diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:17:27 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:17:27 +0000 |
commit | f215e02bf85f68d3a6106c2a1f4f7f063f819064 (patch) | |
tree | 6bb5b92c046312c4e95ac2620b10ddf482d3fa8b /src/VBox/VMM/VMMR0/GMMR0.cpp | |
parent | Initial commit. (diff) | |
download | virtualbox-f215e02bf85f68d3a6106c2a1f4f7f063f819064.tar.xz virtualbox-f215e02bf85f68d3a6106c2a1f4f7f063f819064.zip |
Adding upstream version 7.0.14-dfsg.upstream/7.0.14-dfsg
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/VBox/VMM/VMMR0/GMMR0.cpp')
-rw-r--r-- | src/VBox/VMM/VMMR0/GMMR0.cpp | 5745 |
1 files changed, 5745 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMR0/GMMR0.cpp b/src/VBox/VMM/VMMR0/GMMR0.cpp new file mode 100644 index 00000000..6b6d7793 --- /dev/null +++ b/src/VBox/VMM/VMMR0/GMMR0.cpp @@ -0,0 +1,5745 @@ +/* $Id: GMMR0.cpp $ */ +/** @file + * GMM - Global Memory Manager. + */ + +/* + * Copyright (C) 2007-2023 Oracle and/or its affiliates. + * + * This file is part of VirtualBox base platform packages, as + * available from https://www.virtualbox.org. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation, in version 3 of the + * License. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, see <https://www.gnu.org/licenses>. + * + * SPDX-License-Identifier: GPL-3.0-only + */ + + +/** @page pg_gmm GMM - The Global Memory Manager + * + * As the name indicates, this component is responsible for global memory + * management. Currently only guest RAM is allocated from the GMM, but this + * may change to include shadow page tables and other bits later. + * + * Guest RAM is managed as individual pages, but allocated from the host OS + * in chunks for reasons of portability / efficiency. To minimize the memory + * footprint all tracking structure must be as small as possible without + * unnecessary performance penalties. + * + * The allocation chunks has fixed sized, the size defined at compile time + * by the #GMM_CHUNK_SIZE \#define. + * + * Each chunk is given an unique ID. Each page also has a unique ID. The + * relationship between the two IDs is: + * @code + * GMM_CHUNK_SHIFT = log2(GMM_CHUNK_SIZE / GUEST_PAGE_SIZE); + * idPage = (idChunk << GMM_CHUNK_SHIFT) | iPage; + * @endcode + * Where iPage is the index of the page within the chunk. This ID scheme + * permits for efficient chunk and page lookup, but it relies on the chunk size + * to be set at compile time. The chunks are organized in an AVL tree with their + * IDs being the keys. + * + * The physical address of each page in an allocation chunk is maintained by + * the #RTR0MEMOBJ and obtained using #RTR0MemObjGetPagePhysAddr. There is no + * need to duplicate this information (it'll cost 8-bytes per page if we did). + * + * So what do we need to track per page? Most importantly we need to know + * which state the page is in: + * - Private - Allocated for (eventually) backing one particular VM page. + * - Shared - Readonly page that is used by one or more VMs and treated + * as COW by PGM. + * - Free - Not used by anyone. + * + * For the page replacement operations (sharing, defragmenting and freeing) + * to be somewhat efficient, private pages needs to be associated with a + * particular page in a particular VM. + * + * Tracking the usage of shared pages is impractical and expensive, so we'll + * settle for a reference counting system instead. + * + * Free pages will be chained on LIFOs + * + * On 64-bit systems we will use a 64-bit bitfield per page, while on 32-bit + * systems a 32-bit bitfield will have to suffice because of address space + * limitations. The #GMMPAGE structure shows the details. + * + * + * @section sec_gmm_alloc_strat Page Allocation Strategy + * + * The strategy for allocating pages has to take fragmentation and shared + * pages into account, or we may end up with with 2000 chunks with only + * a few pages in each. Shared pages cannot easily be reallocated because + * of the inaccurate usage accounting (see above). Private pages can be + * reallocated by a defragmentation thread in the same manner that sharing + * is done. + * + * The first approach is to manage the free pages in two sets depending on + * whether they are mainly for the allocation of shared or private pages. + * In the initial implementation there will be almost no possibility for + * mixing shared and private pages in the same chunk (only if we're really + * stressed on memory), but when we implement forking of VMs and have to + * deal with lots of COW pages it'll start getting kind of interesting. + * + * The sets are lists of chunks with approximately the same number of + * free pages. Say the chunk size is 1MB, meaning 256 pages, and a set + * consists of 16 lists. So, the first list will contain the chunks with + * 1-7 free pages, the second covers 8-15, and so on. The chunks will be + * moved between the lists as pages are freed up or allocated. + * + * + * @section sec_gmm_costs Costs + * + * The per page cost in kernel space is 32-bit plus whatever RTR0MEMOBJ + * entails. In addition there is the chunk cost of approximately + * (sizeof(RT0MEMOBJ) + sizeof(CHUNK)) / 2^CHUNK_SHIFT bytes per page. + * + * On Windows the per page #RTR0MEMOBJ cost is 32-bit on 32-bit windows + * and 64-bit on 64-bit windows (a PFN_NUMBER in the MDL). So, 64-bit per page. + * The cost on Linux is identical, but here it's because of sizeof(struct page *). + * + * + * @section sec_gmm_legacy Legacy Mode for Non-Tier-1 Platforms + * + * In legacy mode the page source is locked user pages and not + * #RTR0MemObjAllocPhysNC, this means that a page can only be allocated + * by the VM that locked it. We will make no attempt at implementing + * page sharing on these systems, just do enough to make it all work. + * + * @note With 6.1 really dropping 32-bit support, the legacy mode is obsoleted + * under the assumption that there is sufficient kernel virtual address + * space to map all of the guest memory allocations. So, we'll be using + * #RTR0MemObjAllocPage on some platforms as an alternative to + * #RTR0MemObjAllocPhysNC. + * + * + * @subsection sub_gmm_locking Serializing + * + * One simple fast mutex will be employed in the initial implementation, not + * two as mentioned in @ref sec_pgmPhys_Serializing. + * + * @see @ref sec_pgmPhys_Serializing + * + * + * @section sec_gmm_overcommit Memory Over-Commitment Management + * + * The GVM will have to do the system wide memory over-commitment + * management. My current ideas are: + * - Per VM oc policy that indicates how much to initially commit + * to it and what to do in a out-of-memory situation. + * - Prevent overtaxing the host. + * + * There are some challenges here, the main ones are configurability and + * security. Should we for instance permit anyone to request 100% memory + * commitment? Who should be allowed to do runtime adjustments of the + * config. And how to prevent these settings from being lost when the last + * VM process exits? The solution is probably to have an optional root + * daemon the will keep VMMR0.r0 in memory and enable the security measures. + * + * + * + * @section sec_gmm_numa NUMA + * + * NUMA considerations will be designed and implemented a bit later. + * + * The preliminary guesses is that we will have to try allocate memory as + * close as possible to the CPUs the VM is executed on (EMT and additional CPU + * threads). Which means it's mostly about allocation and sharing policies. + * Both the scheduler and allocator interface will to supply some NUMA info + * and we'll need to have a way to calc access costs. + * + */ + + +/********************************************************************************************************************************* +* Header Files * +*********************************************************************************************************************************/ +#define LOG_GROUP LOG_GROUP_GMM +#include <VBox/rawpci.h> +#include <VBox/vmm/gmm.h> +#include "GMMR0Internal.h" +#include <VBox/vmm/vmcc.h> +#include <VBox/vmm/pgm.h> +#include <VBox/log.h> +#include <VBox/param.h> +#include <VBox/err.h> +#include <VBox/VMMDev.h> +#include <iprt/asm.h> +#include <iprt/avl.h> +#ifdef VBOX_STRICT +# include <iprt/crc.h> +#endif +#include <iprt/critsect.h> +#include <iprt/list.h> +#include <iprt/mem.h> +#include <iprt/memobj.h> +#include <iprt/mp.h> +#include <iprt/semaphore.h> +#include <iprt/spinlock.h> +#include <iprt/string.h> +#include <iprt/time.h> + +/* This is 64-bit only code now. */ +#if HC_ARCH_BITS != 64 || ARCH_BITS != 64 +# error "This is 64-bit only code" +#endif + + +/********************************************************************************************************************************* +* Defined Constants And Macros * +*********************************************************************************************************************************/ +/** @def VBOX_USE_CRIT_SECT_FOR_GIANT + * Use a critical section instead of a fast mutex for the giant GMM lock. + * + * @remarks This is primarily a way of avoiding the deadlock checks in the + * windows driver verifier. */ +#if defined(RT_OS_WINDOWS) || defined(RT_OS_DARWIN) || defined(DOXYGEN_RUNNING) +# define VBOX_USE_CRIT_SECT_FOR_GIANT +#endif + + +/********************************************************************************************************************************* +* Structures and Typedefs * +*********************************************************************************************************************************/ +/** Pointer to set of free chunks. */ +typedef struct GMMCHUNKFREESET *PGMMCHUNKFREESET; + +/** + * The per-page tracking structure employed by the GMM. + * + * Because of the different layout on 32-bit and 64-bit hosts in earlier + * versions of the code, macros are used to get and set some of the data. + */ +typedef union GMMPAGE +{ + /** Unsigned integer view. */ + uint64_t u; + + /** The common view. */ + struct GMMPAGECOMMON + { + uint32_t uStuff1 : 32; + uint32_t uStuff2 : 30; + /** The page state. */ + uint32_t u2State : 2; + } Common; + + /** The view of a private page. */ + struct GMMPAGEPRIVATE + { + /** The guest page frame number. (Max addressable: 2 ^ 44 - 16) */ + uint32_t pfn; + /** The GVM handle. (64K VMs) */ + uint32_t hGVM : 16; + /** Reserved. */ + uint32_t u16Reserved : 14; + /** The page state. */ + uint32_t u2State : 2; + } Private; + + /** The view of a shared page. */ + struct GMMPAGESHARED + { + /** The host page frame number. (Max addressable: 2 ^ 44 - 16) */ + uint32_t pfn; + /** The reference count (64K VMs). */ + uint32_t cRefs : 16; + /** Used for debug checksumming. */ + uint32_t u14Checksum : 14; + /** The page state. */ + uint32_t u2State : 2; + } Shared; + + /** The view of a free page. */ + struct GMMPAGEFREE + { + /** The index of the next page in the free list. UINT16_MAX is NIL. */ + uint16_t iNext; + /** Reserved. Checksum or something? */ + uint16_t u16Reserved0; + /** Reserved. Checksum or something? */ + uint32_t u30Reserved1 : 29; + /** Set if the page was zeroed. */ + uint32_t fZeroed : 1; + /** The page state. */ + uint32_t u2State : 2; + } Free; +} GMMPAGE; +AssertCompileSize(GMMPAGE, sizeof(RTHCUINTPTR)); +/** Pointer to a GMMPAGE. */ +typedef GMMPAGE *PGMMPAGE; + + +/** @name The Page States. + * @{ */ +/** A private page. */ +#define GMM_PAGE_STATE_PRIVATE 0 +/** A shared page. */ +#define GMM_PAGE_STATE_SHARED 2 +/** A free page. */ +#define GMM_PAGE_STATE_FREE 3 +/** @} */ + + +/** @def GMM_PAGE_IS_PRIVATE + * + * @returns true if private, false if not. + * @param pPage The GMM page. + */ +#define GMM_PAGE_IS_PRIVATE(pPage) ( (pPage)->Common.u2State == GMM_PAGE_STATE_PRIVATE ) + +/** @def GMM_PAGE_IS_SHARED + * + * @returns true if shared, false if not. + * @param pPage The GMM page. + */ +#define GMM_PAGE_IS_SHARED(pPage) ( (pPage)->Common.u2State == GMM_PAGE_STATE_SHARED ) + +/** @def GMM_PAGE_IS_FREE + * + * @returns true if free, false if not. + * @param pPage The GMM page. + */ +#define GMM_PAGE_IS_FREE(pPage) ( (pPage)->Common.u2State == GMM_PAGE_STATE_FREE ) + +/** @def GMM_PAGE_PFN_LAST + * The last valid guest pfn range. + * @remark Some of the values outside the range has special meaning, + * see GMM_PAGE_PFN_UNSHAREABLE. + */ +#define GMM_PAGE_PFN_LAST UINT32_C(0xfffffff0) +AssertCompile(GMM_PAGE_PFN_LAST == (GMM_GCPHYS_LAST >> GUEST_PAGE_SHIFT)); + +/** @def GMM_PAGE_PFN_UNSHAREABLE + * Indicates that this page isn't used for normal guest memory and thus isn't shareable. + */ +#define GMM_PAGE_PFN_UNSHAREABLE UINT32_C(0xfffffff1) +AssertCompile(GMM_PAGE_PFN_UNSHAREABLE == (GMM_GCPHYS_UNSHAREABLE >> GUEST_PAGE_SHIFT)); + + +/** + * A GMM allocation chunk ring-3 mapping record. + * + * This should really be associated with a session and not a VM, but + * it's simpler to associated with a VM and cleanup with the VM object + * is destroyed. + */ +typedef struct GMMCHUNKMAP +{ + /** The mapping object. */ + RTR0MEMOBJ hMapObj; + /** The VM owning the mapping. */ + PGVM pGVM; +} GMMCHUNKMAP; +/** Pointer to a GMM allocation chunk mapping. */ +typedef struct GMMCHUNKMAP *PGMMCHUNKMAP; + + +/** + * A GMM allocation chunk. + */ +typedef struct GMMCHUNK +{ + /** The AVL node core. + * The Key is the chunk ID. (Giant mtx.) */ + AVLU32NODECORE Core; + /** The memory object. + * Either from RTR0MemObjAllocPhysNC or RTR0MemObjLockUser depending on + * what the host can dish up with. (Chunk mtx protects mapping accesses + * and related frees.) */ + RTR0MEMOBJ hMemObj; +#ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM + /** Pointer to the kernel mapping. */ + uint8_t *pbMapping; +#endif + /** Pointer to the next chunk in the free list. (Giant mtx.) */ + PGMMCHUNK pFreeNext; + /** Pointer to the previous chunk in the free list. (Giant mtx.) */ + PGMMCHUNK pFreePrev; + /** Pointer to the free set this chunk belongs to. NULL for + * chunks with no free pages. (Giant mtx.) */ + PGMMCHUNKFREESET pSet; + /** List node in the chunk list (GMM::ChunkList). (Giant mtx.) */ + RTLISTNODE ListNode; + /** Pointer to an array of mappings. (Chunk mtx.) */ + PGMMCHUNKMAP paMappingsX; + /** The number of mappings. (Chunk mtx.) */ + uint16_t cMappingsX; + /** The mapping lock this chunk is using using. UINT8_MAX if nobody is mapping + * or freeing anything. (Giant mtx.) */ + uint8_t volatile iChunkMtx; + /** GMM_CHUNK_FLAGS_XXX. (Giant mtx.) */ + uint8_t fFlags; + /** The head of the list of free pages. UINT16_MAX is the NIL value. + * (Giant mtx.) */ + uint16_t iFreeHead; + /** The number of free pages. (Giant mtx.) */ + uint16_t cFree; + /** The GVM handle of the VM that first allocated pages from this chunk, this + * is used as a preference when there are several chunks to choose from. + * When in bound memory mode this isn't a preference any longer. (Giant + * mtx.) */ + uint16_t hGVM; + /** The ID of the NUMA node the memory mostly resides on. (Reserved for + * future use.) (Giant mtx.) */ + uint16_t idNumaNode; + /** The number of private pages. (Giant mtx.) */ + uint16_t cPrivate; + /** The number of shared pages. (Giant mtx.) */ + uint16_t cShared; + /** The UID this chunk is associated with. */ + RTUID uidOwner; + uint32_t u32Padding; + /** The pages. (Giant mtx.) */ + GMMPAGE aPages[GMM_CHUNK_NUM_PAGES]; +} GMMCHUNK; + +/** Indicates that the NUMA properies of the memory is unknown. */ +#define GMM_CHUNK_NUMA_ID_UNKNOWN UINT16_C(0xfffe) + +/** @name GMM_CHUNK_FLAGS_XXX - chunk flags. + * @{ */ +/** Indicates that the chunk is a large page (2MB). */ +#define GMM_CHUNK_FLAGS_LARGE_PAGE UINT16_C(0x0001) +/** @} */ + + +/** + * An allocation chunk TLB entry. + */ +typedef struct GMMCHUNKTLBE +{ + /** The chunk id. */ + uint32_t idChunk; + /** Pointer to the chunk. */ + PGMMCHUNK pChunk; +} GMMCHUNKTLBE; +/** Pointer to an allocation chunk TLB entry. */ +typedef GMMCHUNKTLBE *PGMMCHUNKTLBE; + + +/** The number of entries in the allocation chunk TLB. */ +#define GMM_CHUNKTLB_ENTRIES 32 +/** Gets the TLB entry index for the given Chunk ID. */ +#define GMM_CHUNKTLB_IDX(idChunk) ( (idChunk) & (GMM_CHUNKTLB_ENTRIES - 1) ) + +/** + * An allocation chunk TLB. + */ +typedef struct GMMCHUNKTLB +{ + /** The TLB entries. */ + GMMCHUNKTLBE aEntries[GMM_CHUNKTLB_ENTRIES]; +} GMMCHUNKTLB; +/** Pointer to an allocation chunk TLB. */ +typedef GMMCHUNKTLB *PGMMCHUNKTLB; + + +/** + * The GMM instance data. + */ +typedef struct GMM +{ + /** Magic / eye catcher. GMM_MAGIC */ + uint32_t u32Magic; + /** The number of threads waiting on the mutex. */ + uint32_t cMtxContenders; +#ifdef VBOX_USE_CRIT_SECT_FOR_GIANT + /** The critical section protecting the GMM. + * More fine grained locking can be implemented later if necessary. */ + RTCRITSECT GiantCritSect; +#else + /** The fast mutex protecting the GMM. + * More fine grained locking can be implemented later if necessary. */ + RTSEMFASTMUTEX hMtx; +#endif +#ifdef VBOX_STRICT + /** The current mutex owner. */ + RTNATIVETHREAD hMtxOwner; +#endif + /** Spinlock protecting the AVL tree. + * @todo Make this a read-write spinlock as we should allow concurrent + * lookups. */ + RTSPINLOCK hSpinLockTree; + /** The chunk tree. + * Protected by hSpinLockTree. */ + PAVLU32NODECORE pChunks; + /** Chunk freeing generation - incremented whenever a chunk is freed. Used + * for validating the per-VM chunk TLB entries. Valid range is 1 to 2^62 + * (exclusive), though higher numbers may temporarily occure while + * invalidating the individual TLBs during wrap-around processing. */ + uint64_t volatile idFreeGeneration; + /** The chunk TLB. + * Protected by hSpinLockTree. */ + GMMCHUNKTLB ChunkTLB; + /** The private free set. */ + GMMCHUNKFREESET PrivateX; + /** The shared free set. */ + GMMCHUNKFREESET Shared; + + /** Shared module tree (global). + * @todo separate trees for distinctly different guest OSes. */ + PAVLLU32NODECORE pGlobalSharedModuleTree; + /** Sharable modules (count of nodes in pGlobalSharedModuleTree). */ + uint32_t cShareableModules; + + /** The chunk list. For simplifying the cleanup process and avoid tree + * traversal. */ + RTLISTANCHOR ChunkList; + + /** The maximum number of pages we're allowed to allocate. + * @gcfgm{GMM/MaxPages,64-bit, Direct.} + * @gcfgm{GMM/PctPages,32-bit, Relative to the number of host pages.} */ + uint64_t cMaxPages; + /** The number of pages that has been reserved. + * The deal is that cReservedPages - cOverCommittedPages <= cMaxPages. */ + uint64_t cReservedPages; + /** The number of pages that we have over-committed in reservations. */ + uint64_t cOverCommittedPages; + /** The number of actually allocated (committed if you like) pages. */ + uint64_t cAllocatedPages; + /** The number of pages that are shared. A subset of cAllocatedPages. */ + uint64_t cSharedPages; + /** The number of pages that are actually shared between VMs. */ + uint64_t cDuplicatePages; + /** The number of pages that are shared that has been left behind by + * VMs not doing proper cleanups. */ + uint64_t cLeftBehindSharedPages; + /** The number of allocation chunks. + * (The number of pages we've allocated from the host can be derived from this.) */ + uint32_t cChunks; + /** The number of current ballooned pages. */ + uint64_t cBalloonedPages; + +#ifdef VBOX_WITH_LINEAR_HOST_PHYS_MEM + /** Whether #RTR0MemObjAllocPhysNC works. */ + bool fHasWorkingAllocPhysNC; +#else + bool fPadding; +#endif + /** The bound memory mode indicator. + * When set, the memory will be bound to a specific VM and never + * shared. This is always set if fLegacyAllocationMode is set. + * (Also determined at initialization time.) */ + bool fBoundMemoryMode; + /** The number of registered VMs. */ + uint16_t cRegisteredVMs; + + /** The index of the next mutex to use. */ + uint32_t iNextChunkMtx; + /** Chunk locks for reducing lock contention without having to allocate + * one lock per chunk. */ + struct + { + /** The mutex */ + RTSEMFASTMUTEX hMtx; + /** The number of threads currently using this mutex. */ + uint32_t volatile cUsers; + } aChunkMtx[64]; + + /** The number of freed chunks ever. This is used as list generation to + * avoid restarting the cleanup scanning when the list wasn't modified. */ + uint32_t volatile cFreedChunks; + /** The previous allocated Chunk ID. + * Used as a hint to avoid scanning the whole bitmap. */ + uint32_t idChunkPrev; + /** Spinlock protecting idChunkPrev & bmChunkId. */ + RTSPINLOCK hSpinLockChunkId; + /** Chunk ID allocation bitmap. + * Bits of allocated IDs are set, free ones are clear. + * The NIL id (0) is marked allocated. */ + uint32_t bmChunkId[(GMM_CHUNKID_LAST + 1 + 31) / 32]; +} GMM; +/** Pointer to the GMM instance. */ +typedef GMM *PGMM; + +/** The value of GMM::u32Magic (Katsuhiro Otomo). */ +#define GMM_MAGIC UINT32_C(0x19540414) + + +/** + * GMM chunk mutex state. + * + * This is returned by gmmR0ChunkMutexAcquire and is used by the other + * gmmR0ChunkMutex* methods. + */ +typedef struct GMMR0CHUNKMTXSTATE +{ + PGMM pGMM; + /** The index of the chunk mutex. */ + uint8_t iChunkMtx; + /** The relevant flags (GMMR0CHUNK_MTX_XXX). */ + uint8_t fFlags; +} GMMR0CHUNKMTXSTATE; +/** Pointer to a chunk mutex state. */ +typedef GMMR0CHUNKMTXSTATE *PGMMR0CHUNKMTXSTATE; + +/** @name GMMR0CHUNK_MTX_XXX + * @{ */ +#define GMMR0CHUNK_MTX_INVALID UINT32_C(0) +#define GMMR0CHUNK_MTX_KEEP_GIANT UINT32_C(1) +#define GMMR0CHUNK_MTX_RETAKE_GIANT UINT32_C(2) +#define GMMR0CHUNK_MTX_DROP_GIANT UINT32_C(3) +#define GMMR0CHUNK_MTX_END UINT32_C(4) +/** @} */ + + +/** The maximum number of shared modules per-vm. */ +#define GMM_MAX_SHARED_PER_VM_MODULES 2048 +/** The maximum number of shared modules GMM is allowed to track. */ +#define GMM_MAX_SHARED_GLOBAL_MODULES 16834 + + +/** + * Argument packet for gmmR0SharedModuleCleanup. + */ +typedef struct GMMR0SHMODPERVMDTORARGS +{ + PGVM pGVM; + PGMM pGMM; +} GMMR0SHMODPERVMDTORARGS; + +/** + * Argument packet for gmmR0CheckSharedModule. + */ +typedef struct GMMCHECKSHAREDMODULEINFO +{ + PGVM pGVM; + VMCPUID idCpu; +} GMMCHECKSHAREDMODULEINFO; + + +/********************************************************************************************************************************* +* Global Variables * +*********************************************************************************************************************************/ +/** Pointer to the GMM instance data. */ +static PGMM g_pGMM = NULL; + +/** Macro for obtaining and validating the g_pGMM pointer. + * + * On failure it will return from the