au8[14]; + uDstOut.au8[13] = uSrc2.au8[14]; + uDstOut.au8[14] = uSrc1.au8[15]; + uDstOut.au8[15] = uSrc2.au8[15]; + /* As usual, the upper 128-bits are treated like a parallel register to the lower half. */ + uDstOut.au8[16] = uSrc1.au8[24]; + uDstOut.au8[17] = uSrc2.au8[24]; + uDstOut.au8[18] = uSrc1.au8[25]; + uDstOut.au8[19] = uSrc2.au8[25]; + uDstOut.au8[20] = uSrc1.au8[26]; + uDstOut.au8[21] = uSrc2.au8[26]; + uDstOut.au8[22] = uSrc1.au8[27]; + uDstOut.au8[23] = uSrc2.au8[27]; + uDstOut.au8[24] = uSrc1.au8[28]; + uDstOut.au8[25] = uSrc2.au8[28]; + uDstOut.au8[26] = uSrc1.au8[29]; + uDstOut.au8[27] = uSrc2.au8[29]; + uDstOut.au8[28] = uSrc1.au8[30]; + uDstOut.au8[29] = uSrc2.au8[30]; + uDstOut.au8[30] = uSrc1.au8[31]; + uDstOut.au8[31] = uSrc2.au8[31]; + *puDst = uDstOut; +} + + +/* + * PUNPCKHBW - high words -> dwords + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhwd_u64,(uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U const uSrc2 = { *puSrc }; + RTUINT64U const uSrc1 = { *puDst }; + ASMCompilerBarrier(); + RTUINT64U uDstOut; + uDstOut.au16[0] = uSrc1.au16[2]; + uDstOut.au16[1] = uSrc2.au16[2]; + uDstOut.au16[2] = uSrc1.au16[3]; + uDstOut.au16[3] = uSrc2.au16[3]; + *puDst = uDstOut.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhwd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U const uSrc2 = *puSrc; + RTUINT128U const uSrc1 = *puDst; + ASMCompilerBarrier(); + RTUINT128U uDstOut; + uDstOut.au16[0] = uSrc1.au16[4]; + uDstOut.au16[1] = uSrc2.au16[4]; + uDstOut.au16[2] = uSrc1.au16[5]; + uDstOut.au16[3] = uSrc2.au16[5]; + uDstOut.au16[4] = uSrc1.au16[6]; + uDstOut.au16[5] = uSrc2.au16[6]; + uDstOut.au16[6] = uSrc1.au16[7]; + uDstOut.au16[7] = uSrc2.au16[7]; + *puDst = uDstOut; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckhwd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U const uSrc2 = *puSrc2; + RTUINT128U const uSrc1 = *puSrc1; + ASMCompilerBarrier(); + RTUINT128U uDstOut; + uDstOut.au16[0] = uSrc1.au16[4]; + uDstOut.au16[1] = uSrc2.au16[4]; + uDstOut.au16[2] = uSrc1.au16[5]; + uDstOut.au16[3] = uSrc2.au16[5]; + uDstOut.au16[4] = uSrc1.au16[6]; + uDstOut.au16[5] = uSrc2.au16[6]; + uDstOut.au16[6] = uSrc1.au16[7]; + uDstOut.au16[7] = uSrc2.au16[7]; + *puDst = uDstOut; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckhwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U const uSrc2 = *puSrc2; + RTUINT256U const uSrc1 = *puSrc1; + ASMCompilerBarrier(); + RTUINT256U uDstOut; + uDstOut.au16[0] = uSrc1.au16[4]; + uDstOut.au16[1] = uSrc2.au16[4]; + uDstOut.au16[2] = uSrc1.au16[5]; + uDstOut.au16[3] = uSrc2.au16[5]; + uDstOut.au16[4] = uSrc1.au16[6]; + uDstOut.au16[5] = uSrc2.au16[6]; + uDstOut.au16[6] = uSrc1.au16[7]; + uDstOut.au16[7] = uSrc2.au16[7]; + + uDstOut.au16[8] = uSrc1.au16[12]; + uDstOut.au16[9] = uSrc2.au16[12]; + uDstOut.au16[10] = uSrc1.au16[13]; + uDstOut.au16[11] = uSrc2.au16[13]; + uDstOut.au16[12] = uSrc1.au16[14]; + uDstOut.au16[13] = uSrc2.au16[14]; + uDstOut.au16[14] = uSrc1.au16[15]; + uDstOut.au16[15] = uSrc2.au16[15]; + *puDst = uDstOut; +} + + +/* + * PUNPCKHBW - high dwords -> qword(s) + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhdq_u64,(uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U const uSrc2 = { *puSrc }; + RTUINT64U const uSrc1 = { *puDst }; + ASMCompilerBarrier(); + RTUINT64U uDstOut; + uDstOut.au32[0] = uSrc1.au32[1]; + uDstOut.au32[1] = uSrc2.au32[1]; + *puDst = uDstOut.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhdq_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U const uSrc2 = *puSrc; + RTUINT128U const uSrc1 = *puDst; + ASMCompilerBarrier(); + RTUINT128U uDstOut; + uDstOut.au32[0] = uSrc1.au32[2]; + uDstOut.au32[1] = uSrc2.au32[2]; + uDstOut.au32[2] = uSrc1.au32[3]; + uDstOut.au32[3] = uSrc2.au32[3]; + *puDst = uDstOut; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckhdq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U const uSrc2 = *puSrc2; + RTUINT128U const uSrc1 = *puSrc1; + ASMCompilerBarrier(); + RTUINT128U uDstOut; + uDstOut.au32[0] = uSrc1.au32[2]; + uDstOut.au32[1] = uSrc2.au32[2]; + uDstOut.au32[2] = uSrc1.au32[3]; + uDstOut.au32[3] = uSrc2.au32[3]; + *puDst = uDstOut; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckhdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U const uSrc2 = *puSrc2; + RTUINT256U const uSrc1 = *puSrc1; + ASMCompilerBarrier(); + RTUINT256U uDstOut; + uDstOut.au32[0] = uSrc1.au32[2]; + uDstOut.au32[1] = uSrc2.au32[2]; + uDstOut.au32[2] = uSrc1.au32[3]; + uDstOut.au32[3] = uSrc2.au32[3]; + + uDstOut.au32[4] = uSrc1.au32[6]; + uDstOut.au32[5] = uSrc2.au32[6]; + uDstOut.au32[6] = uSrc1.au32[7]; + uDstOut.au32[7] = uSrc2.au32[7]; + *puDst = uDstOut; +} + + +/* + * PUNPCKHQDQ -> High qwords -> double qword(s). + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhqdq_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U const uSrc2 = *puSrc; + RTUINT128U const uSrc1 = *puDst; + ASMCompilerBarrier(); + RTUINT128U uDstOut; + uDstOut.au64[0] = uSrc1.au64[1]; + uDstOut.au64[1] = uSrc2.au64[1]; + *puDst = uDstOut; +} +#endif + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckhqdq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U const uSrc2 = *puSrc2; + RTUINT128U const uSrc1 = *puSrc1; + ASMCompilerBarrier(); + RTUINT128U uDstOut; + uDstOut.au64[0] = uSrc1.au64[1]; + uDstOut.au64[1] = uSrc2.au64[1]; + *puDst = uDstOut; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckhqdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U const uSrc2 = *puSrc2; + RTUINT256U const uSrc1 = *puSrc1; + ASMCompilerBarrier(); + RTUINT256U uDstOut; + uDstOut.au64[0] = uSrc1.au64[1]; + uDstOut.au64[1] = uSrc2.au64[1]; + + uDstOut.au64[2] = uSrc1.au64[3]; + uDstOut.au64[3] = uSrc2.au64[3]; + *puDst = uDstOut; +} + + +/* + * PUNPCKLBW - low bytes -> words + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_punpcklbw_u64,(uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U const uSrc2 = { *puSrc }; + RTUINT64U const uSrc1 = { *puDst }; + ASMCompilerBarrier(); + RTUINT64U uDstOut; + uDstOut.au8[0] = uSrc1.au8[0]; + uDstOut.au8[1] = uSrc2.au8[0]; + uDstOut.au8[2] = uSrc1.au8[1]; + uDstOut.au8[3] = uSrc2.au8[1]; + uDstOut.au8[4] = uSrc1.au8[2]; + uDstOut.au8[5] = uSrc2.au8[2]; + uDstOut.au8[6] = uSrc1.au8[3]; + uDstOut.au8[7] = uSrc2.au8[3]; + *puDst = uDstOut.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_punpcklbw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U const uSrc2 = *puSrc; + RTUINT128U const uSrc1 = *puDst; + ASMCompilerBarrier(); + RTUINT128U uDstOut; + uDstOut.au8[ 0] = uSrc1.au8[0]; + uDstOut.au8[ 1] = uSrc2.au8[0]; + uDstOut.au8[ 2] = uSrc1.au8[1]; + uDstOut.au8[ 3] = uSrc2.au8[1]; + uDstOut.au8[ 4] = uSrc1.au8[2]; + uDstOut.au8[ 5] = uSrc2.au8[2]; + uDstOut.au8[ 6] = uSrc1.au8[3]; + uDstOut.au8[ 7] = uSrc2.au8[3]; + uDstOut.au8[ 8] = uSrc1.au8[4]; + uDstOut.au8[ 9] = uSrc2.au8[4]; + uDstOut.au8[10] = uSrc1.au8[5]; + uDstOut.au8[11] = uSrc2.au8[5]; + uDstOut.au8[12] = uSrc1.au8[6]; + uDstOut.au8[13] = uSrc2.au8[6]; + uDstOut.au8[14] = uSrc1.au8[7]; + uDstOut.au8[15] = uSrc2.au8[7]; + *puDst = uDstOut; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpcklbw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U const uSrc2 = *puSrc2; + RTUINT128U const uSrc1 = *puSrc1; + ASMCompilerBarrier(); + RTUINT128U uDstOut; + uDstOut.au8[ 0] = uSrc1.au8[0]; + uDstOut.au8[ 1] = uSrc2.au8[0]; + uDstOut.au8[ 2] = uSrc1.au8[1]; + uDstOut.au8[ 3] = uSrc2.au8[1]; + uDstOut.au8[ 4] = uSrc1.au8[2]; + uDstOut.au8[ 5] = uSrc2.au8[2]; + uDstOut.au8[ 6] = uSrc1.au8[3]; + uDstOut.au8[ 7] = uSrc2.au8[3]; + uDstOut.au8[ 8] = uSrc1.au8[4]; + uDstOut.au8[ 9] = uSrc2.au8[4]; + uDstOut.au8[10] = uSrc1.au8[5]; + uDstOut.au8[11] = uSrc2.au8[5]; + uDstOut.au8[12] = uSrc1.au8[6]; + uDstOut.au8[13] = uSrc2.au8[6]; + uDstOut.au8[14] = uSrc1.au8[7]; + uDstOut.au8[15] = uSrc2.au8[7]; + *puDst = uDstOut; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpcklbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U const uSrc2 = *puSrc2; + RTUINT256U const uSrc1 = *puSrc1; + ASMCompilerBarrier(); + RTUINT256U uDstOut; + uDstOut.au8[ 0] = uSrc1.au8[0]; + uDstOut.au8[ 1] = uSrc2.au8[0]; + uDstOut.au8[ 2] = uSrc1.au8[1]; + uDstOut.au8[ 3] = uSrc2.au8[1]; + uDstOut.au8[ 4] = uSrc1.au8[2]; + uDstOut.au8[ 5] = uSrc2.au8[2]; + uDstOut.au8[ 6] = uSrc1.au8[3]; + uDstOut.au8[ 7] = uSrc2.au8[3]; + uDstOut.au8[ 8] = uSrc1.au8[4]; + uDstOut.au8[ 9] = uSrc2.au8[4]; + uDstOut.au8[10] = uSrc1.au8[5]; + uDstOut.au8[11] = uSrc2.au8[5]; + uDstOut.au8[12] = uSrc1.au8[6]; + uDstOut.au8[13] = uSrc2.au8[6]; + uDstOut.au8[14] = uSrc1.au8[7]; + uDstOut.au8[15] = uSrc2.au8[7]; + /* As usual, the upper 128-bits are treated like a parallel register to the lower half. */ + uDstOut.au8[16] = uSrc1.au8[16]; + uDstOut.au8[17] = uSrc2.au8[16]; + uDstOut.au8[18] = uSrc1.au8[17]; + uDstOut.au8[19] = uSrc2.au8[17]; + uDstOut.au8[20] = uSrc1.au8[18]; + uDstOut.au8[21] = uSrc2.au8[18]; + uDstOut.au8[22] = uSrc1.au8[19]; + uDstOut.au8[23] = uSrc2.au8[19]; + uDstOut.au8[24] = uSrc1.au8[20]; + uDstOut.au8[25] = uSrc2.au8[20]; + uDstOut.au8[26] = uSrc1.au8[21]; + uDstOut.au8[27] = uSrc2.au8[21]; + uDstOut.au8[28] = uSrc1.au8[22]; + uDstOut.au8[29] = uSrc2.au8[22]; + uDstOut.au8[30] = uSrc1.au8[23]; + uDstOut.au8[31] = uSrc2.au8[23]; + *puDst = uDstOut; +} + + +/* + * PUNPCKLBW - low words -> dwords + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_punpcklwd_u64,(uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U const uSrc2 = { *puSrc }; + RTUINT64U const uSrc1 = { *puDst }; + ASMCompilerBarrier(); + RTUINT64U uDstOut; + uDstOut.au16[0] = uSrc1.au16[0]; + uDstOut.au16[1] = uSrc2.au16[0]; + uDstOut.au16[2] = uSrc1.au16[1]; + uDstOut.au16[3] = uSrc2.au16[1]; + *puDst = uDstOut.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_punpcklwd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U const uSrc2 = *puSrc; + RTUINT128U const uSrc1 = *puDst; + ASMCompilerBarrier(); + RTUINT128U uDstOut; + uDstOut.au16[0] = uSrc1.au16[0]; + uDstOut.au16[1] = uSrc2.au16[0]; + uDstOut.au16[2] = uSrc1.au16[1]; + uDstOut.au16[3] = uSrc2.au16[1]; + uDstOut.au16[4] = uSrc1.au16[2]; + uDstOut.au16[5] = uSrc2.au16[2]; + uDstOut.au16[6] = uSrc1.au16[3]; + uDstOut.au16[7] = uSrc2.au16[3]; + *puDst = uDstOut; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpcklwd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U const uSrc2 = *puSrc2; + RTUINT128U const uSrc1 = *puSrc1; + ASMCompilerBarrier(); + RTUINT128U uDstOut; + uDstOut.au16[0] = uSrc1.au16[0]; + uDstOut.au16[1] = uSrc2.au16[0]; + uDstOut.au16[2] = uSrc1.au16[1]; + uDstOut.au16[3] = uSrc2.au16[1]; + uDstOut.au16[4] = uSrc1.au16[2]; + uDstOut.au16[5] = uSrc2.au16[2]; + uDstOut.au16[6] = uSrc1.au16[3]; + uDstOut.au16[7] = uSrc2.au16[3]; + *puDst = uDstOut; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpcklwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U const uSrc2 = *puSrc2; + RTUINT256U const uSrc1 = *puSrc1; + ASMCompilerBarrier(); + RTUINT256U uDstOut; + uDstOut.au16[0] = uSrc1.au16[0]; + uDstOut.au16[1] = uSrc2.au16[0]; + uDstOut.au16[2] = uSrc1.au16[1]; + uDstOut.au16[3] = uSrc2.au16[1]; + uDstOut.au16[4] = uSrc1.au16[2]; + uDstOut.au16[5] = uSrc2.au16[2]; + uDstOut.au16[6] = uSrc1.au16[3]; + uDstOut.au16[7] = uSrc2.au16[3]; + + uDstOut.au16[8] = uSrc1.au16[8]; + uDstOut.au16[9] = uSrc2.au16[8]; + uDstOut.au16[10] = uSrc1.au16[9]; + uDstOut.au16[11] = uSrc2.au16[9]; + uDstOut.au16[12] = uSrc1.au16[10]; + uDstOut.au16[13] = uSrc2.au16[10]; + uDstOut.au16[14] = uSrc1.au16[11]; + uDstOut.au16[15] = uSrc2.au16[11]; + *puDst = uDstOut; +} + + +/* + * PUNPCKLBW - low dwords -> qword(s) + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_punpckldq_u64,(uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U const uSrc2 = { *puSrc }; + RTUINT64U const uSrc1 = { *puDst }; + ASMCompilerBarrier(); + RTUINT64U uDstOut; + uDstOut.au32[0] = uSrc1.au32[0]; + uDstOut.au32[1] = uSrc2.au32[0]; + *puDst = uDstOut.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_punpckldq_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U const uSrc2 = *puSrc; + RTUINT128U const uSrc1 = *puDst; + ASMCompilerBarrier(); + RTUINT128U uDstOut; + uDstOut.au32[0] = uSrc1.au32[0]; + uDstOut.au32[1] = uSrc2.au32[0]; + uDstOut.au32[2] = uSrc1.au32[1]; + uDstOut.au32[3] = uSrc2.au32[1]; + *puDst = uDstOut; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckldq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U const uSrc2 = *puSrc2; + RTUINT128U const uSrc1 = *puSrc1; + ASMCompilerBarrier(); + RTUINT128U uDstOut; + uDstOut.au32[0] = uSrc1.au32[0]; + uDstOut.au32[1] = uSrc2.au32[0]; + uDstOut.au32[2] = uSrc1.au32[1]; + uDstOut.au32[3] = uSrc2.au32[1]; + *puDst = uDstOut; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckldq_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U const uSrc2 = *puSrc2; + RTUINT256U const uSrc1 = *puSrc1; + ASMCompilerBarrier(); + RTUINT256U uDstOut; + uDstOut.au32[0] = uSrc1.au32[0]; + uDstOut.au32[1] = uSrc2.au32[0]; + uDstOut.au32[2] = uSrc1.au32[1]; + uDstOut.au32[3] = uSrc2.au32[1]; + + uDstOut.au32[4] = uSrc1.au32[4]; + uDstOut.au32[5] = uSrc2.au32[4]; + uDstOut.au32[6] = uSrc1.au32[5]; + uDstOut.au32[7] = uSrc2.au32[5]; + *puDst = uDstOut; +} + + +/* + * PUNPCKLQDQ -> Low qwords -> double qword(s). + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_punpcklqdq_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U const uSrc2 = *puSrc; + RTUINT128U const uSrc1 = *puDst; + ASMCompilerBarrier(); + RTUINT128U uDstOut; + uDstOut.au64[0] = uSrc1.au64[0]; + uDstOut.au64[1] = uSrc2.au64[0]; + *puDst = uDstOut; +} +#endif + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpcklqdq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U const uSrc2 = *puSrc2; + RTUINT128U const uSrc1 = *puSrc1; + ASMCompilerBarrier(); + RTUINT128U uDstOut; + uDstOut.au64[0] = uSrc1.au64[0]; + uDstOut.au64[1] = uSrc2.au64[0]; + *puDst = uDstOut; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpcklqdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U const uSrc2 = *puSrc2; + RTUINT256U const uSrc1 = *puSrc1; + ASMCompilerBarrier(); + RTUINT256U uDstOut; + uDstOut.au64[0] = uSrc1.au64[0]; + uDstOut.au64[1] = uSrc2.au64[0]; + + uDstOut.au64[2] = uSrc1.au64[2]; + uDstOut.au64[3] = uSrc2.au64[2]; + *puDst = uDstOut; +} + + +/* + * PACKSSWB - signed words -> signed bytes + */ + +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_packsswb_u64,(uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U const uSrc2 = { *puSrc }; + RTUINT64U const uSrc1 = { *puDst }; + ASMCompilerBarrier(); + RTUINT64U uDstOut; + uDstOut.au8[0] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[0]); + uDstOut.au8[1] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[1]); + uDstOut.au8[2] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[2]); + uDstOut.au8[3] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[3]); + uDstOut.au8[4] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[0]); + uDstOut.au8[5] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[1]); + uDstOut.au8[6] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[2]); + uDstOut.au8[7] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[3]); + *puDst = uDstOut.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_packsswb_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U const uSrc2 = *puSrc; + RTUINT128U const uSrc1 = *puDst; + ASMCompilerBarrier(); + RTUINT128U uDstOut; + uDstOut.au8[ 0] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[0]); + uDstOut.au8[ 1] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[1]); + uDstOut.au8[ 2] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[2]); + uDstOut.au8[ 3] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[3]); + uDstOut.au8[ 4] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[4]); + uDstOut.au8[ 5] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[5]); + uDstOut.au8[ 6] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[6]); + uDstOut.au8[ 7] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[7]); + uDstOut.au8[ 8] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[0]); + uDstOut.au8[ 9] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[1]); + uDstOut.au8[10] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[2]); + uDstOut.au8[11] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[3]); + uDstOut.au8[12] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[4]); + uDstOut.au8[13] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[5]); + uDstOut.au8[14] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[6]); + uDstOut.au8[15] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[7]); + *puDst = uDstOut; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpacksswb_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U const uSrc2 = *puSrc2; + RTUINT128U const uSrc1 = *puSrc1; + ASMCompilerBarrier(); + RTUINT128U uDstOut; + uDstOut.au8[ 0] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[0]); + uDstOut.au8[ 1] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[1]); + uDstOut.au8[ 2] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[2]); + uDstOut.au8[ 3] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[3]); + uDstOut.au8[ 4] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[4]); + uDstOut.au8[ 5] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[5]); + uDstOut.au8[ 6] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[6]); + uDstOut.au8[ 7] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[7]); + uDstOut.au8[ 8] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[0]); + uDstOut.au8[ 9] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[1]); + uDstOut.au8[10] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[2]); + uDstOut.au8[11] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[3]); + uDstOut.au8[12] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[4]); + uDstOut.au8[13] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[5]); + uDstOut.au8[14] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[6]); + uDstOut.au8[15] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[7]); + *puDst = uDstOut; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpacksswb_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U const uSrc2 = *puSrc2; + RTUINT256U const uSrc1 = *puSrc1; + ASMCompilerBarrier(); + RTUINT256U uDstOut; + uDstOut.au8[ 0] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[0]); + uDstOut.au8[ 1] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[1]); + uDstOut.au8[ 2] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[2]); + uDstOut.au8[ 3] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[3]); + uDstOut.au8[ 4] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[4]); + uDstOut.au8[ 5] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[5]); + uDstOut.au8[ 6] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[6]); + uDstOut.au8[ 7] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[7]); + uDstOut.au8[ 8] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[0]); + uDstOut.au8[ 9] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[1]); + uDstOut.au8[10] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[2]); + uDstOut.au8[11] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[3]); + uDstOut.au8[12] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[4]); + uDstOut.au8[13] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[5]); + uDstOut.au8[14] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[6]); + uDstOut.au8[15] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[7]); + + uDstOut.au8[16] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[ 8]); + uDstOut.au8[17] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[ 9]); + uDstOut.au8[18] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[10]); + uDstOut.au8[19] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[11]); + uDstOut.au8[20] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[12]); + uDstOut.au8[21] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[13]); + uDstOut.au8[22] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[14]); + uDstOut.au8[23] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[15]); + uDstOut.au8[24] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[ 8]); + uDstOut.au8[25] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[ 9]); + uDstOut.au8[26] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[10]); + uDstOut.au8[27] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[11]); + uDstOut.au8[28] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[12]); + uDstOut.au8[29] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[13]); + uDstOut.au8[30] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[14]); + uDstOut.au8[31] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[15]); + *puDst = uDstOut; +} + + +/* + * PACKUSWB - signed words -> unsigned bytes + */ +#define SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(a_iWord) \ + ( (uint16_t)(a_iWord) <= (uint16_t)0xff \ + ? (uint8_t)(a_iWord) \ + : (uint8_t)0xff * (uint8_t)((((a_iWord) >> 15) & 1) ^ 1) ) /* 0xff = UINT8_MAX; 0x00 == UINT8_MIN; source bit 15 = sign */ + +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_packuswb_u64,(uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U const uSrc2 = { *puSrc }; + RTUINT64U const uSrc1 = { *puDst }; + ASMCompilerBarrier(); + RTUINT64U uDstOut; + uDstOut.au8[0] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[0]); + uDstOut.au8[1] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[1]); + uDstOut.au8[2] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[2]); + uDstOut.au8[3] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[3]); + uDstOut.au8[4] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[0]); + uDstOut.au8[5] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[1]); + uDstOut.au8[6] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[2]); + uDstOut.au8[7] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[3]); + *puDst = uDstOut.