summaryrefslogtreecommitdiffstats
path: root/src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem
diff options
context:
space:
mode:
Diffstat (limited to 'src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem')
-rw-r--r--src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/HeapGuard.c1746
-rw-r--r--src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/HeapGuard.h467
-rw-r--r--src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/Imem.h182
-rw-r--r--src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/MemData.c20
-rw-r--r--src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/MemoryProfileRecord.c1759
-rw-r--r--src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/Page.c2105
-rw-r--r--src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/Pool.c857
7 files changed, 7136 insertions, 0 deletions
diff --git a/src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/HeapGuard.c b/src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/HeapGuard.c
new file mode 100644
index 00000000..4f74a512
--- /dev/null
+++ b/src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/HeapGuard.c
@@ -0,0 +1,1746 @@
+/** @file
+ UEFI Heap Guard functions.
+
+Copyright (c) 2017-2018, Intel Corporation. All rights reserved.<BR>
+SPDX-License-Identifier: BSD-2-Clause-Patent
+
+**/
+
+#include "DxeMain.h"
+#include "Imem.h"
+#include "HeapGuard.h"
+
+//
+// Global to avoid infinite reentrance of memory allocation when updating
+// page table attributes, which may need allocate pages for new PDE/PTE.
+//
+GLOBAL_REMOVE_IF_UNREFERENCED BOOLEAN mOnGuarding = FALSE;
+
+//
+// Pointer to table tracking the Guarded memory with bitmap, in which '1'
+// is used to indicate memory guarded. '0' might be free memory or Guard
+// page itself, depending on status of memory adjacent to it.
+//
+GLOBAL_REMOVE_IF_UNREFERENCED UINT64 mGuardedMemoryMap = 0;
+
+//
+// Current depth level of map table pointed by mGuardedMemoryMap.
+// mMapLevel must be initialized at least by 1. It will be automatically
+// updated according to the address of memory just tracked.
+//
+GLOBAL_REMOVE_IF_UNREFERENCED UINTN mMapLevel = 1;
+
+//
+// Shift and mask for each level of map table
+//
+GLOBAL_REMOVE_IF_UNREFERENCED UINTN mLevelShift[GUARDED_HEAP_MAP_TABLE_DEPTH]
+ = GUARDED_HEAP_MAP_TABLE_DEPTH_SHIFTS;
+GLOBAL_REMOVE_IF_UNREFERENCED UINTN mLevelMask[GUARDED_HEAP_MAP_TABLE_DEPTH]
+ = GUARDED_HEAP_MAP_TABLE_DEPTH_MASKS;
+
+//
+// Used for promoting freed but not used pages.
+//
+GLOBAL_REMOVE_IF_UNREFERENCED EFI_PHYSICAL_ADDRESS mLastPromotedPage = BASE_4GB;
+
+/**
+ Set corresponding bits in bitmap table to 1 according to the address.
+
+ @param[in] Address Start address to set for.
+ @param[in] BitNumber Number of bits to set.
+ @param[in] BitMap Pointer to bitmap which covers the Address.
+
+ @return VOID.
+**/
+STATIC
+VOID
+SetBits (
+ IN EFI_PHYSICAL_ADDRESS Address,
+ IN UINTN BitNumber,
+ IN UINT64 *BitMap
+ )
+{
+ UINTN Lsbs;
+ UINTN Qwords;
+ UINTN Msbs;
+ UINTN StartBit;
+ UINTN EndBit;
+
+ StartBit = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);
+ EndBit = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
+
+ if ((StartBit + BitNumber) >= GUARDED_HEAP_MAP_ENTRY_BITS) {
+ Msbs = (GUARDED_HEAP_MAP_ENTRY_BITS - StartBit) %
+ GUARDED_HEAP_MAP_ENTRY_BITS;
+ Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
+ Qwords = (BitNumber - Msbs) / GUARDED_HEAP_MAP_ENTRY_BITS;
+ } else {
+ Msbs = BitNumber;
+ Lsbs = 0;
+ Qwords = 0;
+ }
+
+ if (Msbs > 0) {
+ *BitMap |= LShiftU64 (LShiftU64 (1, Msbs) - 1, StartBit);
+ BitMap += 1;
+ }
+
+ if (Qwords > 0) {
+ SetMem64 ((VOID *)BitMap, Qwords * GUARDED_HEAP_MAP_ENTRY_BYTES,
+ (UINT64)-1);
+ BitMap += Qwords;
+ }
+
+ if (Lsbs > 0) {
+ *BitMap |= (LShiftU64 (1, Lsbs) - 1);
+ }
+}
+
+/**
+ Set corresponding bits in bitmap table to 0 according to the address.
+
+ @param[in] Address Start address to set for.
+ @param[in] BitNumber Number of bits to set.
+ @param[in] BitMap Pointer to bitmap which covers the Address.
+
+ @return VOID.
+**/
+STATIC
+VOID
+ClearBits (
+ IN EFI_PHYSICAL_ADDRESS Address,
+ IN UINTN BitNumber,
+ IN UINT64 *BitMap
+ )
+{
+ UINTN Lsbs;
+ UINTN Qwords;
+ UINTN Msbs;
+ UINTN StartBit;
+ UINTN EndBit;
+
+ StartBit = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);
+ EndBit = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
+
+ if ((StartBit + BitNumber) >= GUARDED_HEAP_MAP_ENTRY_BITS) {
+ Msbs = (GUARDED_HEAP_MAP_ENTRY_BITS - StartBit) %
+ GUARDED_HEAP_MAP_ENTRY_BITS;
+ Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
+ Qwords = (BitNumber - Msbs) / GUARDED_HEAP_MAP_ENTRY_BITS;
+ } else {
+ Msbs = BitNumber;
+ Lsbs = 0;
+ Qwords = 0;
+ }
+
+ if (Msbs > 0) {
+ *BitMap &= ~LShiftU64 (LShiftU64 (1, Msbs) - 1, StartBit);
+ BitMap += 1;
+ }
+
+ if (Qwords > 0) {
+ SetMem64 ((VOID *)BitMap, Qwords * GUARDED_HEAP_MAP_ENTRY_BYTES, 0);
+ BitMap += Qwords;
+ }
+
+ if (Lsbs > 0) {
+ *BitMap &= ~(LShiftU64 (1, Lsbs) - 1);
+ }
+}
+
+/**
+ Get corresponding bits in bitmap table according to the address.
+
+ The value of bit 0 corresponds to the status of memory at given Address.
+ No more than 64 bits can be retrieved in one call.
+
+ @param[in] Address Start address to retrieve bits for.
+ @param[in] BitNumber Number of bits to get.
+ @param[in] BitMap Pointer to bitmap which covers the Address.
+
+ @return An integer containing the bits information.
+**/
+STATIC
+UINT64
+GetBits (
+ IN EFI_PHYSICAL_ADDRESS Address,
+ IN UINTN BitNumber,
+ IN UINT64 *BitMap
+ )
+{
+ UINTN StartBit;
+ UINTN EndBit;
+ UINTN Lsbs;
+ UINTN Msbs;
+ UINT64 Result;
+
+ ASSERT (BitNumber <= GUARDED_HEAP_MAP_ENTRY_BITS);
+
+ StartBit = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);
+ EndBit = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
+
+ if ((StartBit + BitNumber) > GUARDED_HEAP_MAP_ENTRY_BITS) {
+ Msbs = GUARDED_HEAP_MAP_ENTRY_BITS - StartBit;
+ Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
+ } else {
+ Msbs = BitNumber;
+ Lsbs = 0;
+ }
+
+ if (StartBit == 0 && BitNumber == GUARDED_HEAP_MAP_ENTRY_BITS) {
+ Result = *BitMap;
+ } else {
+ Result = RShiftU64((*BitMap), StartBit) & (LShiftU64(1, Msbs) - 1);
+ if (Lsbs > 0) {
+ BitMap += 1;
+ Result |= LShiftU64 ((*BitMap) & (LShiftU64 (1, Lsbs) - 1), Msbs);
+ }
+ }
+
+ return Result;
+}
+
+/**
+ Locate the pointer of bitmap from the guarded memory bitmap tables, which
+ covers the given Address.
+
+ @param[in] Address Start address to search the bitmap for.
+ @param[in] AllocMapUnit Flag to indicate memory allocation for the table.
+ @param[out] BitMap Pointer to bitmap which covers the Address.
+
+ @return The bit number from given Address to the end of current map table.
+**/
+UINTN
+FindGuardedMemoryMap (
+ IN EFI_PHYSICAL_ADDRESS Address,
+ IN BOOLEAN AllocMapUnit,
+ OUT UINT64 **BitMap
+ )
+{
+ UINTN Level;
+ UINT64 *GuardMap;
+ UINT64 MapMemory;
+ UINTN Index;
+ UINTN Size;
+ UINTN BitsToUnitEnd;
+ EFI_STATUS Status;
+
+ MapMemory = 0;
+
+ //
+ // Adjust current map table depth according to the address to access
+ //
+ while (AllocMapUnit &&
+ mMapLevel < GUARDED_HEAP_MAP_TABLE_DEPTH &&
+ RShiftU64 (
+ Address,
+ mLevelShift[GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel - 1]
+ ) != 0) {
+
+ if (mGuardedMemoryMap != 0) {
+ Size = (mLevelMask[GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel - 1] + 1)
+ * GUARDED_HEAP_MAP_ENTRY_BYTES;
+ Status = CoreInternalAllocatePages (
+ AllocateAnyPages,
+ EfiBootServicesData,
+ EFI_SIZE_TO_PAGES (Size),
+ &MapMemory,
+ FALSE
+ );
+ ASSERT_EFI_ERROR (Status);
+ ASSERT (MapMemory != 0);
+
+ SetMem ((VOID *)(UINTN)MapMemory, Size, 0);
+
+ *(UINT64 *)(UINTN)MapMemory = mGuardedMemoryMap;
+ mGuardedMemoryMap = MapMemory;
+ }
+
+ mMapLevel++;
+
+ }
+
+ GuardMap = &mGuardedMemoryMap;
+ for (Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;
+ Level < GUARDED_HEAP_MAP_TABLE_DEPTH;
+ ++Level) {
+
+ if (*GuardMap == 0) {
+ if (!AllocMapUnit) {
+ GuardMap = NULL;
+ break;
+ }
+
+ Size = (mLevelMask[Level] + 1) * GUARDED_HEAP_MAP_ENTRY_BYTES;
+ Status = CoreInternalAllocatePages (
+ AllocateAnyPages,
+ EfiBootServicesData,
+ EFI_SIZE_TO_PAGES (Size),
+ &MapMemory,
+ FALSE
+ );
+ ASSERT_EFI_ERROR (Status);
+ ASSERT (MapMemory != 0);
+
+ SetMem ((VOID *)(UINTN)MapMemory, Size, 0);
+ *GuardMap = MapMemory;
+ }
+
+ Index = (UINTN)RShiftU64 (Address, mLevelShift[Level]);
+ Index &= mLevelMask[Level];
+ GuardMap = (UINT64 *)(UINTN)((*GuardMap) + Index * sizeof (UINT64));
+
+ }
+
+ BitsToUnitEnd = GUARDED_HEAP_MAP_BITS - GUARDED_HEAP_MAP_BIT_INDEX (Address);
+ *BitMap = GuardMap;
+
+ return BitsToUnitEnd;
+}
+
+/**
+ Set corresponding bits in bitmap table to 1 according to given memory range.
+
+ @param[in] Address Memory address to guard from.
+ @param[in] NumberOfPages Number of pages to guard.
+
+ @return VOID.
+**/
+VOID
+EFIAPI
+SetGuardedMemoryBits (
+ IN EFI_PHYSICAL_ADDRESS Address,
+ IN UINTN NumberOfPages
+ )
+{
+ UINT64 *BitMap;
+ UINTN Bits;
+ UINTN BitsToUnitEnd;
+
+ while (NumberOfPages > 0) {
+ BitsToUnitEnd = FindGuardedMemoryMap (Address, TRUE, &BitMap);
+ ASSERT (BitMap != NULL);
+
+ if (NumberOfPages > BitsToUnitEnd) {
+ // Cross map unit
+ Bits = BitsToUnitEnd;
+ } else {
+ Bits = NumberOfPages;
+ }
+
+ SetBits (Address, Bits, BitMap);
+
+ NumberOfPages -= Bits;
+ Address += EFI_PAGES_TO_SIZE (Bits);
+ }
+}
+
+/**
+ Clear corresponding bits in bitmap table according to given memory range.
+
+ @param[in] Address Memory address to unset from.
+ @param[in] NumberOfPages Number of pages to unset guard.
+
+ @return VOID.
+**/
+VOID
+EFIAPI
+ClearGuardedMemoryBits (
+ IN EFI_PHYSICAL_ADDRESS Address,
+ IN UINTN NumberOfPages
+ )
+{
+ UINT64 *BitMap;
+ UINTN Bits;
+ UINTN BitsToUnitEnd;
+
+ while (NumberOfPages > 0) {
+ BitsToUnitEnd = FindGuardedMemoryMap (Address, TRUE, &BitMap);
+ ASSERT (BitMap != NULL);
+
+ if (NumberOfPages > BitsToUnitEnd) {
+ // Cross map unit
+ Bits = BitsToUnitEnd;
+ } else {
+ Bits = NumberOfPages;
+ }
+
+ ClearBits (Address, Bits, BitMap);
+
+ NumberOfPages -= Bits;
+ Address += EFI_PAGES_TO_SIZE (Bits);
+ }
+}
+
+/**
+ Retrieve corresponding bits in bitmap table according to given memory range.
+
+ @param[in] Address Memory address to retrieve from.
+ @param[in] NumberOfPages Number of pages to retrieve.
+
+ @return An integer containing the guarded memory bitmap.
