summaryrefslogtreecommitdiffstats
path: root/src/VBox/VMM/VMMR0/GMMR0.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:17:27 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:17:27 +0000
commitf215e02bf85f68d3a6106c2a1f4f7f063f819064 (patch)
tree6bb5b92c046312c4e95ac2620b10ddf482d3fa8b /src/VBox/VMM/VMMR0/GMMR0.cpp
parentInitial commit. (diff)
downloadvirtualbox-f215e02bf85f68d3a6106c2a1f4f7f063f819064.tar.xz
virtualbox-f215e02bf85f68d3a6106c2a1f4f7f063f819064.zip
Adding upstream version 7.0.14-dfsg.upstream/7.0.14-dfsg
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/VBox/VMM/VMMR0/GMMR0.cpp')
-rw-r--r--src/VBox/VMM/VMMR0/GMMR0.cpp5745
1 files changed, 5745 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMR0/GMMR0.cpp b/src/VBox/VMM/VMMR0/GMMR0.cpp
new file mode 100644
index 00000000..6b6d7793
--- /dev/null
+++ b/src/VBox/VMM/VMMR0/GMMR0.cpp
@@ -0,0 +1,5745 @@
+/* $Id: GMMR0.cpp $ */
+/** @file
+ * GMM - Global Memory Manager.
+ */
+
+/*
+ * Copyright (C) 2007-2023 Oracle and/or its affiliates.
+ *
+ * This file is part of VirtualBox base platform packages, as
+ * available from https://www.virtualbox.org.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation, in version 3 of the
+ * License.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, see <https://www.gnu.org/licenses>.
+ *
+ * SPDX-License-Identifier: GPL-3.0-only
+ */
+
+
+/** @page pg_gmm GMM - The Global Memory Manager
+ *
+ * As the name indicates, this component is responsible for global memory
+ * management. Currently only guest RAM is allocated from the GMM, but this
+ * may change to include shadow page tables and other bits later.
+ *
+ * Guest RAM is managed as individual pages, but allocated from the host OS
+ * in chunks for reasons of portability / efficiency. To minimize the memory
+ * footprint all tracking structure must be as small as possible without
+ * unnecessary performance penalties.
+ *
+ * The allocation chunks has fixed sized, the size defined at compile time
+ * by the #GMM_CHUNK_SIZE \#define.
+ *
+ * Each chunk is given an unique ID. Each page also has a unique ID. The
+ * relationship between the two IDs is:
+ * @code
+ * GMM_CHUNK_SHIFT = log2(GMM_CHUNK_SIZE / GUEST_PAGE_SIZE);
+ * idPage = (idChunk << GMM_CHUNK_SHIFT) | iPage;
+ * @endcode
+ * Where iPage is the index of the page within the chunk. This ID scheme
+ * permits for efficient chunk and page lookup, but it relies on the chunk size
+ * to be set at compile time. The chunks are organized in an AVL tree with their
+ * IDs being the keys.
+ *
+ * The physical address of each page in an allocation chunk is maintained by
+ * the #RTR0MEMOBJ and obtained using #RTR0MemObjGetPagePhysAddr. There is no
+ * need to duplicate this information (it'll cost 8-bytes per page if we did).
+ *
+ * So what do we need to track per page? Most importantly we need to know
+ * which state the page is in:
+ * - Private - Allocated for (eventually) backing one particular VM page.
+ * - Shared - Readonly page that is used by one or more VMs and treated
+ * as COW by PGM.
+ * - Free - Not used by anyone.
+ *
+ * For the page replacement operations (sharing, defragmenting and freeing)
+ * to be somewhat efficient, private pages needs to be associated with a
+ * particular page in a particular VM.
+ *
+ * Tracking the usage of shared pages is impractical and expensive, so we'll
+ * settle for a reference counting system instead.
+ *
+ * Free pages will be chained on LIFOs
+ *
+ * On 64-bit systems we will use a 64-bit bitfield per page, while on 32-bit
+ * systems a 32-bit bitfield will have to suffice because of address space
+ * limitations. The #GMMPAGE structure shows the details.
+ *
+ *
+ * @section sec_gmm_alloc_strat Page Allocation Strategy
+ *
+ * The strategy for allocating pages has to take fragmentation and shared
+ * pages into account, or we may end up with with 2000 chunks with only
+ * a few pages in each. Shared pages cannot easily be reallocated because
+ * of the inaccurate usage accounting (see above). Private pages can be
+ * reallocated by a defragmentation thread in the same manner that sharing
+ * is done.
+ *
+ * The first approach is to manage the free pages in two sets depending on
+ * whether they are mainly for the allocation of shared or private pages.
+ * In the initial implementation there will be almost no possibility for
+ * mixing shared and private pages in the same chunk (only if we're really
+ * stressed on memory), but when we implement forking of VMs and have to
+ * deal with lots of COW pages it'll start getting kind of interesting.
+ *
+ * The sets are lists of chunks with approximately the same number of
+ * free pages. Say the chunk size is 1MB, meaning 256 pages, and a set
+ * consists of 16 lists. So, the first list will contain the chunks with
+ * 1-7 free pages, the second covers 8-15, and so on. The chunks will be
+ * moved between the lists as pages are freed up or allocated.
+ *
+ *
+ * @section sec_gmm_costs Costs
+ *
+ * The per page cost in kernel space is 32-bit plus whatever RTR0MEMOBJ
+ * entails. In addition there is the chunk cost of approximately
+ * (sizeof(RT0MEMOBJ) + sizeof(CHUNK)) / 2^CHUNK_SHIFT bytes per page.
+ *
+ * On Windows the per page #RTR0MEMOBJ cost is 32-bit on 32-bit windows
+ * and 64-bit on 64-bit windows (a PFN_NUMBER in the MDL). So, 64-bit per page.
+ * The cost on Linux is identical, but here it's because of sizeof(struct page *).
+ *
+ *
+ * @section sec_gmm_legacy Legacy Mode for Non-Tier-1 Platforms
+ *
+ * In legacy mode the page source is locked user pages and not
+ * #RTR0MemObjAllocPhysNC, this means that a page can only be allocated
+ * by the VM that locked it. We will make no attempt at implementing
+ * page sharing on these systems, just do enough to make it all work.
+ *
+ * @note With 6.1 really dropping 32-bit support, the legacy mode is obsoleted
+ * under the assumption that there is sufficient kernel virtual address
+ * space to map all of the guest memory allocations. So, we'll be using
+ * #RTR0MemObjAllocPage on some platforms as an alternative to
+ * #RTR0MemObjAllocPhysNC.
+ *
+ *
+ * @subsection sub_gmm_locking Serializing
+ *
+ * One simple fast mutex will be employed in the initial implementation, not
+ * two as mentioned in @ref sec_pgmPhys_Serializing.
+ *
+ * @see @ref sec_pgmPhys_Serializing
+ *
+ *
+ * @section sec_gmm_overcommit Memory Over-Commitment Management
+ *
+ * The GVM will have to do the system wide memory over-commitment
+ * management. My current ideas are:
+ * - Per VM oc policy that indicates how much to initially commit
+ * to it and what to do in a out-of-memory situation.
+ * - Prevent overtaxing the host.
+ *
+ * There are some challenges here, the main ones are configurability and
+ * security. Should we for instance permit anyone to request 100% memory
+ * commitment? Who should be allowed to do runtime adjustments of the
+ * config. And how to prevent these settings from being lost when the last
+ * VM process exits? The solution is probably to have an optional root
+ * daemon the will keep VMMR0.r0 in memory and enable the security measures.
+ *
+ *
+ *
+ * @section sec_gmm_numa NUMA
+ *
+ * NUMA considerations will be designed and implemented a bit later.
+ *
+ * The preliminary guesses is that we will have to try allocate memory as
+ * close as possible to the CPUs the VM is executed on (EMT and additional CPU
+ * threads). Which means it's mostly about allocation and sharing policies.
+ * Both the scheduler and allocator interface will to supply some NUMA info
+ * and we'll need to have a way to calc access costs.
+ *
+ */
+
+
+/*********************************************************************************************************************************
+* Header Files *
+*********************************************************************************************************************************/
+#define LOG_GROUP LOG_GROUP_GMM
+#include <VBox/rawpci.h>
+#include <VBox/vmm/gmm.h>
+#include "GMMR0Internal.h"
+#include <VBox/vmm/vmcc.h>
+#include <VBox/vmm/pgm.h>
+#include <VBox/log.h>
+#include <VBox/param.h>
+#include <VBox/err.h>
+#include <VBox/VMMDev.h>
+#include <iprt/asm.h>
+#include <iprt/avl.h>
+#ifdef VBOX_STRICT
+# include <iprt/crc.h>
+#endif
+#include <iprt/critsect.h>
+#include <iprt/list.h>
+#include <iprt/mem.h>
+#include <iprt/memobj.h>
+#include <iprt/mp.h>
+#include <iprt/semaphore.h>
+#include <iprt/spinlock.h>
+#include <iprt/string.h>
+#include <iprt/time.h>
+
+/* This is 64-bit only code now. */
+#if HC_ARCH_BITS != 64 || ARCH_BITS != 64
+# error "This is 64-bit only code"
+#endif
+
+
+/*********************************************************************************************************************************
+* Defined Constants And Macros *
+*********************************************************************************************************************************/
+/** @def VBOX_USE_CRIT_SECT_FOR_GIANT
+ * Use a critical section instead of a fast mutex for the giant GMM lock.
+ *
+ * @remarks This is primarily a way of avoiding the deadlock checks in the
+ * windows driver verifier. */
+#if defined(RT_OS_WINDOWS) || defined(RT_OS_DARWIN) || defined(DOXYGEN_RUNNING)
+# define VBOX_USE_CRIT_SECT_FOR_GIANT
+#endif
+
+
+/*********************************************************************************************************************************
+* Structures and Typedefs *
+*********************************************************************************************************************************/
+/** Pointer to set of free chunks. */
+typedef struct GMMCHUNKFREESET *PGMMCHUNKFREESET;
+
+/**
+ * The per-page tracking structure employed by the GMM.
+ *
+ * Because of the different layout on 32-bit and 64-bit hosts in earlier
+ * versions of the code, macros are used to get and set some of the data.
+ */
+typedef union GMMPAGE
+{
+ /** Unsigned integer view. */
+ uint64_t u;
+
+ /** The common view. */
+ struct GMMPAGECOMMON
+ {
+ uint32_t uStuff1 : 32;
+ uint32_t uStuff2 : 30;
+ /** The page state. */
+ uint32_t u2State : 2;
+ } Common;
+
+ /** The view of a private page. */
+ struct GMMPAGEPRIVATE
+ {
+ /** The guest page frame number. (Max addressable: 2 ^ 44 - 16) */
+ uint32_t pfn;
+ /** The GVM handle. (64K VMs) */
+ uint32_t hGVM : 16;
+ /** Reserved. */
+ uint32_t u16Reserved : 14;
+ /** The page state. */
+ uint32_t u2State : 2;
+ } Private;
+
+ /** The view of a shared page. */
+ struct GMMPAGESHARED
+ {
+ /** The host page frame number. (Max addressable: 2 ^ 44 - 16) */
+ uint32_t pfn;
+ /** The reference count (64K VMs). */
+ uint32_t cRefs : 16;
+ /** Used for debug checksumming. */
+ uint32_t u14Checksum : 14;
+ /** The page state. */
+ uint32_t u2State : 2;
+ } Shared;
+
+ /** The view of a free page. */
+ struct GMMPAGEFREE
+ {
+ /** The index of the next page in the free list. UINT16_MAX is NIL. */
+ uint16_t iNext;
+ /** Reserved. Checksum or something? */
+ uint16_t u16Reserved0;
+ /** Reserved. Checksum or something? */
+ uint32_t u30Reserved1 : 29;
+ /** Set if the page was zeroed. */
+ uint32_t fZeroed : 1;
+ /** The page state. */
+ uint32_t u2State : 2;
+ } Free;
+} GMMPAGE;
+AssertCompileSize(GMMPAGE, sizeof(RTHCUINTPTR));
+/** Pointer to a GMMPAGE. */
+typedef GMMPAGE *PGMMPAGE;
+
+
+/** @name The Page States.
+ * @{ */
+/** A private page. */
+#define GMM_PAGE_STATE_PRIVATE 0
+/** A shared page. */
+#define GMM_PAGE_STATE_SHARED 2
+/** A free page. */
+#define GMM_PAGE_STATE_FREE 3
+/** @} */
+
+
+/** @def GMM_PAGE_IS_PRIVATE
+ *
+ * @returns true if private, false if not.
+ * @param pPage The GMM page.
+ */
+#define GMM_PAGE_IS_PRIVATE(pPage) ( (pPage)->Common.u2State == GMM_PAGE_STATE_PRIVATE )
+
+/** @def GMM_PAGE_IS_SHARED
+ *
+ * @returns true if shared, false if not.
+ * @param pPage The GMM page.
+ */
+#define GMM_PAGE_IS_SHARED(pPage) ( (pPage)->Common.u2State == GMM_PAGE_STATE_SHARED )
+
+/** @def GMM_PAGE_IS_FREE
+ *
+ * @returns true if free, false if not.
+ * @param pPage The GMM page.
+ */
+#define GMM_PAGE_IS_FREE(pPage) ( (pPage)->Common.u2State == GMM_PAGE_STATE_FREE )
+
+/** @def GMM_PAGE_PFN_LAST
+ * The last valid guest pfn range.
+ * @remark Some of the values outside the range has special meaning,
+ * see GMM_PAGE_PFN_UNSHAREABLE.
+ */
+#define GMM_PAGE_PFN_LAST UINT32_C(0xfffffff0)
+AssertCompile(GMM_PAGE_PFN_LAST == (GMM_GCPHYS_LAST >> GUEST_PAGE_SHIFT));
+
+/** @def GMM_PAGE_PFN_UNSHAREABLE
+ * Indicates that this page isn't used for normal guest memory and thus isn't shareable.
+ */
+#define GMM_PAGE_PFN_UNSHAREABLE UINT32_C(0xfffffff1)
+AssertCompile(GMM_PAGE_PFN_UNSHAREABLE == (GMM_GCPHYS_UNSHAREABLE >> GUEST_PAGE_SHIFT));
+
+
+/**
+ * A GMM allocation chunk ring-3 mapping record.
+ *
+ * This should really be associated with a session and not a VM, but
+ * it's simpler to associated with a VM and cleanup with the VM object
+ * is destroyed.
+ */
+typedef struct GMMCHUNKMAP
+{
+ /** The mapping object. */
+ RTR0MEMOBJ hMapObj;
+ /** The VM owning the mapping. */
+ PGVM pGVM;
+} GMMCHUNKMAP;
+/** Pointer to a GMM allocation chunk mapping. */
+typedef struct GMMCHUNKMAP *PGMMCHUNKMAP;
+
+
+/**
+ * A GMM allocation chunk.
+ */
+typedef struct GMMCHUNK
+{
+ /** The AVL node core.
+ * The Key is the chunk ID. (Giant mtx.) */
+ AVLU32NODECORE Core;
+ /** The memory object.
+ * Either from RTR0MemObjAllocPhysNC or RTR0MemObjLockUser depending on
+ * what the host can dish up with. (Chunk mtx protects mapping accesses
+ * and related frees.) */
+ RTR0MEMOBJ hMemObj;
+#ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM
+ /** Pointer to the kernel mapping. */
+ uint8_t *pbMapping;
+#endif
+ /** Pointer to the next chunk in the free list. (Giant mtx.) */
+ PGMMCHUNK pFreeNext;
+ /** Pointer to the previous chunk in the free list. (Giant mtx.) */
+ PGMMCHUNK pFreePrev;
+ /** Pointer to the free set this chunk belongs to. NULL for
+ * chunks with no free pages. (Giant mtx.) */
+ PGMMCHUNKFREESET pSet;
+ /** List node in the chunk list (GMM::ChunkList). (Giant mtx.) */
+ RTLISTNODE ListNode;
+ /** Pointer to an array of mappings. (Chunk mtx.) */
+ PGMMCHUNKMAP paMappingsX;
+ /** The number of mappings. (Chunk mtx.) */
+ uint16_t cMappingsX;
+ /** The mapping lock this chunk is using using. UINT8_MAX if nobody is mapping
+ * or freeing anything. (Giant mtx.) */
+ uint8_t volatile iChunkMtx;
+ /** GMM_CHUNK_FLAGS_XXX. (Giant mtx.) */
+ uint8_t fFlags;
+ /** The head of the list of free pages. UINT16_MAX is the NIL value.
+ * (Giant mtx.) */
+ uint16_t iFreeHead;
+ /** The number of free pages. (Giant mtx.) */
+ uint16_t cFree;
+ /** The GVM handle of the VM that first allocated pages from this chunk, this
+ * is used as a preference when there are several chunks to choose from.
+ * When in bound memory mode this isn't a preference any longer. (Giant
+ * mtx.) */
+ uint16_t hGVM;
+ /** The ID of the NUMA node the memory mostly resides on. (Reserved for
+ * future use.) (Giant mtx.) */
+ uint16_t idNumaNode;
+ /** The number of private pages. (Giant mtx.) */
+ uint16_t cPrivate;
+ /** The number of shared pages. (Giant mtx.) */
+ uint16_t cShared;
+ /** The UID this chunk is associated with. */
+ RTUID uidOwner;
+ uint32_t u32Padding;
+ /** The pages. (Giant mtx.) */
+ GMMPAGE aPages[GMM_CHUNK_NUM_PAGES];
+} GMMCHUNK;
+
+/** Indicates that the NUMA properies of the memory is unknown. */
+#define GMM_CHUNK_NUMA_ID_UNKNOWN UINT16_C(0xfffe)
+
+/** @name GMM_CHUNK_FLAGS_XXX - chunk flags.
+ * @{ */
+/** Indicates that the chunk is a large page (2MB). */
+#define GMM_CHUNK_FLAGS_LARGE_PAGE UINT16_C(0x0001)
+/** @} */
+
+
+/**
+ * An allocation chunk TLB entry.
+ */
+typedef struct GMMCHUNKTLBE
+{
+ /** The chunk id. */
+ uint32_t idChunk;
+ /** Pointer to the chunk. */
+ PGMMCHUNK pChunk;
+} GMMCHUNKTLBE;
+/** Pointer to an allocation chunk TLB entry. */
+typedef GMMCHUNKTLBE *PGMMCHUNKTLBE;
+
+
+/** The number of entries in the allocation chunk TLB. */
+#define GMM_CHUNKTLB_ENTRIES 32
+/** Gets the TLB entry index for the given Chunk ID. */
+#define GMM_CHUNKTLB_IDX(idChunk) ( (idChunk) & (GMM_CHUNKTLB_ENTRIES - 1) )
+
+/**
+ * An allocation chunk TLB.
+ */
+typedef struct GMMCHUNKTLB
+{
+ /** The TLB entries. */
+ GMMCHUNKTLBE aEntries[GMM_CHUNKTLB_ENTRIES];
+} GMMCHUNKTLB;
+/** Pointer to an allocation chunk TLB. */
+typedef GMMCHUNKTLB *PGMMCHUNKTLB;
+
+
+/**
+ * The GMM instance data.
+ */
+typedef struct GMM
+{
+ /** Magic / eye catcher. GMM_MAGIC */
+ uint32_t u32Magic;
+ /** The number of threads waiting on the mutex. */
+ uint32_t cMtxContenders;
+#ifdef VBOX_USE_CRIT_SECT_FOR_GIANT
+ /** The critical section protecting the GMM.
+ * More fine grained locking can be implemented later if necessary. */
+ RTCRITSECT GiantCritSect;
+#else
+ /** The fast mutex protecting the GMM.
+ * More fine grained locking can be implemented later if necessary. */
+ RTSEMFASTMUTEX hMtx;
+#endif
+#ifdef VBOX_STRICT
+ /** The current mutex owner. */
+ RTNATIVETHREAD hMtxOwner;
+#endif
+ /** Spinlock protecting the AVL tree.
+ * @todo Make this a read-write spinlock as we should allow concurrent
+ * lookups. */
+ RTSPINLOCK hSpinLockTree;
+ /** The chunk tree.
+ * Protected by hSpinLockTree. */
+ PAVLU32NODECORE pChunks;
+ /** Chunk freeing generation - incremented whenever a chunk is freed. Used
+ * for validating the per-VM chunk TLB entries. Valid range is 1 to 2^62
+ * (exclusive), though higher numbers may temporarily occure while
+ * invalidating the individual TLBs during wrap-around processing. */
+ uint64_t volatile idFreeGeneration;
+ /** The chunk TLB.
+ * Protected by hSpinLockTree. */
+ GMMCHUNKTLB ChunkTLB;
+ /** The private free set. */
+ GMMCHUNKFREESET PrivateX;
+ /** The shared free set. */
+ GMMCHUNKFREESET Shared;
+
+ /** Shared module tree (global).
+ * @todo separate trees for distinctly different guest OSes. */
+ PAVLLU32NODECORE pGlobalSharedModuleTree;
+ /** Sharable modules (count of nodes in pGlobalSharedModuleTree). */
+ uint32_t cShareableModules;
+
+ /** The chunk list. For simplifying the cleanup process and avoid tree
+ * traversal. */
+ RTLISTANCHOR ChunkList;
+
+ /** The maximum number of pages we're allowed to allocate.
+ * @gcfgm{GMM/MaxPages,64-bit, Direct.}
+ * @gcfgm{GMM/PctPages,32-bit, Relative to the number of host pages.} */
+ uint64_t cMaxPages;
+ /** The number of pages that has been reserved.
+ * The deal is that cReservedPages - cOverCommittedPages <= cMaxPages. */
+ uint64_t cReservedPages;
+ /** The number of pages that we have over-committed in reservations. */
+ uint64_t cOverCommittedPages;
+ /** The number of actually allocated (committed if you like) pages. */
+ uint64_t cAllocatedPages;
+ /** The number of pages that are shared. A subset of cAllocatedPages. */
+ uint64_t cSharedPages;
+ /** The number of pages that are actually shared between VMs. */
+ uint64_t cDuplicatePages;
+ /** The number of pages that are shared that has been left behind by
+ * VMs not doing proper cleanups. */
+ uint64_t cLeftBehindSharedPages;
+ /** The number of allocation chunks.
+ * (The number of pages we've allocated from the host can be derived from this.) */
+ uint32_t cChunks;
+ /** The number of current ballooned pages. */
+ uint64_t cBalloonedPages;
+
+#ifdef VBOX_WITH_LINEAR_HOST_PHYS_MEM
+ /** Whether #RTR0MemObjAllocPhysNC works. */
+ bool fHasWorkingAllocPhysNC;
+#else
+ bool fPadding;
+#endif
+ /** The bound memory mode indicator.
+ * When set, the memory will be bound to a specific VM and never
+ * shared. This is always set if fLegacyAllocationMode is set.
+ * (Also determined at initialization time.) */
+ bool fBoundMemoryMode;
+ /** The number of registered VMs. */
+ uint16_t cRegisteredVMs;
+
+ /** The index of the next mutex to use. */
+ uint32_t iNextChunkMtx;
+ /** Chunk locks for reducing lock contention without having to allocate
+ * one lock per chunk. */
+ struct
+ {
+ /** The mutex */
+ RTSEMFASTMUTEX hMtx;
+ /** The number of threads currently using this mutex. */
+ uint32_t volatile cUsers;
+ } aChunkMtx[64];
+
+ /** The number of freed chunks ever. This is used as list generation to
+ * avoid restarting the cleanup scanning when the list wasn't modified. */
+ uint32_t volatile cFreedChunks;
+ /** The previous allocated Chunk ID.
+ * Used as a hint to avoid scanning the whole bitmap. */
+ uint32_t idChunkPrev;
+ /** Spinlock protecting idChunkPrev & bmChunkId. */
+ RTSPINLOCK hSpinLockChunkId;
+ /** Chunk ID allocation bitmap.
+ * Bits of allocated IDs are set, free ones are clear.
+ * The NIL id (0) is marked allocated. */
+ uint32_t bmChunkId[(GMM_CHUNKID_LAST + 1 + 31) / 32];
+} GMM;
+/** Pointer to the GMM instance. */
+typedef GMM *PGMM;
+
+/** The value of GMM::u32Magic (Katsuhiro Otomo). */
+#define GMM_MAGIC UINT32_C(0x19540414)
+
+
+/**
+ * GMM chunk mutex state.
+ *
+ * This is returned by gmmR0ChunkMutexAcquire and is used by the other
+ * gmmR0ChunkMutex* methods.
+ */
+typedef struct GMMR0CHUNKMTXSTATE
+{
+ PGMM pGMM;
+ /** The index of the chunk mutex. */
+ uint8_t iChunkMtx;
+ /** The relevant flags (GMMR0CHUNK_MTX_XXX). */
+ uint8_t fFlags;
+} GMMR0CHUNKMTXSTATE;
+/** Pointer to a chunk mutex state. */
+typedef GMMR0CHUNKMTXSTATE *PGMMR0CHUNKMTXSTATE;
+
+/** @name GMMR0CHUNK_MTX_XXX
+ * @{ */
+#define GMMR0CHUNK_MTX_INVALID UINT32_C(0)
+#define GMMR0CHUNK_MTX_KEEP_GIANT UINT32_C(1)
+#define GMMR0CHUNK_MTX_RETAKE_GIANT UINT32_C(2)
+#define GMMR0CHUNK_MTX_DROP_GIANT UINT32_C(3)
+#define GMMR0CHUNK_MTX_END UINT32_C(4)
+/** @} */
+
+
+/** The maximum number of shared modules per-vm. */
+#define GMM_MAX_SHARED_PER_VM_MODULES 2048
+/** The maximum number of shared modules GMM is allowed to track. */
+#define GMM_MAX_SHARED_GLOBAL_MODULES 16834
+
+
+/**
+ * Argument packet for gmmR0SharedModuleCleanup.
+ */
+typedef struct GMMR0SHMODPERVMDTORARGS
+{
+ PGVM pGVM;
+ PGMM pGMM;
+} GMMR0SHMODPERVMDTORARGS;
+
+/**
+ * Argument packet for gmmR0CheckSharedModule.
+ */
+typedef struct GMMCHECKSHAREDMODULEINFO
+{
+ PGVM pGVM;
+ VMCPUID idCpu;
+} GMMCHECKSHAREDMODULEINFO;
+
+
+/*********************************************************************************************************************************
+* Global Variables *
+*********************************************************************************************************************************/
+/** Pointer to the GMM instance data. */
+static PGMM g_pGMM = NULL;
+
+/** Macro for obtaining and validating the g_pGMM pointer.
+ *
+ * On failure it will return from the invoking function with the specified
+ * return value.
+ *
+ * @param pGMM The name of the pGMM variable.
+ * @param rc The return value on failure. Use VERR_GMM_INSTANCE for VBox
+ * status codes.
+ */
+#define GMM_GET_VALID_INSTANCE(pGMM, rc) \
+ do { \
+ (pGMM) = g_pGMM; \
+ AssertPtrReturn((pGMM), (rc)); \
+ AssertMsgReturn((pGMM)->u32Magic == GMM_MAGIC, ("%p - %#x\n", (pGMM), (pGMM)->u32Magic), (rc)); \
+ } while (0)
+
+/** Macro for obtaining and validating the g_pGMM pointer, void function
+ * variant.
+ *
+ * On failure it will return from the invoking function.
+ *
+ * @param pGMM The name of the pGMM variable.
+ */
+#define GMM_GET_VALID_INSTANCE_VOID(pGMM) \
+ do { \
+ (pGMM) = g_pGMM; \
+ AssertPtrReturnVoid((pGMM)); \
+ AssertMsgReturnVoid((pGMM)->u32Magic == GMM_MAGIC, ("%p - %#x\n", (pGMM), (pGMM)->u32Magic)); \
+ } while (0)
+
+
+/** @def GMM_CHECK_SANITY_UPON_ENTERING
+ * Checks the sanity of the GMM instance data before making changes.
+ *
+ * This is macro is a stub by default and must be enabled manually in the code.
+ *
+ * @returns true if sane, false if not.
+ * @param pGMM The name of the pGMM variable.
+ */
+#if defined(VBOX_STRICT) && defined(GMMR0_WITH_SANITY_CHECK) && 0
+# define GMM_CHECK_SANITY_UPON_ENTERING(pGMM) (RT_LIKELY(gmmR0SanityCheck((pGMM), __PRETTY_FUNCTION__, __LINE__) == 0))
+#else
+# define GMM_CHECK_SANITY_UPON_ENTERING(pGMM) (true)
+#endif
+
+/** @def GMM_CHECK_SANITY_UPON_LEAVING
+ * Checks the sanity of the GMM instance data after making changes.
+ *
+ * This is macro is a stub by default and must be enabled manually in the code.
+ *
+ * @returns true if sane, false if not.
+ * @param pGMM The name of the pGMM variable.
+ */
+#if defined(VBOX_STRICT) && defined(GMMR0_WITH_SANITY_CHECK) && 0
+# define GMM_CHECK_SANITY_UPON_LEAVING(pGMM) (gmmR0SanityCheck((pGMM), __PRETTY_FUNCTION__, __LINE__) == 0)
+#else
+# define GMM_CHECK_SANITY_UPON_LEAVING(pGMM) (true)
+#endif
+
+/** @def GMM_CHECK_SANITY_IN_LOOPS
+ * Checks the sanity of the GMM instance in the allocation loops.
+ *
+ * This is macro is a stub by default and must be enabled manually in the code.
+ *
+ * @returns true if sane, false if not.
+ * @param pGMM The name of the pGMM variable.
+ */
+#if defined(VBOX_STRICT) && defined(GMMR0_WITH_SANITY_CHECK) && 0
+# define GMM_CHECK_SANITY_IN_LOOPS(pGMM) (gmmR0SanityCheck((pGMM), __PRETTY_FUNCTION__, __LINE__) == 0)
+#else
+# define GMM_CHECK_SANITY_IN_LOOPS(pGMM) (true)
+#endif
+
+
+/*********************************************************************************************************************************
+* Internal Functions *
+*********************************************************************************************************************************/
+static DECLCALLBACK(int) gmmR0TermDestroyChunk(PAVLU32NODECORE pNode, void *pvGMM);
+static bool gmmR0CleanupVMScanChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk);
+DECLINLINE(void) gmmR0UnlinkChunk(PGMMCHUNK pChunk);
+DECLINLINE(void) gmmR0LinkChunk(PGMMCHUNK pChunk, PGMMCHUNKFREESET pSet);
+DECLINLINE(void) gmmR0SelectSetAndLinkChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk);
+#ifdef GMMR0_WITH_SANITY_CHECK
+static uint32_t gmmR0SanityCheck(PGMM pGMM, const char *pszFunction, unsigned uLineNo);
+#endif
+static bool gmmR0FreeChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, bool fRelaxedSem);
+DECLINLINE(void) gmmR0FreePrivatePage(PGMM pGMM, PGVM pGVM, uint32_t idPage, PGMMPAGE pPage);
+DECLINLINE(void) gmmR0FreeSharedPage(PGMM pGMM, PGVM pGVM, uint32_t idPage, PGMMPAGE pPage);
+static int gmmR0UnmapChunkLocked(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk);
+#ifdef VBOX_WITH_PAGE_SHARING
+static void gmmR0SharedModuleCleanup(PGMM pGMM, PGVM pGVM);
+# ifdef VBOX_STRICT
+static uint32_t gmmR0StrictPageChecksum(PGMM pGMM, PGVM pGVM, uint32_t idPage);
+# endif
+#endif
+
+
+
+/**
+ * Initializes the GMM component.