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_packuswb_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U const uSrc2 = *puSrc; + RTUINT128U const uSrc1 = *puDst; + ASMCompilerBarrier(); + RTUINT128U uDstOut; + uDstOut.au8[ 0] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[0]); + uDstOut.au8[ 1] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[1]); + uDstOut.au8[ 2] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[2]); + uDstOut.au8[ 3] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[3]); + uDstOut.au8[ 4] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[4]); + uDstOut.au8[ 5] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[5]); + uDstOut.au8[ 6] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[6]); + uDstOut.au8[ 7] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[7]); + uDstOut.au8[ 8] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[0]); + uDstOut.au8[ 9] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[1]); + uDstOut.au8[10] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[2]); + uDstOut.au8[11] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[3]); + uDstOut.au8[12] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[4]); + uDstOut.au8[13] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[5]); + uDstOut.au8[14] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[6]); + uDstOut.au8[15] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[7]); + *puDst = uDstOut; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpackuswb_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U const uSrc2 = *puSrc2; + RTUINT128U const uSrc1 = *puSrc1; + ASMCompilerBarrier(); + RTUINT128U uDstOut; + uDstOut.au8[ 0] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[0]); + uDstOut.au8[ 1] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[1]); + uDstOut.au8[ 2] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[2]); + uDstOut.au8[ 3] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[3]); + uDstOut.au8[ 4] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[4]); + uDstOut.au8[ 5] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[5]); + uDstOut.au8[ 6] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[6]); + uDstOut.au8[ 7] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[7]); + uDstOut.au8[ 8] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[0]); + uDstOut.au8[ 9] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[1]); + uDstOut.au8[10] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[2]); + uDstOut.au8[11] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[3]); + uDstOut.au8[12] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[4]); + uDstOut.au8[13] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[5]); + uDstOut.au8[14] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[6]); + uDstOut.au8[15] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[7]); + *puDst = uDstOut; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpackuswb_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U const uSrc2 = *puSrc2; + RTUINT256U const uSrc1 = *puSrc1; + ASMCompilerBarrier(); + RTUINT256U uDstOut; + uDstOut.au8[ 0] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[0]); + uDstOut.au8[ 1] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[1]); + uDstOut.au8[ 2] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[2]); + uDstOut.au8[ 3] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[3]); + uDstOut.au8[ 4] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[4]); + uDstOut.au8[ 5] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[5]); + uDstOut.au8[ 6] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[6]); + uDstOut.au8[ 7] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[7]); + uDstOut.au8[ 8] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[0]); + uDstOut.au8[ 9] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[1]); + uDstOut.au8[10] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[2]); + uDstOut.au8[11] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[3]); + uDstOut.au8[12] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[4]); + uDstOut.au8[13] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[5]); + uDstOut.au8[14] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[6]); + uDstOut.au8[15] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[7]); + + uDstOut.au8[16] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[ 8]); + uDstOut.au8[17] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[ 9]); + uDstOut.au8[18] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[10]); + uDstOut.au8[19] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[11]); + uDstOut.au8[20] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[12]); + uDstOut.au8[21] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[13]); + uDstOut.au8[22] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[14]); + uDstOut.au8[23] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[15]); + uDstOut.au8[24] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[ 8]); + uDstOut.au8[25] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[ 9]); + uDstOut.au8[26] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[10]); + uDstOut.au8[27] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[11]); + uDstOut.au8[28] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[12]); + uDstOut.au8[29] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[13]); + uDstOut.au8[30] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[14]); + uDstOut.au8[31] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[15]); + *puDst = uDstOut; +} + + +/* + * PACKSSDW - signed dwords -> signed words + */ + +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_packssdw_u64,(uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U const uSrc2 = { *puSrc }; + RTUINT64U const uSrc1 = { *puDst }; + ASMCompilerBarrier(); + RTUINT64U uDstOut; + uDstOut.au16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[0]); + uDstOut.au16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[1]); + uDstOut.au16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[0]); + uDstOut.au16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[1]); + *puDst = uDstOut.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_packssdw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U const uSrc2 = *puSrc; + RTUINT128U const uSrc1 = *puDst; + ASMCompilerBarrier(); + RTUINT128U uDstOut; + uDstOut.au16[ 0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[0]); + uDstOut.au16[ 1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[1]); + uDstOut.au16[ 2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[2]); + uDstOut.au16[ 3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[3]); + uDstOut.au16[ 4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[0]); + uDstOut.au16[ 5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[1]); + uDstOut.au16[ 6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[2]); + uDstOut.au16[ 7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[3]); + *puDst = uDstOut; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpackssdw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U const uSrc2 = *puSrc2; + RTUINT128U const uSrc1 = *puSrc1; + ASMCompilerBarrier(); + RTUINT128U uDstOut; + uDstOut.au16[ 0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[0]); + uDstOut.au16[ 1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[1]); + uDstOut.au16[ 2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[2]); + uDstOut.au16[ 3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[3]); + uDstOut.au16[ 4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[0]); + uDstOut.au16[ 5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[1]); + uDstOut.au16[ 6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[2]); + uDstOut.au16[ 7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[3]); + *puDst = uDstOut; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpackssdw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U const uSrc2 = *puSrc2; + RTUINT256U const uSrc1 = *puSrc1; + ASMCompilerBarrier(); + RTUINT256U uDstOut; + uDstOut.au16[ 0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[0]); + uDstOut.au16[ 1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[1]); + uDstOut.au16[ 2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[2]); + uDstOut.au16[ 3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[3]); + uDstOut.au16[ 4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[0]); + uDstOut.au16[ 5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[1]); + uDstOut.au16[ 6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[2]); + uDstOut.au16[ 7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[3]); + + uDstOut.au16[ 8] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[4]); + uDstOut.au16[ 9] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[5]); + uDstOut.au16[10] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[6]); + uDstOut.au16[11] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[7]); + uDstOut.au16[12] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[4]); + uDstOut.au16[13] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[5]); + uDstOut.au16[14] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[6]); + uDstOut.au16[15] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[7]); + *puDst = uDstOut; +} + + +/* + * PACKUSDW - signed dwords -> unsigned words + */ +#define SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(a_iDword) \ + ( (uint32_t)(a_iDword) <= (uint16_t)0xffff \ + ? (uint16_t)(a_iDword) \ + : (uint16_t)0xffff * (uint16_t)((((a_iDword) >> 31) & 1) ^ 1) ) /* 0xffff = UINT16_MAX; source bit 31 = sign */ + +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_packusdw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U const uSrc2 = *puSrc; + RTUINT128U const uSrc1 = *puDst; + ASMCompilerBarrier(); + RTUINT128U uDstOut; + uDstOut.au16[ 0] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[0]); + uDstOut.au16[ 1] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[1]); + uDstOut.au16[ 2] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[2]); + uDstOut.au16[ 3] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[3]); + uDstOut.au16[ 4] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[0]); + uDstOut.au16[ 5] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[1]); + uDstOut.au16[ 6] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[2]); + uDstOut.au16[ 7] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[3]); + *puDst = uDstOut; +} +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpackusdw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U const uSrc2 = *puSrc2; + RTUINT128U const uSrc1 = *puSrc1; + ASMCompilerBarrier(); + RTUINT128U uDstOut; + uDstOut.au16[ 0] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[0]); + uDstOut.au16[ 1] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[1]); + uDstOut.au16[ 2] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[2]); + uDstOut.au16[ 3] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[3]); + uDstOut.au16[ 4] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[0]); + uDstOut.au16[ 5] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[1]); + uDstOut.au16[ 6] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[2]); + uDstOut.au16[ 7] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[3]); + *puDst = uDstOut; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpackusdw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U const uSrc2 = *puSrc2; + RTUINT256U const uSrc1 = *puSrc1; + ASMCompilerBarrier(); + RTUINT256U uDstOut; + uDstOut.au16[ 0] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[0]); + uDstOut.au16[ 1] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[1]); + uDstOut.au16[ 2] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[2]); + uDstOut.au16[ 3] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[3]); + uDstOut.au16[ 4] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[0]); + uDstOut.au16[ 5] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[1]); + uDstOut.au16[ 6] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[2]); + uDstOut.au16[ 7] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[3]); + + uDstOut.au16[ 8] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[4]); + uDstOut.au16[ 9] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[5]); + uDstOut.au16[10] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[6]); + uDstOut.au16[11] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[7]); + uDstOut.au16[12] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[4]); + uDstOut.au16[13] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[5]); + uDstOut.au16[14] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[6]); + uDstOut.au16[15] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[7]); + *puDst = uDstOut; +} + + +/* + * [V]PABSB / [V]PABSW / [V]PABSD + */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_pabsb_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U const uSrc = { *puSrc }; + RTUINT64U uDstOut = { 0 }; + + uDstOut.au8[0] = RT_ABS(uSrc.ai8[0]); + uDstOut.au8[1] = RT_ABS(uSrc.ai8[1]); + uDstOut.au8[2] = RT_ABS(uSrc.ai8[2]); + uDstOut.au8[3] = RT_ABS(uSrc.ai8[3]); + uDstOut.au8[4] = RT_ABS(uSrc.ai8[4]); + uDstOut.au8[5] = RT_ABS(uSrc.ai8[5]); + uDstOut.au8[6] = RT_ABS(uSrc.ai8[6]); + uDstOut.au8[7] = RT_ABS(uSrc.ai8[7]); + *puDst = uDstOut.u; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pabsb_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + puDst->au8[ 0] = RT_ABS(puSrc->ai8[ 0]); + puDst->au8[ 1] = RT_ABS(puSrc->ai8[ 1]); + puDst->au8[ 2] = RT_ABS(puSrc->ai8[ 2]); + puDst->au8[ 3] = RT_ABS(puSrc->ai8[ 3]); + puDst->au8[ 4] = RT_ABS(puSrc->ai8[ 4]); + puDst->au8[ 5] = RT_ABS(puSrc->ai8[ 5]); + puDst->au8[ 6] = RT_ABS(puSrc->ai8[ 6]); + puDst->au8[ 7] = RT_ABS(puSrc->ai8[ 7]); + puDst->au8[ 8] = RT_ABS(puSrc->ai8[ 8]); + puDst->au8[ 9] = RT_ABS(puSrc->ai8[ 9]); + puDst->au8[10] = RT_ABS(puSrc->ai8[10]); + puDst->au8[11] = RT_ABS(puSrc->ai8[11]); + puDst->au8[12] = RT_ABS(puSrc->ai8[12]); + puDst->au8[13] = RT_ABS(puSrc->ai8[13]); + puDst->au8[14] = RT_ABS(puSrc->ai8[14]); + puDst->au8[15] = RT_ABS(puSrc->ai8[15]); + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pabsw_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U const uSrc = { *puSrc }; + RTUINT64U uDstOut = { 0 }; + + uDstOut.au16[0] = RT_ABS(uSrc.ai16[0]); + uDstOut.au16[1] = RT_ABS(uSrc.ai16[1]); + uDstOut.au16[2] = RT_ABS(uSrc.ai16[2]); + uDstOut.au16[3] = RT_ABS(uSrc.ai16[3]); + *puDst = uDstOut.u; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pabsw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + puDst->au16[ 0] = RT_ABS(puSrc->ai16[ 0]); + puDst->au16[ 1] = RT_ABS(puSrc->ai16[ 1]); + puDst->au16[ 2] = RT_ABS(puSrc->ai16[ 2]); + puDst->au16[ 3] = RT_ABS(puSrc->ai16[ 3]); + puDst->au16[ 4] = RT_ABS(puSrc->ai16[ 4]); + puDst->au16[ 5] = RT_ABS(puSrc->ai16[ 5]); + puDst->au16[ 6] = RT_ABS(puSrc->ai16[ 6]); + puDst->au16[ 7] = RT_ABS(puSrc->ai16[ 7]); + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pabsd_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U const uSrc = { *puSrc }; + RTUINT64U uDstOut = { 0 }; + + uDstOut.au32[0] = RT_ABS(uSrc.ai32[0]); + uDstOut.au32[1] = RT_ABS(uSrc.ai32[1]); + *puDst = uDstOut.u; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pabsd_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + puDst->au32[ 0] = RT_ABS(puSrc->ai32[ 0]); + puDst->au32[ 1] = RT_ABS(puSrc->ai32[ 1]); + puDst->au32[ 2] = RT_ABS(puSrc->ai32[ 2]); + puDst->au32[ 3] = RT_ABS(puSrc->ai32[ 3]); + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpabsb_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + puDst->au8[ 0] = RT_ABS(puSrc->ai8[ 0]); + puDst->au8[ 1] = RT_ABS(puSrc->ai8[ 1]); + puDst->au8[ 2] = RT_ABS(puSrc->ai8[ 2]); + puDst->au8[ 3] = RT_ABS(puSrc->ai8[ 3]); + puDst->au8[ 4] = RT_ABS(puSrc->ai8[ 4]); + puDst->au8[ 5] = RT_ABS(puSrc->ai8[ 5]); + puDst->au8[ 6] = RT_ABS(puSrc->ai8[ 6]); + puDst->au8[ 7] = RT_ABS(puSrc->ai8[ 7]); + puDst->au8[ 8] = RT_ABS(puSrc->ai8[ 8]); + puDst->au8[ 9] = RT_ABS(puSrc->ai8[ 9]); + puDst->au8[10] = RT_ABS(puSrc->ai8[10]); + puDst->au8[11] = RT_ABS(puSrc->ai8[11]); + puDst->au8[12] = RT_ABS(puSrc->ai8[12]); + puDst->au8[13] = RT_ABS(puSrc->ai8[13]); + puDst->au8[14] = RT_ABS(puSrc->ai8[14]); + puDst->au8[15] = RT_ABS(puSrc->ai8[15]); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpabsb_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc)) +{ + puDst->au8[ 0] = RT_ABS(puSrc->ai8[ 0]); + puDst->au8[ 1] = RT_ABS(puSrc->ai8[ 1]); + puDst->au8[ 2] = RT_ABS(puSrc->ai8[ 2]); + puDst->au8[ 3] = RT_ABS(puSrc->ai8[ 3]); + puDst->au8[ 4] = RT_ABS(puSrc->ai8[ 4]); + puDst->au8[ 5] = RT_ABS(puSrc->ai8[ 5]); + puDst->au8[ 6] = RT_ABS(puSrc->ai8[ 6]); + puDst->au8[ 7] = RT_ABS(puSrc->ai8[ 7]); + puDst->au8[ 8] = RT_ABS(puSrc->ai8[ 8]); + puDst->au8[ 9] = RT_ABS(puSrc->ai8[ 9]); + puDst->au8[10] = RT_ABS(puSrc->ai8[10]); + puDst->au8[11] = RT_ABS(puSrc->ai8[11]); + puDst->au8[12] = RT_ABS(puSrc->ai8[12]); + puDst->au8[13] = RT_ABS(puSrc->ai8[13]); + puDst->au8[14] = RT_ABS(puSrc->ai8[14]); + puDst->au8[15] = RT_ABS(puSrc->ai8[15]); + puDst->au8[16] = RT_ABS(puSrc->ai8[16]); + puDst->au8[17] = RT_ABS(puSrc->ai8[17]); + puDst->au8[18] = RT_ABS(puSrc->ai8[18]); + puDst->au8[19] = RT_ABS(puSrc->ai8[19]); + puDst->au8[20] = RT_ABS(puSrc->ai8[20]); + puDst->au8[21] = RT_ABS(puSrc->ai8[21]); + puDst->au8[22] = RT_ABS(puSrc->ai8[22]); + puDst->au8[23] = RT_ABS(puSrc->ai8[23]); + puDst->au8[24] = RT_ABS(puSrc->ai8[24]); + puDst->au8[25] = RT_ABS(puSrc->ai8[25]); + puDst->au8[26] = RT_ABS(puSrc->ai8[26]); + puDst->au8[27] = RT_ABS(puSrc->ai8[27]); + puDst->au8[28] = RT_ABS(puSrc->ai8[28]); + puDst->au8[29] = RT_ABS(puSrc->ai8[29]); + puDst->au8[30] = RT_ABS(puSrc->ai8[30]); + puDst->au8[31] = RT_ABS(puSrc->ai8[31]); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpabsw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + puDst->au16[ 0] = RT_ABS(puSrc->ai16[ 0]); + puDst->au16[ 1] = RT_ABS(puSrc->ai16[ 1]); + puDst->au16[ 2] = RT_ABS(puSrc->ai16[ 2]); + puDst->au16[ 3] = RT_ABS(puSrc->ai16[ 3]); + puDst->au16[ 4] = RT_ABS(puSrc->ai16[ 4]); + puDst->au16[ 5] = RT_ABS(puSrc->ai16[ 5]); + puDst->au16[ 6] = RT_ABS(puSrc->ai16[ 6]); + puDst->au16[ 7] = RT_ABS(puSrc->ai16[ 7]); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpabsw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc)) +{ + puDst->au16[ 0] = RT_ABS(puSrc->ai16[ 0]); + puDst->au16[ 1] = RT_ABS(puSrc->ai16[ 1]); + puDst->au16[ 2] = RT_ABS(puSrc->ai16[ 2]); + puDst->au16[ 3] = RT_ABS(puSrc->ai16[ 3]); + puDst->au16[ 4] = RT_ABS(puSrc->ai16[ 4]); + puDst->au16[ 5] = RT_ABS(puSrc->ai16[ 5]); + puDst->au16[ 6] = RT_ABS(puSrc->ai16[ 6]); + puDst->au16[ 7] = RT_ABS(puSrc->ai16[ 7]); + puDst->au16[ 8] = RT_ABS(puSrc->ai16[ 8]); + puDst->au16[ 9] = RT_ABS(puSrc->ai16[ 9]); + puDst->au16[10] = RT_ABS(puSrc->ai16[10]); + puDst->au16[11] = RT_ABS(puSrc->ai16[11]); + puDst->au16[12] = RT_ABS(puSrc->ai16[12]); + puDst->au16[13] = RT_ABS(puSrc->ai16[13]); + puDst->au16[14] = RT_ABS(puSrc->ai16[14]); + puDst->au16[15] = RT_ABS(puSrc->ai16[15]); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpabsd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + puDst->au32[ 0] = RT_ABS(puSrc->ai32[ 0]); + puDst->au32[ 1] = RT_ABS(puSrc->ai32[ 1]); + puDst->au32[ 2] = RT_ABS(puSrc->ai32[ 2]); + puDst->au32[ 3] = RT_ABS(puSrc->ai32[ 3]); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpabsd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc)) +{ + puDst->au32[ 0] = RT_ABS(puSrc->ai32[ 0]); + puDst->au32[ 1] = RT_ABS(puSrc->ai32[ 1]); + puDst->au32[ 2] = RT_ABS(puSrc->ai32[ 2]); + puDst->au32[ 3] = RT_ABS(puSrc->ai32[ 3]); + puDst->au32[ 4] = RT_ABS(puSrc->ai32[ 4]); + puDst->au32[ 5] = RT_ABS(puSrc->ai32[ 5]); + puDst->au32[ 6] = RT_ABS(puSrc->ai32[ 6]); + puDst->au32[ 7] = RT_ABS(puSrc->ai32[ 7]); +} + + +/* + * PSIGNB / VPSIGNB / PSIGNW / VPSIGNW / PSIGND / VPSIGND + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_psignb_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst = { 0 }; /* Shut up MSVC. */ + + for (uint32_t i = 0; i < RT_ELEMENTS(uDst.ai8); i++) + { + if (uSrc2.ai8[i] < 0) + uDst.ai8[i] = -uSrc1.ai8[i]; + else if (uSrc2.ai8[i] == 0) + uDst.ai8[i] = 0; + else /* uSrc2.ai8[i] > 0 */ + uDst.ai8[i] = uSrc1.ai8[i]; + } + + *puDst = uDst.u; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psignb_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai8); i++) + { + if (puSrc->ai8[i] < 0) + puDst->ai8[i] = -uSrc1.ai8[i]; + else if (puSrc->ai8[i] == 0) + puDst->ai8[i] = 0; + else /* puSrc->ai8[i] > 0 */ + puDst->ai8[i] = uSrc1.ai8[i]; + } + + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psignw_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst = { 0 }; /* Shut up MSVC. */ + + for (uint32_t i = 0; i < RT_ELEMENTS(uDst.ai16); i++) + { + if (uSrc2.ai16[i] < 0) + uDst.ai16[i] = -uSrc1.ai16[i]; + else if (uSrc2.ai16[i] == 0) + uDst.ai16[i] = 0; + else /* uSrc2.ai16[i] > 0 */ + uDst.ai16[i] = uSrc1.ai16[i]; + } + + *puDst = uDst.u; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psignw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai16); i++) + { + if (puSrc->ai16[i] < 0) + puDst->ai16[i] = -uSrc1.ai16[i]; + else if (puSrc->ai16[i] == 0) + puDst->ai16[i] = 0; + else /* puSrc->ai16[i] > 0 */ + puDst->ai16[i] = uSrc1.ai16[i]; + } + + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psignd_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst = { 0 }; /* Shut up MSVC. */ + + for (uint32_t i = 0; i < RT_ELEMENTS(uDst.ai32); i++) + { + if (uSrc2.ai32[i] < 0) + uDst.ai32[i] = -uSrc1.ai32[i]; + else if (uSrc2.ai32[i] == 0) + uDst.ai32[i] = 0; + else /* uSrc2.ai32[i] > 0 */ + uDst.ai32[i] = uSrc1.ai32[i]; + } + + *puDst = uDst.u; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psignd_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai32); i++) + { + if (puSrc->ai32[i] < 0) + puDst->ai32[i] = -uSrc1.ai32[i]; + else if (puSrc->ai32[i] == 0) + puDst->ai32[i] = 0; + else /* puSrc->ai32[i] > 0 */ + puDst->ai32[i] = uSrc1.ai32[i]; + } + + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpsignb_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai8); i++) + { + if (puSrc2->ai8[i] < 0) + puDst->ai8[i] = -puSrc1->ai8[i]; + else if (puSrc2->ai8[i] == 0) + puDst->ai8[i] = 0; + else /* puSrc2->ai8[i] > 0 */ + puDst->ai8[i] = puSrc1->ai8[i]; + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpsignb_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai8); i++) + { + if (puSrc2->ai8[i] < 0) + puDst->ai8[i] = -puSrc1->ai8[i]; + else if (puSrc2->ai8[i] == 0) + puDst->ai8[i] = 0; + else /* puSrc2->ai8[i] > 0 */ + puDst->ai8[i] = puSrc1->ai8[i]; + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpsignw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai16); i++) + { + if (puSrc2->ai16[i] < 0) + puDst->ai16[i] = -puSrc1->ai16[i]; + else if (puSrc2->ai16[i] == 0) + puDst->ai16[i] = 0; + else /* puSrc2->ai16[i] > 0 */ + puDst->ai16[i] = puSrc1->ai16[i]; + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpsignw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai16); i++) + { + if (puSrc2->ai16[i] < 0) + puDst->ai16[i] = -puSrc1->ai16[i]; + else if (puSrc2->ai16[i] == 0) + puDst->ai16[i] = 0; + else /* puSrc2->ai16[i] > 0 */ + puDst->ai16[i] = puSrc1->ai16[i]; + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpsignd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai32); i++) + { + if (puSrc2->ai32[i] < 0) + puDst->ai32[i] = -puSrc1->ai32[i]; + else if (puSrc2->ai32[i] == 0) + puDst->ai32[i] = 0; + else /* puSrc2->ai32[i] > 0 */ + puDst->ai32[i] = puSrc1->ai32[i]; + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpsignd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai32); i++) + { + if (puSrc2->ai32[i] < 0) + puDst->ai32[i] = -puSrc1->ai32[i]; + else if (puSrc2->ai32[i] == 0) + puDst->ai32[i] = 0; + else /* puSrc2->ai32[i] > 0 */ + puDst->ai32[i] = puSrc1->ai32[i]; + } +} + + +/* + * PHADDW / VPHADDW / PHADDD / VPHADDD + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_phaddw_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst = { 0 }; /* Shut up MSVC. */ + + uDst.ai16[0] = uSrc1.ai16[0] + uSrc1.ai16[1]; + uDst.ai16[1] = uSrc1.ai16[2] + uSrc1.ai16[3]; + uDst.ai16[2] = uSrc2.ai16[0] + uSrc2.ai16[1]; + uDst.ai16[3] = uSrc2.ai16[2] + uSrc2.ai16[3]; + *puDst = uDst.u; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_phaddw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->ai16[0] = uSrc1.ai16[0] + uSrc1.ai16[1]; + puDst->ai16[1] = uSrc1.ai16[2] + uSrc1.ai16[3]; + puDst->ai16[2] = uSrc1.ai16[4] + uSrc1.ai16[5]; + puDst->ai16[3] = uSrc1.ai16[6] + uSrc1.ai16[7]; + + puDst->ai16[4] = puSrc->ai16[0] + puSrc->ai16[1]; + puDst->ai16[5] = puSrc->ai16[2] + puSrc->ai16[3]; + puDst->ai16[6] = puSrc->ai16[4] + puSrc->ai16[5]; + puDst->ai16[7] = puSrc->ai16[6] + puSrc->ai16[7]; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_phaddd_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst = { 0 }; /* Shut up MSVC. */ + + uDst.ai32[0] = uSrc1.ai32[0] + uSrc1.ai32[1]; + uDst.ai32[1] = uSrc2.ai32[0] + uSrc2.ai32[1]; + *puDst = uDst.u; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_phaddd_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->ai32[0] = uSrc1.ai32[0] + uSrc1.ai32[1]; + puDst->ai32[1] = uSrc1.ai32[2] + uSrc1.ai32[3]; + + puDst->ai32[2] = puSrc->ai32[0] + puSrc->ai32[1]; + puDst->ai32[3] = puSrc->ai32[2] + puSrc->ai32[3]; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vphaddw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U