+**/
+UINT64
+GetGuardedMemoryBits (
+ IN EFI_PHYSICAL_ADDRESS Address,
+ IN UINTN NumberOfPages
+ )
+{
+ UINT64 *BitMap;
+ UINTN Bits;
+ UINT64 Result;
+ UINTN Shift;
+ UINTN BitsToUnitEnd;
+
+ ASSERT (NumberOfPages <= GUARDED_HEAP_MAP_ENTRY_BITS);
+
+ Result = 0;
+ Shift = 0;
+ while (NumberOfPages > 0) {
+ BitsToUnitEnd = FindGuardedMemoryMap (Address, FALSE, &BitMap);
+
+ if (NumberOfPages > BitsToUnitEnd) {
+ // Cross map unit
+ Bits = BitsToUnitEnd;
+ } else {
+ Bits = NumberOfPages;
+ }
+
+ if (BitMap != NULL) {
+ Result |= LShiftU64 (GetBits (Address, Bits, BitMap), Shift);
+ }
+
+ Shift += Bits;
+ NumberOfPages -= Bits;
+ Address += EFI_PAGES_TO_SIZE (Bits);
+ }
+
+ return Result;
+}
+
+/**
+ Get bit value in bitmap table for the given address.
+
+ @param[in] Address The address to retrieve for.
+
+ @return 1 or 0.
+**/
+UINTN
+EFIAPI
+GetGuardMapBit (
+ IN EFI_PHYSICAL_ADDRESS Address
+ )
+{
+ UINT64 *GuardMap;
+
+ FindGuardedMemoryMap (Address, FALSE, &GuardMap);
+ if (GuardMap != NULL) {
+ if (RShiftU64 (*GuardMap,
+ GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address)) & 1) {
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+
+/**
+ Check to see if the page at the given address is a Guard page or not.
+
+ @param[in] Address The address to check for.
+
+ @return TRUE The page at Address is a Guard page.
+ @return FALSE The page at Address is not a Guard page.
+**/
+BOOLEAN
+EFIAPI
+IsGuardPage (
+ IN EFI_PHYSICAL_ADDRESS Address
+ )
+{
+ UINT64 BitMap;
+
+ //
+ // There must be at least one guarded page before and/or after given
+ // address if it's a Guard page. The bitmap pattern should be one of
+ // 001, 100 and 101
+ //
+ BitMap = GetGuardedMemoryBits (Address - EFI_PAGE_SIZE, 3);
+ return ((BitMap == BIT0) || (BitMap == BIT2) || (BitMap == (BIT2 | BIT0)));
+}
+
+
+/**
+ Check to see if the page at the given address is guarded or not.
+
+ @param[in] Address The address to check for.
+
+ @return TRUE The page at Address is guarded.
+ @return FALSE The page at Address is not guarded.
+**/
+BOOLEAN
+EFIAPI
+IsMemoryGuarded (
+ IN EFI_PHYSICAL_ADDRESS Address
+ )
+{
+ return (GetGuardMapBit (Address) == 1);
+}
+
+/**
+ Set the page at the given address to be a Guard page.
+
+ This is done by changing the page table attribute to be NOT PRSENT.
+
+ @param[in] BaseAddress Page address to Guard at
+
+ @return VOID
+**/
+VOID
+EFIAPI
+SetGuardPage (
+ IN EFI_PHYSICAL_ADDRESS BaseAddress
+ )
+{
+ EFI_STATUS Status;
+
+ if (gCpu == NULL) {
+ return;
+ }
+
+ //
+ // Set flag to make sure allocating memory without GUARD for page table
+ // operation; otherwise infinite loops could be caused.
+ //
+ mOnGuarding = TRUE;
+ //
+ // Note: This might overwrite other attributes needed by other features,
+ // such as NX memory protection.
+ //
+ Status = gCpu->SetMemoryAttributes (gCpu, BaseAddress, EFI_PAGE_SIZE, EFI_MEMORY_RP);
+ ASSERT_EFI_ERROR (Status);
+ mOnGuarding = FALSE;
+}
+
+/**
+ Unset the Guard page at the given address to the normal memory.
+
+ This is done by changing the page table attribute to be PRSENT.
+
+ @param[in] BaseAddress Page address to Guard at.
+
+ @return VOID.
+**/
+VOID
+EFIAPI
+UnsetGuardPage (
+ IN EFI_PHYSICAL_ADDRESS BaseAddress
+ )
+{
+ UINT64 Attributes;
+ EFI_STATUS Status;
+
+ if (gCpu == NULL) {
+ return;
+ }
+
+ //
+ // Once the Guard page is unset, it will be freed back to memory pool. NX
+ // memory protection must be restored for this page if NX is enabled for free
+ // memory.
+ //
+ Attributes = 0;
+ if ((PcdGet64 (PcdDxeNxMemoryProtectionPolicy) & (1 << EfiConventionalMemory)) != 0) {
+ Attributes |= EFI_MEMORY_XP;
+ }
+
+ //
+ // Set flag to make sure allocating memory without GUARD for page table
+ // operation; otherwise infinite loops could be caused.
+ //
+ mOnGuarding = TRUE;
+ //
+ // Note: This might overwrite other attributes needed by other features,
+ // such as memory protection (NX). Please make sure they are not enabled
+ // at the same time.
+ //
+ Status = gCpu->SetMemoryAttributes (gCpu, BaseAddress, EFI_PAGE_SIZE, Attributes);
+ ASSERT_EFI_ERROR (Status);
+ mOnGuarding = FALSE;
+}
+
+/**
+ Check to see if the memory at the given address should be guarded or not.
+
+ @param[in] MemoryType Memory type to check.
+ @param[in] AllocateType Allocation type to check.
+ @param[in] PageOrPool Indicate a page allocation or pool allocation.
+
+
+ @return TRUE The given type of memory should be guarded.
+ @return FALSE The given type of memory should not be guarded.
+**/
+BOOLEAN
+IsMemoryTypeToGuard (
+ IN EFI_MEMORY_TYPE MemoryType,
+ IN EFI_ALLOCATE_TYPE AllocateType,
+ IN UINT8 PageOrPool
+ )
+{
+ UINT64 TestBit;
+ UINT64 ConfigBit;
+
+ if (AllocateType == AllocateAddress) {
+ return FALSE;
+ }
+
+ if ((PcdGet8 (PcdHeapGuardPropertyMask) & PageOrPool) == 0) {
+ return FALSE;
+ }
+
+ if (PageOrPool == GUARD_HEAP_TYPE_POOL) {
+ ConfigBit = PcdGet64 (PcdHeapGuardPoolType);
+ } else if (PageOrPool == GUARD_HEAP_TYPE_PAGE) {
+ ConfigBit = PcdGet64 (PcdHeapGuardPageType);
+ } else {
+ ConfigBit = (UINT64)-1;
+ }
+
+ if ((UINT32)MemoryType >= MEMORY_TYPE_OS_RESERVED_MIN) {
+ TestBit = BIT63;
+ } else if ((UINT32) MemoryType >= MEMORY_TYPE_OEM_RESERVED_MIN) {
+ TestBit = BIT62;
+ } else if (MemoryType < EfiMaxMemoryType) {
+ TestBit = LShiftU64 (1, MemoryType);
+ } else if (MemoryType == EfiMaxMemoryType) {
+ TestBit = (UINT64)-1;
+ } else {
+ TestBit = 0;
+ }
+
+ return ((ConfigBit & TestBit) != 0);
+}
+
+/**
+ Check to see if the pool at the given address should be guarded or not.
+
+ @param[in] MemoryType Pool type to check.
+
+
+ @return TRUE The given type of pool should be guarded.
+ @return FALSE The given type of pool should not be guarded.
+**/
+BOOLEAN
+IsPoolTypeToGuard (
+ IN EFI_MEMORY_TYPE MemoryType
+ )
+{
+ return IsMemoryTypeToGuard (MemoryType, AllocateAnyPages,
+ GUARD_HEAP_TYPE_POOL);
+}
+
+/**
+ Check to see if the page at the given address should be guarded or not.
+
+ @param[in] MemoryType Page type to check.
+ @param[in] AllocateType Allocation type to check.
+
+ @return TRUE The given type of page should be guarded.
+ @return FALSE The given type of page should not be guarded.
+**/
+BOOLEAN
+IsPageTypeToGuard (
+ IN EFI_MEMORY_TYPE MemoryType,
+ IN EFI_ALLOCATE_TYPE AllocateType
+ )
+{
+ return IsMemoryTypeToGuard (MemoryType, AllocateType, GUARD_HEAP_TYPE_PAGE);
+}
+
+/**
+ Check to see if the heap guard is enabled for page and/or pool allocation.
+
+ @param[in] GuardType Specify the sub-type(s) of Heap Guard.
+
+ @return TRUE/FALSE.
+**/
+BOOLEAN
+IsHeapGuardEnabled (
+ UINT8 GuardType
+ )
+{
+ return IsMemoryTypeToGuard (EfiMaxMemoryType, AllocateAnyPages, GuardType);
+}
+
+/**
+ Set head Guard and tail Guard for the given memory range.
+
+ @param[in] Memory Base address of memory to set guard for.
+ @param[in] NumberOfPages Memory size in pages.
+
+ @return VOID
+**/
+VOID
+SetGuardForMemory (
+ IN EFI_PHYSICAL_ADDRESS Memory,
+ IN UINTN NumberOfPages
+ )
+{
+ EFI_PHYSICAL_ADDRESS GuardPage;
+
+ //
+ // Set tail Guard
+ //
+ GuardPage = Memory + EFI_PAGES_TO_SIZE (NumberOfPages);
+ if (!IsGuardPage (GuardPage)) {
+ SetGuardPage (GuardPage);
+ }
+
+ // Set head Guard
+ GuardPage = Memory - EFI_PAGES_TO_SIZE (1);
+ if (!IsGuardPage (GuardPage)) {
+ SetGuardPage (GuardPage);
+ }
+
+ //
+ // Mark the memory range as Guarded
+ //
+ SetGuardedMemoryBits (Memory, NumberOfPages);
+}
+
+/**
+ Unset head Guard and tail Guard for the given memory range.
+
+ @param[in] Memory Base address of memory to unset guard for.
+ @param[in] NumberOfPages Memory size in pages.
+
+ @return VOID
+**/
+VOID
+UnsetGuardForMemory (
+ IN EFI_PHYSICAL_ADDRESS Memory,
+ IN UINTN NumberOfPages
+ )
+{
+ EFI_PHYSICAL_ADDRESS GuardPage;
+ UINT64 GuardBitmap;
+
+ if (NumberOfPages == 0) {
+ return;
+ }
+
+ //
+ // Head Guard must be one page before, if any.
+ //
+ // MSB-> 1 0 <-LSB
+ // -------------------
+ // Head Guard -> 0 1 -> Don't free Head Guard (shared Guard)
+ // Head Guard -> 0 0 -> Free Head Guard either (not shared Guard)
+ // 1 X -> Don't free first page (need a new Guard)
+ // (it'll be turned into a Guard page later)
+ // -------------------
+ // Start -> -1 -2
+ //
+ GuardPage = Memory - EFI_PAGES_TO_SIZE (1);
+ GuardBitmap = GetGuardedMemoryBits (Memory - EFI_PAGES_TO_SIZE (2), 2);
+ if ((GuardBitmap & BIT1) == 0) {
+ //
+ // Head Guard exists.
+ //
+ if ((GuardBitmap & BIT0) == 0) {
+ //
+ // If the head Guard is not a tail Guard of adjacent memory block,
+ // unset it.
+ //
+ UnsetGuardPage (GuardPage);
+ }
+ } else {
+ //
+ // Pages before memory to free are still in Guard. It's a partial free
+ // case. Turn first page of memory block to free into a new Guard.
+ //
+ SetGuardPage (Memory);
+ }
+
+ //
+ // Tail Guard must be the page after this memory block to free, if any.
+ //
+ // MSB-> 1 0 <-LSB
+ // --------------------
+ // 1 0 <- Tail Guard -> Don't free Tail Guard (shared Guard)
+ // 0 0 <- Tail Guard -> Free Tail Guard either (not shared Guard)
+ // X 1 -> Don't free last page (need a new Guard)
+ // (it'll be turned into a Guard page later)
+ // --------------------
+ // +1 +0 <- End
+ //
+ GuardPage = Memory + EFI_PAGES_TO_SIZE (NumberOfPages);
+ GuardBitmap = GetGuardedMemoryBits (GuardPage, 2);
+ if ((GuardBitmap & BIT0) == 0) {
+ //
+ // Tail Guard exists.
+ //
+ if ((GuardBitmap & BIT1) == 0) {
+ //
+ // If the tail Guard is not a head Guard of adjacent memory block,
+ // free it; otherwise, keep it.
+ //
+ UnsetGuardPage (GuardPage);
+ }
+ } else {
+ //
+ // Pages after memory to free are still in Guard. It's a partial free
+ // case. We need to keep one page to be a head Guard.
+ //
+ SetGuardPage (GuardPage - EFI_PAGES_TO_SIZE (1));
+ }
+
+ //
+ // No matter what, we just clear the mark of the Guarded memory.
+ //
+ ClearGuardedMemoryBits(Memory, NumberOfPages);
+}
+
+/**
+ Adjust address of free memory according to existing and/or required Guard.
+
+ This function will check if there're existing Guard pages of adjacent
+ memory blocks, and try to use it as the Guard page of the memory to be
+ allocated.
+
+ @param[in] Start Start address of free memory block.
+ @param[in] Size Size of free memory block.
+ @param[in] SizeRequested Size of memory to allocate.
+
+ @return The end address of memory block found.
+ @return 0 if no enough space for the required size of memory and its Guard.