+ *
+ * This is called when the VMMR0.r0 module is loaded and protected by the
+ * loader semaphore.
+ *
+ * @returns VBox status code.
+ */
+GMMR0DECL(int) GMMR0Init(void)
+{
+ LogFlow(("GMMInit:\n"));
+
+ /* Currently assuming same host and guest page size here. Can change it to
+ dish out guest pages with different size from the host page later if
+ needed, though a restriction would be the host page size must be larger
+ than the guest page size. */
+ AssertCompile(GUEST_PAGE_SIZE == HOST_PAGE_SIZE);
+ AssertCompile(GUEST_PAGE_SIZE <= HOST_PAGE_SIZE);
+
+ /*
+ * Allocate the instance data and the locks.
+ */
+ PGMM pGMM = (PGMM)RTMemAllocZ(sizeof(*pGMM));
+ if (!pGMM)
+ return VERR_NO_MEMORY;
+
+ pGMM->u32Magic = GMM_MAGIC;
+ for (unsigned i = 0; i < RT_ELEMENTS(pGMM->ChunkTLB.aEntries); i++)
+ pGMM->ChunkTLB.aEntries[i].idChunk = NIL_GMM_CHUNKID;
+ RTListInit(&pGMM->ChunkList);
+ ASMBitSet(&pGMM->bmChunkId[0], NIL_GMM_CHUNKID);
+
+#ifdef VBOX_USE_CRIT_SECT_FOR_GIANT
+ int rc = RTCritSectInit(&pGMM->GiantCritSect);
+#else
+ int rc = RTSemFastMutexCreate(&pGMM->hMtx);
+#endif
+ if (RT_SUCCESS(rc))
+ {
+ unsigned iMtx;
+ for (iMtx = 0; iMtx < RT_ELEMENTS(pGMM->aChunkMtx); iMtx++)
+ {
+ rc = RTSemFastMutexCreate(&pGMM->aChunkMtx[iMtx].hMtx);
+ if (RT_FAILURE(rc))
+ break;
+ }
+ pGMM->hSpinLockTree = NIL_RTSPINLOCK;
+ if (RT_SUCCESS(rc))
+ rc = RTSpinlockCreate(&pGMM->hSpinLockTree, RTSPINLOCK_FLAGS_INTERRUPT_SAFE, "gmm-chunk-tree");
+ pGMM->hSpinLockChunkId = NIL_RTSPINLOCK;
+ if (RT_SUCCESS(rc))
+ rc = RTSpinlockCreate(&pGMM->hSpinLockChunkId, RTSPINLOCK_FLAGS_INTERRUPT_SAFE, "gmm-chunk-id");
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Figure out how we're going to allocate stuff (only applicable to
+ * host with linear physical memory mappings).
+ */
+ pGMM->fBoundMemoryMode = false;
+#ifdef VBOX_WITH_LINEAR_HOST_PHYS_MEM
+ pGMM->fHasWorkingAllocPhysNC = false;
+
+ RTR0MEMOBJ hMemObj;
+ rc = RTR0MemObjAllocPhysNC(&hMemObj, GMM_CHUNK_SIZE, NIL_RTHCPHYS);
+ if (RT_SUCCESS(rc))
+ {
+ rc = RTR0MemObjFree(hMemObj, true);
+ AssertRC(rc);
+ pGMM->fHasWorkingAllocPhysNC = true;
+ }
+ else if (rc != VERR_NOT_SUPPORTED)
+ SUPR0Printf("GMMR0Init: Warning! RTR0MemObjAllocPhysNC(, %u, NIL_RTHCPHYS) -> %d!\n", GMM_CHUNK_SIZE, rc);
+# endif
+
+ /*
+ * Query system page count and guess a reasonable cMaxPages value.
+ */
+ pGMM->cMaxPages = UINT32_MAX; /** @todo IPRT function for query ram size and such. */
+
+ /*
+ * The idFreeGeneration value should be set so we actually trigger the
+ * wrap-around invalidation handling during a typical test run.
+ */
+ pGMM->idFreeGeneration = UINT64_MAX / 4 - 128;
+
+ g_pGMM = pGMM;
+#ifdef VBOX_WITH_LINEAR_HOST_PHYS_MEM
+ LogFlow(("GMMInit: pGMM=%p fBoundMemoryMode=%RTbool fHasWorkingAllocPhysNC=%RTbool\n", pGMM, pGMM->fBoundMemoryMode, pGMM->fHasWorkingAllocPhysNC));
+#else
+ LogFlow(("GMMInit: pGMM=%p fBoundMemoryMode=%RTbool\n", pGMM, pGMM->fBoundMemoryMode));
+#endif
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * Bail out.
+ */
+ RTSpinlockDestroy(pGMM->hSpinLockChunkId);
+ RTSpinlockDestroy(pGMM->hSpinLockTree);
+ while (iMtx-- > 0)
+ RTSemFastMutexDestroy(pGMM->aChunkMtx[iMtx].hMtx);
+#ifdef VBOX_USE_CRIT_SECT_FOR_GIANT
+ RTCritSectDelete(&pGMM->GiantCritSect);
+#else
+ RTSemFastMutexDestroy(pGMM->hMtx);
+#endif
+ }
+
+ pGMM->u32Magic = 0;
+ RTMemFree(pGMM);
+ SUPR0Printf("GMMR0Init: failed! rc=%d\n", rc);
+ return rc;
+}
+
+
+/**
+ * Terminates the GMM component.
+ */
+GMMR0DECL(void) GMMR0Term(void)
+{
+ LogFlow(("GMMTerm:\n"));
+
+ /*
+ * Take care / be paranoid...
+ */
+ PGMM pGMM = g_pGMM;
+ if (!RT_VALID_PTR(pGMM))
+ return;
+ if (pGMM->u32Magic != GMM_MAGIC)
+ {
+ SUPR0Printf("GMMR0Term: u32Magic=%#x\n", pGMM->u32Magic);
+ return;
+ }
+
+ /*
+ * Undo what init did and free all the resources we've acquired.
+ */
+ /* Destroy the fundamentals. */
+ g_pGMM = NULL;
+ pGMM->u32Magic = ~GMM_MAGIC;
+#ifdef VBOX_USE_CRIT_SECT_FOR_GIANT
+ RTCritSectDelete(&pGMM->GiantCritSect);
+#else
+ RTSemFastMutexDestroy(pGMM->hMtx);
+ pGMM->hMtx = NIL_RTSEMFASTMUTEX;
+#endif
+ RTSpinlockDestroy(pGMM->hSpinLockTree);
+ pGMM->hSpinLockTree = NIL_RTSPINLOCK;
+ RTSpinlockDestroy(pGMM->hSpinLockChunkId);
+ pGMM->hSpinLockChunkId = NIL_RTSPINLOCK;
+
+ /* Free any chunks still hanging around. */
+ RTAvlU32Destroy(&pGMM->pChunks, gmmR0TermDestroyChunk, pGMM);
+
+ /* Destroy the chunk locks. */
+ for (unsigned iMtx = 0; iMtx < RT_ELEMENTS(pGMM->aChunkMtx); iMtx++)
+ {
+ Assert(pGMM->aChunkMtx[iMtx].cUsers == 0);
+ RTSemFastMutexDestroy(pGMM->aChunkMtx[iMtx].hMtx);
+ pGMM->aChunkMtx[iMtx].hMtx = NIL_RTSEMFASTMUTEX;
+ }
+
+ /* Finally the instance data itself. */
+ RTMemFree(pGMM);
+ LogFlow(("GMMTerm: done\n"));
+}
+
+
+/**
+ * RTAvlU32Destroy callback.
+ *
+ * @returns 0
+ * @param pNode The node to destroy.
+ * @param pvGMM The GMM handle.
+ */
+static DECLCALLBACK(int) gmmR0TermDestroyChunk(PAVLU32NODECORE pNode, void *pvGMM)
+{
+ PGMMCHUNK pChunk = (PGMMCHUNK)pNode;
+
+ if (pChunk->cFree != GMM_CHUNK_NUM_PAGES)
+ SUPR0Printf("GMMR0Term: %RKv/%#x: cFree=%d cPrivate=%d cShared=%d cMappings=%d\n", pChunk,
+ pChunk->Core.Key, pChunk->cFree, pChunk->cPrivate, pChunk->cShared, pChunk->cMappingsX);
+
+ int rc = RTR0MemObjFree(pChunk->hMemObj, true /* fFreeMappings */);
+ if (RT_FAILURE(rc))
+ {
+ SUPR0Printf("GMMR0Term: %RKv/%#x: RTRMemObjFree(%RKv,true) -> %d (cMappings=%d)\n", pChunk,
+ pChunk->Core.Key, pChunk->hMemObj, rc, pChunk->cMappingsX);
+ AssertRC(rc);
+ }
+ pChunk->hMemObj = NIL_RTR0MEMOBJ;
+
+ RTMemFree(pChunk->paMappingsX);
+ pChunk->paMappingsX = NULL;
+
+ RTMemFree(pChunk);
+ NOREF(pvGMM);
+ return 0;
+}
+
+
+/**
+ * Initializes the per-VM data for the GMM.
+ *
+ * This is called from within the GVMM lock (from GVMMR0CreateVM)
+ * and should only initialize the data members so GMMR0CleanupVM
+ * can deal with them. We reserve no memory or anything here,
+ * that's done later in GMMR0InitVM.
+ *
+ * @param pGVM Pointer to the Global VM structure.
+ */
+GMMR0DECL(int) GMMR0InitPerVMData(PGVM pGVM)
+{
+ AssertCompile(RT_SIZEOFMEMB(GVM,gmm.s) <= RT_SIZEOFMEMB(GVM,gmm.padding));
+
+ pGVM->gmm.s.Stats.enmPolicy = GMMOCPOLICY_INVALID;
+ pGVM->gmm.s.Stats.enmPriority = GMMPRIORITY_INVALID;
+ pGVM->gmm.s.Stats.fMayAllocate = false;
+
+ pGVM->gmm.s.hChunkTlbSpinLock = NIL_RTSPINLOCK;
+ int rc = RTSpinlockCreate(&pGVM->gmm.s.hChunkTlbSpinLock, RTSPINLOCK_FLAGS_INTERRUPT_SAFE, "per-vm-chunk-tlb");
+ AssertRCReturn(rc, rc);
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Acquires the GMM giant lock.
+ *
+ * @returns Assert status code from RTSemFastMutexRequest.
+ * @param pGMM Pointer to the GMM instance.
+ */
+static int gmmR0MutexAcquire(PGMM pGMM)
+{
+ ASMAtomicIncU32(&pGMM->cMtxContenders);
+#ifdef VBOX_USE_CRIT_SECT_FOR_GIANT
+ int rc = RTCritSectEnter(&pGMM->GiantCritSect);
+#else
+ int rc = RTSemFastMutexRequest(pGMM->hMtx);
+#endif
+ ASMAtomicDecU32(&pGMM->cMtxContenders);
+ AssertRC(rc);
+#ifdef VBOX_STRICT
+ pGMM->hMtxOwner = RTThreadNativeSelf();
+#endif
+ return rc;
+}
+
+
+/**
+ * Releases the GMM giant lock.
+ *
+ * @returns Assert status code from RTSemFastMutexRequest.
+ * @param pGMM Pointer to the GMM instance.
+ */
+static int gmmR0MutexRelease(PGMM pGMM)
+{
+#ifdef VBOX_STRICT
+ pGMM->hMtxOwner = NIL_RTNATIVETHREAD;
+#endif
+#ifdef VBOX_USE_CRIT_SECT_FOR_GIANT
+ int rc = RTCritSectLeave(&pGMM->GiantCritSect);
+#else
+ int rc = RTSemFastMutexRelease(pGMM->hMtx);
+ AssertRC(rc);
+#endif
+ return rc;
+}
+
+
+/**
+ * Yields the GMM giant lock if there is contention and a certain minimum time
+ * has elapsed since we took it.
+ *
+ * @returns @c true if the mutex was yielded, @c false if not.
+ * @param pGMM Pointer to the GMM instance.
+ * @param puLockNanoTS Where the lock acquisition time stamp is kept
+ * (in/out).
+ */
+static bool gmmR0MutexYield(PGMM pGMM, uint64_t *puLockNanoTS)
+{
+ /*
+ * If nobody is contending the mutex, don't bother checking the time.
+ */
+ if (ASMAtomicReadU32(&pGMM->cMtxContenders) == 0)
+ return false;
+
+ /*
+ * Don't yield if we haven't executed for at least 2 milliseconds.
+ */
+ uint64_t uNanoNow = RTTimeSystemNanoTS();
+ if (uNanoNow - *puLockNanoTS < UINT32_C(2000000))
+ return false;
+
+ /*
+ * Yield the mutex.
+ */
+#ifdef VBOX_STRICT
+ pGMM->hMtxOwner = NIL_RTNATIVETHREAD;
+#endif
+ ASMAtomicIncU32(&pGMM->cMtxContenders);
+#ifdef VBOX_USE_CRIT_SECT_FOR_GIANT
+ int rc1 = RTCritSectLeave(&pGMM->GiantCritSect); AssertRC(rc1);
+#else
+ int rc1 = RTSemFastMutexRelease(pGMM->hMtx); AssertRC(rc1);
+#endif
+
+ RTThreadYield();
+
+#ifdef VBOX_USE_CRIT_SECT_FOR_GIANT
+ int rc2 = RTCritSectEnter(&pGMM->GiantCritSect); AssertRC(rc2);
+#else
+ int rc2 = RTSemFastMutexRequest(pGMM->hMtx); AssertRC(rc2);
+#endif
+ *puLockNanoTS = RTTimeSystemNanoTS();
+ ASMAtomicDecU32(&pGMM->cMtxContenders);
+#ifdef VBOX_STRICT
+ pGMM->hMtxOwner = RTThreadNativeSelf();
+#endif
+
+ return true;
+}
+
+
+/**
+ * Acquires a chunk lock.
+ *
+ * The caller must own the giant lock.
+ *
+ * @returns Assert status code from RTSemFastMutexRequest.
+ * @param pMtxState The chunk mutex state info. (Avoids
+ * passing the same flags and stuff around
+ * for subsequent release and drop-giant
+ * calls.)
+ * @param pGMM Pointer to the GMM instance.
+ * @param pChunk Pointer to the chunk.
+ * @param fFlags Flags regarding the giant lock, GMMR0CHUNK_MTX_XXX.
+ */
+static int gmmR0ChunkMutexAcquire(PGMMR0CHUNKMTXSTATE pMtxState, PGMM pGMM, PGMMCHUNK pChunk, uint32_t fFlags)
+{
+ Assert(fFlags > GMMR0CHUNK_MTX_INVALID && fFlags < GMMR0CHUNK_MTX_END);
+ Assert(pGMM->hMtxOwner == RTThreadNativeSelf());
+
+ pMtxState->pGMM = pGMM;
+ pMtxState->fFlags = (uint8_t)fFlags;
+
+ /*
+ * Get the lock index and reference the lock.
+ */
+ Assert(pGMM->hMtxOwner == RTThreadNativeSelf());
+ uint32_t iChunkMtx = pChunk->iChunkMtx;
+ if (iChunkMtx == UINT8_MAX)
+ {
+ iChunkMtx = pGMM->iNextChunkMtx++;
+ iChunkMtx %= RT_ELEMENTS(pGMM->aChunkMtx);
+
+ /* Try get an unused one... */
+ if (pGMM->aChunkMtx[iChunkMtx].cUsers)
+ {
+ iChunkMtx = pGMM->iNextChunkMtx++;
+ iChunkMtx %= RT_ELEMENTS(pGMM->aChunkMtx);
+ if (pGMM->aChunkMtx[iChunkMtx].cUsers)
+ {
+ iChunkMtx = pGMM->iNextChunkMtx++;
+ iChunkMtx %= RT_ELEMENTS(pGMM->aChunkMtx);
+ if (pGMM->aChunkMtx[iChunkMtx].cUsers)
+ {
+ iChunkMtx = pGMM->iNextChunkMtx++;
+ iChunkMtx %= RT_ELEMENTS(pGMM->aChunkMtx);
+ }
+ }
+ }
+
+ pChunk->iChunkMtx = iChunkMtx;
+ }
+ AssertCompile(RT_ELEMENTS(pGMM->aChunkMtx) < UINT8_MAX);
+ pMtxState->iChunkMtx = (uint8_t)iChunkMtx;
+ ASMAtomicIncU32(&pGMM->aChunkMtx[iChunkMtx].cUsers);
+
+ /*
+ * Drop the giant?
+ */
+ if (fFlags != GMMR0CHUNK_MTX_KEEP_GIANT)
+ {
+ /** @todo GMM life cycle cleanup (we may race someone
+ * destroying and cleaning up GMM)? */
+ gmmR0MutexRelease(pGMM);
+ }
+
+ /*
+ * Take the chunk mutex.
+ */
+ int rc = RTSemFastMutexRequest(pGMM->aChunkMtx[iChunkMtx].hMtx);
+ AssertRC(rc);
+ return rc;
+}
+
+
+/**
+ * Releases the GMM giant lock.
+ *
+ * @returns Assert status code from RTSemFastMutexRequest.
+ * @param pMtxState Pointer to the chunk mutex state.
+ * @param pChunk Pointer to the chunk if it's still
+ * alive, NULL if it isn't. This is used to deassociate
+ * the chunk from the mutex on the way out so a new one
+ * can be selected next time, thus avoiding contented
+ * mutexes.
+ */
+static int gmmR0ChunkMutexRelease(PGMMR0CHUNKMTXSTATE pMtxState, PGMMCHUNK pChunk)
+{
+ PGMM pGMM = pMtxState->pGMM;
+
+ /*
+ * Release the chunk mutex and reacquire the giant if requested.
+ */
+ int rc = RTSemFastMutexRelease(pGMM->aChunkMtx[pMtxState->iChunkMtx].hMtx);
+ AssertRC(rc);
+ if (pMtxState->fFlags == GMMR0CHUNK_MTX_RETAKE_GIANT)
+ rc = gmmR0MutexAcquire(pGMM);
+ else
+ Assert((pMtxState->fFlags != GMMR0CHUNK_MTX_DROP_GIANT) == (pGMM->hMtxOwner == RTThreadNativeSelf()));
+
+ /*
+ * Drop the chunk mutex user reference and deassociate it from the chunk
+ * when possible.
+ */
+ if ( ASMAtomicDecU32(&pGMM->aChunkMtx[pMtxState->iChunkMtx].cUsers) == 0
+ && pChunk
+ && RT_SUCCESS(rc) )
+ {
+ if (pMtxState->fFlags != GMMR0CHUNK_MTX_DROP_GIANT)
+ pChunk->iChunkMtx = UINT8_MAX;
+ else
+ {
+ rc = gmmR0MutexAcquire(pGMM);
+ if (RT_SUCCESS(rc))
+ {
+ if (pGMM->aChunkMtx[pMtxState->iChunkMtx].cUsers == 0)
+ pChunk->iChunkMtx = UINT8_MAX;
+ rc = gmmR0MutexRelease(pGMM);
+ }
+ }
+ }
+
+ pMtxState->pGMM = NULL;
+ return rc;
+}
+
+
+/**
+ * Drops the giant GMM lock we kept in gmmR0ChunkMutexAcquire while keeping the
+ * chunk locked.
+ *
+ * This only works if gmmR0ChunkMutexAcquire was called with
+ * GMMR0CHUNK_MTX_KEEP_GIANT. gmmR0ChunkMutexRelease will retake the giant
+ * mutex, i.e. behave as if GMMR0CHUNK_MTX_RETAKE_GIANT was used.
+ *
+ * @returns VBox status code (assuming success is ok).
+ * @param pMtxState Pointer to the chunk mutex state.
+ */
+static int gmmR0ChunkMutexDropGiant(PGMMR0CHUNKMTXSTATE pMtxState)
+{
+ AssertReturn(pMtxState->fFlags == GMMR0CHUNK_MTX_KEEP_GIANT, VERR_GMM_MTX_FLAGS);
+ Assert(pMtxState->pGMM->hMtxOwner == RTThreadNativeSelf());
+ pMtxState->fFlags = GMMR0CHUNK_MTX_RETAKE_GIANT;
+ /** @todo GMM life cycle cleanup (we may race someone
+ * destroying and cleaning up GMM)? */
+ return gmmR0MutexRelease(pMtxState->pGMM);
+}
+
+
+/**
+ * For experimenting with NUMA affinity and such.
+ *
+ * @returns The current NUMA Node ID.
+ */
+static uint16_t gmmR0GetCurrentNumaNodeId(void)
+{
+#if 1
+ return GMM_CHUNK_NUMA_ID_UNKNOWN;
+#else
+ return RTMpCpuId() / 16;
+#endif
+}
+
+
+
+/**
+ * Cleans up when a VM is terminating.
+ *
+ * @param pGVM Pointer to the Global VM structure.
+ */
+GMMR0DECL(void) GMMR0CleanupVM(PGVM pGVM)
+{
+ LogFlow(("GMMR0CleanupVM: pGVM=%p:{.hSelf=%#x}\n", pGVM, pGVM->hSelf));
+
+ PGMM pGMM;
+ GMM_GET_VALID_INSTANCE_VOID(pGMM);
+
+#ifdef VBOX_WITH_PAGE_SHARING
+ /*
+ * Clean up all registered shared modules first.
+ */
+ gmmR0SharedModuleCleanup(pGMM, pGVM);
+#endif
+
+ gmmR0MutexAcquire(pGMM);
+ uint64_t uLockNanoTS = RTTimeSystemNanoTS();
+ GMM_CHECK_SANITY_UPON_ENTERING(pGMM);
+
+ /*
+ * The policy is 'INVALID' until the initial reservation
+ * request has been serviced.
+ */
+ if ( pGVM->gmm.s.Stats.enmPolicy > GMMOCPOLICY_INVALID
+ && pGVM->gmm.s.Stats.enmPolicy < GMMOCPOLICY_END)
+ {
+ /*
+ * If it's the last VM around, we can skip walking all the chunk looking
+ * for the pages owned by this VM and instead flush the whole shebang.
+ *
+ * This takes care of the eventuality that a VM has left shared page
+ * references behind (shouldn't happen of course, but you never know).
+ */
+ Assert(pGMM->cRegisteredVMs);
+ pGMM->cRegisteredVMs--;
+
+ /*
+ * Walk the entire pool looking for pages that belong to this VM
+ * and leftover mappings. (This'll only catch private pages,
+ * shared pages will be 'left behind'.)
+ */
+ /** @todo r=bird: This scanning+freeing could be optimized in bound mode! */
+ uint64_t cPrivatePages = pGVM->gmm.s.Stats.cPrivatePages; /* save */
+
+ unsigned iCountDown = 64;
+ bool fRedoFromStart;
+ PGMMCHUNK pChunk;
+ do
+ {
+ fRedoFromStart = false;
+ RTListForEachReverse(&pGMM->ChunkList, pChunk, GMMCHUNK, ListNode)
+ {
+ uint32_t const cFreeChunksOld = pGMM->cFreedChunks;
+ if ( ( !pGMM->fBoundMemoryMode
+ || pChunk->hGVM == pGVM->hSelf)
+ && gmmR0CleanupVMScanChunk(pGMM, pGVM, pChunk))
+ {
+ /* We left the giant mutex, so reset the yield counters. */
+ uLockNanoTS = RTTimeSystemNanoTS();
+ iCountDown = 64;
+ }
+ else
+ {
+ /* Didn't leave it, so do normal yielding. */
+ if (!iCountDown)
+ gmmR0MutexYield(pGMM, &uLockNanoTS);
+ else
+ iCountDown--;
+ }
+ if (pGMM->cFreedChunks != cFreeChunksOld)
+ {
+ fRedoFromStart = true;
+ break;
+ }
+ }
+ } while (fRedoFromStart);
+
+ if (pGVM->gmm.s.Stats.cPrivatePages)
+ SUPR0Printf("GMMR0CleanupVM: hGVM=%#x has %#x private pages that cannot be found!\n", pGVM->hSelf, pGVM->gmm.s.Stats.cPrivatePages);
+
+ pGMM->cAllocatedPages -= cPrivatePages;
+
+ /*
+ * Free empty chunks.
+ */
+ PGMMCHUNKFREESET pPrivateSet = pGMM->fBoundMemoryMode ? &pGVM->gmm.s.Private : &pGMM->PrivateX;
+ do
+ {
+ fRedoFromStart = false;
+ iCountDown = 10240;
+ pChunk = pPrivateSet->apLists[GMM_CHUNK_FREE_SET_UNUSED_LIST];
+ while (pChunk)
+ {
+ PGMMCHUNK pNext = pChunk->pFreeNext;
+ Assert(pChunk->cFree == GMM_CHUNK_NUM_PAGES);
+ if ( !pGMM->fBoundMemoryMode
+ || pChunk->hGVM == pGVM->hSelf)
+ {
+ uint64_t const idGenerationOld = pPrivateSet->idGeneration;
+ if (gmmR0FreeChunk(pGMM, pGVM, pChunk, true /*fRelaxedSem*/))
+ {
+ /* We've left the giant mutex, restart? (+1 for our unlink) */
+ fRedoFromStart = pPrivateSet->idGeneration != idGenerationOld + 1;
+ if (fRedoFromStart)
+ break;
+ uLockNanoTS = RTTimeSystemNanoTS();
+ iCountDown = 10240;
+ }
+ }
+
+ /* Advance and maybe yield the lock. */
+ pChunk = pNext;
+ if (--iCountDown == 0)
+ {
+ uint64_t const idGenerationOld = pPrivateSet->idGeneration;
+ fRedoFromStart = gmmR0MutexYield(pGMM, &uLockNanoTS)
+ && pPrivateSet->idGeneration != idGenerationOld;
+ if (fRedoFromStart)
+ break;
+ iCountDown = 10240;
+ }
+ }
+ } while (fRedoFromStart);
+
+ /*
+ * Account for shared pages that weren't freed.
+ */
+ if (pGVM->gmm.s.Stats.cSharedPages)
+ {
+ Assert(pGMM->cSharedPages >= pGVM->gmm.s.Stats.cSharedPages);
+ SUPR0Printf("GMMR0CleanupVM: hGVM=%#x left %#x shared pages behind!\n", pGVM->hSelf, pGVM->gmm.s.Stats.cSharedPages);
+ pGMM->cLeftBehindSharedPages += pGVM->gmm.s.Stats.cSharedPages;
+ }
+
+ /*
+ * Clean up balloon statistics in case the VM process crashed.
+ */
+ Assert(pGMM->cBalloonedPages >= pGVM->gmm.s.Stats.cBalloonedPages);
+ pGMM->cBalloonedPages -= pGVM->gmm.s.Stats.cBalloonedPages;
+
+ /*
+ * Update the over-commitment management statistics.
+ */
+ pGMM->cReservedPages -= pGVM->gmm.s.Stats.Reserved.cBasePages
+ + pGVM->gmm.s.Stats.Reserved.cFixedPages
+ + pGVM->gmm.s.Stats.Reserved.cShadowPages;
+ switch (pGVM->gmm.s.Stats.enmPolicy)
+ {
+ case GMMOCPOLICY_NO_OC:
+ break;
+ default:
+ /** @todo Update GMM->cOverCommittedPages */
+ break;
+ }
+ }
+
+ /* zap the GVM data. */
+ pGVM->gmm.s.Stats.enmPolicy = GMMOCPOLICY_INVALID;
+ pGVM->gmm.s.Stats.enmPriority = GMMPRIORITY_INVALID;
+ pGVM->gmm.s.Stats.fMayAllocate = false;
+
+ GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
+ gmmR0MutexRelease(pGMM);
+
+ /*
+ * Destroy the spinlock.
+ */
+ RTSPINLOCK hSpinlock = NIL_RTSPINLOCK;
+ ASMAtomicXchgHandle(&pGVM->gmm.s.hChunkTlbSpinLock, NIL_RTSPINLOCK, &hSpinlock);
+ RTSpinlockDestroy(hSpinlock);
+
+ LogFlow(("GMMR0CleanupVM: returns\n"));
+}
+
+
+/**
+ * Scan one chunk for private pages belonging to the specified VM.
+ *
+ * @note This function may drop the giant mutex!
+ *
+ * @returns @c true if we've temporarily dropped the giant mutex, @c false if
+ * we didn't.
+ * @param pGMM Pointer to the GMM instance.
+ * @param pGVM The global VM handle.
+ * @param pChunk The chunk to scan.
+ */
+static bool gmmR0CleanupVMScanChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk)
+{
+ Assert(!pGMM->fBoundMemoryMode || pChunk->hGVM == pGVM->hSelf);
+
+ /*
+ * Look for pages belonging to the VM.
+ * (Perform some internal checks while we're scanning.)
+ */
+#ifndef VBOX_STRICT
+ if (pChunk->cFree != GMM_CHUNK_NUM_PAGES)
+#endif
+ {
+ unsigned cPrivate = 0;
+ unsigned cShared = 0;
+ unsigned cFree = 0;
+
+ gmmR0UnlinkChunk(pChunk); /* avoiding cFreePages updates. */
+
+ uint16_t hGVM = pGVM->hSelf;
+ unsigned iPage = (GMM_CHUNK_SIZE >> GUEST_PAGE_SHIFT);
+ while (iPage-- > 0)
+ if (GMM_PAGE_IS_PRIVATE(&pChunk->aPages[iPage]))
+ {
+ if (pChunk->aPages[iPage].Private.hGVM == hGVM)
+ {
+ /*
+ * Free the page.
+ *
+ * The reason for not using gmmR0FreePrivatePage here is that we
+ * must *not* cause the chunk to be freed from under us - we're in
+ * an AVL tree walk here.
+ */
+ pChunk->aPages[iPage].u = 0;
+ pChunk->aPages[iPage].Free.u2State = GMM_PAGE_STATE_FREE;
+ pChunk->aPages[iPage].Free.fZeroed = false;
+ pChunk->aPages[iPage].Free.iNext = pChunk->iFreeHead;
+ pChunk->iFreeHead = iPage;
+ pChunk->cPrivate--;
+ pChunk->cFree++;
+ pGVM->gmm.s.Stats.cPrivatePages--;
+ cFree++;
+ }
+ else
+ cPrivate++;
+ }
+ else if (GMM_PAGE_IS_FREE(&pChunk->aPages[iPage]))
+ cFree++;
+ else
+ cShared++;
+
+ gmmR0SelectSetAndLinkChunk(pGMM, pGVM, pChunk);
+
+ /*
+ * Did it add up?