uDst; /* puDst can be the same as one of the source operands. */ + + uDst.ai16[0] = puSrc1->ai16[0] + puSrc1->ai16[1]; + uDst.ai16[1] = puSrc1->ai16[2] + puSrc1->ai16[3]; + uDst.ai16[2] = puSrc1->ai16[4] + puSrc1->ai16[5]; + uDst.ai16[3] = puSrc1->ai16[6] + puSrc1->ai16[7]; + + uDst.ai16[4] = puSrc2->ai16[0] + puSrc2->ai16[1]; + uDst.ai16[5] = puSrc2->ai16[2] + puSrc2->ai16[3]; + uDst.ai16[6] = puSrc2->ai16[4] + puSrc2->ai16[5]; + uDst.ai16[7] = puSrc2->ai16[6] + puSrc2->ai16[7]; + + puDst->au64[0] = uDst.au64[0]; + puDst->au64[1] = uDst.au64[1]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vphaddw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U uDst; /* puDst can be the same as one of the source operands. */ + + uDst.ai16[ 0] = puSrc1->ai16[ 0] + puSrc1->ai16[ 1]; + uDst.ai16[ 1] = puSrc1->ai16[ 2] + puSrc1->ai16[ 3]; + uDst.ai16[ 2] = puSrc1->ai16[ 4] + puSrc1->ai16[ 5]; + uDst.ai16[ 3] = puSrc1->ai16[ 6] + puSrc1->ai16[ 7]; + uDst.ai16[ 4] = puSrc2->ai16[ 0] + puSrc2->ai16[ 1]; + uDst.ai16[ 5] = puSrc2->ai16[ 2] + puSrc2->ai16[ 3]; + uDst.ai16[ 6] = puSrc2->ai16[ 4] + puSrc2->ai16[ 5]; + uDst.ai16[ 7] = puSrc2->ai16[ 6] + puSrc2->ai16[ 7]; + + uDst.ai16[ 8] = puSrc1->ai16[ 8] + puSrc1->ai16[ 9]; + uDst.ai16[ 9] = puSrc1->ai16[10] + puSrc1->ai16[11]; + uDst.ai16[10] = puSrc1->ai16[12] + puSrc1->ai16[13]; + uDst.ai16[11] = puSrc1->ai16[14] + puSrc1->ai16[15]; + uDst.ai16[12] = puSrc2->ai16[ 8] + puSrc2->ai16[ 9]; + uDst.ai16[13] = puSrc2->ai16[10] + puSrc2->ai16[11]; + uDst.ai16[14] = puSrc2->ai16[12] + puSrc2->ai16[13]; + uDst.ai16[15] = puSrc2->ai16[14] + puSrc2->ai16[15]; + + puDst->au64[0] = uDst.au64[0]; + puDst->au64[1] = uDst.au64[1]; + puDst->au64[2] = uDst.au64[2]; + puDst->au64[3] = uDst.au64[3]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vphaddd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U uDst; /* puDst can be the same as one of the source operands. */ + + uDst.ai32[0] = puSrc1->ai32[0] + puSrc1->ai32[1]; + uDst.ai32[1] = puSrc1->ai32[2] + puSrc1->ai32[3]; + + uDst.ai32[2] = puSrc2->ai32[0] + puSrc2->ai32[1]; + uDst.ai32[3] = puSrc2->ai32[2] + puSrc2->ai32[3]; + + puDst->au64[0] = uDst.au64[0]; + puDst->au64[1] = uDst.au64[1]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vphaddd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U uDst; /* puDst can be the same as one of the source operands. */ + + uDst.ai32[0] = puSrc1->ai32[ 0] + puSrc1->ai32[ 1]; + uDst.ai32[1] = puSrc1->ai32[ 2] + puSrc1->ai32[ 3]; + uDst.ai32[2] = puSrc2->ai32[ 0] + puSrc2->ai32[ 1]; + uDst.ai32[3] = puSrc2->ai32[ 2] + puSrc2->ai32[ 3]; + + uDst.ai32[4] = puSrc1->ai32[ 4] + puSrc1->ai32[ 5]; + uDst.ai32[5] = puSrc1->ai32[ 6] + puSrc1->ai32[ 7]; + uDst.ai32[6] = puSrc2->ai32[ 4] + puSrc2->ai32[ 5]; + uDst.ai32[7] = puSrc2->ai32[ 6] + puSrc2->ai32[ 7]; + + puDst->au64[0] = uDst.au64[0]; + puDst->au64[1] = uDst.au64[1]; + puDst->au64[2] = uDst.au64[2]; + puDst->au64[3] = uDst.au64[3]; +} + + +/* + * PHSUBW / VPHSUBW / PHSUBD / VPHSUBD + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_phsubw_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst = { 0 }; /* Shut up MSVC. */ + + uDst.ai16[0] = uSrc1.ai16[0] - uSrc1.ai16[1]; + uDst.ai16[1] = uSrc1.ai16[2] - uSrc1.ai16[3]; + uDst.ai16[2] = uSrc2.ai16[0] - uSrc2.ai16[1]; + uDst.ai16[3] = uSrc2.ai16[2] - uSrc2.ai16[3]; + *puDst = uDst.u; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_phsubw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->ai16[0] = uSrc1.ai16[0] - uSrc1.ai16[1]; + puDst->ai16[1] = uSrc1.ai16[2] - uSrc1.ai16[3]; + puDst->ai16[2] = uSrc1.ai16[4] - uSrc1.ai16[5]; + puDst->ai16[3] = uSrc1.ai16[6] - uSrc1.ai16[7]; + + puDst->ai16[4] = puSrc->ai16[0] - puSrc->ai16[1]; + puDst->ai16[5] = puSrc->ai16[2] - puSrc->ai16[3]; + puDst->ai16[6] = puSrc->ai16[4] - puSrc->ai16[5]; + puDst->ai16[7] = puSrc->ai16[6] - puSrc->ai16[7]; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_phsubd_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst = { 0 }; /* Shut up MSVC. */ + + uDst.ai32[0] = uSrc1.ai32[0] - uSrc1.ai32[1]; + uDst.ai32[1] = uSrc2.ai32[0] - uSrc2.ai32[1]; + *puDst = uDst.u; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_phsubd_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->ai32[0] = uSrc1.ai32[0] - uSrc1.ai32[1]; + puDst->ai32[1] = uSrc1.ai32[2] - uSrc1.ai32[3]; + + puDst->ai32[2] = puSrc->ai32[0] - puSrc->ai32[1]; + puDst->ai32[3] = puSrc->ai32[2] - puSrc->ai32[3]; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vphsubw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U uDst; /* puDst can be the same as one of the source operands. */ + + uDst.ai16[0] = puSrc1->ai16[0] - puSrc1->ai16[1]; + uDst.ai16[1] = puSrc1->ai16[2] - puSrc1->ai16[3]; + uDst.ai16[2] = puSrc1->ai16[4] - puSrc1->ai16[5]; + uDst.ai16[3] = puSrc1->ai16[6] - puSrc1->ai16[7]; + + uDst.ai16[4] = puSrc2->ai16[0] - puSrc2->ai16[1]; + uDst.ai16[5] = puSrc2->ai16[2] - puSrc2->ai16[3]; + uDst.ai16[6] = puSrc2->ai16[4] - puSrc2->ai16[5]; + uDst.ai16[7] = puSrc2->ai16[6] - puSrc2->ai16[7]; + + puDst->au64[0] = uDst.au64[0]; + puDst->au64[1] = uDst.au64[1]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vphsubw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U uDst; /* puDst can be the same as one of the source operands. */ + + uDst.ai16[ 0] = puSrc1->ai16[ 0] - puSrc1->ai16[ 1]; + uDst.ai16[ 1] = puSrc1->ai16[ 2] - puSrc1->ai16[ 3]; + uDst.ai16[ 2] = puSrc1->ai16[ 4] - puSrc1->ai16[ 5]; + uDst.ai16[ 3] = puSrc1->ai16[ 6] - puSrc1->ai16[ 7]; + uDst.ai16[ 4] = puSrc2->ai16[ 0] - puSrc2->ai16[ 1]; + uDst.ai16[ 5] = puSrc2->ai16[ 2] - puSrc2->ai16[ 3]; + uDst.ai16[ 6] = puSrc2->ai16[ 4] - puSrc2->ai16[ 5]; + uDst.ai16[ 7] = puSrc2->ai16[ 6] - puSrc2->ai16[ 7]; + + uDst.ai16[ 8] = puSrc1->ai16[ 8] - puSrc1->ai16[ 9]; + uDst.ai16[ 9] = puSrc1->ai16[10] - puSrc1->ai16[11]; + uDst.ai16[10] = puSrc1->ai16[12] - puSrc1->ai16[13]; + uDst.ai16[11] = puSrc1->ai16[14] - puSrc1->ai16[15]; + uDst.ai16[12] = puSrc2->ai16[ 8] - puSrc2->ai16[ 9]; + uDst.ai16[13] = puSrc2->ai16[10] - puSrc2->ai16[11]; + uDst.ai16[14] = puSrc2->ai16[12] - puSrc2->ai16[13]; + uDst.ai16[15] = puSrc2->ai16[14] - puSrc2->ai16[15]; + + puDst->au64[0] = uDst.au64[0]; + puDst->au64[1] = uDst.au64[1]; + puDst->au64[2] = uDst.au64[2]; + puDst->au64[3] = uDst.au64[3]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vphsubd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U uDst; /* puDst can be the same as one of the source operands. */ + + uDst.ai32[0] = puSrc1->ai32[0] - puSrc1->ai32[1]; + uDst.ai32[1] = puSrc1->ai32[2] - puSrc1->ai32[3]; + + uDst.ai32[2] = puSrc2->ai32[0] - puSrc2->ai32[1]; + uDst.ai32[3] = puSrc2->ai32[2] - puSrc2->ai32[3]; + + puDst->au64[0] = uDst.au64[0]; + puDst->au64[1] = uDst.au64[1]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vphsubd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U uDst; /* puDst can be the same as one of the source operands. */ + + uDst.ai32[0] = puSrc1->ai32[ 0] - puSrc1->ai32[ 1]; + uDst.ai32[1] = puSrc1->ai32[ 2] - puSrc1->ai32[ 3]; + uDst.ai32[2] = puSrc2->ai32[ 0] - puSrc2->ai32[ 1]; + uDst.ai32[3] = puSrc2->ai32[ 2] - puSrc2->ai32[ 3]; + + uDst.ai32[4] = puSrc1->ai32[ 4] - puSrc1->ai32[ 5]; + uDst.ai32[5] = puSrc1->ai32[ 6] - puSrc1->ai32[ 7]; + uDst.ai32[6] = puSrc2->ai32[ 4] - puSrc2->ai32[ 5]; + uDst.ai32[7] = puSrc2->ai32[ 6] - puSrc2->ai32[ 7]; + + puDst->au64[0] = uDst.au64[0]; + puDst->au64[1] = uDst.au64[1]; + puDst->au64[2] = uDst.au64[2]; + puDst->au64[3] = uDst.au64[3]; +} + + +/* + * PHADDSW / VPHADDSW + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_phaddsw_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst = { 0 }; /* Shut up MSVC. */ + + uDst.ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[0] + uSrc1.ai16[1]); + uDst.ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[2] + uSrc1.ai16[3]); + uDst.ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.ai16[0] + uSrc2.ai16[1]); + uDst.ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.ai16[2] + uSrc2.ai16[3]); + *puDst = uDst.u; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_phaddsw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[0] + uSrc1.ai16[1]); + puDst->ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[2] + uSrc1.ai16[3]); + puDst->ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[4] + uSrc1.ai16[5]); + puDst->ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[6] + uSrc1.ai16[7]); + + puDst->ai16[4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc->ai16[0] + puSrc->ai16[1]); + puDst->ai16[5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc->ai16[2] + puSrc->ai16[3]); + puDst->ai16[6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc->ai16[4] + puSrc->ai16[5]); + puDst->ai16[7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc->ai16[6] + puSrc->ai16[7]); + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vphaddsw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U uDst; /* puDst can be the same as one of the source operands. */ + + uDst.ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[0] + puSrc1->ai16[1]); + uDst.ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[2] + puSrc1->ai16[3]); + uDst.ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[4] + puSrc1->ai16[5]); + uDst.ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[6] + puSrc1->ai16[7]); + + uDst.ai16[4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[0] + puSrc2->ai16[1]); + uDst.ai16[5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[2] + puSrc2->ai16[3]); + uDst.ai16[6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[4] + puSrc2->ai16[5]); + uDst.ai16[7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[6] + puSrc2->ai16[7]); + + puDst->au64[0] = uDst.au64[0]; + puDst->au64[1] = uDst.au64[1]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vphaddsw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U uDst; /* puDst can be the same as one of the source operands. */ + + uDst.ai16[ 0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 0] + puSrc1->ai16[ 1]); + uDst.ai16[ 1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 2] + puSrc1->ai16[ 3]); + uDst.ai16[ 2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 4] + puSrc1->ai16[ 5]); + uDst.ai16[ 3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 6] + puSrc1->ai16[ 7]); + uDst.ai16[ 4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 0] + puSrc2->ai16[ 1]); + uDst.ai16[ 5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 2] + puSrc2->ai16[ 3]); + uDst.ai16[ 6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 4] + puSrc2->ai16[ 5]); + uDst.ai16[ 7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 6] + puSrc2->ai16[ 7]); + + uDst.ai16[ 8] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 8] + puSrc1->ai16[ 9]); + uDst.ai16[ 9] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[10] + puSrc1->ai16[11]); + uDst.ai16[10] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[12] + puSrc1->ai16[13]); + uDst.ai16[11] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[14] + puSrc1->ai16[15]); + uDst.ai16[12] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 8] + puSrc2->ai16[ 9]); + uDst.ai16[13] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[10] + puSrc2->ai16[11]); + uDst.ai16[14] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[12] + puSrc2->ai16[13]); + uDst.ai16[15] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[14] + puSrc2->ai16[15]); + + puDst->au64[0] = uDst.au64[0]; + puDst->au64[1] = uDst.au64[1]; + puDst->au64[2] = uDst.au64[2]; + puDst->au64[3] = uDst.au64[3]; +} + + +/* + * PHSUBSW / VPHSUBSW + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_phsubsw_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst = { 0 }; /* Shut up MSVC. */ + + uDst.ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[0] - uSrc1.ai16[1]); + uDst.ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[2] - uSrc1.ai16[3]); + uDst.ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.ai16[0] - uSrc2.ai16[1]); + uDst.ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.ai16[2] - uSrc2.ai16[3]); + *puDst = uDst.u; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_phsubsw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[0] - uSrc1.ai16[1]); + puDst->ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[2] - uSrc1.ai16[3]); + puDst->ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[4] - uSrc1.ai16[5]); + puDst->ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[6] - uSrc1.ai16[7]); + + puDst->ai16[4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc->ai16[0] - puSrc->ai16[1]); + puDst->ai16[5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc->ai16[2] - puSrc->ai16[3]); + puDst->ai16[6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc->ai16[4] - puSrc->ai16[5]); + puDst->ai16[7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc->ai16[6] - puSrc->ai16[7]); + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vphsubsw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U uDst; /* puDst can be the same as one of the source operands. */ + + uDst.ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[0] - puSrc1->ai16[1]); + uDst.ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[2] - puSrc1->ai16[3]); + uDst.ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[4] - puSrc1->ai16[5]); + uDst.ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[6] - puSrc1->ai16[7]); + + uDst.ai16[4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[0] - puSrc2->ai16[1]); + uDst.ai16[5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[2] - puSrc2->ai16[3]); + uDst.ai16[6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[4] - puSrc2->ai16[5]); + uDst.ai16[7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[6] - puSrc2->ai16[7]); + + puDst->au64[0] = uDst.au64[0]; + puDst->au64[1] = uDst.au64[1]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vphsubsw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U uDst; /* puDst can be the same as one of the source operands. */ + + uDst.ai16[ 0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 0] - puSrc1->ai16[ 1]); + uDst.ai16[ 1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 2] - puSrc1->ai16[ 3]); + uDst.ai16[ 2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 4] - puSrc1->ai16[ 5]); + uDst.ai16[ 3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 6] - puSrc1->ai16[ 7]); + uDst.ai16[ 4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 0] - puSrc2->ai16[ 1]); + uDst.ai16[ 5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 2] - puSrc2->ai16[ 3]); + uDst.ai16[ 6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 4] - puSrc2->ai16[ 5]); + uDst.ai16[ 7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 6] - puSrc2->ai16[ 7]); + + uDst.ai16[ 8] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 8] - puSrc1->ai16[ 9]); + uDst.ai16[ 9] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[10] - puSrc1->ai16[11]); + uDst.ai16[10] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[12] - puSrc1->ai16[13]); + uDst.ai16[11] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[14] - puSrc1->ai16[15]); + uDst.ai16[12] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 8] - puSrc2->ai16[ 9]); + uDst.ai16[13] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[10] - puSrc2->ai16[11]); + uDst.ai16[14] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[12] - puSrc2->ai16[13]); + uDst.ai16[15] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[14] - puSrc2->ai16[15]); + + puDst->au64[0] = uDst.au64[0]; + puDst->au64[1] = uDst.au64[1]; + puDst->au64[2] = uDst.au64[2]; + puDst->au64[3] = uDst.au64[3]; +} + + +/* + * PMADDUBSW / VPMADDUBSW + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_pmaddubsw_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst = { 0 }; /* Shut up MSVC. */ + + uDst.ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[0] * uSrc2.ai8[0] + (uint16_t)uSrc1.au8[1] * uSrc2.ai8[1]); + uDst.ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[2] * uSrc2.ai8[2] + (uint16_t)uSrc1.au8[3] * uSrc2.ai8[3]); + uDst.ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[4] * uSrc2.ai8[4] + (uint16_t)uSrc1.au8[5] * uSrc2.ai8[5]); + uDst.ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[6] * uSrc2.ai8[6] + (uint16_t)uSrc1.au8[7] * uSrc2.ai8[7]); + *puDst = uDst.u; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pmaddubsw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[ 0] * puSrc->ai8[ 0] + (uint16_t)uSrc1.au8[ 1] * puSrc->ai8[ 1]); + puDst->ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[ 2] * puSrc->ai8[ 2] + (uint16_t)uSrc1.au8[ 3] * puSrc->ai8[ 3]); + puDst->ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[ 4] * puSrc->ai8[ 4] + (uint16_t)uSrc1.au8[ 5] * puSrc->ai8[ 5]); + puDst->ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[ 6] * puSrc->ai8[ 6] + (uint16_t)uSrc1.au8[ 7] * puSrc->ai8[ 7]); + puDst->ai16[4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[ 8] * puSrc->ai8[ 8] + (uint16_t)uSrc1.au8[ 9] * puSrc->ai8[ 9]); + puDst->ai16[5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[10] * puSrc->ai8[10] + (uint16_t)uSrc1.au8[11] * puSrc->ai8[11]); + puDst->ai16[6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[12] * puSrc->ai8[12] + (uint16_t)uSrc1.au8[13] * puSrc->ai8[13]); + puDst->ai16[7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[14] * puSrc->ai8[14] + (uint16_t)uSrc1.au8[15] * puSrc->ai8[15]); + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaddubsw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U uDst; /* puDst can be the same as one of the source operands. */ + + uDst.ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 0] * puSrc2->ai8[ 0] + (uint16_t)puSrc1->au8[ 1] * puSrc2->ai8[ 1]); + uDst.ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 2] * puSrc2->ai8[ 2] + (uint16_t)puSrc1->au8[ 3] * puSrc2->ai8[ 3]); + uDst.ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 4] * puSrc2->ai8[ 4] + (uint16_t)puSrc1->au8[ 5] * puSrc2->ai8[ 5]); + uDst.ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 6] * puSrc2->ai8[ 6] + (uint16_t)puSrc1->au8[ 7] * puSrc2->ai8[ 7]); + uDst.ai16[4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 8] * puSrc2->ai8[ 8] + (uint16_t)puSrc1->au8[ 9] * puSrc2->ai8[ 9]); + uDst.ai16[5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[10] * puSrc2->ai8[10] + (uint16_t)puSrc1->au8[11] * puSrc2->ai8[11]); + uDst.ai16[6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[12] * puSrc2->ai8[12] + (uint16_t)puSrc1->au8[13] * puSrc2->ai8[13]); + uDst.ai16[7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[14] * puSrc2->ai8[14] + (uint16_t)puSrc1->au8[15] * puSrc2->ai8[15]); + + puDst->au64[0] = uDst.au64[0]; + puDst->au64[1] = uDst.au64[1]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaddubsw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U uDst; /* puDst can be the same as one of the source operands. */ + + uDst.ai16[ 0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 0] * puSrc2->ai8[ 0] + (uint16_t)puSrc1->au8[ 1] * puSrc2->ai8[ 1]); + uDst.ai16[ 1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 2] * puSrc2->ai8[ 2] + (uint16_t)puSrc1->au8[ 3] * puSrc2->ai8[ 3]); + uDst.ai16[ 2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 4] * puSrc2->ai8[ 4] + (uint16_t)puSrc1->au8[ 5] * puSrc2->ai8[ 5]); + uDst.ai16[ 3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 6] * puSrc2->ai8[ 6] + (uint16_t)puSrc1->au8[ 7] * puSrc2->ai8[ 7]); + uDst.ai16[ 4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 8] * puSrc2->ai8[ 8] + (uint16_t)puSrc1->au8[ 9] * puSrc2->ai8[ 9]); + uDst.ai16[ 5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[10] * puSrc2->ai8[10] + (uint16_t)puSrc1->au8[11] * puSrc2->ai8[11]); + uDst.ai16[ 6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[12] * puSrc2->ai8[12] + (uint16_t)puSrc1->au8[13] * puSrc2->ai8[13]); + uDst.ai16[ 7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[14] * puSrc2->ai8[14] + (uint16_t)puSrc1->au8[15] * puSrc2->ai8[15]); + uDst.ai16[ 8] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[16] * puSrc2->ai8[16] + (uint16_t)puSrc1->au8[17] * puSrc2->ai8[17]); + uDst.ai16[ 9] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[18] * puSrc2->ai8[18] + (uint16_t)puSrc1->au8[19] * puSrc2->ai8[19]); + uDst.ai16[10] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[20] * puSrc2->ai8[20] + (uint16_t)puSrc1->au8[21] * puSrc2->ai8[21]); + uDst.ai16[11] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[22] * puSrc2->ai8[22] + (uint16_t)puSrc1->au8[23] * puSrc2->ai8[23]); + uDst.ai16[12] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[24] * puSrc2->ai8[24] + (uint16_t)puSrc1->au8[25] * puSrc2->ai8[25]); + uDst.ai16[13] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[26] * puSrc2->ai8[26] + (uint16_t)puSrc1->au8[27] * puSrc2->ai8[27]); + uDst.ai16[14] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[28] * puSrc2->ai8[28] + (uint16_t)puSrc1->au8[29] * puSrc2->ai8[29]); + uDst.ai16[15] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[30] * puSrc2->ai8[30] + (uint16_t)puSrc1->au8[31] * puSrc2->ai8[31]); + + puDst->au64[0] = uDst.au64[0]; + puDst->au64[1] = uDst.au64[1]; + puDst->au64[2] = uDst.au64[2]; + puDst->au64[3] = uDst.au64[3]; +} + + +/* + * PMULHRSW / VPMULHRSW + */ +#define DO_PMULHRSW(a_Src1, a_Src2) \ + (uint16_t)(((((int32_t)(a_Src1) * (a_Src2)) >> 14 ) + 1) >> 1) + +IEM_DECL_IMPL_DEF(void, iemAImpl_pmulhrsw_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + + uDst.au16[0] = DO_PMULHRSW(uSrc1.ai16[0], uSrc2.ai16[0]); + uDst.au16[1] = DO_PMULHRSW(uSrc1.ai16[1], uSrc2.ai16[1]); + uDst.au16[2] = DO_PMULHRSW(uSrc1.ai16[2], uSrc2.ai16[2]); + uDst.au16[3] = DO_PMULHRSW(uSrc1.ai16[3], uSrc2.ai16[3]); + *puDst = uDst.u; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pmulhrsw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->ai16[0] = DO_PMULHRSW(uSrc1.ai16[0], puSrc->ai16[0]); + puDst->ai16[1] = DO_PMULHRSW(uSrc1.ai16[1], puSrc->ai16[1]); + puDst->ai16[2] = DO_PMULHRSW(uSrc1.ai16[2], puSrc->ai16[2]); + puDst->ai16[3] = DO_PMULHRSW(uSrc1.ai16[3], puSrc->ai16[3]); + puDst->ai16[4] = DO_PMULHRSW(uSrc1.ai16[4], puSrc->ai16[4]); + puDst->ai16[5] = DO_PMULHRSW(uSrc1.ai16[5], puSrc->ai16[5]); + puDst->ai16[6] = DO_PMULHRSW(uSrc1.ai16[6], puSrc->ai16[6]); + puDst->ai16[7] = DO_PMULHRSW(uSrc1.ai16[7], puSrc->ai16[7]); + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmulhrsw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U uDst; /* puDst can be the same as one of the source operands. */ + + uDst.ai16[0] = DO_PMULHRSW(puSrc1->ai16[0], puSrc2->ai16[0]); + uDst.ai16[1] = DO_PMULHRSW(puSrc1->ai16[1], puSrc2->ai16[1]); + uDst.ai16[2] = DO_PMULHRSW(puSrc1->ai16[2], puSrc2->ai16[2]); + uDst.ai16[3] = DO_PMULHRSW(puSrc1->ai16[3], puSrc2->ai16[3]); + uDst.ai16[4] = DO_PMULHRSW(puSrc1->ai16[4], puSrc2->ai16[4]); + uDst.ai16[5] = DO_PMULHRSW(puSrc1->ai16[5], puSrc2->ai16[5]); + uDst.ai16[6] = DO_PMULHRSW(puSrc1->ai16[6], puSrc2->ai16[6]); + uDst.ai16[7] = DO_PMULHRSW(puSrc1->ai16[7], puSrc2->ai16[7]); + + puDst->au64[0] = uDst.au64[0]; + puDst->au64[1] = uDst.au64[1]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmulhrsw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U uDst; /* puDst can be the same as one of the source operands. */ + + uDst.ai16[ 0] = DO_PMULHRSW(puSrc1->ai16[ 0], puSrc2->ai16[ 0]); + uDst.ai16[ 1] = DO_PMULHRSW(puSrc1->ai16[ 1], puSrc2->ai16[ 1]); + uDst.ai16[ 2] = DO_PMULHRSW(puSrc1->ai16[ 2], puSrc2->ai16[ 2]); + uDst.ai16[ 