+**/
+UINT64
+AdjustMemoryS (
+ IN UINT64 Start,
+ IN UINT64 Size,
+ IN UINT64 SizeRequested
+ )
+{
+ UINT64 Target;
+
+ //
+ // UEFI spec requires that allocated pool must be 8-byte aligned. If it's
+ // indicated to put the pool near the Tail Guard, we need extra bytes to
+ // make sure alignment of the returned pool address.
+ //
+ if ((PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) == 0) {
+ SizeRequested = ALIGN_VALUE(SizeRequested, 8);
+ }
+
+ Target = Start + Size - SizeRequested;
+ ASSERT (Target >= Start);
+ if (Target == 0) {
+ return 0;
+ }
+
+ if (!IsGuardPage (Start + Size)) {
+ // No Guard at tail to share. One more page is needed.
+ Target -= EFI_PAGES_TO_SIZE (1);
+ }
+
+ // Out of range?
+ if (Target < Start) {
+ return 0;
+ }
+
+ // At the edge?
+ if (Target == Start) {
+ if (!IsGuardPage (Target - EFI_PAGES_TO_SIZE (1))) {
+ // No enough space for a new head Guard if no Guard at head to share.
+ return 0;
+ }
+ }
+
+ // OK, we have enough pages for memory and its Guards. Return the End of the
+ // free space.
+ return Target + SizeRequested - 1;
+}
+
+/**
+ Adjust the start address and number of pages to free according to Guard.
+
+ The purpose of this function is to keep the shared Guard page with adjacent
+ memory block if it's still in guard, or free it if no more sharing. Another
+ is to reserve pages as Guard pages in partial page free situation.
+
+ @param[in,out] Memory Base address of memory to free.
+ @param[in,out] NumberOfPages Size of memory to free.
+
+ @return VOID.
+**/
+VOID
+AdjustMemoryF (
+ IN OUT EFI_PHYSICAL_ADDRESS *Memory,
+ IN OUT UINTN *NumberOfPages
+ )
+{
+ EFI_PHYSICAL_ADDRESS Start;
+ EFI_PHYSICAL_ADDRESS MemoryToTest;
+ UINTN PagesToFree;
+ UINT64 GuardBitmap;
+
+ if (Memory == NULL || NumberOfPages == NULL || *NumberOfPages == 0) {
+ return;
+ }
+
+ Start = *Memory;
+ PagesToFree = *NumberOfPages;
+
+ //
+ // Head Guard must be one page before, if any.
+ //
+ // MSB-> 1 0 <-LSB
+ // -------------------
+ // Head Guard -> 0 1 -> Don't free Head Guard (shared Guard)
+ // Head Guard -> 0 0 -> Free Head Guard either (not shared Guard)
+ // 1 X -> Don't free first page (need a new Guard)
+ // (it'll be turned into a Guard page later)
+ // -------------------
+ // Start -> -1 -2
+ //
+ MemoryToTest = Start - EFI_PAGES_TO_SIZE (2);
+ GuardBitmap = GetGuardedMemoryBits (MemoryToTest, 2);
+ if ((GuardBitmap & BIT1) == 0) {
+ //
+ // Head Guard exists.
+ //
+ if ((GuardBitmap & BIT0) == 0) {
+ //
+ // If the head Guard is not a tail Guard of adjacent memory block,
+ // free it; otherwise, keep it.
+ //
+ Start -= EFI_PAGES_TO_SIZE (1);
+ PagesToFree += 1;
+ }
+ } else {
+ //
+ // No Head Guard, and pages before memory to free are still in Guard. It's a
+ // partial free case. We need to keep one page to be a tail Guard.
+ //
+ Start += EFI_PAGES_TO_SIZE (1);
+ PagesToFree -= 1;
+ }
+
+ //
+ // Tail Guard must be the page after this memory block to free, if any.
+ //
+ // MSB-> 1 0 <-LSB
+ // --------------------
+ // 1 0 <- Tail Guard -> Don't free Tail Guard (shared Guard)
+ // 0 0 <- Tail Guard -> Free Tail Guard either (not shared Guard)
+ // X 1 -> Don't free last page (need a new Guard)
+ // (it'll be turned into a Guard page later)
+ // --------------------
+ // +1 +0 <- End
+ //
+ MemoryToTest = Start + EFI_PAGES_TO_SIZE (PagesToFree);
+ GuardBitmap = GetGuardedMemoryBits (MemoryToTest, 2);
+ if ((GuardBitmap & BIT0) == 0) {
+ //
+ // Tail Guard exists.
+ //
+ if ((GuardBitmap & BIT1) == 0) {
+ //
+ // If the tail Guard is not a head Guard of adjacent memory block,
+ // free it; otherwise, keep it.
+ //
+ PagesToFree += 1;
+ }
+ } else if (PagesToFree > 0) {
+ //
+ // No Tail Guard, and pages after memory to free are still in Guard. It's a
+ // partial free case. We need to keep one page to be a head Guard.
+ //
+ PagesToFree -= 1;
+ }
+
+ *Memory = Start;
+ *NumberOfPages = PagesToFree;
+}
+
+/**
+ Adjust the base and number of pages to really allocate according to Guard.
+
+ @param[in,out] Memory Base address of free memory.
+ @param[in,out] NumberOfPages Size of memory to allocate.
+
+ @return VOID.
+**/
+VOID
+AdjustMemoryA (
+ IN OUT EFI_PHYSICAL_ADDRESS *Memory,
+ IN OUT UINTN *NumberOfPages
+ )
+{
+ //
+ // FindFreePages() has already taken the Guard into account. It's safe to
+ // adjust the start address and/or number of pages here, to make sure that
+ // the Guards are also "allocated".
+ //
+ if (!IsGuardPage (*Memory + EFI_PAGES_TO_SIZE (*NumberOfPages))) {
+ // No tail Guard, add one.
+ *NumberOfPages += 1;
+ }
+
+ if (!IsGuardPage (*Memory - EFI_PAGE_SIZE)) {
+ // No head Guard, add one.
+ *Memory -= EFI_PAGE_SIZE;
+ *NumberOfPages += 1;
+ }
+}
+
+/**
+ Adjust the pool head position to make sure the Guard page is adjavent to
+ pool tail or pool head.
+
+ @param[in] Memory Base address of memory allocated.
+ @param[in] NoPages Number of pages actually allocated.
+ @param[in] Size Size of memory requested.
+ (plus pool head/tail overhead)
+
+ @return Address of pool head.
+**/
+VOID *
+AdjustPoolHeadA (
+ IN EFI_PHYSICAL_ADDRESS Memory,
+ IN UINTN NoPages,
+ IN UINTN Size
+ )
+{
+ if (Memory == 0 || (PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) != 0) {
+ //
+ // Pool head is put near the head Guard
+ //
+ return (VOID *)(UINTN)Memory;
+ }
+
+ //
+ // Pool head is put near the tail Guard
+ //
+ Size = ALIGN_VALUE (Size, 8);
+ return (VOID *)(UINTN)(Memory + EFI_PAGES_TO_SIZE (NoPages) - Size);
+}
+
+/**
+ Get the page base address according to pool head address.
+
+ @param[in] Memory Head address of pool to free.
+
+ @return Address of pool head.
+**/
+VOID *
+AdjustPoolHeadF (
+ IN EFI_PHYSICAL_ADDRESS Memory
+ )
+{
+ if (Memory == 0 || (PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) != 0) {
+ //
+ // Pool head is put near the head Guard
+ //
+ return (VOID *)(UINTN)Memory;
+ }
+
+ //
+ // Pool head is put near the tail Guard
+ //
+ return (VOID *)(UINTN)(Memory & ~EFI_PAGE_MASK);
+}
+
+/**
+ Allocate or free guarded memory.
+
+ @param[in] Start Start address of memory to allocate or free.
+ @param[in] NumberOfPages Memory size in pages.
+ @param[in] NewType Memory type to convert to.
+
+ @return VOID.
+**/
+EFI_STATUS
+CoreConvertPagesWithGuard (
+ IN UINT64 Start,
+ IN UINTN NumberOfPages,
+ IN EFI_MEMORY_TYPE NewType
+ )
+{
+ UINT64 OldStart;
+ UINTN OldPages;
+
+ if (NewType == EfiConventionalMemory) {
+ OldStart = Start;
+ OldPages = NumberOfPages;
+
+ AdjustMemoryF (&Start, &NumberOfPages);
+ //
+ // It's safe to unset Guard page inside memory lock because there should
+ // be no memory allocation occurred in updating memory page attribute at
+ // this point. And unsetting Guard page before free will prevent Guard
+ // page just freed back to pool from being allocated right away before
+ // marking it usable (from non-present to present).
+ //
+ UnsetGuardForMemory (OldStart, OldPages);
+ if (NumberOfPages == 0) {
+ return EFI_SUCCESS;
+ }
+ } else {
+ AdjustMemoryA (&Start, &NumberOfPages);
+ }
+
+ return CoreConvertPages (Start, NumberOfPages, NewType);
+}
+
+/**
+ Set all Guard pages which cannot be set before CPU Arch Protocol installed.
+**/
+VOID
+SetAllGuardPages (
+ VOID
+ )
+{
+ UINTN Entries[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINTN Shifts[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINTN Indices[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINT64 Tables[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINT64 Addresses[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINT64 TableEntry;
+ UINT64 Address;
+ UINT64 GuardPage;
+ INTN Level;
+ UINTN Index;
+ BOOLEAN OnGuarding;
+
+ if (mGuardedMemoryMap == 0 ||
+ mMapLevel == 0 ||
+ mMapLevel > GUARDED_HEAP_MAP_TABLE_DEPTH) {
+ return;
+ }
+
+ CopyMem (Entries, mLevelMask, sizeof (Entries));
+ CopyMem (Shifts, mLevelShift, sizeof (Shifts));
+
+ SetMem (Tables, sizeof(Tables), 0);
+ SetMem (Addresses, sizeof(Addresses), 0);
+ SetMem (Indices, sizeof(Indices), 0);
+
+ Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;
+ Tables[Level] = mGuardedMemoryMap;
+ Address = 0;
+ OnGuarding = FALSE;
+
+ DEBUG_CODE (
+ DumpGuardedMemoryBitmap ();
+ );
+
+ while (TRUE) {
+ if (Indices[Level] > Entries[Level]) {
+ Tables[Level] = 0;
+ Level -= 1;
+ } else {
+
+ TableEntry = ((UINT64 *)(UINTN)(Tables[Level]))[Indices[Level]];
+ Address = Addresses[Level];
+
+ if (TableEntry == 0) {
+
+ OnGuarding = FALSE;
+
+ } else if (Level < GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {
+
+ Level += 1;
+ Tables[Level] = TableEntry;
+ Addresses[Level] = Address;
+ Indices[Level] = 0;
+
+ continue;
+
+ } else {
+
+ Index = 0;
+ while (Index < GUARDED_HEAP_MAP_ENTRY_BITS) {
+ if ((TableEntry & 1) == 1) {
+ if (OnGuarding) {
+ GuardPage = 0;
+ } else {
+ GuardPage = Address - EFI_PAGE_SIZE;
+ }
+ OnGuarding = TRUE;
+ } else {
+ if (OnGuarding) {
+ GuardPage = Address;
+ } else {
+ GuardPage = 0;
+ }
+ OnGuarding = FALSE;
+ }
+
+ if (GuardPage != 0) {
+ SetGuardPage (GuardPage);
+ }
+
+ if (TableEntry == 0) {
+ break;
+ }
+
+ TableEntry = RShiftU64 (TableEntry, 1);
+ Address += EFI_PAGE_SIZE;
+ Index += 1;
+ }
+ }
+ }
+
+ if (Level < (GUARDED_HEAP_MAP_TABLE_DEPTH - (INTN)mMapLevel)) {
+ break;
+ }
+
+ Indices[Level] += 1;
+ Address = (Level == 0) ? 0 : Addresses[Level - 1];
+ Addresses[Level] = Address | LShiftU64(Indices[Level], Shifts[Level]);
+
+ }
+}
+
+/**
+ Find the address of top-most guarded free page.
+
+ @param[out] Address Start address of top-most guarded free page.
+
+ @return VOID.
+**/
+VOID
+GetLastGuardedFreePageAddress (
+ OUT EFI_PHYSICAL_ADDRESS *Address
+ )
+{
+ EFI_PHYSICAL_ADDRESS AddressGranularity;
+ EFI_PHYSICAL_ADDRESS BaseAddress;
+ UINTN Level;
+ UINT64 Map;
+ INTN Index;
+
+ ASSERT (mMapLevel >= 1);
+
+ BaseAddress = 0;
+ Map = mGuardedMemoryMap;
+ for (Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;
+ Level < GUARDED_HEAP_MAP_TABLE_DEPTH;
+ ++Level) {
+ AddressGranularity = LShiftU64 (1, mLevelShift[Level]);
+
+ //
+ // Find the non-NULL entry at largest index.
+ //
+ for (Index = (INTN)mLevelMask[Level]; Index >= 0 ; --Index) {
+ if (((UINT64 *)(UINTN)Map)[Index] != 0) {
+ BaseAddress += MultU64x32 (AddressGranularity, (UINT32)Index);
+ Map = ((UINT64 *)(UINTN)Map)[Index];
+ break;
+ }
+ }
+ }
+
+ //
+ // Find the non-zero MSB then get the page address.
+ //
+ while (Map != 0) {
+ Map = RShiftU64 (Map, 1);
+ BaseAddress += EFI_PAGES_TO_SIZE (1);
+ }
+
+ *Address = BaseAddress;
+}
+
+/**
+ Record freed pages.
+
+ @param[in] BaseAddress Base address of just freed pages.
+ @param[in] Pages Number of freed pages.
+
+ @return VOID.
+**/
+VOID
+MarkFreedPages (
+ IN EFI_PHYSICAL_ADDRESS BaseAddress,
+ IN UINTN Pages
+ )
+{
+ SetGuardedMemoryBits (BaseAddress, Pages);
+}
+
+/**
+ Record freed pages as well as mark them as not-present.