+ */
+ if (RT_UNLIKELY( pChunk->cFree != cFree
+ || pChunk->cPrivate != cPrivate
+ || pChunk->cShared != cShared))
+ {
+ SUPR0Printf("gmmR0CleanupVMScanChunk: Chunk %RKv/%#x has bogus stats - free=%d/%d private=%d/%d shared=%d/%d\n",
+ pChunk, pChunk->Core.Key, pChunk->cFree, cFree, pChunk->cPrivate, cPrivate, pChunk->cShared, cShared);
+ pChunk->cFree = cFree;
+ pChunk->cPrivate = cPrivate;
+ pChunk->cShared = cShared;
+ }
+ }
+
+ /*
+ * If not in bound memory mode, we should reset the hGVM field
+ * if it has our handle in it.
+ */
+ if (pChunk->hGVM == pGVM->hSelf)
+ {
+ if (!g_pGMM->fBoundMemoryMode)
+ pChunk->hGVM = NIL_GVM_HANDLE;
+ else if (pChunk->cFree != GMM_CHUNK_NUM_PAGES)
+ {
+ SUPR0Printf("gmmR0CleanupVMScanChunk: %RKv/%#x: cFree=%#x - it should be 0 in bound mode!\n",
+ pChunk, pChunk->Core.Key, pChunk->cFree);
+ AssertMsgFailed(("%p/%#x: cFree=%#x - it should be 0 in bound mode!\n", pChunk, pChunk->Core.Key, pChunk->cFree));
+
+ gmmR0UnlinkChunk(pChunk);
+ pChunk->cFree = GMM_CHUNK_NUM_PAGES;
+ gmmR0SelectSetAndLinkChunk(pGMM, pGVM, pChunk);
+ }
+ }
+
+ /*
+ * Look for a mapping belonging to the terminating VM.
+ */
+ GMMR0CHUNKMTXSTATE MtxState;
+ gmmR0ChunkMutexAcquire(&MtxState, pGMM, pChunk, GMMR0CHUNK_MTX_KEEP_GIANT);
+ unsigned cMappings = pChunk->cMappingsX;
+ for (unsigned i = 0; i < cMappings; i++)
+ if (pChunk->paMappingsX[i].pGVM == pGVM)
+ {
+ gmmR0ChunkMutexDropGiant(&MtxState);
+
+ RTR0MEMOBJ hMemObj = pChunk->paMappingsX[i].hMapObj;
+
+ cMappings--;
+ if (i < cMappings)
+ pChunk->paMappingsX[i] = pChunk->paMappingsX[cMappings];
+ pChunk->paMappingsX[cMappings].pGVM = NULL;
+ pChunk->paMappingsX[cMappings].hMapObj = NIL_RTR0MEMOBJ;
+ Assert(pChunk->cMappingsX - 1U == cMappings);
+ pChunk->cMappingsX = cMappings;
+
+ int rc = RTR0MemObjFree(hMemObj, false /* fFreeMappings (NA) */);
+ if (RT_FAILURE(rc))
+ {
+ SUPR0Printf("gmmR0CleanupVMScanChunk: %RKv/%#x: mapping #%x: RTRMemObjFree(%RKv,false) -> %d \n",
+ pChunk, pChunk->Core.Key, i, hMemObj, rc);
+ AssertRC(rc);
+ }
+
+ gmmR0ChunkMutexRelease(&MtxState, pChunk);
+ return true;
+ }
+
+ gmmR0ChunkMutexRelease(&MtxState, pChunk);
+ return false;
+}
+
+
+/**
+ * The initial resource reservations.
+ *
+ * This will make memory reservations according to policy and priority. If there aren't
+ * sufficient resources available to sustain the VM this function will fail and all
+ * future allocations requests will fail as well.
+ *
+ * These are just the initial reservations made very very early during the VM creation
+ * process and will be adjusted later in the GMMR0UpdateReservation call after the
+ * ring-3 init has completed.
+ *
+ * @returns VBox status code.
+ * @retval VERR_GMM_MEMORY_RESERVATION_DECLINED
+ * @retval VERR_GMM_
+ *
+ * @param pGVM The global (ring-0) VM structure.
+ * @param idCpu The VCPU id - must be zero.
+ * @param cBasePages The number of pages that may be allocated for the base RAM and ROMs.
+ * This does not include MMIO2 and similar.
+ * @param cShadowPages The number of pages that may be allocated for shadow paging structures.
+ * @param cFixedPages The number of pages that may be allocated for fixed objects like the
+ * hyper heap, MMIO2 and similar.
+ * @param enmPolicy The OC policy to use on this VM.
+ * @param enmPriority The priority in an out-of-memory situation.
+ *
+ * @thread The creator thread / EMT(0).
+ */
+GMMR0DECL(int) GMMR0InitialReservation(PGVM pGVM, VMCPUID idCpu, uint64_t cBasePages, uint32_t cShadowPages,
+ uint32_t cFixedPages, GMMOCPOLICY enmPolicy, GMMPRIORITY enmPriority)
+{
+ LogFlow(("GMMR0InitialReservation: pGVM=%p cBasePages=%#llx cShadowPages=%#x cFixedPages=%#x enmPolicy=%d enmPriority=%d\n",
+ pGVM, cBasePages, cShadowPages, cFixedPages, enmPolicy, enmPriority));
+
+ /*
+ * Validate, get basics and take the semaphore.
+ */
+ AssertReturn(idCpu == 0, VERR_INVALID_CPU_ID);
+ PGMM pGMM;
+ GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
+ int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ AssertReturn(cBasePages, VERR_INVALID_PARAMETER);
+ AssertReturn(cShadowPages, VERR_INVALID_PARAMETER);
+ AssertReturn(cFixedPages, VERR_INVALID_PARAMETER);
+ AssertReturn(enmPolicy > GMMOCPOLICY_INVALID && enmPolicy < GMMOCPOLICY_END, VERR_INVALID_PARAMETER);
+ AssertReturn(enmPriority > GMMPRIORITY_INVALID && enmPriority < GMMPRIORITY_END, VERR_INVALID_PARAMETER);
+
+ gmmR0MutexAcquire(pGMM);
+ if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
+ {
+ if ( !pGVM->gmm.s.Stats.Reserved.cBasePages
+ && !pGVM->gmm.s.Stats.Reserved.cFixedPages
+ && !pGVM->gmm.s.Stats.Reserved.cShadowPages)
+ {
+ /*
+ * Check if we can accommodate this.
+ */
+ /* ... later ... */
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Update the records.
+ */
+ pGVM->gmm.s.Stats.Reserved.cBasePages = cBasePages;
+ pGVM->gmm.s.Stats.Reserved.cFixedPages = cFixedPages;
+ pGVM->gmm.s.Stats.Reserved.cShadowPages = cShadowPages;
+ pGVM->gmm.s.Stats.enmPolicy = enmPolicy;
+ pGVM->gmm.s.Stats.enmPriority = enmPriority;
+ pGVM->gmm.s.Stats.fMayAllocate = true;
+
+ pGMM->cReservedPages += cBasePages + cFixedPages + cShadowPages;
+ pGMM->cRegisteredVMs++;
+ }
+ }
+ else
+ rc = VERR_WRONG_ORDER;
+ GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
+ }
+ else
+ rc = VERR_GMM_IS_NOT_SANE;
+ gmmR0MutexRelease(pGMM);
+ LogFlow(("GMMR0InitialReservation: returns %Rrc\n", rc));
+ return rc;
+}
+
+
+/**
+ * VMMR0 request wrapper for GMMR0InitialReservation.
+ *
+ * @returns see GMMR0InitialReservation.
+ * @param pGVM The global (ring-0) VM structure.
+ * @param idCpu The VCPU id.
+ * @param pReq Pointer to the request packet.
+ */
+GMMR0DECL(int) GMMR0InitialReservationReq(PGVM pGVM, VMCPUID idCpu, PGMMINITIALRESERVATIONREQ pReq)
+{
+ /*
+ * Validate input and pass it on.
+ */
+ AssertPtrReturn(pGVM, VERR_INVALID_POINTER);
+ AssertPtrReturn(pReq, VERR_INVALID_POINTER);
+ AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
+
+ return GMMR0InitialReservation(pGVM, idCpu, pReq->cBasePages, pReq->cShadowPages,
+ pReq->cFixedPages, pReq->enmPolicy, pReq->enmPriority);
+}
+
+
+/**
+ * This updates the memory reservation with the additional MMIO2 and ROM pages.
+ *
+ * @returns VBox status code.
+ * @retval VERR_GMM_MEMORY_RESERVATION_DECLINED
+ *
+ * @param pGVM The global (ring-0) VM structure.
+ * @param idCpu The VCPU id.
+ * @param cBasePages The number of pages that may be allocated for the base RAM and ROMs.
+ * This does not include MMIO2 and similar.
+ * @param cShadowPages The number of pages that may be allocated for shadow paging structures.
+ * @param cFixedPages The number of pages that may be allocated for fixed objects like the
+ * hyper heap, MMIO2 and similar.
+ *
+ * @thread EMT(idCpu)
+ */
+GMMR0DECL(int) GMMR0UpdateReservation(PGVM pGVM, VMCPUID idCpu, uint64_t cBasePages,
+ uint32_t cShadowPages, uint32_t cFixedPages)
+{
+ LogFlow(("GMMR0UpdateReservation: pGVM=%p cBasePages=%#llx cShadowPages=%#x cFixedPages=%#x\n",
+ pGVM, cBasePages, cShadowPages, cFixedPages));
+
+ /*
+ * Validate, get basics and take the semaphore.
+ */
+ PGMM pGMM;
+ GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
+ int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ AssertReturn(cBasePages, VERR_INVALID_PARAMETER);
+ AssertReturn(cShadowPages, VERR_INVALID_PARAMETER);
+ AssertReturn(cFixedPages, VERR_INVALID_PARAMETER);
+
+ gmmR0MutexAcquire(pGMM);
+ if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
+ {
+ if ( pGVM->gmm.s.Stats.Reserved.cBasePages
+ && pGVM->gmm.s.Stats.Reserved.cFixedPages
+ && pGVM->gmm.s.Stats.Reserved.cShadowPages)
+ {
+ /*
+ * Check if we can accommodate this.
+ */
+ /* ... later ... */
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Update the records.
+ */
+ pGMM->cReservedPages -= pGVM->gmm.s.Stats.Reserved.cBasePages
+ + pGVM->gmm.s.Stats.Reserved.cFixedPages
+ + pGVM->gmm.s.Stats.Reserved.cShadowPages;
+ pGMM->cReservedPages += cBasePages + cFixedPages + cShadowPages;
+
+ pGVM->gmm.s.Stats.Reserved.cBasePages = cBasePages;
+ pGVM->gmm.s.Stats.Reserved.cFixedPages = cFixedPages;
+ pGVM->gmm.s.Stats.Reserved.cShadowPages = cShadowPages;
+ }
+ }
+ else
+ rc = VERR_WRONG_ORDER;
+ GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
+ }
+ else
+ rc = VERR_GMM_IS_NOT_SANE;
+ gmmR0MutexRelease(pGMM);
+ LogFlow(("GMMR0UpdateReservation: returns %Rrc\n", rc));
+ return rc;
+}
+
+
+/**
+ * VMMR0 request wrapper for GMMR0UpdateReservation.
+ *
+ * @returns see GMMR0UpdateReservation.
+ * @param pGVM The global (ring-0) VM structure.
+ * @param idCpu The VCPU id.
+ * @param pReq Pointer to the request packet.
+ */
+GMMR0DECL(int) GMMR0UpdateReservationReq(PGVM pGVM, VMCPUID idCpu, PGMMUPDATERESERVATIONREQ pReq)
+{
+ /*
+ * Validate input and pass it on.
+ */
+ AssertPtrReturn(pReq, VERR_INVALID_POINTER);
+ AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
+
+ return GMMR0UpdateReservation(pGVM, idCpu, pReq->cBasePages, pReq->cShadowPages, pReq->cFixedPages);
+}
+
+#ifdef GMMR0_WITH_SANITY_CHECK
+
+/**
+ * Performs sanity checks on a free set.
+ *
+ * @returns Error count.
+ *
+ * @param pGMM Pointer to the GMM instance.
+ * @param pSet Pointer to the set.
+ * @param pszSetName The set name.
+ * @param pszFunction The function from which it was called.
+ * @param uLine The line number.
+ */
+static uint32_t gmmR0SanityCheckSet(PGMM pGMM, PGMMCHUNKFREESET pSet, const char *pszSetName,
+ const char *pszFunction, unsigned uLineNo)
+{
+ uint32_t cErrors = 0;
+
+ /*
+ * Count the free pages in all the chunks and match it against pSet->cFreePages.
+ */
+ uint32_t cPages = 0;
+ for (unsigned i = 0; i < RT_ELEMENTS(pSet->apLists); i++)
+ {
+ for (PGMMCHUNK pCur = pSet->apLists[i]; pCur; pCur = pCur->pFreeNext)
+ {
+ /** @todo check that the chunk is hash into the right set. */
+ cPages += pCur->cFree;
+ }
+ }
+ if (RT_UNLIKELY(cPages != pSet->cFreePages))
+ {
+ SUPR0Printf("GMM insanity: found %#x pages in the %s set, expected %#x. (%s, line %u)\n",
+ cPages, pszSetName, pSet->cFreePages, pszFunction, uLineNo);
+ cErrors++;
+ }
+
+ return cErrors;
+}
+
+
+/**
+ * Performs some sanity checks on the GMM while owning lock.
+ *
+ * @returns Error count.
+ *
+ * @param pGMM Pointer to the GMM instance.
+ * @param pszFunction The function from which it is called.
+ * @param uLineNo The line number.
+ */
+static uint32_t gmmR0SanityCheck(PGMM pGMM, const char *pszFunction, unsigned uLineNo)
+{
+ uint32_t cErrors = 0;
+
+ cErrors += gmmR0SanityCheckSet(pGMM, &pGMM->PrivateX, "private", pszFunction, uLineNo);
+ cErrors += gmmR0SanityCheckSet(pGMM, &pGMM->Shared, "shared", pszFunction, uLineNo);
+ /** @todo add more sanity checks. */
+
+ return cErrors;
+}
+
+#endif /* GMMR0_WITH_SANITY_CHECK */
+
+/**
+ * Looks up a chunk in the tree and fill in the TLB entry for it.
+ *
+ * This is not expected to fail and will bitch if it does.
+ *
+ * @returns Pointer to the allocation chunk, NULL if not found.
+ * @param pGMM Pointer to the GMM instance.
+ * @param idChunk The ID of the chunk to find.
+ * @param pTlbe Pointer to the TLB entry.
+ *
+ * @note Caller owns spinlock.
+ */
+static PGMMCHUNK gmmR0GetChunkSlow(PGMM pGMM, uint32_t idChunk, PGMMCHUNKTLBE pTlbe)
+{
+ PGMMCHUNK pChunk = (PGMMCHUNK)RTAvlU32Get(&pGMM->pChunks, idChunk);
+ AssertMsgReturn(pChunk, ("Chunk %#x not found!\n", idChunk), NULL);
+ pTlbe->idChunk = idChunk;
+ pTlbe->pChunk = pChunk;
+ return pChunk;
+}
+
+
+/**
+ * Finds a allocation chunk, spin-locked.
+ *
+ * This is not expected to fail and will bitch if it does.
+ *
+ * @returns Pointer to the allocation chunk, NULL if not found.
+ * @param pGMM Pointer to the GMM instance.
+ * @param idChunk The ID of the chunk to find.
+ */
+DECLINLINE(PGMMCHUNK) gmmR0GetChunkLocked(PGMM pGMM, uint32_t idChunk)
+{
+ /*
+ * Do a TLB lookup, branch if not in the TLB.
+ */
+ PGMMCHUNKTLBE pTlbe = &pGMM->ChunkTLB.aEntries[GMM_CHUNKTLB_IDX(idChunk)];
+ PGMMCHUNK pChunk = pTlbe->pChunk;
+ if ( pChunk == NULL
+ || pTlbe->idChunk != idChunk)
+ pChunk = gmmR0GetChunkSlow(pGMM, idChunk, pTlbe);
+ return pChunk;
+}
+
+
+/**
+ * Finds a allocation chunk.
+ *
+ * This is not expected to fail and will bitch if it does.
+ *
+ * @returns Pointer to the allocation chunk, NULL if not found.
+ * @param pGMM Pointer to the GMM instance.
+ * @param idChunk The ID of the chunk to find.
+ */
+DECLINLINE(PGMMCHUNK) gmmR0GetChunk(PGMM pGMM, uint32_t idChunk)
+{
+ RTSpinlockAcquire(pGMM->hSpinLockTree);
+ PGMMCHUNK pChunk = gmmR0GetChunkLocked(pGMM, idChunk);
+ RTSpinlockRelease(pGMM->hSpinLockTree);
+ return pChunk;
+}
+
+
+/**
+ * Finds a page.
+ *
+ * This is not expected to fail and will bitch if it does.
+ *
+ * @returns Pointer to the page, NULL if not found.
+ * @param pGMM Pointer to the GMM instance.
+ * @param idPage The ID of the page to find.
+ */
+DECLINLINE(PGMMPAGE) gmmR0GetPage(PGMM pGMM, uint32_t idPage)
+{
+ PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT);
+ if (RT_LIKELY(pChunk))
+ return &pChunk->aPages[idPage & GMM_PAGEID_IDX_MASK];
+ return NULL;
+}
+
+
+#if 0 /* unused */
+/**
+ * Gets the host physical address for a page given by it's ID.
+ *
+ * @returns The host physical address or NIL_RTHCPHYS.
+ * @param pGMM Pointer to the GMM instance.
+ * @param idPage The ID of the page to find.
+ */
+DECLINLINE(RTHCPHYS) gmmR0GetPageHCPhys(PGMM pGMM, uint32_t idPage)
+{
+ PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT);
+ if (RT_LIKELY(pChunk))
+ return RTR0MemObjGetPagePhysAddr(pChunk->hMemObj, idPage & GMM_PAGEID_IDX_MASK);
+ return NIL_RTHCPHYS;
+}
+#endif /* unused */
+
+
+/**
+ * Selects the appropriate free list given the number of free pages.
+ *
+ * @returns Free list index.
+ * @param cFree The number of free pages in the chunk.
+ */
+DECLINLINE(unsigned) gmmR0SelectFreeSetList(unsigned cFree)
+{
+ unsigned iList = cFree >> GMM_CHUNK_FREE_SET_SHIFT;
+ AssertMsg(iList < RT_SIZEOFMEMB(GMMCHUNKFREESET, apLists) / RT_SIZEOFMEMB(GMMCHUNKFREESET, apLists[0]),
+ ("%d (%u)\n", iList, cFree));
+ return iList;
+}
+
+
+/**
+ * Unlinks the chunk from the free list it's currently on (if any).
+ *
+ * @param pChunk The allocation chunk.
+ */
+DECLINLINE(void) gmmR0UnlinkChunk(PGMMCHUNK pChunk)
+{
+ PGMMCHUNKFREESET pSet = pChunk->pSet;
+ if (RT_LIKELY(pSet))
+ {
+ pSet->cFreePages -= pChunk->cFree;
+ pSet->idGeneration++;
+
+ PGMMCHUNK pPrev = pChunk->pFreePrev;
+ PGMMCHUNK pNext = pChunk->pFreeNext;
+ if (pPrev)
+ pPrev->pFreeNext = pNext;
+ else
+ pSet->apLists[gmmR0SelectFreeSetList(pChunk->cFree)] = pNext;
+ if (pNext)
+ pNext->pFreePrev = pPrev;
+
+ pChunk->pSet = NULL;
+ pChunk->pFreeNext = NULL;
+ pChunk->pFreePrev = NULL;
+ }
+ else
+ {
+ Assert(!pChunk->pFreeNext);
+ Assert(!pChunk->pFreePrev);
+ Assert(!pChunk->cFree);
+ }
+}
+
+
+/**
+ * Links the chunk onto the appropriate free list in the specified free set.
+ *
+ * If no free entries, it's not linked into any list.
+ *
+ * @param pChunk The allocation chunk.
+ * @param pSet The free set.
+ */
+DECLINLINE(void) gmmR0LinkChunk(PGMMCHUNK pChunk, PGMMCHUNKFREESET pSet)
+{
+ Assert(!pChunk->pSet);
+ Assert(!pChunk->pFreeNext);
+ Assert(!pChunk->pFreePrev);
+
+ if (pChunk->cFree > 0)
+ {
+ pChunk->pSet = pSet;
+ pChunk->pFreePrev = NULL;
+ unsigned const iList = gmmR0SelectFreeSetList(pChunk->cFree);
+ pChunk->pFreeNext = pSet->apLists[iList];
+ if (pChunk->pFreeNext)
+ pChunk->pFreeNext->pFreePrev = pChunk;
+ pSet->apLists[iList] = pChunk;
+
+ pSet->cFreePages += pChunk->cFree;
+ pSet->idGeneration++;
+ }
+}
+
+
+/**
+ * Links the chunk onto the appropriate free list in the specified free set.
+ *
+ * If no free entries, it's not linked into any list.
+ *
+ * @param pGMM Pointer to the GMM instance.
+ * @param pGVM Pointer to the kernel-only VM instace data.
+ * @param pChunk The allocation chunk.
+ */
+DECLINLINE(void) gmmR0SelectSetAndLinkChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk)
+{
+ PGMMCHUNKFREESET pSet;
+ if (pGMM->fBoundMemoryMode)
+ pSet = &pGVM->gmm.s.Private;
+ else if (pChunk->cShared)
+ pSet = &pGMM->Shared;
+ else
+ pSet = &pGMM->PrivateX;
+ gmmR0LinkChunk(pChunk, pSet);
+}
+
+
+/**
+ * Frees a Chunk ID.
+ *
+ * @param pGMM Pointer to the GMM instance.
+ * @param idChunk The Chunk ID to free.
+ */
+static void gmmR0FreeChunkId(PGMM pGMM, uint32_t idChunk)
+{
+ AssertReturnVoid(idChunk != NIL_GMM_CHUNKID);
+ RTSpinlockAcquire(pGMM->hSpinLockChunkId); /* We could probably skip the locking here, I think. */
+
+ AssertMsg(ASMBitTest(&pGMM->bmChunkId[0], idChunk), ("%#x\n", idChunk));
+ ASMAtomicBitClear(&pGMM->bmChunkId[0], idChunk);
+
+ RTSpinlockRelease(pGMM->hSpinLockChunkId);
+}
+
+
+/**
+ * Allocates a new Chunk ID.
+ *
+ * @returns The Chunk ID.
+ * @param pGMM Pointer to the GMM instance.
+ */
+static uint32_t gmmR0AllocateChunkId(PGMM pGMM)
+{
+ AssertCompile(!((GMM_CHUNKID_LAST + 1) & 31)); /* must be a multiple of 32 */
+ AssertCompile(NIL_GMM_CHUNKID == 0);
+
+ RTSpinlockAcquire(pGMM->hSpinLockChunkId);
+
+ /*
+ * Try the next sequential one.
+ */
+ int32_t idChunk = ++pGMM->idChunkPrev;
+ if ( (uint32_t)idChunk <= GMM_CHUNKID_LAST
+ && idChunk > NIL_GMM_CHUNKID)
+ {
+ if (!ASMAtomicBitTestAndSet(&pGMM->bmChunkId[0], idChunk))
+ {
+ RTSpinlockRelease(pGMM->hSpinLockChunkId);
+ return idChunk;
+ }
+
+ /*
+ * Scan sequentially from the last one.
+ */
+ if ((uint32_t)idChunk < GMM_CHUNKID_LAST)
+ {
+ idChunk = ASMBitNextClear(&pGMM->bmChunkId[0], GMM_CHUNKID_LAST + 1, idChunk);
+ if ( idChunk > NIL_GMM_CHUNKID
+ && (uint32_t)idChunk <= GMM_CHUNKID_LAST)
+ {
+ AssertMsgReturnStmt(!ASMAtomicBitTestAndSet(&pGMM->bmChunkId[0], idChunk), ("%#x\n", idChunk),
+ RTSpinlockRelease(pGMM->hSpinLockChunkId), NIL_GMM_CHUNKID);
+
+ pGMM->idChunkPrev = idChunk;
+ RTSpinlockRelease(pGMM->hSpinLockChunkId);
+ return idChunk;
+ }
+ }
+ }
+
+ /*
+ * Ok, scan from the start.
+ * We're not racing anyone, so there is no need to expect failures or have restart loops.
+ */
+ idChunk = ASMBitFirstClear(&pGMM->bmChunkId[0], GMM_CHUNKID_LAST + 1);
+ AssertMsgReturnStmt(idChunk > NIL_GMM_CHUNKID && (uint32_t)idChunk <= GMM_CHUNKID_LAST, ("%#x\n", idChunk),
+ RTSpinlockRelease(pGMM->hSpinLockChunkId), NIL_GVM_HANDLE);
+ AssertMsgReturnStmt(!ASMAtomicBitTestAndSet(&pGMM->bmChunkId[0], idChunk), ("%#x\n", idChunk),
+ RTSpinlockRelease(pGMM->hSpinLockChunkId), NIL_GMM_CHUNKID);
+
+ pGMM->idChunkPrev = idChunk;
+ RTSpinlockRelease(pGMM->hSpinLockChunkId);
+ return idChunk;
+}
+
+
+/**
+ * Allocates one private page.
+ *
+ * Worker for gmmR0AllocatePages.
+ *
+ * @param pChunk The chunk to allocate it from.
+ * @param hGVM The GVM handle of the VM requesting memory.
+ * @param pPageDesc The page descriptor.
+ */
+static void gmmR0AllocatePage(PGMMCHUNK pChunk, uint32_t hGVM, PGMMPAGEDESC pPageDesc)
+{
+ /* update the chunk stats. */
+ if (pChunk->hGVM == NIL_GVM_HANDLE)
+ pChunk->hGVM = hGVM;
+ Assert(pChunk->cFree);
+ pChunk->cFree--;
+ pChunk->cPrivate++;
+
+ /* unlink the first free page. */
+ const uint32_t iPage = pChunk->iFreeHead;
+ AssertReleaseMsg(iPage < RT_ELEMENTS(pChunk->aPages), ("%d\n", iPage));
+ PGMMPAGE pPage = &pChunk->aPages[iPage];
+ Assert(GMM_PAGE_IS_FREE(pPage));
+ pChunk->iFreeHead = pPage->Free.iNext;
+ Log3(("A pPage=%p iPage=%#x/%#x u2State=%d iFreeHead=%#x iNext=%#x\n",
+ pPage, iPage, (pChunk->Core.Key << GMM_CHUNKID_SHIFT) | iPage,
+ pPage->Common.u2State, pChunk->iFreeHead, pPage->Free.iNext));
+
+ bool const fZeroed = pPage->Free.fZeroed;
+
+ /* make the page private. */
+ pPage->u = 0;
+ AssertCompile(GMM_PAGE_STATE_PRIVATE == 0);
+ pPage->Private.hGVM = hGVM;
+ AssertCompile(NIL_RTHCPHYS >= GMM_GCPHYS_LAST);
+ AssertCompile(GMM_GCPHYS_UNSHAREABLE >= GMM_GCPHYS_LAST);
+ if (pPageDesc->HCPhysGCPhys <= GMM_GCPHYS_LAST)
+ pPage->Private.pfn = pPageDesc->HCPhysGCPhys >> GUEST_PAGE_SHIFT;
+ else
+ pPage->Private.pfn = GMM_PAGE_PFN_UNSHAREABLE; /* unshareable / unassigned - same thing. */
+
+ /* update the page descriptor. */
+ pPageDesc->idSharedPage = NIL_GMM_PAGEID;
+ pPageDesc->idPage = (pChunk->Core.Key << GMM_CHUNKID_SHIFT) | iPage;
+ RTHCPHYS const HCPhys = RTR0MemObjGetPagePhysAddr(pChunk->hMemObj, iPage);
+ Assert(HCPhys != NIL_RTHCPHYS); Assert(HCPhys < NIL_GMMPAGEDESC_PHYS);
+ pPageDesc->HCPhysGCPhys = HCPhys;
+ pPageDesc->fZeroed = fZeroed;
+}
+
+
+/**
+ * Picks the free pages from a chunk.
+ *
+ * @returns The new page descriptor table index.
+ * @param pChunk The chunk.
+ * @param hGVM The affinity of the chunk. NIL_GVM_HANDLE for no
+ * affinity.
+ * @param iPage The current page descriptor table index.
+ * @param cPages The total number of pages to allocate.
+ * @param paPages The page descriptor table (input + ouput).
+ */
+static uint32_t gmmR0AllocatePagesFromChunk(PGMMCHUNK pChunk, uint16_t const hGVM, uint32_t iPage, uint32_t cPages,
+ PGMMPAGEDESC paPages)
+{
+ PGMMCHUNKFREESET pSet = pChunk->pSet; Assert(pSet);
+ gmmR0UnlinkChunk(pChunk);
+
+ for (; pChunk->cFree && iPage < cPages; iPage++)
+ gmmR0AllocatePage(pChunk, hGVM, &paPages[iPage]);
+
+ gmmR0LinkChunk(pChunk, pSet);
+ return iPage;
+}
+
+
+/**
+ * Registers a new chunk of memory.
+ *
+ * This is called by gmmR0AllocateOneChunk and GMMR0AllocateLargePage.
+ *
+ * In the GMMR0AllocateLargePage case the GMM_CHUNK_FLAGS_LARGE_PAGE flag is
+ * set and the chunk will be registered as fully allocated to save time.
+ *
+ * @returns VBox status code. On success, the giant GMM lock will be held, the
+ * caller must release it (ugly).
+ * @param pGMM Pointer to the GMM instance.
+ * @param pSet Pointer to the set.
+ * @param hMemObj The memory object for the chunk.
+ * @param hGVM The affinity of the chunk. NIL_GVM_HANDLE for no
+ * affinity.
+ * @param pSession Same as @a hGVM.
+ * @param fChunkFlags The chunk flags, GMM_CHUNK_FLAGS_XXX.
+ * @param cPages The number of pages requested. Zero for large pages.
+ * @param paPages The page descriptor table (input + output). NULL for
+ * large pages.
+ * @param piPage The pointer to the page descriptor table index variable.
+ * This will be updated. NULL for large pages.
+ * @param ppChunk Chunk address (out).
+ *
+ * @remarks The caller must not own the giant GMM mutex.
+ * The giant GMM mutex will be acquired and returned acquired in
+ * the success path. On failure, no locks will be held.
+ */
+static int gmmR0RegisterChunk(PGMM pGMM, PGMMCHUNKFREESET pSet, RTR0MEMOBJ hMemObj, uint16_t hGVM, PSUPDRVSESSION pSession,
+ uint16_t fChunkFlags, uint32_t cPages, PGMMPAGEDESC paPages, uint32_t *piPage, PGMMCHUNK *ppChunk)
+{
+ /*
+ * Validate input & state.