invoking function with the specified + * return value. + * + * @param pGMM The name of the pGMM variable. + * @param rc The return value on failure. Use VERR_GMM_INSTANCE for VBox + * status codes. + */ +#define GMM_GET_VALID_INSTANCE(pGMM, rc) \ + do { \ + (pGMM) = g_pGMM; \ + AssertPtrReturn((pGMM), (rc)); \ + AssertMsgReturn((pGMM)->u32Magic == GMM_MAGIC, ("%p - %#x\n", (pGMM), (pGMM)->u32Magic), (rc)); \ + } while (0) + +/** Macro for obtaining and validating the g_pGMM pointer, void function + * variant. + * + * On failure it will return from the invoking function. + * + * @param pGMM The name of the pGMM variable. + */ +#define GMM_GET_VALID_INSTANCE_VOID(pGMM) \ + do { \ + (pGMM) = g_pGMM; \ + AssertPtrReturnVoid((pGMM)); \ + AssertMsgReturnVoid((pGMM)->u32Magic == GMM_MAGIC, ("%p - %#x\n", (pGMM), (pGMM)->u32Magic)); \ + } while (0) + + +/** @def GMM_CHECK_SANITY_UPON_ENTERING + * Checks the sanity of the GMM instance data before making changes. + * + * This is macro is a stub by default and must be enabled manually in the code. + * + * @returns true if sane, false if not. + * @param pGMM The name of the pGMM variable. + */ +#if defined(VBOX_STRICT) && defined(GMMR0_WITH_SANITY_CHECK) && 0 +# define GMM_CHECK_SANITY_UPON_ENTERING(pGMM) (RT_LIKELY(gmmR0SanityCheck((pGMM), __PRETTY_FUNCTION__, __LINE__) == 0)) +#else +# define GMM_CHECK_SANITY_UPON_ENTERING(pGMM) (true) +#endif + +/** @def GMM_CHECK_SANITY_UPON_LEAVING + * Checks the sanity of the GMM instance data after making changes. + * + * This is macro is a stub by default and must be enabled manually in the code. + * + * @returns true if sane, false if not. + * @param pGMM The name of the pGMM variable. + */ +#if defined(VBOX_STRICT) && defined(GMMR0_WITH_SANITY_CHECK) && 0 +# define GMM_CHECK_SANITY_UPON_LEAVING(pGMM) (gmmR0SanityCheck((pGMM), __PRETTY_FUNCTION__, __LINE__) == 0) +#else +# define GMM_CHECK_SANITY_UPON_LEAVING(pGMM) (true) +#endif + +/** @def GMM_CHECK_SANITY_IN_LOOPS + * Checks the sanity of the GMM instance in the allocation loops. + * + * This is macro is a stub by default and must be enabled manually in the code. + * + * @returns true if sane, false if not. + * @param pGMM The name of the pGMM variable. + */ +#if defined(VBOX_STRICT) && defined(GMMR0_WITH_SANITY_CHECK) && 0 +# define GMM_CHECK_SANITY_IN_LOOPS(pGMM) (gmmR0SanityCheck((pGMM), __PRETTY_FUNCTION__, __LINE__) == 0) +#else +# define GMM_CHECK_SANITY_IN_LOOPS(pGMM) (true) +#endif + + +/********************************************************************************************************************************* +* Internal Functions * +*********************************************************************************************************************************/ +static DECLCALLBACK(int) gmmR0TermDestroyChunk(PAVLU32NODECORE pNode, void *pvGMM); +static bool gmmR0CleanupVMScanChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk); +DECLINLINE(void) gmmR0UnlinkChunk(PGMMCHUNK pChunk); +DECLINLINE(void) gmmR0LinkChunk(PGMMCHUNK pChunk, PGMMCHUNKFREESET pSet); +DECLINLINE(void) gmmR0SelectSetAndLinkChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk); +#ifdef GMMR0_WITH_SANITY_CHECK +static uint32_t gmmR0SanityCheck(PGMM pGMM, const char *pszFunction, unsigned uLineNo); +#endif +static bool gmmR0FreeChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, bool fRelaxedSem); +DECLINLINE(void) gmmR0FreePrivatePage(PGMM pGMM, PGVM pGVM, uint32_t idPage, PGMMPAGE pPage); +DECLINLINE(void) gmmR0FreeSharedPage(PGMM pGMM, PGVM pGVM, uint32_t idPage, PGMMPAGE pPage); +static int gmmR0UnmapChunkLocked(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk); +#ifdef VBOX_WITH_PAGE_SHARING +static void gmmR0SharedModuleCleanup(PGMM pGMM, PGVM pGVM); +# ifdef VBOX_STRICT +static uint32_t gmmR0StrictPageChecksum(PGMM pGMM, PGVM pGVM, uint32_t idPage); +# endif +#endif + + + +/** + * Initializes the GMM component. + * + * This is called when the VMMR0.r0 module is loaded and protected by the + * loader semaphore. + * + * @returns VBox status code. + */ +GMMR0DECL(int) GMMR0Init(void) +{ + LogFlow(("GMMInit:\n")); + + /* Currently assuming same host and guest page size here. Can change it to + dish out guest pages with different size from the host page later if + needed, though a restriction would be the host page size must be larger + than the guest page size. */ + AssertCompile(GUEST_PAGE_SIZE == HOST_PAGE_SIZE); + AssertCompile(GUEST_PAGE_SIZE <= HOST_PAGE_SIZE); + + /* + * Allocate the instance data and the locks. + */ + PGMM pGMM = (PGMM)RTMemAllocZ(sizeof(*pGMM)); + if (!pGMM) + return VERR_NO_MEMORY; + + pGMM->u32Magic = GMM_MAGIC; + for (unsigned i = 0; i < RT_ELEMENTS(pGMM->ChunkTLB.aEntries); i++) + pGMM->ChunkTLB.aEntries[i].idChunk = NIL_GMM_CHUNKID; + RTListInit(&pGMM->ChunkList); + ASMBitSet(&pGMM->bmChunkId[0], NIL_GMM_CHUNKID); + +#ifdef VBOX_USE_CRIT_SECT_FOR_GIANT + int rc = RTCritSectInit(&pGMM->GiantCritSect); +#else + int rc = RTSemFastMutexCreate(&pGMM->hMtx); +#endif + if (RT_SUCCESS(rc)) + { + unsigned iMtx; + for (iMtx = 0; iMtx < RT_ELEMENTS(pGMM->aChunkMtx); iMtx++) + { + rc = RTSemFastMutexCreate(&pGMM->aChunkMtx[iMtx].hMtx); + if (RT_FAILURE(rc)) + break; + } + pGMM->hSpinLockTree = NIL_RTSPINLOCK; + if (RT_SUCCESS(rc)) + rc = RTSpinlockCreate(&pGMM->hSpinLockTree, RTSPINLOCK_FLAGS_INTERRUPT_SAFE, "gmm-chunk-tree"); + pGMM->hSpinLockChunkId = NIL_RTSPINLOCK; + if (RT_SUCCESS(rc)) + rc = RTSpinlockCreate(&pGMM->hSpinLockChunkId, RTSPINLOCK_FLAGS_INTERRUPT_SAFE, "gmm-chunk-id"); + if (RT_SUCCESS(rc)) + { + /* + * Figure out how we're going to allocate stuff (only applicable to + * host with linear physical memory mappings). + */ + pGMM->fBoundMemoryMode = false; +#ifdef VBOX_WITH_LINEAR_HOST_PHYS_MEM + pGMM->fHasWorkingAllocPhysNC = false; + + RTR0MEMOBJ hMemObj; + rc = RTR0MemObjAllocPhysNC(&hMemObj, GMM_CHUNK_SIZE, NIL_RTHCPHYS); + if (RT_SUCCESS(rc)) + { + rc = RTR0MemObjFree(hMemObj, true); + AssertRC(rc); + pGMM->fHasWorkingAllocPhysNC = true; + } + else if (rc != VERR_NOT_SUPPORTED) + SUPR0Printf("GMMR0Init: Warning! RTR0MemObjAllocPhysNC(, %u, NIL_RTHCPHYS) -> %d!\n", GMM_CHUNK_SIZE, rc); +# endif + + /* + * Query system page count and guess a reasonable cMaxPages value. + */ + pGMM->cMaxPages = UINT32_MAX; /** @todo IPRT function for query ram size and such. */ + + /* + * The idFreeGeneration value should be set so we actually trigger the + * wrap-around invalidation handling during a typical test run. + */ + pGMM->idFreeGeneration = UINT64_MAX / 4 - 128; + + g_pGMM = pGMM; +#ifdef VBOX_WITH_LINEAR_HOST_PHYS_MEM + LogFlow(("GMMInit: pGMM=%p fBoundMemoryMode=%RTbool fHasWorkingAllocPhysNC=%RTbool\n", pGMM, pGMM->fBoundMemoryMode, pGMM->fHasWorkingAllocPhysNC)); +#else + LogFlow(("GMMInit: pGMM=%p fBoundMemoryMode=%RTbool\n", pGMM, pGMM->fBoundMemoryMode)); +#endif + return VINF_SUCCESS; + } + + /* + * Bail out. + */ + RTSpinlockDestroy(pGMM->hSpinLockChunkId); + RTSpinlockDestroy(pGMM->hSpinLockTree); + while (iMtx-- > 0) + RTSemFastMutexDestroy(pGMM->aChunkMtx[iMtx].hMtx); +#ifdef VBOX_USE_CRIT_SECT_FOR_GIANT + RTCritSectDelete(&pGMM->GiantCritSect); +#else + RTSemFastMutexDestroy(pGMM->hMtx); +#endif + } + + pGMM->u32Magic = 0; + RTMemFree(pGMM); + SUPR0Printf("GMMR0Init: failed! rc=%d\n", rc); + return rc; +} + + +/** + * Terminates the GMM component. + */ +GMMR0DECL(void) GMMR0Term(void) +{ + LogFlow(("GMMTerm:\n")); + + /* + * Take care / be paranoid... + */ + PGMM pGMM = g_pGMM; + if (!RT_VALID_PTR(pGMM)) + return; + if (pGMM->u32Magic != GMM_MAGIC) + { + SUPR0Printf("GMMR0Term: u32Magic=%#x\n", pGMM->u32Magic); + return; + } + + /* + * Undo what init did and free all the resources we've acquired. + */ + /* Destroy the fundamentals. */ + g_pGMM = NULL; + pGMM->u32Magic = ~GMM_MAGIC; +#ifdef VBOX_USE_CRIT_SECT_FOR_GIANT + RTCritSectDelete(&pGMM->GiantCritSect); +#else + RTSemFastMutexDestroy(pGMM->hMtx); + pGMM->hMtx = NIL_RTSEMFASTMUTEX; +#endif + RTSpinlockDestroy(pGMM->hSpinLockTree); + pGMM->hSpinLockTree = NIL_RTSPINLOCK; + RTSpinlockDestroy(pGMM->hSpinLockChunkId); + pGMM->hSpinLockChunkId = NIL_RTSPINLOCK; + + /* Free any chunks still hanging around. */ + RTAvlU32Destroy(&pGMM->pChunks, gmmR0TermDestroyChunk, pGMM); + + /* Destroy the chunk locks. */ + for (unsigned iMtx = 0; iMtx < RT_ELEMENTS(pGMM->aChunkMtx); iMtx++) + { + Assert(pGMM->aChunkMtx[iMtx].cUsers == 0); + RTSemFastMutexDestroy(pGMM->aChunkMtx[iMtx].hMtx); + pGMM->aChunkMtx[iMtx].hMtx = NIL_RTSEMFASTMUTEX; + } + + /* Finally the instance data itself. */ + RTMemFree(pGMM); + LogFlow(("GMMTerm: done\n")); +} + + +/** + * RTAvlU32Destroy callback. + * + * @returns 0 + * @param pNode The node to destroy. + * @param pvGMM The GMM handle. + */ +static DECLCALLBACK(int) gmmR0TermDestroyChunk(PAVLU32NODECORE pNode, void *pvGMM) +{ + PGMMCHUNK pChunk = (PGMMCHUNK)pNode; + + if (pChunk->cFree != GMM_CHUNK_NUM_PAGES) + SUPR0Printf("GMMR0Term: %RKv/%#x: cFree=%d cPrivate=%d cShared=%d cMappings=%d\n", pChunk, + pChunk->Core.Key, pChunk->cFree, pChunk->cPrivate, pChunk->cShared, pChunk->cMappingsX); + + int rc = RTR0MemObjFree(pChunk->hMemObj, true /* fFreeMappings */); + if (RT_FAILURE(rc)) + { + SUPR0Printf("GMMR0Term: %RKv/%#x: RTRMemObjFree(%RKv,true) -> %d (cMappings=%d)\n", pChunk, + pChunk->Core.Key, pChunk->hMemObj, rc, pChunk->cMappingsX); + AssertRC(rc); + } + pChunk->hMemObj = NIL_RTR0MEMOBJ; + + RTMemFree(pChunk->paMappingsX); + pChunk->paMappingsX = NULL; + + RTMemFree(pChunk); + NOREF(pvGMM); + return 0; +} + + +/** + * Initializes the per-VM data for the GMM. + * + * This is called from within the GVMM lock (from GVMMR0CreateVM) + * and should only initialize the data members so GMMR0CleanupVM + * can deal with them. We reserve no memory or anything here, + * that's done later in GMMR0InitVM. + * + * @param pGVM Pointer to the Global VM structure. + */ +GMMR0DECL(int) GMMR0InitPerVMData(PGVM pGVM) +{ + AssertCompile(RT_SIZEOFMEMB(GVM,gmm.s) <= RT_SIZEOFMEMB(GVM,gmm.padding)); + + pGVM->gmm.s.Stats.enmPolicy = GMMOCPOLICY_INVALID; + pGVM->gmm.s.Stats.enmPriority = GMMPRIORITY_INVALID; + pGVM->gmm.s.Stats.fMayAllocate = false; + + pGVM->gmm.s.hChunkTlbSpinLock = NIL_RTSPINLOCK; + int rc = RTSpinlockCreate(&pGVM->gmm.s.hChunkTlbSpinLock, RTSPINLOCK_FLAGS_INTERRUPT_SAFE, "per-vm-chunk-tlb"); + AssertRCReturn(rc, rc); + + return VINF_SUCCESS; +} + + +/** + * Acquires the GMM giant lock. + * + * @returns Assert status code from RTSemFastMutexRequest. + * @param pGMM Pointer to the GMM instance. + */ +static int gmmR0MutexAcquire(PGMM pGMM) +{ + ASMAtomicIncU32(&pGMM->cMtxContenders); +#ifdef VBOX_USE_CRIT_SECT_FOR_GIANT + int rc = RTCritSectEnter(&pGMM->GiantCritSect); +#else + int rc = RTSemFastMutexRequest(pGMM->hMtx); +#endif + ASMAtomicDecU32(&pGMM->cMtxContenders); + AssertRC(rc); +#ifdef VBOX_STRICT + pGMM->hMtxOwner = RTThreadNativeSelf(); +#endif + return rc; +} + + +/** + * Releases the GMM giant lock. + * + * @returns Assert status code from RTSemFastMutexRequest. + * @param pGMM Pointer to the GMM instance. + */ +static int gmmR0MutexRelease(PGMM pGMM) +{ +#ifdef VBOX_STRICT + pGMM->hMtxOwner = NIL_RTNATIVETHREAD; +#endif +#ifdef VBOX_USE_CRIT_SECT_FOR_GIANT + int rc = RTCritSectLeave(&pGMM->GiantCritSect); +#else + int rc = RTSemFastMutexRelease(pGMM->hMtx); + AssertRC(rc); +#endif + return rc; +} + + +/** + * Yields the GMM giant lock if there is contention and a certain minimum time + * has elapsed since we took it. + * + * @returns @c true if the mutex was yielded, @c false if not. + * @param pGMM Pointer to the GMM instance. + * @param puLockNanoTS Where the lock acquisition time stamp is kept + * (in/out). + */ +static bool gmmR0MutexYield(PGMM pGMM, uint64_t *puLockNanoTS) +{ + /* + * If nobody is contending the mutex, don't bother checking the time. + */ + if (ASMAtomicReadU32(&pGMM->cMtxContenders) == 0) + return false; + + /* + * Don't yield if we haven't executed for at least 2 milliseconds. + */ + uint64_t uNanoNow = RTTimeSystemNanoTS(); + if (uNanoNow - *puLockNanoTS < UINT32_C(2000000)) + return false; + + /* + * Yield the mutex. + */ +#ifdef VBOX_STRICT + pGMM->hMtxOwner = NIL_RTNATIVETHREAD; +#endif + ASMAtomicIncU32(&pGMM->cMtxContenders); +#ifdef VBOX_USE_CRIT_SECT_FOR_GIANT + int rc1 = RTCritSectLeave(&pGMM->GiantCritSect); AssertRC(rc1); +#else + int rc1 = RTSemFastMutexRelease(pGMM->hMtx); AssertRC(rc1); +#endif + + RTThreadYield(); + +#ifdef VBOX_USE_CRIT_SECT_FOR_GIANT + int rc2 = RTCritSectEnter(&pGMM->GiantCritSect); AssertRC(rc2); +#else + int rc2 = RTSemFastMutexRequest(pGMM->hMtx); AssertRC(rc2); +#endif + *puLockNanoTS = RTTimeSystemNanoTS(); + ASMAtomicDecU32(&pGMM->cMtxContenders); +#ifdef VBOX_STRICT + pGMM->hMtxOwner = RTThreadNativeSelf(); +#endif + + return true; +} + + +/** + * Acquires a chunk lock. + * + * The caller must own the giant lock. + * + * @returns Assert status code from RTSemFastMutexRequest. + * @param pMtxState The chunk mutex state info. (Avoids + * passing the same flags and stuff around + * for subsequent release and drop-giant + * calls.) + * @param pGMM Pointer to the GMM instance. + * @param pChunk Pointer to the chunk. + * @param fFlags Flags regarding the giant lock, GMMR0CHUNK_MTX_XXX. + */ +static int gmmR0ChunkMutexAcquire(PGMMR0CHUNKMTXSTATE pMtxState, PGMM pGMM, PGMMCHUNK pChunk, uint32_t fFlags) +{ + Assert(fFlags > GMMR0CHUNK_MTX_INVALID && fFlags < GMMR0CHUNK_MTX_END); + Assert(pGMM->hMtxOwner == RTThreadNativeSelf()); + + pMtxState->pGMM = pGMM; + pMtxState->fFlags = (uint8_t)fFlags; + + /* + * Get the lock index and reference the lock. + */ + Assert(pGMM->hMtxOwner == RTThreadNativeSelf()); + uint32_t iChunkMtx = pChunk->iChunkMtx; + if (iChunkMtx == UINT8_MAX) + { + iChunkMtx = pGMM->iNextChunkMtx++; + iChunkMtx %= RT_ELEMENTS(pGMM->aChunkMtx); + + /* Try get an unused one... */ + if (pGMM->aChunkMtx[iChunkMtx].cUsers) + { + iChunkMtx = pGMM->iNextChunkMtx++; + iChunkMtx %= RT_ELEMENTS(pGMM->aChunkMtx); + if (pGMM->aChunkMtx[iChunkMtx].cUsers) + { + iChunkMtx = pGMM->iNextChunkMtx++; + iChunkMtx %= RT_ELEMENTS(pGMM->aChunkMtx); + if (pGMM->aChunkMtx[iChunkMtx].cUsers) + { + iChunkMtx = pGMM->iNextChunkMtx++; + iChunkMtx %= RT_ELEMENTS(pGMM->aChunkMtx); + } + } + } + + pChunk->iChunkMtx = iChunkMtx; + } + AssertCompile(RT_ELEMENTS(pGMM->aChunkMtx) < UINT8_MAX); + pMtxState->iChunkMtx = (uint8_t)iChunkMtx; + ASMAtomicIncU32(&pGMM->aChunkMtx[iChunkMtx].cUsers); + + /* + * Drop the giant? + */ + if (fFlags != GMMR0CHUNK_MTX_KEEP_GIANT) + { + /** @todo GMM life cycle cleanup (we may race someone + * destroying and cleaning up GMM)? */ + gmmR0MutexRelease(pGMM); + } + + /* + * Take the chunk mutex. + */ + int rc = RTSemFastMutexRequest(pGMM->aChunkMtx[iChunkMtx].hMtx); + AssertRC(rc); + return rc; +} + + +/** + * Releases the GMM giant lock. + * + * @returns Assert status code from RTSemFastMutexRequest. + * @param pMtxState Pointer to the chunk mutex state. + * @param pChunk Pointer to the chunk if it's still + * alive, NULL if it isn't. This is used to deassociate + * the chunk from the mutex on the way out so a new one + * can be selected next time, thus avoiding contented + * mutexes. + */ +static int gmmR0ChunkMutexRelease(PGMMR0CHUNKMTXSTATE pMtxState, PGMMCHUNK pChunk) +{ + PGMM pGMM = pMtxState->pGMM; + + /* + * Release the chunk mutex and reacquire the giant if requested. + */ + int rc = RTSemFastMutexRelease(pGMM->aChunkMtx[pMtxState->iChunkMtx].hMtx); + AssertRC(rc); + if (pMtxState->fFlags == GMMR0CHUNK_MTX_RETAKE_GIANT) + rc = gmmR0MutexAcquire(pGMM); + else + Assert((pMtxState->fFlags != GMMR0CHUNK_MTX_DROP_GIANT) == (pGMM->hMtxOwner == RTThreadNativeSelf())); + + /* + * Drop the chunk mutex user reference and deassociate it from the chunk + * when possible. + */ + if ( ASMAtomicDecU32(&pGMM->aChunkMtx[pMtxState->iChunkMtx].cUsers) == 0 + && pChunk + && RT_SUCCESS(rc) ) + { + if (pMtxState->fFlags != GMMR0CHUNK_MTX_DROP_GIANT) + pChunk->iChunkMtx = UINT8_MAX; + else + { + rc = gmmR0MutexAcquire(pGMM); + if (RT_SUCCESS(rc)) + { + if (pGMM->aChunkMtx[pMtxState->iChunkMtx].cUsers == 0) + pChunk->iChunkMtx = UINT8_MAX; + rc = gmmR0MutexRelease(pGMM); + } + } + } + + pMtxState->pGMM = NULL; + return rc; +} + + +/** + * Drops the giant GMM lock we kept in gmmR0ChunkMutexAcquire while keeping the + * chunk locked. + * + * This only works if gmmR0ChunkMutexAcquire was called with + * GMMR0CHUNK_MTX_KEEP_GIANT. gmmR0ChunkMutexRelease will retake the giant + * mutex, i.e. behave as if GMMR0CHUNK_MTX_RETAKE_GIANT was used. + * + * @returns VBox status code (assuming success is ok). + * @param pMtxState Pointer to the chunk mutex state. + */ +static int gmmR0ChunkMutexDropGiant(PGMMR0CHUNKMTXSTATE pMtxState) +{ + AssertReturn(pMtxState->fFlags == GMMR0CHUNK_MTX_KEEP_GIANT, VERR_GMM_MTX_FLAGS); + Assert(pMtxState->pGMM->hMtxOwner == RTThreadNativeSelf()); + pMtxState->fFlags = GMMR0CHUNK_MTX_RETAKE_GIANT; + /** @todo GMM life cycle cleanup (we may race someone + * destroying and cleaning up GMM)? */ + return gmmR0MutexRelease(pMtxState->pGMM); +} + + +/** + * For experimenting with NUMA affinity and such. + * + * @returns The current NUMA Node ID. + */ +static uint16_t gmmR0GetCurrentNumaNodeId(void) +{ +#if 1 + return GMM_CHUNK_NUMA_ID_UNKNOWN; +#else + return RTMpCpuId() / 16; +#endif +} + + + +/** + * Cleans up when a VM is terminating. + * + * @param pGVM Pointer to the Global VM structure. + */ +GMMR0DECL(void) GMMR0CleanupVM(PGVM pGVM) +{ + LogFlow(("GMMR0CleanupVM: pGVM=%p:{.hSelf=%#x}\n", pGVM, pGVM->hSelf)); + + PGMM pGMM; + GMM_GET_VALID_INSTANCE_VOID(pGMM); + +#ifdef VBOX_WITH_PAGE_SHARING + /* + * Clean up all registered shared modules first. + */ + gmmR0SharedModuleCleanup(pGMM, pGVM); +#endif + + gmmR0MutexAcquire(pGMM); + uint64_t uLockNanoTS = RTTimeSystemNanoTS(); + GMM_CHECK_SANITY_UPON_ENTERING(pGMM); + + /* + * The policy is 'INVALID' until the initial reservation + * request has been serviced. + */ + if ( pGVM->gmm.s.Stats.enmPolicy > GMMOCPOLICY_INVALID + && pGVM->gmm.s.Stats.enmPolicy < GMMOCPOLICY_END) + { + /* + * If it's the last VM around, we can skip walking all the chunk looking + * for the pages owned by this VM and instead flush the whole shebang. + * + * This takes care of the eventuality that a VM has left shared page + * references behind (shouldn't happen of course, but you never know). + */ + Assert(pGMM->cRegisteredVMs); + pGMM->cRegisteredVMs--; + + /* + * Walk the entire pool looking for pages that belong to this VM + * and leftover mappings. (This'll only catch private pages, + * shared pages will be 'left behind'.) + */ + /** @todo r=bird: This scanning+freeing could be optimized in bound mode! */ + uint64_t cPrivatePages = pGVM->gmm.s.Stats.cPrivatePages; /* save */ + + unsigned iCountDown = 64; + bool fRedoFromStart; + PGMMCHUNK pChunk; + do + { + fRedoFromStart = false; + RTListForEachReverse(&pGMM->ChunkList, pChunk, GMMCHUNK, ListNode) + { + uint32_t const cFreeChunksOld = pGMM->cFreedChunks; + if ( ( !pGMM->fBoundMemoryMode + || pChunk->hGVM == pGVM->hSelf) + && gmmR0CleanupVMScanChunk(pGMM, pGVM, pChunk)) + { + /* We left the giant mutex, so reset the yield counters. */ + uLockNanoTS = RTTimeSystemNanoTS(); + iCountDown = 64; + } + else + { + /* Didn't leave it, so do normal yielding. */ + if (!iCountDown) + gmmR0MutexYield(pGMM, &uLockNanoTS); + else + iCountDown--; + } + if (pGMM->cFreedChunks != cFreeChunksOld) + { + fRedoFromStart = true; + break; + } + } + } while (fRedoFromStart); + + if (pGVM->gmm.s.Stats.cPrivatePages) + SUPR0Printf("GMMR0CleanupVM: hGVM=%#x has %#x private pages that cannot be found!\n", pGVM->hSelf, pGVM->gmm.s.Stats.cPrivatePages); + + pGMM->cAllocatedPages -= cPrivatePages; + + /* + * Free empty chunks. + */ + PGMMCHUNKFREESET pPrivateSet = pGMM->fBoundMemoryMode ? &pGVM->gmm.s.Private : &pGMM->PrivateX; + do + { + fRedoFromStart = false; + iCountDown = 10240; + pChunk = pPrivateSet->apLists[GMM_CHUNK_FREE_SET_UNUSED_LIST]; + while (pChunk) + { + PGMMCHUNK pNext = pChunk->pFreeNext; + Assert(pChunk->cFree == GMM_CHUNK_NUM_PAGES); + if ( !pGMM->fBoundMemoryMode + || pChunk->hGVM == pGVM->hSelf) + { + uint64_t const idGenerationOld = pPrivateSet->idGeneration; + if (gmmR0FreeChunk(pGMM, pGVM, pChunk, true /*fRelaxedSem*/)) + { + /* We've left the giant mutex, restart? (+1 for our unlink) */ + fRedoFromStart = pPrivateSet->idGeneration != idGenerationOld + 1; + if (fRedoFromStart) + break; + uLockNanoTS = RTTimeSystemNanoTS(); + iCountDown = 10240; + } + } + + /* Advance and maybe yield the lock. */ + pChunk = pNext; + if (--iCountDown == 0) + { + uint64_t const idGenerationOld = pPrivateSet->idGeneration; + fRedoFromStart = gmmR0MutexYield(pGMM, &uLockNanoTS) + && pPrivateSet->idGeneration != idGenerationOld; + if (fRedoFromStart) + break; + iCountDown = 10240; + } + } + } while (fRedoFromStart); + + /* + * Account for shared pages that weren't freed. + */ + if (pGVM->gmm.s.Stats.cSharedPages) + { + Assert(pGMM->cSharedPages >= pGVM->gmm.s.Stats.cSharedPages); + SUPR0Printf("GMMR0CleanupVM: hGVM=%#x left %#x shared pages behind!