+
+ @param[in] BaseAddress Base address of just freed pages.
+ @param[in] Pages Number of freed pages.
+
+ @return VOID.
+**/
+VOID
+EFIAPI
+GuardFreedPages (
+ IN EFI_PHYSICAL_ADDRESS BaseAddress,
+ IN UINTN Pages
+ )
+{
+ EFI_STATUS Status;
+
+ //
+ // Legacy memory lower than 1MB might be accessed with no allocation. Leave
+ // them alone.
+ //
+ if (BaseAddress < BASE_1MB) {
+ return;
+ }
+
+ MarkFreedPages (BaseAddress, Pages);
+ if (gCpu != NULL) {
+ //
+ // Set flag to make sure allocating memory without GUARD for page table
+ // operation; otherwise infinite loops could be caused.
+ //
+ mOnGuarding = TRUE;
+ //
+ // Note: This might overwrite other attributes needed by other features,
+ // such as NX memory protection.
+ //
+ Status = gCpu->SetMemoryAttributes (
+ gCpu,
+ BaseAddress,
+ EFI_PAGES_TO_SIZE (Pages),
+ EFI_MEMORY_RP
+ );
+ //
+ // Normally we should ASSERT the returned Status. But there might be memory
+ // alloc/free involved in SetMemoryAttributes(), which might fail this
+ // calling. It's rare case so it's OK to let a few tiny holes be not-guarded.
+ //
+ if (EFI_ERROR (Status)) {
+ DEBUG ((DEBUG_WARN, "Failed to guard freed pages: %p (%lu)\n", BaseAddress, (UINT64)Pages));
+ }
+ mOnGuarding = FALSE;
+ }
+}
+
+/**
+ Record freed pages as well as mark them as not-present, if enabled.
+
+ @param[in] BaseAddress Base address of just freed pages.
+ @param[in] Pages Number of freed pages.
+
+ @return VOID.
+**/
+VOID
+EFIAPI
+GuardFreedPagesChecked (
+ IN EFI_PHYSICAL_ADDRESS BaseAddress,
+ IN UINTN Pages
+ )
+{
+ if (IsHeapGuardEnabled (GUARD_HEAP_TYPE_FREED)) {
+ GuardFreedPages (BaseAddress, Pages);
+ }
+}
+
+/**
+ Mark all pages freed before CPU Arch Protocol as not-present.
+
+**/
+VOID
+GuardAllFreedPages (
+ VOID
+ )
+{
+ UINTN Entries[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINTN Shifts[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINTN Indices[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINT64 Tables[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINT64 Addresses[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINT64 TableEntry;
+ UINT64 Address;
+ UINT64 GuardPage;
+ INTN Level;
+ UINT64 BitIndex;
+ UINTN GuardPageNumber;
+
+ if (mGuardedMemoryMap == 0 ||
+ mMapLevel == 0 ||
+ mMapLevel > GUARDED_HEAP_MAP_TABLE_DEPTH) {
+ return;
+ }
+
+ CopyMem (Entries, mLevelMask, sizeof (Entries));
+ CopyMem (Shifts, mLevelShift, sizeof (Shifts));
+
+ SetMem (Tables, sizeof(Tables), 0);
+ SetMem (Addresses, sizeof(Addresses), 0);
+ SetMem (Indices, sizeof(Indices), 0);
+
+ Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;
+ Tables[Level] = mGuardedMemoryMap;
+ Address = 0;
+ GuardPage = (UINT64)-1;
+ GuardPageNumber = 0;
+
+ while (TRUE) {
+ if (Indices[Level] > Entries[Level]) {
+ Tables[Level] = 0;
+ Level -= 1;
+ } else {
+ TableEntry = ((UINT64 *)(UINTN)(Tables[Level]))[Indices[Level]];
+ Address = Addresses[Level];
+
+ if (Level < GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {
+ Level += 1;
+ Tables[Level] = TableEntry;
+ Addresses[Level] = Address;
+ Indices[Level] = 0;
+
+ continue;
+ } else {
+ BitIndex = 1;
+ while (BitIndex != 0) {
+ if ((TableEntry & BitIndex) != 0) {
+ if (GuardPage == (UINT64)-1) {
+ GuardPage = Address;
+ }
+ ++GuardPageNumber;
+ } else if (GuardPageNumber > 0) {
+ GuardFreedPages (GuardPage, GuardPageNumber);
+ GuardPageNumber = 0;
+ GuardPage = (UINT64)-1;
+ }
+
+ if (TableEntry == 0) {
+ break;
+ }
+
+ Address += EFI_PAGES_TO_SIZE (1);
+ BitIndex = LShiftU64 (BitIndex, 1);
+ }
+ }
+ }
+
+ if (Level < (GUARDED_HEAP_MAP_TABLE_DEPTH - (INTN)mMapLevel)) {
+ break;
+ }
+
+ Indices[Level] += 1;
+ Address = (Level == 0) ? 0 : Addresses[Level - 1];
+ Addresses[Level] = Address | LShiftU64 (Indices[Level], Shifts[Level]);
+
+ }
+
+ //
+ // Update the maximum address of freed page which can be used for memory
+ // promotion upon out-of-memory-space.
+ //
+ GetLastGuardedFreePageAddress (&Address);
+ if (Address != 0) {
+ mLastPromotedPage = Address;
+ }
+}
+
+/**
+ This function checks to see if the given memory map descriptor in a memory map
+ can be merged with any guarded free pages.
+
+ @param MemoryMapEntry A pointer to a descriptor in MemoryMap.
+ @param MaxAddress Maximum address to stop the merge.
+
+ @return VOID
+
+**/
+VOID
+MergeGuardPages (
+ IN EFI_MEMORY_DESCRIPTOR *MemoryMapEntry,
+ IN EFI_PHYSICAL_ADDRESS MaxAddress
+ )
+{
+ EFI_PHYSICAL_ADDRESS EndAddress;
+ UINT64 Bitmap;
+ INTN Pages;
+
+ if (!IsHeapGuardEnabled (GUARD_HEAP_TYPE_FREED) ||
+ MemoryMapEntry->Type >= EfiMemoryMappedIO) {
+ return;
+ }
+
+ Bitmap = 0;
+ Pages = EFI_SIZE_TO_PAGES ((UINTN)(MaxAddress - MemoryMapEntry->PhysicalStart));
+ Pages -= (INTN)MemoryMapEntry->NumberOfPages;
+ while (Pages > 0) {
+ if (Bitmap == 0) {
+ EndAddress = MemoryMapEntry->PhysicalStart +
+ EFI_PAGES_TO_SIZE ((UINTN)MemoryMapEntry->NumberOfPages);
+ Bitmap = GetGuardedMemoryBits (EndAddress, GUARDED_HEAP_MAP_ENTRY_BITS);
+ }
+
+ if ((Bitmap & 1) == 0) {
+ break;
+ }
+
+ Pages--;
+ MemoryMapEntry->NumberOfPages++;
+ Bitmap = RShiftU64 (Bitmap, 1);
+ }
+}
+
+/**
+ Put part (at most 64 pages a time) guarded free pages back to free page pool.
+
+ Freed memory guard is used to detect Use-After-Free (UAF) memory issue, which
+ makes use of 'Used then throw away' way to detect any illegal access to freed
+ memory. The thrown-away memory will be marked as not-present so that any access
+ to those memory (after free) will be caught by page-fault exception.
+
+ The problem is that this will consume lots of memory space. Once no memory
+ left in pool to allocate, we have to restore part of the freed pages to their
+ normal function. Otherwise the whole system will stop functioning.
+
+ @param StartAddress Start address of promoted memory.
+ @param EndAddress End address of promoted memory.
+
+ @return TRUE Succeeded to promote memory.
+ @return FALSE No free memory found.
+
+**/
+BOOLEAN
+PromoteGuardedFreePages (
+ OUT EFI_PHYSICAL_ADDRESS *StartAddress,
+ OUT EFI_PHYSICAL_ADDRESS *EndAddress
+ )
+{
+ EFI_STATUS Status;
+ UINTN AvailablePages;
+ UINT64 Bitmap;
+ EFI_PHYSICAL_ADDRESS Start;
+
+ if (!IsHeapGuardEnabled (GUARD_HEAP_TYPE_FREED)) {
+ return FALSE;
+ }
+
+ //
+ // Similar to memory allocation service, always search the freed pages in
+ // descending direction.
+ //
+ Start = mLastPromotedPage;
+ AvailablePages = 0;
+ while (AvailablePages == 0) {
+ Start -= EFI_PAGES_TO_SIZE (GUARDED_HEAP_MAP_ENTRY_BITS);
+ //
+ // If the address wraps around, try the really freed pages at top.
+ //
+ if (Start > mLastPromotedPage) {
+ GetLastGuardedFreePageAddress (&Start);
+ ASSERT (Start != 0);
+ Start -= EFI_PAGES_TO_SIZE (GUARDED_HEAP_MAP_ENTRY_BITS);
+ }
+
+ Bitmap = GetGuardedMemoryBits (Start, GUARDED_HEAP_MAP_ENTRY_BITS);
+ while (Bitmap > 0) {
+ if ((Bitmap & 1) != 0) {
+ ++AvailablePages;
+ } else if (AvailablePages == 0) {
+ Start += EFI_PAGES_TO_SIZE (1);
+ } else {
+ break;
+ }
+
+ Bitmap = RShiftU64 (Bitmap, 1);
+ }
+ }
+
+ if (AvailablePages != 0) {
+ DEBUG ((DEBUG_INFO, "Promoted pages: %lX (%lx)\r\n", Start, (UINT64)AvailablePages));
+ ClearGuardedMemoryBits (Start, AvailablePages);
+
+ if (gCpu != NULL) {
+ //
+ // Set flag to make sure allocating memory without GUARD for page table
+ // operation; otherwise infinite loops could be caused.
+ //
+ mOnGuarding = TRUE;
+ Status = gCpu->SetMemoryAttributes (gCpu, Start, EFI_PAGES_TO_SIZE(AvailablePages), 0);
+ ASSERT_EFI_ERROR (Status);
+ mOnGuarding = FALSE;
+ }
+
+ mLastPromotedPage = Start;
+ *StartAddress = Start;
+ *EndAddress = Start + EFI_PAGES_TO_SIZE (AvailablePages) - 1;
+ return TRUE;
+ }
+
+ return FALSE;
+}
+
+/**
+ Notify function used to set all Guard pages before CPU Arch Protocol installed.
+**/
+VOID
+HeapGuardCpuArchProtocolNotify (
+ VOID
+ )
+{
+ ASSERT (gCpu != NULL);
+
+ if (IsHeapGuardEnabled (GUARD_HEAP_TYPE_PAGE|GUARD_HEAP_TYPE_POOL) &&
+ IsHeapGuardEnabled (GUARD_HEAP_TYPE_FREED)) {
+ DEBUG ((DEBUG_ERROR, "Heap guard and freed memory guard cannot be enabled at the same time.\n"));
+ CpuDeadLoop ();
+ }
+
+ if (IsHeapGuardEnabled (GUARD_HEAP_TYPE_PAGE|GUARD_HEAP_TYPE_POOL)) {
+ SetAllGuardPages ();
+ }
+
+ if (IsHeapGuardEnabled (GUARD_HEAP_TYPE_FREED)) {
+ GuardAllFreedPages ();
+ }
+}
+
+/**
+ Helper function to convert a UINT64 value in binary to a string.
+
+ @param[in] Value Value of a UINT64 integer.
+ @param[out] BinString String buffer to contain the conversion result.
+
+ @return VOID.
+**/
+VOID
+Uint64ToBinString (
+ IN UINT64 Value,
+ OUT CHAR8 *BinString
+ )
+{
+ UINTN Index;
+
+ if (BinString == NULL) {
+ return;
+ }
+
+ for (Index = 64; Index > 0; --Index) {
+ BinString[Index - 1] = '0' + (Value & 1);
+ Value = RShiftU64 (Value, 1);
+ }
+ BinString[64] = '\0';
+}
+
+/**
+ Dump the guarded memory bit map.