+ */
+ Assert(pGMM->hMtxOwner != RTThreadNativeSelf());
+ Assert(hGVM != NIL_GVM_HANDLE || pGMM->fBoundMemoryMode);
+ Assert(fChunkFlags == 0 || fChunkFlags == GMM_CHUNK_FLAGS_LARGE_PAGE);
+ if (!(fChunkFlags &= GMM_CHUNK_FLAGS_LARGE_PAGE))
+ {
+ AssertPtr(paPages);
+ AssertPtr(piPage);
+ Assert(cPages > 0);
+ Assert(cPages > *piPage);
+ }
+ else
+ {
+ Assert(cPages == 0);
+ Assert(!paPages);
+ Assert(!piPage);
+ }
+
+#ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM
+ /*
+ * Get a ring-0 mapping of the object.
+ */
+ uint8_t *pbMapping = (uint8_t *)RTR0MemObjAddress(hMemObj);
+ if (!pbMapping)
+ {
+ RTR0MEMOBJ hMapObj;
+ int rc = RTR0MemObjMapKernel(&hMapObj, hMemObj, (void *)-1, 0, RTMEM_PROT_READ | RTMEM_PROT_WRITE);
+ if (RT_SUCCESS(rc))
+ pbMapping = (uint8_t *)RTR0MemObjAddress(hMapObj);
+ else
+ return rc;
+ AssertPtr(pbMapping);
+ }
+#endif
+
+ /*
+ * Allocate a chunk and an ID for it.
+ */
+ int rc;
+ PGMMCHUNK pChunk = (PGMMCHUNK)RTMemAllocZ(sizeof(*pChunk));
+ if (pChunk)
+ {
+ pChunk->Core.Key = gmmR0AllocateChunkId(pGMM);
+ if ( pChunk->Core.Key != NIL_GMM_CHUNKID
+ && pChunk->Core.Key <= GMM_CHUNKID_LAST)
+ {
+ /*
+ * Initialize it.
+ */
+ pChunk->hMemObj = hMemObj;
+#ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM
+ pChunk->pbMapping = pbMapping;
+#endif
+ pChunk->hGVM = hGVM;
+ pChunk->idNumaNode = gmmR0GetCurrentNumaNodeId();
+ pChunk->iChunkMtx = UINT8_MAX;
+ pChunk->fFlags = fChunkFlags;
+ pChunk->uidOwner = pSession ? SUPR0GetSessionUid(pSession) : NIL_RTUID;
+ /*pChunk->cShared = 0; */
+
+ uint32_t const iDstPageFirst = piPage ? *piPage : cPages;
+ if (!(fChunkFlags & GMM_CHUNK_FLAGS_LARGE_PAGE))
+ {
+ /*
+ * Allocate the requested number of pages from the start of the chunk,
+ * queue the rest (if any) on the free list.
+ */
+ uint32_t const cPagesAlloc = RT_MIN(cPages - iDstPageFirst, GMM_CHUNK_NUM_PAGES);
+ pChunk->cPrivate = cPagesAlloc;
+ pChunk->cFree = GMM_CHUNK_NUM_PAGES - cPagesAlloc;
+ pChunk->iFreeHead = GMM_CHUNK_NUM_PAGES > cPagesAlloc ? cPagesAlloc : UINT16_MAX;
+
+ /* Alloc pages: */
+ uint32_t const idPageChunk = pChunk->Core.Key << GMM_CHUNKID_SHIFT;
+ uint32_t iDstPage = iDstPageFirst;
+ uint32_t iPage;
+ for (iPage = 0; iPage < cPagesAlloc; iPage++, iDstPage++)
+ {
+ if (paPages[iDstPage].HCPhysGCPhys <= GMM_GCPHYS_LAST)
+ pChunk->aPages[iPage].Private.pfn = paPages[iDstPage].HCPhysGCPhys >> GUEST_PAGE_SHIFT;
+ else
+ pChunk->aPages[iPage].Private.pfn = GMM_PAGE_PFN_UNSHAREABLE; /* unshareable / unassigned - same thing. */
+ pChunk->aPages[iPage].Private.hGVM = hGVM;
+ pChunk->aPages[iPage].Private.u2State = GMM_PAGE_STATE_PRIVATE;
+
+ paPages[iDstPage].HCPhysGCPhys = RTR0MemObjGetPagePhysAddr(hMemObj, iPage);
+ paPages[iDstPage].fZeroed = true;
+ paPages[iDstPage].idPage = idPageChunk | iPage;
+ paPages[iDstPage].idSharedPage = NIL_GMM_PAGEID;
+ }
+ *piPage = iDstPage;
+
+ /* Build free list: */
+ if (iPage < RT_ELEMENTS(pChunk->aPages))
+ {
+ Assert(pChunk->iFreeHead == iPage);
+ for (; iPage < RT_ELEMENTS(pChunk->aPages) - 1; iPage++)
+ {
+ pChunk->aPages[iPage].Free.u2State = GMM_PAGE_STATE_FREE;
+ pChunk->aPages[iPage].Free.fZeroed = true;
+ pChunk->aPages[iPage].Free.iNext = iPage + 1;
+ }
+ pChunk->aPages[RT_ELEMENTS(pChunk->aPages) - 1].Free.u2State = GMM_PAGE_STATE_FREE;
+ pChunk->aPages[RT_ELEMENTS(pChunk->aPages) - 1].Free.fZeroed = true;
+ pChunk->aPages[RT_ELEMENTS(pChunk->aPages) - 1].Free.iNext = UINT16_MAX;
+ }
+ else
+ Assert(pChunk->iFreeHead == UINT16_MAX);
+ }
+ else
+ {
+ /*
+ * Large page: Mark all pages as privately allocated (watered down gmmR0AllocatePage).
+ */
+ pChunk->cFree = 0;
+ pChunk->cPrivate = GMM_CHUNK_NUM_PAGES;
+ pChunk->iFreeHead = UINT16_MAX;
+
+ for (unsigned iPage = 0; iPage < RT_ELEMENTS(pChunk->aPages); iPage++)
+ {
+ pChunk->aPages[iPage].Private.pfn = GMM_PAGE_PFN_UNSHAREABLE;
+ pChunk->aPages[iPage].Private.hGVM = hGVM;
+ pChunk->aPages[iPage].Private.u2State = GMM_PAGE_STATE_PRIVATE;
+ }
+ }
+
+ /*
+ * Zero the memory if it wasn't zeroed by the host already.
+ * This simplifies keeping secret kernel bits from userland and brings
+ * everyone to the same level wrt allocation zeroing.
+ */
+ rc = VINF_SUCCESS;
+ if (!RTR0MemObjWasZeroInitialized(hMemObj))
+ {
+#ifdef VBOX_WITH_LINEAR_HOST_PHYS_MEM
+ if (!(fChunkFlags & GMM_CHUNK_FLAGS_LARGE_PAGE))
+ {
+ for (uint32_t iPage = 0; iPage < GMM_CHUNK_SIZE / HOST_PAGE_SIZE; iPage++)
+ {
+ void *pvPage = NULL;
+ rc = SUPR0HCPhysToVirt(RTR0MemObjGetPagePhysAddr(hMemObj, iPage), &pvPage);
+ AssertRCBreak(rc);
+ RT_BZERO(pvPage, HOST_PAGE_SIZE);
+ }
+ }
+ else
+ {
+ /* Can do the whole large page in one go. */
+ void *pvPage = NULL;
+ rc = SUPR0HCPhysToVirt(RTR0MemObjGetPagePhysAddr(hMemObj, 0), &pvPage);
+ AssertRC(rc);
+ if (RT_SUCCESS(rc))
+ RT_BZERO(pvPage, GMM_CHUNK_SIZE);
+ }
+#else
+ RT_BZERO(pbMapping, GMM_CHUNK_SIZE);
+#endif
+ }
+ if (RT_SUCCESS(rc))
+ {
+ *ppChunk = pChunk;
+
+ /*
+ * Allocate a Chunk ID and insert it into the tree.
+ * This has to be done behind the mutex of course.
+ */
+ rc = gmmR0MutexAcquire(pGMM);
+ if (RT_SUCCESS(rc))
+ {
+ if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
+ {
+ RTSpinlockAcquire(pGMM->hSpinLockTree);
+ if (RTAvlU32Insert(&pGMM->pChunks, &pChunk->Core))
+ {
+ pGMM->cChunks++;
+ RTListAppend(&pGMM->ChunkList, &pChunk->ListNode);
+ RTSpinlockRelease(pGMM->hSpinLockTree);
+
+ gmmR0LinkChunk(pChunk, pSet);
+
+ LogFlow(("gmmR0RegisterChunk: pChunk=%p id=%#x cChunks=%d\n", pChunk, pChunk->Core.Key, pGMM->cChunks));
+ GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * Bail out.
+ */
+ RTSpinlockRelease(pGMM->hSpinLockTree);
+ rc = VERR_GMM_CHUNK_INSERT;
+ }
+ else
+ rc = VERR_GMM_IS_NOT_SANE;
+ gmmR0MutexRelease(pGMM);
+ }
+ *ppChunk = NULL;
+ }
+
+ /* Undo any page allocations. */
+ if (!(fChunkFlags & GMM_CHUNK_FLAGS_LARGE_PAGE))
+ {
+ uint32_t const cToFree = pChunk->cPrivate;
+ Assert(*piPage - iDstPageFirst == cToFree);
+ for (uint32_t iDstPage = iDstPageFirst, iPage = 0; iPage < cToFree; iPage++, iDstPage++)
+ {
+ paPages[iDstPageFirst].fZeroed = false;
+ if (pChunk->aPages[iPage].Private.pfn == GMM_PAGE_PFN_UNSHAREABLE)
+ paPages[iDstPageFirst].HCPhysGCPhys = NIL_GMMPAGEDESC_PHYS;
+ else
+ paPages[iDstPageFirst].HCPhysGCPhys = (RTHCPHYS)pChunk->aPages[iPage].Private.pfn << GUEST_PAGE_SHIFT;
+ paPages[iDstPageFirst].idPage = NIL_GMM_PAGEID;
+ paPages[iDstPageFirst].idSharedPage = NIL_GMM_PAGEID;
+ }
+ *piPage = iDstPageFirst;
+ }
+
+ gmmR0FreeChunkId(pGMM, pChunk->Core.Key);
+ }
+ else
+ rc = VERR_GMM_CHUNK_INSERT;
+ RTMemFree(pChunk);
+ }
+ else
+ rc = VERR_NO_MEMORY;
+ return rc;
+}
+
+
+/**
+ * Allocate a new chunk, immediately pick the requested pages from it, and adds
+ * what's remaining to the specified free set.
+ *
+ * @note This will leave the giant mutex while allocating the new chunk!
+ *
+ * @returns VBox status code.
+ * @param pGMM Pointer to the GMM instance data.
+ * @param pGVM Pointer to the kernel-only VM instace data.
+ * @param pSet Pointer to the free set.
+ * @param cPages The number of pages requested.
+ * @param paPages The page descriptor table (input + output).
+ * @param piPage The pointer to the page descriptor table index variable.
+ * This will be updated.
+ */
+static int gmmR0AllocateChunkNew(PGMM pGMM, PGVM pGVM, PGMMCHUNKFREESET pSet, uint32_t cPages,
+ PGMMPAGEDESC paPages, uint32_t *piPage)
+{
+ gmmR0MutexRelease(pGMM);
+
+ RTR0MEMOBJ hMemObj;
+ int rc;
+#ifdef VBOX_WITH_LINEAR_HOST_PHYS_MEM
+ if (pGMM->fHasWorkingAllocPhysNC)
+ rc = RTR0MemObjAllocPhysNC(&hMemObj, GMM_CHUNK_SIZE, NIL_RTHCPHYS);
+ else
+#endif
+ rc = RTR0MemObjAllocPage(&hMemObj, GMM_CHUNK_SIZE, false /*fExecutable*/);
+ if (RT_SUCCESS(rc))
+ {
+ PGMMCHUNK pIgnored;
+ rc = gmmR0RegisterChunk(pGMM, pSet, hMemObj, pGVM->hSelf, pGVM->pSession, 0 /*fChunkFlags*/,
+ cPages, paPages, piPage, &pIgnored);
+ if (RT_SUCCESS(rc))
+ return VINF_SUCCESS;
+
+ /* bail out */
+ RTR0MemObjFree(hMemObj, true /* fFreeMappings */);
+ }
+
+ int rc2 = gmmR0MutexAcquire(pGMM);
+ AssertRCReturn(rc2, RT_FAILURE(rc) ? rc : rc2);
+ return rc;
+
+}
+
+
+/**
+ * As a last restort we'll pick any page we can get.
+ *
+ * @returns The new page descriptor table index.
+ * @param pSet The set to pick from.
+ * @param pGVM Pointer to the global VM structure.
+ * @param uidSelf The UID of the caller.
+ * @param iPage The current page descriptor table index.
+ * @param cPages The total number of pages to allocate.
+ * @param paPages The page descriptor table (input + ouput).
+ */
+static uint32_t gmmR0AllocatePagesIndiscriminately(PGMMCHUNKFREESET pSet, PGVM pGVM, RTUID uidSelf,
+ uint32_t iPage, uint32_t cPages, PGMMPAGEDESC paPages)
+{
+ unsigned iList = RT_ELEMENTS(pSet->apLists);
+ while (iList-- > 0)
+ {
+ PGMMCHUNK pChunk = pSet->apLists[iList];
+ while (pChunk)
+ {
+ PGMMCHUNK pNext = pChunk->pFreeNext;
+ if ( pChunk->uidOwner == uidSelf
+ || ( pChunk->cMappingsX == 0
+ && pChunk->cFree == (GMM_CHUNK_SIZE >> GUEST_PAGE_SHIFT)))
+ {
+ iPage = gmmR0AllocatePagesFromChunk(pChunk, pGVM->hSelf, iPage, cPages, paPages);
+ if (iPage >= cPages)
+ return iPage;
+ }
+
+ pChunk = pNext;
+ }
+ }
+ return iPage;
+}
+
+
+/**
+ * Pick pages from empty chunks on the same NUMA node.
+ *
+ * @returns The new page descriptor table index.
+ * @param pSet The set to pick from.
+ * @param pGVM Pointer to the global VM structure.
+ * @param uidSelf The UID of the caller.
+ * @param iPage The current page descriptor table index.
+ * @param cPages The total number of pages to allocate.
+ * @param paPages The page descriptor table (input + ouput).
+ */
+static uint32_t gmmR0AllocatePagesFromEmptyChunksOnSameNode(PGMMCHUNKFREESET pSet, PGVM pGVM, RTUID uidSelf,
+ uint32_t iPage, uint32_t cPages, PGMMPAGEDESC paPages)
+{
+ PGMMCHUNK pChunk = pSet->apLists[GMM_CHUNK_FREE_SET_UNUSED_LIST];
+ if (pChunk)
+ {
+ uint16_t const idNumaNode = gmmR0GetCurrentNumaNodeId();
+ while (pChunk)
+ {
+ PGMMCHUNK pNext = pChunk->pFreeNext;
+
+ if ( pChunk->idNumaNode == idNumaNode
+ && ( pChunk->uidOwner == uidSelf
+ || pChunk->cMappingsX == 0))
+ {
+ pChunk->hGVM = pGVM->hSelf;
+ pChunk->uidOwner = uidSelf;
+ iPage = gmmR0AllocatePagesFromChunk(pChunk, pGVM->hSelf, iPage, cPages, paPages);
+ if (iPage >= cPages)
+ {
+ pGVM->gmm.s.idLastChunkHint = pChunk->cFree ? pChunk->Core.Key : NIL_GMM_CHUNKID;
+ return iPage;
+ }
+ }
+
+ pChunk = pNext;
+ }
+ }
+ return iPage;
+}
+
+
+/**
+ * Pick pages from non-empty chunks on the same NUMA node.
+ *
+ * @returns The new page descriptor table index.
+ * @param pSet The set to pick from.
+ * @param pGVM Pointer to the global VM structure.
+ * @param uidSelf The UID of the caller.
+ * @param iPage The current page descriptor table index.
+ * @param cPages The total number of pages to allocate.
+ * @param paPages The page descriptor table (input + ouput).
+ */
+static uint32_t gmmR0AllocatePagesFromSameNode(PGMMCHUNKFREESET pSet, PGVM pGVM, RTUID const uidSelf,
+ uint32_t iPage, uint32_t cPages, PGMMPAGEDESC paPages)
+{
+ /** @todo start by picking from chunks with about the right size first? */
+ uint16_t const idNumaNode = gmmR0GetCurrentNumaNodeId();
+ unsigned iList = GMM_CHUNK_FREE_SET_UNUSED_LIST;
+ while (iList-- > 0)
+ {
+ PGMMCHUNK pChunk = pSet->apLists[iList];
+ while (pChunk)
+ {
+ PGMMCHUNK pNext = pChunk->pFreeNext;
+
+ if ( pChunk->idNumaNode == idNumaNode
+ && pChunk->uidOwner == uidSelf)
+ {
+ iPage = gmmR0AllocatePagesFromChunk(pChunk, pGVM->hSelf, iPage, cPages, paPages);
+ if (iPage >= cPages)
+ {
+ pGVM->gmm.s.idLastChunkHint = pChunk->cFree ? pChunk->Core.Key : NIL_GMM_CHUNKID;
+ return iPage;
+ }
+ }
+
+ pChunk = pNext;
+ }
+ }
+ return iPage;
+}
+
+
+/**
+ * Pick pages that are in chunks already associated with the VM.
+ *
+ * @returns The new page descriptor table index.
+ * @param pGMM Pointer to the GMM instance data.
+ * @param pGVM Pointer to the global VM structure.
+ * @param pSet The set to pick from.
+ * @param iPage The current page descriptor table index.
+ * @param cPages The total number of pages to allocate.
+ * @param paPages The page descriptor table (input + ouput).
+ */
+static uint32_t gmmR0AllocatePagesAssociatedWithVM(PGMM pGMM, PGVM pGVM, PGMMCHUNKFREESET pSet,
+ uint32_t iPage, uint32_t cPages, PGMMPAGEDESC paPages)
+{
+ uint16_t const hGVM = pGVM->hSelf;
+
+ /* Hint. */
+ if (pGVM->gmm.s.idLastChunkHint != NIL_GMM_CHUNKID)
+ {
+ PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, pGVM->gmm.s.idLastChunkHint);
+ if (pChunk && pChunk->cFree)
+ {
+ iPage = gmmR0AllocatePagesFromChunk(pChunk, hGVM, iPage, cPages, paPages);
+ if (iPage >= cPages)
+ return iPage;
+ }
+ }
+
+ /* Scan. */
+ for (unsigned iList = 0; iList < RT_ELEMENTS(pSet->apLists); iList++)
+ {
+ PGMMCHUNK pChunk = pSet->apLists[iList];
+ while (pChunk)
+ {
+ PGMMCHUNK pNext = pChunk->pFreeNext;
+
+ if (pChunk->hGVM == hGVM)
+ {
+ iPage = gmmR0AllocatePagesFromChunk(pChunk, hGVM, iPage, cPages, paPages);
+ if (iPage >= cPages)
+ {
+ pGVM->gmm.s.idLastChunkHint = pChunk->cFree ? pChunk->Core.Key : NIL_GMM_CHUNKID;
+ return iPage;
+ }
+ }
+
+ pChunk = pNext;
+ }
+ }
+ return iPage;
+}
+
+
+
+/**
+ * Pick pages in bound memory mode.
+ *
+ * @returns The new page descriptor table index.
+ * @param pGVM Pointer to the global VM structure.
+ * @param iPage The current page descriptor table index.
+ * @param cPages The total number of pages to allocate.
+ * @param paPages The page descriptor table (input + ouput).
+ */
+static uint32_t gmmR0AllocatePagesInBoundMode(PGVM pGVM, uint32_t iPage, uint32_t cPages, PGMMPAGEDESC paPages)
+{
+ for (unsigned iList = 0; iList < RT_ELEMENTS(pGVM->gmm.s.Private.apLists); iList++)
+ {
+ PGMMCHUNK pChunk = pGVM->gmm.s.Private.apLists[iList];
+ while (pChunk)
+ {
+ Assert(pChunk->hGVM == pGVM->hSelf);
+ PGMMCHUNK pNext = pChunk->pFreeNext;
+ iPage = gmmR0AllocatePagesFromChunk(pChunk, pGVM->hSelf, iPage, cPages, paPages);
+ if (iPage >= cPages)
+ return iPage;
+ pChunk = pNext;
+ }
+ }
+ return iPage;
+}
+
+
+/**
+ * Checks if we should start picking pages from chunks of other VMs because
+ * we're getting close to the system memory or reserved limit.
+ *
+ * @returns @c true if we should, @c false if we should first try allocate more
+ * chunks.
+ */
+static bool gmmR0ShouldAllocatePagesInOtherChunksBecauseOfLimits(PGVM pGVM)
+{
+ /*
+ * Don't allocate a new chunk if we're
+ */
+ uint64_t cPgReserved = pGVM->gmm.s.Stats.Reserved.cBasePages
+ + pGVM->gmm.s.Stats.Reserved.cFixedPages
+ - pGVM->gmm.s.Stats.cBalloonedPages
+ /** @todo what about shared pages? */;
+ uint64_t cPgAllocated = pGVM->gmm.s.Stats.Allocated.cBasePages
+ + pGVM->gmm.s.Stats.Allocated.cFixedPages;
+ uint64_t cPgDelta = cPgReserved - cPgAllocated;
+ if (cPgDelta < GMM_CHUNK_NUM_PAGES * 4)
+ return true;
+ /** @todo make the threshold configurable, also test the code to see if
+ * this ever kicks in (we might be reserving too much or smth). */
+
+ /*
+ * Check how close we're to the max memory limit and how many fragments
+ * there are?...
+ */
+ /** @todo */
+
+ return false;
+}
+
+
+/**
+ * Checks if we should start picking pages from chunks of other VMs because
+ * there is a lot of free pages around.
+ *
+ * @returns @c true if we should, @c false if we should first try allocate more
+ * chunks.
+ */
+static bool gmmR0ShouldAllocatePagesInOtherChunksBecauseOfLotsFree(PGMM pGMM)
+{
+ /*
+ * Setting the limit at 16 chunks (32 MB) at the moment.
+ */
+ if (pGMM->PrivateX.cFreePages >= GMM_CHUNK_NUM_PAGES * 16)
+ return true;
+ return false;
+}
+
+
+/**
+ * Common worker for GMMR0AllocateHandyPages and GMMR0AllocatePages.
+ *
+ * @returns VBox status code:
+ * @retval VINF_SUCCESS on success.
+ * @retval VERR_GMM_HIT_GLOBAL_LIMIT if we've exhausted the available pages.
+ * @retval VERR_GMM_HIT_VM_ACCOUNT_LIMIT if we've hit the VM account limit,
+ * that is we're trying to allocate more than we've reserved.
+ *
+ * @param pGMM Pointer to the GMM instance data.
+ * @param pGVM Pointer to the VM.
+ * @param cPages The number of pages to allocate.
+ * @param paPages Pointer to the page descriptors. See GMMPAGEDESC for
+ * details on what is expected on input.
+ * @param enmAccount The account to charge.
+ *
+ * @remarks Caller owns the giant GMM lock.
+ */
+static int gmmR0AllocatePagesNew(PGMM pGMM, PGVM pGVM, uint32_t cPages, PGMMPAGEDESC paPages, GMMACCOUNT enmAccount)
+{
+ Assert(pGMM->hMtxOwner == RTThreadNativeSelf());
+
+ /*
+ * Check allocation limits.
+ */
+ if (RT_LIKELY(pGMM->cAllocatedPages + cPages <= pGMM->cMaxPages))
+ { /* likely */ }
+ else
+ return VERR_GMM_HIT_GLOBAL_LIMIT;
+
+ switch (enmAccount)
+ {
+ case GMMACCOUNT_BASE:
+ if (RT_LIKELY( pGVM->gmm.s.Stats.Allocated.cBasePages + pGVM->gmm.s.Stats.cBalloonedPages + cPages
+ <= pGVM->gmm.s.Stats.Reserved.cBasePages))
+ { /* likely */ }
+ else
+ {
+ Log(("gmmR0AllocatePages:Base: Reserved=%#llx Allocated+Ballooned+Requested=%#llx+%#llx+%#x!\n",
+ pGVM->gmm.s.Stats.Reserved.cBasePages, pGVM->gmm.s.Stats.Allocated.cBasePages,
+ pGVM->gmm.s.Stats.cBalloonedPages, cPages));
+ return VERR_GMM_HIT_VM_ACCOUNT_LIMIT;
+ }
+ break;
+ case GMMACCOUNT_SHADOW:
+ if (RT_LIKELY(pGVM->gmm.s.Stats.Allocated.cShadowPages + cPages <= pGVM->gmm.s.Stats.Reserved.cShadowPages))
+ { /* likely */ }
+ else
+ {
+ Log(("gmmR0AllocatePages:Shadow: Reserved=%#x Allocated+Requested=%#x+%#x!\n",
+ pGVM->gmm.s.Stats.Reserved.cShadowPages, pGVM->gmm.s.Stats.Allocated.cShadowPages, cPages));
+ return VERR_GMM_HIT_VM_ACCOUNT_LIMIT;
+ }
+ break;
+ case GMMACCOUNT_FIXED:
+ if (RT_LIKELY(pGVM->gmm.s.Stats.Allocated.cFixedPages + cPages <= pGVM->gmm.s.Stats.Reserved.cFixedPages))
+ { /* likely */ }
+ else
+ {
+ Log(("gmmR0AllocatePages:Fixed: Reserved=%#x Allocated+Requested=%#x+%#x!\n",
+ pGVM->gmm.s.Stats.Reserved.cFixedPages, pGVM->gmm.s.Stats.Allocated.cFixedPages, cPages));
+ return VERR_GMM_HIT_VM_ACCOUNT_LIMIT;
+ }
+ break;
+ default:
+ AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_IPE_NOT_REACHED_DEFAULT_CASE);
+ }
+
+ /*
+ * Update the accounts before we proceed because we might be leaving the
+ * protection of the global mutex and thus run the risk of permitting
+ * too much memory to be allocated.
+ */
+ switch (enmAccount)
+ {
+ case GMMACCOUNT_BASE: pGVM->gmm.s.Stats.Allocated.cBasePages += cPages; break;
+ case GMMACCOUNT_SHADOW: pGVM->gmm.s.Stats.Allocated.cShadowPages += cPages; break;
+ case GMMACCOUNT_FIXED: pGVM->gmm.s.Stats.Allocated.cFixedPages += cPages; break;
+ default: AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_IPE_NOT_REACHED_DEFAULT_CASE);
+ }
+ pGVM->gmm.s.Stats.cPrivatePages += cPages;
+ pGMM->cAllocatedPages += cPages;
+
+ /*
+ * Bound mode is also relatively straightforward.
+ */
+ uint32_t iPage = 0;
+ int rc = VINF_SUCCESS;
+ if (pGMM->fBoundMemoryMode)
+ {
+ iPage = gmmR0AllocatePagesInBoundMode(pGVM, iPage, cPages, paPages);
+ if (iPage < cPages)
+ do
+ rc = gmmR0AllocateChunkNew(pGMM, pGVM, &pGVM->gmm.s.Private, cPages, paPages, &iPage);
+ while (iPage < cPages && RT_SUCCESS(rc));
+ }
+ /*
+ * Shared mode is trickier as we should try archive the same locality as
+ * in bound mode, but smartly make use of non-full chunks allocated by
+ * other VMs if we're low on memory.
+ */
+ else
+ {
+ RTUID const uidSelf = SUPR0GetSessionUid(pGVM->pSession);
+
+ /* Pick the most optimal pages first. */
+ iPage = gmmR0AllocatePagesAssociatedWithVM(pGMM, pGVM, &pGMM->PrivateX, iPage, cPages, paPages);
+ if (iPage < cPages)
+ {
+ /* Maybe we should try getting pages from chunks "belonging" to
+ other VMs before allocating more chunks? */
+ bool fTriedOnSameAlready = false;
+ if (gmmR0ShouldAllocatePagesInOtherChunksBecauseOfLimits(pGVM))
+ {
+ iPage = gmmR0AllocatePagesFromSameNode(&pGMM->PrivateX, pGVM, uidSelf, iPage, cPages, paPages);
+ fTriedOnSameAlready = true;
+ }
+
+ /* Allocate memory from empty chunks. */
+ if (iPage < cPages)
+ iPage = gmmR0AllocatePagesFromEmptyChunksOnSameNode(&pGMM->PrivateX, pGVM, uidSelf, iPage, cPages, paPages);
+
+ /* Grab empty shared chunks. */
+ if (iPage < cPages)
+ iPage = gmmR0AllocatePagesFromEmptyChunksOnSameNode(&pGMM->Shared, pGVM, uidSelf, iPage, cPages, paPages);
+
+ /* If there is a lof of free pages spread around, try not waste
+ system memory on more chunks. (Should trigger defragmentation.) */
+ if ( !fTriedOnSameAlready
+ && gmmR0ShouldAllocatePagesInOtherChunksBecauseOfLotsFree(pGMM))
+ {
+ iPage = gmmR0AllocatePagesFromSameNode(&pGMM->PrivateX, pGVM, uidSelf, iPage, cPages, paPages);
+ if (iPage < cPages)
+ iPage = gmmR0AllocatePagesIndiscriminately(&pGMM->PrivateX, pGVM, uidSelf, iPage, cPages, paPages);
+ }
+
+ /*
+ * Ok, try allocate new chunks.
+ */
+ if (iPage < cPages)
+ {
+ do
+ rc = gmmR0AllocateChunkNew(pGMM, pGVM, &pGMM->PrivateX, cPages, paPages, &iPage);
+ while (iPage < cPages && RT_SUCCESS(rc));
+
+#if 0 /* We cannot mix chunks with different UIDs. */
+ /* If the host is out of memory, take whatever we can get. */
+ if ( (rc == VERR_NO_MEMORY || rc == VERR_NO_PHYS_MEMORY)
+ && pGMM->PrivateX.cFreePages + pGMM->Shared.cFreePages >= cPages - iPage)
+ {
+ iPage = gmmR0AllocatePagesIndiscriminately(&pGMM->PrivateX, pGVM, iPage, cPages, paPages);
+ if (iPage < cPages)
+ iPage = gmmR0AllocatePagesIndiscriminately(&pGMM->Shared, pGVM, iPage, cPages, paPages);
+ AssertRelease(iPage == cPages);
+ rc = VINF_SUCCESS;
+ }
+#endif
+ }
+ }
+ }
+
+ /*
+ * Clean up on failure. Since this is bound to be a low-memory condition
+ * we will give back any empty chunks that might be hanging around.