\n", pGVM->hSelf, pGVM->gmm.s.Stats.cSharedPages); + pGMM->cLeftBehindSharedPages += pGVM->gmm.s.Stats.cSharedPages; + } + + /* + * Clean up balloon statistics in case the VM process crashed. + */ + Assert(pGMM->cBalloonedPages >= pGVM->gmm.s.Stats.cBalloonedPages); + pGMM->cBalloonedPages -= pGVM->gmm.s.Stats.cBalloonedPages; + + /* + * Update the over-commitment management statistics. + */ + pGMM->cReservedPages -= pGVM->gmm.s.Stats.Reserved.cBasePages + + pGVM->gmm.s.Stats.Reserved.cFixedPages + + pGVM->gmm.s.Stats.Reserved.cShadowPages; + switch (pGVM->gmm.s.Stats.enmPolicy) + { + case GMMOCPOLICY_NO_OC: + break; + default: + /** @todo Update GMM->cOverCommittedPages */ + break; + } + } + + /* zap the GVM data. */ + pGVM->gmm.s.Stats.enmPolicy = GMMOCPOLICY_INVALID; + pGVM->gmm.s.Stats.enmPriority = GMMPRIORITY_INVALID; + pGVM->gmm.s.Stats.fMayAllocate = false; + + GMM_CHECK_SANITY_UPON_LEAVING(pGMM); + gmmR0MutexRelease(pGMM); + + /* + * Destroy the spinlock. + */ + RTSPINLOCK hSpinlock = NIL_RTSPINLOCK; + ASMAtomicXchgHandle(&pGVM->gmm.s.hChunkTlbSpinLock, NIL_RTSPINLOCK, &hSpinlock); + RTSpinlockDestroy(hSpinlock); + + LogFlow(("GMMR0CleanupVM: returns\n")); +} + + +/** + * Scan one chunk for private pages belonging to the specified VM. + * + * @note This function may drop the giant mutex! + * + * @returns @c true if we've temporarily dropped the giant mutex, @c false if + * we didn't. + * @param pGMM Pointer to the GMM instance. + * @param pGVM The global VM handle. + * @param pChunk The chunk to scan. + */ +static bool gmmR0CleanupVMScanChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk) +{ + Assert(!pGMM->fBoundMemoryMode || pChunk->hGVM == pGVM->hSelf); + + /* + * Look for pages belonging to the VM. + * (Perform some internal checks while we're scanning.) + */ +#ifndef VBOX_STRICT + if (pChunk->cFree != GMM_CHUNK_NUM_PAGES) +#endif + { + unsigned cPrivate = 0; + unsigned cShared = 0; + unsigned cFree = 0; + + gmmR0UnlinkChunk(pChunk); /* avoiding cFreePages updates. */ + + uint16_t hGVM = pGVM->hSelf; + unsigned iPage = (GMM_CHUNK_SIZE >> GUEST_PAGE_SHIFT); + while (iPage-- > 0) + if (GMM_PAGE_IS_PRIVATE(&pChunk->aPages[iPage])) + { + if (pChunk->aPages[iPage].Private.hGVM == hGVM) + { + /* + * Free the page. + * + * The reason for not using gmmR0FreePrivatePage here is that we + * must *not* cause the chunk to be freed from under us - we're in + * an AVL tree walk here. + */ + pChunk->aPages[iPage].u = 0; + pChunk->aPages[iPage].Free.u2State = GMM_PAGE_STATE_FREE; + pChunk->aPages[iPage].Free.fZeroed = false; + pChunk->aPages[iPage].Free.iNext = pChunk->iFreeHead; + pChunk->iFreeHead = iPage; + pChunk->cPrivate--; + pChunk->cFree++; + pGVM->gmm.s.Stats.cPrivatePages--; + cFree++; + } + else + cPrivate++; + } + else if (GMM_PAGE_IS_FREE(&pChunk->aPages[iPage])) + cFree++; + else + cShared++; + + gmmR0SelectSetAndLinkChunk(pGMM, pGVM, pChunk); + + /* + * Did it add up? + */ + if (RT_UNLIKELY( pChunk->cFree != cFree + || pChunk->cPrivate != cPrivate + || pChunk->cShared != cShared)) + { + SUPR0Printf("gmmR0CleanupVMScanChunk: Chunk %RKv/%#x has bogus stats - free=%d/%d private=%d/%d shared=%d/%d\n", + pChunk, pChunk->Core.Key, pChunk->cFree, cFree, pChunk->cPrivate, cPrivate, pChunk->cShared, cShared); + pChunk->cFree = cFree; + pChunk->cPrivate = cPrivate; + pChunk->cShared = cShared; + } + } + + /* + * If not in bound memory mode, we should reset the hGVM field + * if it has our handle in it. + */ + if (pChunk->hGVM == pGVM->hSelf) + { + if (!g_pGMM->fBoundMemoryMode) + pChunk->hGVM = NIL_GVM_HANDLE; + else if (pChunk->cFree != GMM_CHUNK_NUM_PAGES) + { + SUPR0Printf("gmmR0CleanupVMScanChunk: %RKv/%#x: cFree=%#x - it should be 0 in bound mode!\n", + pChunk, pChunk->Core.Key, pChunk->cFree); + AssertMsgFailed(("%p/%#x: cFree=%#x - it should be 0 in bound mode!\n", pChunk, pChunk->Core.Key, pChunk->cFree)); + + gmmR0UnlinkChunk(pChunk); + pChunk->cFree = GMM_CHUNK_NUM_PAGES; + gmmR0SelectSetAndLinkChunk(pGMM, pGVM, pChunk); + } + } + + /* + * Look for a mapping belonging to the terminating VM. + */ + GMMR0CHUNKMTXSTATE MtxState; + gmmR0ChunkMutexAcquire(&MtxState, pGMM, pChunk, GMMR0CHUNK_MTX_KEEP_GIANT); + unsigned cMappings = pChunk->cMappingsX; + for (unsigned i = 0; i < cMappings; i++) + if (pChunk->paMappingsX[i].pGVM == pGVM) + { + gmmR0ChunkMutexDropGiant(&MtxState); + + RTR0MEMOBJ hMemObj = pChunk->paMappingsX[i].hMapObj; + + cMappings--; + if (i < cMappings) + pChunk->paMappingsX[i] = pChunk->paMappingsX[cMappings]; + pChunk->paMappingsX[cMappings].pGVM = NULL; + pChunk->paMappingsX[cMappings].hMapObj = NIL_RTR0MEMOBJ; + Assert(pChunk->cMappingsX - 1U == cMappings); + pChunk->cMappingsX = cMappings; + + int rc = RTR0MemObjFree(hMemObj, false /* fFreeMappings (NA) */); + if (RT_FAILURE(rc)) + { + SUPR0Printf("gmmR0CleanupVMScanChunk: %RKv/%#x: mapping #%x: RTRMemObjFree(%RKv,false) -> %d \n", + pChunk, pChunk->Core.Key, i, hMemObj, rc); + AssertRC(rc); + } + + gmmR0ChunkMutexRelease(&MtxState, pChunk); + return true; + } + + gmmR0ChunkMutexRelease(&MtxState, pChunk); + return false; +} + + +/** + * The initial resource reservations. + * + * This will make memory reservations according to policy and priority. If there aren't + * sufficient resources available to sustain the VM this function will fail and all + * future allocations requests will fail as well. + * + * These are just the initial reservations made very very early during the VM creation + * process and will be adjusted later in the GMMR0UpdateReservation call after the + * ring-3 init has completed. + * + * @returns VBox status code. + * @retval VERR_GMM_MEMORY_RESERVATION_DECLINED + * @retval VERR_GMM_ + * + * @param pGVM The global (ring-0) VM structure. + * @param idCpu The VCPU id - must be zero. + * @param cBasePages The number of pages that may be allocated for the base RAM and ROMs. + * This does not include MMIO2 and similar. + * @param cShadowPages The number of pages that may be allocated for shadow paging structures. + * @param cFixedPages The number of pages that may be allocated for fixed objects like the + * hyper heap, MMIO2 and similar. + * @param enmPolicy The OC policy to use on this VM. + * @param enmPriority The priority in an out-of-memory situation. + * + * @thread The creator thread / EMT(0). + */ +GMMR0DECL(int) GMMR0InitialReservation(PGVM pGVM, VMCPUID idCpu, uint64_t cBasePages, uint32_t cShadowPages, + uint32_t cFixedPages, GMMOCPOLICY enmPolicy, GMMPRIORITY enmPriority) +{ + LogFlow(("GMMR0InitialReservation: pGVM=%p cBasePages=%#llx cShadowPages=%#x cFixedPages=%#x enmPolicy=%d enmPriority=%d\n", + pGVM, cBasePages, cShadowPages, cFixedPages, enmPolicy, enmPriority)); + + /* + * Validate, get basics and take the semaphore. + */ + AssertReturn(idCpu == 0, VERR_INVALID_CPU_ID); + PGMM pGMM; + GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE); + int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu); + if (RT_FAILURE(rc)) + return rc; + + AssertReturn(cBasePages, VERR_INVALID_PARAMETER); + AssertReturn(cShadowPages, VERR_INVALID_PARAMETER); + AssertReturn(cFixedPages, VERR_INVALID_PARAMETER); + AssertReturn(enmPolicy > GMMOCPOLICY_INVALID && enmPolicy < GMMOCPOLICY_END, VERR_INVALID_PARAMETER); + AssertReturn(enmPriority > GMMPRIORITY_INVALID && enmPriority < GMMPRIORITY_END, VERR_INVALID_PARAMETER); + + gmmR0MutexAcquire(pGMM); + if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) + { + if ( !pGVM->gmm.s.Stats.Reserved.cBasePages + && !pGVM->gmm.s.Stats.Reserved.cFixedPages + && !pGVM->gmm.s.Stats.Reserved.cShadowPages) + { + /* + * Check if we can accommodate this. + */ + /* ... later ... */ + if (RT_SUCCESS(rc)) + { + /* + * Update the records. + */ + pGVM->gmm.s.Stats.Reserved.cBasePages = cBasePages; + pGVM->gmm.s.Stats.Reserved.cFixedPages = cFixedPages; + pGVM->gmm.s.Stats.Reserved.cShadowPages = cShadowPages; + pGVM->gmm.s.Stats.enmPolicy = enmPolicy; + pGVM->gmm.s.Stats.enmPriority = enmPriority; + pGVM->gmm.s.Stats.fMayAllocate = true; + + pGMM->cReservedPages += cBasePages + cFixedPages + cShadowPages; + pGMM->cRegisteredVMs++; + } + } + else + rc = VERR_WRONG_ORDER; + GMM_CHECK_SANITY_UPON_LEAVING(pGMM); + } + else + rc = VERR_GMM_IS_NOT_SANE; + gmmR0MutexRelease(pGMM); + LogFlow(("GMMR0InitialReservation: returns %Rrc\n", rc)); + return rc; +} + + +/** + * VMMR0 request wrapper for GMMR0InitialReservation. + * + * @returns see GMMR0InitialReservation. + * @param pGVM The global (ring-0) VM structure. + * @param idCpu The VCPU id. + * @param pReq Pointer to the request packet. + */ +GMMR0DECL(int) GMMR0InitialReservationReq(PGVM pGVM, VMCPUID idCpu, PGMMINITIALRESERVATIONREQ pReq) +{ + /* + * Validate input and pass it on. + */ + AssertPtrReturn(pGVM, VERR_INVALID_POINTER); + AssertPtrReturn(pReq, VERR_INVALID_POINTER); + AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER); + + return GMMR0InitialReservation(pGVM, idCpu, pReq->cBasePages, pReq->cShadowPages, + pReq->cFixedPages, pReq->enmPolicy, pReq->enmPriority); +} + + +/** + * This updates the memory reservation with the additional MMIO2 and ROM pages. + * + * @returns VBox status code. + * @retval VERR_GMM_MEMORY_RESERVATION_DECLINED + * + * @param pGVM The global (ring-0) VM structure. + * @param idCpu The VCPU id. + * @param cBasePages The number of pages that may be allocated for the base RAM and ROMs. + * This does not include MMIO2 and similar. + * @param cShadowPages The number of pages that may be allocated for shadow paging structures. + * @param cFixedPages The number of pages that may be allocated for fixed objects like the + * hyper heap, MMIO2 and similar. + * + * @thread EMT(idCpu) + */ +GMMR0DECL(int) GMMR0UpdateReservation(PGVM pGVM, VMCPUID idCpu, uint64_t cBasePages, + uint32_t cShadowPages, uint32_t cFixedPages) +{ + LogFlow(("GMMR0UpdateReservation: pGVM=%p cBasePages=%#llx cShadowPages=%#x cFixedPages=%#x\n", + pGVM, cBasePages, cShadowPages, cFixedPages)); + + /* + * Validate, get basics and take the semaphore. + */ + PGMM pGMM; + GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE); + int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu); + if (RT_FAILURE(rc)) + return rc; + + AssertReturn(cBasePages, VERR_INVALID_PARAMETER); + AssertReturn(cShadowPages, VERR_INVALID_PARAMETER); + AssertReturn(cFixedPages, VERR_INVALID_PARAMETER); + + gmmR0MutexAcquire(pGMM); + if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) + { + if ( pGVM->gmm.s.Stats.Reserved.cBasePages + && pGVM->gmm.s.Stats.Reserved.cFixedPages + && pGVM->gmm.s.Stats.Reserved.cShadowPages) + { + /* + * Check if we can accommodate this. + */ + /* ... later ... */ + if (RT_SUCCESS(rc)) + { + /* + * Update the records. + */ + pGMM->cReservedPages -= pGVM->gmm.s.Stats.Reserved.cBasePages + + pGVM->gmm.s.Stats.Reserved.cFixedPages + + pGVM->gmm.s.Stats.Reserved.cShadowPages; + pGMM->cReservedPages += cBasePages + cFixedPages + cShadowPages; + + pGVM->gmm.s.Stats.Reserved.cBasePages = cBasePages; + pGVM->gmm.s.Stats.Reserved.cFixedPages = cFixedPages; + pGVM->gmm.s.Stats.Reserved.cShadowPages = cShadowPages; + } + } + else + rc = VERR_WRONG_ORDER; + GMM_CHECK_SANITY_UPON_LEAVING(pGMM); + } + else + rc = VERR_GMM_IS_NOT_SANE; + gmmR0MutexRelease(pGMM); + LogFlow(("GMMR0UpdateReservation: returns %Rrc\n", rc)); + return rc; +} + + +/** + * VMMR0 request wrapper for GMMR0UpdateReservation. + * + * @returns see GMMR0UpdateReservation. + * @param pGVM The global (ring-0) VM structure. + * @param idCpu The VCPU id. + * @param pReq Pointer to the request packet. + */ +GMMR0DECL(int) GMMR0UpdateReservationReq(PGVM pGVM, VMCPUID idCpu, PGMMUPDATERESERVATIONREQ pReq) +{ + /* + * Validate input and pass it on. + */ + AssertPtrReturn(pReq, VERR_INVALID_POINTER); + AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER); + + return GMMR0UpdateReservation(pGVM, idCpu, pReq->cBasePages, pReq->cShadowPages, pReq->cFixedPages); +} + +#ifdef GMMR0_WITH_SANITY_CHECK + +/** + * Performs sanity checks on a free set. + * + * @returns Error count. + * + * @param pGMM Pointer to the GMM instance. + * @param pSet Pointer to the set. + * @param pszSetName The set name. + * @param pszFunction The function from which it was called. + * @param uLine The line number. + */ +static uint32_t gmmR0SanityCheckSet(PGMM pGMM, PGMMCHUNKFREESET pSet, const char *pszSetName, + const char *pszFunction, unsigned uLineNo) +{ + uint32_t cErrors = 0; + + /* + * Count the free pages in all the chunks and match it against pSet->cFreePages. + */ + uint32_t cPages = 0; + for (unsigned i = 0; i < RT_ELEMENTS(pSet->apLists); i++) + { + for (PGMMCHUNK pCur = pSet->apLists[i]; pCur; pCur = pCur->pFreeNext) + { + /** @todo check that the chunk is hash into the right set. */ + cPages += pCur->cFree; + } + } + if (RT_UNLIKELY(cPages != pSet->cFreePages)) + { + SUPR0Printf("GMM insanity: found %#x pages in the %s set, expected %#x. (%s, line %u)\n", + cPages, pszSetName, pSet->cFreePages, pszFunction, uLineNo); + cErrors++; + } + + return cErrors; +} + + +/** + * Performs some sanity checks on the GMM while owning lock. + * + * @returns Error count. + * + * @param pGMM Pointer to the GMM instance. + * @param pszFunction The function from which it is called. + * @param uLineNo The line number. + */ +static uint32_t gmmR0SanityCheck(PGMM pGMM, const char *pszFunction, unsigned uLineNo) +{ + uint32_t cErrors = 0; + + cErrors += gmmR0SanityCheckSet(pGMM, &pGMM->PrivateX, "private", pszFunction, uLineNo); + cErrors += gmmR0SanityCheckSet(pGMM, &pGMM->Shared, "shared", pszFunction, uLineNo); + /** @todo add more sanity checks. */ + + return cErrors; +} + +#endif /* GMMR0_WITH_SANITY_CHECK */ + +/** + * Looks up a chunk in the tree and fill in the TLB entry for it. + * + * This is not expected to fail and will bitch if it does. + * + * @returns Pointer to the allocation chunk, NULL if not found. + * @param pGMM Pointer to the GMM instance. + * @param idChunk The ID of the chunk to find. + * @param pTlbe Pointer to the TLB entry. + * + * @note Caller owns spinlock. + */ +static PGMMCHUNK gmmR0GetChunkSlow(PGMM pGMM, uint32_t idChunk, PGMMCHUNKTLBE pTlbe) +{ + PGMMCHUNK pChunk = (PGMMCHUNK)RTAvlU32Get(&pGMM->pChunks, idChunk); + AssertMsgReturn(pChunk, ("Chunk %#x not found!\n", idChunk), NULL); + pTlbe->idChunk = idChunk; + pTlbe->pChunk = pChunk; + return pChunk; +} + + +/** + * Finds a allocation chunk, spin-locked. + * + * This is not expected to fail and will bitch if it does. + * + * @returns Pointer to the allocation chunk, NULL if not found. + * @param pGMM Pointer to the GMM instance. + * @param idChunk The ID of the chunk to find. + */ +DECLINLINE(PGMMCHUNK) gmmR0GetChunkLocked(PGMM pGMM, uint32_t idChunk) +{ + /* + * Do a TLB lookup, branch if not in the TLB. + */ + PGMMCHUNKTLBE pTlbe = &pGMM->ChunkTLB.aEntries[GMM_CHUNKTLB_IDX(idChunk)]; + PGMMCHUNK pChunk = pTlbe->pChunk; + if ( pChunk == NULL + || pTlbe->idChunk != idChunk) + pChunk = gmmR0GetChunkSlow(pGMM, idChunk, pTlbe); + return pChunk; +} + + +/** + * Finds a allocation chunk. + * + * This is not expected to fail and will bitch if it does. + * + * @returns Pointer to the allocation chunk, NULL if not found. + * @param pGMM Pointer to the GMM instance. + * @param idChunk The ID of the chunk to find. + */ +DECLINLINE(PGMMCHUNK) gmmR0GetChunk(PGMM pGMM, uint32_t idChunk) +{ + RTSpinlockAcquire(pGMM->hSpinLockTree); + PGMMCHUNK pChunk = gmmR0GetChunkLocked(pGMM, idChunk); + RTSpinlockRelease(pGMM->hSpinLockTree); + return pChunk; +} + + +/** + * Finds a page. + * + * This is not expected to fail and will bitch if it does. + * + * @returns Pointer to the page, NULL if not found. + * @param pGMM Pointer to the GMM instance. + * @param idPage The ID of the page to find. + */ +DECLINLINE(PGMMPAGE) gmmR0GetPage(PGMM pGMM, uint32_t idPage) +{ + PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT); + if (RT_LIKELY(pChunk)) + return &pChunk->aPages[idPage & GMM_PAGEID_IDX_MASK]; + return NULL; +} + + +#if 0 /* unused */ +/** + * Gets the host physical address for a page given by it's ID. + * + * @returns The host physical address or NIL_RTHCPHYS. + * @param pGMM Pointer to the GMM instance. + * @param idPage The ID of the page to find. + */ +DECLINLINE(RTHCPHYS) gmmR0GetPageHCPhys(PGMM pGMM, uint32_t idPage) +{ + PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT); + if (RT_LIKELY(pChunk)) + return RTR0MemObjGetPagePhysAddr(pChunk->hMemObj, idPage & GMM_PAGEID_IDX_MASK); + return NIL_RTHCPHYS; +} +#endif /* unused */ + + +/** + * Selects the appropriate free list given the number of free pages. + * + * @returns Free list index. + * @param cFree The number of free pages in the chunk. + */ +DECLINLINE(unsigned) gmmR0SelectFreeSetList(unsigned cFree) +{ + unsigned iList = cFree >> GMM_CHUNK_FREE_SET_SHIFT; + AssertMsg(iList < RT_SIZEOFMEMB(GMMCHUNKFREESET, apLists) / RT_SIZEOFMEMB(GMMCHUNKFREESET, apLists[0]), + ("%d (%u)\n", iList, cFree)); + return iList; +} + + +/** + * Unlinks the chunk from the free list it's currently on (if any). + * + * @param pChunk The allocation chunk. + */ +DECLINLINE(void) gmmR0UnlinkChunk(PGMMCHUNK pChunk) +{ + PGMMCHUNKFREESET pSet = pChunk->pSet; + if (RT_LIKELY(pSet)) + { + pSet->cFreePages -= pChunk->cFree; + pSet->idGeneration++; + + PGMMCHUNK pPrev = pChunk->pFreePrev; + PGMMCHUNK pNext = pChunk->pFreeNext; + if (pPrev) + pPrev->pFreeNext = pNext; + else + pSet->apLists[gmmR0SelectFreeSetList(pChunk->cFree)] = pNext; + if (pNext) + pNext->pFreePrev = pPrev; + + pChunk->pSet = NULL; + pChunk->pFreeNext = NULL; + pChunk->pFreePrev = NULL; + } + else + { + Assert(!pChunk->pFreeNext); + Assert(!pChunk->pFreePrev); + Assert(!pChunk->cFree); + } +} + + +/** + * Links the chunk onto the appropriate free list in the specified free set. + * + * If no free entries, it's not linked into any list. + * + * @param pChunk The allocation chunk. + * @param pSet The free set. + */ +DECLINLINE(void) gmmR0LinkChunk(PGMMCHUNK pChunk, PGMMCHUNKFREESET pSet) +{ + Assert(!pChunk->pSet); + Assert(!pChunk->pFreeNext); + Assert(!pChunk->pFreePrev); + + if (pChunk->cFree > 0) + { + pChunk->pSet = pSet; + pChunk->pFreePrev = NULL; + unsigned const iList = gmmR0SelectFreeSetList(pChunk->cFree); + pChunk->pFreeNext = pSet->apLists[iList]; + if (pChunk->pFreeNext) + pChunk->pFreeNext->pFreePrev = pChunk; + pSet->apLists[iList] = pChunk; + + pSet->cFreePages += pChunk->cFree; + pSet->idGeneration++; + } +} + + +/** + * Links the chunk onto the appropriate free list in the specified free set. + * + * If no free entries, it's not linked into any list. + * + * @param pGMM Pointer to the GMM instance. + * @param pGVM Pointer to the kernel-only VM instace data. + * @param pChunk The allocation chunk. + */ +DECLINLINE(void) gmmR0SelectSetAndLinkChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk) +{ + PGMMCHUNKFREESET pSet; + if (pGMM->fBoundMemoryMode) + pSet = &pGVM->gmm.s.Private; + else if (pChunk->cShared) + pSet = &pGMM->Shared; + else + pSet = &pGMM->PrivateX; + gmmR0LinkChunk(pChunk, pSet); +} + + +/** + * Frees a Chunk ID. + * + * @param pGMM Pointer to the GMM instance. + * @param idChunk The Chunk ID to free. + */ +static void gmmR0FreeChunkId(PGMM pGMM, uint32_t idChunk) +{ + AssertReturnVoid(idChunk != NIL_GMM_CHUNKID); + RTSpinlockAcquire(pGMM->hSpinLockChunkId); /* We could probably skip the locking here, I think. */ + + AssertMsg(ASMBitTest(&pGMM->bmChunkId[0], idChunk), ("%#x\n", idChunk)); + ASMAtomicBitClear(&pGMM->bmChunkId[0], idChunk); + + RTSpinlockRelease(pGMM->hSpinLockChunkId); +} + + +/** + * Allocates a new Chunk ID. + * + * @returns The Chunk ID. + * @param pGMM Pointer to the GMM instance. + */ +static uint32_t gmmR0AllocateChunkId(PGMM pGMM) +{ + AssertCompile(!((GMM_CHUNKID_LAST + 1) & 31)); /* must be a multiple of 32 */ + AssertCompile(NIL_GMM_CHUNKID == 0); + + RTSpinlockAcquire(pGMM->hSpinLockChunkId); + + /* + * Try the next sequential one. + */ + int32_t idChunk = ++pGMM->idChunkPrev; + if ( (uint32_t)idChunk <= GMM_CHUNKID_LAST + && idChunk > NIL_GMM_CHUNKID) + { + if (!ASMAtomicBitTestAndSet(&pGMM->bmChunkId[0], idChunk)) + { + RTSpinlockRelease(pGMM->hSpinLockChunkId); + return idChunk; + } + + /* + * Scan sequentially from the last one. + */ + if ((uint32_t)idChunk < GMM_CHUNKID_LAST) + { + idChunk = ASMBitNextClear(&pGMM->bmChunkId[0], GMM_CHUNKID_LAST + 1, idChunk); + if ( idChunk > NIL_GMM_CHUNKID + && (uint32_t)idChunk <= GMM_CHUNKID_LAST) + { + AssertMsgReturnStmt(!ASMAtomicBitTestAndSet(&pGMM->bmChunkId[0], idChunk), ("%#x\n", idChunk), + RTSpinlockRelease(pGMM->hSpinLockChunkId), NIL_GMM_CHUNKID); + + pGMM->idChunkPrev = idChunk; + RTSpinlockRelease(pGMM->hSpinLockChunkId); + return idChunk; + } + } + } + + /* + * Ok, scan from the start. + * We're not racing anyone, so there is no need to expect failures or have restart loops. + */ + idChunk = ASMBitFirstClear(&pGMM->bmChunkId[0], GMM_CHUNKID_LAST + 1); + AssertMsgReturnStmt(idChunk > NIL_GMM_CHUNKID && (uint32_t)idChunk <= GMM_CHUNKID_LAST, ("%#x\n", idChunk), + RTSpinlockRelease(pGMM->hSpinLockChunkId), NIL_GVM_HANDLE); + AssertMsgReturnStmt(!ASMAtomicBitTestAndSet(&pGMM->bmChunkId[0], idChunk), ("%#x\n", idChunk), + RTSpinlockRelease(pGMM->hSpinLockChunkId), NIL_GMM_CHUNKID); + + pGMM->idChunkPrev = idChunk; + RTSpinlockRelease(pGMM->hSpinLockChunkId); + return idChunk; +} + + +/** + * Allocates one private page. + * + * Worker for gmmR0AllocatePages. + * + * @param pChunk The chunk to allocate it from. + * @param hGVM The GVM handle of the VM requesting memory. + * @param pPageDesc The page descriptor. + */ +static void gmmR0AllocatePage(PGMMCHUNK pChunk, uint32_t hGVM, PGMMPAGEDESC pPageDesc) +{ + /* update the chunk stats. */ + if (pChunk->hGVM == NIL_GVM_HANDLE) + pChunk->hGVM = hGVM; + Assert(pChunk->cFree); + pChunk->cFree--; + pChunk->cPrivate++; + + /* unlink the first free page. */ + const uint32_t iPage = pChunk->iFreeHead; + AssertReleaseMsg(iPage < RT_ELEMENTS(pChunk->aPages), ("%d\n", iPage)); + PGMMPAGE pPage = &pChunk->aPages[iPage]; + Assert(GMM_PAGE_IS_FREE(pPage)); + pChunk->iFreeHead = pPage->Free.iNext; + Log3(("A pPage=%p iPage=%#x/%#x u2State=%d iFreeHead=%#x iNext=%#x\n", + pPage, iPage, (pChunk->Core.Key << GMM_CHUNKID_SHIFT) | iPage, + pPage->Common.u2State, pChunk->iFreeHead, pPage->Free.iNext)); + + bool const fZeroed = pPage->Free.fZeroed; + + /* make the page private. */ + pPage->u = 0; + AssertCompile(GMM_PAGE_STATE_PRIVATE == 0); + pPage->Private.hGVM = hGVM; + AssertCompile(NIL_RTHCPHYS >= GMM_GCPHYS_LAST); + AssertCompile(GMM_GCPHYS_UNSHAREABLE >= GMM_GCPHYS_LAST); + if (pPageDesc->HCPhysGCPhys <= GMM_GCPHYS_LAST) + pPage->Private.pfn = pPageDesc->HCPhysGCPhys >> GUEST_PAGE_SHIFT; + else + pPage->Private.pfn = GMM_PAGE_PFN_UNSHAREABLE; /* unshareable / unassigned - same thing. */ + + /* update the page descriptor. */ + pPageDesc->idSharedPage = NIL_GMM_PAGEID; + pPageDesc->idPage = (pChunk->Core.Key << GMM_CHUNKID_SHIFT) | iPage; + RTHCPHYS const HCPhys = RTR0MemObjGetPagePhysAddr(pChunk->hMemObj, iPage); + Assert(HCPhys != NIL_RTHCPHYS); Assert(HCPhys < NIL_GMMPAGEDESC_PHYS); + pPageDesc->HCPhysGCPhys = HCPhys; + pPageDesc->fZeroed = fZeroed; +} + + +/** + * Picks the free pages from a chunk. + * + * @returns The new page descriptor table index. + * @param pChunk The chunk. + * @param hGVM The affinity of the chunk. NIL_GVM_HANDLE for no + * affinity. + * @param iPage The current page descriptor table index. + * @param cPages The total number of pages to allocate. + * @param paPages The page descriptor table (input + ouput). + */ +static uint32_t gmmR0AllocatePagesFromChunk(PGMMCHUNK pChunk, uint16_t const hGVM, uint32_t iPage, uint32_t cPages, + PGMMPAGEDESC paPages) +{ + PGMMCHUNKFREESET pSet = pChunk->pSet; Assert(pSet); + gmmR0UnlinkChunk(pChunk); + + for (; pChunk->cFree && iPage < cPages; iPage++) + gmmR0AllocatePage(pChunk, hGVM, &paPages[iPage]); + + gmmR0LinkChunk(pChunk, pSet); + return iPage; +} + + +/** + * Registers a new chunk of memory. + * + * This is called by gmmR0AllocateOneChunk and GMMR0AllocateLargePage. + * + * In the GMMR0AllocateLargePage case the GMM_CHUNK_FLAGS_LARGE_PAGE flag is + * set and the chunk will be registered as fully allocated to save time. + * + * @returns VBox status code. On success, the giant GMM lock will be held, the + * caller must release it (ugly). + * @param pGMM Pointer to the GMM instance. + * @param pSet Pointer to the set. + * @param hMemObj The memory object for the chunk. + * @param hGVM The affinity of the chunk. NIL_GVM_HANDLE for no + * affinity. + * @param pSession Same as @a hGVM. + * @param fChunkFlags The chunk flags, GMM_CHUNK_FLAGS_XXX. + * @param cPages The number of pages requested. Zero for large pages. + * @param paPages The page descriptor table (input + output). NULL for + * large pages. + * @param piPage The pointer to the page descriptor table index variable. + * This will be updated. NULL for large pages. + * @param ppChunk Chunk address (out). + * + * @remarks The caller must not own the giant GMM mutex. + * The giant GMM mutex will be acquired and returned acquired in + * the success path. On failure, no locks will be held. + */ +static int gmmR0RegisterChunk(PGMM pGMM, PGMMCHUNKFREESET pSet, RTR0MEMOBJ hMemObj, uint16_t hGVM, PSUPDRVSESSION pSession, + uint16_t fChunkFlags, uint32_t cPages, PGMMPAGEDESC paPages, uint32_t *piPage, PGMMCHUNK *ppChunk) +{ + /* + * Validate input & state. + */ + Assert(pGMM->hMtxOwner != RTThreadNativeSelf()); + Assert(hGVM != NIL_GVM_HANDLE || pGMM->fBoundMemoryMode); + Assert(fChunkFlags == 0 || fChunkFlags == GMM_CHUNK_FLAGS_LARGE_PAGE); + if (!