3] = DO_PMULHRSW(puSrc1->ai16[ 3], puSrc2->ai16[ 3]); + uDst.ai16[ 4] = DO_PMULHRSW(puSrc1->ai16[ 4], puSrc2->ai16[ 4]); + uDst.ai16[ 5] = DO_PMULHRSW(puSrc1->ai16[ 5], puSrc2->ai16[ 5]); + uDst.ai16[ 6] = DO_PMULHRSW(puSrc1->ai16[ 6], puSrc2->ai16[ 6]); + uDst.ai16[ 7] = DO_PMULHRSW(puSrc1->ai16[ 7], puSrc2->ai16[ 7]); + uDst.ai16[ 8] = DO_PMULHRSW(puSrc1->ai16[ 8], puSrc2->ai16[ 8]); + uDst.ai16[ 9] = DO_PMULHRSW(puSrc1->ai16[ 9], puSrc2->ai16[ 9]); + uDst.ai16[10] = DO_PMULHRSW(puSrc1->ai16[10], puSrc2->ai16[10]); + uDst.ai16[11] = DO_PMULHRSW(puSrc1->ai16[11], puSrc2->ai16[11]); + uDst.ai16[12] = DO_PMULHRSW(puSrc1->ai16[12], puSrc2->ai16[12]); + uDst.ai16[13] = DO_PMULHRSW(puSrc1->ai16[13], puSrc2->ai16[13]); + uDst.ai16[14] = DO_PMULHRSW(puSrc1->ai16[14], puSrc2->ai16[14]); + uDst.ai16[15] = DO_PMULHRSW(puSrc1->ai16[15], puSrc2->ai16[15]); + + puDst->au64[0] = uDst.au64[0]; + puDst->au64[1] = uDst.au64[1]; + puDst->au64[2] = uDst.au64[2]; + puDst->au64[3] = uDst.au64[3]; +} + + +/* + * PSADBW / VPSADBW + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_psadbw_u64,(uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + RTUINT64U uDst; + uint16_t uSum = RT_ABS((int16_t)uSrc1.au8[0] - uSrc2.au8[0]); + uSum += RT_ABS((int16_t)uSrc1.au8[1] - uSrc2.au8[1]); + uSum += RT_ABS((int16_t)uSrc1.au8[2] - uSrc2.au8[2]); + uSum += RT_ABS((int16_t)uSrc1.au8[3] - uSrc2.au8[3]); + uSum += RT_ABS((int16_t)uSrc1.au8[4] - uSrc2.au8[4]); + uSum += RT_ABS((int16_t)uSrc1.au8[5] - uSrc2.au8[5]); + uSum += RT_ABS((int16_t)uSrc1.au8[6] - uSrc2.au8[6]); + uSum += RT_ABS((int16_t)uSrc1.au8[7] - uSrc2.au8[7]); + + uDst.au64[0] = 0; + uDst.au16[0] = uSum; + *puDst = uDst.u; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_psadbw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->au64[0] = 0; + puDst->au64[1] = 0; + + uint16_t uSum = RT_ABS((int16_t)uSrc1.ai8[0] - puSrc->ai8[0]); + uSum += RT_ABS((int16_t)uSrc1.au8[1] - puSrc->au8[1]); + uSum += RT_ABS((int16_t)uSrc1.au8[2] - puSrc->au8[2]); + uSum += RT_ABS((int16_t)uSrc1.au8[3] - puSrc->au8[3]); + uSum += RT_ABS((int16_t)uSrc1.au8[4] - puSrc->au8[4]); + uSum += RT_ABS((int16_t)uSrc1.au8[5] - puSrc->au8[5]); + uSum += RT_ABS((int16_t)uSrc1.au8[6] - puSrc->au8[6]); + uSum += RT_ABS((int16_t)uSrc1.au8[7] - puSrc->au8[7]); + puDst->au16[0] = uSum; + + uSum = RT_ABS((int16_t)uSrc1.au8[ 8] - puSrc->au8[ 8]); + uSum += RT_ABS((int16_t)uSrc1.au8[ 9] - puSrc->au8[ 9]); + uSum += RT_ABS((int16_t)uSrc1.au8[10] - puSrc->au8[10]); + uSum += RT_ABS((int16_t)uSrc1.au8[11] - puSrc->au8[11]); + uSum += RT_ABS((int16_t)uSrc1.au8[12] - puSrc->au8[12]); + uSum += RT_ABS((int16_t)uSrc1.au8[13] - puSrc->au8[13]); + uSum += RT_ABS((int16_t)uSrc1.au8[14] - puSrc->au8[14]); + uSum += RT_ABS((int16_t)uSrc1.au8[15] - puSrc->au8[15]); + puDst->au16[4] = uSum; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpsadbw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U uSrc1 = *puSrc1; + RTUINT128U uSrc2 = *puSrc2; + + puDst->au64[0] = 0; + puDst->au64[1] = 0; + + uint16_t uSum = RT_ABS((int16_t)uSrc1.ai8[0] - uSrc2.ai8[0]); + uSum += RT_ABS((int16_t)uSrc1.au8[1] - uSrc2.au8[1]); + uSum += RT_ABS((int16_t)uSrc1.au8[2] - uSrc2.au8[2]); + uSum += RT_ABS((int16_t)uSrc1.au8[3] - uSrc2.au8[3]); + uSum += RT_ABS((int16_t)uSrc1.au8[4] - uSrc2.au8[4]); + uSum += RT_ABS((int16_t)uSrc1.au8[5] - uSrc2.au8[5]); + uSum += RT_ABS((int16_t)uSrc1.au8[6] - uSrc2.au8[6]); + uSum += RT_ABS((int16_t)uSrc1.au8[7] - uSrc2.au8[7]); + puDst->au16[0] = uSum; + + uSum = RT_ABS((int16_t)uSrc1.au8[ 8] - uSrc2.au8[ 8]); + uSum += RT_ABS((int16_t)uSrc1.au8[ 9] - uSrc2.au8[ 9]); + uSum += RT_ABS((int16_t)uSrc1.au8[10] - uSrc2.au8[10]); + uSum += RT_ABS((int16_t)uSrc1.au8[11] - uSrc2.au8[11]); + uSum += RT_ABS((int16_t)uSrc1.au8[12] - uSrc2.au8[12]); + uSum += RT_ABS((int16_t)uSrc1.au8[13] - uSrc2.au8[13]); + uSum += RT_ABS((int16_t)uSrc1.au8[14] - uSrc2.au8[14]); + uSum += RT_ABS((int16_t)uSrc1.au8[15] - uSrc2.au8[15]); + puDst->au16[4] = uSum; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpsadbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U uSrc1 = *puSrc1; + RTUINT256U uSrc2 = *puSrc2; + + puDst->au64[0] = 0; + puDst->au64[1] = 0; + puDst->au64[2] = 0; + puDst->au64[3] = 0; + + uint16_t uSum = RT_ABS((int16_t)uSrc1.au8[0] - uSrc2.au8[0]); + uSum += RT_ABS((int16_t)uSrc1.au8[1] - uSrc2.au8[1]); + uSum += RT_ABS((int16_t)uSrc1.au8[2] - uSrc2.au8[2]); + uSum += RT_ABS((int16_t)uSrc1.au8[3] - uSrc2.au8[3]); + uSum += RT_ABS((int16_t)uSrc1.au8[4] - uSrc2.au8[4]); + uSum += RT_ABS((int16_t)uSrc1.au8[5] - uSrc2.au8[5]); + uSum += RT_ABS((int16_t)uSrc1.au8[6] - uSrc2.au8[6]); + uSum += RT_ABS((int16_t)uSrc1.au8[7] - uSrc2.au8[7]); + puDst->au16[0] = uSum; + + uSum = RT_ABS((int16_t)uSrc1.au8[ 8] - uSrc2.au8[ 8]); + uSum += RT_ABS((int16_t)uSrc1.au8[ 9] - uSrc2.au8[ 9]); + uSum += RT_ABS((int16_t)uSrc1.au8[10] - uSrc2.au8[10]); + uSum += RT_ABS((int16_t)uSrc1.au8[11] - uSrc2.au8[11]); + uSum += RT_ABS((int16_t)uSrc1.au8[12] - uSrc2.au8[12]); + uSum += RT_ABS((int16_t)uSrc1.au8[13] - uSrc2.au8[13]); + uSum += RT_ABS((int16_t)uSrc1.au8[14] - uSrc2.au8[14]); + uSum += RT_ABS((int16_t)uSrc1.au8[15] - uSrc2.au8[15]); + puDst->au16[4] = uSum; + + uSum = RT_ABS((int16_t)uSrc1.au8[16] - uSrc2.au8[16]); + uSum += RT_ABS((int16_t)uSrc1.au8[17] - uSrc2.au8[17]); + uSum += RT_ABS((int16_t)uSrc1.au8[18] - uSrc2.au8[18]); + uSum += RT_ABS((int16_t)uSrc1.au8[19] - uSrc2.au8[19]); + uSum += RT_ABS((int16_t)uSrc1.au8[20] - uSrc2.au8[20]); + uSum += RT_ABS((int16_t)uSrc1.au8[21] - uSrc2.au8[21]); + uSum += RT_ABS((int16_t)uSrc1.au8[22] - uSrc2.au8[22]); + uSum += RT_ABS((int16_t)uSrc1.au8[23] - uSrc2.au8[23]); + puDst->au16[8] = uSum; + + uSum = RT_ABS((int16_t)uSrc1.au8[24] - uSrc2.au8[24]); + uSum += RT_ABS((int16_t)uSrc1.au8[25] - uSrc2.au8[25]); + uSum += RT_ABS((int16_t)uSrc1.au8[26] - uSrc2.au8[26]); + uSum += RT_ABS((int16_t)uSrc1.au8[27] - uSrc2.au8[27]); + uSum += RT_ABS((int16_t)uSrc1.au8[28] - uSrc2.au8[28]); + uSum += RT_ABS((int16_t)uSrc1.au8[29] - uSrc2.au8[29]); + uSum += RT_ABS((int16_t)uSrc1.au8[30] - uSrc2.au8[30]); + uSum += RT_ABS((int16_t)uSrc1.au8[31] - uSrc2.au8[31]); + puDst->au16[12] = uSum; +} + + +/* + * PMULDQ / VPMULDQ + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_pmuldq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + + puDst->au64[0] = (int64_t)uSrc1.ai32[0] * puSrc->ai32[0]; + puDst->au64[1] = (int64_t)uSrc1.ai32[2] * puSrc->ai32[2]; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmuldq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U uSrc1 = *puSrc1; + RTUINT128U uSrc2 = *puSrc2; + + puDst->au64[0] = (int64_t)uSrc1.ai32[0] * uSrc2.ai32[0]; + puDst->au64[1] = (int64_t)uSrc1.ai32[2] * uSrc2.ai32[2]; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmuldq_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U uSrc1 = *puSrc1; + RTUINT256U uSrc2 = *puSrc2; + + puDst->au64[0] = (int64_t)uSrc1.ai32[0] * uSrc2.ai32[0]; + puDst->au64[1] = (int64_t)uSrc1.ai32[2] * uSrc2.ai32[2]; + puDst->au64[2] = (int64_t)uSrc1.ai32[4] * uSrc2.ai32[4]; + puDst->au64[3] = (int64_t)uSrc1.ai32[6] * uSrc2.ai32[6]; +} + + +/* + * PMULUDQ / VPMULUDQ + */ +#ifdef IEM_WITHOUT_ASSEMBLY + +IEM_DECL_IMPL_DEF(void, iemAImpl_pmuludq_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) +{ + RTUINT64U uSrc1 = { *puDst }; + RTUINT64U uSrc2 = { *puSrc }; + ASMCompilerBarrier(); + *puDst = (uint64_t)uSrc1.au32[0] * uSrc2.au32[0]; + RT_NOREF(pFpuState); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pmuludq_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + RTUINT128U uSrc2 = *puSrc; + ASMCompilerBarrier(); + puDst->au64[0] = (uint64_t)uSrc1.au32[0] * uSrc2.au32[0]; + puDst->au64[1] = (uint64_t)uSrc1.au32[2] * uSrc2.au32[2]; + RT_NOREF(pFpuState); +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmuludq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U uSrc1 = *puSrc1; /* Could overlap with puDst */ + RTUINT128U uSrc2 = *puSrc2; /* Could overlap with puDst */ + ASMCompilerBarrier(); + puDst->au64[0] = (uint64_t)uSrc1.au32[0] * uSrc2.au32[0]; + puDst->au64[1] = (uint64_t)uSrc1.au32[2] * uSrc2.au32[2]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmuludq_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U uSrc1 = *puSrc1; /* Could overlap with puDst */ + RTUINT256U uSrc2 = *puSrc2; /* Could overlap with puDst */ + ASMCompilerBarrier(); + puDst->au64[0] = (uint64_t)uSrc1.au32[0] * uSrc2.au32[0]; + puDst->au64[1] = (uint64_t)uSrc1.au32[2] * uSrc2.au32[2]; + puDst->au64[2] = (uint64_t)uSrc1.au32[4] * uSrc2.au32[4]; + puDst->au64[3] = (uint64_t)uSrc1.au32[6] * uSrc2.au32[6]; +} + + +/* + * UNPCKLPS / VUNPCKLPS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_unpcklps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + RTUINT128U uSrc2 = *puSrc; + ASMCompilerBarrier(); + puDst->au32[0] = uSrc1.au32[0]; + puDst->au32[1] = uSrc2.au32[0]; + puDst->au32[2] = uSrc1.au32[1]; + puDst->au32[3] = uSrc2.au32[1]; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vunpcklps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U uSrc1 = *puSrc1; /* Could overlap with puDst */ + RTUINT128U uSrc2 = *puSrc2; /* Could overlap with puDst */ + ASMCompilerBarrier(); + puDst->au32[0] = uSrc1.au32[0]; + puDst->au32[1] = uSrc2.au32[0]; + puDst->au32[2] = uSrc1.au32[1]; + puDst->au32[3] = uSrc2.au32[1]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vunpcklps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U uSrc1 = *puSrc1; /* Could overlap with puDst */ + RTUINT256U uSrc2 = *puSrc2; /* Could overlap with puDst */ + ASMCompilerBarrier(); + puDst->au32[0] = uSrc1.au32[0]; + puDst->au32[1] = uSrc2.au32[0]; + puDst->au32[2] = uSrc1.au32[1]; + puDst->au32[3] = uSrc2.au32[1]; + + puDst->au32[4] = uSrc1.au32[4]; + puDst->au32[5] = uSrc2.au32[4]; + puDst->au32[6] = uSrc1.au32[5]; + puDst->au32[7] = uSrc2.au32[5]; +} + + +/* + * UNPCKLPD / VUNPCKLPD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_unpcklpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + RTUINT128U uSrc2 = *puSrc; + ASMCompilerBarrier(); + puDst->au64[0] = uSrc1.au64[0]; + puDst->au64[1] = uSrc2.au64[0]; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vunpcklpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U uSrc1 = *puSrc1; /* Could overlap with puDst */ + RTUINT128U uSrc2 = *puSrc2; /* Could overlap with puDst */ + ASMCompilerBarrier(); + puDst->au64[0] = uSrc1.au64[0]; + puDst->au64[1] = uSrc2.au64[0]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vunpcklpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U uSrc1 = *puSrc1; /* Could overlap with puDst */ + RTUINT256U uSrc2 = *puSrc2; /* Could overlap with puDst */ + ASMCompilerBarrier(); + puDst->au64[0] = uSrc1.au64[0]; + puDst->au64[1] = uSrc2.au64[0]; + puDst->au64[2] = uSrc1.au64[2]; + puDst->au64[3] = uSrc2.au64[2]; +} + + +/* + * UNPCKHPS / VUNPCKHPS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_unpckhps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + RTUINT128U uSrc2 = *puSrc; + ASMCompilerBarrier(); + puDst->au32[0] = uSrc1.au32[2]; + puDst->au32[1] = uSrc2.au32[2]; + puDst->au32[2] = uSrc1.au32[3]; + puDst->au32[3] = uSrc2.au32[3]; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vunpckhps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U uSrc1 = *puSrc1; /* Could overlap with puDst */ + RTUINT128U uSrc2 = *puSrc2; /* Could overlap with puDst */ + ASMCompilerBarrier(); + puDst->au32[0] = uSrc1.au32[2]; + puDst->au32[1] = uSrc2.au32[2]; + puDst->au32[2] = uSrc1.au32[3]; + puDst->au32[3] = uSrc2.au32[3]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vunpckhps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U uSrc1 = *puSrc1; /* Could overlap with puDst */ + RTUINT256U uSrc2 = *puSrc2; /* Could overlap with puDst */ + ASMCompilerBarrier(); + puDst->au32[0] = uSrc1.au32[2]; + puDst->au32[1] = uSrc2.au32[2]; + puDst->au32[2] = uSrc1.au32[3]; + puDst->au32[3] = uSrc2.au32[3]; + + puDst->au32[4] = uSrc1.au32[6]; + puDst->au32[5] = uSrc2.au32[6]; + puDst->au32[6] = uSrc1.au32[7]; + puDst->au32[7] = uSrc2.au32[7]; +} + + +/* + * UNPCKHPD / VUNPCKHPD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_unpckhpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puDst; + RTUINT128U uSrc2 = *puSrc; + ASMCompilerBarrier(); + puDst->au64[0] = uSrc1.au64[1]; + puDst->au64[1] = uSrc2.au64[1]; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vunpckhpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) +{ + RTUINT128U uSrc1 = *puSrc1; /* Could overlap with puDst */ + RTUINT128U uSrc2 = *puSrc2; /* Could overlap with puDst */ + ASMCompilerBarrier(); + puDst->au64[0] = uSrc1.au64[1]; + puDst->au64[1] = uSrc2.au64[1]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vunpckhpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) +{ + RTUINT256U uSrc1 = *puSrc1; /* Could overlap with puDst */ + RTUINT256U uSrc2 = *puSrc2; /* Could overlap with puDst */ + ASMCompilerBarrier(); + puDst->au64[0] = uSrc1.au64[1]; + puDst->au64[1] = uSrc2.au64[1]; + puDst->au64[2] = uSrc1.au64[3]; + puDst->au64[3] = uSrc2.au64[3]; +} + + +/* + * CRC32 (SEE 4.2). + */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_crc32_u8_fallback,(uint32_t *puDst, uint8_t uSrc)) +{ + *puDst = RTCrc32CProcess(*puDst, &uSrc, sizeof(uSrc)); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_crc32_u16_fallback,(uint32_t *puDst, uint16_t uSrc)) +{ + *puDst = RTCrc32CProcess(*puDst, &uSrc, sizeof(uSrc)); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_crc32_u32_fallback,(uint32_t *puDst, uint32_t uSrc)) +{ + *puDst = RTCrc32CProcess(*puDst, &uSrc, sizeof(uSrc)); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_crc32_u64_fallback,(uint32_t *puDst, uint64_t uSrc)) +{ + *puDst = RTCrc32CProcess(*puDst, &uSrc, sizeof(uSrc)); +} + + +/* + * PTEST (SSE 4.1) - special as it output only EFLAGS. + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_ptest_u128,(PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint32_t *pfEFlags)) +{ + uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; + if ( (puSrc1->au64[0] & puSrc2->au64[0]) == 0 + && (puSrc1->au64[1] & puSrc2->au64[1]) == 0) + fEfl |= X86_EFL_ZF; + if ( (~puSrc1->au64[0] & puSrc2->au64[0]) == 0 + && (~puSrc1->au64[1] & puSrc2->au64[1]) == 0) + fEfl |= X86_EFL_CF; + *pfEFlags = fEfl; +} +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vptest_u256_fallback,(PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint32_t *pfEFlags)) +{ + uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; + if ( (puSrc1->au64[0] & puSrc2->au64[0]) == 0 + && (puSrc1->au64[1] & puSrc2->au64[1]) == 0 + && (puSrc1->au64[2] & puSrc2->au64[2]) == 0 + && (puSrc1->au64[3] & puSrc2->au64[3]) == 0) + fEfl |= X86_EFL_ZF; + if ( (~puSrc1->au64[0] & puSrc2->au64[0]) == 0 + && (~puSrc1->au64[1] & puSrc2->au64[1]) == 0 + && (~puSrc1->au64[2] & puSrc2->au64[2]) == 0 + && (~puSrc1->au64[3] & puSrc2->au64[3]) == 0) + fEfl |= X86_EFL_CF; + *pfEFlags = fEfl; +} + + +/* + * PMOVSXBW / VPMOVSXBW + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc)) +{ + RTUINT64U uSrc1 = { uSrc }; + puDst->ai16[0] = uSrc1.ai8[0]; + puDst->ai16[1] = uSrc1.ai8[1]; + puDst->ai16[2] = uSrc1.ai8[2]; + puDst->ai16[3] = uSrc1.ai8[3]; + puDst->ai16[4] = uSrc1.ai8[4]; + puDst->ai16[5] = uSrc1.ai8[5]; + puDst->ai16[6] = uSrc1.ai8[6]; + puDst->ai16[7] = uSrc1.ai8[7]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */ + puDst->ai16[ 0] = uSrc1.ai8[ 0]; + puDst->ai16[ 1] = uSrc1.ai8[ 1]; + puDst->ai16[ 2] = uSrc1.ai8[ 2]; + puDst->ai16[ 3] = uSrc1.ai8[ 3]; + puDst->ai16[ 4] = uSrc1.ai8[ 4]; + puDst->ai16[ 5] = uSrc1.ai8[ 5]; + puDst->ai16[ 6] = uSrc1.ai8[ 6]; + puDst->ai16[ 7] = uSrc1.ai8[ 7]; + puDst->ai16[ 8] = uSrc1.ai8[ 8]; + puDst->ai16[ 9] = uSrc1.ai8[ 9]; + puDst->ai16[10] = uSrc1.ai8[10]; + puDst->ai16[11] = uSrc1.ai8[11]; + puDst->ai16[12] = uSrc1.ai8[12]; + puDst->ai16[13] = uSrc1.ai8[13]; + puDst->ai16[14] = uSrc1.ai8[14]; + puDst->ai16[15] = uSrc1.ai8[15]; +} + + +/* + * PMOVSXBD / VPMOVSXBD + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc)) +{ + RTUINT32U uSrc1 = { uSrc }; + puDst->ai32[0] = uSrc1.ai8[0]; + puDst->ai32[1] = uSrc1.ai8[1]; + puDst->ai32[2] = uSrc1.ai8[2]; + puDst->ai32[3] = uSrc1.ai8[3]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */ + puDst->ai32[0] = uSrc1.ai8[0]; + puDst->ai32[1] = uSrc1.ai8[1]; + puDst->ai32[2] = uSrc1.ai8[2]; + puDst->ai32[3] = uSrc1.ai8[3]; + puDst->ai32[4] = uSrc1.ai8[4]; + puDst->ai32[5] = uSrc1.ai8[5]; + puDst->ai32[6] = uSrc1.ai8[6]; + puDst->ai32[7] = uSrc1.ai8[7]; +} + + +/* + * PMOVSXBQ / VPMOVSXBQ + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc)) +{ + RTUINT16U uSrc1 = { uSrc }; + puDst->ai64[0] = uSrc1.ai8[0]; + puDst->ai64[1] = uSrc1.ai8[1]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */ + puDst->ai64[0] = uSrc1.ai8[0]; + puDst->ai64[1] = uSrc1.ai8[1]; + puDst->ai64[2] = uSrc1.ai8[2]; + puDst->ai64[3] = uSrc1.ai8[3]; +} + + +/* + * PMOVSXWD / VPMOVSXWD + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc)) +{ + RTUINT64U uSrc1 = { uSrc }; + puDst->ai32[0] = uSrc1.ai16[0]; + puDst->ai32[1] = uSrc1.ai16[1]; + puDst->ai32[2] = uSrc1.ai16[2]; + puDst->ai32[3] = uSrc1.ai16[3]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */ + puDst->ai32[0] = uSrc1.ai16[0]; + puDst->ai32[1] = uSrc1.ai16[1]; + puDst->ai32[2] = uSrc1.ai16[2]; + puDst->ai32[3] = uSrc1.ai16[3]; + puDst->ai32[4] = uSrc1.ai16[4]; + puDst->ai32[5] = uSrc1.ai16[5]; + puDst->ai32[6] = uSrc1.ai16[6]; + puDst->ai32[7] = uSrc1.ai16[7]; +} + + +/* + * PMOVSXWQ / VPMOVSXWQ + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc)) +{ + RTUINT32U uSrc1 = { uSrc }; + puDst->ai64[0] = uSrc1.ai16[0]; + puDst->ai64[1] = uSrc1.ai16[1]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */ + puDst->ai64[0] = uSrc1.ai16[0]; + puDst->ai64[1] = uSrc1.ai16[1]; + puDst->ai64[2] = uSrc1.ai16[2]; + puDst->ai64[3] = uSrc1.ai16[3]; +} + + +/* + * PMOVSXDQ / VPMOVSXDQ + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc)) +{ + RTUINT64U uSrc1 = { uSrc }; + puDst->ai64[0] = uSrc1.ai32[0]; + puDst->ai64[1] = uSrc1.ai32[1]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */ + puDst->ai64[0] = uSrc1.ai32[0]; + puDst->ai64[1] = uSrc1.ai32[1]; + puDst->ai64[2] = uSrc1.ai32[2]; + puDst->ai64[3] = uSrc1.ai32[3]; +} + + +/* + * PMOVZXBW / VPMOVZXBW + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc)) +{ + RTUINT64U uSrc1 = { uSrc }; + puDst->au16[0] = uSrc1.au8[0]; + puDst->au16[1] = uSrc1.au8[1]; + puDst->au16[2] = uSrc1.au8[2]; + puDst->au16[3] = uSrc1.au8[3]; + puDst->au16[4] = uSrc1.au8[4]; + puDst->au16[5] = uSrc1.au8[5]; + puDst->au16[6] = uSrc1.au8[6]; + puDst->au16[7] = uSrc1.au8[7]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */ + puDst->au16[ 0] = uSrc1.au8[ 0]; + puDst->au16[ 1] = uSrc1.au8[ 1]; + puDst->au16[ 2] = uSrc1.au8[ 2]; + puDst->au16[ 3] = uSrc1.au8[ 3]; + puDst->au16[ 4] = uSrc1.au8[ 4]; + puDst->au16[ 5] = uSrc1.au8[ 5]; + puDst->au16[ 6] = uSrc1.au8[ 6]; + puDst->au16[ 7] = uSrc1.au8[ 7]; + puDst->au16[ 8] = uSrc1.au8[ 8]; + puDst->au16[ 9] = uSrc1.au8[ 9]; + puDst->au16[10] = uSrc1.au8[10]; + puDst->au16[11] = uSrc1.au8[11]; + puDst->au16[12] = uSrc1.au8[12]; + puDst->au16[13] = uSrc1.au8[13]; + puDst->au16[14] = uSrc1.au8[14]; + puDst->au16[15] = uSrc1.au8[15]; +} + + +/* + * PMOVZXBD / VPMOVZXBD + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc)) +{ + RTUINT32U uSrc1 = { uSrc }; + puDst->au32[0] = uSrc1.au8[0]; + puDst->au32[1] = uSrc1.au8[1]; + puDst->au32[2] = uSrc1.au8[2]; + puDst->au32[3] = uSrc1.au8[3]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */ + puDst->au32[0] = uSrc1.au8[0]; + puDst->au32[1] = uSrc1.au8[1]; + puDst->au32[2] = uSrc1.au8[2]; + puDst->au32[3] = uSrc1.au8[3]; + puDst->au32[4] = uSrc1.au8[4]; + puDst->au32[5] = uSrc1.au8[5]; + puDst->au32[6] = uSrc1.au8[6]; + puDst->au32[7] = uSrc1.au8[7]; +} + + +/* + * PMOVZXBQ / VPMOVZXBQ + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc)) +{ + RTUINT16U uSrc1 = { uSrc }; + puDst->au64[0] = uSrc1.au8[0]; + puDst->au64[1] = uSrc1.au8[1]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */ + puDst->au64[0] = uSrc1.au8[0]; + puDst->au64[1] = uSrc1.au8[1]; + puDst->au64[2] = uSrc1.au8[2]; + puDst->au64[3] = uSrc1.au8[3]; +} + + +/* + * PMOVZXWD / VPMOVZXWD + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc)) +{ + RTUINT64U uSrc1 = { uSrc }; + puDst->au32[0] = uSrc1.au16[0]; + puDst->au32[1] = uSrc1.au16[1]; + puDst->au32[2] = uSrc1.au16[2]; + puDst->au32[3] = uSrc1.au16[3]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */ + puDst->au32[0] = uSrc1.au16[0]; + puDst->au32[1] = uSrc1.au16[1]; + puDst->au32[2] = uSrc1.au16[2]; + puDst->au32[3] = uSrc1.au16[3]; + puDst->au32[4] = uSrc1.au16[4]; + puDst->au32[5] = uSrc1.au16[5]; + puDst->au32[6] = uSrc1.au16[6]; + puDst->au32[7] = uSrc1.au16[7]; +} + + +/* + * PMOVZXWQ / VPMOVZXWQ + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc)) +{ + RTUINT32U uSrc1 = { uSrc }; + puDst->au64[0] = uSrc1.au16[0]; + puDst->au64[1] = uSrc1.au16[1]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */ + puDst->au64[0] = uSrc1.au16[0]; + puDst->au64[1] = uSrc1.au16[1]; + puDst->au64[2] = uSrc1.au16[2]; + puDst->au64[3] = uSrc1.au16[3]; +} + + +/* + * PMOVZXDQ / VPMOVZXDQ + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc)) +{ + RTUINT64U uSrc1 = { uSrc }; + puDst->au64[0] = uSrc1.au32[0]; + puDst->au64[1] = uSrc1.au32[1]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */ + puDst->au64[0] = uSrc1.au32[0]; + puDst->au64[1] = uSrc1.au32[1]; + puDst->au64[2] = uSrc1.au32[2]; + puDst->au64[3] = uSrc1.au32[3]; +} + +/** + * Converts from the packed IPRT 32-bit (single precision) floating point format to + * the SoftFloat 32-bit floating point format (float32_t). + * + * This is only a structure format conversion, nothing else. + */ +DECLINLINE(float32_t) iemFpSoftF32FromIprt(PCRTFLOAT32U pr32Val) +{ + float32_t Tmp; + Tmp.v = pr32Val->u; + return Tmp; +} + + +/** + * Converts from SoftFloat 32-bit floating point format (float32_t) + * to the packed IPRT 32-bit floating point (RTFLOAT32U) format. + * + * This is only a structure format conversion, nothing else. + */ +DECLINLINE(PRTFLOAT32U) iemFpSoftF32ToIprt(PRTFLOAT32U pr32Dst, float32_t const r32XSrc) +{ + pr32Dst->u = r32XSrc.v; + return pr32Dst; +} + + +/** + * Converts from the packed IPRT 64-bit (single precision) floating point format to + * the SoftFloat 64-bit floating point format (float64_t). + * + * This is only a structure format conversion, nothing else. + */ +DECLINLINE(float64_t) iemFpSoftF64FromIprt(PCRTFLOAT64U pr64Val) +{ + float64_t Tmp; + Tmp.v = pr64Val->u; + return Tmp; +} + + +/** + * Converts from SoftFloat 64-bit floating point format (float64_t) + * to the packed IPRT 64-bit floating point (RTFLOAT64U) format. + * + * This is only a structure format conversion, nothing else. + */ +DECLINLINE(PRTFLOAT64U) iemFpSoftF64ToIprt(PRTFLOAT64U pr64Dst, float64_t const r64XSrc) +{ + pr64Dst->u = r64XSrc.v; + return pr64Dst; +} + + +/** Initializer for the SoftFloat state structure. */ +# define IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(a_Mxcsr) \ + { \ + softfloat_tininess_afterRounding, \ + ((a_Mxcsr) & X86_MXCSR_RC_MASK) == X86_MXCSR_RC_NEAREST ? (uint8_t)softfloat_round_near_even \ + : ((a_Mxcsr) & X86_MXCSR_RC_MASK) == X86_MXCSR_RC_UP ? (uint8_t)softfloat_round_max \ + : ((a_Mxcsr) & X86_MXCSR_RC_MASK) == X86_MXCSR_RC_DOWN ? (uint8_t)softfloat_round_min \ + : (uint8_t)softfloat_round_minMag, \ + 0, \ + (uint8_t)(((a_Mxcsr) & X86_MXCSR_XCPT_MASK) >> X86_MXCSR_XCPT_MASK_SHIFT), /* Matches X86_FSW_?E */\ + 32 /* Rounding precision, not relevant for SIMD. */ \ + } + +#ifdef IEM_WITHOUT_ASSEMBLY + +/** + * Helper for transfering exception to MXCSR and