+ */
+ if (RT_SUCCESS(rc))
+ { /* likely */ }
+ else
+ {
+ /* Update the statistics. */
+ pGVM->gmm.s.Stats.cPrivatePages -= cPages;
+ pGMM->cAllocatedPages -= cPages - iPage;
+ switch (enmAccount)
+ {
+ case GMMACCOUNT_BASE: pGVM->gmm.s.Stats.Allocated.cBasePages -= cPages; break;
+ case GMMACCOUNT_SHADOW: pGVM->gmm.s.Stats.Allocated.cShadowPages -= cPages; break;
+ case GMMACCOUNT_FIXED: pGVM->gmm.s.Stats.Allocated.cFixedPages -= cPages; break;
+ default: AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_IPE_NOT_REACHED_DEFAULT_CASE);
+ }
+
+ /* Release the pages. */
+ while (iPage-- > 0)
+ {
+ uint32_t idPage = paPages[iPage].idPage;
+ PGMMPAGE pPage = gmmR0GetPage(pGMM, idPage);
+ if (RT_LIKELY(pPage))
+ {
+ Assert(GMM_PAGE_IS_PRIVATE(pPage));
+ Assert(pPage->Private.hGVM == pGVM->hSelf);
+ gmmR0FreePrivatePage(pGMM, pGVM, idPage, pPage);
+ }
+ else
+ AssertMsgFailed(("idPage=%#x\n", idPage));
+
+ paPages[iPage].idPage = NIL_GMM_PAGEID;
+ paPages[iPage].idSharedPage = NIL_GMM_PAGEID;
+ paPages[iPage].HCPhysGCPhys = NIL_GMMPAGEDESC_PHYS;
+ paPages[iPage].fZeroed = false;
+ }
+
+ /* Free empty chunks. */
+ /** @todo */
+
+ /* return the fail status on failure */
+ return rc;
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Updates the previous allocations and allocates more pages.
+ *
+ * The handy pages are always taken from the 'base' memory account.
+ * The allocated pages are not cleared and will contains random garbage.
+ *
+ * @returns VBox status code:
+ * @retval VINF_SUCCESS on success.
+ * @retval VERR_NOT_OWNER if the caller is not an EMT.
+ * @retval VERR_GMM_PAGE_NOT_FOUND if one of the pages to update wasn't found.
+ * @retval VERR_GMM_PAGE_NOT_PRIVATE if one of the pages to update wasn't a
+ * private page.
+ * @retval VERR_GMM_PAGE_NOT_SHARED if one of the pages to update wasn't a
+ * shared page.
+ * @retval VERR_GMM_NOT_PAGE_OWNER if one of the pages to be updated wasn't
+ * owned by the VM.
+ * @retval VERR_GMM_HIT_GLOBAL_LIMIT if we've exhausted the available pages.
+ * @retval VERR_GMM_HIT_VM_ACCOUNT_LIMIT if we've hit the VM account limit,
+ * that is we're trying to allocate more than we've reserved.
+ *
+ * @param pGVM The global (ring-0) VM structure.
+ * @param idCpu The VCPU id.
+ * @param cPagesToUpdate The number of pages to update (starting from the head).
+ * @param cPagesToAlloc The number of pages to allocate (starting from the head).
+ * @param paPages The array of page descriptors.
+ * See GMMPAGEDESC for details on what is expected on input.
+ * @thread EMT(idCpu)
+ */
+GMMR0DECL(int) GMMR0AllocateHandyPages(PGVM pGVM, VMCPUID idCpu, uint32_t cPagesToUpdate,
+ uint32_t cPagesToAlloc, PGMMPAGEDESC paPages)
+{
+ LogFlow(("GMMR0AllocateHandyPages: pGVM=%p cPagesToUpdate=%#x cPagesToAlloc=%#x paPages=%p\n",
+ pGVM, cPagesToUpdate, cPagesToAlloc, paPages));
+
+ /*
+ * Validate & get basics.
+ * (This is a relatively busy path, so make predictions where possible.)
+ */
+ PGMM pGMM;
+ GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
+ int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ AssertPtrReturn(paPages, VERR_INVALID_PARAMETER);
+ AssertMsgReturn( (cPagesToUpdate && cPagesToUpdate < 1024)
+ || (cPagesToAlloc && cPagesToAlloc < 1024),
+ ("cPagesToUpdate=%#x cPagesToAlloc=%#x\n", cPagesToUpdate, cPagesToAlloc),
+ VERR_INVALID_PARAMETER);
+
+ unsigned iPage = 0;
+ for (; iPage < cPagesToUpdate; iPage++)
+ {
+ AssertMsgReturn( ( paPages[iPage].HCPhysGCPhys <= GMM_GCPHYS_LAST
+ && !(paPages[iPage].HCPhysGCPhys & GUEST_PAGE_OFFSET_MASK))
+ || paPages[iPage].HCPhysGCPhys == NIL_GMMPAGEDESC_PHYS
+ || paPages[iPage].HCPhysGCPhys == GMM_GCPHYS_UNSHAREABLE,
+ ("#%#x: %RHp\n", iPage, paPages[iPage].HCPhysGCPhys),
+ VERR_INVALID_PARAMETER);
+ /* ignore fZeroed here */
+ AssertMsgReturn( paPages[iPage].idPage <= GMM_PAGEID_LAST
+ /*|| paPages[iPage].idPage == NIL_GMM_PAGEID*/,
+ ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER);
+ AssertMsgReturn( paPages[iPage].idSharedPage == NIL_GMM_PAGEID
+ || paPages[iPage].idSharedPage <= GMM_PAGEID_LAST,
+ ("#%#x: %#x\n", iPage, paPages[iPage].idSharedPage), VERR_INVALID_PARAMETER);
+ }
+
+ for (; iPage < cPagesToAlloc; iPage++)
+ {
+ AssertMsgReturn(paPages[iPage].HCPhysGCPhys == NIL_GMMPAGEDESC_PHYS, ("#%#x: %RHp\n", iPage, paPages[iPage].HCPhysGCPhys), VERR_INVALID_PARAMETER);
+ AssertMsgReturn(paPages[iPage].fZeroed == false, ("#%#x: %#x\n", iPage, paPages[iPage].fZeroed), VERR_INVALID_PARAMETER);
+ AssertMsgReturn(paPages[iPage].idPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER);
+ AssertMsgReturn(paPages[iPage].idSharedPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idSharedPage), VERR_INVALID_PARAMETER);
+ }
+
+ /*
+ * Take the semaphore
+ */
+ VMMR0EMTBLOCKCTX Ctx;
+ PGVMCPU pGVCpu = &pGVM->aCpus[idCpu];
+ rc = VMMR0EmtPrepareToBlock(pGVCpu, VINF_SUCCESS, "GMMR0AllocateHandyPages", pGMM, &Ctx);
+ AssertRCReturn(rc, rc);
+
+ rc = gmmR0MutexAcquire(pGMM);
+ if ( RT_SUCCESS(rc)
+ && GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
+ {
+ /* No allocations before the initial reservation has been made! */
+ if (RT_LIKELY( pGVM->gmm.s.Stats.Reserved.cBasePages
+ && pGVM->gmm.s.Stats.Reserved.cFixedPages
+ && pGVM->gmm.s.Stats.Reserved.cShadowPages))
+ {
+ /*
+ * Perform the updates.
+ * Stop on the first error.
+ */
+ for (iPage = 0; iPage < cPagesToUpdate; iPage++)
+ {
+ if (paPages[iPage].idPage != NIL_GMM_PAGEID)
+ {
+ PGMMPAGE pPage = gmmR0GetPage(pGMM, paPages[iPage].idPage);
+ if (RT_LIKELY(pPage))
+ {
+ if (RT_LIKELY(GMM_PAGE_IS_PRIVATE(pPage)))
+ {
+ if (RT_LIKELY(pPage->Private.hGVM == pGVM->hSelf))
+ {
+ AssertCompile(NIL_RTHCPHYS > GMM_GCPHYS_LAST && GMM_GCPHYS_UNSHAREABLE > GMM_GCPHYS_LAST);
+ if (RT_LIKELY(paPages[iPage].HCPhysGCPhys <= GMM_GCPHYS_LAST))
+ pPage->Private.pfn = paPages[iPage].HCPhysGCPhys >> GUEST_PAGE_SHIFT;
+ else if (paPages[iPage].HCPhysGCPhys == GMM_GCPHYS_UNSHAREABLE)
+ pPage->Private.pfn = GMM_PAGE_PFN_UNSHAREABLE;
+ /* else: NIL_RTHCPHYS nothing */
+
+ paPages[iPage].idPage = NIL_GMM_PAGEID;
+ paPages[iPage].HCPhysGCPhys = NIL_GMMPAGEDESC_PHYS;
+ paPages[iPage].fZeroed = false;
+ }
+ else
+ {
+ Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not owner! hGVM=%#x hSelf=%#x\n",
+ iPage, paPages[iPage].idPage, pPage->Private.hGVM, pGVM->hSelf));
+ rc = VERR_GMM_NOT_PAGE_OWNER;
+ break;
+ }
+ }
+ else
+ {
+ Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not private! %.*Rhxs (type %d)\n", iPage, paPages[iPage].idPage, sizeof(*pPage), pPage, pPage->Common.u2State));
+ rc = VERR_GMM_PAGE_NOT_PRIVATE;
+ break;
+ }
+ }
+ else
+ {
+ Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not found! (private)\n", iPage, paPages[iPage].idPage));
+ rc = VERR_GMM_PAGE_NOT_FOUND;
+ break;
+ }
+ }
+
+ if (paPages[iPage].idSharedPage == NIL_GMM_PAGEID)
+ { /* likely */ }
+ else
+ {
+ PGMMPAGE pPage = gmmR0GetPage(pGMM, paPages[iPage].idSharedPage);
+ if (RT_LIKELY(pPage))
+ {
+ if (RT_LIKELY(GMM_PAGE_IS_SHARED(pPage)))
+ {
+ AssertCompile(NIL_RTHCPHYS > GMM_GCPHYS_LAST && GMM_GCPHYS_UNSHAREABLE > GMM_GCPHYS_LAST);
+ Assert(pPage->Shared.cRefs);
+ Assert(pGVM->gmm.s.Stats.cSharedPages);
+ Assert(pGVM->gmm.s.Stats.Allocated.cBasePages);
+
+ Log(("GMMR0AllocateHandyPages: free shared page %x cRefs=%d\n", paPages[iPage].idSharedPage, pPage->Shared.cRefs));
+ pGVM->gmm.s.Stats.cSharedPages--;
+ pGVM->gmm.s.Stats.Allocated.cBasePages--;
+ if (!--pPage->Shared.cRefs)
+ gmmR0FreeSharedPage(pGMM, pGVM, paPages[iPage].idSharedPage, pPage);
+ else
+ {
+ Assert(pGMM->cDuplicatePages);
+ pGMM->cDuplicatePages--;
+ }
+
+ paPages[iPage].idSharedPage = NIL_GMM_PAGEID;
+ }
+ else
+ {
+ Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not shared!\n", iPage, paPages[iPage].idSharedPage));
+ rc = VERR_GMM_PAGE_NOT_SHARED;
+ break;
+ }
+ }
+ else
+ {
+ Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not found! (shared)\n", iPage, paPages[iPage].idSharedPage));
+ rc = VERR_GMM_PAGE_NOT_FOUND;
+ break;
+ }
+ }
+ } /* for each page to update */
+
+ if (RT_SUCCESS(rc) && cPagesToAlloc > 0)
+ {
+#ifdef VBOX_STRICT
+ for (iPage = 0; iPage < cPagesToAlloc; iPage++)
+ {
+ Assert(paPages[iPage].HCPhysGCPhys == NIL_GMMPAGEDESC_PHYS);
+ Assert(paPages[iPage].fZeroed == false);
+ Assert(paPages[iPage].idPage == NIL_GMM_PAGEID);
+ Assert(paPages[iPage].idSharedPage == NIL_GMM_PAGEID);
+ }
+#endif
+
+ /*
+ * Join paths with GMMR0AllocatePages for the allocation.
+ * Note! gmmR0AllocateMoreChunks may leave the protection of the mutex!
+ */
+ rc = gmmR0AllocatePagesNew(pGMM, pGVM, cPagesToAlloc, paPages, GMMACCOUNT_BASE);
+ }
+ }
+ else
+ rc = VERR_WRONG_ORDER;
+ GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
+ gmmR0MutexRelease(pGMM);
+ }
+ else if (RT_SUCCESS(rc))
+ {
+ gmmR0MutexRelease(pGMM);
+ rc = VERR_GMM_IS_NOT_SANE;
+ }
+ VMMR0EmtResumeAfterBlocking(pGVCpu, &Ctx);
+
+ LogFlow(("GMMR0AllocateHandyPages: returns %Rrc\n", rc));
+ return rc;
+}
+
+
+/**
+ * Allocate one or more pages.
+ *
+ * This is typically used for ROMs and MMIO2 (VRAM) during VM creation.
+ * The allocated pages are not cleared and will contain random garbage.
+ *
+ * @returns VBox status code:
+ * @retval VINF_SUCCESS on success.
+ * @retval VERR_NOT_OWNER if the caller is not an EMT.
+ * @retval VERR_GMM_HIT_GLOBAL_LIMIT if we've exhausted the available pages.
+ * @retval VERR_GMM_HIT_VM_ACCOUNT_LIMIT if we've hit the VM account limit,
+ * that is we're trying to allocate more than we've reserved.
+ *
+ * @param pGVM The global (ring-0) VM structure.
+ * @param idCpu The VCPU id.
+ * @param cPages The number of pages to allocate.
+ * @param paPages Pointer to the page descriptors.
+ * See GMMPAGEDESC for details on what is expected on
+ * input.
+ * @param enmAccount The account to charge.
+ *
+ * @thread EMT.
+ */
+GMMR0DECL(int) GMMR0AllocatePages(PGVM pGVM, VMCPUID idCpu, uint32_t cPages, PGMMPAGEDESC paPages, GMMACCOUNT enmAccount)
+{
+ LogFlow(("GMMR0AllocatePages: pGVM=%p cPages=%#x paPages=%p enmAccount=%d\n", pGVM, cPages, paPages, enmAccount));
+
+ /*
+ * Validate, get basics and take the semaphore.
+ */
+ PGMM pGMM;
+ GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
+ int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ AssertPtrReturn(paPages, VERR_INVALID_PARAMETER);
+ AssertMsgReturn(enmAccount > GMMACCOUNT_INVALID && enmAccount < GMMACCOUNT_END, ("%d\n", enmAccount), VERR_INVALID_PARAMETER);
+ AssertMsgReturn(cPages > 0 && cPages < RT_BIT(32 - GUEST_PAGE_SHIFT), ("%#x\n", cPages), VERR_INVALID_PARAMETER);
+
+ for (unsigned iPage = 0; iPage < cPages; iPage++)
+ {
+ AssertMsgReturn( paPages[iPage].HCPhysGCPhys == NIL_GMMPAGEDESC_PHYS
+ || paPages[iPage].HCPhysGCPhys == GMM_GCPHYS_UNSHAREABLE
+ || ( enmAccount == GMMACCOUNT_BASE
+ && paPages[iPage].HCPhysGCPhys <= GMM_GCPHYS_LAST
+ && !(paPages[iPage].HCPhysGCPhys & GUEST_PAGE_OFFSET_MASK)),
+ ("#%#x: %RHp enmAccount=%d\n", iPage, paPages[iPage].HCPhysGCPhys, enmAccount),
+ VERR_INVALID_PARAMETER);
+ AssertMsgReturn(paPages[iPage].fZeroed == false, ("#%#x: %#x\n", iPage, paPages[iPage].fZeroed), VERR_INVALID_PARAMETER);
+ AssertMsgReturn(paPages[iPage].idPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER);
+ AssertMsgReturn(paPages[iPage].idSharedPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idSharedPage), VERR_INVALID_PARAMETER);
+ }
+
+ /*
+ * Grab the giant mutex and get working.
+ */
+ gmmR0MutexAcquire(pGMM);
+ if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
+ {
+
+ /* No allocations before the initial reservation has been made! */
+ if (RT_LIKELY( pGVM->gmm.s.Stats.Reserved.cBasePages
+ && pGVM->gmm.s.Stats.Reserved.cFixedPages
+ && pGVM->gmm.s.Stats.Reserved.cShadowPages))
+ rc = gmmR0AllocatePagesNew(pGMM, pGVM, cPages, paPages, enmAccount);
+ else
+ rc = VERR_WRONG_ORDER;
+ GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
+ }
+ else
+ rc = VERR_GMM_IS_NOT_SANE;
+ gmmR0MutexRelease(pGMM);
+
+ LogFlow(("GMMR0AllocatePages: returns %Rrc\n", rc));
+ return rc;
+}
+
+
+/**
+ * VMMR0 request wrapper for GMMR0AllocatePages.
+ *
+ * @returns see GMMR0AllocatePages.
+ * @param pGVM The global (ring-0) VM structure.
+ * @param idCpu The VCPU id.
+ * @param pReq Pointer to the request packet.
+ */
+GMMR0DECL(int) GMMR0AllocatePagesReq(PGVM pGVM, VMCPUID idCpu, PGMMALLOCATEPAGESREQ pReq)
+{
+ /*
+ * Validate input and pass it on.
+ */
+ AssertPtrReturn(pReq, VERR_INVALID_POINTER);
+ AssertMsgReturn(pReq->Hdr.cbReq >= RT_UOFFSETOF(GMMALLOCATEPAGESREQ, aPages[0]),
+ ("%#x < %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMALLOCATEPAGESREQ, aPages[0])),
+ VERR_INVALID_PARAMETER);
+ AssertMsgReturn(pReq->Hdr.cbReq == RT_UOFFSETOF_DYN(GMMALLOCATEPAGESREQ, aPages[pReq->cPages]),
+ ("%#x != %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF_DYN(GMMALLOCATEPAGESREQ, aPages[pReq->cPages])),
+ VERR_INVALID_PARAMETER);
+
+ return GMMR0AllocatePages(pGVM, idCpu, pReq->cPages, &pReq->aPages[0], pReq->enmAccount);
+}
+
+
+/**
+ * Allocate a large page to represent guest RAM
+ *
+ * The allocated pages are zeroed upon return.
+ *
+ * @returns VBox status code:
+ * @retval VINF_SUCCESS on success.
+ * @retval VERR_NOT_OWNER if the caller is not an EMT.
+ * @retval VERR_GMM_HIT_GLOBAL_LIMIT if we've exhausted the available pages.
+ * @retval VERR_GMM_HIT_VM_ACCOUNT_LIMIT if we've hit the VM account limit,
+ * that is we're trying to allocate more than we've reserved.
+ * @retval VERR_TRY_AGAIN if the host is temporarily out of large pages.
+ * @returns see GMMR0AllocatePages.
+ *
+ * @param pGVM The global (ring-0) VM structure.
+ * @param idCpu The VCPU id.
+ * @param cbPage Large page size.
+ * @param pIdPage Where to return the GMM page ID of the page.
+ * @param pHCPhys Where to return the host physical address of the page.
+ */
+GMMR0DECL(int) GMMR0AllocateLargePage(PGVM pGVM, VMCPUID idCpu, uint32_t cbPage, uint32_t *pIdPage, RTHCPHYS *pHCPhys)
+{
+ LogFlow(("GMMR0AllocateLargePage: pGVM=%p cbPage=%x\n", pGVM, cbPage));
+
+ AssertPtrReturn(pIdPage, VERR_INVALID_PARAMETER);
+ *pIdPage = NIL_GMM_PAGEID;
+ AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
+ *pHCPhys = NIL_RTHCPHYS;
+ AssertReturn(cbPage == GMM_CHUNK_SIZE, VERR_INVALID_PARAMETER);
+
+ /*
+ * Validate GVM + idCpu, get basics and take the semaphore.
+ */
+ PGMM pGMM;
+ GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
+ int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu);
+ AssertRCReturn(rc, rc);
+
+ VMMR0EMTBLOCKCTX Ctx;
+ PGVMCPU pGVCpu = &pGVM->aCpus[idCpu];
+ rc = VMMR0EmtPrepareToBlock(pGVCpu, VINF_SUCCESS, "GMMR0AllocateLargePage", pGMM, &Ctx);
+ AssertRCReturn(rc, rc);
+
+ rc = gmmR0MutexAcquire(pGMM);
+ if (RT_SUCCESS(rc))
+ {
+ if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
+ {
+ /*
+ * Check the quota.
+ */
+ /** @todo r=bird: Quota checking could be done w/o the giant mutex but using
+ * a VM specific mutex... */
+ if (RT_LIKELY( pGVM->gmm.s.Stats.Allocated.cBasePages + pGVM->gmm.s.Stats.cBalloonedPages + GMM_CHUNK_NUM_PAGES
+ <= pGVM->gmm.s.Stats.Reserved.cBasePages))
+ {
+ /*
+ * Allocate a new large page chunk.
+ *
+ * Note! We leave the giant GMM lock temporarily as the allocation might
+ * take a long time. gmmR0RegisterChunk will retake it (ugly).
+ */
+ AssertCompile(GMM_CHUNK_SIZE == _2M);
+ gmmR0MutexRelease(pGMM);
+
+ RTR0MEMOBJ hMemObj;
+ rc = RTR0MemObjAllocLarge(&hMemObj, GMM_CHUNK_SIZE, GMM_CHUNK_SIZE, RTMEMOBJ_ALLOC_LARGE_F_FAST);
+ if (RT_SUCCESS(rc))
+ {
+ *pHCPhys = RTR0MemObjGetPagePhysAddr(hMemObj, 0);
+
+ /*
+ * Register the chunk as fully allocated.
+ * Note! As mentioned above, this will return owning the mutex on success.
+ */
+ PGMMCHUNK pChunk = NULL;
+ PGMMCHUNKFREESET const pSet = pGMM->fBoundMemoryMode ? &pGVM->gmm.s.Private : &pGMM->PrivateX;
+ rc = gmmR0RegisterChunk(pGMM, pSet, hMemObj, pGVM->hSelf, pGVM->pSession, GMM_CHUNK_FLAGS_LARGE_PAGE,
+ 0 /*cPages*/, NULL /*paPages*/, NULL /*piPage*/, &pChunk);
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * The gmmR0RegisterChunk call already marked all pages allocated,
+ * so we just have to fill in the return values and update stats now.
+ */
+ *pIdPage = pChunk->Core.Key << GMM_CHUNKID_SHIFT;
+
+ /* Update accounting. */
+ pGVM->gmm.s.Stats.Allocated.cBasePages += GMM_CHUNK_NUM_PAGES;
+ pGVM->gmm.s.Stats.cPrivatePages += GMM_CHUNK_NUM_PAGES;
+ pGMM->cAllocatedPages += GMM_CHUNK_NUM_PAGES;
+
+ gmmR0LinkChunk(pChunk, pSet);
+ gmmR0MutexRelease(pGMM);
+
+ VMMR0EmtResumeAfterBlocking(pGVCpu, &Ctx);
+ LogFlow(("GMMR0AllocateLargePage: returns VINF_SUCCESS\n"));
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * Bail out.
+ */
+ RTR0MemObjFree(hMemObj, true /* fFreeMappings */);
+ *pHCPhys = NIL_RTHCPHYS;
+ }
+ /** @todo r=bird: Turn VERR_NO_MEMORY etc into VERR_TRY_AGAIN? Docs say we
+ * return it, but I am sure IPRT doesn't... */
+ }
+ else
+ {
+ Log(("GMMR0AllocateLargePage: Reserved=%#llx Allocated+Requested=%#llx+%#x!\n",
+ pGVM->gmm.s.Stats.Reserved.cBasePages, pGVM->gmm.s.Stats.Allocated.cBasePages, GMM_CHUNK_NUM_PAGES));
+ gmmR0MutexRelease(pGMM);
+ rc = VERR_GMM_HIT_VM_ACCOUNT_LIMIT;
+ }
+ }
+ else
+ {
+ gmmR0MutexRelease(pGMM);
+ rc = VERR_GMM_IS_NOT_SANE;
+ }
+ }
+
+ VMMR0EmtResumeAfterBlocking(pGVCpu, &Ctx);
+ LogFlow(("GMMR0AllocateLargePage: returns %Rrc\n", rc));
+ return rc;
+}
+
+
+/**
+ * Free a large page.
+ *
+ * @returns VBox status code:
+ * @param pGVM The global (ring-0) VM structure.
+ * @param idCpu The VCPU id.
+ * @param idPage The large page id.
+ */
+GMMR0DECL(int) GMMR0FreeLargePage(PGVM pGVM, VMCPUID idCpu, uint32_t idPage)
+{
+ LogFlow(("GMMR0FreeLargePage: pGVM=%p idPage=%x\n", pGVM, idPage));
+
+ /*
+ * Validate, get basics and take the semaphore.
+ */
+ PGMM pGMM;
+ GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
+ int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ gmmR0MutexAcquire(pGMM);
+ if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
+ {
+ const unsigned cPages = GMM_CHUNK_NUM_PAGES;
+
+ if (RT_UNLIKELY(pGVM->gmm.s.Stats.Allocated.cBasePages < cPages))
+ {
+ Log(("GMMR0FreeLargePage: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Stats.Allocated.cBasePages, cPages));
+ gmmR0MutexRelease(pGMM);
+ return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH;
+ }
+
+ PGMMPAGE pPage = gmmR0GetPage(pGMM, idPage);
+ if (RT_LIKELY( pPage
+ && GMM_PAGE_IS_PRIVATE(pPage)))
+ {
+ PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT);
+ Assert(pChunk);
+ Assert(pChunk->cFree < GMM_CHUNK_NUM_PAGES);
+ Assert(pChunk->cPrivate > 0);
+
+ /* Release the memory immediately. */
+ gmmR0FreeChunk(pGMM, NULL, pChunk, false /*fRelaxedSem*/); /** @todo this can be relaxed too! */
+
+ /* Update accounting. */
+ pGVM->gmm.s.Stats.Allocated.cBasePages -= cPages;
+ pGVM->gmm.s.Stats.cPrivatePages -= cPages;
+ pGMM->cAllocatedPages -= cPages;
+ }
+ else
+ rc = VERR_GMM_PAGE_NOT_FOUND;
+ }
+ else
+ rc = VERR_GMM_IS_NOT_SANE;
+
+ gmmR0MutexRelease(pGMM);
+ LogFlow(("GMMR0FreeLargePage: returns %Rrc\n", rc));
+ return rc;
+}
+
+
+/**
+ * VMMR0 request wrapper for GMMR0FreeLargePage.
+ *
+ * @returns see GMMR0FreeLargePage.
+ * @param pGVM The global (ring-0) VM structure.
+ * @param idCpu The VCPU id.
+ * @param pReq Pointer to the request packet.
+ */
+GMMR0DECL(int) GMMR0FreeLargePageReq(PGVM pGVM, VMCPUID idCpu, PGMMFREELARGEPAGEREQ pReq)
+{
+ /*
+ * Validate input and pass it on.
+ */
+ AssertPtrReturn(pReq, VERR_INVALID_POINTER);
+ AssertMsgReturn(pReq->Hdr.cbReq == sizeof(GMMFREEPAGESREQ),
+ ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(GMMFREEPAGESREQ)),
+ VERR_INVALID_PARAMETER);
+
+ return GMMR0FreeLargePage(pGVM, idCpu, pReq->idPage);
+}
+
+
+/**
+ * @callback_method_impl{FNGVMMR0ENUMCALLBACK,
+ * Used by gmmR0FreeChunkFlushPerVmTlbs().}
+ */
+static DECLCALLBACK(int) gmmR0InvalidatePerVmChunkTlbCallback(PGVM pGVM, void *pvUser)
+{
+ RT_NOREF(pvUser);
+ if (pGVM->gmm.s.hChunkTlbSpinLock != NIL_RTSPINLOCK)
+ {
+ RTSpinlockAcquire(pGVM->gmm.s.hChunkTlbSpinLock);
+ uintptr_t i = RT_ELEMENTS(pGVM->gmm.s.aChunkTlbEntries);
+ while (i-- > 0)
+ {
+ pGVM->gmm.s.aChunkTlbEntries[i].idGeneration = UINT64_MAX;
+ pGVM->gmm.s.aChunkTlbEntries[i].pChunk = NULL;
+ }
+ RTSpinlockRelease(pGVM->gmm.s.hChunkTlbSpinLock);
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Called by gmmR0FreeChunk when we reach the threshold for wrapping around the
+ * free generation ID value.
+ *
+ * This is done at 2^62 - 1, which allows us to drop all locks and as it will
+ * take a while before 12 exa (2 305 843 009 213 693 952) calls to
+ * gmmR0FreeChunk can be made and causes a real wrap-around. We do two
+ * invalidation passes and resets the generation ID between then. This will
+ * make sure there are no false positives.
+ *
+ * @param pGMM Pointer to the GMM instance.
+ */
+static void gmmR0FreeChunkFlushPerVmTlbs(PGMM pGMM)
+{
+ /*
+ * First invalidation pass.
+ */
+ int rc = GVMMR0EnumVMs(gmmR0InvalidatePerVmChunkTlbCallback, NULL);
+ AssertRCSuccess(rc);
+
+ /*
+ * Reset the generation number.
+ */
+ RTSpinlockAcquire(pGMM->hSpinLockTree);
+ ASMAtomicWriteU64(&pGMM->idFreeGeneration, 1);
+ RTSpinlockRelease(pGMM->hSpinLockTree);
+
+ /*
+ * Second invalidation pass.
+ */
+ rc = GVMMR0EnumVMs(gmmR0InvalidatePerVmChunkTlbCallback, NULL);
+ AssertRCSuccess(rc);
+}
+
+
+/**
+ * Frees a chunk, giving it back to the host OS.
+ *
+ * @param pGMM Pointer to the GMM instance.
+ * @param pGVM This is set when called from GMMR0CleanupVM so we can
+ * unmap and free the chunk in one go.
+ * @param pChunk The chunk to free.
+ * @param fRelaxedSem Whether we can release the semaphore while doing the
+ * freeing (@c true) or not.
+ */
+static bool gmmR0FreeChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, bool fRelaxedSem)
+{
+ Assert(pChunk->Core.Key != NIL_GMM_CHUNKID);
+
+ GMMR0CHUNKMTXSTATE MtxState;
+ gmmR0ChunkMutexAcquire(&MtxState, pGMM, pChunk, GMMR0CHUNK_MTX_KEEP_GIANT);
+
+ /*
+ * Cleanup hack! Unmap the chunk from the callers address space.
+ * This shouldn't happen, so screw lock contention...
+ */
+ if (pChunk->cMappingsX && pGVM)
+ gmmR0UnmapChunkLocked(pGMM, pGVM, pChunk);
+
+ /*
+ * If there are current mappings of the chunk, then request the
+ * VMs to unmap them. Reposition the chunk in the free list so
+ * it won't be a likely candidate for allocations.
+ */
+ if (pChunk->cMappingsX)
+ {
+ /** @todo R0 -> VM request */
+ /* The chunk can be mapped by more than one VM if fBoundMemoryMode is false! */
+ Log(("gmmR0FreeChunk: chunk still has %d mappings; don't free!\n", pChunk->cMappingsX));
+ gmmR0ChunkMutexRelease(&MtxState, pChunk);
+ return false;
+ }
+
+
+ /*
+ * Save and trash the handle.