(fChunkFlags &= GMM_CHUNK_FLAGS_LARGE_PAGE)) + { + AssertPtr(paPages); + AssertPtr(piPage); + Assert(cPages > 0); + Assert(cPages > *piPage); + } + else + { + Assert(cPages == 0); + Assert(!paPages); + Assert(!piPage); + } + +#ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM + /* + * Get a ring-0 mapping of the object. + */ + uint8_t *pbMapping = (uint8_t *)RTR0MemObjAddress(hMemObj); + if (!pbMapping) + { + RTR0MEMOBJ hMapObj; + int rc = RTR0MemObjMapKernel(&hMapObj, hMemObj, (void *)-1, 0, RTMEM_PROT_READ | RTMEM_PROT_WRITE); + if (RT_SUCCESS(rc)) + pbMapping = (uint8_t *)RTR0MemObjAddress(hMapObj); + else + return rc; + AssertPtr(pbMapping); + } +#endif + + /* + * Allocate a chunk and an ID for it. + */ + int rc; + PGMMCHUNK pChunk = (PGMMCHUNK)RTMemAllocZ(sizeof(*pChunk)); + if (pChunk) + { + pChunk->Core.Key = gmmR0AllocateChunkId(pGMM); + if ( pChunk->Core.Key != NIL_GMM_CHUNKID + && pChunk->Core.Key <= GMM_CHUNKID_LAST) + { + /* + * Initialize it. + */ + pChunk->hMemObj = hMemObj; +#ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM + pChunk->pbMapping = pbMapping; +#endif + pChunk->hGVM = hGVM; + pChunk->idNumaNode = gmmR0GetCurrentNumaNodeId(); + pChunk->iChunkMtx = UINT8_MAX; + pChunk->fFlags = fChunkFlags; + pChunk->uidOwner = pSession ? SUPR0GetSessionUid(pSession) : NIL_RTUID; + /*pChunk->cShared = 0; */ + + uint32_t const iDstPageFirst = piPage ? *piPage : cPages; + if (!(fChunkFlags & GMM_CHUNK_FLAGS_LARGE_PAGE)) + { + /* + * Allocate the requested number of pages from the start of the chunk, + * queue the rest (if any) on the free list. + */ + uint32_t const cPagesAlloc = RT_MIN(cPages - iDstPageFirst, GMM_CHUNK_NUM_PAGES); + pChunk->cPrivate = cPagesAlloc; + pChunk->cFree = GMM_CHUNK_NUM_PAGES - cPagesAlloc; + pChunk->iFreeHead = GMM_CHUNK_NUM_PAGES > cPagesAlloc ? cPagesAlloc : UINT16_MAX; + + /* Alloc pages: */ + uint32_t const idPageChunk = pChunk->Core.Key << GMM_CHUNKID_SHIFT; + uint32_t iDstPage = iDstPageFirst; + uint32_t iPage; + for (iPage = 0; iPage < cPagesAlloc; iPage++, iDstPage++) + { + if (paPages[iDstPage].HCPhysGCPhys <= GMM_GCPHYS_LAST) + pChunk->aPages[iPage].Private.pfn = paPages[iDstPage].HCPhysGCPhys >> GUEST_PAGE_SHIFT; + else + pChunk->aPages[iPage].Private.pfn = GMM_PAGE_PFN_UNSHAREABLE; /* unshareable / unassigned - same thing. */ + pChunk->aPages[iPage].Private.hGVM = hGVM; + pChunk->aPages[iPage].Private.u2State = GMM_PAGE_STATE_PRIVATE; + + paPages[iDstPage].HCPhysGCPhys = RTR0MemObjGetPagePhysAddr(hMemObj, iPage); + paPages[iDstPage].fZeroed = true; + paPages[iDstPage].idPage = idPageChunk | iPage; + paPages[iDstPage].idSharedPage = NIL_GMM_PAGEID; + } + *piPage = iDstPage; + + /* Build free list: */ + if (iPage < RT_ELEMENTS(pChunk->aPages)) + { + Assert(pChunk->iFreeHead == iPage); + for (; iPage < RT_ELEMENTS(pChunk->aPages) - 1; iPage++) + { + pChunk->aPages[iPage].Free.u2State = GMM_PAGE_STATE_FREE; + pChunk->aPages[iPage].Free.fZeroed = true; + pChunk->aPages[iPage].Free.iNext = iPage + 1; + } + pChunk->aPages[RT_ELEMENTS(pChunk->aPages) - 1].Free.u2State = GMM_PAGE_STATE_FREE; + pChunk->aPages[RT_ELEMENTS(pChunk->aPages) - 1].Free.fZeroed = true; + pChunk->aPages[RT_ELEMENTS(pChunk->aPages) - 1].Free.iNext = UINT16_MAX; + } + else + Assert(pChunk->iFreeHead == UINT16_MAX); + } + else + { + /* + * Large page: Mark all pages as privately allocated (watered down gmmR0AllocatePage). + */ + pChunk->cFree = 0; + pChunk->cPrivate = GMM_CHUNK_NUM_PAGES; + pChunk->iFreeHead = UINT16_MAX; + + for (unsigned iPage = 0; iPage < RT_ELEMENTS(pChunk->aPages); iPage++) + { + pChunk->aPages[iPage].Private.pfn = GMM_PAGE_PFN_UNSHAREABLE; + pChunk->aPages[iPage].Private.hGVM = hGVM; + pChunk->aPages[iPage].Private.u2State = GMM_PAGE_STATE_PRIVATE; + } + } + + /* + * Zero the memory if it wasn't zeroed by the host already. + * This simplifies keeping secret kernel bits from userland and brings + * everyone to the same level wrt allocation zeroing. + */ + rc = VINF_SUCCESS; + if (!RTR0MemObjWasZeroInitialized(hMemObj)) + { +#ifdef VBOX_WITH_LINEAR_HOST_PHYS_MEM + if (!(fChunkFlags & GMM_CHUNK_FLAGS_LARGE_PAGE)) + { + for (uint32_t iPage = 0; iPage < GMM_CHUNK_SIZE / HOST_PAGE_SIZE; iPage++) + { + void *pvPage = NULL; + rc = SUPR0HCPhysToVirt(RTR0MemObjGetPagePhysAddr(hMemObj, iPage), &pvPage); + AssertRCBreak(rc); + RT_BZERO(pvPage, HOST_PAGE_SIZE); + } + } + else + { + /* Can do the whole large page in one go. */ + void *pvPage = NULL; + rc = SUPR0HCPhysToVirt(RTR0MemObjGetPagePhysAddr(hMemObj, 0), &pvPage); + AssertRC(rc); + if (RT_SUCCESS(rc)) + RT_BZERO(pvPage, GMM_CHUNK_SIZE); + } +#else + RT_BZERO(pbMapping, GMM_CHUNK_SIZE); +#endif + } + if (RT_SUCCESS(rc)) + { + *ppChunk = pChunk; + + /* + * Allocate a Chunk ID and insert it into the tree. + * This has to be done behind the mutex of course. + */ + rc = gmmR0MutexAcquire(pGMM); + if (RT_SUCCESS(rc)) + { + if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) + { + RTSpinlockAcquire(pGMM->hSpinLockTree); + if (RTAvlU32Insert(&pGMM->pChunks, &pChunk->Core)) + { + pGMM->cChunks++; + RTListAppend(&pGMM->ChunkList, &pChunk->ListNode); + RTSpinlockRelease(pGMM->hSpinLockTree); + + gmmR0LinkChunk(pChunk, pSet); + + LogFlow(("gmmR0RegisterChunk: pChunk=%p id=%#x cChunks=%d\n", pChunk, pChunk->Core.Key, pGMM->cChunks)); + GMM_CHECK_SANITY_UPON_LEAVING(pGMM); + return VINF_SUCCESS; + } + + /* + * Bail out. + */ + RTSpinlockRelease(pGMM->hSpinLockTree); + rc = VERR_GMM_CHUNK_INSERT; + } + else + rc = VERR_GMM_IS_NOT_SANE; + gmmR0MutexRelease(pGMM); + } + *ppChunk = NULL; + } + + /* Undo any page allocations. */ + if (!(fChunkFlags & GMM_CHUNK_FLAGS_LARGE_PAGE)) + { + uint32_t const cToFree = pChunk->cPrivate; + Assert(*piPage - iDstPageFirst == cToFree); + for (uint32_t iDstPage = iDstPageFirst, iPage = 0; iPage < cToFree; iPage++, iDstPage++) + { + paPages[iDstPageFirst].fZeroed = false; + if (pChunk->aPages[iPage].Private.pfn == GMM_PAGE_PFN_UNSHAREABLE) + paPages[iDstPageFirst].HCPhysGCPhys = NIL_GMMPAGEDESC_PHYS; + else + paPages[iDstPageFirst].HCPhysGCPhys = (RTHCPHYS)pChunk->aPages[iPage].Private.pfn << GUEST_PAGE_SHIFT; + paPages[iDstPageFirst].idPage = NIL_GMM_PAGEID; + paPages[iDstPageFirst].idSharedPage = NIL_GMM_PAGEID; + } + *piPage = iDstPageFirst; + } + + gmmR0FreeChunkId(pGMM, pChunk->Core.Key); + } + else + rc = VERR_GMM_CHUNK_INSERT; + RTMemFree(pChunk); + } + else + rc = VERR_NO_MEMORY; + return rc; +} + + +/** + * Allocate a new chunk, immediately pick the requested pages from it, and adds + * what's remaining to the specified free set. + * + * @note This will leave the giant mutex while allocating the new chunk! + * + * @returns VBox status code. + * @param pGMM Pointer to the GMM instance data. + * @param pGVM Pointer to the kernel-only VM instace data. + * @param pSet Pointer to the free set. + * @param cPages The number of pages requested. + * @param paPages The page descriptor table (input + output). + * @param piPage The pointer to the page descriptor table index variable. + * This will be updated. + */ +static int gmmR0AllocateChunkNew(PGMM pGMM, PGVM pGVM, PGMMCHUNKFREESET pSet, uint32_t cPages, + PGMMPAGEDESC paPages, uint32_t *piPage) +{ + gmmR0MutexRelease(pGMM); + + RTR0MEMOBJ hMemObj; + int rc; +#ifdef VBOX_WITH_LINEAR_HOST_PHYS_MEM + if (pGMM->fHasWorkingAllocPhysNC) + rc = RTR0MemObjAllocPhysNC(&hMemObj, GMM_CHUNK_SIZE, NIL_RTHCPHYS); + else +#endif + rc = RTR0MemObjAllocPage(&hMemObj, GMM_CHUNK_SIZE, false /*fExecutable*/); + if (RT_SUCCESS(rc)) + { + PGMMCHUNK pIgnored; + rc = gmmR0RegisterChunk(pGMM, pSet, hMemObj, pGVM->hSelf, pGVM->pSession, 0 /*fChunkFlags*/, + cPages, paPages, piPage, &pIgnored); + if (RT_SUCCESS(rc)) + return VINF_SUCCESS; + + /* bail out */ + RTR0MemObjFree(hMemObj, true /* fFreeMappings */); + } + + int rc2 = gmmR0MutexAcquire(pGMM); + AssertRCReturn(rc2, RT_FAILURE(rc) ? rc : rc2); + return rc; + +} + + +/** + * As a last restort we'll pick any page we can get. + * + * @returns The new page descriptor table index. + * @param pSet The set to pick from. + * @param pGVM Pointer to the global VM structure. + * @param uidSelf The UID of the caller. + * @param iPage The current page descriptor table index. + * @param cPages The total number of pages to allocate. + * @param paPages The page descriptor table (input + ouput). + */ +static uint32_t gmmR0AllocatePagesIndiscriminately(PGMMCHUNKFREESET pSet, PGVM pGVM, RTUID uidSelf, + uint32_t iPage, uint32_t cPages, PGMMPAGEDESC paPages) +{ + unsigned iList = RT_ELEMENTS(pSet->apLists); + while (iList-- > 0) + { + PGMMCHUNK pChunk = pSet->apLists[iList]; + while (pChunk) + { + PGMMCHUNK pNext = pChunk->pFreeNext; + if ( pChunk->uidOwner == uidSelf + || ( pChunk->cMappingsX == 0 + && pChunk->cFree == (GMM_CHUNK_SIZE >> GUEST_PAGE_SHIFT))) + { + iPage = gmmR0AllocatePagesFromChunk(pChunk, pGVM->hSelf, iPage, cPages, paPages); + if (iPage >= cPages) + return iPage; + } + + pChunk = pNext; + } + } + return iPage; +} + + +/** + * Pick pages from empty chunks on the same NUMA node. + * + * @returns The new page descriptor table index. + * @param pSet The set to pick from. + * @param pGVM Pointer to the global VM structure. + * @param uidSelf The UID of the caller. + * @param iPage The current page descriptor table index. + * @param cPages The total number of pages to allocate. + * @param paPages The page descriptor table (input + ouput). + */ +static uint32_t gmmR0AllocatePagesFromEmptyChunksOnSameNode(PGMMCHUNKFREESET pSet, PGVM pGVM, RTUID uidSelf, + uint32_t iPage, uint32_t cPages, PGMMPAGEDESC paPages) +{ + PGMMCHUNK pChunk = pSet->apLists[GMM_CHUNK_FREE_SET_UNUSED_LIST]; + if (pChunk) + { + uint16_t const idNumaNode = gmmR0GetCurrentNumaNodeId(); + while (pChunk) + { + PGMMCHUNK pNext = pChunk->pFreeNext; + + if ( pChunk->idNumaNode == idNumaNode + && ( pChunk->uidOwner == uidSelf + || pChunk->cMappingsX == 0)) + { + pChunk->hGVM = pGVM->hSelf; + pChunk->uidOwner = uidSelf; + iPage = gmmR0AllocatePagesFromChunk(pChunk, pGVM->hSelf, iPage, cPages, paPages); + if (iPage >= cPages) + { + pGVM->gmm.s.idLastChunkHint = pChunk->cFree ? pChunk->Core.Key : NIL_GMM_CHUNKID; + return iPage; + } + } + + pChunk = pNext; + } + } + return iPage; +} + + +/** + * Pick pages from non-empty chunks on the same NUMA node. + * + * @returns The new page descriptor table index. + * @param pSet The set to pick from. + * @param pGVM Pointer to the global VM structure. + * @param uidSelf The UID of the caller. + * @param iPage The current page descriptor table index. + * @param cPages The total number of pages to allocate. + * @param paPages The page descriptor table (input + ouput). + */ +static uint32_t gmmR0AllocatePagesFromSameNode(PGMMCHUNKFREESET pSet, PGVM pGVM, RTUID const uidSelf, + uint32_t iPage, uint32_t cPages, PGMMPAGEDESC paPages) +{ + /** @todo start by picking from chunks with about the right size first? */ + uint16_t const idNumaNode = gmmR0GetCurrentNumaNodeId(); + unsigned iList = GMM_CHUNK_FREE_SET_UNUSED_LIST; + while (iList-- > 0) + { + PGMMCHUNK pChunk = pSet->apLists[iList]; + while (pChunk) + { + PGMMCHUNK pNext = pChunk->pFreeNext; + + if ( pChunk->idNumaNode == idNumaNode + && pChunk->uidOwner == uidSelf) + { + iPage = gmmR0AllocatePagesFromChunk(pChunk, pGVM->hSelf, iPage, cPages, paPages); + if (iPage >= cPages) + { + pGVM->gmm.s.idLastChunkHint = pChunk->cFree ? pChunk->Core.Key : NIL_GMM_CHUNKID; + return iPage; + } + } + + pChunk = pNext; + } + } + return iPage; +} + + +/** + * Pick pages that are in chunks already associated with the VM. + * + * @returns The new page descriptor table index. + * @param pGMM Pointer to the GMM instance data. + * @param pGVM Pointer to the global VM structure. + * @param pSet The set to pick from. + * @param iPage The current page descriptor table index. + * @param cPages The total number of pages to allocate. + * @param paPages The page descriptor table (input + ouput). + */ +static uint32_t gmmR0AllocatePagesAssociatedWithVM(PGMM pGMM, PGVM pGVM, PGMMCHUNKFREESET pSet, + uint32_t iPage, uint32_t cPages, PGMMPAGEDESC paPages) +{ + uint16_t const hGVM = pGVM->hSelf; + + /* Hint. */ + if (pGVM->gmm.s.idLastChunkHint != NIL_GMM_CHUNKID) + { + PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, pGVM->gmm.s.idLastChunkHint); + if (pChunk && pChunk->cFree) + { + iPage = gmmR0AllocatePagesFromChunk(pChunk, hGVM, iPage, cPages, paPages); + if (iPage >= cPages) + return iPage; + } + } + + /* Scan. */ + for (unsigned iList = 0; iList < RT_ELEMENTS(pSet->apLists); iList++) + { + PGMMCHUNK pChunk = pSet->apLists[iList]; + while (pChunk) + { + PGMMCHUNK pNext = pChunk->pFreeNext; + + if (pChunk->hGVM == hGVM) + { + iPage = gmmR0AllocatePagesFromChunk(pChunk, hGVM, iPage, cPages, paPages); + if (iPage >= cPages) + { + pGVM->gmm.s.idLastChunkHint = pChunk->cFree ? pChunk->Core.Key : NIL_GMM_CHUNKID; + return iPage; + } + } + + pChunk = pNext; + } + } + return iPage; +} + + + +/** + * Pick pages in bound memory mode. + * + * @returns The new page descriptor table index. + * @param pGVM Pointer to the global VM structure. + * @param iPage The current page descriptor table index. + * @param cPages The total number of pages to allocate. + * @param paPages The page descriptor table (input + ouput). + */ +static uint32_t gmmR0AllocatePagesInBoundMode(PGVM pGVM, uint32_t iPage, uint32_t cPages, PGMMPAGEDESC paPages) +{ + for (unsigned iList = 0; iList < RT_ELEMENTS(pGVM->gmm.s.Private.apLists); iList++) + { + PGMMCHUNK pChunk = pGVM->gmm.s.Private.apLists[iList]; + while (pChunk) + { + Assert(pChunk->hGVM == pGVM->hSelf); + PGMMCHUNK pNext = pChunk->pFreeNext; + iPage = gmmR0AllocatePagesFromChunk(pChunk, pGVM->hSelf, iPage, cPages, paPages); + if (iPage >= cPages) + return iPage; + pChunk = pNext; + } + } + return iPage; +} + + +/** + * Checks if we should start picking pages from chunks of other VMs because + * we're getting close to the system memory or reserved limit. + * + * @returns @c true if we should, @c false if we should first try allocate more + * chunks. + */ +static bool gmmR0ShouldAllocatePagesInOtherChunksBecauseOfLimits(PGVM pGVM) +{ + /* + * Don't allocate a new chunk if we're + */ + uint64_t cPgReserved = pGVM->gmm.s.Stats.Reserved.cBasePages + + pGVM->gmm.s.Stats.Reserved.cFixedPages + - pGVM->gmm.s.Stats.cBalloonedPages + /** @todo what about shared pages? */; + uint64_t cPgAllocated = pGVM->gmm.s.Stats.Allocated.cBasePages + + pGVM->gmm.s.Stats.Allocated.cFixedPages; + uint64_t cPgDelta = cPgReserved - cPgAllocated; + if (cPgDelta < GMM_CHUNK_NUM_PAGES * 4) + return true; + /** @todo make the threshold configurable, also test the code to see if + * this ever kicks in (we might be reserving too much or smth). */ + + /* + * Check how close we're to the max memory limit and how many fragments + * there are?... + */ + /** @todo */ + + return false; +} + + +/** + * Checks if we should start picking pages from chunks of other VMs because + * there is a lot of free pages around. + * + * @returns @c true if we should, @c false if we should first try allocate more + * chunks. + */ +static bool gmmR0ShouldAllocatePagesInOtherChunksBecauseOfLotsFree(PGMM pGMM) +{ + /* + * Setting the limit at 16 chunks (32 MB) at the moment. + */ + if (pGMM->PrivateX.cFreePages >= GMM_CHUNK_NUM_PAGES * 16) + return true; + return false; +} + + +/** + * Common worker for GMMR0AllocateHandyPages and GMMR0AllocatePages. + * + * @returns VBox status code: + * @retval VINF_SUCCESS on success. + * @retval VERR_GMM_HIT_GLOBAL_LIMIT if we've exhausted the available pages. + * @retval VERR_GMM_HIT_VM_ACCOUNT_LIMIT if we've hit the VM account limit, + * that is we're trying to allocate more than we've reserved. + * + * @param pGMM Pointer to the GMM instance data. + * @param pGVM Pointer to the VM. + * @param cPages The number of pages to allocate. + * @param paPages Pointer to the page descriptors. See GMMPAGEDESC for + * details on what is expected on input. + * @param enmAccount The account to charge. + * + * @remarks Caller owns the giant GMM lock. + */ +static int gmmR0AllocatePagesNew(PGMM pGMM, PGVM pGVM, uint32_t cPages, PGMMPAGEDESC paPages, GMMACCOUNT enmAccount) +{ + Assert(pGMM->hMtxOwner == RTThreadNativeSelf()); + + /* + * Check allocation limits. + */ + if (RT_LIKELY(pGMM->cAllocatedPages + cPages <= pGMM->cMaxPages)) + { /* likely */ } + else + return VERR_GMM_HIT_GLOBAL_LIMIT; + + switch (enmAccount) + { + case GMMACCOUNT_BASE: + if (RT_LIKELY( pGVM->gmm.s.Stats.Allocated.cBasePages + pGVM->gmm.s.Stats.cBalloonedPages + cPages + <= pGVM->gmm.s.Stats.Reserved.cBasePages)) + { /* likely */ } + else + { + Log(("gmmR0AllocatePages:Base: Reserved=%#llx Allocated+Ballooned+Requested=%#llx+%#llx+%#x!\n", + pGVM->gmm.s.Stats.Reserved.cBasePages, pGVM->gmm.s.Stats.Allocated.cBasePages, + pGVM->gmm.s.Stats.cBalloonedPages, cPages)); + return VERR_GMM_HIT_VM_ACCOUNT_LIMIT; + } + break; + case GMMACCOUNT_SHADOW: + if (RT_LIKELY(pGVM->gmm.s.Stats.Allocated.cShadowPages + cPages <= pGVM->gmm.s.Stats.Reserved.cShadowPages)) + { /* likely */ } + else + { + Log(("gmmR0AllocatePages:Shadow: Reserved=%#x Allocated+Requested=%#x+%#x!\n", + pGVM->gmm.s.Stats.Reserved.cShadowPages, pGVM->gmm.s.Stats.Allocated.cShadowPages, cPages)); + return VERR_GMM_HIT_VM_ACCOUNT_LIMIT; + } + break; + case GMMACCOUNT_FIXED: + if (RT_LIKELY(pGVM->gmm.s.Stats.Allocated.cFixedPages + cPages <= pGVM->gmm.s.Stats.Reserved.cFixedPages)) + { /* likely */ } + else + { + Log(("gmmR0AllocatePages:Fixed: Reserved=%#x Allocated+Requested=%#x+%#x!