setting the result value + * accordingly. + * + * @returns Updated MXCSR. + * @param pSoftState The SoftFloat state following the operation. + * @param r32Result The result of the SoftFloat operation. + * @param pr32Result Where to store the result for IEM. + * @param fMxcsr The original MXCSR value. + */ +DECLINLINE(uint32_t) iemSseSoftStateAndR32ToMxcsrAndIprtResult(softfloat_state_t const *pSoftState, float32_t r32Result, + PRTFLOAT32U pr32Result, uint32_t fMxcsr) +{ + iemFpSoftF32ToIprt(pr32Result, r32Result); + + uint8_t fXcpt = pSoftState->exceptionFlags; + if ( (fMxcsr & X86_MXCSR_FZ) + && RTFLOAT32U_IS_SUBNORMAL(pr32Result)) + { + /* Underflow masked and flush to zero is set. */ + pr32Result->s.uFraction = 0; + pr32Result->s.uExponent = 0; + fXcpt |= X86_MXCSR_UE | X86_MXCSR_PE; + } + + /* If DAZ is set \#DE is never set. */ + if ( fMxcsr & X86_MXCSR_DAZ + || ( (fXcpt & X86_MXCSR_DE) /* Softfloat sets DE for sub-normal values. */ + && (RTFLOAT32U_IS_SUBNORMAL(pr32Result)))) + fXcpt &= ~X86_MXCSR_DE; + + return fMxcsr | (fXcpt & X86_MXCSR_XCPT_FLAGS); +} + + +/** + * Helper for transfering exception to MXCSR and setting the result value + * accordingly - ignores Flush-to-Zero. + * + * @returns Updated MXCSR. + * @param pSoftState The SoftFloat state following the operation. + * @param r32Result The result of the SoftFloat operation. + * @param pr32Result Where to store the result for IEM. + * @param fMxcsr The original MXCSR value. + */ +DECLINLINE(uint32_t) iemSseSoftStateAndR32ToMxcsrAndIprtResultNoFz(softfloat_state_t const *pSoftState, float32_t r32Result, + PRTFLOAT32U pr32Result, uint32_t fMxcsr) +{ + iemFpSoftF32ToIprt(pr32Result, r32Result); + + uint8_t fXcpt = pSoftState->exceptionFlags; + /* If DAZ is set \#DE is never set. */ + if ( fMxcsr & X86_MXCSR_DAZ + || ( (fXcpt & X86_MXCSR_DE) /* Softfloat sets DE for sub-normal values. */ + && (RTFLOAT32U_IS_SUBNORMAL(pr32Result)))) + fXcpt &= ~X86_MXCSR_DE; + + return fMxcsr | (fXcpt & X86_MXCSR_XCPT_FLAGS); +} + + +/** + * Helper for transfering exception to MXCSR and setting the result value + * accordingly. + * + * @returns Updated MXCSR. + * @param pSoftState The SoftFloat state following the operation. + * @param r64Result The result of the SoftFloat operation. + * @param pr64Result Where to store the result for IEM. + * @param fMxcsr The original MXCSR value. + */ +DECLINLINE(uint32_t) iemSseSoftStateAndR64ToMxcsrAndIprtResult(softfloat_state_t const *pSoftState, float64_t r64Result, + PRTFLOAT64U pr64Result, uint32_t fMxcsr) +{ + iemFpSoftF64ToIprt(pr64Result, r64Result); + uint8_t fXcpt = pSoftState->exceptionFlags; + if ( (fMxcsr & X86_MXCSR_FZ) + && RTFLOAT64U_IS_SUBNORMAL(pr64Result)) + { + /* Underflow masked and flush to zero is set. */ + iemFpSoftF64ToIprt(pr64Result, r64Result); + pr64Result->s.uFractionHigh = 0; + pr64Result->s.uFractionLow = 0; + pr64Result->s.uExponent = 0; + fXcpt |= X86_MXCSR_UE | X86_MXCSR_PE; + } + + /* If DAZ is set \#DE is never set. */ + if ( fMxcsr & X86_MXCSR_DAZ + || ( (fXcpt & X86_MXCSR_DE) /* Softfloat sets DE for sub-normal values. */ + && (RTFLOAT64U_IS_SUBNORMAL(pr64Result)))) + fXcpt &= ~X86_MXCSR_DE; + + return fMxcsr | (fXcpt & X86_MXCSR_XCPT_FLAGS); +} + + +/** + * Helper for transfering exception to MXCSR and setting the result value + * accordingly - ignores Flush-to-Zero. + * + * @returns Updated MXCSR. + * @param pSoftState The SoftFloat state following the operation. + * @param r64Result The result of the SoftFloat operation. + * @param pr64Result Where to store the result for IEM. + * @param fMxcsr The original MXCSR value. + */ +DECLINLINE(uint32_t) iemSseSoftStateAndR64ToMxcsrAndIprtResultNoFz(softfloat_state_t const *pSoftState, float64_t r64Result, + PRTFLOAT64U pr64Result, uint32_t fMxcsr) +{ + iemFpSoftF64ToIprt(pr64Result, r64Result); + + uint8_t fXcpt = pSoftState->exceptionFlags; + /* If DAZ is set \#DE is never set. */ + if ( fMxcsr & X86_MXCSR_DAZ + || ( (fXcpt & X86_MXCSR_DE) /* Softfloat sets DE for sub-normal values. */ + && (RTFLOAT64U_IS_SUBNORMAL(pr64Result)))) + fXcpt &= ~X86_MXCSR_DE; + + return fMxcsr | (fXcpt & X86_MXCSR_XCPT_FLAGS); +} + +#endif /* IEM_WITHOUT_ASSEMBLY */ + + +/** + * Sets the given single precision floating point input value to the given output taking the Denormals-as-zero flag + * in MXCSR into account. + * + * @returns The output MXCSR De-normal flag if the input is a de-normal and the DAZ flag is not set. + * @param pr32Val Where to store the result. + * @param fMxcsr The input MXCSR value. + * @param pr32Src The value to use. + */ +DECLINLINE(uint32_t) iemSsePrepareValueR32(PRTFLOAT32U pr32Val, uint32_t fMxcsr, PCRTFLOAT32U pr32Src) +{ + if (RTFLOAT32U_IS_SUBNORMAL(pr32Src)) + { + if (fMxcsr & X86_MXCSR_DAZ) + { + /* De-normals are changed to 0. */ + pr32Val->s.fSign = pr32Src->s.fSign; + pr32Val->s.uFraction = 0; + pr32Val->s.uExponent = 0; + return 0; + } + + *pr32Val = *pr32Src; + return X86_MXCSR_DE; + } + + *pr32Val = *pr32Src; + return 0; +} + + +/** + * Sets the given double precision floating point input value to the given output taking the Denormals-as-zero flag + * in MXCSR into account. + * + * @returns The output MXCSR De-normal flag if the input is a de-normal and the DAZ flag is not set. + * @param pr64Val Where to store the result. + * @param fMxcsr The input MXCSR value. + * @param pr64Src The value to use. + */ +DECLINLINE(uint32_t) iemSsePrepareValueR64(PRTFLOAT64U pr64Val, uint32_t fMxcsr, PCRTFLOAT64U pr64Src) +{ + if (RTFLOAT64U_IS_SUBNORMAL(pr64Src)) + { + if (fMxcsr & X86_MXCSR_DAZ) + { + /* De-normals are changed to 0. */ + pr64Val->s64.fSign = pr64Src->s.fSign; + pr64Val->s64.uFraction = 0; + pr64Val->s64.uExponent = 0; + return 0; + } + + *pr64Val = *pr64Src; + return X86_MXCSR_DE; + } + + *pr64Val = *pr64Src; + return 0; +} + +#ifdef IEM_WITHOUT_ASSEMBLY + +/** + * Validates the given input operands returning whether the operation can continue or whether one + * of the source operands contains a NaN value, setting the output accordingly. + * + * @returns Flag whether the operation can continue (false) or whether a NaN value was detected in one of the operands (true). + * @param pr32Res Where to store the result in case the operation can't continue. + * @param pr32Val1 The first input operand. + * @param pr32Val2 The second input operand. + * @param pfMxcsr Where to return the modified MXCSR state when false is returned. + */ +DECLINLINE(bool) iemSseBinaryValIsNaNR32(PRTFLOAT32U pr32Res, PCRTFLOAT32U pr32Val1, PCRTFLOAT32U pr32Val2, uint32_t *pfMxcsr) +{ + uint8_t const cQNan = RTFLOAT32U_IS_QUIET_NAN(pr32Val1) + RTFLOAT32U_IS_QUIET_NAN(pr32Val2); + uint8_t const cSNan = RTFLOAT32U_IS_SIGNALLING_NAN(pr32Val1) + RTFLOAT32U_IS_SIGNALLING_NAN(pr32Val2); + if (cSNan + cQNan == 2) + { + /* Both values are either SNan or QNan, first operand is placed into the result and converted to a QNan. */ + *pr32Res = *pr32Val1; + pr32Res->s.uFraction |= RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1); + *pfMxcsr |= (cSNan ? X86_MXCSR_IE : 0); + return true; + } + if (cSNan) + { + /* One operand is an SNan and placed into the result, converting it to a QNan. */ + *pr32Res = RTFLOAT32U_IS_SIGNALLING_NAN(pr32Val1) ? *pr32Val1 : *pr32Val2; + pr32Res->s.uFraction |= RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1); + *pfMxcsr |= X86_MXCSR_IE; + return true; + } + if (cQNan) + { + /* The QNan operand is placed into the result. */ + *pr32Res = RTFLOAT32U_IS_QUIET_NAN(pr32Val1) ? *pr32Val1 : *pr32Val2; + return true; + } + + Assert(!cQNan && !cSNan); + return false; +} + + +/** + * Validates the given double precision input operands returning whether the operation can continue or whether one + * of the source operands contains a NaN value, setting the output accordingly. + * + * @returns Flag whether the operation can continue (false) or whether a NaN value was detected in one of the operands (true). + * @param pr64Res Where to store the result in case the operation can't continue. + * @param pr64Val1 The first input operand. + * @param pr64Val2 The second input operand. + * @param pfMxcsr Where to return the modified MXCSR state when false is returned. + */ +DECLINLINE(bool) iemSseBinaryValIsNaNR64(PRTFLOAT64U pr64Res, PCRTFLOAT64U pr64Val1, PCRTFLOAT64U pr64Val2, uint32_t *pfMxcsr) +{ + uint8_t const cQNan = RTFLOAT64U_IS_QUIET_NAN(pr64Val1) + RTFLOAT64U_IS_QUIET_NAN(pr64Val2); + uint8_t const cSNan = RTFLOAT64U_IS_SIGNALLING_NAN(pr64Val1) + RTFLOAT64U_IS_SIGNALLING_NAN(pr64Val2); + if (cSNan + cQNan == 2) + { + /* Both values are either SNan or QNan, first operand is placed into the result and converted to a QNan. */ + *pr64Res = *pr64Val1; + pr64Res->s64.uFraction |= RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1); + *pfMxcsr |= (cSNan ? X86_MXCSR_IE : 0); + return true; + } + if (cSNan) + { + /* One operand is an SNan and placed into the result, converting it to a QNan. */ + *pr64Res = RTFLOAT64U_IS_SIGNALLING_NAN(pr64Val1) ? *pr64Val1 : *pr64Val2; + pr64Res->s64.uFraction |= RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1); + *pfMxcsr |= X86_MXCSR_IE; + return true; + } + if (cQNan) + { + /* The QNan operand is placed into the result. */ + *pr64Res = RTFLOAT64U_IS_QUIET_NAN(pr64Val1) ? *pr64Val1 : *pr64Val2; + return true; + } + + Assert(!cQNan && !cSNan); + return false; +} + + +/** + * Validates the given single input operand returning whether the operation can continue or whether + * contains a NaN value, setting the output accordingly. + * + * @returns Flag whether the operation can continue (false) or whether a NaN value was detected in the operand (true). + * @param pr32Res Where to store the result in case the operation can't continue. + * @param pr32Val The input operand. + * @param pfMxcsr Where to return the modified MXCSR state when false is returned. + */ +DECLINLINE(bool) iemSseUnaryValIsNaNR32(PRTFLOAT32U pr32Res, PCRTFLOAT32U pr32Val, uint32_t *pfMxcsr) +{ + if (RTFLOAT32U_IS_SIGNALLING_NAN(pr32Val)) + { + /* One operand is an SNan and placed into the result, converting it to a QNan. */ + *pr32Res = *pr32Val; + pr32Res->s.uFraction |= RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1); + *pfMxcsr |= X86_MXCSR_IE; + return true; + } + if (RTFLOAT32U_IS_QUIET_NAN(pr32Val)) + { + /* The QNan operand is placed into the result. */ + *pr32Res = *pr32Val; + return true; + } + + return false; +} + + +/** + * Validates the given double input operand returning whether the operation can continue or whether + * contains a NaN value, setting the output accordingly. + * + * @returns Flag whether the operation can continue (false) or whether a NaN value was detected in the operand (true). + * @param pr64Res Where to store the result in case the operation can't continue. + * @param pr64Val The input operand. + * @param pfMxcsr Where to return the modified MXCSR state when false is returned. + */ +DECLINLINE(bool) iemSseUnaryValIsNaNR64(PRTFLOAT64U pr64Res, PCRTFLOAT64U pr64Val, uint32_t *pfMxcsr) +{ + if (RTFLOAT64U_IS_SIGNALLING_NAN(pr64Val)) + { + /* One operand is an SNan and placed into the result, converting it to a QNan. */ + *pr64Res = *pr64Val; + pr64Res->s64.uFraction |= RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1); + *pfMxcsr |= X86_MXCSR_IE; + return true; + } + if (RTFLOAT64U_IS_QUIET_NAN(pr64Val)) + { + /* The QNan operand is placed into the result. */ + *pr64Res = *pr64Val; + return true; + } + + return false; +} + +#endif /* IEM_WITHOUT_ASSEMBLY */ + +/** + * ADDPS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_addps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val1, PCRTFLOAT32U pr32Val2) +{ + if (iemSseBinaryValIsNaNR32(pr32Res, pr32Val1, pr32Val2, &fMxcsr)) + return fMxcsr; + + RTFLOAT32U r32Src1, r32Src2; + fMxcsr |= iemSsePrepareValueR32(&r32Src1, fMxcsr, pr32Val1); + fMxcsr |= iemSsePrepareValueR32(&r32Src2, fMxcsr, pr32Val2); + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + float32_t r32Result = f32_add(iemFpSoftF32FromIprt(&r32Src1), iemFpSoftF32FromIprt(&r32Src2), &SoftState); + return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Result, pr32Res, fMxcsr); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_addps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + pResult->MXCSR = iemAImpl_addps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc2->ar32[0]); + pResult->MXCSR |= iemAImpl_addps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[1], &puSrc2->ar32[1]); + pResult->MXCSR |= iemAImpl_addps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc2->ar32[2]); + pResult->MXCSR |= iemAImpl_addps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc1->ar32[3], &puSrc2->ar32[3]); +} +#endif + + +/** + * ADDSS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_addss_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2)) +{ + pResult->MXCSR = iemAImpl_addps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], pr32Src2); + pResult->uResult.ar32[1] = puSrc1->ar32[1]; + pResult->uResult.ar32[2] = puSrc1->ar32[2]; + pResult->uResult.ar32[3] = puSrc1->ar32[3]; +} +#endif + + +/** + * ADDPD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_addpd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val1, PCRTFLOAT64U pr64Val2) +{ + if (iemSseBinaryValIsNaNR64(pr64Res, pr64Val1, pr64Val2, &fMxcsr)) + return fMxcsr; + + RTFLOAT64U r64Src1, r64Src2; + fMxcsr |= iemSsePrepareValueR64(&r64Src1, fMxcsr, pr64Val1); + fMxcsr |= iemSsePrepareValueR64(&r64Src2, fMxcsr, pr64Val2); + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + float64_t r64Result = f64_add(iemFpSoftF64FromIprt(&r64Src1), iemFpSoftF64FromIprt(&r64Src2), &SoftState); + return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Result, pr64Res, fMxcsr); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_addpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + pResult->MXCSR = iemAImpl_addpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc2->ar64[0]); + pResult->MXCSR |= iemAImpl_addpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc1->ar64[1], &puSrc2->ar64[1]); +} +#endif + + +/** + * ADDSD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_addsd_u128_r64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2)) +{ + pResult->MXCSR = iemAImpl_addpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], pr64Src2); + pResult->uResult.ar64[1] = puSrc1->ar64[1]; +} +#endif + + +/** + * MULPS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_mulps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val1, PCRTFLOAT32U pr32Val2) +{ + if (iemSseBinaryValIsNaNR32(pr32Res, pr32Val1, pr32Val2, &fMxcsr)) + return fMxcsr; + + RTFLOAT32U r32Src1, r32Src2; + fMxcsr |= iemSsePrepareValueR32(&r32Src1, fMxcsr, pr32Val1); + fMxcsr |= iemSsePrepareValueR32(&r32Src2, fMxcsr, pr32Val2); + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + float32_t r32Result = f32_mul(iemFpSoftF32FromIprt(&r32Src1), iemFpSoftF32FromIprt(&r32Src2), &SoftState); + return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Result, pr32Res, fMxcsr); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_mulps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + pResult->MXCSR = iemAImpl_mulps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc2->ar32[0]); + pResult->MXCSR |= iemAImpl_mulps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[1], &puSrc2->ar32[1]); + pResult->MXCSR |= iemAImpl_mulps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc2->ar32[2]); + pResult->MXCSR |= iemAImpl_mulps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc1->ar32[3], &puSrc2->ar32[3]); +} +#endif + + +/** + * MULSS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_mulss_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2)) +{ + pResult->MXCSR = iemAImpl_mulps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], pr32Src2); + pResult->uResult.ar32[1] = puSrc1->ar32[1]; + pResult->uResult.ar32[2] = puSrc1->ar32[2]; + pResult->uResult.ar32[3] = puSrc1->ar32[3]; +} +#endif + + +/** + * MULPD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_mulpd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val1, PCRTFLOAT64U pr64Val2) +{ + if (iemSseBinaryValIsNaNR64(pr64Res, pr64Val1, pr64Val2, &fMxcsr)) + return fMxcsr; + + RTFLOAT64U r64Src1, r64Src2; + fMxcsr |= iemSsePrepareValueR64(&r64Src1, fMxcsr, pr64Val1); + fMxcsr |= iemSsePrepareValueR64(&r64Src2, fMxcsr, pr64Val2); + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + float64_t r64Result = f64_mul(iemFpSoftF64FromIprt(&r64Src1), iemFpSoftF64FromIprt(&r64Src2), &SoftState); + return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Result, pr64Res, fMxcsr); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_mulpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + pResult->MXCSR = iemAImpl_mulpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc2->ar64[0]); + pResult->MXCSR |= iemAImpl_mulpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc1->ar64[1], &puSrc2->ar64[1]); +} +#endif + + +/** + * MULSD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_mulsd_u128_r64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2)) +{ + pResult->MXCSR = iemAImpl_mulpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], pr64Src2); + pResult->uResult.ar64[1] = puSrc1->ar64[1]; +} +#endif + + +/** + * SUBPS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_subps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val1, PCRTFLOAT32U pr32Val2) +{ + if (iemSseBinaryValIsNaNR32(pr32Res, pr32Val1, pr32Val2, &fMxcsr)) + return fMxcsr; + + RTFLOAT32U r32Src1, r32Src2; + fMxcsr |= iemSsePrepareValueR32(&r32Src1, fMxcsr, pr32Val1); + fMxcsr |= iemSsePrepareValueR32(&r32Src2, fMxcsr, pr32Val2); + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + float32_t r32Result = f32_sub(iemFpSoftF32FromIprt(&r32Src1), iemFpSoftF32FromIprt(&r32Src2), &SoftState); + return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Result, pr32Res, fMxcsr); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_subps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + pResult->MXCSR = iemAImpl_subps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc2->ar32[0]); + pResult->MXCSR |= iemAImpl_subps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[1], &puSrc2->ar32[1]); + pResult->MXCSR |= iemAImpl_subps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc2->ar32[2]); + pResult->MXCSR |= iemAImpl_subps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc1->ar32[3], &puSrc2->ar32[3]); +} +#endif + + +/** + * SUBSS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_subss_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2)) +{ + pResult->MXCSR = iemAImpl_subps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], pr32Src2); + pResult->uResult.ar32[1] = puSrc1->ar32[1]; + pResult->uResult.ar32[2] = puSrc1->ar32[2]; + pResult->uResult.ar32[3] = puSrc1->ar32[3]; +} +#endif + + +/** + * SUBPD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_subpd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val1, PCRTFLOAT64U pr64Val2) +{ + if (iemSseBinaryValIsNaNR64(pr64Res, pr64Val1, pr64Val2, &fMxcsr)) + return fMxcsr; + + RTFLOAT64U r64Src1, r64Src2; + fMxcsr |= iemSsePrepareValueR64(&r64Src1, fMxcsr, pr64Val1); + fMxcsr |= iemSsePrepareValueR64(&r64Src2, fMxcsr, pr64Val2); + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + float64_t r64Result = f64_sub(iemFpSoftF64FromIprt(&r64Src1), iemFpSoftF64FromIprt(&r64Src2), &SoftState); + return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Result, pr64Res, fMxcsr); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_subpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + pResult->MXCSR = iemAImpl_subpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc2->ar64[0]); + pResult->MXCSR |= iemAImpl_subpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc1->ar64[1], &puSrc2->ar64[1]); +} +#endif + + +/** + * SUBSD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_subsd_u128_r64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2)) +{ + pResult->MXCSR = iemAImpl_subpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], pr64Src2); + pResult->uResult.ar64[1] = puSrc1->ar64[1]; +} +#endif + + +/** + * MINPS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_minps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val1, PCRTFLOAT32U pr32Val2) +{ + if (RTFLOAT32U_IS_NAN(pr32Val1) || RTFLOAT32U_IS_NAN(pr32Val2)) + { + /* The DAZ flag gets honored but the DE flag will not get set because \#IE has higher priority. */ + iemSsePrepareValueR32(pr32Res, fMxcsr, pr32Val2); + return fMxcsr | X86_MXCSR_IE; + } + + RTFLOAT32U r32Src1, r32Src2; + fMxcsr |= iemSsePrepareValueR32(&r32Src1, fMxcsr, pr32Val1); + fMxcsr |= iemSsePrepareValueR32(&r32Src2, fMxcsr, pr32Val2); + if (RTFLOAT32U_IS_ZERO(&r32Src1) && RTFLOAT32U_IS_ZERO(&r32Src2)) + { + *pr32Res = r32Src2; + return fMxcsr; + } + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + bool fLe = f32_le(iemFpSoftF32FromIprt(&r32Src1), iemFpSoftF32FromIprt(&r32Src2), &SoftState); + return iemSseSoftStateAndR32ToMxcsrAndIprtResultNoFz(&SoftState, + fLe + ? iemFpSoftF32FromIprt(&r32Src1) + : iemFpSoftF32FromIprt(&r32Src2), + pr32Res, fMxcsr); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_minps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + pResult->MXCSR = iemAImpl_minps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc2->ar32[0]); + pResult->MXCSR |= iemAImpl_minps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[1], &puSrc2->ar32[1]); + pResult->MXCSR |= iemAImpl_minps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc2->ar32[2]); + pResult->MXCSR |= iemAImpl_minps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc1->ar32[3], &puSrc2->ar32[3]); +} +#endif + + +/** + * MINSS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_minss_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2)) +{ + pResult->MXCSR = iemAImpl_minps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], pr32Src2); + pResult->uResult.ar32[1] = puSrc1->ar32[1]; + pResult->uResult.ar32[2] = puSrc1->ar32[2]; + pResult->uResult.ar32[3] = puSrc1->ar32[3]; +} +#endif + + +/** + * MINPD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_minpd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val1, PCRTFLOAT64U pr64Val2) +{ + if (RTFLOAT64U_IS_NAN(pr64Val1) || RTFLOAT64U_IS_NAN(pr64Val2)) + { + /* The DAZ flag gets honored but the DE flag will not get set because \#IE has higher priority. */ + iemSsePrepareValueR64(pr64Res, fMxcsr, pr64Val2); + return fMxcsr | X86_MXCSR_IE; + } + + RTFLOAT64U r64Src1, r64Src2; + fMxcsr |= iemSsePrepareValueR64(&r64Src1, fMxcsr, pr64Val1); + fMxcsr |= iemSsePrepareValueR64(&r64Src2, fMxcsr, pr64Val2); + if (RTFLOAT64U_IS_ZERO(&r64Src1) && RTFLOAT64U_IS_ZERO(&r64Src2)) + { + *pr64Res = r64Src2; + return fMxcsr; + } + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + bool fLe = f64_le(iemFpSoftF64FromIprt(&r64Src1), iemFpSoftF64FromIprt(&r64Src2), &SoftState); + return iemSseSoftStateAndR64ToMxcsrAndIprtResultNoFz(&SoftState, + fLe + ? iemFpSoftF64FromIprt(&r64Src1) + : iemFpSoftF64FromIprt(&r64Src2), + pr64Res, fMxcsr); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_minpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + pResult->MXCSR = iemAImpl_minpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc2->ar64[0]); + pResult->MXCSR |= iemAImpl_minpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc1->ar64[1], &puSrc2->ar64[1]); +} +#endif + + +/** + * MINSD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_minsd_u128_r64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2)) +{ + pResult->MXCSR = iemAImpl_minpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], pr64Src2); + pResult->uResult.ar64[1] = puSrc1->ar64[1]; +} +#endif + + +/** + * DIVPS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_divps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val1, PCRTFLOAT32U pr32Val2) +{ + if (iemSseBinaryValIsNaNR32(pr32Res, pr32Val1, pr32Val2, &fMxcsr)) + return fMxcsr; + + RTFLOAT32U r32Src1, r32Src2; + uint32_t fDe = iemSsePrepareValueR32(&r32Src1, fMxcsr, pr32Val1); + fDe |= iemSsePrepareValueR32(&r32Src2, fMxcsr, pr32Val2); + if (RTFLOAT32U_IS_ZERO(&r32Src2)) + { + if ( RTFLOAT32U_IS_ZERO(&r32Src1) + || RTFLOAT32U_IS_QUIET_NAN(&r32Src1)) + { + *pr32Res = g_ar32QNaN[1]; + return fMxcsr | X86_MXCSR_IE; + } + else if (RTFLOAT32U_IS_INF(&r32Src1)) + { + *pr32Res = g_ar32Infinity[r32Src1.s.fSign != r32Src2.s.fSign]; + return fMxcsr; + } + else + { + *pr32Res = g_ar32Infinity[r32Src1.s.fSign != r32Src2.s.fSign]; + return fMxcsr | X86_MXCSR_ZE; + } + } + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + float32_t r32Result = f32_div(iemFpSoftF32FromIprt(&r32Src1), iemFpSoftF32FromIprt(&r32Src2), &SoftState); + return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Result, pr32Res, fMxcsr | fDe); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_divps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + pResult->MXCSR = iemAImpl_divps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc2->ar32[0]); + pResult->MXCSR |= iemAImpl_divps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[1], &puSrc2->ar32[1]); + pResult->MXCSR |= iemAImpl_divps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc2->ar32[2]); + pResult->MXCSR |= iemAImpl_divps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc1->ar32[3], &puSrc2->ar32[3]); +} +#endif + + +/** + * DIVSS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_divss_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2)) +{ + pResult->MXCSR = iemAImpl_divps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], pr32Src2); + pResult->uResult.ar32[1] = puSrc1->ar32[1]; + pResult->uResult.ar32[2] = puSrc1->ar32[2]; + pResult->uResult.ar32[3] = puSrc1->ar32[3]; +} +#endif + + +/** + * DIVPD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_divpd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val1, PCRTFLOAT64U pr64Val2) +{ + if (iemSseBinaryValIsNaNR64(pr64Res, pr64Val1, pr64Val2, &fMxcsr)) + return fMxcsr; + + RTFLOAT64U r64Src1, r64Src2; + uint32_t fDe = iemSsePrepareValueR64(&r64Src1, fMxcsr, pr64Val1); + fDe |= iemSsePrepareValueR64(&r64Src2, fMxcsr, pr64Val2); + if (RTFLOAT64U_IS_ZERO(&r64Src2)) + { + if ( RTFLOAT64U_IS_ZERO(&r64Src1) + || RTFLOAT64U_IS_QUIET_NAN(&r64Src1)) + { + *pr64Res = g_ar64QNaN[1]; + return fMxcsr | X86_MXCSR_IE; + } + else if (RTFLOAT64U_IS_INF(&r64Src1)) + { + *pr64Res = g_ar64Infinity[r64Src1.s.fSign != r64Src2.s.fSign]; + return fMxcsr; + } + else + { + *pr64Res = g_ar64Infinity[r64Src1.s.fSign != r64Src2.s.fSign]; + return fMxcsr | X86_MXCSR_ZE; + } + } + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + float64_t r64Result = f64_div(iemFpSoftF64FromIprt(&r64Src1), iemFpSoftF64FromIprt(&r64Src2), &SoftState); + return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Result, pr64Res, fMxcsr | fDe); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_divpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + pResult->MXCSR = iemAImpl_divpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc2->ar64[0]); + pResult->MXCSR |= iemAImpl_divpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc1->ar64[1], &puSrc2->ar64[1]); +} +#endif + + +/** + * DIVSD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_divsd_u128_r64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2)) +{ + pResult->MXCSR = iemAImpl_divpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], pr64Src2); + pResult->uResult.ar64[1] = puSrc1->ar64[1]; +} +#endif + + +/** + * MAXPS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_maxps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val1, PCRTFLOAT32U pr32Val2) +{ + if (RTFLOAT32U_IS_NAN(pr32Val1) || RTFLOAT32U_IS_NAN(pr32Val2)) + { + /* The DAZ flag gets honored but the DE flag will not get set because \#IE has higher priority. */ + iemSsePrepareValueR32(pr32Res, fMxcsr, pr32Val2); + return fMxcsr | X86_MXCSR_IE; + } + + RTFLOAT32U r32Src1, r32Src2; + fMxcsr |= iemSsePrepareValueR32(&r32Src1, fMxcsr, pr32Val1); + fMxcsr |= iemSsePrepareValueR32(&r32Src2, fMxcsr, pr32Val2); + if (RTFLOAT32U_IS_ZERO(&r32Src1) && RTFLOAT32U_IS_ZERO(&r32Src2)) + { + *pr32Res = r32Src2; + return fMxcsr; + } + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + bool fLe = f32_le(iemFpSoftF32FromIprt(&r32Src1), iemFpSoftF32FromIprt(&r32Src2), &SoftState); + return iemSseSoftStateAndR32ToMxcsrAndIprtResultNoFz(&SoftState, + fLe + ? iemFpSoftF32FromIprt(&r32Src2) + : iemFpSoftF32FromIprt(&r32Src1), + pr32Res, fMxcsr); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_maxps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + pResult->MXCSR = iemAImpl_maxps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc2->ar32[0]); + pResult->MXCSR |= iemAImpl_maxps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[1], &puSrc2->ar32[1]); + pResult->MXCSR |= iemAImpl_maxps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc2->ar32[2]); + pResult->MXCSR |= iemAImpl_maxps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc1->ar32[3], &puSrc2->ar32[3]); +} +#endif + + +/** + * MAXSS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_maxss_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2)) +{ + pResult->MXCSR = iemAImpl_maxps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], pr32Src2); + pResult->uResult.ar32[1] = puSrc1->ar32[1]; + pResult->uResult.ar32[2] = puSrc1->ar32[2]; + pResult->uResult.ar32[3] = puSrc1->ar32[3]; +} +#endif + + +/** + * MAXPD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_maxpd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val1, PCRTFLOAT64U pr64Val2) +{ + if (RTFLOAT64U_IS_NAN(pr64Val1) || RTFLOAT64U_IS_NAN(pr64Val2)) + { + /* The DAZ flag gets honored but the DE flag will not get set because \#IE has higher priority. */ + iemSsePrepareValueR64(pr64Res, fMxcsr, pr64Val2); + return fMxcsr | X86_MXCSR_IE; + } + + RTFLOAT64U r64Src1, r64Src2; + fMxcsr |= iemSsePrepareValueR64(&r64Src1, fMxcsr, pr64Val1); + fMxcsr |= iemSsePrepareValueR64(&r64Src2, fMxcsr, pr64Val2); + if (RTFLOAT64U_IS_ZERO(&r64Src1) && RTFLOAT64U_IS_ZERO(&r64Src2)) + { + *pr64Res = r64Src2; + return fMxcsr; + } + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + bool fLe = f64_le(iemFpSoftF64FromIprt(&r64Src1), iemFpSoftF64FromIprt(&r64Src2), &SoftState); + return iemSseSoftStateAndR64ToMxcsrAndIprtResultNoFz(&SoftState, + fLe + ? iemFpSoftF64FromIprt(&r64Src2) + : iemFpSoftF64FromIprt(&r64Src1), + pr64Res, fMxcsr); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_maxpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + pResult->MXCSR = iemAImpl_maxpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc2->ar64[0]); + pResult->MXCSR |= iemAImpl_maxpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc1->ar64[1], &puSrc2->ar64[1]); +} +#endif + + +/** + * MAXSD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_maxsd_u128_r64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2)) +{ + pResult->MXCSR = iemAImpl_maxpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], pr64Src2); + pResult->uResult.ar64[1] = puSrc1->ar64[1]; +} +#endif + + +/** + * CVTSS2SD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_cvtss2sd_u128_r32_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val1) +{ + RTFLOAT32U r32Src1; + fMxcsr |= iemSsePrepareValueR32(&r32Src1, fMxcsr, pr32Val1); + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + float64_t r64Result = f32_to_f64(iemFpSoftF32FromIprt(&r32Src1), &SoftState); + return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Result, pr64Res, fMxcsr); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cvtss2sd_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2)) +{ + pResult->MXCSR = iemAImpl_cvtss2sd_u128_r32_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, pr32Src2); + pResult->uResult.ar64[1] = puSrc1->ar64[1]; +} +#endif + + +/** + * CVTSD2SS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_cvtsd2ss_u128_r64_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val1) +{ + RTFLOAT64U r64Src1; + fMxcsr |= iemSsePrepareValueR64(&r64Src1, fMxcsr, pr64Val1); + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + float32_t r32Result = f64_to_f32(iemFpSoftF64FromIprt(&r64Src1), &SoftState); + return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Result, pr32Res, fMxcsr); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cvtsd2ss_u128_r64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2)) +{ + pResult->MXCSR = iemAImpl_cvtsd2ss_u128_r64_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, pr64Src2); + pResult->uResult.ar32[1] = puSrc1->ar32[1]; + pResult->uResult.ar32[2] = puSrc1->ar32[2]; + pResult->uResult.ar32[3] = puSrc1->ar32[3]; +} +#endif + + +/** + * HADDPS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_haddps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + pResult->MXCSR = iemAImpl_addps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc1->ar32[1]); + pResult->MXCSR |= iemAImpl_addps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc1->ar32[3]); + pResult->MXCSR |= iemAImpl_addps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc2->ar32[0], &puSrc2->ar32[1]); + pResult->MXCSR |= iemAImpl_addps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc2->ar32[2], &puSrc2->ar32[3]); +} +#endif + + +/** + * HADDPD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_haddpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + pResult->MXCSR = iemAImpl_addpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc1->ar64[1]); + pResult->MXCSR |= iemAImpl_addpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc2->ar64[0], &puSrc2->ar64[1]); +} +#endif + + +/** + * HSUBPS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_hsubps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + pResult->MXCSR = iemAImpl_subps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc1->ar32[1]); + pResult->MXCSR |= iemAImpl_subps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc1->ar32[3]); + pResult->MXCSR |= iemAImpl_subps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc2->ar32[0], &puSrc2->ar32[1]); + pResult->MXCSR |= iemAImpl_subps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc2->ar32[2], &puSrc2->ar32[3]); +} +#endif + + +/** + * HSUBPD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_hsubpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + pResult->MXCSR = iemAImpl_subpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc1->ar64[1]); + pResult->MXCSR |= iemAImpl_subpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc2->ar64[0], &puSrc2->ar64[1]); +} +#endif + + +/** + * SQRTPS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_sqrtps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val) +{ + if (iemSseUnaryValIsNaNR32(pr32Res, pr32Val, &fMxcsr)) + return fMxcsr; + + RTFLOAT32U r32Src; + uint32_t fDe = iemSsePrepareValueR32(&r32Src, fMxcsr, pr32Val); + if (RTFLOAT32U_IS_ZERO(&r32Src)) + { + *pr32Res = r32Src; + return fMxcsr; + } + else if (r32Src.s.fSign) + { + *pr32Res = g_ar32QNaN[1]; + return fMxcsr | X86_MXCSR_IE; + } + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + float32_t r32Result = f32_sqrt(iemFpSoftF32FromIprt(&r32Src), &SoftState); + return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Result, pr32Res, fMxcsr | fDe); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_sqrtps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + RT_NOREF(puSrc1); + + pResult->MXCSR = iemAImpl_sqrtps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc2->ar32[0]); + pResult->MXCSR |= iemAImpl_sqrtps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc2->ar32[1]); + pResult->MXCSR |= iemAImpl_sqrtps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc2->ar32[2]); + pResult->MXCSR |= iemAImpl_sqrtps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc2->ar32[3]); +} +#endif + + +/** + * SQRTSS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_sqrtss_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2)) +{ + pResult->MXCSR = iemAImpl_sqrtps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, pr32Src2); + pResult->uResult.ar32[1] = puSrc1->ar32[1]; + pResult->uResult.ar32[2] = puSrc1->ar32[2]; + pResult->uResult.ar32[3] = puSrc1->ar32[3]; +} +#endif + + +/** + * SQRTPD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_sqrtpd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val) +{ + if (iemSseUnaryValIsNaNR64(pr64Res, pr64Val, &fMxcsr)) + return fMxcsr; + + RTFLOAT64U r64Src; + uint32_t fDe = iemSsePrepareValueR64(&r64Src, fMxcsr, pr64Val); + if (RTFLOAT64U_IS_ZERO(&r64Src)) + { + *pr64Res = r64Src; + return fMxcsr; + } + else if (r64Src.s.fSign) + { + *pr64Res = g_ar64QNaN[1]; + return fMxcsr | X86_MXCSR_IE; + } + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + float64_t r64Result = f64_sqrt(iemFpSoftF64FromIprt(&r64Src), &SoftState); + return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Result, pr64Res, fMxcsr | fDe); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_sqrtpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + RT_NOREF(puSrc1); + + pResult->MXCSR = iemAImpl_sqrtpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc2->ar64[0]); + pResult->MXCSR |= iemAImpl_sqrtpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc2->ar64[1]); +} +#endif + + +/** + * SQRTSD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_sqrtsd_u128_r64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2)) +{ + pResult->MXCSR = iemAImpl_sqrtpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, pr64Src2); + pResult->uResult.ar64[1] = puSrc1->ar64[1]; +} +#endif + + +#ifdef IEM_WITHOUT_ASSEMBLY +/** + * RSQRTPS + */ +static uint32_t iemAImpl_rsqrt_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val) +{ + RT_NOREF(pr32Res); + RT_NOREF(pr32Val); + AssertReleaseFailed(); + return fMxcsr; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_rsqrtps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + RT_NOREF(puSrc1); + + pResult->MXCSR = iemAImpl_rsqrt_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc2->ar32[0]); + pResult->MXCSR |= iemAImpl_rsqrt_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc2->ar32[1]); + pResult->MXCSR |= iemAImpl_rsqrt_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc2->ar32[2]); + pResult->MXCSR |= iemAImpl_rsqrt_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc2->ar32[3]); +} + + +/** + * RSQRTSS + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_rsqrtss_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2)) +{ + pResult->MXCSR = iemAImpl_rsqrt_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, pr32Src2); + pResult->uResult.ar32[1] = puSrc1->ar32[1]; + pResult->uResult.ar32[2] = puSrc1->ar32[2]; + pResult->uResult.ar32[3] = puSrc1->ar32[3]; +} +#endif + + +/** + * ADDSUBPS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_addsubps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + RT_NOREF(puSrc1); + + pResult->MXCSR = iemAImpl_subps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc2->ar32[0]); + pResult->MXCSR |= iemAImpl_addps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[1], &puSrc2->ar32[1]); + pResult->MXCSR |= iemAImpl_subps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc2->ar32[2]); + pResult->MXCSR |= iemAImpl_addps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc1->ar32[3], &puSrc2->ar32[3]); +} +#endif + + +/** + * ADDSUBPD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_addsubpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + RT_NOREF(puSrc1); + + pResult->MXCSR = iemAImpl_subpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc2->ar64[0]); + pResult->MXCSR |= iemAImpl_addpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc1->ar64[1], &puSrc2->ar64[1]); +} +#endif + + +/** + * CVTPD2PS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_cvtpd2ps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val1) +{ + RTFLOAT64U r64Src1; + fMxcsr |= iemSsePrepareValueR64(&r64Src1, fMxcsr, pr64Val1); + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + float32_t r32Result = f64_to_f32(iemFpSoftF64FromIprt(&r64Src1), &SoftState); + return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Result, pr32Res, fMxcsr); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cvtpd2ps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + RT_NOREF(puSrc1); + + pResult->MXCSR = iemAImpl_cvtpd2ps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc2->ar64[0]); + pResult->MXCSR |= iemAImpl_cvtpd2ps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc2->ar64[1]); + pResult->uResult.au32[2] = 0; + pResult->uResult.au32[3] = 0; +} +#endif + + +/** + * CVTPS2PD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_cvtps2pd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val1) +{ + RTFLOAT32U r32Src1; + fMxcsr |= iemSsePrepareValueR32(&r32Src1, fMxcsr, pr32Val1); + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + float64_t r64Result = f32_to_f64(iemFpSoftF32FromIprt(&r32Src1), &SoftState); + return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Result, pr64Res, fMxcsr); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cvtps2pd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + RT_NOREF(puSrc1); + + pResult->MXCSR = iemAImpl_cvtps2pd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc2->ar32[0]); + pResult->MXCSR |= iemAImpl_cvtps2pd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc2->ar32[1]); +} +#endif + + +/** + * CVTDQ2PS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_cvtdq2ps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, int32_t i32Val) +{ + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + float32_t r32Result = i32_to_f32(i32Val, &SoftState); + return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Result, pr32Res, fMxcsr); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cvtdq2ps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + RT_NOREF(puSrc1); + + pResult->MXCSR = iemAImpl_cvtdq2ps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, puSrc2->ai32[0]); + pResult->MXCSR |= iemAImpl_cvtdq2ps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, puSrc2->ai32[1]); + pResult->MXCSR |= iemAImpl_cvtdq2ps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, puSrc2->ai32[2]); + pResult->MXCSR |= iemAImpl_cvtdq2ps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, puSrc2->ai32[3]); +} +#endif + + +/** + * CVTPS2DQ + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_cvtps2dq_u128_worker(int32_t *pi32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Src) +{ + RTFLOAT32U r32Src; + iemSsePrepareValueR32(&r32Src, fMxcsr, pr32Src); /* De-normal seems to be ignored. */ + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + *pi32Res = f32_to_i32(iemFpSoftF32FromIprt(&r32Src), SoftState.roundingMode, true /*exact*/, &SoftState); + return fMxcsr | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cvtps2dq_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + RT_NOREF(puSrc1); + + pResult->MXCSR = iemAImpl_cvtps2dq_u128_worker(&pResult->uResult.ai32[0], pFpuState->MXCSR, &puSrc2->ar32[0]); + pResult->MXCSR |= iemAImpl_cvtps2dq_u128_worker(&pResult->uResult.ai32[1], pFpuState->MXCSR, &puSrc2->ar32[1]); + pResult->MXCSR |= iemAImpl_cvtps2dq_u128_worker(&pResult->uResult.ai32[2], pFpuState->MXCSR, &puSrc2->ar32[2]); + pResult->MXCSR |= iemAImpl_cvtps2dq_u128_worker(&pResult->uResult.ai32[3], pFpuState->MXCSR, &puSrc2->ar32[3]); +} +#endif + + +/** + * CVTTPS2DQ + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_cvttps2dq_u128_worker(int32_t *pi32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Src) +{ + RTFLOAT32U r32Src; + iemSsePrepareValueR32(&r32Src, fMxcsr, pr32Src); /* De-normal seems to be ignored. */ + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + SoftState.roundingMode = softfloat_round_minMag; + *pi32Res = f32_to_i32_r_minMag(iemFpSoftF32FromIprt(&r32Src), true /*exact*/, &SoftState); + return fMxcsr | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cvttps2dq_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + RT_NOREF(puSrc1); + + pResult->MXCSR = iemAImpl_cvttps2dq_u128_worker(&pResult->uResult.ai32[0], pFpuState->MXCSR, &puSrc2->ar32[0]); + pResult->MXCSR |= iemAImpl_cvttps2dq_u128_worker(&pResult->uResult.ai32[1], pFpuState->MXCSR, &puSrc2->ar32[1]); + pResult->MXCSR |= iemAImpl_cvttps2dq_u128_worker(&pResult->uResult.ai32[2], pFpuState->MXCSR, &puSrc2->ar32[2]); + pResult->MXCSR |= iemAImpl_cvttps2dq_u128_worker(&pResult->uResult.ai32[3], pFpuState->MXCSR, &puSrc2->ar32[3]); +} +#endif + + +/** + * CVTTPD2DQ + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_cvttpd2dq_u128_worker(int32_t *pi32Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Src) +{ + RTFLOAT64U r64Src; + iemSsePrepareValueR64(&r64Src, fMxcsr, pr64Src); /* De-normal seems to be ignored. */ + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + SoftState.roundingMode = softfloat_round_minMag; + *pi32Res = f64_to_i32(iemFpSoftF64FromIprt(&r64Src), SoftState.roundingMode, true /*exact*/, &SoftState); + return fMxcsr | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cvttpd2dq_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + RT_NOREF(puSrc1); + + pResult->MXCSR = iemAImpl_cvttpd2dq_u128_worker(&pResult->uResult.ai32[0], pFpuState->MXCSR, &puSrc2->ar64[0]); + pResult->MXCSR |= iemAImpl_cvttpd2dq_u128_worker(&pResult->uResult.ai32[1], pFpuState->MXCSR, &puSrc2->ar64[1]); + pResult->uResult.au64[1] = 0; +} +#endif + + +/** + * CVTDQ2PD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_cvtdq2pd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, int32_t i32Val) +{ + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + float64_t r64Result = i32_to_f64(i32Val, &SoftState); + return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Result, pr64Res, fMxcsr); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cvtdq2pd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + RT_NOREF(puSrc1); + + pResult->MXCSR = iemAImpl_cvtdq2pd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, puSrc2->ai32[0]); + pResult->MXCSR |= iemAImpl_cvtdq2pd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, puSrc2->ai32[1]); +} +#endif + + +/** + * CVTPD2DQ + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_cvtpd2dq_u128_worker(int32_t *pi32Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Src) +{ + RTFLOAT64U r64Src; + iemSsePrepareValueR64(&r64Src, fMxcsr, pr64Src); /* De-normal seems to be ignored. */ + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + *pi32Res = f64_to_i32(iemFpSoftF64FromIprt(&r64Src), SoftState.roundingMode, true /*exact*/, &SoftState); + return fMxcsr | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cvtpd2dq_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + RT_NOREF(puSrc1); + + pResult->MXCSR = iemAImpl_cvtpd2dq_u128_worker(&pResult->uResult.ai32[0], pFpuState->MXCSR, &puSrc2->ar64[0]); + pResult->MXCSR |= iemAImpl_cvtpd2dq_u128_worker(&pResult->uResult.ai32[1], pFpuState->MXCSR, &puSrc2->ar64[1]); + pResult->uResult.au64[1] = 0; +} +#endif + + +/** + * [V]SHUFPS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_shufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil)) +{ + RTUINT128U const uSrc1 = *puDst; + RTUINT128U const uSrc2 = *puSrc; + ASMCompilerBarrier(); + puDst->au32[0] = uSrc1.au32[bEvil & 0x3]; + puDst->au32[1] = uSrc1.au32[(bEvil >> 2) & 0x3]; + puDst->au32[2] = uSrc2.au32[(bEvil >> 4) & 0x3]; + puDst->au32[3] = uSrc2.au32[(bEvil >> 6) & 0x3]; +} +#endif + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil)) +{ + RTUINT128U