+ */
+ RTR0MEMOBJ const hMemObj = pChunk->hMemObj;
+ pChunk->hMemObj = NIL_RTR0MEMOBJ;
+
+ /*
+ * Unlink it from everywhere.
+ */
+ gmmR0UnlinkChunk(pChunk);
+
+ RTSpinlockAcquire(pGMM->hSpinLockTree);
+
+ RTListNodeRemove(&pChunk->ListNode);
+
+ PAVLU32NODECORE pCore = RTAvlU32Remove(&pGMM->pChunks, pChunk->Core.Key);
+ Assert(pCore == &pChunk->Core); NOREF(pCore);
+
+ PGMMCHUNKTLBE pTlbe = &pGMM->ChunkTLB.aEntries[GMM_CHUNKTLB_IDX(pChunk->Core.Key)];
+ if (pTlbe->pChunk == pChunk)
+ {
+ pTlbe->idChunk = NIL_GMM_CHUNKID;
+ pTlbe->pChunk = NULL;
+ }
+
+ Assert(pGMM->cChunks > 0);
+ pGMM->cChunks--;
+
+ uint64_t const idFreeGeneration = ASMAtomicIncU64(&pGMM->idFreeGeneration);
+
+ RTSpinlockRelease(pGMM->hSpinLockTree);
+
+ pGMM->cFreedChunks++;
+
+ /* Drop the lock. */
+ gmmR0ChunkMutexRelease(&MtxState, NULL);
+ if (fRelaxedSem)
+ gmmR0MutexRelease(pGMM);
+
+ /*
+ * Flush per VM chunk TLBs if we're getting remotely close to a generation wraparound.
+ */
+ if (idFreeGeneration == UINT64_MAX / 4)
+ gmmR0FreeChunkFlushPerVmTlbs(pGMM);
+
+ /*
+ * Free the Chunk ID and all memory associated with the chunk.
+ */
+ gmmR0FreeChunkId(pGMM, pChunk->Core.Key);
+ pChunk->Core.Key = NIL_GMM_CHUNKID;
+
+ RTMemFree(pChunk->paMappingsX);
+ pChunk->paMappingsX = NULL;
+
+ RTMemFree(pChunk);
+
+#ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM
+ int rc = RTR0MemObjFree(hMemObj, true /* fFreeMappings */);
+#else
+ int rc = RTR0MemObjFree(hMemObj, false /* fFreeMappings */);
+#endif
+ AssertLogRelRC(rc);
+
+ if (fRelaxedSem)
+ gmmR0MutexAcquire(pGMM);
+ return fRelaxedSem;
+}
+
+
+/**
+ * Free page worker.
+ *
+ * The caller does all the statistic decrementing, we do all the incrementing.
+ *
+ * @param pGMM Pointer to the GMM instance data.
+ * @param pGVM Pointer to the GVM instance.
+ * @param pChunk Pointer to the chunk this page belongs to.
+ * @param idPage The Page ID.
+ * @param pPage Pointer to the page.
+ */
+static void gmmR0FreePageWorker(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, uint32_t idPage, PGMMPAGE pPage)
+{
+ Log3(("F pPage=%p iPage=%#x/%#x u2State=%d iFreeHead=%#x\n",
+ pPage, pPage - &pChunk->aPages[0], idPage, pPage->Common.u2State, pChunk->iFreeHead)); NOREF(idPage);
+
+ /*
+ * Put the page on the free list.
+ */
+ pPage->u = 0;
+ pPage->Free.u2State = GMM_PAGE_STATE_FREE;
+ pPage->Free.fZeroed = false;
+ Assert(pChunk->iFreeHead < RT_ELEMENTS(pChunk->aPages) || pChunk->iFreeHead == UINT16_MAX);
+ pPage->Free.iNext = pChunk->iFreeHead;
+ pChunk->iFreeHead = pPage - &pChunk->aPages[0];
+
+ /*
+ * Update statistics (the cShared/cPrivate stats are up to date already),
+ * and relink the chunk if necessary.
+ */
+ unsigned const cFree = pChunk->cFree;
+ if ( !cFree
+ || gmmR0SelectFreeSetList(cFree) != gmmR0SelectFreeSetList(cFree + 1))
+ {
+ gmmR0UnlinkChunk(pChunk);
+ pChunk->cFree++;
+ gmmR0SelectSetAndLinkChunk(pGMM, pGVM, pChunk);
+ }
+ else
+ {
+ pChunk->cFree = cFree + 1;
+ pChunk->pSet->cFreePages++;
+ }
+
+ /*
+ * If the chunk becomes empty, consider giving memory back to the host OS.
+ *
+ * The current strategy is to try give it back if there are other chunks
+ * in this free list, meaning if there are at least 240 free pages in this
+ * category. Note that since there are probably mappings of the chunk,
+ * it won't be freed up instantly, which probably screws up this logic
+ * a bit...
+ */
+ /** @todo Do this on the way out. */
+ if (RT_LIKELY( pChunk->cFree != GMM_CHUNK_NUM_PAGES
+ || pChunk->pFreeNext == NULL
+ || pChunk->pFreePrev == NULL /** @todo this is probably misfiring, see reset... */))
+ { /* likely */ }
+ else
+ gmmR0FreeChunk(pGMM, NULL, pChunk, false);
+}
+
+
+/**
+ * Frees a shared page, the page is known to exist and be valid and such.
+ *
+ * @param pGMM Pointer to the GMM instance.
+ * @param pGVM Pointer to the GVM instance.
+ * @param idPage The page id.
+ * @param pPage The page structure.
+ */
+DECLINLINE(void) gmmR0FreeSharedPage(PGMM pGMM, PGVM pGVM, uint32_t idPage, PGMMPAGE pPage)
+{
+ PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT);
+ Assert(pChunk);
+ Assert(pChunk->cFree < GMM_CHUNK_NUM_PAGES);
+ Assert(pChunk->cShared > 0);
+ Assert(pGMM->cSharedPages > 0);
+ Assert(pGMM->cAllocatedPages > 0);
+ Assert(!pPage->Shared.cRefs);
+
+ pChunk->cShared--;
+ pGMM->cAllocatedPages--;
+ pGMM->cSharedPages--;
+ gmmR0FreePageWorker(pGMM, pGVM, pChunk, idPage, pPage);
+}
+
+
+/**
+ * Frees a private page, the page is known to exist and be valid and such.
+ *
+ * @param pGMM Pointer to the GMM instance.
+ * @param pGVM Pointer to the GVM instance.
+ * @param idPage The page id.
+ * @param pPage The page structure.
+ */
+DECLINLINE(void) gmmR0FreePrivatePage(PGMM pGMM, PGVM pGVM, uint32_t idPage, PGMMPAGE pPage)
+{
+ PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT);
+ Assert(pChunk);
+ Assert(pChunk->cFree < GMM_CHUNK_NUM_PAGES);
+ Assert(pChunk->cPrivate > 0);
+ Assert(pGMM->cAllocatedPages > 0);
+
+ pChunk->cPrivate--;
+ pGMM->cAllocatedPages--;
+ gmmR0FreePageWorker(pGMM, pGVM, pChunk, idPage, pPage);
+}
+
+
+/**
+ * Common worker for GMMR0FreePages and GMMR0BalloonedPages.
+ *
+ * @returns VBox status code:
+ * @retval xxx
+ *
+ * @param pGMM Pointer to the GMM instance data.
+ * @param pGVM Pointer to the VM.
+ * @param cPages The number of pages to free.
+ * @param paPages Pointer to the page descriptors.
+ * @param enmAccount The account this relates to.
+ */
+static int gmmR0FreePages(PGMM pGMM, PGVM pGVM, uint32_t cPages, PGMMFREEPAGEDESC paPages, GMMACCOUNT enmAccount)
+{
+ /*
+ * Check that the request isn't impossible wrt to the account status.
+ */
+ switch (enmAccount)
+ {
+ case GMMACCOUNT_BASE:
+ if (RT_UNLIKELY(pGVM->gmm.s.Stats.Allocated.cBasePages < cPages))
+ {
+ Log(("gmmR0FreePages: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Stats.Allocated.cBasePages, cPages));
+ return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH;
+ }
+ break;
+ case GMMACCOUNT_SHADOW:
+ if (RT_UNLIKELY(pGVM->gmm.s.Stats.Allocated.cShadowPages < cPages))
+ {
+ Log(("gmmR0FreePages: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Stats.Allocated.cShadowPages, cPages));
+ return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH;
+ }
+ break;
+ case GMMACCOUNT_FIXED:
+ if (RT_UNLIKELY(pGVM->gmm.s.Stats.Allocated.cFixedPages < cPages))
+ {
+ Log(("gmmR0FreePages: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Stats.Allocated.cFixedPages, cPages));
+ return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH;
+ }
+ break;
+ default:
+ AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_IPE_NOT_REACHED_DEFAULT_CASE);
+ }
+
+ /*
+ * Walk the descriptors and free the pages.
+ *
+ * Statistics (except the account) are being updated as we go along,
+ * unlike the alloc code. Also, stop on the first error.
+ */
+ int rc = VINF_SUCCESS;
+ uint32_t iPage;
+ for (iPage = 0; iPage < cPages; iPage++)
+ {
+ uint32_t idPage = paPages[iPage].idPage;
+ PGMMPAGE pPage = gmmR0GetPage(pGMM, idPage);
+ if (RT_LIKELY(pPage))
+ {
+ if (RT_LIKELY(GMM_PAGE_IS_PRIVATE(pPage)))
+ {
+ if (RT_LIKELY(pPage->Private.hGVM == pGVM->hSelf))
+ {
+ Assert(pGVM->gmm.s.Stats.cPrivatePages);
+ pGVM->gmm.s.Stats.cPrivatePages--;
+ gmmR0FreePrivatePage(pGMM, pGVM, idPage, pPage);
+ }
+ else
+ {
+ Log(("gmmR0AllocatePages: #%#x/%#x: not owner! hGVM=%#x hSelf=%#x\n", iPage, idPage,
+ pPage->Private.hGVM, pGVM->hSelf));
+ rc = VERR_GMM_NOT_PAGE_OWNER;
+ break;
+ }
+ }
+ else if (RT_LIKELY(GMM_PAGE_IS_SHARED(pPage)))
+ {
+ Assert(pGVM->gmm.s.Stats.cSharedPages);
+ Assert(pPage->Shared.cRefs);
+#if defined(VBOX_WITH_PAGE_SHARING) && defined(VBOX_STRICT)
+ if (pPage->Shared.u14Checksum)
+ {
+ uint32_t uChecksum = gmmR0StrictPageChecksum(pGMM, pGVM, idPage);
+ uChecksum &= UINT32_C(0x00003fff);
+ AssertMsg(!uChecksum || uChecksum == pPage->Shared.u14Checksum,
+ ("%#x vs %#x - idPage=%#x\n", uChecksum, pPage->Shared.u14Checksum, idPage));
+ }
+#endif
+ pGVM->gmm.s.Stats.cSharedPages--;
+ if (!--pPage->Shared.cRefs)
+ gmmR0FreeSharedPage(pGMM, pGVM, idPage, pPage);
+ else
+ {
+ Assert(pGMM->cDuplicatePages);
+ pGMM->cDuplicatePages--;
+ }
+ }
+ else
+ {
+ Log(("gmmR0AllocatePages: #%#x/%#x: already free!\n", iPage, idPage));
+ rc = VERR_GMM_PAGE_ALREADY_FREE;
+ break;
+ }
+ }
+ else
+ {
+ Log(("gmmR0AllocatePages: #%#x/%#x: not found!\n", iPage, idPage));
+ rc = VERR_GMM_PAGE_NOT_FOUND;
+ break;
+ }
+ paPages[iPage].idPage = NIL_GMM_PAGEID;
+ }
+
+ /*
+ * Update the account.
+ */
+ switch (enmAccount)
+ {
+ case GMMACCOUNT_BASE: pGVM->gmm.s.Stats.Allocated.cBasePages -= iPage; break;
+ case GMMACCOUNT_SHADOW: pGVM->gmm.s.Stats.Allocated.cShadowPages -= iPage; break;
+ case GMMACCOUNT_FIXED: pGVM->gmm.s.Stats.Allocated.cFixedPages -= iPage; break;
+ default:
+ AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_IPE_NOT_REACHED_DEFAULT_CASE);
+ }
+
+ /*
+ * Any threshold stuff to be done here?
+ */
+
+ return rc;
+}
+
+
+/**
+ * Free one or more pages.
+ *
+ * This is typically used at reset time or power off.
+ *
+ * @returns VBox status code:
+ * @retval xxx
+ *
+ * @param pGVM The global (ring-0) VM structure.
+ * @param idCpu The VCPU id.
+ * @param cPages The number of pages to allocate.
+ * @param paPages Pointer to the page descriptors containing the page IDs
+ * for each page.
+ * @param enmAccount The account this relates to.
+ * @thread EMT.
+ */
+GMMR0DECL(int) GMMR0FreePages(PGVM pGVM, VMCPUID idCpu, uint32_t cPages, PGMMFREEPAGEDESC paPages, GMMACCOUNT enmAccount)
+{
+ LogFlow(("GMMR0FreePages: pGVM=%p cPages=%#x paPages=%p enmAccount=%d\n", pGVM, cPages, paPages, enmAccount));
+
+ /*
+ * Validate input and get the basics.
+ */
+ PGMM pGMM;
+ GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
+ int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ AssertPtrReturn(paPages, VERR_INVALID_PARAMETER);
+ AssertMsgReturn(enmAccount > GMMACCOUNT_INVALID && enmAccount < GMMACCOUNT_END, ("%d\n", enmAccount), VERR_INVALID_PARAMETER);
+ AssertMsgReturn(cPages > 0 && cPages < RT_BIT(32 - GUEST_PAGE_SHIFT), ("%#x\n", cPages), VERR_INVALID_PARAMETER);
+
+ for (unsigned iPage = 0; iPage < cPages; iPage++)
+ AssertMsgReturn( paPages[iPage].idPage <= GMM_PAGEID_LAST
+ /*|| paPages[iPage].idPage == NIL_GMM_PAGEID*/,
+ ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER);
+
+ /*
+ * Take the semaphore and call the worker function.
+ */
+ gmmR0MutexAcquire(pGMM);
+ if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
+ {
+ rc = gmmR0FreePages(pGMM, pGVM, cPages, paPages, enmAccount);
+ GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
+ }
+ else
+ rc = VERR_GMM_IS_NOT_SANE;
+ gmmR0MutexRelease(pGMM);
+ LogFlow(("GMMR0FreePages: returns %Rrc\n", rc));
+ return rc;
+}
+
+
+/**
+ * VMMR0 request wrapper for GMMR0FreePages.
+ *
+ * @returns see GMMR0FreePages.
+ * @param pGVM The global (ring-0) VM structure.
+ * @param idCpu The VCPU id.
+ * @param pReq Pointer to the request packet.
+ */
+GMMR0DECL(int) GMMR0FreePagesReq(PGVM pGVM, VMCPUID idCpu, PGMMFREEPAGESREQ pReq)
+{
+ /*
+ * Validate input and pass it on.
+ */
+ AssertPtrReturn(pReq, VERR_INVALID_POINTER);
+ AssertMsgReturn(pReq->Hdr.cbReq >= RT_UOFFSETOF(GMMFREEPAGESREQ, aPages[0]),
+ ("%#x < %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMFREEPAGESREQ, aPages[0])),
+ VERR_INVALID_PARAMETER);
+ AssertMsgReturn(pReq->Hdr.cbReq == RT_UOFFSETOF_DYN(GMMFREEPAGESREQ, aPages[pReq->cPages]),
+ ("%#x != %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF_DYN(GMMFREEPAGESREQ, aPages[pReq->cPages])),
+ VERR_INVALID_PARAMETER);
+
+ return GMMR0FreePages(pGVM, idCpu, pReq->cPages, &pReq->aPages[0], pReq->enmAccount);
+}
+
+
+/**
+ * Report back on a memory ballooning request.
+ *
+ * The request may or may not have been initiated by the GMM. If it was initiated
+ * by the GMM it is important that this function is called even if no pages were
+ * ballooned.
+ *
+ * @returns VBox status code:
+ * @retval VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH
+ * @retval VERR_GMM_ATTEMPT_TO_DEFLATE_TOO_MUCH
+ * @retval VERR_GMM_OVERCOMMITTED_TRY_AGAIN_IN_A_BIT - reset condition
+ * indicating that we won't necessarily have sufficient RAM to boot
+ * the VM again and that it should pause until this changes (we'll try
+ * balloon some other VM). (For standard deflate we have little choice
+ * but to hope the VM won't use the memory that was returned to it.)
+ *
+ * @param pGVM The global (ring-0) VM structure.
+ * @param idCpu The VCPU id.
+ * @param enmAction Inflate/deflate/reset.
+ * @param cBalloonedPages The number of pages that was ballooned.
+ *
+ * @thread EMT(idCpu)
+ */
+GMMR0DECL(int) GMMR0BalloonedPages(PGVM pGVM, VMCPUID idCpu, GMMBALLOONACTION enmAction, uint32_t cBalloonedPages)
+{
+ LogFlow(("GMMR0BalloonedPages: pGVM=%p enmAction=%d cBalloonedPages=%#x\n",
+ pGVM, enmAction, cBalloonedPages));
+
+ AssertMsgReturn(cBalloonedPages < RT_BIT(32 - GUEST_PAGE_SHIFT), ("%#x\n", cBalloonedPages), VERR_INVALID_PARAMETER);
+
+ /*
+ * Validate input and get the basics.
+ */
+ PGMM pGMM;
+ GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
+ int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ /*
+ * Take the semaphore and do some more validations.
+ */
+ gmmR0MutexAcquire(pGMM);
+ if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
+ {
+ switch (enmAction)
+ {
+ case GMMBALLOONACTION_INFLATE:
+ {
+ if (RT_LIKELY(pGVM->gmm.s.Stats.Allocated.cBasePages + pGVM->gmm.s.Stats.cBalloonedPages + cBalloonedPages
+ <= pGVM->gmm.s.Stats.Reserved.cBasePages))
+ {
+ /*
+ * Record the ballooned memory.
+ */
+ pGMM->cBalloonedPages += cBalloonedPages;
+ if (pGVM->gmm.s.Stats.cReqBalloonedPages)
+ {
+ /* Codepath never taken. Might be interesting in the future to request ballooned memory from guests in low memory conditions.. */
+ AssertFailed();
+
+ pGVM->gmm.s.Stats.cBalloonedPages += cBalloonedPages;
+ pGVM->gmm.s.Stats.cReqActuallyBalloonedPages += cBalloonedPages;
+ Log(("GMMR0BalloonedPages: +%#x - Global=%#llx / VM: Total=%#llx Req=%#llx Actual=%#llx (pending)\n",
+ cBalloonedPages, pGMM->cBalloonedPages, pGVM->gmm.s.Stats.cBalloonedPages,
+ pGVM->gmm.s.Stats.cReqBalloonedPages, pGVM->gmm.s.Stats.cReqActuallyBalloonedPages));
+ }
+ else
+ {
+ pGVM->gmm.s.Stats.cBalloonedPages += cBalloonedPages;
+ Log(("GMMR0BalloonedPages: +%#x - Global=%#llx / VM: Total=%#llx (user)\n",
+ cBalloonedPages, pGMM->cBalloonedPages, pGVM->gmm.s.Stats.cBalloonedPages));
+ }
+ }
+ else
+ {
+ Log(("GMMR0BalloonedPages: cBasePages=%#llx Total=%#llx cBalloonedPages=%#llx Reserved=%#llx\n",
+ pGVM->gmm.s.Stats.Allocated.cBasePages, pGVM->gmm.s.Stats.cBalloonedPages, cBalloonedPages,
+ pGVM->gmm.s.Stats.Reserved.cBasePages));
+ rc = VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH;
+ }
+ break;
+ }
+
+ case GMMBALLOONACTION_DEFLATE:
+ {
+ /* Deflate. */
+ if (pGVM->gmm.s.Stats.cBalloonedPages >= cBalloonedPages)
+ {
+ /*
+ * Record the ballooned memory.
+ */
+ Assert(pGMM->cBalloonedPages >= cBalloonedPages);
+ pGMM->cBalloonedPages -= cBalloonedPages;
+ pGVM->gmm.s.Stats.cBalloonedPages -= cBalloonedPages;
+ if (pGVM->gmm.s.Stats.cReqDeflatePages)
+ {
+ AssertFailed(); /* This is path is for later. */
+ Log(("GMMR0BalloonedPages: -%#x - Global=%#llx / VM: Total=%#llx Req=%#llx\n",
+ cBalloonedPages, pGMM->cBalloonedPages, pGVM->gmm.s.Stats.cBalloonedPages, pGVM->gmm.s.Stats.cReqDeflatePages));
+
+ /*
+ * Anything we need to do here now when the request has been completed?
+ */
+ pGVM->gmm.s.Stats.cReqDeflatePages = 0;
+ }
+ else
+ Log(("GMMR0BalloonedPages: -%#x - Global=%#llx / VM: Total=%#llx (user)\n",
+ cBalloonedPages, pGMM->cBalloonedPages, pGVM->gmm.s.Stats.cBalloonedPages));
+ }
+ else
+ {
+ Log(("GMMR0BalloonedPages: Total=%#llx cBalloonedPages=%#llx\n", pGVM->gmm.s.Stats.cBalloonedPages, cBalloonedPages));
+ rc = VERR_GMM_ATTEMPT_TO_DEFLATE_TOO_MUCH;
+ }
+ break;
+ }
+
+ case GMMBALLOONACTION_RESET:
+ {
+ /* Reset to an empty balloon. */
+ Assert(pGMM->cBalloonedPages >= pGVM->gmm.s.Stats.cBalloonedPages);
+
+ pGMM->cBalloonedPages -= pGVM->gmm.s.Stats.cBalloonedPages;
+ pGVM->gmm.s.Stats.cBalloonedPages = 0;
+ break;
+ }
+
+ default:
+ rc = VERR_INVALID_PARAMETER;
+ break;
+ }
+ GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
+ }
+ else
+ rc = VERR_GMM_IS_NOT_SANE;
+
+ gmmR0MutexRelease(pGMM);
+ LogFlow(("GMMR0BalloonedPages: returns %Rrc\n", rc));
+ return rc;
+}
+
+
+/**
+ * VMMR0 request wrapper for GMMR0BalloonedPages.
+ *
+ * @returns see GMMR0BalloonedPages.
+ * @param pGVM The global (ring-0) VM structure.
+ * @param idCpu The VCPU id.
+ * @param pReq Pointer to the request packet.
+ */
+GMMR0DECL(int) GMMR0BalloonedPagesReq(PGVM pGVM, VMCPUID idCpu, PGMMBALLOONEDPAGESREQ pReq)
+{
+ /*
+ * Validate input and pass it on.
+ */
+ AssertPtrReturn(pReq, VERR_INVALID_POINTER);
+ AssertMsgReturn(pReq->Hdr.cbReq == sizeof(GMMBALLOONEDPAGESREQ),
+ ("%#x < %#x\n", pReq->Hdr.cbReq, sizeof(GMMBALLOONEDPAGESREQ)),
+ VERR_INVALID_PARAMETER);
+
+ return GMMR0BalloonedPages(pGVM, idCpu, pReq->enmAction, pReq->cBalloonedPages);
+}
+
+
+/**
+ * Return memory statistics for the hypervisor
+ *
+ * @returns VBox status code.
+ * @param pReq Pointer to the request packet.
+ */
+GMMR0DECL(int) GMMR0QueryHypervisorMemoryStatsReq(PGMMMEMSTATSREQ pReq)
+{
+ /*
+ * Validate input and pass it on.
+ */
+ AssertPtrReturn(pReq, VERR_INVALID_POINTER);
+ AssertMsgReturn(pReq->Hdr.cbReq == sizeof(GMMMEMSTATSREQ),
+ ("%#x < %#x\n", pReq->Hdr.cbReq, sizeof(GMMMEMSTATSREQ)),
+ VERR_INVALID_PARAMETER);
+
+ /*
+ * Validate input and get the basics.
+ */
+ PGMM pGMM;
+ GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
+ pReq->cAllocPages = pGMM->cAllocatedPages;
+ pReq->cFreePages = (pGMM->cChunks << (GMM_CHUNK_SHIFT - GUEST_PAGE_SHIFT)) - pGMM->cAllocatedPages;
+ pReq->cBalloonedPages = pGMM->cBalloonedPages;
+ pReq->cMaxPages = pGMM->cMaxPages;
+ pReq->cSharedPages = pGMM->cDuplicatePages;
+ GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Return memory statistics for the VM
+ *
+ * @returns VBox status code.
+ * @param pGVM The global (ring-0) VM structure.
+ * @param idCpu Cpu id.
+ * @param pReq Pointer to the request packet.
+ *
+ * @thread EMT(idCpu)
+ */
+GMMR0DECL(int) GMMR0QueryMemoryStatsReq(PGVM pGVM, VMCPUID idCpu, PGMMMEMSTATSREQ pReq)
+{
+ /*
+ * Validate input and pass it on.
+ */
+ AssertPtrReturn(pReq, VERR_INVALID_POINTER);
+ AssertMsgReturn(pReq->Hdr.cbReq == sizeof(GMMMEMSTATSREQ),
+ ("%#x < %#x\n", pReq->Hdr.cbReq, sizeof(GMMMEMSTATSREQ)),
+ VERR_INVALID_PARAMETER);
+
+ /*
+ * Validate input and get the basics.
+ */
+ PGMM pGMM;
+ GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
+ int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ /*
+ * Take the semaphore and do some more validations.
+ */
+ gmmR0MutexAcquire(pGMM);
+ if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
+ {
+ pReq->cAllocPages = pGVM->gmm.s.Stats.Allocated.cBasePages;
+ pReq->cBalloonedPages = pGVM->gmm.s.Stats.cBalloonedPages;
+ pReq->cMaxPages = pGVM->gmm.s.Stats.Reserved.cBasePages;
+ pReq->cFreePages = pReq->cMaxPages - pReq->cAllocPages;
+ }
+ else
+ rc = VERR_GMM_IS_NOT_SANE;
+
+ gmmR0MutexRelease(pGMM);
+ LogFlow(("GMMR3QueryVMMemoryStats: returns %Rrc\n", rc));
+ return rc;
+}
+
+
+/**
+ * Worker for gmmR0UnmapChunk and gmmr0FreeChunk.
+ *
+ * Don't call this in legacy allocation mode!
+ *
+ * @returns VBox status code.
+ * @param pGMM Pointer to the GMM instance data.
+ * @param pGVM Pointer to the Global VM structure.
+ * @param pChunk Pointer to the chunk to be unmapped.
+ */
+static int gmmR0UnmapChunkLocked(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk)
+{
+ RT_NOREF_PV(pGMM);
+
+ /*
+ * Find the mapping and try unmapping it.
+ */
+ uint32_t cMappings = pChunk->cMappingsX;
+ for (uint32_t i = 0; i < cMappings; i++)
+ {
+ Assert(pChunk->paMappingsX[i].pGVM && pChunk->paMappingsX[i].hMapObj != NIL_RTR0MEMOBJ);
+ if (pChunk->paMappingsX[i].pGVM == pGVM)
+ {
+ /* unmap */
+ int rc = RTR0MemObjFree(pChunk->paMappingsX[i].hMapObj, false /* fFreeMappings (NA) */);
+ if (RT_SUCCESS(rc))
+ {
+ /* update the record. */
+ cMappings--;
+ if (i < cMappings)
+ pChunk->paMappingsX[i] = pChunk->paMappingsX[cMappings];
+ pChunk->paMappingsX[cMappings].hMapObj = NIL_RTR0MEMOBJ;
+ pChunk->paMappingsX[cMappings].pGVM = NULL;
+ Assert(pChunk->cMappingsX - 1U == cMappings);
+ pChunk->cMappingsX = cMappings;
+ }
+
+ return rc;
+ }
+ }
+
+ Log(("gmmR0UnmapChunk: Chunk %#x is not mapped into pGVM=%p/%#x\n", pChunk->Core.Key, pGVM, pGVM->hSelf));
+ return VERR_GMM_CHUNK_NOT_MAPPED;
+}
+
+
+/**
+ * Unmaps a chunk previously mapped into the address space of the current process.
+ *
+ * @returns VBox status code.
+ * @param pGMM Pointer to the GMM instance data.
+ * @param pGVM Pointer to the Global VM structure.
+ * @param pChunk Pointer to the chunk to be unmapped.
+ * @param fRelaxedSem Whether we can release the semaphore while doing the
+ * mapping (@c true) or not.
+ */
+static int gmmR0UnmapChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, bool fRelaxedSem)
+{
+ /*
+ * Lock the chunk and if possible leave the giant GMM lock.
+ */
+ GMMR0CHUNKMTXSTATE MtxState;
+ int rc = gmmR0ChunkMutexAcquire(&MtxState, pGMM, pChunk,
+ fRelaxedSem ? GMMR0CHUNK_MTX_RETAKE_GIANT : GMMR0CHUNK_MTX_KEEP_GIANT);
+ if (RT_SUCCESS(rc))
+ {
+ rc = gmmR0UnmapChunkLocked(pGMM, pGVM, pChunk);
+ gmmR0ChunkMutexRelease(&MtxState, pChunk);
+ }
+ return rc;
+}
+
+
+/**
+ * Worker for gmmR0MapChunk.
+ *
+ * @returns VBox status code.
+ * @param pGMM Pointer to the GMM instance data.
+ * @param pGVM Pointer to the Global VM structure.
+ * @param pChunk Pointer to the chunk to be mapped.
+ * @param ppvR3 Where to store the ring-3 address of the mapping.
+ * In the VERR_GMM_CHUNK_ALREADY_MAPPED case, this will be
+ * contain the address of the existing mapping.
+ */
+static int gmmR0MapChunkLocked(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, PRTR3PTR ppvR3)
+{
+ RT_NOREF(pGMM);
+
+ /*
+ * Check to see if the chunk is already mapped.
+ */
+ for (uint32_t i = 0; i < pChunk->cMappingsX; i++)
+ {
+ Assert(pChunk->paMappingsX[i].pGVM && pChunk->paMappingsX[i].hMapObj != NIL_RTR0MEMOBJ);
+ if (pChunk->paMappingsX[i].pGVM == pGVM)
+ {
+ *ppvR3 = RTR0MemObjAddressR3(pChunk->paMappingsX[i].hMapObj);
+ Log(("gmmR0MapChunk: chunk %#x is already mapped at %p!\n", pChunk->Core.Key, *ppvR3));
+#ifdef VBOX_WITH_PAGE_SHARING
+ /* The ring-3 chunk cache can be out of sync; don't fail. */
+ return VINF_SUCCESS;
+#else
+ return VERR_GMM_CHUNK_ALREADY_MAPPED;
+#endif
+ }
+ }
+
+ /*
+ * Do the mapping.