+**/
+VOID
+EFIAPI
+DumpGuardedMemoryBitmap (
+ VOID
+ )
+{
+ UINTN Entries[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINTN Shifts[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINTN Indices[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINT64 Tables[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINT64 Addresses[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINT64 TableEntry;
+ UINT64 Address;
+ INTN Level;
+ UINTN RepeatZero;
+ CHAR8 String[GUARDED_HEAP_MAP_ENTRY_BITS + 1];
+ CHAR8 *Ruler1;
+ CHAR8 *Ruler2;
+
+ if (!IsHeapGuardEnabled (GUARD_HEAP_TYPE_ALL)) {
+ return;
+ }
+
+ if (mGuardedMemoryMap == 0 ||
+ mMapLevel == 0 ||
+ mMapLevel > GUARDED_HEAP_MAP_TABLE_DEPTH) {
+ return;
+ }
+
+ Ruler1 = " 3 2 1 0";
+ Ruler2 = "FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210";
+
+ DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "============================="
+ " Guarded Memory Bitmap "
+ "==============================\r\n"));
+ DEBUG ((HEAP_GUARD_DEBUG_LEVEL, " %a\r\n", Ruler1));
+ DEBUG ((HEAP_GUARD_DEBUG_LEVEL, " %a\r\n", Ruler2));
+
+ CopyMem (Entries, mLevelMask, sizeof (Entries));
+ CopyMem (Shifts, mLevelShift, sizeof (Shifts));
+
+ SetMem (Indices, sizeof(Indices), 0);
+ SetMem (Tables, sizeof(Tables), 0);
+ SetMem (Addresses, sizeof(Addresses), 0);
+
+ Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;
+ Tables[Level] = mGuardedMemoryMap;
+ Address = 0;
+ RepeatZero = 0;
+
+ while (TRUE) {
+ if (Indices[Level] > Entries[Level]) {
+
+ Tables[Level] = 0;
+ Level -= 1;
+ RepeatZero = 0;
+
+ DEBUG ((
+ HEAP_GUARD_DEBUG_LEVEL,
+ "========================================="
+ "=========================================\r\n"
+ ));
+
+ } else {
+
+ TableEntry = ((UINT64 *)(UINTN)Tables[Level])[Indices[Level]];
+ Address = Addresses[Level];
+
+ if (TableEntry == 0) {
+
+ if (Level == GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {
+ if (RepeatZero == 0) {
+ Uint64ToBinString(TableEntry, String);
+ DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "%016lx: %a\r\n", Address, String));
+ } else if (RepeatZero == 1) {
+ DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "... : ...\r\n"));
+ }
+ RepeatZero += 1;
+ }
+
+ } else if (Level < GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {
+
+ Level += 1;
+ Tables[Level] = TableEntry;
+ Addresses[Level] = Address;
+ Indices[Level] = 0;
+ RepeatZero = 0;
+
+ continue;
+
+ } else {
+
+ RepeatZero = 0;
+ Uint64ToBinString(TableEntry, String);
+ DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "%016lx: %a\r\n", Address, String));
+
+ }
+ }
+
+ if (Level < (GUARDED_HEAP_MAP_TABLE_DEPTH - (INTN)mMapLevel)) {
+ break;
+ }
+
+ Indices[Level] += 1;
+ Address = (Level == 0) ? 0 : Addresses[Level - 1];
+ Addresses[Level] = Address | LShiftU64(Indices[Level], Shifts[Level]);
+
+ }
+}
+
diff --git a/src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/HeapGuard.h b/src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/HeapGuard.h
new file mode 100644
index 00000000..7ac000dc
--- /dev/null
+++ b/src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/HeapGuard.h
@@ -0,0 +1,467 @@
+/** @file
+ Data type, macros and function prototypes of heap guard feature.
+
+Copyright (c) 2017-2018, Intel Corporation. All rights reserved.<BR>
+SPDX-License-Identifier: BSD-2-Clause-Patent
+
+**/
+
+#ifndef _HEAPGUARD_H_
+#define _HEAPGUARD_H_
+
+//
+// Following macros are used to define and access the guarded memory bitmap
+// table.
+//
+// To simplify the access and reduce the memory used for this table, the
+// table is constructed in the similar way as page table structure but in
+// reverse direction, i.e. from bottom growing up to top.
+//
+// - 1-bit tracks 1 page (4KB)
+// - 1-UINT64 map entry tracks 256KB memory
+// - 1K-UINT64 map table tracks 256MB memory
+// - Five levels of tables can track any address of memory of 64-bit
+// system, like below.
+//
+// 512 * 512 * 512 * 512 * 1K * 64b * 4K
+// 111111111 111111111 111111111 111111111 1111111111 111111 111111111111
+// 63 54 45 36 27 17 11 0
+// 9b 9b 9b 9b 10b 6b 12b
+// L0 -> L1 -> L2 -> L3 -> L4 -> bits -> page
+// 1FF 1FF 1FF 1FF 3FF 3F FFF
+//
+// L4 table has 1K * sizeof(UINT64) = 8K (2-page), which can track 256MB
+// memory. Each table of L0-L3 will be allocated when its memory address
+// range is to be tracked. Only 1-page will be allocated each time. This
+// can save memories used to establish this map table.
+//
+// For a normal configuration of system with 4G memory, two levels of tables
+// can track the whole memory, because two levels (L3+L4) of map tables have
+// already coverred 37-bit of memory address. And for a normal UEFI BIOS,
+// less than 128M memory would be consumed during boot. That means we just
+// need
+//
+// 1-page (L3) + 2-page (L4)
+//
+// memory (3 pages) to track the memory allocation works. In this case,
+// there's no need to setup L0-L2 tables.
+//
+
+//
+// Each entry occupies 8B/64b. 1-page can hold 512 entries, which spans 9
+// bits in address. (512 = 1 << 9)
+//
+#define BYTE_LENGTH_SHIFT 3 // (8 = 1 << 3)
+
+#define GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT \
+ (EFI_PAGE_SHIFT - BYTE_LENGTH_SHIFT)
+
+#define GUARDED_HEAP_MAP_TABLE_DEPTH 5
+
+// Use UINT64_index + bit_index_of_UINT64 to locate the bit in may
+#define GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT 6 // (64 = 1 << 6)
+
+#define GUARDED_HEAP_MAP_ENTRY_BITS \
+ (1 << GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT)
+
+#define GUARDED_HEAP_MAP_ENTRY_BYTES \
+ (GUARDED_HEAP_MAP_ENTRY_BITS / 8)
+
+// L4 table address width: 64 - 9 * 4 - 6 - 12 = 10b
+#define GUARDED_HEAP_MAP_ENTRY_SHIFT \
+ (GUARDED_HEAP_MAP_ENTRY_BITS \
+ - GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT * 4 \
+ - GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT \
+ - EFI_PAGE_SHIFT)
+
+// L4 table address mask: (1 << 10 - 1) = 0x3FF
+#define GUARDED_HEAP_MAP_ENTRY_MASK \
+ ((1 << GUARDED_HEAP_MAP_ENTRY_SHIFT) - 1)
+
+// Size of each L4 table: (1 << 10) * 8 = 8KB = 2-page
+#define GUARDED_HEAP_MAP_SIZE \
+ ((1 << GUARDED_HEAP_MAP_ENTRY_SHIFT) * GUARDED_HEAP_MAP_ENTRY_BYTES)
+
+// Memory size tracked by one L4 table: 8KB * 8 * 4KB = 256MB
+#define GUARDED_HEAP_MAP_UNIT_SIZE \
+ (GUARDED_HEAP_MAP_SIZE * 8 * EFI_PAGE_SIZE)
+
+// L4 table entry number: 8KB / 8 = 1024
+#define GUARDED_HEAP_MAP_ENTRIES_PER_UNIT \
+ (GUARDED_HEAP_MAP_SIZE / GUARDED_HEAP_MAP_ENTRY_BYTES)
+
+// L4 table entry indexing
+#define GUARDED_HEAP_MAP_ENTRY_INDEX(Address) \
+ (RShiftU64 (Address, EFI_PAGE_SHIFT \
+ + GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT) \
+ & GUARDED_HEAP_MAP_ENTRY_MASK)
+
+// L4 table entry bit indexing
+#define GUARDED_HEAP_MAP_ENTRY_BIT_INDEX(Address) \
+ (RShiftU64 (Address, EFI_PAGE_SHIFT) \
+ & ((1 << GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT) - 1))
+
+//
+// Total bits (pages) tracked by one L4 table (65536-bit)
+//
+#define GUARDED_HEAP_MAP_BITS \
+ (1 << (GUARDED_HEAP_MAP_ENTRY_SHIFT \
+ + GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT))
+
+//
+// Bit indexing inside the whole L4 table (0 - 65535)
+//
+#define GUARDED_HEAP_MAP_BIT_INDEX(Address) \
+ (RShiftU64 (Address, EFI_PAGE_SHIFT) \
+ & ((1 << (GUARDED_HEAP_MAP_ENTRY_SHIFT \
+ + GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT)) - 1))
+
+//
+// Memory address bit width tracked by L4 table: 10 + 6 + 12 = 28
+//
+#define GUARDED_HEAP_MAP_TABLE_SHIFT \
+ (GUARDED_HEAP_MAP_ENTRY_SHIFT + GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT \
+ + EFI_PAGE_SHIFT)
+
+//
+// Macro used to initialize the local array variable for map table traversing
+// {55, 46, 37, 28, 18}
+//
+#define GUARDED_HEAP_MAP_TABLE_DEPTH_SHIFTS \
+ { \
+ GUARDED_HEAP_MAP_TABLE_SHIFT + GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT * 3, \
+ GUARDED_HEAP_MAP_TABLE_SHIFT + GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT * 2, \
+ GUARDED_HEAP_MAP_TABLE_SHIFT + GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT, \
+ GUARDED_HEAP_MAP_TABLE_SHIFT, \
+ EFI_PAGE_SHIFT + GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT \
+ }
+
+//
+// Masks used to extract address range of each level of table
+// {0x1FF, 0x1FF, 0x1FF, 0x1FF, 0x3FF}
+//
+#define GUARDED_HEAP_MAP_TABLE_DEPTH_MASKS \
+ { \
+ (1 << GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT) - 1, \
+ (1 << GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT) - 1, \
+ (1 << GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT) - 1, \
+ (1 << GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT) - 1, \
+ (1 << GUARDED_HEAP_MAP_ENTRY_SHIFT) - 1 \
+ }
+
+//
+// Memory type to guard (matching the related PCD definition)
+//
+#define GUARD_HEAP_TYPE_PAGE BIT0
+#define GUARD_HEAP_TYPE_POOL BIT1
+#define GUARD_HEAP_TYPE_FREED BIT4
+#define GUARD_HEAP_TYPE_ALL \
+ (GUARD_HEAP_TYPE_PAGE|GUARD_HEAP_TYPE_POOL|GUARD_HEAP_TYPE_FREED)
+
+//
+// Debug message level
+//
+#define HEAP_GUARD_DEBUG_LEVEL (DEBUG_POOL|DEBUG_PAGE)
+
+typedef struct {
+ UINT32 TailMark;
+ UINT32 HeadMark;
+ EFI_PHYSICAL_ADDRESS Address;
+ LIST_ENTRY Link;
+} HEAP_GUARD_NODE;
+
+/**
+ Internal function. Converts a memory range to the specified type.
+ The range must exist in the memory map.
+
+ @param Start The first address of the range Must be page
+ aligned.
+ @param NumberOfPages The number of pages to convert.
+ @param NewType The new type for the memory range.
+
+ @retval EFI_INVALID_PARAMETER Invalid parameter.
+ @retval EFI_NOT_FOUND Could not find a descriptor cover the specified
+ range or convertion not allowed.
+ @retval EFI_SUCCESS Successfully converts the memory range to the
+ specified type.
+
+**/
+EFI_STATUS
+CoreConvertPages (
+ IN UINT64 Start,
+ IN UINT64 NumberOfPages,
+ IN EFI_MEMORY_TYPE NewType
+ );
+
+/**
+ Allocate or free guarded memory.
+
+ @param[in] Start Start address of memory to allocate or free.
+ @param[in] NumberOfPages Memory size in pages.
+ @param[in] NewType Memory type to convert to.
+
+ @return VOID.
+**/
+EFI_STATUS
+CoreConvertPagesWithGuard (
+ IN UINT64 Start,
+ IN UINTN NumberOfPages,
+ IN EFI_MEMORY_TYPE NewType
+ );
+
+/**
+ Set head Guard and tail Guard for the given memory range.
+
+ @param[in] Memory Base address of memory to set guard for.
+ @param[in] NumberOfPages Memory size in pages.
+
+ @return VOID.
+**/
+VOID
+SetGuardForMemory (
+ IN EFI_PHYSICAL_ADDRESS Memory,
+ IN UINTN NumberOfPages
+ );
+
+/**
+ Unset head Guard and tail Guard for the given memory range.
+
+ @param[in] Memory Base address of memory to unset guard for.
+ @param[in] NumberOfPages Memory size in pages.
+
+ @return VOID.
+**/
+VOID
+UnsetGuardForMemory (
+ IN EFI_PHYSICAL_ADDRESS Memory,
+ IN UINTN NumberOfPages
+ );
+
+/**
+ Adjust the base and number of pages to really allocate according to Guard.
+
+ @param[in,out] Memory Base address of free memory.
+ @param[in,out] NumberOfPages Size of memory to allocate.
+
+ @return VOID.
+**/
+VOID
+AdjustMemoryA (
+ IN OUT EFI_PHYSICAL_ADDRESS *Memory,
+ IN OUT UINTN *NumberOfPages
+ );
+
+/**
+ Adjust the start address and number of pages to free according to Guard.
+
+ The purpose of this function is to keep the shared Guard page with adjacent
+ memory block if it's still in guard, or free it if no more sharing. Another
+ is to reserve pages as Guard pages in partial page free situation.
+
+ @param[in,out] Memory Base address of memory to free.
+ @param[in,out] NumberOfPages Size of memory to free.
+
+ @return VOID.
+**/
+VOID
+AdjustMemoryF (
+ IN OUT EFI_PHYSICAL_ADDRESS *Memory,
+ IN OUT UINTN *NumberOfPages
+ );
+
+/**
+ Adjust address of free memory according to existing and/or required Guard.
+
+ This function will check if there're existing Guard pages of adjacent
+ memory blocks, and try to use it as the Guard page of the memory to be
+ allocated.
+
+ @param[in] Start Start address of free memory block.
+ @param[in] Size Size of free memory block.
+ @param[in] SizeRequested Size of memory to allocate.
+
+ @return The end address of memory block found.
+ @return 0 if no enough space for the required size of memory and its Guard.
+**/
+UINT64
+AdjustMemoryS (
+ IN UINT64 Start,
+ IN UINT64 Size,
+ IN UINT64 SizeRequested
+ );
+
+/**
+ Check to see if the pool at the given address should be guarded or not.
+
+ @param[in] MemoryType Pool type to check.
+
+
+ @return TRUE The given type of pool should be guarded.
+ @return FALSE The given type of pool should not be guarded.
+**/
+BOOLEAN
+IsPoolTypeToGuard (
+ IN EFI_MEMORY_TYPE MemoryType
+ );
+
+/**
+ Check to see if the page at the given address should be guarded or not.
+
+ @param[in] MemoryType Page type to check.
+ @param[in] AllocateType Allocation type to check.