\n", + pGVM->gmm.s.Stats.Reserved.cFixedPages, pGVM->gmm.s.Stats.Allocated.cFixedPages, cPages)); + return VERR_GMM_HIT_VM_ACCOUNT_LIMIT; + } + break; + default: + AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_IPE_NOT_REACHED_DEFAULT_CASE); + } + + /* + * Update the accounts before we proceed because we might be leaving the + * protection of the global mutex and thus run the risk of permitting + * too much memory to be allocated. + */ + switch (enmAccount) + { + case GMMACCOUNT_BASE: pGVM->gmm.s.Stats.Allocated.cBasePages += cPages; break; + case GMMACCOUNT_SHADOW: pGVM->gmm.s.Stats.Allocated.cShadowPages += cPages; break; + case GMMACCOUNT_FIXED: pGVM->gmm.s.Stats.Allocated.cFixedPages += cPages; break; + default: AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_IPE_NOT_REACHED_DEFAULT_CASE); + } + pGVM->gmm.s.Stats.cPrivatePages += cPages; + pGMM->cAllocatedPages += cPages; + + /* + * Bound mode is also relatively straightforward. + */ + uint32_t iPage = 0; + int rc = VINF_SUCCESS; + if (pGMM->fBoundMemoryMode) + { + iPage = gmmR0AllocatePagesInBoundMode(pGVM, iPage, cPages, paPages); + if (iPage < cPages) + do + rc = gmmR0AllocateChunkNew(pGMM, pGVM, &pGVM->gmm.s.Private, cPages, paPages, &iPage); + while (iPage < cPages && RT_SUCCESS(rc)); + } + /* + * Shared mode is trickier as we should try archive the same locality as + * in bound mode, but smartly make use of non-full chunks allocated by + * other VMs if we're low on memory. + */ + else + { + RTUID const uidSelf = SUPR0GetSessionUid(pGVM->pSession); + + /* Pick the most optimal pages first. */ + iPage = gmmR0AllocatePagesAssociatedWithVM(pGMM, pGVM, &pGMM->PrivateX, iPage, cPages, paPages); + if (iPage < cPages) + { + /* Maybe we should try getting pages from chunks "belonging" to + other VMs before allocating more chunks? */ + bool fTriedOnSameAlready = false; + if (gmmR0ShouldAllocatePagesInOtherChunksBecauseOfLimits(pGVM)) + { + iPage = gmmR0AllocatePagesFromSameNode(&pGMM->PrivateX, pGVM, uidSelf, iPage, cPages, paPages); + fTriedOnSameAlready = true; + } + + /* Allocate memory from empty chunks. */ + if (iPage < cPages) + iPage = gmmR0AllocatePagesFromEmptyChunksOnSameNode(&pGMM->PrivateX, pGVM, uidSelf, iPage, cPages, paPages); + + /* Grab empty shared chunks. */ + if (iPage < cPages) + iPage = gmmR0AllocatePagesFromEmptyChunksOnSameNode(&pGMM->Shared, pGVM, uidSelf, iPage, cPages, paPages); + + /* If there is a lof of free pages spread around, try not waste + system memory on more chunks. (Should trigger defragmentation.) */ + if ( !fTriedOnSameAlready + && gmmR0ShouldAllocatePagesInOtherChunksBecauseOfLotsFree(pGMM)) + { + iPage = gmmR0AllocatePagesFromSameNode(&pGMM->PrivateX, pGVM, uidSelf, iPage, cPages, paPages); + if (iPage < cPages) + iPage = gmmR0AllocatePagesIndiscriminately(&pGMM->PrivateX, pGVM, uidSelf, iPage, cPages, paPages); + } + + /* + * Ok, try allocate new chunks. + */ + if (iPage < cPages) + { + do + rc = gmmR0AllocateChunkNew(pGMM, pGVM, &pGMM->PrivateX, cPages, paPages, &iPage); + while (iPage < cPages && RT_SUCCESS(rc)); + +#if 0 /* We cannot mix chunks with different UIDs. */ + /* If the host is out of memory, take whatever we can get. */ + if ( (rc == VERR_NO_MEMORY || rc == VERR_NO_PHYS_MEMORY) + && pGMM->PrivateX.cFreePages + pGMM->Shared.cFreePages >= cPages - iPage) + { + iPage = gmmR0AllocatePagesIndiscriminately(&pGMM->PrivateX, pGVM, iPage, cPages, paPages); + if (iPage < cPages) + iPage = gmmR0AllocatePagesIndiscriminately(&pGMM->Shared, pGVM, iPage, cPages, paPages); + AssertRelease(iPage == cPages); + rc = VINF_SUCCESS; + } +#endif + } + } + } + + /* + * Clean up on failure. Since this is bound to be a low-memory condition + * we will give back any empty chunks that might be hanging around. + */ + if (RT_SUCCESS(rc)) + { /* likely */ } + else + { + /* Update the statistics. */ + pGVM->gmm.s.Stats.cPrivatePages -= cPages; + pGMM->cAllocatedPages -= cPages - iPage; + switch (enmAccount) + { + case GMMACCOUNT_BASE: pGVM->gmm.s.Stats.Allocated.cBasePages -= cPages; break; + case GMMACCOUNT_SHADOW: pGVM->gmm.s.Stats.Allocated.cShadowPages -= cPages; break; + case GMMACCOUNT_FIXED: pGVM->gmm.s.Stats.Allocated.cFixedPages -= cPages; break; + default: AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_IPE_NOT_REACHED_DEFAULT_CASE); + } + + /* Release the pages. */ + while (iPage-- > 0) + { + uint32_t idPage = paPages[iPage].idPage; + PGMMPAGE pPage = gmmR0GetPage(pGMM, idPage); + if (RT_LIKELY(pPage)) + { + Assert(GMM_PAGE_IS_PRIVATE(pPage)); + Assert(pPage->Private.hGVM == pGVM->hSelf); + gmmR0FreePrivatePage(pGMM, pGVM, idPage, pPage); + } + else + AssertMsgFailed(("idPage=%#x\n", idPage)); + + paPages[iPage].idPage = NIL_GMM_PAGEID; + paPages[iPage].idSharedPage = NIL_GMM_PAGEID; + paPages[iPage].HCPhysGCPhys = NIL_GMMPAGEDESC_PHYS; + paPages[iPage].fZeroed = false; + } + + /* Free empty chunks. */ + /** @todo */ + + /* return the fail status on failure */ + return rc; + } + return VINF_SUCCESS; +} + + +/** + * Updates the previous allocations and allocates more pages. + * + * The handy pages are always taken from the 'base' memory account. + * The allocated pages are not cleared and will contains random garbage. + * + * @returns VBox status code: + * @retval VINF_SUCCESS on success. + * @retval VERR_NOT_OWNER if the caller is not an EMT. + * @retval VERR_GMM_PAGE_NOT_FOUND if one of the pages to update wasn't found. + * @retval VERR_GMM_PAGE_NOT_PRIVATE if one of the pages to update wasn't a + * private page. + * @retval VERR_GMM_PAGE_NOT_SHARED if one of the pages to update wasn't a + * shared page. + * @retval VERR_GMM_NOT_PAGE_OWNER if one of the pages to be updated wasn't + * owned by the VM. + * @retval VERR_GMM_HIT_GLOBAL_LIMIT if we've exhausted the available pages. + * @retval VERR_GMM_HIT_VM_ACCOUNT_LIMIT if we've hit the VM account limit, + * that is we're trying to allocate more than we've reserved. + * + * @param pGVM The global (ring-0) VM structure. + * @param idCpu The VCPU id. + * @param cPagesToUpdate The number of pages to update (starting from the head). + * @param cPagesToAlloc The number of pages to allocate (starting from the head). + * @param paPages The array of page descriptors. + * See GMMPAGEDESC for details on what is expected on input. + * @thread EMT(idCpu) + */ +GMMR0DECL(int) GMMR0AllocateHandyPages(PGVM pGVM, VMCPUID idCpu, uint32_t cPagesToUpdate, + uint32_t cPagesToAlloc, PGMMPAGEDESC paPages) +{ + LogFlow(("GMMR0AllocateHandyPages: pGVM=%p cPagesToUpdate=%#x cPagesToAlloc=%#x paPages=%p\n", + pGVM, cPagesToUpdate, cPagesToAlloc, paPages)); + + /* + * Validate & get basics. + * (This is a relatively busy path, so make predictions where possible.) + */ + PGMM pGMM; + GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE); + int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu); + if (RT_FAILURE(rc)) + return rc; + + AssertPtrReturn(paPages, VERR_INVALID_PARAMETER); + AssertMsgReturn( (cPagesToUpdate && cPagesToUpdate < 1024) + || (cPagesToAlloc && cPagesToAlloc < 1024), + ("cPagesToUpdate=%#x cPagesToAlloc=%#x\n", cPagesToUpdate, cPagesToAlloc), + VERR_INVALID_PARAMETER); + + unsigned iPage = 0; + for (; iPage < cPagesToUpdate; iPage++) + { + AssertMsgReturn( ( paPages[iPage].HCPhysGCPhys <= GMM_GCPHYS_LAST + && !(paPages[iPage].HCPhysGCPhys & GUEST_PAGE_OFFSET_MASK)) + || paPages[iPage].HCPhysGCPhys == NIL_GMMPAGEDESC_PHYS + || paPages[iPage].HCPhysGCPhys == GMM_GCPHYS_UNSHAREABLE, + ("#%#x: %RHp\n", iPage, paPages[iPage].HCPhysGCPhys), + VERR_INVALID_PARAMETER); + /* ignore fZeroed here */ + AssertMsgReturn( paPages[iPage].idPage <= GMM_PAGEID_LAST + /*|| paPages[iPage].idPage == NIL_GMM_PAGEID*/, + ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER); + AssertMsgReturn( paPages[iPage].idSharedPage == NIL_GMM_PAGEID + || paPages[iPage].idSharedPage <= GMM_PAGEID_LAST, + ("#%#x: %#x\n", iPage, paPages[iPage].idSharedPage), VERR_INVALID_PARAMETER); + } + + for (; iPage < cPagesToAlloc; iPage++) + { + AssertMsgReturn(paPages[iPage].HCPhysGCPhys == NIL_GMMPAGEDESC_PHYS, ("#%#x: %RHp\n", iPage, paPages[iPage].HCPhysGCPhys), VERR_INVALID_PARAMETER); + AssertMsgReturn(paPages[iPage].fZeroed == false, ("#%#x: %#x\n", iPage, paPages[iPage].fZeroed), VERR_INVALID_PARAMETER); + AssertMsgReturn(paPages[iPage].idPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER); + AssertMsgReturn(paPages[iPage].idSharedPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idSharedPage), VERR_INVALID_PARAMETER); + } + + /* + * Take the semaphore + */ + VMMR0EMTBLOCKCTX Ctx; + PGVMCPU pGVCpu = &pGVM->aCpus[idCpu]; + rc = VMMR0EmtPrepareToBlock(pGVCpu, VINF_SUCCESS, "GMMR0AllocateHandyPages", pGMM, &Ctx); + AssertRCReturn(rc, rc); + + rc = gmmR0MutexAcquire(pGMM); + if ( RT_SUCCESS(rc) + && GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) + { + /* No allocations before the initial reservation has been made! */ + if (RT_LIKELY( pGVM->gmm.s.Stats.Reserved.cBasePages + && pGVM->gmm.s.Stats.Reserved.cFixedPages + && pGVM->gmm.s.Stats.Reserved.cShadowPages)) + { + /* + * Perform the updates. + * Stop on the first error. + */ + for (iPage = 0; iPage < cPagesToUpdate; iPage++) + { + if (paPages[iPage].idPage != NIL_GMM_PAGEID) + { + PGMMPAGE pPage = gmmR0GetPage(pGMM, paPages[iPage].idPage); + if (RT_LIKELY(pPage)) + { + if (RT_LIKELY(GMM_PAGE_IS_PRIVATE(pPage))) + { + if (RT_LIKELY(pPage->Private.hGVM == pGVM->hSelf)) + { + AssertCompile(NIL_RTHCPHYS > GMM_GCPHYS_LAST && GMM_GCPHYS_UNSHAREABLE > GMM_GCPHYS_LAST); + if (RT_LIKELY(paPages[iPage].HCPhysGCPhys <= GMM_GCPHYS_LAST)) + pPage->Private.pfn = paPages[iPage].HCPhysGCPhys >> GUEST_PAGE_SHIFT; + else if (paPages[iPage].HCPhysGCPhys == GMM_GCPHYS_UNSHAREABLE) + pPage->Private.pfn = GMM_PAGE_PFN_UNSHAREABLE; + /* else: NIL_RTHCPHYS nothing */ + + paPages[iPage].idPage = NIL_GMM_PAGEID; + paPages[iPage].HCPhysGCPhys = NIL_GMMPAGEDESC_PHYS; + paPages[iPage].fZeroed = false; + } + else + { + Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not owner! hGVM=%#x hSelf=%#x\n", + iPage, paPages[iPage].idPage, pPage->Private.hGVM, pGVM->hSelf)); + rc = VERR_GMM_NOT_PAGE_OWNER; + break; + } + } + else + { + Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not private! %.*Rhxs (type %d)\n", iPage, paPages[iPage].idPage, sizeof(*pPage), pPage, pPage->Common.u2State)); + rc = VERR_GMM_PAGE_NOT_PRIVATE; + break; + } + } + else + { + Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not found! (private)\n", iPage, paPages[iPage].idPage)); + rc = VERR_GMM_PAGE_NOT_FOUND; + break; + } + } + + if (paPages[iPage].idSharedPage == NIL_GMM_PAGEID) + { /* likely */ } + else + { + PGMMPAGE pPage = gmmR0GetPage(pGMM, paPages[iPage].idSharedPage); + if (RT_LIKELY(pPage)) + { + if (RT_LIKELY(GMM_PAGE_IS_SHARED(pPage))) + { + AssertCompile(NIL_RTHCPHYS > GMM_GCPHYS_LAST && GMM_GCPHYS_UNSHAREABLE > GMM_GCPHYS_LAST); + Assert(pPage->Shared.cRefs); + Assert(pGVM->gmm.s.Stats.cSharedPages); + Assert(pGVM->gmm.s.Stats.Allocated.cBasePages); + + Log(("GMMR0AllocateHandyPages: free shared page %x cRefs=%d\n", paPages[iPage].idSharedPage, pPage->Shared.cRefs)); + pGVM->gmm.s.Stats.cSharedPages--; + pGVM->gmm.s.Stats.Allocated.cBasePages--; + if (!--pPage->Shared.cRefs) + gmmR0FreeSharedPage(pGMM, pGVM, paPages[iPage].idSharedPage, pPage); + else + { + Assert(pGMM->cDuplicatePages); + pGMM->cDuplicatePages--; + } + + paPages[iPage].idSharedPage = NIL_GMM_PAGEID; + } + else + { + Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not shared!\n", iPage, paPages[iPage].idSharedPage)); + rc = VERR_GMM_PAGE_NOT_SHARED; + break; + } + } + else + { + Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not found! (shared)\n", iPage, paPages[iPage].idSharedPage)); + rc = VERR_GMM_PAGE_NOT_FOUND; + break; + } + } + } /* for each page to update */ + + if (RT_SUCCESS(rc) && cPagesToAlloc > 0) + { +#ifdef VBOX_STRICT + for (iPage = 0; iPage < cPagesToAlloc; iPage++) + { + Assert(paPages[iPage].HCPhysGCPhys == NIL_GMMPAGEDESC_PHYS); + Assert(paPages[iPage].fZeroed == false); + Assert(paPages[iPage].idPage == NIL_GMM_PAGEID); + Assert(paPages[iPage].idSharedPage == NIL_GMM_PAGEID); + } +#endif + + /* + * Join paths with GMMR0AllocatePages for the allocation. + * Note! gmmR0AllocateMoreChunks may leave the protection of the mutex! + */ + rc = gmmR0AllocatePagesNew(pGMM, pGVM, cPagesToAlloc, paPages, GMMACCOUNT_BASE); + } + } + else + rc = VERR_WRONG_ORDER; + GMM_CHECK_SANITY_UPON_LEAVING(pGMM); + gmmR0MutexRelease(pGMM); + } + else if (RT_SUCCESS(rc)) + { + gmmR0MutexRelease(pGMM); + rc = VERR_GMM_IS_NOT_SANE; + } + VMMR0EmtResumeAfterBlocking(pGVCpu, &Ctx); + + LogFlow(("GMMR0AllocateHandyPages: returns %Rrc\n", rc)); + return rc; +} + + +/** + * Allocate one or more pages. + * + * This is typically used for ROMs and MMIO2 (VRAM) during VM creation. + * The allocated pages are not cleared and will contain random garbage. + * + * @returns VBox status code: + * @retval VINF_SUCCESS on success. + * @retval VERR_NOT_OWNER if the caller is not an EMT. + * @retval VERR_GMM_HIT_GLOBAL_LIMIT if we've exhausted the available pages. + * @retval VERR_GMM_HIT_VM_ACCOUNT_LIMIT if we've hit the VM account limit, + * that is we're trying to allocate more than we've reserved. + * + * @param pGVM The global (ring-0) VM structure. + * @param idCpu The VCPU id. + * @param cPages The number of pages to allocate. + * @param paPages Pointer to the page descriptors. + * See GMMPAGEDESC for details on what is expected on + * input. + * @param enmAccount The account to charge. + * + * @thread EMT. + */ +GMMR0DECL(int) GMMR0AllocatePages(PGVM pGVM, VMCPUID idCpu, uint32_t cPages, PGMMPAGEDESC paPages, GMMACCOUNT enmAccount) +{ + LogFlow(("GMMR0AllocatePages: pGVM=%p cPages=%#x paPages=%p enmAccount=%d\n", pGVM, cPages, paPages, enmAccount)); + + /* + * Validate, get basics and take the semaphore. + */ + PGMM pGMM; + GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE); + int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu); + if (RT_FAILURE(rc)) + return rc; + + AssertPtrReturn(paPages, VERR_INVALID_PARAMETER); + AssertMsgReturn(enmAccount > GMMACCOUNT_INVALID && enmAccount < GMMACCOUNT_END, ("%d\n", enmAccount), VERR_INVALID_PARAMETER); + AssertMsgReturn(cPages > 0 && cPages < RT_BIT(32 - GUEST_PAGE_SHIFT), ("%#x\n", cPages), VERR_INVALID_PARAMETER); + + for (unsigned iPage = 0; iPage < cPages; iPage++) + { + AssertMsgReturn( paPages[iPage].HCPhysGCPhys == NIL_GMMPAGEDESC_PHYS + || paPages[iPage].HCPhysGCPhys == GMM_GCPHYS_UNSHAREABLE + || ( enmAccount == GMMACCOUNT_BASE + && paPages[iPage].HCPhysGCPhys <= GMM_GCPHYS_LAST + && !(paPages[iPage].HCPhysGCPhys & GUEST_PAGE_OFFSET_MASK)), + ("#%#x: %RHp enmAccount=%d\n", iPage, paPages[iPage].HCPhysGCPhys, enmAccount), + VERR_INVALID_PARAMETER); + AssertMsgReturn(paPages[iPage].fZeroed == false, ("#%#x: %#x\n", iPage, paPages[iPage].fZeroed), VERR_INVALID_PARAMETER); + AssertMsgReturn(paPages[iPage].idPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER); + AssertMsgReturn(paPages[iPage].idSharedPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idSharedPage), VERR_INVALID_PARAMETER); + } + + /* + * Grab the giant mutex and get working. + */ + gmmR0MutexAcquire(pGMM); + if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) + { + + /* No allocations before the initial reservation has been made! */ + if (RT_LIKELY( pGVM->gmm.s.Stats.Reserved.cBasePages + && pGVM->gmm.s.Stats.Reserved.cFixedPages + && pGVM->gmm.s.Stats.Reserved.cShadowPages)) + rc = gmmR0AllocatePagesNew(pGMM, pGVM, cPages, paPages, enmAccount); + else + rc = VERR_WRONG_ORDER; + GMM_CHECK_SANITY_UPON_LEAVING(pGMM); + } + else + rc = VERR_GMM_IS_NOT_SANE; + gmmR0MutexRelease(pGMM); + + LogFlow(("GMMR0AllocatePages: returns %Rrc\n", rc)); + return rc; +} + + +/** + * VMMR0 request wrapper for GMMR0AllocatePages. + * + * @returns see GMMR0AllocatePages. + * @param pGVM The global (ring-0) VM structure. + * @param idCpu The VCPU id. + * @param pReq Pointer to the request packet. + */ +GMMR0DECL(int) GMMR0AllocatePagesReq(PGVM pGVM, VMCPUID idCpu, PGMMALLOCATEPAGESREQ pReq) +{ + /* + * Validate input and pass it on. + */ + AssertPtrReturn(pReq, VERR_INVALID_POINTER); + AssertMsgReturn(pReq->Hdr.cbReq >= RT_UOFFSETOF(GMMALLOCATEPAGESREQ, aPages[0]), + ("%#x < %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMALLOCATEPAGESREQ, aPages[0])), + VERR_INVALID_PARAMETER); + AssertMsgReturn(pReq->Hdr.cbReq == RT_UOFFSETOF_DYN(GMMALLOCATEPAGESREQ, aPages[pReq->cPages]), + ("%#x != %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF_DYN(GMMALLOCATEPAGESREQ, aPages[pReq->cPages])), + VERR_INVALID_PARAMETER); + + return GMMR0AllocatePages(pGVM, idCpu, pReq->cPages, &pReq->aPages[0], pReq->enmAccount); +} + + +/** + * Allocate a large page to represent guest RAM + * + * The allocated pages are zeroed upon return. + * + * @returns VBox status code: + * @retval VINF_SUCCESS on success. + * @retval VERR_NOT_OWNER if the caller is not an EMT. + * @retval VERR_GMM_HIT_GLOBAL_LIMIT if we've exhausted the available pages. + * @retval VERR_GMM_HIT_VM_ACCOUNT_LIMIT if we've hit the VM account limit, + * that is we're trying to allocate more than we've reserved. + * @retval VERR_TRY_AGAIN if the host is temporarily out of large pages. + * @returns see GMMR0AllocatePages. + * + * @param pGVM The global (ring-0) VM structure. + * @param idCpu The VCPU id. + * @param cbPage Large page size. + * @param pIdPage Where to return the GMM page ID of the page. + * @param pHCPhys Where to return the host physical address of the page. + */ +GMMR0DECL(int) GMMR0AllocateLargePage(PGVM pGVM, VMCPUID idCpu, uint32_t cbPage, uint32_t *pIdPage, RTHCPHYS *pHCPhys) +{ + LogFlow(("GMMR0AllocateLargePage: pGVM=%p cbPage=%x\n", pGVM, cbPage)); + + AssertPtrReturn(pIdPage, VERR_INVALID_PARAMETER); + *pIdPage = NIL_GMM_PAGEID; + AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER); + *pHCPhys = NIL_RTHCPHYS; + AssertReturn(cbPage == GMM_CHUNK_SIZE, VERR_INVALID_PARAMETER); + + /* + * Validate GVM + idCpu, get basics and take the semaphore. + */ + PGMM pGMM; + GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE); + int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu); + AssertRCReturn(rc, rc); + + VMMR0EMTBLOCKCTX Ctx; + PGVMCPU pGVCpu = &pGVM->aCpus[idCpu]; + rc = VMMR0EmtPrepareToBlock(pGVCpu, VINF_SUCCESS, "GMMR0AllocateLargePage", pGMM, &Ctx); + AssertRCReturn(rc, rc); + + rc = gmmR0MutexAcquire(pGMM); + if (RT_SUCCESS(rc)) + { + if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) + { + /* + * Check the quota. + */ + /** @todo r=bird: Quota checking could be done w/o the giant mutex but using + * a VM specific mutex... */ + if (RT_LIKELY( pGVM->gmm.s.Stats.Allocated.cBasePages + pGVM->gmm.s.Stats.cBalloonedPages + GMM_CHUNK_NUM_PAGES + <= pGVM->gmm.s.Stats.Reserved.cBasePages)) + { + /* + * Allocate a new large page chunk. + * + * Note! We leave the giant GMM lock temporarily as the allocation might + * take a long time. gmmR0RegisterChunk will retake it (ugly). + */ + AssertCompile(GMM_CHUNK_SIZE == _2M); + gmmR0MutexRelease(pGMM); + + RTR0MEMOBJ hMemObj; + rc = RTR0MemObjAllocLarge(&hMemObj, GMM_CHUNK_SIZE, GMM_CHUNK_SIZE, RTMEMOBJ_ALLOC_LARGE_F_FAST); + if (RT_SUCCESS(rc)) + { + *pHCPhys = RTR0MemObjGetPagePhysAddr(hMemObj, 0); + + /* + * Register the chunk as fully allocated. + * Note! As mentioned above, this will return owning the mutex on success. + */ + PGMMCHUNK pChunk = NULL; + PGMMCHUNKFREESET const pSet = pGMM->fBoundMemoryMode ? &pGVM->gmm.s.Private : &pGMM->PrivateX; + rc = gmmR0RegisterChunk(pGMM, pSet, hMemObj, pGVM->hSelf, pGVM->pSession, GMM_CHUNK_FLAGS_LARGE_PAGE, + 0 /*cPages*/, NULL /*paPages*/, NULL /*piPage*/, &pChunk); + if (RT_SUCCESS(rc)) + { + /* + * The gmmR0RegisterChunk call already marked all pages allocated, + * so we just have to fill in the return values and update stats now. + */ + *pIdPage = pChunk->Core.Key << GMM_CHUNKID_SHIFT; + + /* Update accounting. */ + pGVM->gmm.s.Stats.Allocated.cBasePages += GMM_CHUNK_NUM_PAGES; + pGVM->gmm.s.Stats.cPrivatePages += GMM_CHUNK_NUM_PAGES; + pGMM->cAllocatedPages += GMM_CHUNK_NUM_PAGES; + + gmmR0LinkChunk(pChunk, pSet); + gmmR0MutexRelease(pGMM); + + VMMR0EmtResumeAfterBlocking(pGVCpu, &Ctx); + LogFlow(("GMMR0AllocateLargePage: returns VINF_SUCCESS\n")); + return VINF_SUCCESS; + } + + /* + * Bail out. + */ + RTR0MemObjFree(hMemObj, true /* fFreeMappings */); + *pHCPhys = NIL_RTHCPHYS; + } + /** @todo r=bird: Turn VERR_NO_MEMORY etc into VERR_TRY_AGAIN? Docs say we + * return it, but I am sure IPRT doesn't... */ + } + else + { + Log(("GMMR0AllocateLargePage: Reserved=%#llx Allocated+Requested=%#llx+%#x!\n", + pGVM->gmm.s.Stats.Reserved.cBasePages, pGVM->gmm.s.Stats.Allocated.cBasePages, GMM_CHUNK_NUM_PAGES)); + gmmR0MutexRelease(pGMM); + rc = VERR_GMM_HIT_VM_ACCOUNT_LIMIT; + } + } + else + { + gmmR0MutexRelease(pGMM); + rc = VERR_GMM_IS_NOT_SANE; + } + } + + VMMR0EmtResumeAfterBlocking(pGVCpu, &Ctx); + LogFlow(("GMMR0AllocateLargePage: returns %Rrc\n", rc)); + return rc; +} + + +/** + * Free a large page. + * + * @returns VBox status code: + * @param pGVM The global (ring-0) VM structure. + * @param idCpu The VCPU id. + * @param idPage The large page id. + */ +GMMR0DECL(int) GMMR0FreeLargePage(PGVM pGVM, VMCPUID idCpu, uint32_t idPage) +{ + LogFlow(("GMMR0FreeLargePage: pGVM=%p idPage=%x\n", pGVM, idPage)); + + /* + * Validate, get basics and take the semaphore. + */ + PGMM pGMM; + GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE); + int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu); + if (RT_FAILURE(rc)) + return rc; + + gmmR0MutexAcquire(pGMM); + if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) + { + const unsigned cPages = GMM_CHUNK_NUM_PAGES; + + if (RT_UNLIKELY(pGVM->gmm.s.Stats.Allocated.cBasePages < cPages)) + { + Log(("GMMR0FreeLargePage: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Stats.Allocated.cBasePages, cPages)); + gmmR0MutexRelease(pGMM); + return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH; + } + + PGMMPAGE pPage = gmmR0GetPage(pGMM, idPage); + if (RT_LIKELY( pPage + && GMM_PAGE_IS_PRIVATE(pPage))) + { + PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT); + Assert(pChunk); + Assert(pChunk->cFree < GMM_CHUNK_NUM_PAGES); + Assert(pChunk->cPrivate > 0); + + /* Release the memory immediately. */ + gmmR0FreeChunk(pGMM, NULL, pChunk, false /*fRelaxedSem*/); /** @todo this can be relaxed too! */ + + /* Update accounting. */ + pGVM->gmm.s.Stats.Allocated.cBasePages -= cPages; + pGVM->gmm.s.Stats.cPrivatePages -= cPages; + pGMM->cAllocatedPages -= cPages; + } + else + rc = VERR_GMM_PAGE_NOT_FOUND; + } + else + rc = VERR_GMM_IS_NOT_SANE; + + gmmR0MutexRelease(pGMM); + LogFlow(("GMMR0FreeLargePage: returns %Rrc\n", rc)); + return rc; +} + + +/** + * VMMR0 request wrapper for GMMR0FreeLargePage. + * + * @returns see GMMR0FreeLargePage. + * @param pGVM The global (ring-0) VM structure. + * @param idCpu The VCPU id. + * @param pReq Pointer to the request packet. + */ +GMMR0DECL(int) GMMR0FreeLargePageReq(PGVM pGVM, VMCPUID idCpu, PGMMFREELARGEPAGEREQ pReq) +{ + /* + * Validate input and pass it on. + */ + AssertPtrReturn(pReq, VERR_INVALID_POINTER); + AssertMsgReturn(pReq->Hdr.cbReq == sizeof(GMMFREEPAGESREQ), + ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(GMMFREEPAGESREQ)), + VERR_INVALID_PARAMETER); + + return GMMR0FreeLargePage(pGVM, idCpu, pReq->idPage); +} + + +/** + * @callback_method_impl{FNGVMMR0ENUMCALLBACK, + * Used by gmmR0FreeChunkFlushPerVmTlbs().} + */ +static DECLCALLBACK(int) gmmR0InvalidatePerVmChunkTlbCallback(PGVM pGVM, void *pvUser) +{ + RT_NOREF(pvUser); + if (pGVM->gmm.s.hChunkTlbSpinLock != NIL_RTSPINLOCK) + { + RTSpinlockAcquire(pGVM->gmm.s.hChunkTlbSpinLock); + uintptr_t i = RT_ELEMENTS(pGVM->gmm.s.aChunkTlbEntries); + while (i-- > 0) + { + pGVM->gmm.s.aChunkTlbEntries[i].idGeneration = UINT64_MAX; + pGVM->gmm.s.aChunkTlbEntries[i].pChunk = NULL; + } + RTSpinlockRelease(pGVM->gmm.s.hChunkTlbSpinLock); + } + return VINF_SUCCESS; +} + + +/** + * Called by gmmR0FreeChunk when we reach the threshold for wrapping around the + * free generation ID value. + * + * This is done at 2^62 - 1, which allows us to drop all locks and as it will + * take a while before 12 exa (2 305 843 009 213 693 952) calls to + * gmmR0FreeChunk can be made and causes a real wrap-around. We do two + * invalidation passes and resets the generation ID between then. This will + * make sure there are no false positives. + * + * @param pGMM Pointer to the GMM instance. + */ +static void gmmR0FreeChunkFlushPerVmTlbs(PGMM pGMM) +{ + /* + * First invalidation pass. + */ + int rc = GVMMR0EnumVMs(gmmR0InvalidatePerVmChunkTlbCallback, NULL); + AssertRCSuccess(rc); + + /* + * Reset the generation number. + */ + RTSpinlockAcquire(pGMM->hSpinLockTree); + ASMAtomicWriteU64(&pGMM->idFreeGeneration, 1); + RTSpinlockRelease(pGMM->hSpinLockTree); + + /* + * Second invalidation pass. + */ + rc = GVMMR0EnumVMs(gmmR0InvalidatePerVmChunkTlbCallback, NULL); + AssertRCSuccess(rc); +} + + +/** + * Frees a chunk, giving it back to the host OS. + * + * @param pGMM Pointer to the GMM instance. + * @param pGVM This is set when called from GMMR0CleanupVM so we can + * unmap and free the chunk in one go. + * @param pChunk The chunk to free. + * @param fRelaxedSem Whether we can release the semaphore while doing the + * freeing (@c true) or not. + */ +static bool gmmR0FreeChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, bool fRelaxedSem) +{ + Assert(pChunk->Core.Key != NIL_GMM_CHUNKID); + + GMMR0CHUNKMTXSTATE MtxState; + gmmR0ChunkMutexAcquire(&MtxState, pGMM, pChunk, GMMR0CHUNK_MTX_KEEP_GIANT); + + /* + * Cleanup hack! Unmap the chunk from the callers address space. + * This shouldn't happen, so screw lock contention... + */ + if (pChunk->cMappingsX && pGVM) + gmmR0UnmapChunkLocked(pGMM, pGVM, pChunk); + + /* + * If there are current mappings of the chunk, then request the + * VMs to unmap them. Reposition the chunk in the free list so + * it won't be a likely candidate for allocations. + */ + if (pChunk->cMappingsX) + { + /** @todo R0 -> VM request */ + /* The chunk can be mapped by more than one VM if fBoundMemoryMode is false! */ + Log(("gmmR0FreeChunk: chunk still has %d mappings; don't free!