const uSrc1 = *puSrc1; + RTUINT128U const uSrc2 = *puSrc2; + ASMCompilerBarrier(); + puDst->au32[0] = uSrc1.au32[bEvil & 0x3]; + puDst->au32[1] = uSrc1.au32[(bEvil >> 2) & 0x3]; + puDst->au32[2] = uSrc2.au32[(bEvil >> 4) & 0x3]; + puDst->au32[3] = uSrc2.au32[(bEvil >> 6) & 0x3]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil)) +{ + RTUINT256U const uSrc1 = *puSrc1; + RTUINT256U const uSrc2 = *puSrc2; + ASMCompilerBarrier(); + puDst->au32[0] = uSrc1.au32[bEvil & 0x3]; + puDst->au32[1] = uSrc1.au32[(bEvil >> 2) & 0x3]; + puDst->au32[2] = uSrc2.au32[(bEvil >> 4) & 0x3]; + puDst->au32[3] = uSrc2.au32[(bEvil >> 6) & 0x3]; + + puDst->au32[4] = uSrc1.au32[4 + (bEvil & 0x3)]; + puDst->au32[5] = uSrc1.au32[4 + ((bEvil >> 2) & 0x3)]; + puDst->au32[6] = uSrc2.au32[4 + ((bEvil >> 4) & 0x3)]; + puDst->au32[7] = uSrc2.au32[4 + ((bEvil >> 6) & 0x3)]; +} + + +/** + * [V]SHUFPD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_shufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil)) +{ + RTUINT128U const uSrc1 = *puDst; + RTUINT128U const uSrc2 = *puSrc; + ASMCompilerBarrier(); + puDst->au64[0] = (bEvil & RT_BIT(0)) ? uSrc1.au64[1] : uSrc1.au64[0]; + puDst->au64[1] = (bEvil & RT_BIT(1)) ? uSrc2.au64[1] : uSrc2.au64[0]; +} +#endif + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil)) +{ + RTUINT128U const uSrc1 = *puSrc1; + RTUINT128U const uSrc2 = *puSrc2; + ASMCompilerBarrier(); + puDst->au64[0] = (bEvil & RT_BIT(0)) ? uSrc1.au64[1] : uSrc1.au64[0]; + puDst->au64[1] = (bEvil & RT_BIT(1)) ? uSrc2.au64[1] : uSrc2.au64[0]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil)) +{ + RTUINT256U const uSrc1 = *puSrc1; + RTUINT256U const uSrc2 = *puSrc2; + ASMCompilerBarrier(); + puDst->au64[0] = (bEvil & RT_BIT(0)) ? uSrc1.au64[1] : uSrc1.au64[0]; + puDst->au64[1] = (bEvil & RT_BIT(1)) ? uSrc2.au64[1] : uSrc2.au64[0]; + puDst->au64[2] = (bEvil & RT_BIT(2)) ? uSrc1.au64[3] : uSrc1.au64[2]; + puDst->au64[3] = (bEvil & RT_BIT(3)) ? uSrc2.au64[3] : uSrc2.au64[2]; +} + + +/* + * PHMINPOSUW / VPHMINPOSUW + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_phminposuw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + uint16_t u16Min = puSrc->au16[0]; + uint8_t idxMin = 0; + + for (uint8_t i = 1; i < RT_ELEMENTS(puSrc->au16); i++) + if (puSrc->au16[i] < u16Min) + { + u16Min = puSrc->au16[i]; + idxMin = i; + } + + puDst->au64[0] = 0; + puDst->au64[1] = 0; + puDst->au16[0] = u16Min; + puDst->au16[1] = idxMin; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vphminposuw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + iemAImpl_phminposuw_u128_fallback(puDst, puSrc); +} + + +/* + * [V]PBLENDVB + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_pblendvb_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask)) +{ + for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au8); i++) + if (puMask->au8[i] & RT_BIT(7)) + puDst->au8[i] = puSrc->au8[i]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpblendvb_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask)) +{ + for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au8); i++) + puDst->au8[i] = puMask->au8[i] & RT_BIT(7) ? puSrc2->au8[i] : puSrc1->au8[i]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpblendvb_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask)) +{ + for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au8); i++) + puDst->au8[i] = puMask->au8[i] & RT_BIT(7) ? puSrc2->au8[i] : puSrc1->au8[i]; +} + + +/* + * [V]BLENDVPS + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_blendvps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask)) +{ + for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au32); i++) + if (puMask->au32[i] & RT_BIT_32(31)) + puDst->au32[i] = puSrc->au32[i]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vblendvps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask)) +{ + for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au32); i++) + puDst->au32[i] = (puMask->au32[i] & RT_BIT_32(31)) ? puSrc2->au32[i] : puSrc1->au32[i]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vblendvps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask)) +{ + for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au32); i++) + puDst->au32[i] = (puMask->au32[i] & RT_BIT_32(31)) ? puSrc2->au32[i] : puSrc1->au32[i]; +} + + +/* + * [V]BLENDVPD + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_blendvpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask)) +{ + if (puMask->au64[0] & RT_BIT_64(63)) puDst->au64[0] = puSrc->au64[0]; + if (puMask->au64[1] & RT_BIT_64(63)) puDst->au64[1] = puSrc->au64[1]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vblendvpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask)) +{ + for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au64); i++) + puDst->au64[i] = (puMask->au64[i] & RT_BIT_64(63)) ? puSrc2->au64[i] : puSrc1->au64[i]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vblendvpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask)) +{ + for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au64); i++) + puDst->au64[i] = (puMask->au64[i] & RT_BIT_64(63)) ? puSrc2->au64[i] : puSrc1->au64[i]; +} + + +/** + * [V]PALIGNR + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64_fallback,(uint64_t *pu64Dst, uint64_t u64Src2, uint8_t bEvil)) +{ + uint64_t const u64Src1 = *pu64Dst; + ASMCompilerBarrier(); + + if (bEvil >= 16) + *pu64Dst = 0; + else if (bEvil >= 8) + *pu64Dst = u64Src1 >> ((bEvil - 8) * 8); + else + { + uint8_t cShift = bEvil * 8; + *pu64Dst = ((u64Src1 & (RT_BIT_64(cShift) - 1)) << ((8 - bEvil) * 8)) + | (u64Src2 >> cShift); + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil)) +{ + RTUINT128U const uSrc1 = *puDst; + RTUINT128U const uSrc2 = *puSrc; + ASMCompilerBarrier(); + + puDst->au64[0] = 0; + puDst->au64[1] = 0; + if (bEvil >= 32) + { /* Everything stays 0. */ } + else if (bEvil >= 16) + { + bEvil -= 16; + for (uint8_t i = bEvil; i < RT_ELEMENTS(puDst->au8); i++) + puDst->au8[i - bEvil] = uSrc1.au8[i]; + } + else + { + for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au8) - bEvil; i++) + puDst->au8[i] = uSrc2.au8[i + bEvil]; + for (uint8_t i = 0; i < bEvil; i++) + puDst->au8[i + RT_ELEMENTS(puDst->au8) - bEvil] = uSrc1.au8[i]; + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpalignr_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil)) +{ + RTUINT128U const uSrc1 = *puSrc1; /* Might overlap with destination. */ + RTUINT128U const uSrc2 = *puSrc2; + ASMCompilerBarrier(); + + puDst->au64[0] = 0; + puDst->au64[1] = 0; + if (bEvil >= 32) + { /* Everything stays 0. */ } + else if (bEvil >= 16) + { + bEvil -= 16; + for (uint8_t i = bEvil; i < RT_ELEMENTS(puDst->au8); i++) + puDst->au8[i - bEvil] = uSrc1.au8[i]; + } + else + { + for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au8) - bEvil; i++) + puDst->au8[i] = uSrc2.au8[i + bEvil]; + for (uint8_t i = 0; i < bEvil; i++) + puDst->au8[i + RT_ELEMENTS(puDst->au8) - bEvil] = uSrc1.au8[i]; + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpalignr_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil)) +{ + RTUINT256U const uSrc1 = *puSrc1; /* Might overlap with destination. */ + RTUINT256U const uSrc2 = *puSrc2; + ASMCompilerBarrier(); + + iemAImpl_vpalignr_u128_fallback(&puDst->au128[0], &uSrc1.au128[0], &uSrc2.au128[0], bEvil); + iemAImpl_vpalignr_u128_fallback(&puDst->au128[1], &uSrc1.au128[1], &uSrc2.au128[1], bEvil); +} + + +/** + * [V]PBLENDW + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_pblendw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil)) +{ + for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au16); i++) + if (bEvil & RT_BIT(i)) + puDst->au16[i] = puSrc->au16[i]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpblendw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil)) +{ + for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au16); i++) + if (bEvil & RT_BIT(i)) + puDst->au16[i] = puSrc2->au16[i]; + else + puDst->au16[i] = puSrc1->au16[i]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpblendw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil)) +{ + for (uint8_t i = 0; i < 8; i++) + if (bEvil & RT_BIT(i)) + { + puDst->au16[ i] = puSrc2->au16[ i]; + puDst->au16[8 + i] = puSrc2->au16[8 + i]; + } + else + { + puDst->au16[ i] = puSrc1->au16[ i]; + puDst->au16[8 + i] = puSrc1->au16[8 + i]; + } +} + + +/** + * [V]BLENDPS + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_blendps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil)) +{ + for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au32); i++) + if (bEvil & RT_BIT(i)) + puDst->au32[i] = puSrc->au32[i]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vblendps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil)) +{ + for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au32); i++) + if (bEvil & RT_BIT(i)) + puDst->au32[i] = puSrc2->au32[i]; + else + puDst->au32[i] = puSrc1->au32[i]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vblendps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil)) +{ + for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au32); i++) + if (bEvil & RT_BIT(i)) + puDst->au32[i] = puSrc2->au32[i]; + else + puDst->au32[i] = puSrc1->au32[i]; +} + + +/** + * [V]BLENDPD + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_blendpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil)) +{ + for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au64); i++) + if (bEvil & RT_BIT(i)) + puDst->au64[i] = puSrc->au64[i]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vblendpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil)) +{ + for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au64); i++) + if (bEvil & RT_BIT(i)) + puDst->au64[i] = puSrc2->au64[i]; + else + puDst->au64[i] = puSrc1->au64[i]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vblendpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil)) +{ + for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au64); i++) + if (bEvil & RT_BIT(i)) + puDst->au64[i] = puSrc2->au64[i]; + else + puDst->au64[i] = puSrc1->au64[i]; +} + + +/** + * AES tables and helper routines. Tables from Intel AES-NI whitepaper. + */ + +static uint8_t iemAImpl_aes_sbox[] = { + 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, + 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, + 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, + 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, + 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, + 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, + 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, + 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, + 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, + 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, + 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, + 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, + 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, + 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, + 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, + 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 +}; + +/* The InvS-Box lookup table. */ +static uint8_t iemAImpl_aes_inv_sbox[] = { + 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, + 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, + 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, + 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, + 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, + 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, + 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, + 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, + 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, + 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, + 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, + 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, + 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, + 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, + 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, + 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d +}; + +/* The ShiftRows lookup table. */ +static uint8_t iemAImpl_aes_shift_rows_tbl[] = { + 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11 +}; + +/* The InvShiftRows lookup table. */ +static uint8_t iemAImpl_aes_inv_shift_rows_tbl[] = { + 0, 13, 10, 7, 4, 1, 14, 11, 8, 5, 2, 15, 12, 9, 6, 3 +}; + +static inline RTUINT128U iemAImpl_aes_sub_bytes(PCRTUINT128U puSrc, uint8_t abSubst[256]) +{ + RTUINT128U uVal; + int i; + + for (i = 0; i < 16; ++i) + uVal.au8[i] = abSubst[puSrc->au8[i]]; + + return uVal; +} + +static inline uint8_t iemAImpl_aes_xtime(uint8_t u) +{ + return (u << 1) ^ (((u >> 7) & 1) * 27); +} + +static RTUINT128U iemAImpl_aes_mix_col(PCRTUINT128U puSrc) +{ + RTUINT128U uVal; + int i; + uint8_t tmp; + + for (i = 0; i < 16; i += 4) { + tmp = puSrc->au8[i+0] ^ puSrc->au8[i+1] ^ puSrc->au8[i+2] ^ puSrc->au8[i+3]; + uVal.au8[i+0] = puSrc->au8[i+0] ^ tmp ^ iemAImpl_aes_xtime(puSrc->au8[i+0] ^ puSrc->au8[i+1]); + uVal.au8[i+1] = puSrc->au8[i+1] ^ tmp ^ iemAImpl_aes_xtime(puSrc->au8[i+1] ^ puSrc->au8[i+2]); + uVal.au8[i+2] = puSrc->au8[i+2] ^ tmp ^ iemAImpl_aes_xtime(puSrc->au8[i+2] ^ puSrc->au8[i+3]); + uVal.au8[i+3] = puSrc->au8[i+3] ^ tmp ^ iemAImpl_aes_xtime(puSrc->au8[i+3] ^ puSrc->au8[i+0]); + } + + return uVal; +} + +static inline RTUINT128U iemAImpl_aes_shift_rows(PCRTUINT128U puSrc, uint8_t abShift[16]) +{ + RTUINT128U uVal; + int i; + + for (i = 0; i < 16; ++i) + uVal.au8[i] = puSrc->au8[abShift[i]]; + + return uVal; +} + +static uint8_t iemAImpl_aes_clmul(uint8_t a, uint8_t b) +{ + uint8_t val; + + val = ((b >> 0) & 1) * a; + val ^= ((b >> 1) & 1) * iemAImpl_aes_xtime(a); + val ^= ((b >> 2) & 1) * iemAImpl_aes_xtime(iemAImpl_aes_xtime(a)); + val ^= ((b >> 3) & 1) * iemAImpl_aes_xtime(iemAImpl_aes_xtime(iemAImpl_aes_xtime(a))); + val ^= ((b >> 4) & 1) * iemAImpl_aes_xtime(iemAImpl_aes_xtime(iemAImpl_aes_xtime(iemAImpl_aes_xtime(a)))); + + return val; +} + +static RTUINT128U iemAImpl_aes_inv_mix_col(PCRTUINT128U puSrc) +{ + RTUINT128U uVal; + int i; + + for (i = 0; i < 16; i += 4) { + uVal.au8[i+0] = iemAImpl_aes_clmul(puSrc->au8[i+0], 0x0e) ^ iemAImpl_aes_clmul(puSrc->au8[i+1], 0x0b)^ iemAImpl_aes_clmul(puSrc->au8[i+2], 0x0d) ^ iemAImpl_aes_clmul(puSrc->au8[i+3], 0x09); + uVal.au8[i+1] = iemAImpl_aes_clmul(puSrc->au8[i+0], 0x09) ^ iemAImpl_aes_clmul(puSrc->au8[i+1], 0x0e)^ iemAImpl_aes_clmul(puSrc->au8[i+2], 0x0b) ^ iemAImpl_aes_clmul(puSrc->au8[i+3], 0x0d); + uVal.au8[i+2] = iemAImpl_aes_clmul(puSrc->au8[i+0], 0x0d) ^ iemAImpl_aes_clmul(puSrc->au8[i+1], 0x09)^ iemAImpl_aes_clmul(puSrc->au8[i+2], 0x0e) ^ iemAImpl_aes_clmul(puSrc->au8[i+3], 0x0b); + uVal.au8[i+3] = iemAImpl_aes_clmul(puSrc->au8[i+0], 0x0b) ^ iemAImpl_aes_clmul(puSrc->au8[i+1], 0x0d)^ iemAImpl_aes_clmul(puSrc->au8[i+2], 0x09) ^ iemAImpl_aes_clmul(puSrc->au8[i+3], 0x0e); + } + + return uVal; +} + +static inline uint32_t iemAImpl_aes_sub_word(uint32_t w) +{ + RTUINT32U uTmp; + + uTmp.au32[0] = w; + uTmp.au8[0] = iemAImpl_aes_sbox[uTmp.au8[0]]; + uTmp.au8[1] = iemAImpl_aes_sbox[uTmp.au8[1]]; + uTmp.au8[2] = iemAImpl_aes_sbox[uTmp.au8[2]]; + uTmp.au8[3] = iemAImpl_aes_sbox[uTmp.au8[3]]; + + return uTmp.au32[0]; +} + +static inline uint32_t iemAImpl_aes_rot_word(uint32_t w) +{ + return (w << 24) | (w >> 8); +} + +/** + * [V]AESKEYGENASSIST + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_aeskeygenassist_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bImm)) +{ + RTUINT128U uTmp; + uint32_t uRCon = bImm; /* Round constant. */ + + uTmp.au32[0] = iemAImpl_aes_sub_word(puSrc->au32[1]); /* puSrc = KeyGen. */ + uTmp.au32[1] = iemAImpl_aes_rot_word(iemAImpl_aes_sub_word(puSrc->au32[1])) ^ uRCon; + uTmp.au32[2] = iemAImpl_aes_sub_word(puSrc->au32[3]); + uTmp.au32[3] = iemAImpl_aes_rot_word(iemAImpl_aes_sub_word(puSrc->au32[3])) ^ uRCon; + + *puDst = uTmp; +} + + +/** + * [V]AESIMC + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_aesimc_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + *puDst = iemAImpl_aes_inv_mix_col(puSrc); /* Src = Key. */ +} + + +/** + * [V]AESENC + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_aesenc_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uTmp; + + uTmp = iemAImpl_aes_shift_rows(puDst, iemAImpl_aes_shift_rows_tbl); /* Dst = state. */ + uTmp = iemAImpl_aes_sub_bytes(&uTmp, iemAImpl_aes_sbox); + uTmp = iemAImpl_aes_mix_col(&uTmp); + uTmp.au64[0] ^= puSrc->au64[0]; /* Src = Round Key. */ + uTmp.au64[1] ^= puSrc->au64[1]; + + *puDst = uTmp; +} + + +/** + * [V]AESENCLAST + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_aesenclast_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uTmp; + + uTmp = iemAImpl_aes_shift_rows(puDst, iemAImpl_aes_shift_rows_tbl); /* Dst = state. */ + uTmp = iemAImpl_aes_sub_bytes(&uTmp, iemAImpl_aes_sbox); + uTmp.au64[0] ^= puSrc->au64[0]; /* Src = Round Key. */ + uTmp.au64[1] ^= puSrc->au64[1]; + + *puDst = uTmp; +} + + +/** + * [V]AESDEC + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_aesdec_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uTmp; + + uTmp = iemAImpl_aes_shift_rows(puDst, iemAImpl_aes_inv_shift_rows_tbl); /* Dst = state. */ + uTmp = iemAImpl_aes_sub_bytes(&uTmp, iemAImpl_aes_inv_sbox); + uTmp = iemAImpl_aes_inv_mix_col(&uTmp); + uTmp.au64[0] ^= puSrc->au64[0]; /* Src = Round Key. */ + uTmp.au64[1] ^= puSrc->au64[1]; + + *puDst = uTmp; +} + + +/** + * [V]AESDECLAST + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_aesdeclast_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc)) +{ + RTUINT128U uTmp; + + uTmp = iemAImpl_aes_shift_rows(puDst, iemAImpl_aes_inv_shift_rows_tbl); /* Dst = state. */ + uTmp = iemAImpl_aes_sub_bytes(&uTmp, iemAImpl_aes_inv_sbox); + uTmp.au64[0] ^= puSrc->au64[0]; /* Src = Round Key. */ + uTmp.au64[1] ^= puSrc->au64[1]; + + *puDst = uTmp; +} + + +/** + * [V]PCMPISTRI + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpistri_u128_fallback,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPISTRISRC pSrc, uint8_t bEvil)) +{ + RT_NOREF(pu32Ecx, pEFlags, pSrc, bEvil); + AssertReleaseFailed(); +} + + +/* + * [V]PCLMULQDQ + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_pclmulqdq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil)) +{ + iemAImpl_vpclmulqdq_u128_fallback(puDst, puDst, puSrc, bEvil); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpclmulqdq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil)) +{ + uint64_t uSrc1 = puSrc1->au64[bEvil & 0x1]; + uint64_t uSrc2 = puSrc2->au64[(bEvil >> 4) & 0x1]; + + puDst->au64[0] = 0; + puDst->au64[1] = 0; + + /* + * See https://en.wikipedia.org/wiki/Carry-less_product#Example (as of 2022-09-08) for the algorithm. + * Do the first round outside the loop to avoid ASAN complaining about shift exponent being too large (64) + * and squeeze out some optimizations. + */ + if (uSrc1 & 0x1) + puDst->au64[0] = uSrc2; + + uSrc1 >>= 1; + + uint8_t iDigit = 1; + while (uSrc1) + { + if (uSrc1 & 0x1) + { + puDst->au64[0] ^= (uSrc2 << iDigit); + puDst->au64[1] ^= uSrc2 >> (64 - iDigit); + } + + uSrc1 >>= 1; + iDigit++; + } +} + + +/** + * [V]PINSRW + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_pinsrw_u64,(uint64_t *pu64Dst, uint16_t u16Src, uint8_t bEvil)) +{ + uint8_t cShift = (bEvil & 0x3) * 16; + *pu64Dst = (*pu64Dst & ~(UINT64_C(0xffff) << cShift)) | ((uint64_t)u16Src << cShift); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pinsrw_u128,(PRTUINT128U puDst, uint16_t u16Src, uint8_t bEvil)) +{ + puDst->au16[bEvil & 0x7] = u16Src; +} +#endif + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpinsrw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint16_t u16Src, uint8_t bEvil)) +{ + *puDst = *puSrc; + puDst->au16[bEvil & 0x7] = u16Src; +} + + +/** + * [V]PEXTRW + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_pextrw_u64,(uint16_t *pu16Dst, uint64_t u64Src, uint8_t bEvil)) +{ + *pu16Dst = (uint16_t)(u64Src >> ((bEvil & 0x3) * 16)); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_pextrw_u128,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil)) +{ + *pu16Dst = puSrc->au16[bEvil & 0x7]; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vpextrw_u128_fallback,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil)) +{ + *pu16Dst = puSrc->au16[bEvil & 0x7]; +} + + +/** + * [V]MOVMSKPS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_movmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc)) +{ + *pu8Dst = puSrc->au32[0] >> 31; + *pu8Dst |= (puSrc->au32[1] >> 31) << 1; + *pu8Dst |= (puSrc->au32[2] >> 31) << 2; + *pu8Dst |= (puSrc->au32[3] >> 31) << 3; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc)) +{ + *pu8Dst = puSrc->au32[0] >> 31; + *pu8Dst |= (puSrc->au32[1] >> 31) << 1; + *pu8Dst |= (puSrc->au32[2] >> 31) << 2; + *pu8Dst |= (puSrc->au32[3] >> 31) << 3; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc)) +{ + *pu8Dst = puSrc->au32[0] >> 31; + *pu8Dst |= (puSrc->au32[1] >> 31) << 1; + *pu8Dst |= (puSrc->au32[2] >> 31) << 2; + *pu8Dst |= (puSrc->au32[3] >> 31) << 3; + *pu8Dst |= (puSrc->au32[4] >> 31) << 4; + *pu8Dst |= (puSrc->au32[5] >> 31) << 5; + *pu8Dst |= (puSrc->au32[6] >> 31) << 6; + *pu8Dst |= (puSrc->au32[7] >> 31) << 7; +} + + +/** + * [V]MOVMSKPD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_movmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc)) +{ + *pu8Dst = puSrc->au64[0] >> 63; + *pu8Dst |= (puSrc->au64[1] >> 63) << 1; +} + +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc)) +{ + *pu8Dst = puSrc->au64[0] >> 63; + *pu8Dst |= (puSrc->au64[1] >> 63) << 1; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc)) +{ + *pu8Dst = puSrc->au64[0] >> 63; + *pu8Dst |= (puSrc->au64[1] >> 63) << 1; + *pu8Dst |= (puSrc->au64[2] >> 63) << 2; + *pu8Dst |= (puSrc->au64[3] >> 63) << 3; +} + + +/** + * CVTTSD2SI + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_cvttsd2si_i32_r64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint64_t *pu64Src)) +{ + RTFLOAT64U r64Src; + + r64Src.u = *pu64Src; + iemSsePrepareValueR64(&r64Src, pFpuState->MXCSR, &r64Src); /* The de-normal flag is not set. */ + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(pFpuState->MXCSR); + *pi32Dst = f64_to_i32_r_minMag(iemFpSoftF64FromIprt(&r64Src), true /*exact*/, &SoftState); + *pfMxcsr = pFpuState->MXCSR | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cvttsd2si_i64_r64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint64_t *pu64Src)) +{ + RTFLOAT64U r64Src; + + r64Src.u = *pu64Src; + iemSsePrepareValueR64(&r64Src, pFpuState->MXCSR, &r64Src); /* The de-normal flag is not set. */ + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(pFpuState->MXCSR); + *pi64Dst = f64_to_i64_r_minMag(iemFpSoftF64FromIprt(&r64Src), true /*exact*/, &SoftState); + *pfMxcsr = pFpuState->MXCSR | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS); +} +#endif + + +/** + * CVTSD2SI + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_cvtsd2si_i32_r64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint64_t *pu64Src)) +{ + RTFLOAT64U r64Src; + + r64Src.u = *pu64Src; + iemSsePrepareValueR64(&r64Src, pFpuState->MXCSR, &r64Src); /* The de-normal flag is not set. */ + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(pFpuState->MXCSR); + *pi32Dst = f64_to_i32(iemFpSoftF64FromIprt(&r64Src), SoftState.roundingMode, true /*exact*/, &SoftState); + *pfMxcsr = pFpuState->MXCSR | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cvtsd2si_i64_r64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint64_t *pu64Src)) +{ + RTFLOAT64U r64Src; + + r64Src.u = *pu64Src; + iemSsePrepareValueR64(&r64Src, pFpuState->MXCSR, &r64Src); /* The de-normal flag is not set. */ + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(pFpuState->MXCSR); + *pi64Dst = f64_to_i64(iemFpSoftF64FromIprt(&r64Src), SoftState.roundingMode, true /*exact*/, &SoftState); + *pfMxcsr = pFpuState->MXCSR | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS); +} +#endif + + +/** + * CVTTSS2SI + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_cvttss2si_i32_r32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint32_t *pu32Src)) +{ + RTFLOAT32U r32Src; + + r32Src.u = *pu32Src; + iemSsePrepareValueR32(&r32Src, pFpuState->MXCSR, &r32Src); /* The de-normal flag is not set. */ + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(pFpuState->MXCSR); + *pi32Dst = f32_to_i32_r_minMag(iemFpSoftF32FromIprt(&r32Src), true /*exact*/, &SoftState); + *pfMxcsr = pFpuState->MXCSR | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cvttss2si_i64_r32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint32_t *pu32Src)) +{ + RTFLOAT32U r32Src; + + r32Src.u = *pu32Src; + iemSsePrepareValueR32(&r32Src, pFpuState->MXCSR, &r32Src); /* The de-normal flag is not set. */ + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(pFpuState->MXCSR); + *pi64Dst = f32_to_i64_r_minMag(iemFpSoftF32FromIprt(&r32Src), true /*exact*/, &SoftState); + *pfMxcsr = pFpuState->MXCSR | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS); +} +#endif + + +/** + * CVTSS2SI + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_cvtss2si_i32_r32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint32_t *pu32Src)) +{ + RTFLOAT32U r32Src; + + r32Src.u = *pu32Src; + iemSsePrepareValueR32(&r32Src, pFpuState->MXCSR, &r32Src); /* The de-normal flag is not set. */ + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(pFpuState->MXCSR); + *pi32Dst = f32_to_i32(iemFpSoftF32FromIprt(&r32Src), SoftState.roundingMode, true /*exact*/, &SoftState); + *pfMxcsr = pFpuState->MXCSR | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cvtss2si_i64_r32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint32_t *pu32Src)) +{ + RTFLOAT32U r32Src; + + r32Src.u = *pu32Src; + iemSsePrepareValueR32(&r32Src, pFpuState->MXCSR, &r32Src); /* The de-normal flag is not set. */ + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(pFpuState->MXCSR); + *pi64Dst = f32_to_i64(iemFpSoftF32FromIprt(&r32Src), SoftState.roundingMode, true /*exact*/, &SoftState); + *pfMxcsr = pFpuState->MXCSR | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS); +} +#endif + + +/** + * CVTSI2SD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_cvtsi2sd_r64_i32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT64U pr64Dst, const int32_t *pi32Src)) +{ + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(pFpuState->MXCSR); + float64_t r64Res = i32_to_f64(*pi32Src, &SoftState); + *pfMxcsr = iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Res, pr64Dst, pFpuState->MXCSR); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cvtsi2sd_r64_i64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT64U pr64Dst, const int64_t *pi64Src)) +{ + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(pFpuState->MXCSR); + float64_t r64Res = i64_to_f64(*pi64Src, &SoftState); + *pfMxcsr = iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Res, pr64Dst, pFpuState->MXCSR); +} +#endif + + +/** + * CVTSI2SS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_cvtsi2ss_r32_i32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT32U pr32Dst, const int32_t *pi32Src)) +{ + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(pFpuState->MXCSR); + float32_t r32Res = i32_to_f32(*pi32Src, &SoftState); + *pfMxcsr = iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Res, pr32Dst, pFpuState->MXCSR); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cvtsi2ss_r32_i64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT32U pr32Dst, const int64_t *pi64Src)) +{ + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(pFpuState->MXCSR); + float32_t r32Res = i64_to_f32(*pi64Src, &SoftState); + *pfMxcsr = iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Res, pr32Dst, pFpuState->MXCSR); +} +#endif + + +/** + * [V]UCOMISS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_ucomiss_u128,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + uint32_t fEFlagsNew = *pfEFlags & ~X86_EFL_STATUS_BITS; + + if (RTFLOAT32U_IS_SIGNALLING_NAN(&puSrc1->ar32[0]) || RTFLOAT32U_IS_SIGNALLING_NAN(&puSrc2->ar32[0])) + { + *pfMxcsr |= X86_MXCSR_IE; + fEFlagsNew |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF; /* UNORDERED 111 */ + } + else if (RTFLOAT32U_IS_QUIET_NAN(&puSrc1->ar32[0]) || RTFLOAT32U_IS_QUIET_NAN(&puSrc2->ar32[0])) + { + /* ucomiss doesn't raise \#IE for quiet NaNs. */ + fEFlagsNew |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF; /* UNORDERED 111 */ + } + else + { + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(*pfMxcsr); + + RTFLOAT32U r32Src1, r32Src2; + uint32_t fDe = iemSsePrepareValueR32(&r32Src1, *pfMxcsr, &puSrc1->ar32[0]); + fDe |= iemSsePrepareValueR32(&r32Src2, *pfMxcsr, &puSrc2->ar32[0]); + + float32_t f32Src1 = iemFpSoftF32FromIprt(&r32Src1); + float32_t f32Src2 = iemFpSoftF32FromIprt(&r32Src2); + if (f32_eq(f32Src1, f32Src2, &SoftState)) + fEFlagsNew |= X86_EFL_ZF; /* EQUAL 100 */ + else if (f32_lt(f32Src1, f32Src2, &SoftState)) + fEFlagsNew |= X86_EFL_CF; /* LESS_THAN 001 */ + /* else: GREATER_THAN 000 */ + + *pfMxcsr |= fDe; + } + + *pfEFlags = fEFlagsNew; +} +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vucomiss_u128_fallback,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + iemAImpl_ucomiss_u128(pfMxcsr, pfEFlags, puSrc1, puSrc2); +} + + +/** + * [V]UCOMISD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_ucomisd_u128,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + uint32_t fEFlagsNew = *pfEFlags & ~X86_EFL_STATUS_BITS; + + if (RTFLOAT64U_IS_SIGNALLING_NAN(&puSrc1->ar64[0]) || RTFLOAT64U_IS_SIGNALLING_NAN(&puSrc2->ar64[0])) + { + *pfMxcsr |= X86_MXCSR_IE; + fEFlagsNew |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF; /* UNORDERED 111 */ + } + else if (RTFLOAT64U_IS_QUIET_NAN(&puSrc1->ar64[0]) || RTFLOAT64U_IS_QUIET_NAN(&puSrc2->ar64[0])) + { + /* ucomiss doesn't raise \#IE for quiet NaNs. */ + fEFlagsNew |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF; /* UNORDERED 111 */ + } + else + { + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(*pfMxcsr); + + RTFLOAT64U r64Src1, r64Src2; + uint32_t fDe = iemSsePrepareValueR64(&r64Src1, *pfMxcsr, &puSrc1->ar64[0]); + fDe |= iemSsePrepareValueR64(&r64Src2, *pfMxcsr, &puSrc2->ar64[0]); + + float64_t f64Src1 = iemFpSoftF64FromIprt(&r64Src1); + float64_t f64Src2 = iemFpSoftF64FromIprt(&r64Src2); + if (f64_eq(f64Src1, f64Src2, &SoftState)) + fEFlagsNew |= X86_EFL_ZF; /* EQUAL 100 */ + else if (f64_lt(f64Src1, f64Src2, &SoftState)) + fEFlagsNew |= X86_EFL_CF; /* LESS_THAN 001 */ + /* else: GREATER_THAN 000 */ + + *pfMxcsr |= fDe; + } + + *pfEFlags = fEFlagsNew; +} +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vucomisd_u128_fallback,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + iemAImpl_ucomisd_u128(pfMxcsr, pfEFlags, puSrc1, puSrc2); +} + + +/** + * [V]COMISS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_comiss_u128,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + uint32_t fEFlagsNew = *pfEFlags & ~X86_EFL_STATUS_BITS; + + if ( RTFLOAT32U_IS_SIGNALLING_NAN(&puSrc1->ar32[0]) || RTFLOAT32U_IS_SIGNALLING_NAN(&puSrc2->ar32[0]) + || RTFLOAT32U_IS_QUIET_NAN(&puSrc1->ar32[0]) || RTFLOAT32U_IS_QUIET_NAN(&puSrc2->ar32[0])) + { + *pfMxcsr |= X86_MXCSR_IE; + fEFlagsNew |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF; /* UNORDERED 111 */ + } + else + { + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(*pfMxcsr); + + RTFLOAT32U r32Src1, r32Src2; + uint32_t fDe = iemSsePrepareValueR32(&r32Src1, *pfMxcsr, &puSrc1->ar32[0]); + fDe |= iemSsePrepareValueR32(&r32Src2, *pfMxcsr, &puSrc2->ar32[0]); + + float32_t f32Src1 = iemFpSoftF32FromIprt(&r32Src1); + float32_t f32Src2 = iemFpSoftF32FromIprt(&r32Src2); + if (f32_eq(f32Src1, f32Src2, &SoftState)) + fEFlagsNew |= X86_EFL_ZF; /* EQUAL 100 */ + else if (f32_lt(f32Src1, f32Src2, &SoftState)) + fEFlagsNew |= X86_EFL_CF; /* LESS_THAN 001 */ + /* else: GREATER_THAN 000 */ + + *pfMxcsr |= fDe; + } + + *pfEFlags = fEFlagsNew; +} +#endif + + +IEM_DECL_IMPL_DEF(void, iemAImpl_vcomiss_u128_fallback,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + iemAImpl_comiss_u128(pfMxcsr, pfEFlags, puSrc1, puSrc2); +} + + +/** + * [V]COMISD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_comisd_u128,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + uint32_t fEFlagsNew = *pfEFlags & ~X86_EFL_STATUS_BITS; + + if ( RTFLOAT64U_IS_SIGNALLING_NAN(&puSrc1->ar64[0]) || RTFLOAT64U_IS_SIGNALLING_NAN(&puSrc2->ar64[0]) + || RTFLOAT64U_IS_QUIET_NAN(&puSrc1->ar64[0]) || RTFLOAT64U_IS_QUIET_NAN(&puSrc2->ar64[0])) + { + *pfMxcsr |= X86_MXCSR_IE; + fEFlagsNew |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF; /* UNORDERED 111 */ + } + else + { + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(*pfMxcsr); + + RTFLOAT64U r64Src1, r64Src2; + uint32_t fDe = iemSsePrepareValueR64(&r64Src1, *pfMxcsr, &puSrc1->ar64[0]); + fDe |= iemSsePrepareValueR64(&r64Src2, *pfMxcsr, &puSrc2->ar64[0]); + + float64_t f64Src1 = iemFpSoftF64FromIprt(&r64Src1); + float64_t f64Src2 = iemFpSoftF64FromIprt(&r64Src2); + if (f64_eq(f64Src1, f64Src2, &SoftState)) + fEFlagsNew |= X86_EFL_ZF; /* EQUAL 100 */ + else if (f64_lt(f64Src1, f64Src2, &SoftState)) + fEFlagsNew |= X86_EFL_CF; /* LESS_THAN 001 */ + /* else: GREATER_THAN 000 */ + + *pfMxcsr |= fDe; + } + + *pfEFlags = fEFlagsNew; +} +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_vcomisd_u128_fallback,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) +{ + iemAImpl_comisd_u128(pfMxcsr, pfEFlags, puSrc1, puSrc2); +} + + +/** + * CMPPS / CMPPD / CMPSS / CMPSD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +/** + * A compare truth table entry. + */ +typedef struct CMPTRUTHTBLENTRY +{ + /** Flag whether the \#IA is signalled when one of the source oeprans is a QNaN */ + bool fSignalsOnQNan; + /** The boolean result when the input operands are unordered. */ + bool fUnordered; + /** The boolean result when A = B. */ + bool fEqual; + /** The boolean result when A < B. */ + bool fLowerThan; + /** The boolean result when A > B. */ + bool fGreaterThan; +} CMPTRUTHTBLENTRY; +/** Pointer to a const truth table entry. */ +typedef const CMPTRUTHTBLENTRY *PCCMPTRUTHTBLENTRY; + + +/** The compare truth table (indexed by immediate). */ +static const CMPTRUTHTBLENTRY g_aCmpTbl[] = +{ + /* fSignalsOnQNan fUnordered fEqual fLowerThan fGreaterThan */ + /* 00H (EQ_OQ) */ { false, false, true, false, false }, + /* 01H (LT_OS) */ { true, false, false, true, false }, + /* 02H (LE_OS) */ { true, false, true, true, false }, + /* 03H (UNORD_Q) */ { false, true, false, false, false }, + /* 04H (NEQ_UQ) */ { false, true, false, true, true }, + /* 05H (NLT_US) */ { true, true, true, false, true }, + /* 06H (NLE_US) */ { true, true, false, false, true }, + /* 07H (ORQ_Q) */ { false, false, true, true, true }, + /** @todo AVX variants. */ +}; + + +static bool iemAImpl_cmp_worker_r32(uint32_t *pfMxcsr, PCRTFLOAT32U pr32Src1, PCRTFLOAT32U pr32Src2, uint8_t bEvil) +{ + bool fRes; + AssertRelease(bEvil < RT_ELEMENTS(g_aCmpTbl)); + + if (RTFLOAT32U_IS_SIGNALLING_NAN(pr32Src1) || RTFLOAT32U_IS_SIGNALLING_NAN(pr32Src2)) + { + *pfMxcsr |= X86_MXCSR_IE; + fRes = g_aCmpTbl[bEvil].fUnordered; + } + else if (RTFLOAT32U_IS_QUIET_NAN(pr32Src1) || RTFLOAT32U_IS_QUIET_NAN(pr32Src2)) + { + if (g_aCmpTbl[bEvil].fSignalsOnQNan) + *pfMxcsr |= X86_MXCSR_IE; + fRes = g_aCmpTbl[bEvil].fUnordered; + } + else + { + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(*pfMxcsr); + + RTFLOAT32U r32Src1, r32Src2; + uint32_t fDe = iemSsePrepareValueR32(&r32Src1, *pfMxcsr, pr32Src1); + fDe |= iemSsePrepareValueR32(&r32Src2, *pfMxcsr, pr32Src2); + + *pfMxcsr |= fDe; + float32_t f32Src1 = iemFpSoftF32FromIprt(&r32Src1); + float32_t f32Src2 = iemFpSoftF32FromIprt(&r32Src2); + if (f32_eq(f32Src1, f32Src2, &SoftState)) + fRes = g_aCmpTbl[bEvil].fEqual; + else if (f32_lt(f32Src1, f32Src2, &SoftState)) + fRes = g_aCmpTbl[bEvil].fLowerThan; + else + fRes = g_aCmpTbl[bEvil].fGreaterThan; + } + + return fRes; +} + + +static bool iemAImpl_cmp_worker_r64(uint32_t *pfMxcsr, PCRTFLOAT64U pr64Src1, PCRTFLOAT64U pr64Src2, uint8_t bEvil) +{ + bool fRes; + AssertRelease(bEvil < RT_ELEMENTS(g_aCmpTbl)); + + if (RTFLOAT64U_IS_SIGNALLING_NAN(pr64Src1) || RTFLOAT64U_IS_SIGNALLING_NAN(pr64Src2)) + { + *pfMxcsr |= X86_MXCSR_IE; + fRes = g_aCmpTbl[bEvil].fUnordered; + } + else if (RTFLOAT64U_IS_QUIET_NAN(pr64Src1) || RTFLOAT64U_IS_QUIET_NAN(pr64Src2)) + { + if (g_aCmpTbl[bEvil].fSignalsOnQNan) + *pfMxcsr |= X86_MXCSR_IE; + fRes = g_aCmpTbl[bEvil].fUnordered; + } + else + { + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(*pfMxcsr); + + RTFLOAT64U r64Src1, r64Src2; + uint32_t fDe = iemSsePrepareValueR64(&r64Src1, *pfMxcsr, pr64Src1) + | iemSsePrepareValueR64(&r64Src2, *pfMxcsr, pr64Src2); + + *pfMxcsr |= fDe; + float64_t f64Src1 = iemFpSoftF64FromIprt(&r64Src1); + float64_t f64Src2 = iemFpSoftF64FromIprt(&r64Src2); + if (f64_eq(f64Src1, f64Src2, &SoftState)) + fRes = g_aCmpTbl[bEvil].fEqual; + else if (f64_lt(f64Src1, f64Src2, &SoftState)) + fRes = g_aCmpTbl[bEvil].fLowerThan; + else + fRes = g_aCmpTbl[bEvil].fGreaterThan; + } + + return fRes; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cmpps_u128,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC pSrc, uint8_t bEvil)) +{ + for (uint8_t i = 0; i < RT_ELEMENTS(puDst->ar32); i++) + { + if (iemAImpl_cmp_worker_r32(pfMxcsr, &pSrc->uSrc1.ar32[i], &pSrc->uSrc2.ar32[i], bEvil & 0x7)) + puDst->au32[i] = UINT32_MAX; + else + puDst->au32[i] = 0; + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cmppd_u128,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC pSrc, uint8_t bEvil)) +{ + for (uint8_t i = 0; i < RT_ELEMENTS(puDst->ar64); i++) + { + if (iemAImpl_cmp_worker_r64(pfMxcsr, &pSrc->uSrc1.ar64[i], &pSrc->uSrc2.ar64[i], bEvil & 0x7)) + puDst->au64[i] = UINT64_MAX; + else + puDst->au64[i] = 0; + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cmpss_u128,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC pSrc, uint8_t bEvil)) +{ + if (iemAImpl_cmp_worker_r32(pfMxcsr, &pSrc->uSrc1.ar32[0], &pSrc->uSrc2.ar32[0], bEvil & 0x7)) + puDst->au32[0] = UINT32_MAX; + else + puDst->au32[0] = 0; + + puDst->au32[1] = pSrc->uSrc1.au32[1]; + puDst->au64[1] = pSrc->uSrc1.au64[1]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cmpsd_u128,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC pSrc, uint8_t bEvil)) +{ + if (iemAImpl_cmp_worker_r64(pfMxcsr, &pSrc->uSrc1.ar64[0], &pSrc->uSrc2.ar64[0], bEvil & 0x7)) + puDst->au64[0] = UINT64_MAX; + else + puDst->au64[0] = 0; + + puDst->au64[1] = pSrc->uSrc1.au64[1]; +} +#endif + + +/** + * ROUNDPS / ROUNDPD / ROUNDSS / ROUNDSD + */ + +#define X86_SSE_ROUNDXX_IMM_RC_MASK UINT32_C(0x0003) +#define X86_SSE_ROUNDXX_IMM_ROUND_SEL UINT32_C(0x0004) +#define X86_SSE_ROUNDXX_IMM_PRECISION UINT32_C(0x0008) + +DECLINLINE(softfloat_state_t) iemSseRoundXXMxcsrAndImmToSoftState(uint32_t fMxcsr, uint8_t bImm) +{ + if (bImm & X86_SSE_ROUNDXX_IMM_ROUND_SEL) + return IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + + fMxcsr &= ~X86_MXCSR_RC_MASK; + fMxcsr |= (bImm & X86_SSE_ROUNDXX_IMM_RC_MASK) << X86_MXCSR_RC_SHIFT; + return IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); +} + +static RTFLOAT32U iemAImpl_round_worker_r32(uint32_t *pfMxcsr, PCRTFLOAT32U pr32Src, uint8_t bImm) +{ + RTFLOAT32U r32Src, r32Dst; + float32_t f32Src; + softfloat_state_t SoftState = iemSseRoundXXMxcsrAndImmToSoftState(*pfMxcsr, bImm); + bool fExact = !RT_BOOL(bImm & X86_SSE_ROUNDXX_IMM_PRECISION); + + iemSsePrepareValueR32(&r32Src, *pfMxcsr, pr32Src); + f32Src = f32_roundToInt(iemFpSoftF32FromIprt(&r32Src), SoftState.roundingMode, fExact, &SoftState); + + iemFpSoftF32ToIprt(&r32Dst, f32Src); + return r32Dst; +} + +static RTFLOAT64U iemAImpl_round_worker_r64(uint32_t *pfMxcsr, PCRTFLOAT64U pr64Src, uint8_t bImm) +{ + RTFLOAT64U r64Src, r64Dst; + float64_t f64Src; + softfloat_state_t SoftState = iemSseRoundXXMxcsrAndImmToSoftState(*pfMxcsr, bImm); + bool fExact = !RT_BOOL(bImm & X86_SSE_ROUNDXX_IMM_PRECISION); + + iemSsePrepareValueR64(&r64Src, *pfMxcsr, pr64Src); + f64Src = f64_roundToInt(iemFpSoftF64FromIprt(&r64Src), SoftState.roundingMode, fExact, &SoftState); + + iemFpSoftF64ToIprt(&r64Dst, f64Src); + return r64Dst; +} + +#ifdef IEM_WITHOUT_ASSEMBLY +IEM_DECL_IMPL_DEF(void, iemAImpl_roundss_u128,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC pSrc, uint8_t bImm)) +{ + puDst->ar32[0] = iemAImpl_round_worker_r32(pfMxcsr, &pSrc->uSrc2.ar32[0], bImm & 0x7); + puDst->au32[1] = pSrc->uSrc1.au32[1]; + puDst->au64[1] = pSrc->uSrc1.au64[1]; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_roundsd_u128,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC pSrc, uint8_t bImm)) +{ + puDst->ar64[0] = iemAImpl_round_worker_r64(pfMxcsr, &pSrc->uSrc2.ar64[0], bImm & 0x7); + puDst->au64[1] = pSrc->uSrc1.au64[1]; +} +#endif + +IEM_DECL_IMPL_DEF(void, iemAImpl_roundps_u128_fallback,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC pSrc, uint8_t bImm)) +{ + for (uint8_t i = 0; i < RT_ELEMENTS(puDst->ar32); i++) + { + puDst->ar32[i] = iemAImpl_round_worker_r32(pfMxcsr, &pSrc->uSrc2.ar32[i], bImm & 0x7); + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_roundpd_u128_fallback,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC pSrc, uint8_t bImm)) +{ + for (uint8_t i = 0; i < RT_ELEMENTS(puDst->ar64); i++) + { + puDst->ar64[i] = iemAImpl_round_worker_r64(pfMxcsr, &pSrc->uSrc2.ar64[i], bImm & 0x7); + } +} + +/** + * CVTPD2PI + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_cvtpd2pi_u128_worker(uint32_t fMxcsr, int32_t *pi32Dst, PCRTFLOAT64U pr64Src) +{ + RTFLOAT64U r64Src; + iemSsePrepareValueR64(&r64Src, fMxcsr, pr64Src); /* The de-normal flag is not set. */ + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + *pi32Dst = f64_to_i32(iemFpSoftF64FromIprt(&r64Src), SoftState.roundingMode, true /*exact*/, &SoftState); + return fMxcsr | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cvtpd2pi_u128,(uint32_t *pfMxcsr, uint64_t *pu64Dst, PCX86XMMREG pSrc)) +{ + RTUINT64U u64Res; + uint32_t fMxcsrOut = iemAImpl_cvtpd2pi_u128_worker(*pfMxcsr, &u64Res.ai32[0], &pSrc->ar64[0]); + fMxcsrOut |= iemAImpl_cvtpd2pi_u128_worker(*pfMxcsr, &u64Res.ai32[1], &pSrc->ar64[1]); + + *pu64Dst = u64Res.u; + *pfMxcsr = fMxcsrOut; +} +#endif + + +/** + * CVTTPD2PI + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_cvttpd2pi_u128_worker(uint32_t fMxcsr, int32_t *pi32Dst, PCRTFLOAT64U pr64Src) +{ + RTFLOAT64U r64Src; + iemSsePrepareValueR64(&r64Src, fMxcsr, pr64Src); /* The de-normal flag is not set. */ + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + *pi32Dst = f64_to_i32_r_minMag(iemFpSoftF64FromIprt(&r64Src), true /*exact*/, &SoftState); + return fMxcsr | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cvttpd2pi_u128,(uint32_t *pfMxcsr, uint64_t *pu64Dst, PCX86XMMREG pSrc)) +{ + RTUINT64U u64Res; + uint32_t fMxcsrOut = iemAImpl_cvttpd2pi_u128_worker(*pfMxcsr, &u64Res.ai32[0], &pSrc->ar64[0]); + fMxcsrOut |= iemAImpl_cvttpd2pi_u128_worker(*pfMxcsr, &u64Res.ai32[1], &pSrc->ar64[1]); + + *pu64Dst = u64Res.u; + *pfMxcsr = fMxcsrOut; +} +#endif + + +/** + * CVTPI2PS + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_cvtpi2ps_u128_worker(uint32_t fMxcsr, PRTFLOAT32U pr32Dst, int32_t i32Src) +{ + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + float32_t r32Res = i32_to_f32(i32Src, &SoftState); + return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Res, pr32Dst, fMxcsr); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cvtpi2ps_u128,(uint32_t *pfMxcsr, PX86XMMREG pDst, uint64_t u64Src)) +{ + RTUINT64U uSrc = { u64Src }; + uint32_t fMxcsrOut = iemAImpl_cvtpi2ps_u128_worker(*pfMxcsr, &pDst->ar32[0], uSrc.ai32[0]); + fMxcsrOut |= iemAImpl_cvtpi2ps_u128_worker(*pfMxcsr, &pDst->ar32[1], uSrc.ai32[1]); + *pfMxcsr = fMxcsrOut; +} +#endif + + +/** + * CVTPI2PD + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_cvtpi2pd_u128_worker(uint32_t fMxcsr, PRTFLOAT64U pr64Dst, int32_t i32Src) +{ + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + float64_t r64Res = i32_to_f64(i32Src, &SoftState); + return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Res, pr64Dst, fMxcsr); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cvtpi2pd_u128,(uint32_t *pfMxcsr, PX86XMMREG pDst, uint64_t u64Src)) +{ + RTUINT64U uSrc = { u64Src }; + uint32_t fMxcsrOut = iemAImpl_cvtpi2pd_u128_worker(*pfMxcsr, &pDst->ar64[0], uSrc.ai32[0]); + fMxcsrOut |= iemAImpl_cvtpi2pd_u128_worker(*pfMxcsr, &pDst->ar64[1], uSrc.ai32[1]); + *pfMxcsr = fMxcsrOut; +} +#endif + + +/** + * CVTPS2PI + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_cvtps2pi_u128_worker(uint32_t fMxcsr, int32_t *pi32Dst, PCRTFLOAT32U pr32Src) +{ + RTFLOAT32U r32Src; + iemSsePrepareValueR32(&r32Src, fMxcsr, pr32Src); /* The de-normal flag is not set. */ + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + *pi32Dst = f32_to_i32(iemFpSoftF32FromIprt(&r32Src), SoftState.roundingMode, true /*exact*/, &SoftState); + return fMxcsr | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cvtps2pi_u128,(uint32_t *pfMxcsr, uint64_t *pu64Dst, uint64_t u64Src)) +{ + RTUINT64U uDst; + RTUINT64U uSrc = { u64Src }; + uint32_t fMxcsrOut = iemAImpl_cvtps2pi_u128_worker(*pfMxcsr, &uDst.ai32[0], (PCRTFLOAT32U)&uSrc.au32[0]); + fMxcsrOut |= iemAImpl_cvtps2pi_u128_worker(*pfMxcsr, &uDst.ai32[1], (PCRTFLOAT32U)&uSrc.au32[1]); + *pu64Dst = uDst.u; + *pfMxcsr = fMxcsrOut; +} +#endif + + +/** + * CVTTPS2PI + */ +#ifdef IEM_WITHOUT_ASSEMBLY +static uint32_t iemAImpl_cvttps2pi_u128_worker(uint32_t fMxcsr, int32_t *pi32Dst, PCRTFLOAT32U pr32Src) +{ + RTFLOAT32U r32Src; + iemSsePrepareValueR32(&r32Src, fMxcsr, pr32Src); /* The de-normal flag is not set. */ + + softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); + *pi32Dst = f32_to_i32_r_minMag(iemFpSoftF32FromIprt(&r32Src), true /*exact*/, &SoftState); + return fMxcsr | (SoftState.exceptionFlags & X86_MXCSR_XCPT_FLAGS); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cvttps2pi_u128,(uint32_t *pfMxcsr, uint64_t *pu64Dst, uint64_t u64Src)) +{ + RTUINT64U uDst; + RTUINT64U uSrc = { u64Src }; + uint32_t fMxcsrOut = iemAImpl_cvttps2pi_u128_worker(*pfMxcsr, &uDst.ai32[0], (PCRTFLOAT32U)&uSrc.au32[0]); + fMxcsrOut |= iemAImpl_cvttps2pi_u128_worker(*pfMxcsr, &uDst.ai32[1], (PCRTFLOAT32U)&uSrc.au32[1]); + *pu64Dst = uDst.u; + *pfMxcsr = fMxcsrOut; +} +#endif + +/** + * RDRAND + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_rdrand_u16_fallback,(uint16_t *puDst, uint32_t *pEFlags)) +{ + *puDst = 0; + *pEFlags &= ~X86_EFL_STATUS_BITS; + *pEFlags |= X86_EFL_CF; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_rdrand_u32_fallback,(uint32_t *puDst, uint32_t *pEFlags)) +{ + *puDst = 0; + *pEFlags &= ~X86_EFL_STATUS_BITS; + *pEFlags |= X86_EFL_CF; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_rdrand_u64_fallback,(uint64_t *puDst, uint32_t *pEFlags)) +{ + *puDst = 0; + *pEFlags &= ~X86_EFL_STATUS_BITS; + *pEFlags |= X86_EFL_CF; +} + +/** + * RDSEED + */ +IEM_DECL_IMPL_DEF(void, iemAImpl_rdseed_u16_fallback,(uint16_t *puDst, uint32_t *pEFlags)) +{ + *puDst = 0; + *pEFlags &= ~X86_EFL_STATUS_BITS; + *pEFlags |= X86_EFL_CF; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_rdseed_u32_fallback,(uint32_t *puDst, uint32_t *pEFlags)) +{ + *puDst = 0; + *pEFlags &= ~X86_EFL_STATUS_BITS; + *pEFlags |= X86_EFL_CF; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_rdseed_u64_fallback,(uint64_t *puDst, uint32_t *pEFlags)) +{ + *puDst = 0; + *pEFlags &= ~X86_EFL_STATUS_BITS; + *pEFlags |= X86_EFL_CF; +} + |