+
+ @return TRUE The given type of page should be guarded.
+ @return FALSE The given type of page should not be guarded.
+**/
+BOOLEAN
+IsPageTypeToGuard (
+ IN EFI_MEMORY_TYPE MemoryType,
+ IN EFI_ALLOCATE_TYPE AllocateType
+ );
+
+/**
+ Check to see if the page at the given address is guarded or not.
+
+ @param[in] Address The address to check for.
+
+ @return TRUE The page at Address is guarded.
+ @return FALSE The page at Address is not guarded.
+**/
+BOOLEAN
+EFIAPI
+IsMemoryGuarded (
+ IN EFI_PHYSICAL_ADDRESS Address
+ );
+
+/**
+ Check to see if the page at the given address is a Guard page or not.
+
+ @param[in] Address The address to check for.
+
+ @return TRUE The page at Address is a Guard page.
+ @return FALSE The page at Address is not a Guard page.
+**/
+BOOLEAN
+EFIAPI
+IsGuardPage (
+ IN EFI_PHYSICAL_ADDRESS Address
+ );
+
+/**
+ Dump the guarded memory bit map.
+**/
+VOID
+EFIAPI
+DumpGuardedMemoryBitmap (
+ VOID
+ );
+
+/**
+ Adjust the pool head position to make sure the Guard page is adjavent to
+ pool tail or pool head.
+
+ @param[in] Memory Base address of memory allocated.
+ @param[in] NoPages Number of pages actually allocated.
+ @param[in] Size Size of memory requested.
+ (plus pool head/tail overhead)
+
+ @return Address of pool head.
+**/
+VOID *
+AdjustPoolHeadA (
+ IN EFI_PHYSICAL_ADDRESS Memory,
+ IN UINTN NoPages,
+ IN UINTN Size
+ );
+
+/**
+ Get the page base address according to pool head address.
+
+ @param[in] Memory Head address of pool to free.
+
+ @return Address of pool head.
+**/
+VOID *
+AdjustPoolHeadF (
+ IN EFI_PHYSICAL_ADDRESS Memory
+ );
+
+/**
+ Check to see if the heap guard is enabled for page and/or pool allocation.
+
+ @param[in] GuardType Specify the sub-type(s) of Heap Guard.
+
+ @return TRUE/FALSE.
+**/
+BOOLEAN
+IsHeapGuardEnabled (
+ UINT8 GuardType
+ );
+
+/**
+ Notify function used to set all Guard pages after CPU Arch Protocol installed.
+**/
+VOID
+HeapGuardCpuArchProtocolNotify (
+ VOID
+ );
+
+/**
+ This function checks to see if the given memory map descriptor in a memory map
+ can be merged with any guarded free pages.
+
+ @param MemoryMapEntry A pointer to a descriptor in MemoryMap.
+ @param MaxAddress Maximum address to stop the merge.
+
+ @return VOID
+
+**/
+VOID
+MergeGuardPages (
+ IN EFI_MEMORY_DESCRIPTOR *MemoryMapEntry,
+ IN EFI_PHYSICAL_ADDRESS MaxAddress
+ );
+
+/**
+ Record freed pages as well as mark them as not-present, if enabled.
+
+ @param[in] BaseAddress Base address of just freed pages.
+ @param[in] Pages Number of freed pages.
+
+ @return VOID.
+**/
+VOID
+EFIAPI
+GuardFreedPagesChecked (
+ IN EFI_PHYSICAL_ADDRESS BaseAddress,
+ IN UINTN Pages
+ );
+
+/**
+ Put part (at most 64 pages a time) guarded free pages back to free page pool.
+
+ Freed memory guard is used to detect Use-After-Free (UAF) memory issue, which
+ makes use of 'Used then throw away' way to detect any illegal access to freed
+ memory. The thrown-away memory will be marked as not-present so that any access
+ to those memory (after free) will be caught by page-fault exception.
+
+ The problem is that this will consume lots of memory space. Once no memory
+ left in pool to allocate, we have to restore part of the freed pages to their
+ normal function. Otherwise the whole system will stop functioning.
+
+ @param StartAddress Start address of promoted memory.
+ @param EndAddress End address of promoted memory.
+
+ @return TRUE Succeeded to promote memory.
+ @return FALSE No free memory found.
+
+**/
+BOOLEAN
+PromoteGuardedFreePages (
+ OUT EFI_PHYSICAL_ADDRESS *StartAddress,
+ OUT EFI_PHYSICAL_ADDRESS *EndAddress
+ );
+
+extern BOOLEAN mOnGuarding;
+
+#endif
diff --git a/src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/Imem.h b/src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/Imem.h
new file mode 100644
index 00000000..357cbfc8
--- /dev/null
+++ b/src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/Imem.h
@@ -0,0 +1,182 @@
+/** @file
+ Data structure and functions to allocate and free memory space.
+
+Copyright (c) 2006 - 2017, Intel Corporation. All rights reserved.<BR>
+SPDX-License-Identifier: BSD-2-Clause-Patent
+
+**/
+
+#ifndef _IMEM_H_
+#define _IMEM_H_
+
+//
+// +---------------------------------------------------+
+// | 0..(EfiMaxMemoryType - 1) - Normal memory type |
+// +---------------------------------------------------+
+// | EfiMaxMemoryType..0x6FFFFFFF - Invalid |
+// +---------------------------------------------------+
+// | 0x70000000..0x7FFFFFFF - OEM reserved |
+// +---------------------------------------------------+
+// | 0x80000000..0xFFFFFFFF - OS reserved |
+// +---------------------------------------------------+
+//
+#define MEMORY_TYPE_OS_RESERVED_MIN 0x80000000
+#define MEMORY_TYPE_OS_RESERVED_MAX 0xFFFFFFFF
+#define MEMORY_TYPE_OEM_RESERVED_MIN 0x70000000
+#define MEMORY_TYPE_OEM_RESERVED_MAX 0x7FFFFFFF
+
+//
+// MEMORY_MAP_ENTRY
+//
+
+#define MEMORY_MAP_SIGNATURE SIGNATURE_32('m','m','a','p')
+typedef struct {
+ UINTN Signature;
+ LIST_ENTRY Link;
+ BOOLEAN FromPages;
+
+ EFI_MEMORY_TYPE Type;
+ UINT64 Start;
+ UINT64 End;
+
+ UINT64 VirtualStart;
+ UINT64 Attribute;
+} MEMORY_MAP;
+
+//
+// Internal prototypes
+//
+
+
+/**
+ Internal function. Used by the pool functions to allocate pages
+ to back pool allocation requests.
+
+ @param PoolType The type of memory for the new pool pages
+ @param NumberOfPages No of pages to allocate
+ @param Alignment Bits to align.
+ @param NeedGuard Flag to indicate Guard page is needed or not
+
+ @return The allocated memory, or NULL
+
+**/
+VOID *
+CoreAllocatePoolPages (
+ IN EFI_MEMORY_TYPE PoolType,
+ IN UINTN NumberOfPages,
+ IN UINTN Alignment,
+ IN BOOLEAN NeedGuard
+ );
+
+
+
+/**
+ Internal function. Frees pool pages allocated via AllocatePoolPages ()
+
+ @param Memory The base address to free
+ @param NumberOfPages The number of pages to free
+
+**/
+VOID
+CoreFreePoolPages (
+ IN EFI_PHYSICAL_ADDRESS Memory,
+ IN UINTN NumberOfPages
+ );
+
+
+
+/**
+ Internal function to allocate pool of a particular type.
+ Caller must have the memory lock held
+
+ @param PoolType Type of pool to allocate
+ @param Size The amount of pool to allocate
+ @param NeedGuard Flag to indicate Guard page is needed or not
+
+ @return The allocate pool, or NULL
+
+**/
+VOID *
+CoreAllocatePoolI (
+ IN EFI_MEMORY_TYPE PoolType,
+ IN UINTN Size,
+ IN BOOLEAN NeedGuard
+ );
+
+
+
+/**
+ Internal function to free a pool entry.
+ Caller must have the memory lock held
+
+ @param Buffer The allocated pool entry to free
+ @param PoolType Pointer to pool type
+
+ @retval EFI_INVALID_PARAMETER Buffer not valid
+ @retval EFI_SUCCESS Buffer successfully freed.
+
+**/
+EFI_STATUS
+CoreFreePoolI (
+ IN VOID *Buffer,
+ OUT EFI_MEMORY_TYPE *PoolType OPTIONAL
+ );
+
+
+
+/**
+ Enter critical section by gaining lock on gMemoryLock.
+
+**/
+VOID
+CoreAcquireMemoryLock (
+ VOID
+ );
+
+
+/**
+ Exit critical section by releasing lock on gMemoryLock.
+
+**/
+VOID
+CoreReleaseMemoryLock (
+ VOID
+ );
+
+/**
+ Allocates pages from the memory map.
+
+ @param Type The type of allocation to perform
+ @param MemoryType The type of memory to turn the allocated pages
+ into
+ @param NumberOfPages The number of pages to allocate
+ @param Memory A pointer to receive the base allocated memory
+ address
+ @param NeedGuard Flag to indicate Guard page is needed or not
+
+ @return Status. On success, Memory is filled in with the base address allocated
+ @retval EFI_INVALID_PARAMETER Parameters violate checking rules defined in
+ spec.
+ @retval EFI_NOT_FOUND Could not allocate pages match the requirement.
+ @retval EFI_OUT_OF_RESOURCES No enough pages to allocate.
+ @retval EFI_SUCCESS Pages successfully allocated.
+
+**/
+EFI_STATUS
+EFIAPI
+CoreInternalAllocatePages (
+ IN EFI_ALLOCATE_TYPE Type,
+ IN EFI_MEMORY_TYPE MemoryType,
+ IN UINTN NumberOfPages,
+ IN OUT EFI_PHYSICAL_ADDRESS *Memory,
+ IN BOOLEAN NeedGuard
+ );
+
+//
+// Internal Global data
+//
+
+extern EFI_LOCK gMemoryLock;
+extern LIST_ENTRY gMemoryMap;
+extern LIST_ENTRY mGcdMemorySpaceMap;
+#endif
diff --git a/src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/MemData.c b/src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/MemData.c
new file mode 100644
index 00000000..aafdb5f5
--- /dev/null
+++ b/src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/MemData.c
@@ -0,0 +1,20 @@
+/** @file
+ Global data used in memory service
+
+Copyright (c) 2006 - 2008, Intel Corporation. All rights reserved.<BR>
+SPDX-License-Identifier: BSD-2-Clause-Patent
+
+**/
+
+#include "DxeMain.h"
+
+
+//
+// MemoryLock - synchronizes access to the memory map and pool lists
+//
+EFI_LOCK gMemoryLock = EFI_INITIALIZE_LOCK_VARIABLE (TPL_NOTIFY);
+
+//
+// MemoryMap - the current memory map
+//
+LIST_ENTRY gMemoryMap = INITIALIZE_LIST_HEAD_VARIABLE (gMemoryMap);
diff --git a/src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/MemoryProfileRecord.c b/src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/MemoryProfileRecord.c
new file mode 100644
index 00000000..ab36a559
--- /dev/null
+++ b/src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/MemoryProfileRecord.c
@@ -0,0 +1,1759 @@
+/** @file
+ Support routines for UEFI memory profile.
+
+ Copyright (c) 2014 - 2018, Intel Corporation. All rights reserved.<BR>
+ SPDX-License-Identifier: BSD-2-Clause-Patent
+
+**/
+
+#include "DxeMain.h"
+#include "Imem.h"
+
+#define IS_UEFI_MEMORY_PROFILE_ENABLED ((PcdGet8 (PcdMemoryProfilePropertyMask) & BIT0) != 0)
+
+#define GET_OCCUPIED_SIZE(ActualSize, Alignment) \
+ ((ActualSize) + (((Alignment) - ((ActualSize) & ((Alignment) - 1))) & ((Alignment) - 1)))
+
+typedef struct {
+ UINT32 Signature;
+ MEMORY_PROFILE_CONTEXT Context;
+ LIST_ENTRY *DriverInfoList;
+} MEMORY_PROFILE_CONTEXT_DATA;
+
+typedef struct {
+ UINT32 Signature;
+ MEMORY_PROFILE_DRIVER_INFO DriverInfo;
+ LIST_ENTRY *AllocInfoList;
+ CHAR8 *PdbString;
+ LIST_ENTRY Link;
+} MEMORY_PROFILE_DRIVER_INFO_DATA;
+
+typedef struct {
+ UINT32 Signature;
+ MEMORY_PROFILE_ALLOC_INFO AllocInfo;
+ CHAR8 *ActionString;
+ LIST_ENTRY Link;
+} MEMORY_PROFILE_ALLOC_INFO_DATA;
+
+
+GLOBAL_REMOVE_IF_UNREFERENCED LIST_ENTRY mImageQueue = INITIALIZE_LIST_HEAD_VARIABLE (mImageQueue);
+GLOBAL_REMOVE_IF_UNREFERENCED MEMORY_PROFILE_CONTEXT_DATA mMemoryProfileContext = {
+ MEMORY_PROFILE_CONTEXT_SIGNATURE,
+ {
+ {
+ MEMORY_PROFILE_CONTEXT_SIGNATURE,
+ sizeof (MEMORY_PROFILE_CONTEXT),
+ MEMORY_PROFILE_CONTEXT_REVISION
+ },
+ 0,
+ 0,
+ {0},
+ {0},
+ 0,
+ 0,
+ 0
+ },
+ &mImageQueue,
+};
+GLOBAL_REMOVE_IF_UNREFERENCED MEMORY_PROFILE_CONTEXT_DATA *mMemoryProfileContextPtr = NULL;
+
+GLOBAL_REMOVE_IF_UNREFERENCED EFI_LOCK mMemoryProfileLock = EFI_INITIALIZE_LOCK_VARIABLE (TPL_NOTIFY);
+GLOBAL_REMOVE_IF_UNREFERENCED BOOLEAN mMemoryProfileGettingStatus = FALSE;
+GLOBAL_REMOVE_IF_UNREFERENCED BOOLEAN mMemoryProfileRecordingEnable = MEMORY_PROFILE_RECORDING_DISABLE;
+GLOBAL_REMOVE_IF_UNREFERENCED EFI_DEVICE_PATH_PROTOCOL *mMemoryProfileDriverPath;
+GLOBAL_REMOVE_IF_UNREFERENCED UINTN mMemoryProfileDriverPathSize;
+
+/**
+ Get memory profile data.