\n", pChunk->cMappingsX)); + gmmR0ChunkMutexRelease(&MtxState, pChunk); + return false; + } + + + /* + * Save and trash the handle. + */ + RTR0MEMOBJ const hMemObj = pChunk->hMemObj; + pChunk->hMemObj = NIL_RTR0MEMOBJ; + + /* + * Unlink it from everywhere. + */ + gmmR0UnlinkChunk(pChunk); + + RTSpinlockAcquire(pGMM->hSpinLockTree); + + RTListNodeRemove(&pChunk->ListNode); + + PAVLU32NODECORE pCore = RTAvlU32Remove(&pGMM->pChunks, pChunk->Core.Key); + Assert(pCore == &pChunk->Core); NOREF(pCore); + + PGMMCHUNKTLBE pTlbe = &pGMM->ChunkTLB.aEntries[GMM_CHUNKTLB_IDX(pChunk->Core.Key)]; + if (pTlbe->pChunk == pChunk) + { + pTlbe->idChunk = NIL_GMM_CHUNKID; + pTlbe->pChunk = NULL; + } + + Assert(pGMM->cChunks > 0); + pGMM->cChunks--; + + uint64_t const idFreeGeneration = ASMAtomicIncU64(&pGMM->idFreeGeneration); + + RTSpinlockRelease(pGMM->hSpinLockTree); + + pGMM->cFreedChunks++; + + /* Drop the lock. */ + gmmR0ChunkMutexRelease(&MtxState, NULL); + if (fRelaxedSem) + gmmR0MutexRelease(pGMM); + + /* + * Flush per VM chunk TLBs if we're getting remotely close to a generation wraparound. + */ + if (idFreeGeneration == UINT64_MAX / 4) + gmmR0FreeChunkFlushPerVmTlbs(pGMM); + + /* + * Free the Chunk ID and all memory associated with the chunk. + */ + gmmR0FreeChunkId(pGMM, pChunk->Core.Key); + pChunk->Core.Key = NIL_GMM_CHUNKID; + + RTMemFree(pChunk->paMappingsX); + pChunk->paMappingsX = NULL; + + RTMemFree(pChunk); + +#ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM + int rc = RTR0MemObjFree(hMemObj, true /* fFreeMappings */); +#else + int rc = RTR0MemObjFree(hMemObj, false /* fFreeMappings */); +#endif + AssertLogRelRC(rc); + + if (fRelaxedSem) + gmmR0MutexAcquire(pGMM); + return fRelaxedSem; +} + + +/** + * Free page worker. + * + * The caller does all the statistic decrementing, we do all the incrementing. + * + * @param pGMM Pointer to the GMM instance data. + * @param pGVM Pointer to the GVM instance. + * @param pChunk Pointer to the chunk this page belongs to. + * @param idPage The Page ID. + * @param pPage Pointer to the page. + */ +static void gmmR0FreePageWorker(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, uint32_t idPage, PGMMPAGE pPage) +{ + Log3(("F pPage=%p iPage=%#x/%#x u2State=%d iFreeHead=%#x\n", + pPage, pPage - &pChunk->aPages[0], idPage, pPage->Common.u2State, pChunk->iFreeHead)); NOREF(idPage); + + /* + * Put the page on the free list. + */ + pPage->u = 0; + pPage->Free.u2State = GMM_PAGE_STATE_FREE; + pPage->Free.fZeroed = false; + Assert(pChunk->iFreeHead < RT_ELEMENTS(pChunk->aPages) || pChunk->iFreeHead == UINT16_MAX); + pPage->Free.iNext = pChunk->iFreeHead; + pChunk->iFreeHead = pPage - &pChunk->aPages[0]; + + /* + * Update statistics (the cShared/cPrivate stats are up to date already), + * and relink the chunk if necessary. + */ + unsigned const cFree = pChunk->cFree; + if ( !cFree + || gmmR0SelectFreeSetList(cFree) != gmmR0SelectFreeSetList(cFree + 1)) + { + gmmR0UnlinkChunk(pChunk); + pChunk->cFree++; + gmmR0SelectSetAndLinkChunk(pGMM, pGVM, pChunk); + } + else + { + pChunk->cFree = cFree + 1; + pChunk->pSet->cFreePages++; + } + + /* + * If the chunk becomes empty, consider giving memory back to the host OS. + * + * The current strategy is to try give it back if there are other chunks + * in this free list, meaning if there are at least 240 free pages in this + * category. Note that since there are probably mappings of the chunk, + * it won't be freed up instantly, which probably screws up this logic + * a bit... + */ + /** @todo Do this on the way out. */ + if (RT_LIKELY( pChunk->cFree != GMM_CHUNK_NUM_PAGES + || pChunk->pFreeNext == NULL + || pChunk->pFreePrev == NULL /** @todo this is probably misfiring, see reset... */)) + { /* likely */ } + else + gmmR0FreeChunk(pGMM, NULL, pChunk, false); +} + + +/** + * Frees a shared page, the page is known to exist and be valid and such. + * + * @param pGMM Pointer to the GMM instance. + * @param pGVM Pointer to the GVM instance. + * @param idPage The page id. + * @param pPage The page structure. + */ +DECLINLINE(void) gmmR0FreeSharedPage(PGMM pGMM, PGVM pGVM, uint32_t idPage, PGMMPAGE pPage) +{ + PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT); + Assert(pChunk); + Assert(pChunk->cFree < GMM_CHUNK_NUM_PAGES); + Assert(pChunk->cShared > 0); + Assert(pGMM->cSharedPages > 0); + Assert(pGMM->cAllocatedPages > 0); + Assert(!pPage->Shared.cRefs); + + pChunk->cShared--; + pGMM->cAllocatedPages--; + pGMM->cSharedPages--; + gmmR0FreePageWorker(pGMM, pGVM, pChunk, idPage, pPage); +} + + +/** + * Frees a private page, the page is known to exist and be valid and such. + * + * @param pGMM Pointer to the GMM instance. + * @param pGVM Pointer to the GVM instance. + * @param idPage The page id. + * @param pPage The page structure. + */ +DECLINLINE(void) gmmR0FreePrivatePage(PGMM pGMM, PGVM pGVM, uint32_t idPage, PGMMPAGE pPage) +{ + PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT); + Assert(pChunk); + Assert(pChunk->cFree < GMM_CHUNK_NUM_PAGES); + Assert(pChunk->cPrivate > 0); + Assert(pGMM->cAllocatedPages > 0); + + pChunk->cPrivate--; + pGMM->cAllocatedPages--; + gmmR0FreePageWorker(pGMM, pGVM, pChunk, idPage, pPage); +} + + +/** + * Common worker for GMMR0FreePages and GMMR0BalloonedPages. + * + * @returns VBox status code: + * @retval xxx + * + * @param pGMM Pointer to the GMM instance data. + * @param pGVM Pointer to the VM. + * @param cPages The number of pages to free. + * @param paPages Pointer to the page descriptors. + * @param enmAccount The account this relates to. + */ +static int gmmR0FreePages(PGMM pGMM, PGVM pGVM, uint32_t cPages, PGMMFREEPAGEDESC paPages, GMMACCOUNT enmAccount) +{ + /* + * Check that the request isn't impossible wrt to the account status. + */ + switch (enmAccount) + { + case GMMACCOUNT_BASE: + if (RT_UNLIKELY(pGVM->gmm.s.Stats.Allocated.cBasePages < cPages)) + { + Log(("gmmR0FreePages: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Stats.Allocated.cBasePages, cPages)); + return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH; + } + break; + case GMMACCOUNT_SHADOW: + if (RT_UNLIKELY(pGVM->gmm.s.Stats.Allocated.cShadowPages < cPages)) + { + Log(("gmmR0FreePages: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Stats.Allocated.cShadowPages, cPages)); + return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH; + } + break; + case GMMACCOUNT_FIXED: + if (RT_UNLIKELY(pGVM->gmm.s.Stats.Allocated.cFixedPages < cPages)) + { + Log(("gmmR0FreePages: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Stats.Allocated.cFixedPages, cPages)); + return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH; + } + break; + default: + AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_IPE_NOT_REACHED_DEFAULT_CASE); + } + + /* + * Walk the descriptors and free the pages. + * + * Statistics (except the account) are being updated as we go along, + * unlike the alloc code. Also, stop on the first error. + */ + int rc = VINF_SUCCESS; + uint32_t iPage; + for (iPage = 0; iPage < cPages; iPage++) + { + uint32_t idPage = paPages[iPage].idPage; + PGMMPAGE pPage = gmmR0GetPage(pGMM, idPage); + if (RT_LIKELY(pPage)) + { + if (RT_LIKELY(GMM_PAGE_IS_PRIVATE(pPage))) + { + if (RT_LIKELY(pPage->Private.hGVM == pGVM->hSelf)) + { + Assert(pGVM->gmm.s.Stats.cPrivatePages); + pGVM->gmm.s.Stats.cPrivatePages--; + gmmR0FreePrivatePage(pGMM, pGVM, idPage, pPage); + } + else + { + Log(("gmmR0AllocatePages: #%#x/%#x: not owner! hGVM=%#x hSelf=%#x\n", iPage, idPage, + pPage->Private.hGVM, pGVM->hSelf)); + rc = VERR_GMM_NOT_PAGE_OWNER; + break; + } + } + else if (RT_LIKELY(GMM_PAGE_IS_SHARED(pPage))) + { + Assert(pGVM->gmm.s.Stats.cSharedPages); + Assert(pPage->Shared.cRefs); +#if defined(VBOX_WITH_PAGE_SHARING) && defined(VBOX_STRICT) + if (pPage->Shared.u14Checksum) + { + uint32_t uChecksum = gmmR0StrictPageChecksum(pGMM, pGVM, idPage); + uChecksum &= UINT32_C(0x00003fff); + AssertMsg(!uChecksum || uChecksum == pPage->Shared.u14Checksum, + ("%#x vs %#x - idPage=%#x\n", uChecksum, pPage->Shared.u14Checksum, idPage)); + } +#endif + pGVM->gmm.s.Stats.cSharedPages--; + if (!--pPage->Shared.cRefs) + gmmR0FreeSharedPage(pGMM, pGVM, idPage, pPage); + else + { + Assert(pGMM->cDuplicatePages); + pGMM->cDuplicatePages--; + } + } + else + { + Log(("gmmR0AllocatePages: #%#x/%#x: already free!\n", iPage, idPage)); + rc = VERR_GMM_PAGE_ALREADY_FREE; + break; + } + } + else + { + Log(("gmmR0AllocatePages: #%#x/%#x: not found!\n", iPage, idPage)); + rc = VERR_GMM_PAGE_NOT_FOUND; + break; + } + paPages[iPage].idPage = NIL_GMM_PAGEID; + } + + /* + * Update the account. + */ + switch (enmAccount) + { + case GMMACCOUNT_BASE: pGVM->gmm.s.Stats.Allocated.cBasePages -= iPage; break; + case GMMACCOUNT_SHADOW: pGVM->gmm.s.Stats.Allocated.cShadowPages -= iPage; break; + case GMMACCOUNT_FIXED: pGVM->gmm.s.Stats.Allocated.cFixedPages -= iPage; break; + default: + AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_IPE_NOT_REACHED_DEFAULT_CASE); + } + + /* + * Any threshold stuff to be done here? + */ + + return rc; +} + + +/** + * Free one or more pages. + * + * This is typically used at reset time or power off. + * + * @returns VBox status code: + * @retval xxx + * + * @param pGVM The global (ring-0) VM structure. + * @param idCpu The VCPU id. + * @param cPages The number of pages to allocate. + * @param paPages Pointer to the page descriptors containing the page IDs + * for each page. + * @param enmAccount The account this relates to. + * @thread EMT. + */ +GMMR0DECL(int) GMMR0FreePages(PGVM pGVM, VMCPUID idCpu, uint32_t cPages, PGMMFREEPAGEDESC paPages, GMMACCOUNT enmAccount) +{ + LogFlow(("GMMR0FreePages: pGVM=%p cPages=%#x paPages=%p enmAccount=%d\n", pGVM, cPages, paPages, enmAccount)); + + /* + * Validate input and get the basics. + */ + PGMM pGMM; + GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE); + int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu); + if (RT_FAILURE(rc)) + return rc; + + AssertPtrReturn(paPages, VERR_INVALID_PARAMETER); + AssertMsgReturn(enmAccount > GMMACCOUNT_INVALID && enmAccount < GMMACCOUNT_END, ("%d\n", enmAccount), VERR_INVALID_PARAMETER); + AssertMsgReturn(cPages > 0 && cPages < RT_BIT(32 - GUEST_PAGE_SHIFT), ("%#x\n", cPages), VERR_INVALID_PARAMETER); + + for (unsigned iPage = 0; iPage < cPages; iPage++) + AssertMsgReturn( paPages[iPage].idPage <= GMM_PAGEID_LAST + /*|| paPages[iPage].idPage == NIL_GMM_PAGEID*/, + ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER); + + /* + * Take the semaphore and call the worker function. + */ + gmmR0MutexAcquire(pGMM); + if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) + { + rc = gmmR0FreePages(pGMM, pGVM, cPages, paPages, enmAccount); + GMM_CHECK_SANITY_UPON_LEAVING(pGMM); + } + else + rc = VERR_GMM_IS_NOT_SANE; + gmmR0MutexRelease(pGMM); + LogFlow(("GMMR0FreePages: returns %Rrc\n", rc)); + return rc; +} + + +/** + * VMMR0 request wrapper for GMMR0FreePages. + * + * @returns see GMMR0FreePages. + * @param pGVM The global (ring-0) VM structure. + * @param idCpu The VCPU id. + * @param pReq Pointer to the request packet. + */ +GMMR0DECL(int) GMMR0FreePagesReq(PGVM pGVM, VMCPUID idCpu, PGMMFREEPAGESREQ pReq) +{ + /* + * Validate input and pass it on. + */ + AssertPtrReturn(pReq, VERR_INVALID_POINTER); + AssertMsgReturn(pReq->Hdr.cbReq >= RT_UOFFSETOF(GMMFREEPAGESREQ, aPages[0]), + ("%#x < %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMFREEPAGESREQ, aPages[0])), + VERR_INVALID_PARAMETER); + AssertMsgReturn(pReq->Hdr.cbReq == RT_UOFFSETOF_DYN(GMMFREEPAGESREQ, aPages[pReq->cPages]), + ("%#x != %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF_DYN(GMMFREEPAGESREQ, aPages[pReq->cPages])), + VERR_INVALID_PARAMETER); + + return GMMR0FreePages(pGVM, idCpu, pReq->cPages, &pReq->aPages[0], pReq->enmAccount); +} + + +/** + * Report back on a memory ballooning request. + * + * The request may or may not have been initiated by the GMM. If it was initiated + * by the GMM it is important that this function is called even if no pages were + * ballooned. + * + * @returns VBox status code: + * @retval VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH + * @retval VERR_GMM_ATTEMPT_TO_DEFLATE_TOO_MUCH + * @retval VERR_GMM_OVERCOMMITTED_TRY_AGAIN_IN_A_BIT - reset condition + * indicating that we won't necessarily have sufficient RAM to boot + * the VM again and that it should pause until this changes (we'll try + * balloon some other VM). (For standard deflate we have little choice + * but to hope the VM won't use the memory that was returned to it.) + * + * @param pGVM The global (ring-0) VM structure. + * @param idCpu The VCPU id. + * @param enmAction Inflate/deflate/reset. + * @param cBalloonedPages The number of pages that was ballooned. + * + * @thread EMT(idCpu) + */ +GMMR0DECL(int) GMMR0BalloonedPages(PGVM pGVM, VMCPUID idCpu, GMMBALLOONACTION enmAction, uint32_t cBalloonedPages) +{ + LogFlow(("GMMR0BalloonedPages: pGVM=%p enmAction=%d cBalloonedPages=%#x\n", + pGVM, enmAction, cBalloonedPages)); + + AssertMsgReturn(cBalloonedPages < RT_BIT(32 - GUEST_PAGE_SHIFT), ("%#x\n", cBalloonedPages), VERR_INVALID_PARAMETER); + + /* + * Validate input and get the basics. + */ + PGMM pGMM; + GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE); + int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu); + if (RT_FAILURE(rc)) + return rc; + + /* + * Take the semaphore and do some more validations. + */ + gmmR0MutexAcquire(pGMM); + if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) + { + switch (enmAction) + { + case GMMBALLOONACTION_INFLATE: + { + if (RT_LIKELY(pGVM->gmm.s.Stats.Allocated.cBasePages + pGVM->gmm.s.Stats.cBalloonedPages + cBalloonedPages + <= pGVM->gmm.s.Stats.Reserved.cBasePages)) + { + /* + * Record the ballooned memory. + */ + pGMM->cBalloonedPages += cBalloonedPages; + if (pGVM->gmm.s.Stats.cReqBalloonedPages) + { + /* Codepath never taken. Might be interesting in the future to request ballooned memory from guests in low memory conditions.. */ + AssertFailed(); + + pGVM->gmm.s.Stats.cBalloonedPages += cBalloonedPages; + pGVM->gmm.s.Stats.cReqActuallyBalloonedPages += cBalloonedPages; + Log(("GMMR0BalloonedPages: +%#x - Global=%#llx / VM: Total=%#llx Req=%#llx Actual=%#llx (pending)\n", + cBalloonedPages, pGMM->cBalloonedPages, pGVM->gmm.s.Stats.cBalloonedPages, + pGVM->gmm.s.Stats.cReqBalloonedPages, pGVM->gmm.s.Stats.cReqActuallyBalloonedPages)); + } + else + { + pGVM->gmm.s.Stats.cBalloonedPages += cBalloonedPages; + Log(("GMMR0BalloonedPages: +%#x - Global=%#llx / VM: Total=%#llx (user)\n", + cBalloonedPages, pGMM->cBalloonedPages, pGVM->gmm.s.Stats.cBalloonedPages)); + } + } + else + { + Log(("GMMR0BalloonedPages: cBasePages=%#llx Total=%#llx cBalloonedPages=%#llx Reserved=%#llx\n", + pGVM->gmm.s.Stats.Allocated.cBasePages, pGVM->gmm.s.Stats.cBalloonedPages, cBalloonedPages, + pGVM->gmm.s.Stats.Reserved.cBasePages)); + rc = VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH; + } + break; + } + + case GMMBALLOONACTION_DEFLATE: + { + /* Deflate. */ + if (pGVM->gmm.s.Stats.cBalloonedPages >= cBalloonedPages) + { + /* + * Record the ballooned memory. + */ + Assert(pGMM->cBalloonedPages >= cBalloonedPages); + pGMM->cBalloonedPages -= cBalloonedPages; + pGVM->gmm.s.Stats.cBalloonedPages -= cBalloonedPages; + if (pGVM->gmm.s.Stats.cReqDeflatePages) + { + AssertFailed(); /* This is path is for later. */ + Log(("GMMR0BalloonedPages: -%#x - Global=%#llx / VM: Total=%#llx Req=%#llx\n", + cBalloonedPages, pGMM->cBalloonedPages, pGVM->gmm.s.Stats.cBalloonedPages, pGVM->gmm.s.Stats.cReqDeflatePages)); + + /* + * Anything we need to do here now when the request has been completed? + */ + pGVM->gmm.s.Stats.cReqDeflatePages = 0; + } + else + Log(("GMMR0BalloonedPages: -%#x - Global=%#llx / VM: Total=%#llx (user)\n", + cBalloonedPages, pGMM->cBalloonedPages, pGVM->gmm.s.Stats.cBalloonedPages)); + } + else + { + Log(("GMMR0BalloonedPages: Total=%#llx cBalloonedPages=%#llx\n", pGVM->gmm.s.Stats.cBalloonedPages, cBalloonedPages)); + rc = VERR_GMM_ATTEMPT_TO_DEFLATE_TOO_MUCH; + } + break; + } + + case GMMBALLOONACTION_RESET: + { + /* Reset to an empty balloon. */ + Assert(pGMM->cBalloonedPages >= pGVM->gmm.s.Stats.cBalloonedPages); + + pGMM->cBalloonedPages -= pGVM->gmm.s.Stats.cBalloonedPages; + pGVM->gmm.s.Stats.cBalloonedPages = 0; + break; + } + + default: + rc = VERR_INVALID_PARAMETER; + break; + } + GMM_CHECK_SANITY_UPON_LEAVING(pGMM); + } + else + rc = VERR_GMM_IS_NOT_SANE; + + gmmR0MutexRelease(pGMM); + LogFlow(("GMMR0BalloonedPages: returns %Rrc\n", rc)); + return rc; +} + + +/** + * VMMR0 request wrapper for GMMR0BalloonedPages. + * + * @returns see GMMR0BalloonedPages. + * @param pGVM The global (ring-0) VM structure. + * @param idCpu The VCPU id. + * @param pReq Pointer to the request packet. + */ +GMMR0DECL(int) GMMR0BalloonedPagesReq(PGVM pGVM, VMCPUID idCpu, PGMMBALLOONEDPAGESREQ pReq) +{ + /* + * Validate input and pass it on. + */ + AssertPtrReturn(pReq, VERR_INVALID_POINTER); + AssertMsgReturn(pReq->Hdr.cbReq == sizeof(GMMBALLOONEDPAGESREQ), + ("%#x < %#x\n", pReq->Hdr.cbReq, sizeof(GMMBALLOONEDPAGESREQ)), + VERR_INVALID_PARAMETER); + + return GMMR0BalloonedPages(pGVM, idCpu, pReq->enmAction, pReq->cBalloonedPages); +} + + +/** + * Return memory statistics for the hypervisor + * + * @returns VBox status code. + * @param pReq Pointer to the request packet. + */ +GMMR0DECL(int) GMMR0QueryHypervisorMemoryStatsReq(PGMMMEMSTATSREQ pReq) +{ + /* + * Validate input and pass it on. + */ + AssertPtrReturn(pReq, VERR_INVALID_POINTER); + AssertMsgReturn(pReq->Hdr.cbReq == sizeof(GMMMEMSTATSREQ), + ("%#x < %#x\n", pReq->Hdr.cbReq, sizeof(GMMMEMSTATSREQ)), + VERR_INVALID_PARAMETER); + + /* + * Validate input and get the basics. + */ + PGMM pGMM; + GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE); + pReq->cAllocPages = pGMM->cAllocatedPages; + pReq->cFreePages = (pGMM->cChunks << (GMM_CHUNK_SHIFT - GUEST_PAGE_SHIFT)) - pGMM->cAllocatedPages; + pReq->cBalloonedPages = pGMM->cBalloonedPages; + pReq->cMaxPages = pGMM->cMaxPages; + pReq->cSharedPages = pGMM->cDuplicatePages; + GMM_CHECK_SANITY_UPON_LEAVING(pGMM); + + return VINF_SUCCESS; +} + + +/** + * Return memory statistics for the VM + * + * @returns VBox status code. + * @param pGVM The global (ring-0) VM structure. + * @param idCpu Cpu id. + * @param pReq Pointer to the request packet. + * + * @thread EMT(idCpu) + */ +GMMR0DECL(int) GMMR0QueryMemoryStatsReq(PGVM pGVM, VMCPUID idCpu, PGMMMEMSTATSREQ pReq) +{ + /* + * Validate input and pass it on. + */ + AssertPtrReturn(pReq, VERR_INVALID_POINTER); + AssertMsgReturn(pReq->Hdr.cbReq == sizeof(GMMMEMSTATSREQ), + ("%#x < %#x\n", pReq->Hdr.cbReq, sizeof(GMMMEMSTATSREQ)), + VERR_INVALID_PARAMETER); + + /* + * Validate input and get the basics. + */ + PGMM pGMM; + GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE); + int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu); + if (RT_FAILURE(rc)) + return rc; + + /* + * Take the semaphore and do some more validations. + */ + gmmR0MutexAcquire(pGMM); + if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) + { + pReq->cAllocPages = pGVM->gmm.s.Stats.Allocated.cBasePages; + pReq->cBalloonedPages = pGVM->gmm.s.Stats.cBalloonedPages; + pReq->cMaxPages = pGVM->gmm.s.Stats.Reserved.cBasePages; + pReq->cFreePages = pReq->cMaxPages - pReq->cAllocPages; + } + else + rc = VERR_GMM_IS_NOT_SANE; + + gmmR0MutexRelease(pGMM); + LogFlow(("GMMR3QueryVMMemoryStats: returns %Rrc\n", rc)); + return rc; +} + + +/** + * Worker for gmmR0UnmapChunk and gmmr0FreeChunk. + * + * Don't call this in legacy allocation mode! + * + * @returns VBox status code. + * @param pGMM Pointer to the GMM instance data. + * @param pGVM Pointer to the Global VM structure. + * @param pChunk Pointer to the chunk to be unmapped. + */ +static int gmmR0UnmapChunkLocked(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk) +{ + RT_NOREF_PV(pGMM); + + /* + * Find the mapping and try unmapping it. + */ + uint32_t cMappings = pChunk->cMappingsX; + for (uint32_t i = 0; i < cMappings; i++) + { + Assert(pChunk->paMappingsX[i].pGVM && pChunk->paMappingsX[i].hMapObj != NIL_RTR0MEMOBJ); + if (pChunk->paMappingsX[i].pGVM == pGVM) + { + /* unmap */ + int rc = RTR0MemObjFree(pChunk->paMappingsX[i].hMapObj, false /* fFreeMappings (NA) */); + if (RT_SUCCESS(rc)) + { + /* update the record. */ + cMappings--; + if (i < cMappings) + pChunk->paMappingsX[i] = pChunk->paMappingsX[cMappings]; + pChunk->paMappingsX[cMappings].hMapObj = NIL_RTR0MEMOBJ; + pChunk->paMappingsX[cMappings].pGVM = NULL; + Assert(pChunk->cMappingsX - 1U == cMappings); + pChunk->cMappingsX = cMappings; + } + + return rc; + } + } + + Log(("gmmR0UnmapChunk: Chunk %#x is not mapped into pGVM=%p/%#x\n", pChunk->Core.Key, pGVM, pGVM->hSelf)); + return VERR_GMM_CHUNK_NOT_MAPPED; +} + + +/** + * Unmaps a chunk previously mapped into the address space of the current process. + * + * @returns VBox status code. + * @param pGMM Pointer to the GMM instance data. + * @param pGVM Pointer to the Global VM structure. + * @param pChunk Pointer to the chunk to be unmapped. + * @param fRelaxedSem Whether we can release the semaphore while doing the + * mapping (@c true) or not. + */ +static int gmmR0UnmapChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, bool fRelaxedSem) +{ + /* + * Lock the chunk and if possible leave the giant GMM lock. + */ + GMMR0CHUNKMTXSTATE MtxState; + int rc = gmmR0ChunkMutexAcquire(&MtxState, pGMM, pChunk, + fRelaxedSem ? GMMR0CHUNK_MTX_RETAKE_GIANT : GMMR0CHUNK_MTX_KEEP_GIANT); + if (RT_SUCCESS(rc)) + { + rc = gmmR0UnmapChunkLocked(pGMM, pGVM, pChunk); + gmmR0ChunkMutexRelease(&MtxState, pChunk); + } + return rc; +} + + +/** + * Worker for gmmR0MapChunk. + * + * @returns VBox status code. + * @param pGMM Pointer to the GMM instance data. + * @param pGVM Pointer to the Global VM structure. + * @param pChunk Pointer to the chunk to be mapped. + * @param ppvR3 Where to store the ring-3 address of the mapping. + * In the VERR_GMM_CHUNK_ALREADY_MAPPED case, this will be + * contain the address of the existing mapping. + */ +static int gmmR0MapChunkLocked(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, PRTR3PTR ppvR3) +{ + RT_NOREF(pGMM); + + /* + * Check to see if the chunk is already mapped. + */ + for (uint32_t i = 0; i < pChunk->cMappingsX; i++) + { + Assert(pChunk->paMappingsX[i].pGVM && pChunk->paMappingsX[i].hMapObj != NIL_RTR0MEMOBJ); + if (pChunk->paMappingsX[i].pGVM == pGVM) + { + *ppvR3 = RTR0MemObjAddressR3(pChunk->paMappingsX[i].hMapObj); + Log(("gmmR0MapChunk: chunk %#x is already mapped at %p!