+ */
+ RTR0MEMOBJ hMapObj;
+ int rc = RTR0MemObjMapUser(&hMapObj, pChunk->hMemObj, (RTR3PTR)-1, 0, RTMEM_PROT_READ | RTMEM_PROT_WRITE, NIL_RTR0PROCESS);
+ if (RT_SUCCESS(rc))
+ {
+ /* reallocate the array? assumes few users per chunk (usually one). */
+ unsigned iMapping = pChunk->cMappingsX;
+ if ( iMapping <= 3
+ || (iMapping & 3) == 0)
+ {
+ unsigned cNewSize = iMapping <= 3
+ ? iMapping + 1
+ : iMapping + 4;
+ Assert(cNewSize < 4 || RT_ALIGN_32(cNewSize, 4) == cNewSize);
+ if (RT_UNLIKELY(cNewSize > UINT16_MAX))
+ {
+ rc = RTR0MemObjFree(hMapObj, false /* fFreeMappings (NA) */); AssertRC(rc);
+ return VERR_GMM_TOO_MANY_CHUNK_MAPPINGS;
+ }
+
+ void *pvMappings = RTMemRealloc(pChunk->paMappingsX, cNewSize * sizeof(pChunk->paMappingsX[0]));
+ if (RT_UNLIKELY(!pvMappings))
+ {
+ rc = RTR0MemObjFree(hMapObj, false /* fFreeMappings (NA) */); AssertRC(rc);
+ return VERR_NO_MEMORY;
+ }
+ pChunk->paMappingsX = (PGMMCHUNKMAP)pvMappings;
+ }
+
+ /* insert new entry */
+ pChunk->paMappingsX[iMapping].hMapObj = hMapObj;
+ pChunk->paMappingsX[iMapping].pGVM = pGVM;
+ Assert(pChunk->cMappingsX == iMapping);
+ pChunk->cMappingsX = iMapping + 1;
+
+ *ppvR3 = RTR0MemObjAddressR3(hMapObj);
+ }
+
+ return rc;
+}
+
+
+/**
+ * Maps a chunk into the user address space of the current process.
+ *
+ * @returns VBox status code.
+ * @param pGMM Pointer to the GMM instance data.
+ * @param pGVM Pointer to the Global VM structure.
+ * @param pChunk Pointer to the chunk to be mapped.
+ * @param fRelaxedSem Whether we can release the semaphore while doing the
+ * mapping (@c true) or not.
+ * @param ppvR3 Where to store the ring-3 address of the mapping.
+ * In the VERR_GMM_CHUNK_ALREADY_MAPPED case, this will be
+ * contain the address of the existing mapping.
+ */
+static int gmmR0MapChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, bool fRelaxedSem, PRTR3PTR ppvR3)
+{
+ /*
+ * Take the chunk lock and leave the giant GMM lock when possible, then
+ * call the worker function.
+ */
+ GMMR0CHUNKMTXSTATE MtxState;
+ int rc = gmmR0ChunkMutexAcquire(&MtxState, pGMM, pChunk,
+ fRelaxedSem ? GMMR0CHUNK_MTX_RETAKE_GIANT : GMMR0CHUNK_MTX_KEEP_GIANT);
+ if (RT_SUCCESS(rc))
+ {
+ rc = gmmR0MapChunkLocked(pGMM, pGVM, pChunk, ppvR3);
+ gmmR0ChunkMutexRelease(&MtxState, pChunk);
+ }
+
+ return rc;
+}
+
+
+
+#if defined(VBOX_WITH_PAGE_SHARING) || defined(VBOX_STRICT)
+/**
+ * Check if a chunk is mapped into the specified VM
+ *
+ * @returns mapped yes/no
+ * @param pGMM Pointer to the GMM instance.
+ * @param pGVM Pointer to the Global VM structure.
+ * @param pChunk Pointer to the chunk to be mapped.
+ * @param ppvR3 Where to store the ring-3 address of the mapping.
+ */
+static bool gmmR0IsChunkMapped(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, PRTR3PTR ppvR3)
+{
+ GMMR0CHUNKMTXSTATE MtxState;
+ gmmR0ChunkMutexAcquire(&MtxState, pGMM, pChunk, GMMR0CHUNK_MTX_KEEP_GIANT);
+ for (uint32_t i = 0; i < pChunk->cMappingsX; i++)
+ {
+ Assert(pChunk->paMappingsX[i].pGVM && pChunk->paMappingsX[i].hMapObj != NIL_RTR0MEMOBJ);
+ if (pChunk->paMappingsX[i].pGVM == pGVM)
+ {
+ *ppvR3 = RTR0MemObjAddressR3(pChunk->paMappingsX[i].hMapObj);
+ gmmR0ChunkMutexRelease(&MtxState, pChunk);
+ return true;
+ }
+ }
+ *ppvR3 = NULL;
+ gmmR0ChunkMutexRelease(&MtxState, pChunk);
+ return false;
+}
+#endif /* VBOX_WITH_PAGE_SHARING || VBOX_STRICT */
+
+
+/**
+ * Map a chunk and/or unmap another chunk.
+ *
+ * The mapping and unmapping applies to the current process.
+ *
+ * This API does two things because it saves a kernel call per mapping when
+ * when the ring-3 mapping cache is full.
+ *
+ * @returns VBox status code.
+ * @param pGVM The global (ring-0) VM structure.
+ * @param idChunkMap The chunk to map. NIL_GMM_CHUNKID if nothing to map.
+ * @param idChunkUnmap The chunk to unmap. NIL_GMM_CHUNKID if nothing to unmap.
+ * @param ppvR3 Where to store the address of the mapped chunk. NULL is ok if nothing to map.
+ * @thread EMT ???
+ */
+GMMR0DECL(int) GMMR0MapUnmapChunk(PGVM pGVM, uint32_t idChunkMap, uint32_t idChunkUnmap, PRTR3PTR ppvR3)
+{
+ LogFlow(("GMMR0MapUnmapChunk: pGVM=%p idChunkMap=%#x idChunkUnmap=%#x ppvR3=%p\n",
+ pGVM, idChunkMap, idChunkUnmap, ppvR3));
+
+ /*
+ * Validate input and get the basics.
+ */
+ PGMM pGMM;
+ GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
+ int rc = GVMMR0ValidateGVM(pGVM);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ AssertCompile(NIL_GMM_CHUNKID == 0);
+ AssertMsgReturn(idChunkMap <= GMM_CHUNKID_LAST, ("%#x\n", idChunkMap), VERR_INVALID_PARAMETER);
+ AssertMsgReturn(idChunkUnmap <= GMM_CHUNKID_LAST, ("%#x\n", idChunkUnmap), VERR_INVALID_PARAMETER);
+
+ if ( idChunkMap == NIL_GMM_CHUNKID
+ && idChunkUnmap == NIL_GMM_CHUNKID)
+ return VERR_INVALID_PARAMETER;
+
+ if (idChunkMap != NIL_GMM_CHUNKID)
+ {
+ AssertPtrReturn(ppvR3, VERR_INVALID_POINTER);
+ *ppvR3 = NIL_RTR3PTR;
+ }
+
+ /*
+ * Take the semaphore and do the work.
+ *
+ * The unmapping is done last since it's easier to undo a mapping than
+ * undoing an unmapping. The ring-3 mapping cache cannot not be so big
+ * that it pushes the user virtual address space to within a chunk of
+ * it it's limits, so, no problem here.
+ */
+ gmmR0MutexAcquire(pGMM);
+ if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
+ {
+ PGMMCHUNK pMap = NULL;
+ if (idChunkMap != NIL_GVM_HANDLE)
+ {
+ pMap = gmmR0GetChunk(pGMM, idChunkMap);
+ if (RT_LIKELY(pMap))
+ rc = gmmR0MapChunk(pGMM, pGVM, pMap, true /*fRelaxedSem*/, ppvR3);
+ else
+ {
+ Log(("GMMR0MapUnmapChunk: idChunkMap=%#x\n", idChunkMap));
+ rc = VERR_GMM_CHUNK_NOT_FOUND;
+ }
+ }
+/** @todo split this operation, the bail out might (theoretcially) not be
+ * entirely safe. */
+
+ if ( idChunkUnmap != NIL_GMM_CHUNKID
+ && RT_SUCCESS(rc))
+ {
+ PGMMCHUNK pUnmap = gmmR0GetChunk(pGMM, idChunkUnmap);
+ if (RT_LIKELY(pUnmap))
+ rc = gmmR0UnmapChunk(pGMM, pGVM, pUnmap, true /*fRelaxedSem*/);
+ else
+ {
+ Log(("GMMR0MapUnmapChunk: idChunkUnmap=%#x\n", idChunkUnmap));
+ rc = VERR_GMM_CHUNK_NOT_FOUND;
+ }
+
+ if (RT_FAILURE(rc) && pMap)
+ gmmR0UnmapChunk(pGMM, pGVM, pMap, false /*fRelaxedSem*/);
+ }
+
+ GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
+ }
+ else
+ rc = VERR_GMM_IS_NOT_SANE;
+ gmmR0MutexRelease(pGMM);
+
+ LogFlow(("GMMR0MapUnmapChunk: returns %Rrc\n", rc));
+ return rc;
+}
+
+
+/**
+ * VMMR0 request wrapper for GMMR0MapUnmapChunk.
+ *
+ * @returns see GMMR0MapUnmapChunk.
+ * @param pGVM The global (ring-0) VM structure.
+ * @param pReq Pointer to the request packet.
+ */
+GMMR0DECL(int) GMMR0MapUnmapChunkReq(PGVM pGVM, PGMMMAPUNMAPCHUNKREQ pReq)
+{
+ /*
+ * Validate input and pass it on.
+ */
+ AssertPtrReturn(pReq, VERR_INVALID_POINTER);
+ AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
+
+ return GMMR0MapUnmapChunk(pGVM, pReq->idChunkMap, pReq->idChunkUnmap, &pReq->pvR3);
+}
+
+
+#ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM
+/**
+ * Gets the ring-0 virtual address for the given page.
+ *
+ * This is used by PGM when IEM and such wants to access guest RAM from ring-0.
+ * One of the ASSUMPTIONS here is that the @a idPage is used by the VM and the
+ * corresponding chunk will remain valid beyond the call (at least till the EMT
+ * returns to ring-3).
+ *
+ * @returns VBox status code.
+ * @param pGVM Pointer to the kernel-only VM instace data.
+ * @param idPage The page ID.
+ * @param ppv Where to store the address.
+ * @thread EMT
+ */
+GMMR0DECL(int) GMMR0PageIdToVirt(PGVM pGVM, uint32_t idPage, void **ppv)
+{
+ *ppv = NULL;
+ PGMM pGMM;
+ GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
+
+ uint32_t const idChunk = idPage >> GMM_CHUNKID_SHIFT;
+
+ /*
+ * Start with the per-VM TLB.
+ */
+ RTSpinlockAcquire(pGVM->gmm.s.hChunkTlbSpinLock);
+
+ PGMMPERVMCHUNKTLBE pTlbe = &pGVM->gmm.s.aChunkTlbEntries[GMMPERVM_CHUNKTLB_IDX(idChunk)];
+ PGMMCHUNK pChunk = pTlbe->pChunk;
+ if ( pChunk != NULL
+ && pTlbe->idGeneration == ASMAtomicUoReadU64(&pGMM->idFreeGeneration)
+ && pChunk->Core.Key == idChunk)
+ pGVM->R0Stats.gmm.cChunkTlbHits++; /* hopefully this is a likely outcome */
+ else
+ {
+ pGVM->R0Stats.gmm.cChunkTlbMisses++;
+
+ /*
+ * Look it up in the chunk tree.
+ */
+ RTSpinlockAcquire(pGMM->hSpinLockTree);
+ pChunk = gmmR0GetChunkLocked(pGMM, idChunk);
+ if (RT_LIKELY(pChunk))
+ {
+ pTlbe->idGeneration = pGMM->idFreeGeneration;
+ RTSpinlockRelease(pGMM->hSpinLockTree);
+ pTlbe->pChunk = pChunk;
+ }
+ else
+ {
+ RTSpinlockRelease(pGMM->hSpinLockTree);
+ RTSpinlockRelease(pGVM->gmm.s.hChunkTlbSpinLock);
+ AssertMsgFailed(("idPage=%#x\n", idPage));
+ return VERR_GMM_PAGE_NOT_FOUND;
+ }
+ }
+
+ RTSpinlockRelease(pGVM->gmm.s.hChunkTlbSpinLock);
+
+ /*
+ * Got a chunk, now validate the page ownership and calcuate it's address.
+ */
+ const GMMPAGE * const pPage = &pChunk->aPages[idPage & GMM_PAGEID_IDX_MASK];
+ if (RT_LIKELY( ( GMM_PAGE_IS_PRIVATE(pPage)
+ && pPage->Private.hGVM == pGVM->hSelf)
+ || GMM_PAGE_IS_SHARED(pPage)))
+ {
+ AssertPtr(pChunk->pbMapping);
+ *ppv = &pChunk->pbMapping[(idPage & GMM_PAGEID_IDX_MASK) << GUEST_PAGE_SHIFT];
+ return VINF_SUCCESS;
+ }
+ AssertMsgFailed(("idPage=%#x is-private=%RTbool Private.hGVM=%u pGVM->hGVM=%u\n",
+ idPage, GMM_PAGE_IS_PRIVATE(pPage), pPage->Private.hGVM, pGVM->hSelf));
+ return VERR_GMM_NOT_PAGE_OWNER;
+}
+#endif /* !VBOX_WITH_LINEAR_HOST_PHYS_MEM */
+
+#ifdef VBOX_WITH_PAGE_SHARING
+
+# ifdef VBOX_STRICT
+/**
+ * For checksumming shared pages in strict builds.
+ *
+ * The purpose is making sure that a page doesn't change.
+ *
+ * @returns Checksum, 0 on failure.
+ * @param pGMM The GMM instance data.
+ * @param pGVM Pointer to the kernel-only VM instace data.
+ * @param idPage The page ID.
+ */
+static uint32_t gmmR0StrictPageChecksum(PGMM pGMM, PGVM pGVM, uint32_t idPage)
+{
+ PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT);
+ AssertMsgReturn(pChunk, ("idPage=%#x\n", idPage), 0);
+
+ uint8_t *pbChunk;
+ if (!gmmR0IsChunkMapped(pGMM, pGVM, pChunk, (PRTR3PTR)&pbChunk))
+ return 0;
+ uint8_t const *pbPage = pbChunk + ((idPage & GMM_PAGEID_IDX_MASK) << GUEST_PAGE_SHIFT);
+
+ return RTCrc32(pbPage, GUEST_PAGE_SIZE);
+}
+# endif /* VBOX_STRICT */
+
+
+/**
+ * Calculates the module hash value.
+ *
+ * @returns Hash value.
+ * @param pszModuleName The module name.
+ * @param pszVersion The module version string.
+ */
+static uint32_t gmmR0ShModCalcHash(const char *pszModuleName, const char *pszVersion)
+{
+ return RTStrHash1ExN(3, pszModuleName, RTSTR_MAX, "::", (size_t)2, pszVersion, RTSTR_MAX);
+}
+
+
+/**
+ * Finds a global module.
+ *
+ * @returns Pointer to the global module on success, NULL if not found.
+ * @param pGMM The GMM instance data.
+ * @param uHash The hash as calculated by gmmR0ShModCalcHash.
+ * @param cbModule The module size.
+ * @param enmGuestOS The guest OS type.
+ * @param cRegions The number of regions.
+ * @param pszModuleName The module name.
+ * @param pszVersion The module version.
+ * @param paRegions The region descriptions.
+ */
+static PGMMSHAREDMODULE gmmR0ShModFindGlobal(PGMM pGMM, uint32_t uHash, uint32_t cbModule, VBOXOSFAMILY enmGuestOS,
+ uint32_t cRegions, const char *pszModuleName, const char *pszVersion,
+ struct VMMDEVSHAREDREGIONDESC const *paRegions)
+{
+ for (PGMMSHAREDMODULE pGblMod = (PGMMSHAREDMODULE)RTAvllU32Get(&pGMM->pGlobalSharedModuleTree, uHash);
+ pGblMod;
+ pGblMod = (PGMMSHAREDMODULE)pGblMod->Core.pList)
+ {
+ if (pGblMod->cbModule != cbModule)
+ continue;
+ if (pGblMod->enmGuestOS != enmGuestOS)
+ continue;
+ if (pGblMod->cRegions != cRegions)
+ continue;
+ if (strcmp(pGblMod->szName, pszModuleName))
+ continue;
+ if (strcmp(pGblMod->szVersion, pszVersion))
+ continue;
+
+ uint32_t i;
+ for (i = 0; i < cRegions; i++)
+ {
+ uint32_t off = paRegions[i].GCRegionAddr & GUEST_PAGE_OFFSET_MASK;
+ if (pGblMod->aRegions[i].off != off)
+ break;
+
+ uint32_t cb = RT_ALIGN_32(paRegions[i].cbRegion + off, GUEST_PAGE_SIZE);
+ if (pGblMod->aRegions[i].cb != cb)
+ break;
+ }
+
+ if (i == cRegions)
+ return pGblMod;
+ }
+
+ return NULL;
+}
+
+
+/**
+ * Creates a new global module.
+ *
+ * @returns VBox status code.
+ * @param pGMM The GMM instance data.
+ * @param uHash The hash as calculated by gmmR0ShModCalcHash.
+ * @param cbModule The module size.
+ * @param enmGuestOS The guest OS type.
+ * @param cRegions The number of regions.
+ * @param pszModuleName The module name.
+ * @param pszVersion The module version.
+ * @param paRegions The region descriptions.
+ * @param ppGblMod Where to return the new module on success.
+ */
+static int gmmR0ShModNewGlobal(PGMM pGMM, uint32_t uHash, uint32_t cbModule, VBOXOSFAMILY enmGuestOS,
+ uint32_t cRegions, const char *pszModuleName, const char *pszVersion,
+ struct VMMDEVSHAREDREGIONDESC const *paRegions, PGMMSHAREDMODULE *ppGblMod)
+{
+ Log(("gmmR0ShModNewGlobal: %s %s size %#x os %u rgn %u\n", pszModuleName, pszVersion, cbModule, enmGuestOS, cRegions));
+ if (pGMM->cShareableModules >= GMM_MAX_SHARED_GLOBAL_MODULES)
+ {
+ Log(("gmmR0ShModNewGlobal: Too many modules\n"));
+ return VERR_GMM_TOO_MANY_GLOBAL_MODULES;
+ }
+
+ PGMMSHAREDMODULE pGblMod = (PGMMSHAREDMODULE)RTMemAllocZ(RT_UOFFSETOF_DYN(GMMSHAREDMODULE, aRegions[cRegions]));
+ if (!pGblMod)
+ {
+ Log(("gmmR0ShModNewGlobal: No memory\n"));
+ return VERR_NO_MEMORY;
+ }
+
+ pGblMod->Core.Key = uHash;
+ pGblMod->cbModule = cbModule;
+ pGblMod->cRegions = cRegions;
+ pGblMod->cUsers = 1;
+ pGblMod->enmGuestOS = enmGuestOS;
+ strcpy(pGblMod->szName, pszModuleName);
+ strcpy(pGblMod->szVersion, pszVersion);
+
+ for (uint32_t i = 0; i < cRegions; i++)
+ {
+ Log(("gmmR0ShModNewGlobal: rgn[%u]=%RGvLB%#x\n", i, paRegions[i].GCRegionAddr, paRegions[i].cbRegion));
+ pGblMod->aRegions[i].off = paRegions[i].GCRegionAddr & GUEST_PAGE_OFFSET_MASK;
+ pGblMod->aRegions[i].cb = paRegions[i].cbRegion + pGblMod->aRegions[i].off;
+ pGblMod->aRegions[i].cb = RT_ALIGN_32(pGblMod->aRegions[i].cb, GUEST_PAGE_SIZE);
+ pGblMod->aRegions[i].paidPages = NULL; /* allocated when needed. */
+ }
+
+ bool fInsert = RTAvllU32Insert(&pGMM->pGlobalSharedModuleTree, &pGblMod->Core);
+ Assert(fInsert); NOREF(fInsert);
+ pGMM->cShareableModules++;
+
+ *ppGblMod = pGblMod;
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Deletes a global module which is no longer referenced by anyone.
+ *
+ * @param pGMM The GMM instance data.
+ * @param pGblMod The module to delete.
+ */
+static void gmmR0ShModDeleteGlobal(PGMM pGMM, PGMMSHAREDMODULE pGblMod)
+{
+ Assert(pGblMod->cUsers == 0);
+ Assert(pGMM->cShareableModules > 0 && pGMM->cShareableModules <= GMM_MAX_SHARED_GLOBAL_MODULES);
+
+ void *pvTest = RTAvllU32RemoveNode(&pGMM->pGlobalSharedModuleTree, &pGblMod->Core);
+ Assert(pvTest == pGblMod); NOREF(pvTest);
+ pGMM->cShareableModules--;
+
+ uint32_t i = pGblMod->cRegions;
+ while (i-- > 0)
+ {
+ if (pGblMod->aRegions[i].paidPages)
+ {
+ /* We don't doing anything to the pages as they are handled by the
+ copy-on-write mechanism in PGM. */
+ RTMemFree(pGblMod->aRegions[i].paidPages);
+ pGblMod->aRegions[i].paidPages = NULL;
+ }
+ }
+ RTMemFree(pGblMod);
+}
+
+
+static int gmmR0ShModNewPerVM(PGVM pGVM, RTGCPTR GCBaseAddr, uint32_t cRegions, const VMMDEVSHAREDREGIONDESC *paRegions,
+ PGMMSHAREDMODULEPERVM *ppRecVM)
+{
+ if (pGVM->gmm.s.Stats.cShareableModules >= GMM_MAX_SHARED_PER_VM_MODULES)
+ return VERR_GMM_TOO_MANY_PER_VM_MODULES;
+
+ PGMMSHAREDMODULEPERVM pRecVM;
+ pRecVM = (PGMMSHAREDMODULEPERVM)RTMemAllocZ(RT_UOFFSETOF_DYN(GMMSHAREDMODULEPERVM, aRegionsGCPtrs[cRegions]));
+ if (!pRecVM)
+ return VERR_NO_MEMORY;
+
+ pRecVM->Core.Key = GCBaseAddr;
+ for (uint32_t i = 0; i < cRegions; i++)
+ pRecVM->aRegionsGCPtrs[i] = paRegions[i].GCRegionAddr;
+
+ bool fInsert = RTAvlGCPtrInsert(&pGVM->gmm.s.pSharedModuleTree, &pRecVM->Core);
+ Assert(fInsert); NOREF(fInsert);
+ pGVM->gmm.s.Stats.cShareableModules++;
+
+ *ppRecVM = pRecVM;
+ return VINF_SUCCESS;
+}
+
+
+static void gmmR0ShModDeletePerVM(PGMM pGMM, PGVM pGVM, PGMMSHAREDMODULEPERVM pRecVM, bool fRemove)
+{
+ /*
+ * Free the per-VM module.
+ */
+ PGMMSHAREDMODULE pGblMod = pRecVM->pGlobalModule;
+ pRecVM->pGlobalModule = NULL;
+
+ if (fRemove)
+ {
+ void *pvTest = RTAvlGCPtrRemove(&pGVM->gmm.s.pSharedModuleTree, pRecVM->Core.Key);
+ Assert(pvTest == &pRecVM->Core); NOREF(pvTest);
+ }
+
+ RTMemFree(pRecVM);
+
+ /*
+ * Release the global module.
+ * (In the registration bailout case, it might not be.)
+ */
+ if (pGblMod)
+ {
+ Assert(pGblMod->cUsers > 0);
+ pGblMod->cUsers--;
+ if (pGblMod->cUsers == 0)
+ gmmR0ShModDeleteGlobal(pGMM, pGblMod);
+ }
+}
+
+#endif /* VBOX_WITH_PAGE_SHARING */
+
+/**
+ * Registers a new shared module for the VM.
+ *
+ * @returns VBox status code.
+ * @param pGVM The global (ring-0) VM structure.
+ * @param idCpu The VCPU id.
+ * @param enmGuestOS The guest OS type.
+ * @param pszModuleName The module name.
+ * @param pszVersion The module version.
+ * @param GCPtrModBase The module base address.
+ * @param cbModule The module size.
+ * @param cRegions The mumber of shared region descriptors.
+ * @param paRegions Pointer to an array of shared region(s).
+ * @thread EMT(idCpu)
+ */
+GMMR0DECL(int) GMMR0RegisterSharedModule(PGVM pGVM, VMCPUID idCpu, VBOXOSFAMILY enmGuestOS, char *pszModuleName,
+ char *pszVersion, RTGCPTR GCPtrModBase, uint32_t cbModule,
+ uint32_t cRegions, struct VMMDEVSHAREDREGIONDESC const *paRegions)
+{
+#ifdef VBOX_WITH_PAGE_SHARING
+ /*
+ * Validate input and get the basics.
+ *
+ * Note! Turns out the module size does necessarily match the size of the
+ * regions. (iTunes on XP)
+ */
+ PGMM pGMM;
+ GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
+ int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ if (RT_UNLIKELY(cRegions > VMMDEVSHAREDREGIONDESC_MAX))
+ return VERR_GMM_TOO_MANY_REGIONS;
+
+ if (RT_UNLIKELY(cbModule == 0 || cbModule > _1G))
+ return VERR_GMM_BAD_SHARED_MODULE_SIZE;
+
+ uint32_t cbTotal = 0;
+ for (uint32_t i = 0; i < cRegions; i++)
+ {
+ if (RT_UNLIKELY(paRegions[i].cbRegion == 0 || paRegions[i].cbRegion > _1G))
+ return VERR_GMM_SHARED_MODULE_BAD_REGIONS_SIZE;
+
+ cbTotal += paRegions[i].cbRegion;
+ if (RT_UNLIKELY(cbTotal > _1G))
+ return VERR_GMM_SHARED_MODULE_BAD_REGIONS_SIZE;
+ }
+
+ AssertPtrReturn(pszModuleName, VERR_INVALID_POINTER);
+ if (RT_UNLIKELY(!memchr(pszModuleName, '\0', GMM_SHARED_MODULE_MAX_NAME_STRING)))
+ return VERR_GMM_MODULE_NAME_TOO_LONG;
+
+ AssertPtrReturn(pszVersion, VERR_INVALID_POINTER);
+ if (RT_UNLIKELY(!memchr(pszVersion, '\0', GMM_SHARED_MODULE_MAX_VERSION_STRING)))
+ return VERR_GMM_MODULE_NAME_TOO_LONG;
+
+ uint32_t const uHash = gmmR0ShModCalcHash(pszModuleName, pszVersion);
+ Log(("GMMR0RegisterSharedModule %s %s base %RGv size %x hash %x\n", pszModuleName, pszVersion, GCPtrModBase, cbModule, uHash));
+
+ /*
+ * Take the semaphore and do some more validations.
+ */
+ gmmR0MutexAcquire(pGMM);
+ if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
+ {
+ /*
+ * Check if this module is already locally registered and register
+ * it if it isn't. The base address is a unique module identifier
+ * locally.
+ */
+ PGMMSHAREDMODULEPERVM pRecVM = (PGMMSHAREDMODULEPERVM)RTAvlGCPtrGet(&pGVM->gmm.s.pSharedModuleTree, GCPtrModBase);
+ bool fNewModule = pRecVM == NULL;
+ if (fNewModule)
+ {
+ rc = gmmR0ShModNewPerVM(pGVM, GCPtrModBase, cRegions, paRegions, &pRecVM);
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Find a matching global module, register a new one if needed.
+ */
+ PGMMSHAREDMODULE pGblMod = gmmR0ShModFindGlobal(pGMM, uHash, cbModule, enmGuestOS, cRegions,
+ pszModuleName, pszVersion, paRegions);
+ if (!pGblMod)
+ {
+ Assert(fNewModule);
+ rc = gmmR0ShModNewGlobal(pGMM, uHash, cbModule, enmGuestOS, cRegions,
+ pszModuleName, pszVersion, paRegions, &pGblMod);
+ if (RT_SUCCESS(rc))
+ {
+ pRecVM->pGlobalModule = pGblMod; /* (One referenced returned by gmmR0ShModNewGlobal.) */
+ Log(("GMMR0RegisterSharedModule: new module %s %s\n", pszModuleName, pszVersion));
+ }
+ else
+ gmmR0ShModDeletePerVM(pGMM, pGVM, pRecVM, true /*fRemove*/);
+ }
+ else
+ {
+ Assert(pGblMod->cUsers > 0 && pGblMod->cUsers < UINT32_MAX / 2);
+ pGblMod->cUsers++;
+ pRecVM->pGlobalModule = pGblMod;
+
+ Log(("GMMR0RegisterSharedModule: new per vm module %s %s, gbl users %d\n", pszModuleName, pszVersion, pGblMod->cUsers));
+ }
+ }
+ }
+ else
+ {
+ /*
+ * Attempt to re-register an existing module.
+ */
+ PGMMSHAREDMODULE pGblMod = gmmR0ShModFindGlobal(pGMM, uHash, cbModule, enmGuestOS, cRegions,
+ pszModuleName, pszVersion, paRegions);
+ if (pRecVM->pGlobalModule == pGblMod)
+ {
+ Log(("GMMR0RegisterSharedModule: already registered %s %s, gbl users %d\n", pszModuleName, pszVersion, pGblMod->cUsers));
+ rc = VINF_GMM_SHARED_MODULE_ALREADY_REGISTERED;
+ }
+ else
+ {
+ /** @todo may have to unregister+register when this happens in case it's caused
+ * by VBoxService crashing and being restarted... */
+ Log(("GMMR0RegisterSharedModule: Address clash!\n"
+ " incoming at %RGvLB%#x %s %s rgns %u\n"
+ " existing at %RGvLB%#x %s %s rgns %u\n",
+ GCPtrModBase, cbModule, pszModuleName, pszVersion, cRegions,
+ pRecVM->Core.Key, pRecVM->pGlobalModule->cbModule, pRecVM->pGlobalModule->szName,
+ pRecVM->pGlobalModule->szVersion, pRecVM->pGlobalModule->cRegions));
+ rc = VERR_GMM_SHARED_MODULE_ADDRESS_CLASH;
+ }
+ }
+ GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
+ }
+ else
+ rc = VERR_GMM_IS_NOT_SANE;
+
+ gmmR0MutexRelease(pGMM);
+ return rc;
+#else
+
+ NOREF(pGVM); NOREF(idCpu); NOREF(enmGuestOS); NOREF(pszModuleName); NOREF(pszVersion);
+ NOREF(GCPtrModBase); NOREF(cbModule); NOREF(cRegions); NOREF(paRegions);
+ return VERR_NOT_IMPLEMENTED;
+#endif
+}
+
+
+/**
+ * VMMR0 request wrapper for GMMR0RegisterSharedModule.
+ *
+ * @returns see GMMR0RegisterSharedModule.
+ * @param pGVM The global (ring-0) VM structure.