+
+ @param[in] This The EDKII_MEMORY_PROFILE_PROTOCOL instance.
+ @param[in, out] ProfileSize On entry, points to the size in bytes of the ProfileBuffer.
+ On return, points to the size of the data returned in ProfileBuffer.
+ @param[out] ProfileBuffer Profile buffer.
+
+ @return EFI_SUCCESS Get the memory profile data successfully.
+ @return EFI_UNSUPPORTED Memory profile is unsupported.
+ @return EFI_BUFFER_TO_SMALL The ProfileSize is too small for the resulting data.
+ ProfileSize is updated with the size required.
+
+**/
+EFI_STATUS
+EFIAPI
+ProfileProtocolGetData (
+ IN EDKII_MEMORY_PROFILE_PROTOCOL *This,
+ IN OUT UINT64 *ProfileSize,
+ OUT VOID *ProfileBuffer
+ );
+
+/**
+ Register image to memory profile.
+
+ @param[in] This The EDKII_MEMORY_PROFILE_PROTOCOL instance.
+ @param[in] FilePath File path of the image.
+ @param[in] ImageBase Image base address.
+ @param[in] ImageSize Image size.
+ @param[in] FileType File type of the image.
+
+ @return EFI_SUCCESS Register successfully.
+ @return EFI_UNSUPPORTED Memory profile is unsupported,
+ or memory profile for the image is not required.
+ @return EFI_OUT_OF_RESOURCE No enough resource for this register.
+
+**/
+EFI_STATUS
+EFIAPI
+ProfileProtocolRegisterImage (
+ IN EDKII_MEMORY_PROFILE_PROTOCOL *This,
+ IN EFI_DEVICE_PATH_PROTOCOL *FilePath,
+ IN PHYSICAL_ADDRESS ImageBase,
+ IN UINT64 ImageSize,
+ IN EFI_FV_FILETYPE FileType
+ );
+
+/**
+ Unregister image from memory profile.
+
+ @param[in] This The EDKII_MEMORY_PROFILE_PROTOCOL instance.
+ @param[in] FilePath File path of the image.
+ @param[in] ImageBase Image base address.
+ @param[in] ImageSize Image size.
+
+ @return EFI_SUCCESS Unregister successfully.
+ @return EFI_UNSUPPORTED Memory profile is unsupported,
+ or memory profile for the image is not required.
+ @return EFI_NOT_FOUND The image is not found.
+
+**/
+EFI_STATUS
+EFIAPI
+ProfileProtocolUnregisterImage (
+ IN EDKII_MEMORY_PROFILE_PROTOCOL *This,
+ IN EFI_DEVICE_PATH_PROTOCOL *FilePath,
+ IN PHYSICAL_ADDRESS ImageBase,
+ IN UINT64 ImageSize
+ );
+
+/**
+ Get memory profile recording state.
+
+ @param[in] This The EDKII_MEMORY_PROFILE_PROTOCOL instance.
+ @param[out] RecordingState Recording state.
+
+ @return EFI_SUCCESS Memory profile recording state is returned.
+ @return EFI_UNSUPPORTED Memory profile is unsupported.
+ @return EFI_INVALID_PARAMETER RecordingState is NULL.
+
+**/
+EFI_STATUS
+EFIAPI
+ProfileProtocolGetRecordingState (
+ IN EDKII_MEMORY_PROFILE_PROTOCOL *This,
+ OUT BOOLEAN *RecordingState
+ );
+
+/**
+ Set memory profile recording state.
+
+ @param[in] This The EDKII_MEMORY_PROFILE_PROTOCOL instance.
+ @param[in] RecordingState Recording state.
+
+ @return EFI_SUCCESS Set memory profile recording state successfully.
+ @return EFI_UNSUPPORTED Memory profile is unsupported.
+
+**/
+EFI_STATUS
+EFIAPI
+ProfileProtocolSetRecordingState (
+ IN EDKII_MEMORY_PROFILE_PROTOCOL *This,
+ IN BOOLEAN RecordingState
+ );
+
+/**
+ Record memory profile of multilevel caller.
+
+ @param[in] This The EDKII_MEMORY_PROFILE_PROTOCOL instance.
+ @param[in] CallerAddress Address of caller.
+ @param[in] Action Memory profile action.
+ @param[in] MemoryType Memory type.
+ EfiMaxMemoryType means the MemoryType is unknown.
+ @param[in] Buffer Buffer address.
+ @param[in] Size Buffer size.
+ @param[in] ActionString String for memory profile action.
+ Only needed for user defined allocate action.
+
+ @return EFI_SUCCESS Memory profile is updated.
+ @return EFI_UNSUPPORTED Memory profile is unsupported,
+ or memory profile for the image is not required,
+ or memory profile for the memory type is not required.
+ @return EFI_ACCESS_DENIED It is during memory profile data getting.
+ @return EFI_ABORTED Memory profile recording is not enabled.
+ @return EFI_OUT_OF_RESOURCES No enough resource to update memory profile for allocate action.
+ @return EFI_NOT_FOUND No matched allocate info found for free action.
+
+**/
+EFI_STATUS
+EFIAPI
+ProfileProtocolRecord (
+ IN EDKII_MEMORY_PROFILE_PROTOCOL *This,
+ IN PHYSICAL_ADDRESS CallerAddress,
+ IN MEMORY_PROFILE_ACTION Action,
+ IN EFI_MEMORY_TYPE MemoryType,
+ IN VOID *Buffer,
+ IN UINTN Size,
+ IN CHAR8 *ActionString OPTIONAL
+ );
+
+GLOBAL_REMOVE_IF_UNREFERENCED EDKII_MEMORY_PROFILE_PROTOCOL mProfileProtocol = {
+ ProfileProtocolGetData,
+ ProfileProtocolRegisterImage,
+ ProfileProtocolUnregisterImage,
+ ProfileProtocolGetRecordingState,
+ ProfileProtocolSetRecordingState,
+ ProfileProtocolRecord,
+};
+
+/**
+ Acquire lock on mMemoryProfileLock.
+**/
+VOID
+CoreAcquireMemoryProfileLock (
+ VOID
+ )
+{
+ CoreAcquireLock (&mMemoryProfileLock);
+}
+
+/**
+ Release lock on mMemoryProfileLock.
+**/
+VOID
+CoreReleaseMemoryProfileLock (
+ VOID
+ )
+{
+ CoreReleaseLock (&mMemoryProfileLock);
+}
+
+/**
+ Return memory profile context.
+
+ @return Memory profile context.
+
+**/
+MEMORY_PROFILE_CONTEXT_DATA *
+GetMemoryProfileContext (
+ VOID
+ )
+{
+ return mMemoryProfileContextPtr;
+}
+
+/**
+ Retrieves and returns the Subsystem of a PE/COFF image that has been loaded into system memory.
+ If Pe32Data is NULL, then ASSERT().
+
+ @param Pe32Data The pointer to the PE/COFF image that is loaded in system memory.
+
+ @return The Subsystem of the PE/COFF image.
+
+**/
+UINT16
+InternalPeCoffGetSubsystem (
+ IN VOID *Pe32Data
+ )
+{
+ EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION Hdr;
+ EFI_IMAGE_DOS_HEADER *DosHdr;
+ UINT16 Magic;
+
+ ASSERT (Pe32Data != NULL);
+
+ DosHdr = (EFI_IMAGE_DOS_HEADER *) Pe32Data;
+ if (DosHdr->e_magic == EFI_IMAGE_DOS_SIGNATURE) {
+ //
+ // DOS image header is present, so read the PE header after the DOS image header.
+ //
+ Hdr.Pe32 = (EFI_IMAGE_NT_HEADERS32 *) ((UINTN) Pe32Data + (UINTN) ((DosHdr->e_lfanew) & 0x0ffff));
+ } else {
+ //
+ // DOS image header is not present, so PE header is at the image base.
+ //
+ Hdr.Pe32 = (EFI_IMAGE_NT_HEADERS32 *) Pe32Data;
+ }
+
+ if (Hdr.Te->Signature == EFI_TE_IMAGE_HEADER_SIGNATURE) {
+ return Hdr.Te->Subsystem;
+ } else if (Hdr.Pe32->Signature == EFI_IMAGE_NT_SIGNATURE) {
+ Magic = Hdr.Pe32->OptionalHeader.Magic;
+ if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
+ return Hdr.Pe32->OptionalHeader.Subsystem;
+ } else if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC) {
+ return Hdr.Pe32Plus->OptionalHeader.Subsystem;
+ }
+ }
+
+ return 0x0000;
+}
+
+/**
+ Retrieves and returns a pointer to the entry point to a PE/COFF image that has been loaded
+ into system memory with the PE/COFF Loader Library functions.
+
+ Retrieves the entry point to the PE/COFF image specified by Pe32Data and returns this entry
+ point in EntryPoint. If the entry point could not be retrieved from the PE/COFF image, then
+ return RETURN_INVALID_PARAMETER. Otherwise return RETURN_SUCCESS.
+ If Pe32Data is NULL, then ASSERT().
+ If EntryPoint is NULL, then ASSERT().
+
+ @param Pe32Data The pointer to the PE/COFF image that is loaded in system memory.
+ @param EntryPoint The pointer to entry point to the PE/COFF image to return.
+
+ @retval RETURN_SUCCESS EntryPoint was returned.
+ @retval RETURN_INVALID_PARAMETER The entry point could not be found in the PE/COFF image.
+
+**/
+RETURN_STATUS
+InternalPeCoffGetEntryPoint (
+ IN VOID *Pe32Data,
+ OUT VOID **EntryPoint
+ )
+{
+ EFI_IMAGE_DOS_HEADER *DosHdr;
+ EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION Hdr;
+
+ ASSERT (Pe32Data != NULL);
+ ASSERT (EntryPoint != NULL);
+
+ DosHdr = (EFI_IMAGE_DOS_HEADER *) Pe32Data;
+ if (DosHdr->e_magic == EFI_IMAGE_DOS_SIGNATURE) {
+ //
+ // DOS image header is present, so read the PE header after the DOS image header.
+ //
+ Hdr.Pe32 = (EFI_IMAGE_NT_HEADERS32 *) ((UINTN) Pe32Data + (UINTN) ((DosHdr->e_lfanew) & 0x0ffff));
+ } else {
+ //
+ // DOS image header is not present, so PE header is at the image base.
+ //
+ Hdr.Pe32 = (EFI_IMAGE_NT_HEADERS32 *) Pe32Data;
+ }
+
+ //
+ // Calculate the entry point relative to the start of the image.
+ // AddressOfEntryPoint is common for PE32 & PE32+
+ //
+ if (Hdr.Te->Signature == EFI_TE_IMAGE_HEADER_SIGNATURE) {
+ *EntryPoint = (VOID *) ((UINTN) Pe32Data + (UINTN) (Hdr.Te->AddressOfEntryPoint & 0x0ffffffff) + sizeof (EFI_TE_IMAGE_HEADER) - Hdr.Te->StrippedSize);
+ return RETURN_SUCCESS;
+ } else if (Hdr.Pe32->Signature == EFI_IMAGE_NT_SIGNATURE) {
+ *EntryPoint = (VOID *) ((UINTN) Pe32Data + (UINTN) (Hdr.Pe32->OptionalHeader.AddressOfEntryPoint & 0x0ffffffff));
+ return RETURN_SUCCESS;
+ }
+
+ return RETURN_UNSUPPORTED;
+}
+
+/**
+ Build driver info.
+
+ @param ContextData Memory profile context.
+ @param FileName File name of the image.
+ @param ImageBase Image base address.
+ @param ImageSize Image size.
+ @param EntryPoint Entry point of the image.
+ @param ImageSubsystem Image subsystem of the image.
+ @param FileType File type of the image.
+
+ @return Pointer to memory profile driver info.
+
+**/
+MEMORY_PROFILE_DRIVER_INFO_DATA *
+BuildDriverInfo (
+ IN MEMORY_PROFILE_CONTEXT_DATA *ContextData,
+ IN EFI_GUID *FileName,
+ IN PHYSICAL_ADDRESS ImageBase,
+ IN UINT64 ImageSize,
+ IN PHYSICAL_ADDRESS EntryPoint,
+ IN UINT16 ImageSubsystem,
+ IN EFI_FV_FILETYPE FileType
+ )
+{
+ EFI_STATUS Status;
+ MEMORY_PROFILE_DRIVER_INFO *DriverInfo;
+ MEMORY_PROFILE_DRIVER_INFO_DATA *DriverInfoData;
+ VOID *EntryPointInImage;
+ CHAR8 *PdbString;
+ UINTN PdbSize;
+ UINTN PdbOccupiedSize;
+
+ PdbSize = 0;
+ PdbOccupiedSize = 0;
+ PdbString = NULL;
+ if (ImageBase != 0) {
+ PdbString = PeCoffLoaderGetPdbPointer ((VOID*) (UINTN) ImageBase);
+ if (PdbString != NULL) {
+ PdbSize = AsciiStrSize (PdbString);
+ PdbOccupiedSize = GET_OCCUPIED_SIZE (PdbSize, sizeof (UINT64));
+ }
+ }
+
+ //
+ // Use CoreInternalAllocatePool() that will not update profile for this AllocatePool action.