\n", pChunk->Core.Key, *ppvR3)); +#ifdef VBOX_WITH_PAGE_SHARING + /* The ring-3 chunk cache can be out of sync; don't fail. */ + return VINF_SUCCESS; +#else + return VERR_GMM_CHUNK_ALREADY_MAPPED; +#endif + } + } + + /* + * Do the mapping. + */ + RTR0MEMOBJ hMapObj; + int rc = RTR0MemObjMapUser(&hMapObj, pChunk->hMemObj, (RTR3PTR)-1, 0, RTMEM_PROT_READ | RTMEM_PROT_WRITE, NIL_RTR0PROCESS); + if (RT_SUCCESS(rc)) + { + /* reallocate the array? assumes few users per chunk (usually one). */ + unsigned iMapping = pChunk->cMappingsX; + if ( iMapping <= 3 + || (iMapping & 3) == 0) + { + unsigned cNewSize = iMapping <= 3 + ? iMapping + 1 + : iMapping + 4; + Assert(cNewSize < 4 || RT_ALIGN_32(cNewSize, 4) == cNewSize); + if (RT_UNLIKELY(cNewSize > UINT16_MAX)) + { + rc = RTR0MemObjFree(hMapObj, false /* fFreeMappings (NA) */); AssertRC(rc); + return VERR_GMM_TOO_MANY_CHUNK_MAPPINGS; + } + + void *pvMappings = RTMemRealloc(pChunk->paMappingsX, cNewSize * sizeof(pChunk->paMappingsX[0])); + if (RT_UNLIKELY(!pvMappings)) + { + rc = RTR0MemObjFree(hMapObj, false /* fFreeMappings (NA) */); AssertRC(rc); + return VERR_NO_MEMORY; + } + pChunk->paMappingsX = (PGMMCHUNKMAP)pvMappings; + } + + /* insert new entry */ + pChunk->paMappingsX[iMapping].hMapObj = hMapObj; + pChunk->paMappingsX[iMapping].pGVM = pGVM; + Assert(pChunk->cMappingsX == iMapping); + pChunk->cMappingsX = iMapping + 1; + + *ppvR3 = RTR0MemObjAddressR3(hMapObj); + } + + return rc; +} + + +/** + * Maps a chunk into the user address space of the current process. + * + * @returns VBox status code. + * @param pGMM Pointer to the GMM instance data. + * @param pGVM Pointer to the Global VM structure. + * @param pChunk Pointer to the chunk to be mapped. + * @param fRelaxedSem Whether we can release the semaphore while doing the + * mapping (@c true) or not. + * @param ppvR3 Where to store the ring-3 address of the mapping. + * In the VERR_GMM_CHUNK_ALREADY_MAPPED case, this will be + * contain the address of the existing mapping. + */ +static int gmmR0MapChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, bool fRelaxedSem, PRTR3PTR ppvR3) +{ + /* + * Take the chunk lock and leave the giant GMM lock when possible, then + * call the worker function. + */ + GMMR0CHUNKMTXSTATE MtxState; + int rc = gmmR0ChunkMutexAcquire(&MtxState, pGMM, pChunk, + fRelaxedSem ? GMMR0CHUNK_MTX_RETAKE_GIANT : GMMR0CHUNK_MTX_KEEP_GIANT); + if (RT_SUCCESS(rc)) + { + rc = gmmR0MapChunkLocked(pGMM, pGVM, pChunk, ppvR3); + gmmR0ChunkMutexRelease(&MtxState, pChunk); + } + + return rc; +} + + + +#if defined(VBOX_WITH_PAGE_SHARING) || defined(VBOX_STRICT) +/** + * Check if a chunk is mapped into the specified VM + * + * @returns mapped yes/no + * @param pGMM Pointer to the GMM instance. + * @param pGVM Pointer to the Global VM structure. + * @param pChunk Pointer to the chunk to be mapped. + * @param ppvR3 Where to store the ring-3 address of the mapping. + */ +static bool gmmR0IsChunkMapped(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, PRTR3PTR ppvR3) +{ + GMMR0CHUNKMTXSTATE MtxState; + gmmR0ChunkMutexAcquire(&MtxState, pGMM, pChunk, GMMR0CHUNK_MTX_KEEP_GIANT); + for (uint32_t i = 0; i < pChunk->cMappingsX; i++) + { + Assert(pChunk->paMappingsX[i].pGVM && pChunk->paMappingsX[i].hMapObj != NIL_RTR0MEMOBJ); + if (pChunk->paMappingsX[i].pGVM == pGVM) + { + *ppvR3 = RTR0MemObjAddressR3(pChunk->paMappingsX[i].hMapObj); + gmmR0ChunkMutexRelease(&MtxState, pChunk); + return true; + } + } + *ppvR3 = NULL; + gmmR0ChunkMutexRelease(&MtxState, pChunk); + return false; +} +#endif /* VBOX_WITH_PAGE_SHARING || VBOX_STRICT */ + + +/** + * Map a chunk and/or unmap another chunk. + * + * The mapping and unmapping applies to the current process. + * + * This API does two things because it saves a kernel call per mapping when + * when the ring-3 mapping cache is full. + * + * @returns VBox status code. + * @param pGVM The global (ring-0) VM structure. + * @param idChunkMap The chunk to map. NIL_GMM_CHUNKID if nothing to map. + * @param idChunkUnmap The chunk to unmap. NIL_GMM_CHUNKID if nothing to unmap. + * @param ppvR3 Where to store the address of the mapped chunk. NULL is ok if nothing to map. + * @thread EMT ??? + */ +GMMR0DECL(int) GMMR0MapUnmapChunk(PGVM pGVM, uint32_t idChunkMap, uint32_t idChunkUnmap, PRTR3PTR ppvR3) +{ + LogFlow(("GMMR0MapUnmapChunk: pGVM=%p idChunkMap=%#x idChunkUnmap=%#x ppvR3=%p\n", + pGVM, idChunkMap, idChunkUnmap, ppvR3)); + + /* + * Validate input and get the basics. + */ + PGMM pGMM; + GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE); + int rc = GVMMR0ValidateGVM(pGVM); + if (RT_FAILURE(rc)) + return rc; + + AssertCompile(NIL_GMM_CHUNKID == 0); + AssertMsgReturn(idChunkMap <= GMM_CHUNKID_LAST, ("%#x\n", idChunkMap), VERR_INVALID_PARAMETER); + AssertMsgReturn(idChunkUnmap <= GMM_CHUNKID_LAST, ("%#x\n", idChunkUnmap), VERR_INVALID_PARAMETER); + + if ( idChunkMap == NIL_GMM_CHUNKID + && idChunkUnmap == NIL_GMM_CHUNKID) + return VERR_INVALID_PARAMETER; + + if (idChunkMap != NIL_GMM_CHUNKID) + { + AssertPtrReturn(ppvR3, VERR_INVALID_POINTER); + *ppvR3 = NIL_RTR3PTR; + } + + /* + * Take the semaphore and do the work. + * + * The unmapping is done last since it's easier to undo a mapping than + * undoing an unmapping. The ring-3 mapping cache cannot not be so big + * that it pushes the user virtual address space to within a chunk of + * it it's limits, so, no problem here. + */ + gmmR0MutexAcquire(pGMM); + if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) + { + PGMMCHUNK pMap = NULL; + if (idChunkMap != NIL_GVM_HANDLE) + { + pMap = gmmR0GetChunk(pGMM, idChunkMap); + if (RT_LIKELY(pMap)) + rc = gmmR0MapChunk(pGMM, pGVM, pMap, true /*fRelaxedSem*/, ppvR3); + else + { + Log(("GMMR0MapUnmapChunk: idChunkMap=%#x\n", idChunkMap)); + rc = VERR_GMM_CHUNK_NOT_FOUND; + } + } +/** @todo split this operation, the bail out might (theoretcially) not be + * entirely safe. */ + + if ( idChunkUnmap != NIL_GMM_CHUNKID + && RT_SUCCESS(rc)) + { + PGMMCHUNK pUnmap = gmmR0GetChunk(pGMM, idChunkUnmap); + if (RT_LIKELY(pUnmap)) + rc = gmmR0UnmapChunk(pGMM, pGVM, pUnmap, true /*fRelaxedSem*/); + else + { + Log(("GMMR0MapUnmapChunk: idChunkUnmap=%#x\n", idChunkUnmap)); + rc = VERR_GMM_CHUNK_NOT_FOUND; + } + + if (RT_FAILURE(rc) && pMap) + gmmR0UnmapChunk(pGMM, pGVM, pMap, false /*fRelaxedSem*/); + } + + GMM_CHECK_SANITY_UPON_LEAVING(pGMM); + } + else + rc = VERR_GMM_IS_NOT_SANE; + gmmR0MutexRelease(pGMM); + + LogFlow(("GMMR0MapUnmapChunk: returns %Rrc\n", rc)); + return rc; +} + + +/** + * VMMR0 request wrapper for GMMR0MapUnmapChunk. + * + * @returns see GMMR0MapUnmapChunk. + * @param pGVM The global (ring-0) VM structure. + * @param pReq Pointer to the request packet. + */ +GMMR0DECL(int) GMMR0MapUnmapChunkReq(PGVM pGVM, PGMMMAPUNMAPCHUNKREQ pReq) +{ + /* + * Validate input and pass it on. + */ + AssertPtrReturn(pReq, VERR_INVALID_POINTER); + AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER); + + return GMMR0MapUnmapChunk(pGVM, pReq->idChunkMap, pReq->idChunkUnmap, &pReq->pvR3); +} + + +#ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM +/** + * Gets the ring-0 virtual address for the given page. + * + * This is used by PGM when IEM and such wants to access guest RAM from ring-0. + * One of the ASSUMPTIONS here is that the @a idPage is used by the VM and the + * corresponding chunk will remain valid beyond the call (at least till the EMT + * returns to ring-3). + * + * @returns VBox status code. + * @param pGVM Pointer to the kernel-only VM instace data. + * @param idPage The page ID. + * @param ppv Where to store the address. + * @thread EMT + */ +GMMR0DECL(int) GMMR0PageIdToVirt(PGVM pGVM, uint32_t idPage, void **ppv) +{ + *ppv = NULL; + PGMM pGMM; + GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE); + + uint32_t const idChunk = idPage >> GMM_CHUNKID_SHIFT; + + /* + * Start with the per-VM TLB. + */ + RTSpinlockAcquire(pGVM->gmm.s.hChunkTlbSpinLock); + + PGMMPERVMCHUNKTLBE pTlbe = &pGVM->gmm.s.aChunkTlbEntries[GMMPERVM_CHUNKTLB_IDX(idChunk)]; + PGMMCHUNK pChunk = pTlbe->pChunk; + if ( pChunk != NULL + && pTlbe->idGeneration == ASMAtomicUoReadU64(&pGMM->idFreeGeneration) + && pChunk->Core.Key == idChunk) + pGVM->R0Stats.gmm.cChunkTlbHits++; /* hopefully this is a likely outcome */ + else + { + pGVM->R0Stats.gmm.cChunkTlbMisses++; + + /* + * Look it up in the chunk tree. + */ + RTSpinlockAcquire(pGMM->hSpinLockTree); + pChunk = gmmR0GetChunkLocked(pGMM, idChunk); + if (RT_LIKELY(pChunk)) + { + pTlbe->idGeneration = pGMM->idFreeGeneration; + RTSpinlockRelease(pGMM->hSpinLockTree); + pTlbe->pChunk = pChunk; + } + else + { + RTSpinlockRelease(pGMM->hSpinLockTree); + RTSpinlockRelease(pGVM->gmm.s.hChunkTlbSpinLock); + AssertMsgFailed(("idPage=%#x\n", idPage)); + return VERR_GMM_PAGE_NOT_FOUND; + } + } + + RTSpinlockRelease(pGVM->gmm.s.hChunkTlbSpinLock); + + /* + * Got a chunk, now validate the page ownership and calcuate it's address. + */ + const GMMPAGE * const pPage = &pChunk->aPages[idPage & GMM_PAGEID_IDX_MASK]; + if (RT_LIKELY( ( GMM_PAGE_IS_PRIVATE(pPage) + && pPage->Private.hGVM == pGVM->hSelf) + || GMM_PAGE_IS_SHARED(pPage))) + { + AssertPtr(pChunk->pbMapping); + *ppv = &pChunk->pbMapping[(idPage & GMM_PAGEID_IDX_MASK) << GUEST_PAGE_SHIFT]; + return VINF_SUCCESS; + } + AssertMsgFailed(("idPage=%#x is-private=%RTbool Private.hGVM=%u pGVM->hGVM=%u\n", + idPage, GMM_PAGE_IS_PRIVATE(pPage), pPage->Private.hGVM, pGVM->hSelf)); + return VERR_GMM_NOT_PAGE_OWNER; +} +#endif /* !VBOX_WITH_LINEAR_HOST_PHYS_MEM */ + +#ifdef VBOX_WITH_PAGE_SHARING + +# ifdef VBOX_STRICT +/** + * For checksumming shared pages in strict builds. + * + * The purpose is making sure that a page doesn't change. + * + * @returns Checksum, 0 on failure. + * @param pGMM The GMM instance data. + * @param pGVM Pointer to the kernel-only VM instace data. + * @param idPage The page ID. + */ +static uint32_t gmmR0StrictPageChecksum(PGMM pGMM, PGVM pGVM, uint32_t idPage) +{ + PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT); + AssertMsgReturn(pChunk, ("idPage=%#x\n", idPage), 0); + + uint8_t *pbChunk; + if (!gmmR0IsChunkMapped(pGMM, pGVM, pChunk, (PRTR3PTR)&pbChunk)) + return 0; + uint8_t const *pbPage = pbChunk + ((idPage & GMM_PAGEID_IDX_MASK) << GUEST_PAGE_SHIFT); + + return RTCrc32(pbPage, GUEST_PAGE_SIZE); +} +# endif /* VBOX_STRICT */ + + +/** + * Calculates the module hash value. + * + * @returns Hash value. + * @param pszModuleName The module name. + * @param pszVersion The module version string. + */ +static uint32_t gmmR0ShModCalcHash(const char *pszModuleName, const char *pszVersion) +{ + return RTStrHash1ExN(3, pszModuleName, RTSTR_MAX, "::", (size_t)2, pszVersion, RTSTR_MAX); +} + + +/** + * Finds a global module. + * + * @returns Pointer to the global module on success, NULL if not found. + * @param pGMM The GMM instance data. + * @param uHash The hash as calculated by gmmR0ShModCalcHash. + * @param cbModule The module size. + * @param enmGuestOS The guest OS type. + * @param cRegions The number of regions. + * @param pszModuleName The module name. + * @param pszVersion The module version. + * @param paRegions The region descriptions. + */ +static PGMMSHAREDMODULE gmmR0ShModFindGlobal(PGMM pGMM, uint32_t uHash, uint32_t cbModule, VBOXOSFAMILY enmGuestOS, + uint32_t cRegions, const char *pszModuleName, const char *pszVersion, + struct VMMDEVSHAREDREGIONDESC const *paRegions) +{ + for (PGMMSHAREDMODULE pGblMod = (PGMMSHAREDMODULE)RTAvllU32Get(&pGMM->pGlobalSharedModuleTree, uHash); + pGblMod; + pGblMod = (PGMMSHAREDMODULE)pGblMod->Core.pList) + { + if (pGblMod->cbModule != cbModule) + continue; + if (pGblMod->enmGuestOS != enmGuestOS) + continue; + if (pGblMod->cRegions != cRegions) + continue; + if (strcmp(pGblMod->szName, pszModuleName)) + continue; + if (strcmp(pGblMod->szVersion, pszVersion)) + continue; + + uint32_t i; + for (i = 0; i < cRegions; i++) + { + uint32_t off = paRegions[i].GCRegionAddr & GUEST_PAGE_OFFSET_MASK; + if (pGblMod->aRegions[i].off != off) + break; + + uint32_t cb = RT_ALIGN_32(paRegions[i].cbRegion + off, GUEST_PAGE_SIZE); + if (pGblMod->aRegions[i].cb != cb) + break; + } + + if (i == cRegions) + return pGblMod; + } + + return NULL; +} + + +/** + * Creates a new global module. + * + * @returns VBox status code. + * @param pGMM The GMM instance data. + * @param uHash The hash as calculated by gmmR0ShModCalcHash. + * @param cbModule The module size. + * @param enmGuestOS The guest OS type. + * @param cRegions The number of regions. + * @param pszModuleName The module name. + * @param pszVersion The module version. + * @param paRegions The region descriptions. + * @param ppGblMod Where to return the new module on success. + */ +static int gmmR0ShModNewGlobal(PGMM pGMM, uint32_t uHash, uint32_t cbModule, VBOXOSFAMILY enmGuestOS, + uint32_t cRegions, const char *pszModuleName, const char *pszVersion, + struct VMMDEVSHAREDREGIONDESC const *paRegions, PGMMSHAREDMODULE *ppGblMod) +{ + Log(("gmmR0ShModNewGlobal: %s %s size %#x os %u rgn %u\n", pszModuleName, pszVersion, cbModule, enmGuestOS, cRegions)); + if (pGMM->cShareableModules >= GMM_MAX_SHARED_GLOBAL_MODULES) + { + Log(("gmmR0ShModNewGlobal: Too many modules\n")); + return VERR_GMM_TOO_MANY_GLOBAL_MODULES; + } + + PGMMSHAREDMODULE pGblMod = (PGMMSHAREDMODULE)RTMemAllocZ(RT_UOFFSETOF_DYN(GMMSHAREDMODULE, aRegions[cRegions])); + if (!pGblMod) + { + Log(("gmmR0ShModNewGlobal: No memory\n")); + return VERR_NO_MEMORY; + } + + pGblMod->Core.Key = uHash; + pGblMod->cbModule = cbModule; + pGblMod->cRegions = cRegions; + pGblMod->cUsers = 1; + pGblMod->enmGuestOS = enmGuestOS; + strcpy(pGblMod->szName, pszModuleName); + strcpy(pGblMod->szVersion, pszVersion); + + for (uint32_t i = 0; i < cRegions; i++) + { + Log(("gmmR0ShModNewGlobal: rgn[%u]=%RGvLB%#x\n", i, paRegions[i].GCRegionAddr, paRegions[i].cbRegion)); + pGblMod->aRegions[i].off = paRegions[i].GCRegionAddr & GUEST_PAGE_OFFSET_MASK; + pGblMod->aRegions[i].cb = paRegions[i].cbRegion + pGblMod->aRegions[i].off; + pGblMod->aRegions[i].cb = RT_ALIGN_32(pGblMod->aRegions[i].cb, GUEST_PAGE_SIZE); + pGblMod->aRegions[i].paidPages = NULL; /* allocated when needed. */ + } + + bool fInsert = RTAvllU32Insert(&pGMM->pGlobalSharedModuleTree, &pGblMod->Core); + Assert(fInsert); NOREF(fInsert); + pGMM->cShareableModules++; + + *ppGblMod = pGblMod; + return VINF_SUCCESS; +} + + +/** + * Deletes a global module which is no longer referenced by anyone. + * + * @param pGMM The GMM instance data. + * @param pGblMod The module to delete. + */ +static void gmmR0ShModDeleteGlobal(PGMM pGMM, PGMMSHAREDMODULE pGblMod) +{ + Assert(pGblMod->cUsers == 0); + Assert(pGMM->cShareableModules > 0 && pGMM->cShareableModules <= GMM_MAX_SHARED_GLOBAL_MODULES); + + void *pvTest = RTAvllU32RemoveNode(&pGMM->pGlobalSharedModuleTree, &pGblMod->Core); + Assert(pvTest == pGblMod); NOREF(pvTest); + pGMM->cShareableModules--; + + uint32_t i = pGblMod->cRegions; + while (i-- > 0) + { + if (pGblMod->aRegions[i].paidPages) + { + /* We don't doing anything to the pages as they are handled by the + copy-on-write mechanism in PGM. */ + RTMemFree(pGblMod->aRegions[i].paidPages); + pGblMod->aRegions[i].paidPages = NULL; + } + } + RTMemFree(pGblMod); +} + + +static int gmmR0ShModNewPerVM(PGVM pGVM, RTGCPTR GCBaseAddr, uint32_t cRegions, const VMMDEVSHAREDREGIONDESC *paRegions, + PGMMSHAREDMODULEPERVM *ppRecVM) +{ + if (pGVM->gmm.s.Stats.cShareableModules >= GMM_MAX_SHARED_PER_VM_MODULES) + return VERR_GMM_TOO_MANY_PER_VM_MODULES; + + PGMMSHAREDMODULEPERVM pRecVM; + pRecVM = (PGMMSHAREDMODULEPERVM)RTMemAllocZ(RT_UOFFSETOF_DYN(GMMSHAREDMODULEPERVM, aRegionsGCPtrs[cRegions])); + if (!pRecVM) + return VERR_NO_MEMORY; + + pRecVM->Core.Key = GCBaseAddr; + for (uint32_t i = 0; i < cRegions; i++) + pRecVM->aRegionsGCPtrs[i] = paRegions[i].GCRegionAddr; + + bool fInsert = RTAvlGCPtrInsert(&pGVM->gmm.s.pSharedModuleTree, &pRecVM->Core); + Assert(fInsert); NOREF(fInsert); + pGVM->gmm.s.Stats.cShareableModules++; + + *ppRecVM = pRecVM; + return VINF_SUCCESS; +} + + +static void gmmR0ShModDeletePerVM(PGMM pGMM, PGVM pGVM, PGMMSHAREDMODULEPERVM pRecVM, bool fRemove) +{ + /* + * Free the per-VM module. + */ + PGMMSHAREDMODULE pGblMod = pRecVM->pGlobalModule; + pRecVM->pGlobalModule = NULL; + + if (fRemove) + { + void *pvTest = RTAvlGCPtrRemove(&pGVM->gmm.s.pSharedModuleTree, pRecVM->Core.Key); + Assert(pvTest == &pRecVM->Core); NOREF(pvTest); + } + + RTMemFree(pRecVM); + + /* + * Release the global module. + * (In the registration bailout case, it might not be.) + */ + if (pGblMod) + { + Assert(pGblMod->cUsers > 0); + pGblMod->cUsers--; + if (pGblMod->cUsers == 0) + gmmR0ShModDeleteGlobal(pGMM, pGblMod); + } +} + +#endif /* VBOX_WITH_PAGE_SHARING */ + +/** + * Registers a new shared module for the VM. + * + * @returns VBox status code. + * @param pGVM The global (ring-0) VM structure. + * @param idCpu The VCPU id. + * @param enmGuestOS The guest OS type. + * @param pszModuleName The module name. + * @param pszVersion The module version. + * @param GCPtrModBase The module base address. + * @param cbModule The module size. + * @param cRegions The mumber of shared region descriptors. + * @param paRegions Pointer to an array of shared region(s). + * @thread EMT(idCpu) + */ +GMMR0DECL(int) GMMR0RegisterSharedModule(PGVM pGVM, VMCPUID idCpu, VBOXOSFAMILY enmGuestOS, char *pszModuleName, + char *pszVersion, RTGCPTR GCPtrModBase, uint32_t cbModule, + uint32_t cRegions, struct VMMDEVSHAREDREGIONDESC const *paRegions) +{ +#ifdef VBOX_WITH_PAGE_SHARING + /* + * Validate input and get the basics. + * + * Note! Turns out the module size does necessarily match the size of the + * regions. (iTunes on XP) + */ + PGMM pGMM; + GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE); + int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu); + if (RT_FAILURE(rc)) + return rc; + + if (RT_UNLIKELY(cRegions > VMMDEVSHAREDREGIONDESC_MAX)) + return VERR_GMM_TOO_MANY_REGIONS; + + if (RT_UNLIKELY(cbModule == 0 || cbModule > _1G)) + return VERR_GMM_BAD_SHARED_MODULE_SIZE; + + uint32_t cbTotal = 0; + for (uint32_t i = 0; i < cRegions; i++) + { + if (RT_UNLIKELY(paRegions[i].cbRegion == 0 || paRegions[i].cbRegion > _1G)) + return VERR_GMM_SHARED_MODULE_BAD_REGIONS_SIZE; + + cbTotal += paRegions[i].cbRegion; + if (RT_UNLIKELY(cbTotal > _1G)) + return VERR_GMM_SHARED_MODULE_BAD_REGIONS_SIZE; + } + + AssertPtrReturn(pszModuleName, VERR_INVALID_POINTER); + if (RT_UNLIKELY(!memchr(pszModuleName, '\0', GMM_SHARED_MODULE_MAX_NAME_STRING))) + return VERR_GMM_MODULE_NAME_TOO_LONG; + + AssertPtrReturn(pszVersion, VERR_INVALID_POINTER); + if (RT_UNLIKELY(!memchr(pszVersion, '\0', GMM_SHARED_MODULE_MAX_VERSION_STRING))) + return VERR_GMM_MODULE_NAME_TOO_LONG; + + uint32_t const uHash = gmmR0ShModCalcHash(pszModuleName, pszVersion); + Log(("GMMR0RegisterSharedModule %s %s base %RGv size %x hash %x\n", pszModuleName, pszVersion, GCPtrModBase, cbModule, uHash)); + + /* + * Take the semaphore and do some more validations. + */ + gmmR0MutexAcquire(pGMM); + if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) + { + /* + * Check if this module is already locally registered and register + * it if it isn't. The base address is a unique module identifier + * locally. + */ + PGMMSHAREDMODULEPERVM pRecVM = (PGMMSHAREDMODULEPERVM)RTAvlGCPtrGet(&pGVM->gmm.s.pSharedModuleTree, GCPtrModBase); + bool fNewModule = pRecVM == NULL; + if (fNewModule) + { + rc = gmmR0ShModNewPerVM(pGVM, GCPtrModBase, cRegions, paRegions, &pRecVM); + if (RT_SUCCESS(rc)) + { + /* + * Find a matching global module, register a new one if needed. + */ + PGMMSHAREDMODULE pGblMod = gmmR0ShModFindGlobal(pGMM, uHash, cbModule, enmGuestOS, cRegions, + pszModuleName, pszVersion, paRegions); + if (!pGblMod) + { + Assert(fNewModule); + rc = gmmR0ShModNewGlobal(pGMM, uHash, cbModule, enmGuestOS, cRegions, + pszModuleName, pszVersion, paRegions, &pGblMod); + if (RT_SUCCESS(rc)) + { + pRecVM->pGlobalModule = pGblMod; /* (One referenced returned by gmmR0ShModNewGlobal.) */ + Log(("GMMR0RegisterSharedModule: new module %s %s\n", pszModuleName, pszVersion)); + } + else + gmmR0ShModDeletePerVM(pGMM, pGVM, pRecVM, true /*fRemove*/); + } + else + { + Assert(pGblMod->cUsers > 0 && pGblMod->cUsers < UINT32_MAX / 2); + pGblMod->cUsers++; + pRecVM->pGlobalModule = pGblMod; + + Log(("GMMR0RegisterSharedModule: new per vm module %s %s, gbl users %d\n", pszModuleName, pszVersion, pGblMod->cUsers)); + } + } + } + else + { + /* + * Attempt to re-register an existing module. + */ + PGMMSHAREDMODULE pGblMod = gmmR0ShModFindGlobal(pGMM, uHash, cbModule, enmGuestOS, cRegions, + pszModuleName, pszVersion, paRegions); + if (pRecVM->pGlobalModule == pGblMod) + { + Log(("GMMR0RegisterSharedModule: already registered %s %s, gbl users %d\n", pszModuleName, pszVersion, pGblMod->cUsers)); + rc = VINF_GMM_SHARED_MODULE_ALREADY_REGISTERED; + } + else + { + /** @todo may have to unregister+register when this happens in case it's caused + * by VBoxService crashing and being restarted... */ + Log(("GMMR0RegisterSharedModule: Address clash!