+ * @param idCpu The VCPU id.
+ * @param pReq Pointer to the request packet.
+ */
+GMMR0DECL(int) GMMR0RegisterSharedModuleReq(PGVM pGVM, VMCPUID idCpu, PGMMREGISTERSHAREDMODULEREQ pReq)
+{
+ /*
+ * Validate input and pass it on.
+ */
+ AssertPtrReturn(pReq, VERR_INVALID_POINTER);
+ AssertMsgReturn( pReq->Hdr.cbReq >= sizeof(*pReq)
+ && pReq->Hdr.cbReq == RT_UOFFSETOF_DYN(GMMREGISTERSHAREDMODULEREQ, aRegions[pReq->cRegions]),
+ ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
+
+ /* Pass back return code in the request packet to preserve informational codes. (VMMR3CallR0 chokes on them) */
+ pReq->rc = GMMR0RegisterSharedModule(pGVM, idCpu, pReq->enmGuestOS, pReq->szName, pReq->szVersion,
+ pReq->GCBaseAddr, pReq->cbModule, pReq->cRegions, pReq->aRegions);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Unregisters a shared module for the VM
+ *
+ * @returns VBox status code.
+ * @param pGVM The global (ring-0) VM structure.
+ * @param idCpu The VCPU id.
+ * @param pszModuleName The module name.
+ * @param pszVersion The module version.
+ * @param GCPtrModBase The module base address.
+ * @param cbModule The module size.
+ */
+GMMR0DECL(int) GMMR0UnregisterSharedModule(PGVM pGVM, VMCPUID idCpu, char *pszModuleName, char *pszVersion,
+ RTGCPTR GCPtrModBase, uint32_t cbModule)
+{
+#ifdef VBOX_WITH_PAGE_SHARING
+ /*
+ * Validate input and get the basics.
+ */
+ PGMM pGMM;
+ GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
+ int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ AssertPtrReturn(pszModuleName, VERR_INVALID_POINTER);
+ AssertPtrReturn(pszVersion, VERR_INVALID_POINTER);
+ if (RT_UNLIKELY(!memchr(pszModuleName, '\0', GMM_SHARED_MODULE_MAX_NAME_STRING)))
+ return VERR_GMM_MODULE_NAME_TOO_LONG;
+ if (RT_UNLIKELY(!memchr(pszVersion, '\0', GMM_SHARED_MODULE_MAX_VERSION_STRING)))
+ return VERR_GMM_MODULE_NAME_TOO_LONG;
+
+ Log(("GMMR0UnregisterSharedModule %s %s base=%RGv size %x\n", pszModuleName, pszVersion, GCPtrModBase, cbModule));
+
+ /*
+ * Take the semaphore and do some more validations.
+ */
+ gmmR0MutexAcquire(pGMM);
+ if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
+ {
+ /*
+ * Locate and remove the specified module.
+ */
+ PGMMSHAREDMODULEPERVM pRecVM = (PGMMSHAREDMODULEPERVM)RTAvlGCPtrGet(&pGVM->gmm.s.pSharedModuleTree, GCPtrModBase);
+ if (pRecVM)
+ {
+ /** @todo Do we need to do more validations here, like that the
+ * name + version + cbModule matches? */
+ NOREF(cbModule);
+ Assert(pRecVM->pGlobalModule);
+ gmmR0ShModDeletePerVM(pGMM, pGVM, pRecVM, true /*fRemove*/);
+ }
+ else
+ rc = VERR_GMM_SHARED_MODULE_NOT_FOUND;
+
+ GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
+ }
+ else
+ rc = VERR_GMM_IS_NOT_SANE;
+
+ gmmR0MutexRelease(pGMM);
+ return rc;
+#else
+
+ NOREF(pGVM); NOREF(idCpu); NOREF(pszModuleName); NOREF(pszVersion); NOREF(GCPtrModBase); NOREF(cbModule);
+ return VERR_NOT_IMPLEMENTED;
+#endif
+}
+
+
+/**
+ * VMMR0 request wrapper for GMMR0UnregisterSharedModule.
+ *
+ * @returns see GMMR0UnregisterSharedModule.
+ * @param pGVM The global (ring-0) VM structure.
+ * @param idCpu The VCPU id.
+ * @param pReq Pointer to the request packet.
+ */
+GMMR0DECL(int) GMMR0UnregisterSharedModuleReq(PGVM pGVM, VMCPUID idCpu, PGMMUNREGISTERSHAREDMODULEREQ pReq)
+{
+ /*
+ * Validate input and pass it on.
+ */
+ AssertPtrReturn(pReq, VERR_INVALID_POINTER);
+ AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
+
+ return GMMR0UnregisterSharedModule(pGVM, idCpu, pReq->szName, pReq->szVersion, pReq->GCBaseAddr, pReq->cbModule);
+}
+
+#ifdef VBOX_WITH_PAGE_SHARING
+
+/**
+ * Increase the use count of a shared page, the page is known to exist and be valid and such.
+ *
+ * @param pGMM Pointer to the GMM instance.
+ * @param pGVM Pointer to the GVM instance.
+ * @param pPage The page structure.
+ */
+DECLINLINE(void) gmmR0UseSharedPage(PGMM pGMM, PGVM pGVM, PGMMPAGE pPage)
+{
+ Assert(pGMM->cSharedPages > 0);
+ Assert(pGMM->cAllocatedPages > 0);
+
+ pGMM->cDuplicatePages++;
+
+ pPage->Shared.cRefs++;
+ pGVM->gmm.s.Stats.cSharedPages++;
+ pGVM->gmm.s.Stats.Allocated.cBasePages++;
+}
+
+
+/**
+ * Converts a private page to a shared page, the page is known to exist and be valid and such.
+ *
+ * @param pGMM Pointer to the GMM instance.
+ * @param pGVM Pointer to the GVM instance.
+ * @param HCPhys Host physical address
+ * @param idPage The Page ID
+ * @param pPage The page structure.
+ * @param pPageDesc Shared page descriptor
+ */
+DECLINLINE(void) gmmR0ConvertToSharedPage(PGMM pGMM, PGVM pGVM, RTHCPHYS HCPhys, uint32_t idPage, PGMMPAGE pPage,
+ PGMMSHAREDPAGEDESC pPageDesc)
+{
+ PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT);
+ Assert(pChunk);
+ Assert(pChunk->cFree < GMM_CHUNK_NUM_PAGES);
+ Assert(GMM_PAGE_IS_PRIVATE(pPage));
+
+ pChunk->cPrivate--;
+ pChunk->cShared++;
+
+ pGMM->cSharedPages++;
+
+ pGVM->gmm.s.Stats.cSharedPages++;
+ pGVM->gmm.s.Stats.cPrivatePages--;
+
+ /* Modify the page structure. */
+ pPage->Shared.pfn = (uint32_t)(uint64_t)(HCPhys >> GUEST_PAGE_SHIFT);
+ pPage->Shared.cRefs = 1;
+#ifdef VBOX_STRICT
+ pPageDesc->u32StrictChecksum = gmmR0StrictPageChecksum(pGMM, pGVM, idPage);
+ pPage->Shared.u14Checksum = pPageDesc->u32StrictChecksum;
+#else
+ NOREF(pPageDesc);
+ pPage->Shared.u14Checksum = 0;
+#endif
+ pPage->Shared.u2State = GMM_PAGE_STATE_SHARED;
+}
+
+
+static int gmmR0SharedModuleCheckPageFirstTime(PGMM pGMM, PGVM pGVM, PGMMSHAREDMODULE pModule,
+ unsigned idxRegion, unsigned idxPage,
+ PGMMSHAREDPAGEDESC pPageDesc, PGMMSHAREDREGIONDESC pGlobalRegion)
+{
+ NOREF(pModule);
+
+ /* Easy case: just change the internal page type. */
+ PGMMPAGE pPage = gmmR0GetPage(pGMM, pPageDesc->idPage);
+ AssertMsgReturn(pPage, ("idPage=%#x (GCPhys=%RGp HCPhys=%RHp idxRegion=%#x idxPage=%#x) #1\n",
+ pPageDesc->idPage, pPageDesc->GCPhys, pPageDesc->HCPhys, idxRegion, idxPage),
+ VERR_PGM_PHYS_INVALID_PAGE_ID);
+ NOREF(idxRegion);
+
+ AssertMsg(pPageDesc->GCPhys == (pPage->Private.pfn << 12), ("desc %RGp gmm %RGp\n", pPageDesc->HCPhys, (pPage->Private.pfn << 12)));
+
+ gmmR0ConvertToSharedPage(pGMM, pGVM, pPageDesc->HCPhys, pPageDesc->idPage, pPage, pPageDesc);
+
+ /* Keep track of these references. */
+ pGlobalRegion->paidPages[idxPage] = pPageDesc->idPage;
+
+ return VINF_SUCCESS;
+}
+
+/**
+ * Checks specified shared module range for changes
+ *
+ * Performs the following tasks:
+ * - If a shared page is new, then it changes the GMM page type to shared and
+ * returns it in the pPageDesc descriptor.
+ * - If a shared page already exists, then it checks if the VM page is
+ * identical and if so frees the VM page and returns the shared page in
+ * pPageDesc descriptor.
+ *
+ * @remarks ASSUMES the caller has acquired the GMM semaphore!!
+ *
+ * @returns VBox status code.
+ * @param pGVM Pointer to the GVM instance data.
+ * @param pModule Module description
+ * @param idxRegion Region index
+ * @param idxPage Page index
+ * @param pPageDesc Page descriptor
+ */
+GMMR0DECL(int) GMMR0SharedModuleCheckPage(PGVM pGVM, PGMMSHAREDMODULE pModule, uint32_t idxRegion, uint32_t idxPage,
+ PGMMSHAREDPAGEDESC pPageDesc)
+{
+ int rc;
+ PGMM pGMM;
+ GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
+ pPageDesc->u32StrictChecksum = 0;
+
+ AssertMsgReturn(idxRegion < pModule->cRegions,
+ ("idxRegion=%#x cRegions=%#x %s %s\n", idxRegion, pModule->cRegions, pModule->szName, pModule->szVersion),
+ VERR_INVALID_PARAMETER);
+
+ uint32_t const cPages = pModule->aRegions[idxRegion].cb >> GUEST_PAGE_SHIFT;
+ AssertMsgReturn(idxPage < cPages,
+ ("idxRegion=%#x cRegions=%#x %s %s\n", idxRegion, pModule->cRegions, pModule->szName, pModule->szVersion),
+ VERR_INVALID_PARAMETER);
+
+ LogFlow(("GMMR0SharedModuleCheckRange %s base %RGv region %d idxPage %d\n", pModule->szName, pModule->Core.Key, idxRegion, idxPage));
+
+ /*
+ * First time; create a page descriptor array.
+ */
+ PGMMSHAREDREGIONDESC pGlobalRegion = &pModule->aRegions[idxRegion];
+ if (!pGlobalRegion->paidPages)
+ {
+ Log(("Allocate page descriptor array for %d pages\n", cPages));
+ pGlobalRegion->paidPages = (uint32_t *)RTMemAlloc(cPages * sizeof(pGlobalRegion->paidPages[0]));
+ AssertReturn(pGlobalRegion->paidPages, VERR_NO_MEMORY);
+
+ /* Invalidate all descriptors. */
+ uint32_t i = cPages;
+ while (i-- > 0)
+ pGlobalRegion->paidPages[i] = NIL_GMM_PAGEID;
+ }
+
+ /*
+ * We've seen this shared page for the first time?
+ */
+ if (pGlobalRegion->paidPages[idxPage] == NIL_GMM_PAGEID)
+ {
+ Log(("New shared page guest %RGp host %RHp\n", pPageDesc->GCPhys, pPageDesc->HCPhys));
+ return gmmR0SharedModuleCheckPageFirstTime(pGMM, pGVM, pModule, idxRegion, idxPage, pPageDesc, pGlobalRegion);
+ }
+
+ /*
+ * We've seen it before...
+ */
+ Log(("Replace existing page guest %RGp host %RHp id %#x -> id %#x\n",
+ pPageDesc->GCPhys, pPageDesc->HCPhys, pPageDesc->idPage, pGlobalRegion->paidPages[idxPage]));
+ Assert(pPageDesc->idPage != pGlobalRegion->paidPages[idxPage]);
+
+ /*
+ * Get the shared page source.
+ */
+ PGMMPAGE pPage = gmmR0GetPage(pGMM, pGlobalRegion->paidPages[idxPage]);
+ AssertMsgReturn(pPage, ("idPage=%#x (idxRegion=%#x idxPage=%#x) #2\n", pPageDesc->idPage, idxRegion, idxPage),
+ VERR_PGM_PHYS_INVALID_PAGE_ID);
+
+ if (pPage->Common.u2State != GMM_PAGE_STATE_SHARED)
+ {
+ /*
+ * Page was freed at some point; invalidate this entry.
+ */
+ /** @todo this isn't really bullet proof. */
+ Log(("Old shared page was freed -> create a new one\n"));
+ pGlobalRegion->paidPages[idxPage] = NIL_GMM_PAGEID;
+ return gmmR0SharedModuleCheckPageFirstTime(pGMM, pGVM, pModule, idxRegion, idxPage, pPageDesc, pGlobalRegion);
+ }
+
+ Log(("Replace existing page guest host %RHp -> %RHp\n", pPageDesc->HCPhys, ((uint64_t)pPage->Shared.pfn) << GUEST_PAGE_SHIFT));
+
+ /*
+ * Calculate the virtual address of the local page.
+ */
+ PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, pPageDesc->idPage >> GMM_CHUNKID_SHIFT);
+ AssertMsgReturn(pChunk, ("idPage=%#x (idxRegion=%#x idxPage=%#x) #4\n", pPageDesc->idPage, idxRegion, idxPage),
+ VERR_PGM_PHYS_INVALID_PAGE_ID);
+
+ uint8_t *pbChunk;
+ AssertMsgReturn(gmmR0IsChunkMapped(pGMM, pGVM, pChunk, (PRTR3PTR)&pbChunk),
+ ("idPage=%#x (idxRegion=%#x idxPage=%#x) #3\n", pPageDesc->idPage, idxRegion, idxPage),
+ VERR_PGM_PHYS_INVALID_PAGE_ID);
+ uint8_t *pbLocalPage = pbChunk + ((pPageDesc->idPage & GMM_PAGEID_IDX_MASK) << GUEST_PAGE_SHIFT);
+
+ /*
+ * Calculate the virtual address of the shared page.
+ */
+ pChunk = gmmR0GetChunk(pGMM, pGlobalRegion->paidPages[idxPage] >> GMM_CHUNKID_SHIFT);
+ Assert(pChunk); /* can't fail as gmmR0GetPage succeeded. */
+
+ /*
+ * Get the virtual address of the physical page; map the chunk into the VM
+ * process if not already done.
+ */
+ if (!gmmR0IsChunkMapped(pGMM, pGVM, pChunk, (PRTR3PTR)&pbChunk))
+ {
+ Log(("Map chunk into process!\n"));
+ rc = gmmR0MapChunk(pGMM, pGVM, pChunk, false /*fRelaxedSem*/, (PRTR3PTR)&pbChunk);
+ AssertRCReturn(rc, rc);
+ }
+ uint8_t *pbSharedPage = pbChunk + ((pGlobalRegion->paidPages[idxPage] & GMM_PAGEID_IDX_MASK) << GUEST_PAGE_SHIFT);
+
+#ifdef VBOX_STRICT
+ pPageDesc->u32StrictChecksum = RTCrc32(pbSharedPage, GUEST_PAGE_SIZE);
+ uint32_t uChecksum = pPageDesc->u32StrictChecksum & UINT32_C(0x00003fff);
+ AssertMsg(!uChecksum || uChecksum == pPage->Shared.u14Checksum || !pPage->Shared.u14Checksum,
+ ("%#x vs %#x - idPage=%#x - %s %s\n", uChecksum, pPage->Shared.u14Checksum,
+ pGlobalRegion->paidPages[idxPage], pModule->szName, pModule->szVersion));
+#endif
+
+ if (memcmp(pbSharedPage, pbLocalPage, GUEST_PAGE_SIZE))
+ {
+ Log(("Unexpected differences found between local and shared page; skip\n"));
+ /* Signal to the caller that this one hasn't changed. */
+ pPageDesc->idPage = NIL_GMM_PAGEID;
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * Free the old local page.
+ */
+ GMMFREEPAGEDESC PageDesc;
+ PageDesc.idPage = pPageDesc->idPage;
+ rc = gmmR0FreePages(pGMM, pGVM, 1, &PageDesc, GMMACCOUNT_BASE);
+ AssertRCReturn(rc, rc);
+
+ gmmR0UseSharedPage(pGMM, pGVM, pPage);
+
+ /*
+ * Pass along the new physical address & page id.
+ */
+ pPageDesc->HCPhys = ((uint64_t)pPage->Shared.pfn) << GUEST_PAGE_SHIFT;
+ pPageDesc->idPage = pGlobalRegion->paidPages[idxPage];
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * RTAvlGCPtrDestroy callback.
+ *
+ * @returns 0 or VERR_GMM_INSTANCE.
+ * @param pNode The node to destroy.
+ * @param pvArgs Pointer to an argument packet.
+ */
+static DECLCALLBACK(int) gmmR0CleanupSharedModule(PAVLGCPTRNODECORE pNode, void *pvArgs)
+{
+ gmmR0ShModDeletePerVM(((GMMR0SHMODPERVMDTORARGS *)pvArgs)->pGMM,
+ ((GMMR0SHMODPERVMDTORARGS *)pvArgs)->pGVM,
+ (PGMMSHAREDMODULEPERVM)pNode,
+ false /*fRemove*/);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Used by GMMR0CleanupVM to clean up shared modules.
+ *
+ * This is called without taking the GMM lock so that it can be yielded as
+ * needed here.
+ *
+ * @param pGMM The GMM handle.
+ * @param pGVM The global VM handle.
+ */
+static void gmmR0SharedModuleCleanup(PGMM pGMM, PGVM pGVM)
+{
+ gmmR0MutexAcquire(pGMM);
+ GMM_CHECK_SANITY_UPON_ENTERING(pGMM);
+
+ GMMR0SHMODPERVMDTORARGS Args;
+ Args.pGVM = pGVM;
+ Args.pGMM = pGMM;
+ RTAvlGCPtrDestroy(&pGVM->gmm.s.pSharedModuleTree, gmmR0CleanupSharedModule, &Args);
+
+ AssertMsg(pGVM->gmm.s.Stats.cShareableModules == 0, ("%d\n", pGVM->gmm.s.Stats.cShareableModules));
+ pGVM->gmm.s.Stats.cShareableModules = 0;
+
+ gmmR0MutexRelease(pGMM);
+}
+
+#endif /* VBOX_WITH_PAGE_SHARING */
+
+/**
+ * Removes all shared modules for the specified VM
+ *
+ * @returns VBox status code.
+ * @param pGVM The global (ring-0) VM structure.
+ * @param idCpu The VCPU id.
+ */
+GMMR0DECL(int) GMMR0ResetSharedModules(PGVM pGVM, VMCPUID idCpu)
+{
+#ifdef VBOX_WITH_PAGE_SHARING
+ /*
+ * Validate input and get the basics.
+ */
+ PGMM pGMM;
+ GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
+ int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ /*
+ * Take the semaphore and do some more validations.
+ */
+ gmmR0MutexAcquire(pGMM);
+ if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
+ {
+ Log(("GMMR0ResetSharedModules\n"));
+ GMMR0SHMODPERVMDTORARGS Args;
+ Args.pGVM = pGVM;
+ Args.pGMM = pGMM;
+ RTAvlGCPtrDestroy(&pGVM->gmm.s.pSharedModuleTree, gmmR0CleanupSharedModule, &Args);
+ pGVM->gmm.s.Stats.cShareableModules = 0;
+
+ rc = VINF_SUCCESS;
+ GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
+ }
+ else
+ rc = VERR_GMM_IS_NOT_SANE;
+
+ gmmR0MutexRelease(pGMM);
+ return rc;
+#else
+ RT_NOREF(pGVM, idCpu);
+ return VERR_NOT_IMPLEMENTED;
+#endif
+}
+
+#ifdef VBOX_WITH_PAGE_SHARING
+
+/**
+ * Tree enumeration callback for checking a shared module.
+ */
+static DECLCALLBACK(int) gmmR0CheckSharedModule(PAVLGCPTRNODECORE pNode, void *pvUser)
+{
+ GMMCHECKSHAREDMODULEINFO *pArgs = (GMMCHECKSHAREDMODULEINFO*)pvUser;
+ PGMMSHAREDMODULEPERVM pRecVM = (PGMMSHAREDMODULEPERVM)pNode;
+ PGMMSHAREDMODULE pGblMod = pRecVM->pGlobalModule;
+
+ Log(("gmmR0CheckSharedModule: check %s %s base=%RGv size=%x\n",
+ pGblMod->szName, pGblMod->szVersion, pGblMod->Core.Key, pGblMod->cbModule));
+
+ int rc = PGMR0SharedModuleCheck(pArgs->pGVM, pArgs->pGVM, pArgs->idCpu, pGblMod, pRecVM->aRegionsGCPtrs);
+ if (RT_FAILURE(rc))
+ return rc;
+ return VINF_SUCCESS;
+}
+
+#endif /* VBOX_WITH_PAGE_SHARING */
+
+/**
+ * Check all shared modules for the specified VM.
+ *
+ * @returns VBox status code.
+ * @param pGVM The global (ring-0) VM structure.
+ * @param idCpu The calling EMT number.
+ * @thread EMT(idCpu)
+ */
+GMMR0DECL(int) GMMR0CheckSharedModules(PGVM pGVM, VMCPUID idCpu)
+{
+#ifdef VBOX_WITH_PAGE_SHARING
+ /*
+ * Validate input and get the basics.
+ */
+ PGMM pGMM;
+ GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
+ int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu);
+ if (RT_FAILURE(rc))
+ return rc;
+
+# ifndef DEBUG_sandervl
+ /*
+ * Take the semaphore and do some more validations.
+ */
+ gmmR0MutexAcquire(pGMM);
+# endif
+ if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
+ {
+ /*
+ * Walk the tree, checking each module.
+ */
+ Log(("GMMR0CheckSharedModules\n"));
+
+ GMMCHECKSHAREDMODULEINFO Args;
+ Args.pGVM = pGVM;
+ Args.idCpu = idCpu;
+ rc = RTAvlGCPtrDoWithAll(&pGVM->gmm.s.pSharedModuleTree, true /* fFromLeft */, gmmR0CheckSharedModule, &Args);
+
+ Log(("GMMR0CheckSharedModules done (rc=%Rrc)!\n", rc));
+ GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
+ }
+ else
+ rc = VERR_GMM_IS_NOT_SANE;
+
+# ifndef DEBUG_sandervl
+ gmmR0MutexRelease(pGMM);
+# endif
+ return rc;
+#else
+ RT_NOREF(pGVM, idCpu);
+ return VERR_NOT_IMPLEMENTED;
+#endif
+}
+
+#ifdef VBOX_STRICT
+
+/**
+ * Worker for GMMR0FindDuplicatePageReq.
+ *
+ * @returns true if duplicate, false if not.
+ */
+static bool gmmR0FindDupPageInChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, uint8_t const *pbSourcePage)
+{
+ bool fFoundDuplicate = false;
+ /* Only take chunks not mapped into this VM process; not entirely correct. */
+ uint8_t *pbChunk;
+ if (!gmmR0IsChunkMapped(pGMM, pGVM, pChunk, (PRTR3PTR)&pbChunk))
+ {
+ int rc = gmmR0MapChunk(pGMM, pGVM, pChunk, false /*fRelaxedSem*/, (PRTR3PTR)&pbChunk);
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Look for duplicate pages
+ */
+ uintptr_t iPage = GMM_CHUNK_NUM_PAGES;
+ while (iPage-- > 0)
+ {
+ if (GMM_PAGE_IS_PRIVATE(&pChunk->aPages[iPage]))
+ {
+ uint8_t *pbDestPage = pbChunk + (iPage << GUEST_PAGE_SHIFT);
+ if (!memcmp(pbSourcePage, pbDestPage, GUEST_PAGE_SIZE))
+ {
+ fFoundDuplicate = true;
+ break;
+ }
+ }
+ }
+ gmmR0UnmapChunk(pGMM, pGVM, pChunk, false /*fRelaxedSem*/);
+ }
+ }
+ return fFoundDuplicate;
+}
+
+
+/**
+ * Find a duplicate of the specified page in other active VMs
+ *
+ * @returns VBox status code.
+ * @param pGVM The global (ring-0) VM structure.
+ * @param pReq Pointer to the request packet.
+ */
+GMMR0DECL(int) GMMR0FindDuplicatePageReq(PGVM pGVM, PGMMFINDDUPLICATEPAGEREQ pReq)
+{
+ /*
+ * Validate input and pass it on.
+ */
+ AssertPtrReturn(pReq, VERR_INVALID_POINTER);
+ AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
+
+ PGMM pGMM;
+ GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
+
+ int rc = GVMMR0ValidateGVM(pGVM);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ /*
+ * Take the semaphore and do some more validations.
+ */
+ rc = gmmR0MutexAcquire(pGMM);
+ if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
+ {
+ uint8_t *pbChunk;
+ PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, pReq->idPage >> GMM_CHUNKID_SHIFT);
+ if (pChunk)
+ {
+ if (gmmR0IsChunkMapped(pGMM, pGVM, pChunk, (PRTR3PTR)&pbChunk))
+ {
+ uint8_t *pbSourcePage = pbChunk + ((pReq->idPage & GMM_PAGEID_IDX_MASK) << GUEST_PAGE_SHIFT);
+ PGMMPAGE pPage = gmmR0GetPage(pGMM, pReq->idPage);
+ if (pPage)
+ {
+ /*
+ * Walk the chunks
+ */
+ pReq->fDuplicate = false;
+ RTListForEach(&pGMM->ChunkList, pChunk, GMMCHUNK, ListNode)
+ {
+ if (gmmR0FindDupPageInChunk(pGMM, pGVM, pChunk, pbSourcePage))
+ {
+ pReq->fDuplicate = true;
+ break;
+ }
+ }
+ }
+ else
+ {
+ AssertFailed();
+ rc = VERR_PGM_PHYS_INVALID_PAGE_ID;
+ }
+ }
+ else
+ AssertFailed();
+ }
+ else
+ AssertFailed();
+ }
+ else
+ rc = VERR_GMM_IS_NOT_SANE;
+
+ gmmR0MutexRelease(pGMM);
+ return rc;
+}
+
+#endif /* VBOX_STRICT */
+
+
+/**
+ * Retrieves the GMM statistics visible to the caller.
+ *
+ * @returns VBox status code.
+ *
+ * @param pStats Where to put the statistics.
+ * @param pSession The current session.
+ * @param pGVM The GVM to obtain statistics for. Optional.
+ */
+GMMR0DECL(int) GMMR0QueryStatistics(PGMMSTATS pStats, PSUPDRVSESSION pSession, PGVM pGVM)
+{
+ LogFlow(("GVMMR0QueryStatistics: pStats=%p pSession=%p pGVM=%p\n", pStats, pSession, pGVM));
+
+ /*
+ * Validate input.
+ */
+ AssertPtrReturn(pSession, VERR_INVALID_POINTER);
+ AssertPtrReturn(pStats, VERR_INVALID_POINTER);
+ pStats->cMaxPages = 0; /* (crash before taking the mutex...) */
+
+ PGMM pGMM;
+ GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
+
+ /*
+ * Validate the VM handle, if not NULL, and lock the GMM.
+ */
+ int rc;
+ if (pGVM)
+ {
+ rc = GVMMR0ValidateGVM(pGVM);
+ if (RT_FAILURE(rc))
+ return rc;
+ }
+
+ rc = gmmR0MutexAcquire(pGMM);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ /*
+ * Copy out the GMM statistics.
+ */
+ pStats->cMaxPages = pGMM->cMaxPages;
+ pStats->cReservedPages = pGMM->cReservedPages;
+ pStats->cOverCommittedPages = pGMM->cOverCommittedPages;
+ pStats->cAllocatedPages = pGMM->cAllocatedPages;
+ pStats->cSharedPages = pGMM->cSharedPages;
+ pStats->cDuplicatePages = pGMM->cDuplicatePages;
+ pStats->cLeftBehindSharedPages = pGMM->cLeftBehindSharedPages;
+ pStats->cBalloonedPages = pGMM->cBalloonedPages;
+ pStats->cChunks = pGMM->cChunks;
+ pStats->cFreedChunks = pGMM->cFreedChunks;
+ pStats->cShareableModules = pGMM->cShareableModules;
+ pStats->idFreeGeneration = pGMM->idFreeGeneration;
+ RT_ZERO(pStats->au64Reserved);
+
+ /*
+ * Copy out the VM statistics.
+ */
+ if (pGVM)
+ pStats->VMStats = pGVM->gmm.s.Stats;
+ else
+ RT_ZERO(pStats->VMStats);
+
+ gmmR0MutexRelease(pGMM);
+ return rc;
+}
+
+
+/**
+ * VMMR0 request wrapper for GMMR0QueryStatistics.
+ *
+ * @returns see GMMR0QueryStatistics.
+ * @param pGVM The global (ring-0) VM structure. Optional.
+ * @param pReq Pointer to the request packet.
+ */
+GMMR0DECL(int) GMMR0QueryStatisticsReq(PGVM pGVM, PGMMQUERYSTATISTICSSREQ pReq)
+{
+ /*
+ * Validate input and pass it on.
+ */
+ AssertPtrReturn(pReq, VERR_INVALID_POINTER);
+ AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
+
+ return GMMR0QueryStatistics(&pReq->Stats, pReq->pSession, pGVM);
+}
+
+
+/**
+ * Resets the specified GMM statistics.
+ *
+ * @returns VBox status code.
+ *
+ * @param pStats Which statistics to reset, that is, non-zero fields
+ * indicates which to reset.
+ * @param pSession The current session.
+ * @param pGVM The GVM to reset statistics for. Optional.
+ */
+GMMR0DECL(int) GMMR0ResetStatistics(PCGMMSTATS pStats, PSUPDRVSESSION pSession, PGVM pGVM)
+{
+ NOREF(pStats); NOREF(pSession); NOREF(pGVM);
+ /* Currently nothing we can reset at the moment. */
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * VMMR0 request wrapper for GMMR0ResetStatistics.
+ *
+ * @returns see GMMR0ResetStatistics.
+ * @param pGVM The global (ring-0) VM structure. Optional.
+ * @param pReq Pointer to the request packet.
+ */
+GMMR0DECL(int) GMMR0ResetStatisticsReq(PGVM pGVM, PGMMRESETSTATISTICSSREQ pReq)
+{
+ /*
+ * Validate input and pass it on.
+ */
+ AssertPtrReturn(pReq, VERR_INVALID_POINTER);
+ AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
+
+ return GMMR0ResetStatistics(&pReq->Stats, pReq->pSession, pGVM);
+}
+