\n" + " incoming at %RGvLB%#x %s %s rgns %u\n" + " existing at %RGvLB%#x %s %s rgns %u\n", + GCPtrModBase, cbModule, pszModuleName, pszVersion, cRegions, + pRecVM->Core.Key, pRecVM->pGlobalModule->cbModule, pRecVM->pGlobalModule->szName, + pRecVM->pGlobalModule->szVersion, pRecVM->pGlobalModule->cRegions)); + rc = VERR_GMM_SHARED_MODULE_ADDRESS_CLASH; + } + } + GMM_CHECK_SANITY_UPON_LEAVING(pGMM); + } + else + rc = VERR_GMM_IS_NOT_SANE; + + gmmR0MutexRelease(pGMM); + return rc; +#else + + NOREF(pGVM); NOREF(idCpu); NOREF(enmGuestOS); NOREF(pszModuleName); NOREF(pszVersion); + NOREF(GCPtrModBase); NOREF(cbModule); NOREF(cRegions); NOREF(paRegions); + return VERR_NOT_IMPLEMENTED; +#endif +} + + +/** + * VMMR0 request wrapper for GMMR0RegisterSharedModule. + * + * @returns see GMMR0RegisterSharedModule. + * @param pGVM The global (ring-0) VM structure. + * @param idCpu The VCPU id. + * @param pReq Pointer to the request packet. + */ +GMMR0DECL(int) GMMR0RegisterSharedModuleReq(PGVM pGVM, VMCPUID idCpu, PGMMREGISTERSHAREDMODULEREQ pReq) +{ + /* + * Validate input and pass it on. + */ + AssertPtrReturn(pReq, VERR_INVALID_POINTER); + AssertMsgReturn( pReq->Hdr.cbReq >= sizeof(*pReq) + && pReq->Hdr.cbReq == RT_UOFFSETOF_DYN(GMMREGISTERSHAREDMODULEREQ, aRegions[pReq->cRegions]), + ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER); + + /* Pass back return code in the request packet to preserve informational codes. (VMMR3CallR0 chokes on them) */ + pReq->rc = GMMR0RegisterSharedModule(pGVM, idCpu, pReq->enmGuestOS, pReq->szName, pReq->szVersion, + pReq->GCBaseAddr, pReq->cbModule, pReq->cRegions, pReq->aRegions); + return VINF_SUCCESS; +} + + +/** + * Unregisters a shared module for the VM + * + * @returns VBox status code. + * @param pGVM The global (ring-0) VM structure. + * @param idCpu The VCPU id. + * @param pszModuleName The module name. + * @param pszVersion The module version. + * @param GCPtrModBase The module base address. + * @param cbModule The module size. + */ +GMMR0DECL(int) GMMR0UnregisterSharedModule(PGVM pGVM, VMCPUID idCpu, char *pszModuleName, char *pszVersion, + RTGCPTR GCPtrModBase, uint32_t cbModule) +{ +#ifdef VBOX_WITH_PAGE_SHARING + /* + * Validate input and get the basics. + */ + PGMM pGMM; + GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE); + int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu); + if (RT_FAILURE(rc)) + return rc; + + AssertPtrReturn(pszModuleName, VERR_INVALID_POINTER); + AssertPtrReturn(pszVersion, VERR_INVALID_POINTER); + if (RT_UNLIKELY(!memchr(pszModuleName, '\0', GMM_SHARED_MODULE_MAX_NAME_STRING))) + return VERR_GMM_MODULE_NAME_TOO_LONG; + if (RT_UNLIKELY(!memchr(pszVersion, '\0', GMM_SHARED_MODULE_MAX_VERSION_STRING))) + return VERR_GMM_MODULE_NAME_TOO_LONG; + + Log(("GMMR0UnregisterSharedModule %s %s base=%RGv size %x\n", pszModuleName, pszVersion, GCPtrModBase, cbModule)); + + /* + * Take the semaphore and do some more validations. + */ + gmmR0MutexAcquire(pGMM); + if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) + { + /* + * Locate and remove the specified module. + */ + PGMMSHAREDMODULEPERVM pRecVM = (PGMMSHAREDMODULEPERVM)RTAvlGCPtrGet(&pGVM->gmm.s.pSharedModuleTree, GCPtrModBase); + if (pRecVM) + { + /** @todo Do we need to do more validations here, like that the + * name + version + cbModule matches? */ + NOREF(cbModule); + Assert(pRecVM->pGlobalModule); + gmmR0ShModDeletePerVM(pGMM, pGVM, pRecVM, true /*fRemove*/); + } + else + rc = VERR_GMM_SHARED_MODULE_NOT_FOUND; + + GMM_CHECK_SANITY_UPON_LEAVING(pGMM); + } + else + rc = VERR_GMM_IS_NOT_SANE; + + gmmR0MutexRelease(pGMM); + return rc; +#else + + NOREF(pGVM); NOREF(idCpu); NOREF(pszModuleName); NOREF(pszVersion); NOREF(GCPtrModBase); NOREF(cbModule); + return VERR_NOT_IMPLEMENTED; +#endif +} + + +/** + * VMMR0 request wrapper for GMMR0UnregisterSharedModule. + * + * @returns see GMMR0UnregisterSharedModule. + * @param pGVM The global (ring-0) VM structure. + * @param idCpu The VCPU id. + * @param pReq Pointer to the request packet. + */ +GMMR0DECL(int) GMMR0UnregisterSharedModuleReq(PGVM pGVM, VMCPUID idCpu, PGMMUNREGISTERSHAREDMODULEREQ pReq) +{ + /* + * Validate input and pass it on. + */ + AssertPtrReturn(pReq, VERR_INVALID_POINTER); + AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER); + + return GMMR0UnregisterSharedModule(pGVM, idCpu, pReq->szName, pReq->szVersion, pReq->GCBaseAddr, pReq->cbModule); +} + +#ifdef VBOX_WITH_PAGE_SHARING + +/** + * Increase the use count of a shared page, the page is known to exist and be valid and such. + * + * @param pGMM Pointer to the GMM instance. + * @param pGVM Pointer to the GVM instance. + * @param pPage The page structure. + */ +DECLINLINE(void) gmmR0UseSharedPage(PGMM pGMM, PGVM pGVM, PGMMPAGE pPage) +{ + Assert(pGMM->cSharedPages > 0); + Assert(pGMM->cAllocatedPages > 0); + + pGMM->cDuplicatePages++; + + pPage->Shared.cRefs++; + pGVM->gmm.s.Stats.cSharedPages++; + pGVM->gmm.s.Stats.Allocated.cBasePages++; +} + + +/** + * Converts a private page to a shared page, the page is known to exist and be valid and such. + * + * @param pGMM Pointer to the GMM instance. + * @param pGVM Pointer to the GVM instance. + * @param HCPhys Host physical address + * @param idPage The Page ID + * @param pPage The page structure. + * @param pPageDesc Shared page descriptor + */ +DECLINLINE(void) gmmR0ConvertToSharedPage(PGMM pGMM, PGVM pGVM, RTHCPHYS HCPhys, uint32_t idPage, PGMMPAGE pPage, + PGMMSHAREDPAGEDESC pPageDesc) +{ + PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT); + Assert(pChunk); + Assert(pChunk->cFree < GMM_CHUNK_NUM_PAGES); + Assert(GMM_PAGE_IS_PRIVATE(pPage)); + + pChunk->cPrivate--; + pChunk->cShared++; + + pGMM->cSharedPages++; + + pGVM->gmm.s.Stats.cSharedPages++; + pGVM->gmm.s.Stats.cPrivatePages--; + + /* Modify the page structure. */ + pPage->Shared.pfn = (uint32_t)(uint64_t)(HCPhys >> GUEST_PAGE_SHIFT); + pPage->Shared.cRefs = 1; +#ifdef VBOX_STRICT + pPageDesc->u32StrictChecksum = gmmR0StrictPageChecksum(pGMM, pGVM, idPage); + pPage->Shared.u14Checksum = pPageDesc->u32StrictChecksum; +#else + NOREF(pPageDesc); + pPage->Shared.u14Checksum = 0; +#endif + pPage->Shared.u2State = GMM_PAGE_STATE_SHARED; +} + + +static int gmmR0SharedModuleCheckPageFirstTime(PGMM pGMM, PGVM pGVM, PGMMSHAREDMODULE pModule, + unsigned idxRegion, unsigned idxPage, + PGMMSHAREDPAGEDESC pPageDesc, PGMMSHAREDREGIONDESC pGlobalRegion) +{ + NOREF(pModule); + + /* Easy case: just change the internal page type. */ + PGMMPAGE pPage = gmmR0GetPage(pGMM, pPageDesc->idPage); + AssertMsgReturn(pPage, ("idPage=%#x (GCPhys=%RGp HCPhys=%RHp idxRegion=%#x idxPage=%#x) #1\n", + pPageDesc->idPage, pPageDesc->GCPhys, pPageDesc->HCPhys, idxRegion, idxPage), + VERR_PGM_PHYS_INVALID_PAGE_ID); + NOREF(idxRegion); + + AssertMsg(pPageDesc->GCPhys == (pPage->Private.pfn << 12), ("desc %RGp gmm %RGp\n", pPageDesc->HCPhys, (pPage->Private.pfn << 12))); + + gmmR0ConvertToSharedPage(pGMM, pGVM, pPageDesc->HCPhys, pPageDesc->idPage, pPage, pPageDesc); + + /* Keep track of these references. */ + pGlobalRegion->paidPages[idxPage] = pPageDesc->idPage; + + return VINF_SUCCESS; +} + +/** + * Checks specified shared module range for changes + * + * Performs the following tasks: + * - If a shared page is new, then it changes the GMM page type to shared and + * returns it in the pPageDesc descriptor. + * - If a shared page already exists, then it checks if the VM page is + * identical and if so frees the VM page and returns the shared page in + * pPageDesc descriptor. + * + * @remarks ASSUMES the caller has acquired the GMM semaphore!! + * + * @returns VBox status code. + * @param pGVM Pointer to the GVM instance data. + * @param pModule Module description + * @param idxRegion Region index + * @param idxPage Page index + * @param pPageDesc Page descriptor + */ +GMMR0DECL(int) GMMR0SharedModuleCheckPage(PGVM pGVM, PGMMSHAREDMODULE pModule, uint32_t idxRegion, uint32_t idxPage, + PGMMSHAREDPAGEDESC pPageDesc) +{ + int rc; + PGMM pGMM; + GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE); + pPageDesc->u32StrictChecksum = 0; + + AssertMsgReturn(idxRegion < pModule->cRegions, + ("idxRegion=%#x cRegions=%#x %s %s\n", idxRegion, pModule->cRegions, pModule->szName, pModule->szVersion), + VERR_INVALID_PARAMETER); + + uint32_t const cPages = pModule->aRegions[idxRegion].cb >> GUEST_PAGE_SHIFT; + AssertMsgReturn(idxPage < cPages, + ("idxRegion=%#x cRegions=%#x %s %s\n", idxRegion, pModule->cRegions, pModule->szName, pModule->szVersion), + VERR_INVALID_PARAMETER); + + LogFlow(("GMMR0SharedModuleCheckRange %s base %RGv region %d idxPage %d\n", pModule->szName, pModule->Core.Key, idxRegion, idxPage)); + + /* + * First time; create a page descriptor array. + */ + PGMMSHAREDREGIONDESC pGlobalRegion = &pModule->aRegions[idxRegion]; + if (!pGlobalRegion->paidPages) + { + Log(("Allocate page descriptor array for %d pages\n", cPages)); + pGlobalRegion->paidPages = (uint32_t *)RTMemAlloc(cPages * sizeof(pGlobalRegion->paidPages[0])); + AssertReturn(pGlobalRegion->paidPages, VERR_NO_MEMORY); + + /* Invalidate all descriptors. */ + uint32_t i = cPages; + while (i-- > 0) + pGlobalRegion->paidPages[i] = NIL_GMM_PAGEID; + } + + /* + * We've seen this shared page for the first time? + */ + if (pGlobalRegion->paidPages[idxPage] == NIL_GMM_PAGEID) + { + Log(("New shared page guest %RGp host %RHp\n", pPageDesc->GCPhys, pPageDesc->HCPhys)); + return gmmR0SharedModuleCheckPageFirstTime(pGMM, pGVM, pModule, idxRegion, idxPage, pPageDesc, pGlobalRegion); + } + + /* + * We've seen it before... + */ + Log(("Replace existing page guest %RGp host %RHp id %#x -> id %#x\n", + pPageDesc->GCPhys, pPageDesc->HCPhys, pPageDesc->idPage, pGlobalRegion->paidPages[idxPage])); + Assert(pPageDesc->idPage != pGlobalRegion->paidPages[idxPage]); + + /* + * Get the shared page source. + */ + PGMMPAGE pPage = gmmR0GetPage(pGMM, pGlobalRegion->paidPages[idxPage]); + AssertMsgReturn(pPage, ("idPage=%#x (idxRegion=%#x idxPage=%#x) #2\n", pPageDesc->idPage, idxRegion, idxPage), + VERR_PGM_PHYS_INVALID_PAGE_ID); + + if (pPage->Common.u2State != GMM_PAGE_STATE_SHARED) + { + /* + * Page was freed at some point; invalidate this entry. + */ + /** @todo this isn't really bullet proof. */ + Log(("Old shared page was freed -> create a new one\n")); + pGlobalRegion->paidPages[idxPage] = NIL_GMM_PAGEID; + return gmmR0SharedModuleCheckPageFirstTime(pGMM, pGVM, pModule, idxRegion, idxPage, pPageDesc, pGlobalRegion); + } + + Log(("Replace existing page guest host %RHp -> %RHp\n", pPageDesc->HCPhys, ((uint64_t)pPage->Shared.pfn) << GUEST_PAGE_SHIFT)); + + /* + * Calculate the virtual address of the local page. + */ + PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, pPageDesc->idPage >> GMM_CHUNKID_SHIFT); + AssertMsgReturn(pChunk, ("idPage=%#x (idxRegion=%#x idxPage=%#x) #4\n", pPageDesc->idPage, idxRegion, idxPage), + VERR_PGM_PHYS_INVALID_PAGE_ID); + + uint8_t *pbChunk; + AssertMsgReturn(gmmR0IsChunkMapped(pGMM, pGVM, pChunk, (PRTR3PTR)&pbChunk), + ("idPage=%#x (idxRegion=%#x idxPage=%#x) #3\n", pPageDesc->idPage, idxRegion, idxPage), + VERR_PGM_PHYS_INVALID_PAGE_ID); + uint8_t *pbLocalPage = pbChunk + ((pPageDesc->idPage & GMM_PAGEID_IDX_MASK) << GUEST_PAGE_SHIFT); + + /* + * Calculate the virtual address of the shared page. + */ + pChunk = gmmR0GetChunk(pGMM, pGlobalRegion->paidPages[idxPage] >> GMM_CHUNKID_SHIFT); + Assert(pChunk); /* can't fail as gmmR0GetPage succeeded. */ + + /* + * Get the virtual address of the physical page; map the chunk into the VM + * process if not already done. + */ + if (!gmmR0IsChunkMapped(pGMM, pGVM, pChunk, (PRTR3PTR)&pbChunk)) + { + Log(("Map chunk into process!\n")); + rc = gmmR0MapChunk(pGMM, pGVM, pChunk, false /*fRelaxedSem*/, (PRTR3PTR)&pbChunk); + AssertRCReturn(rc, rc); + } + uint8_t *pbSharedPage = pbChunk + ((pGlobalRegion->paidPages[idxPage] & GMM_PAGEID_IDX_MASK) << GUEST_PAGE_SHIFT); + +#ifdef VBOX_STRICT + pPageDesc->u32StrictChecksum = RTCrc32(pbSharedPage, GUEST_PAGE_SIZE); + uint32_t uChecksum = pPageDesc->u32StrictChecksum & UINT32_C(0x00003fff); + AssertMsg(!uChecksum || uChecksum == pPage->Shared.u14Checksum || !pPage->Shared.u14Checksum, + ("%#x vs %#x - idPage=%#x - %s %s\n", uChecksum, pPage->Shared.u14Checksum, + pGlobalRegion->paidPages[idxPage], pModule->szName, pModule->szVersion)); +#endif + + if (memcmp(pbSharedPage, pbLocalPage, GUEST_PAGE_SIZE)) + { + Log(("Unexpected differences found between local and shared page; skip\n")); + /* Signal to the caller that this one hasn't changed. */ + pPageDesc->idPage = NIL_GMM_PAGEID; + return VINF_SUCCESS; + } + + /* + * Free the old local page. + */ + GMMFREEPAGEDESC PageDesc; + PageDesc.idPage = pPageDesc->idPage; + rc = gmmR0FreePages(pGMM, pGVM, 1, &PageDesc, GMMACCOUNT_BASE); + AssertRCReturn(rc, rc); + + gmmR0UseSharedPage(pGMM, pGVM, pPage); + + /* + * Pass along the new physical address & page id. + */ + pPageDesc->HCPhys = ((uint64_t)pPage->Shared.pfn) << GUEST_PAGE_SHIFT; + pPageDesc->idPage = pGlobalRegion->paidPages[idxPage]; + + return VINF_SUCCESS; +} + + +/** + * RTAvlGCPtrDestroy callback. + * + * @returns 0 or VERR_GMM_INSTANCE. + * @param pNode The node to destroy. + * @param pvArgs Pointer to an argument packet. + */ +static DECLCALLBACK(int) gmmR0CleanupSharedModule(PAVLGCPTRNODECORE pNode, void *pvArgs) +{ + gmmR0ShModDeletePerVM(((GMMR0SHMODPERVMDTORARGS *)pvArgs)->pGMM, + ((GMMR0SHMODPERVMDTORARGS *)pvArgs)->pGVM, + (PGMMSHAREDMODULEPERVM)pNode, + false /*fRemove*/); + return VINF_SUCCESS; +} + + +/** + * Used by GMMR0CleanupVM to clean up shared modules. + * + * This is called without taking the GMM lock so that it can be yielded as + * needed here. + * + * @param pGMM The GMM handle. + * @param pGVM The global VM handle. + */ +static void gmmR0SharedModuleCleanup(PGMM pGMM, PGVM pGVM) +{ + gmmR0MutexAcquire(pGMM); + GMM_CHECK_SANITY_UPON_ENTERING(pGMM); + + GMMR0SHMODPERVMDTORARGS Args; + Args.pGVM = pGVM; + Args.pGMM = pGMM; + RTAvlGCPtrDestroy(&pGVM->gmm.s.pSharedModuleTree, gmmR0CleanupSharedModule, &Args); + + AssertMsg(pGVM->gmm.s.Stats.cShareableModules == 0, ("%d\n", pGVM->gmm.s.Stats.cShareableModules)); + pGVM->gmm.s.Stats.cShareableModules = 0; + + gmmR0MutexRelease(pGMM); +} + +#endif /* VBOX_WITH_PAGE_SHARING */ + +/** + * Removes all shared modules for the specified VM + * + * @returns VBox status code. + * @param pGVM The global (ring-0) VM structure. + * @param idCpu The VCPU id. + */ +GMMR0DECL(int) GMMR0ResetSharedModules(PGVM pGVM, VMCPUID idCpu) +{ +#ifdef VBOX_WITH_PAGE_SHARING + /* + * Validate input and get the basics. + */ + PGMM pGMM; + GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE); + int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu); + if (RT_FAILURE(rc)) + return rc; + + /* + * Take the semaphore and do some more validations. + */ + gmmR0MutexAcquire(pGMM); + if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) + { + Log(("GMMR0ResetSharedModules\n")); + GMMR0SHMODPERVMDTORARGS Args; + Args.pGVM = pGVM; + Args.pGMM = pGMM; + RTAvlGCPtrDestroy(&pGVM->gmm.s.pSharedModuleTree, gmmR0CleanupSharedModule, &Args); + pGVM->gmm.s.Stats.cShareableModules = 0; + + rc = VINF_SUCCESS; + GMM_CHECK_SANITY_UPON_LEAVING(pGMM); + } + else + rc = VERR_GMM_IS_NOT_SANE; + + gmmR0MutexRelease(pGMM); + return rc; +#else + RT_NOREF(pGVM, idCpu); + return VERR_NOT_IMPLEMENTED; +#endif +} + +#ifdef VBOX_WITH_PAGE_SHARING + +/** + * Tree enumeration callback for checking a shared module. + */ +static DECLCALLBACK(int) gmmR0CheckSharedModule(PAVLGCPTRNODECORE pNode, void *pvUser) +{ + GMMCHECKSHAREDMODULEINFO *pArgs = (GMMCHECKSHAREDMODULEINFO*)pvUser; + PGMMSHAREDMODULEPERVM pRecVM = (PGMMSHAREDMODULEPERVM)pNode; + PGMMSHAREDMODULE pGblMod = pRecVM->pGlobalModule; + + Log(("gmmR0CheckSharedModule: check %s %s base=%RGv size=%x\n", + pGblMod->szName, pGblMod->szVersion, pGblMod->Core.Key, pGblMod->cbModule)); + + int rc = PGMR0SharedModuleCheck(pArgs->pGVM, pArgs->pGVM, pArgs->idCpu, pGblMod, pRecVM->aRegionsGCPtrs); + if (RT_FAILURE(rc)) + return rc; + return VINF_SUCCESS; +} + +#endif /* VBOX_WITH_PAGE_SHARING */ + +/** + * Check all shared modules for the specified VM. + * + * @returns VBox status code. + * @param pGVM The global (ring-0) VM structure. + * @param idCpu The calling EMT number. + * @thread EMT(idCpu) + */ +GMMR0DECL(int) GMMR0CheckSharedModules(PGVM pGVM, VMCPUID idCpu) +{ +#ifdef VBOX_WITH_PAGE_SHARING + /* + * Validate input and get the basics. + */ + PGMM pGMM; + GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE); + int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu); + if (RT_FAILURE(rc)) + return rc; + +# ifndef DEBUG_sandervl + /* + * Take the semaphore and do some more validations. + */ + gmmR0MutexAcquire(pGMM); +# endif + if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) + { + /* + * Walk the tree, checking each module. + */ + Log(("GMMR0CheckSharedModules\n")); + + GMMCHECKSHAREDMODULEINFO Args; + Args.pGVM = pGVM; + Args.idCpu = idCpu; + rc = RTAvlGCPtrDoWithAll(&pGVM->gmm.s.pSharedModuleTree, true /* fFromLeft */, gmmR0CheckSharedModule, &Args); + + Log(("GMMR0CheckSharedModules done (rc=%Rrc)!\n", rc)); + GMM_CHECK_SANITY_UPON_LEAVING(pGMM); + } + else + rc = VERR_GMM_IS_NOT_SANE; + +# ifndef DEBUG_sandervl + gmmR0MutexRelease(pGMM); +# endif + return rc; +#else + RT_NOREF(pGVM, idCpu); + return VERR_NOT_IMPLEMENTED; +#endif +} + +#ifdef VBOX_STRICT + +/** + * Worker for GMMR0FindDuplicatePageReq. + * + * @returns true if duplicate, false if not. + */ +static bool gmmR0FindDupPageInChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, uint8_t const *pbSourcePage) +{ + bool fFoundDuplicate = false; + /* Only take chunks not mapped into this VM process; not entirely correct. */ + uint8_t *pbChunk; + if (!gmmR0IsChunkMapped(pGMM, pGVM, pChunk, (PRTR3PTR)&pbChunk)) + { + int rc = gmmR0MapChunk(pGMM, pGVM, pChunk, false /*fRelaxedSem*/, (PRTR3PTR)&pbChunk); + if (RT_SUCCESS(rc)) + { + /* + * Look for duplicate pages + */ + uintptr_t iPage = GMM_CHUNK_NUM_PAGES; + while (iPage-- > 0) + { + if (GMM_PAGE_IS_PRIVATE(&pChunk->aPages[iPage])) + { + uint8_t *pbDestPage = pbChunk + (iPage << GUEST_PAGE_SHIFT); + if (!memcmp(pbSourcePage, pbDestPage, GUEST_PAGE_SIZE)) + { + fFoundDuplicate = true; + break; + } + } + } + gmmR0UnmapChunk(pGMM, pGVM, pChunk, false /*fRelaxedSem*/); + } + } + return fFoundDuplicate; +} + + +/** + * Find a duplicate of the specified page in other active VMs + * + * @returns VBox status code. + * @param pGVM The global (ring-0) VM structure. + * @param pReq Pointer to the request packet. + */ +GMMR0DECL(int) GMMR0FindDuplicatePageReq(PGVM pGVM, PGMMFINDDUPLICATEPAGEREQ pReq) +{ + /* + * Validate input and pass it on. + */ + AssertPtrReturn(pReq, VERR_INVALID_POINTER); + AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER); + + PGMM pGMM; + GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE); + + int rc = GVMMR0ValidateGVM(pGVM); + if (RT_FAILURE(rc)) + return rc; + + /* + * Take the semaphore and do some more validations. + */ + rc = gmmR0MutexAcquire(pGMM); + if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) + { + uint8_t *pbChunk; + PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, pReq->idPage >> GMM_CHUNKID_SHIFT); + if (pChunk) + { + if (gmmR0IsChunkMapped(pGMM, pGVM, pChunk, (PRTR3PTR)&pbChunk)) + { + uint8_t *pbSourcePage = pbChunk + ((pReq->idPage & GMM_PAGEID_IDX_MASK) << GUEST_PAGE_SHIFT); + PGMMPAGE pPage = gmmR0GetPage(pGMM, pReq->idPage); + if (pPage) + { + /* + * Walk the chunks + */ + pReq->fDuplicate = false; + RTListForEach(&pGMM->ChunkList, pChunk, GMMCHUNK, ListNode) + { + if (gmmR0FindDupPageInChunk(pGMM, pGVM, pChunk, pbSourcePage)) + { + pReq->fDuplicate = true; + break; + } + } + } + else + { + AssertFailed(); + rc = VERR_PGM_PHYS_INVALID_PAGE_ID; + } + } + else + AssertFailed(); + } + else + AssertFailed(); + } + else + rc = VERR_GMM_IS_NOT_SANE; + + gmmR0MutexRelease(pGMM); + return rc; +} + +#endif /* VBOX_STRICT */ + + +/** + * Retrieves the GMM statistics visible to the caller. + * + * @returns VBox status code. + * + * @param pStats Where to put the statistics. + * @param pSession The current session. + * @param pGVM The GVM to obtain statistics for. Optional. + */ +GMMR0DECL(int) GMMR0QueryStatistics(PGMMSTATS pStats, PSUPDRVSESSION pSession, PGVM pGVM) +{ + LogFlow(("GVMMR0QueryStatistics: pStats=%p pSession=%p pGVM=%p\n", pStats, pSession, pGVM)); + + /* + * Validate input. + */ + AssertPtrReturn(pSession, VERR_INVALID_POINTER); + AssertPtrReturn(pStats, VERR_INVALID_POINTER); + pStats->cMaxPages = 0; /* (crash before taking the mutex...) */ + + PGMM pGMM; + GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE); + + /* + * Validate the VM handle, if not NULL, and lock the GMM. + */ + int rc; + if (pGVM) + { + rc = GVMMR0ValidateGVM(pGVM); + if (RT_FAILURE(rc)) + return rc; + } + + rc = gmmR0MutexAcquire(pGMM); + if (RT_FAILURE(rc)) + return rc; + + /* + * Copy out the GMM statistics. + */ + pStats->cMaxPages = pGMM->cMaxPages; + pStats->cReservedPages = pGMM->cReservedPages; + pStats->cOverCommittedPages = pGMM->cOverCommittedPages; + pStats->cAllocatedPages = pGMM->cAllocatedPages; + pStats->cSharedPages = pGMM->cSharedPages; + pStats->cDuplicatePages = pGMM->cDuplicatePages; + pStats->cLeftBehindSharedPages = pGMM->cLeftBehindSharedPages; + pStats->cBalloonedPages = pGMM->cBalloonedPages; + pStats->cChunks = pGMM->cChunks; + pStats->cFreedChunks = pGMM->cFreedChunks; + pStats->cShareableModules = pGMM->cShareableModules; + pStats->idFreeGeneration = pGMM->idFreeGeneration; + RT_ZERO(pStats->au64Reserved); + + /* + * Copy out the VM statistics. + */ + if (pGVM) + pStats->VMStats = pGVM->gmm.s.Stats; + else + RT_ZERO(pStats->VMStats); + + gmmR0MutexRelease(pGMM); + return rc; +} + + +/** + * VMMR0 request wrapper for GMMR0QueryStatistics. + * + * @returns see GMMR0QueryStatistics. + * @param pGVM The global (ring-0) VM structure. Optional. + * @param pReq Pointer to the request packet. + */ +GMMR0DECL(int) GMMR0QueryStatisticsReq(PGVM pGVM, PGMMQUERYSTATISTICSSREQ pReq) +{ + /* + * Validate input and pass it on. + */ + AssertPtrReturn(pReq, VERR_INVALID_POINTER); + AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER); + + return GMMR0QueryStatistics(&pReq->Stats, pReq->pSession, pGVM); +} + + +/** + * Resets the specified GMM statistics. + * + * @returns VBox status code. + * + * @param pStats Which statistics to reset, that is, non-zero fields + * indicates which to reset. + * @param pSession The current session. + * @param pGVM The GVM to reset statistics for. Optional. + */ +GMMR0DECL(int) GMMR0ResetStatistics(PCGMMSTATS pStats, PSUPDRVSESSION pSession, PGVM pGVM) +{ + NOREF(pStats); NOREF(pSession); NOREF(pGVM); + /* Currently nothing we can reset at the moment. */ + return VINF_SUCCESS; +} + + +/** + * VMMR0 request wrapper for GMMR0ResetStatistics. + * + * @returns see GMMR0ResetStatistics. + * @param pGVM The global (ring-0) VM structure. Optional. + * @param pReq Pointer to the request packet. + */ +GMMR0DECL(int) GMMR0ResetStatisticsReq(PGVM pGVM, PGMMRESETSTATISTICSSREQ pReq) +{ + /* + * Validate input and pass it on. + */ + AssertPtrReturn(pReq, VERR_INVALID_POINTER); + AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER); + + return GMMR0ResetStatistics(&pReq->Stats, pReq->pSession, pGVM); +} + |