+ //
+ Status = CoreInternalAllocatePool (
+ EfiBootServicesData,
+ sizeof (*DriverInfoData) + sizeof (LIST_ENTRY) + PdbSize,
+ (VOID **) &DriverInfoData
+ );
+ if (EFI_ERROR (Status)) {
+ return NULL;
+ }
+ ASSERT (DriverInfoData != NULL);
+
+ ZeroMem (DriverInfoData, sizeof (*DriverInfoData));
+
+ DriverInfo = &DriverInfoData->DriverInfo;
+ DriverInfoData->Signature = MEMORY_PROFILE_DRIVER_INFO_SIGNATURE;
+ DriverInfo->Header.Signature = MEMORY_PROFILE_DRIVER_INFO_SIGNATURE;
+ DriverInfo->Header.Length = (UINT16) (sizeof (MEMORY_PROFILE_DRIVER_INFO) + PdbOccupiedSize);
+ DriverInfo->Header.Revision = MEMORY_PROFILE_DRIVER_INFO_REVISION;
+ if (FileName != NULL) {
+ CopyMem (&DriverInfo->FileName, FileName, sizeof (EFI_GUID));
+ }
+ DriverInfo->ImageBase = ImageBase;
+ DriverInfo->ImageSize = ImageSize;
+ DriverInfo->EntryPoint = EntryPoint;
+ DriverInfo->ImageSubsystem = ImageSubsystem;
+ if ((EntryPoint != 0) && ((EntryPoint < ImageBase) || (EntryPoint >= (ImageBase + ImageSize)))) {
+ //
+ // If the EntryPoint is not in the range of image buffer, it should come from emulation environment.
+ // So patch ImageBuffer here to align the EntryPoint.
+ //
+ Status = InternalPeCoffGetEntryPoint ((VOID *) (UINTN) ImageBase, &EntryPointInImage);
+ ASSERT_EFI_ERROR (Status);
+ DriverInfo->ImageBase = ImageBase + EntryPoint - (PHYSICAL_ADDRESS) (UINTN) EntryPointInImage;
+ }
+ DriverInfo->FileType = FileType;
+ DriverInfoData->AllocInfoList = (LIST_ENTRY *) (DriverInfoData + 1);
+ InitializeListHead (DriverInfoData->AllocInfoList);
+ DriverInfo->CurrentUsage = 0;
+ DriverInfo->PeakUsage = 0;
+ DriverInfo->AllocRecordCount = 0;
+ if (PdbSize != 0) {
+ DriverInfo->PdbStringOffset = (UINT16) sizeof (MEMORY_PROFILE_DRIVER_INFO);
+ DriverInfoData->PdbString = (CHAR8 *) (DriverInfoData->AllocInfoList + 1);
+ CopyMem (DriverInfoData->PdbString, PdbString, PdbSize);
+ } else {
+ DriverInfo->PdbStringOffset = 0;
+ DriverInfoData->PdbString = NULL;
+ }
+
+ InsertTailList (ContextData->DriverInfoList, &DriverInfoData->Link);
+ ContextData->Context.ImageCount ++;
+ ContextData->Context.TotalImageSize += DriverInfo->ImageSize;
+
+ return DriverInfoData;
+}
+
+/**
+ Return if record for this driver is needed..
+
+ @param DriverFilePath Driver file path.
+
+ @retval TRUE Record for this driver is needed.
+ @retval FALSE Record for this driver is not needed.
+
+**/
+BOOLEAN
+NeedRecordThisDriver (
+ IN EFI_DEVICE_PATH_PROTOCOL *DriverFilePath
+ )
+{
+ EFI_DEVICE_PATH_PROTOCOL *TmpDevicePath;
+ EFI_DEVICE_PATH_PROTOCOL *DevicePathInstance;
+ UINTN DevicePathSize;
+ UINTN FilePathSize;
+
+ if (!IsDevicePathValid (mMemoryProfileDriverPath, mMemoryProfileDriverPathSize)) {
+ //
+ // Invalid Device Path means record all.
+ //
+ return TRUE;
+ }
+
+ //
+ // Record FilePath without END node.
+ //
+ FilePathSize = GetDevicePathSize (DriverFilePath) - sizeof(EFI_DEVICE_PATH_PROTOCOL);
+
+ DevicePathInstance = mMemoryProfileDriverPath;
+ do {
+ //
+ // Find END node (it might be END_ENTIRE or END_INSTANCE).
+ //
+ TmpDevicePath = DevicePathInstance;
+ while (!IsDevicePathEndType (TmpDevicePath)) {
+ TmpDevicePath = NextDevicePathNode (TmpDevicePath);
+ }
+
+ //
+ // Do not compare END node.
+ //
+ DevicePathSize = (UINTN)TmpDevicePath - (UINTN)DevicePathInstance;
+ if ((FilePathSize == DevicePathSize) &&
+ (CompareMem (DriverFilePath, DevicePathInstance, DevicePathSize) == 0)) {
+ return TRUE;
+ }
+
+ //
+ // Get next instance.
+ //
+ DevicePathInstance = (EFI_DEVICE_PATH_PROTOCOL *)((UINTN)DevicePathInstance + DevicePathSize + DevicePathNodeLength(TmpDevicePath));
+ } while (DevicePathSubType (TmpDevicePath) != END_ENTIRE_DEVICE_PATH_SUBTYPE);
+
+ return FALSE;
+}
+
+/**
+ Register DXE Core to memory profile.
+
+ @param HobStart The start address of the HOB.
+ @param ContextData Memory profile context.
+
+ @retval TRUE Register success.
+ @retval FALSE Register fail.
+
+**/
+BOOLEAN
+RegisterDxeCore (
+ IN VOID *HobStart,
+ IN MEMORY_PROFILE_CONTEXT_DATA *ContextData
+ )
+{
+ EFI_PEI_HOB_POINTERS DxeCoreHob;
+ MEMORY_PROFILE_DRIVER_INFO_DATA *DriverInfoData;
+ PHYSICAL_ADDRESS ImageBase;
+ UINT8 TempBuffer[sizeof(MEDIA_FW_VOL_FILEPATH_DEVICE_PATH) + sizeof(EFI_DEVICE_PATH_PROTOCOL)];
+ MEDIA_FW_VOL_FILEPATH_DEVICE_PATH *FilePath;
+
+ ASSERT (ContextData != NULL);
+
+ //
+ // Searching for image hob
+ //
+ DxeCoreHob.Raw = HobStart;
+ while ((DxeCoreHob.Raw = GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, DxeCoreHob.Raw)) != NULL) {
+ if (CompareGuid (&DxeCoreHob.MemoryAllocationModule->MemoryAllocationHeader.Name, &gEfiHobMemoryAllocModuleGuid)) {
+ //
+ // Find Dxe Core HOB
+ //
+ break;
+ }
+ DxeCoreHob.Raw = GET_NEXT_HOB (DxeCoreHob);
+ }
+ ASSERT (DxeCoreHob.Raw != NULL);
+
+ FilePath = (MEDIA_FW_VOL_FILEPATH_DEVICE_PATH *) TempBuffer;
+ EfiInitializeFwVolDevicepathNode (FilePath, &DxeCoreHob.MemoryAllocationModule->ModuleName);
+ SetDevicePathEndNode (FilePath + 1);
+
+ if (!NeedRecordThisDriver ((EFI_DEVICE_PATH_PROTOCOL *) FilePath)) {
+ return FALSE;
+ }
+
+ ImageBase = DxeCoreHob.MemoryAllocationModule->MemoryAllocationHeader.MemoryBaseAddress;
+ DriverInfoData = BuildDriverInfo (
+ ContextData,
+ &DxeCoreHob.MemoryAllocationModule->ModuleName,
+ ImageBase,
+ DxeCoreHob.MemoryAllocationModule->MemoryAllocationHeader.MemoryLength,
+ DxeCoreHob.MemoryAllocationModule->EntryPoint,
+ InternalPeCoffGetSubsystem ((VOID *) (UINTN) ImageBase),
+ EFI_FV_FILETYPE_DXE_CORE
+ );
+ if (DriverInfoData == NULL) {
+ return FALSE;
+ }
+
+ return TRUE;
+}
+
+/**
+ Initialize memory profile.
+
+ @param HobStart The start address of the HOB.
+
+**/
+VOID
+MemoryProfileInit (
+ IN VOID *HobStart
+ )
+{
+ MEMORY_PROFILE_CONTEXT_DATA *ContextData;
+
+ if (!IS_UEFI_MEMORY_PROFILE_ENABLED) {
+ return;
+ }
+
+ ContextData = GetMemoryProfileContext ();
+ if (ContextData != NULL) {
+ return;
+ }
+
+ mMemoryProfileGettingStatus = FALSE;
+ if ((PcdGet8 (PcdMemoryProfilePropertyMask) & BIT7) != 0) {
+ mMemoryProfileRecordingEnable = MEMORY_PROFILE_RECORDING_DISABLE;
+ } else {
+ mMemoryProfileRecordingEnable = MEMORY_PROFILE_RECORDING_ENABLE;
+ }
+ mMemoryProfileDriverPathSize = PcdGetSize (PcdMemoryProfileDriverPath);
+ mMemoryProfileDriverPath = AllocateCopyPool (mMemoryProfileDriverPathSize, PcdGetPtr (PcdMemoryProfileDriverPath));
+ mMemoryProfileContextPtr = &mMemoryProfileContext;
+
+ RegisterDxeCore (HobStart, &mMemoryProfileContext);
+
+ DEBUG ((EFI_D_INFO, "MemoryProfileInit MemoryProfileContext - 0x%x\n", &mMemoryProfileContext));
+}
+
+/**
+ Install memory profile protocol.
+
+**/
+VOID
+MemoryProfileInstallProtocol (
+ VOID
+ )
+{
+ EFI_HANDLE Handle;
+ EFI_STATUS Status;
+
+ if (!IS_UEFI_MEMORY_PROFILE_ENABLED) {
+ return;
+ }
+
+ Handle = NULL;
+ Status = CoreInstallMultipleProtocolInterfaces (
+ &Handle,
+ &gEdkiiMemoryProfileGuid,
+ &mProfileProtocol,
+ NULL
+ );
+ ASSERT_EFI_ERROR (Status);
+}
+
+/**
+ Get the GUID file name from the file path.
+
+ @param FilePath File path.
+
+ @return The GUID file name from the file path.
+
+**/
+EFI_GUID *
+GetFileNameFromFilePath (
+ IN EFI_DEVICE_PATH_PROTOCOL *FilePath
+ )
+{
+ MEDIA_FW_VOL_FILEPATH_DEVICE_PATH *ThisFilePath;
+ EFI_GUID *FileName;
+
+ FileName = NULL;
+ if (FilePath != NULL) {
+ ThisFilePath = (MEDIA_FW_VOL_FILEPATH_DEVICE_PATH *) FilePath;
+ while (!IsDevicePathEnd (ThisFilePath)) {
+ FileName = EfiGetNameGuidFromFwVolDevicePathNode (ThisFilePath);
+ if (FileName != NULL) {
+ break;
+ }
+ ThisFilePath = (MEDIA_FW_VOL_FILEPATH_DEVICE_PATH *) NextDevicePathNode (ThisFilePath);
+ }
+ }
+
+ return FileName;
+}
+
+/**
+ Register image to memory profile.
+
+ @param DriverEntry Image info.
+ @param FileType Image file type.
+
+ @return EFI_SUCCESS Register successfully.
+ @return EFI_UNSUPPORTED Memory profile is unsupported,
+ or memory profile for the image is not required.
+ @return EFI_OUT_OF_RESOURCES No enough resource for this register.
+
+**/
+EFI_STATUS
+RegisterMemoryProfileImage (
+ IN LOADED_IMAGE_PRIVATE_DATA *DriverEntry,
+ IN EFI_FV_FILETYPE FileType
+ )
+{
+ MEMORY_PROFILE_CONTEXT_DATA *ContextData;
+ MEMORY_PROFILE_DRIVER_INFO_DATA *DriverInfoData;
+
+ if (!IS_UEFI_MEMORY_PROFILE_ENABLED) {
+ return EFI_UNSUPPORTED;
+ }
+
+ if (!NeedRecordThisDriver (DriverEntry->Info.FilePath)) {
+ return EFI_UNSUPPORTED;
+ }
+
+ ContextData = GetMemoryProfileContext ();
+ if (ContextData == NULL) {
+ return EFI_UNSUPPORTED;
+ }
+
+ DriverInfoData = BuildDriverInfo (
+ ContextData,
+ GetFileNameFromFilePath (DriverEntry->Info.FilePath),
+ DriverEntry->ImageContext.ImageAddress,
+ DriverEntry->ImageContext.ImageSize,
+ DriverEntry->ImageContext.EntryPoint,
+ DriverEntry->ImageContext.ImageType,
+ FileType
+ );
+ if (DriverInfoData == NULL) {
+ return EFI_OUT_OF_RESOURCES;
+ }
+
+ return EFI_SUCCESS;
+}
+
+/**
+ Search image from memory profile.
+
+ @param ContextData Memory profile context.
+ @param FileName Image file name.
+ @param Address Image Address.
+
+ @return Pointer to memory profile driver info.
+
+**/
+MEMORY_PROFILE_DRIVER_INFO_DATA *
+GetMemoryProfileDriverInfoByFileNameAndAddress (
+ IN MEMORY_PROFILE_CONTEXT_DATA *ContextData,
+ IN EFI_GUID *FileName,
+ IN PHYSICAL_ADDRESS Address
+ )
+{
+ MEMORY_PROFILE_DRIVER_INFO *DriverInfo;
+ MEMORY_PROFILE_DRIVER_INFO_DATA *DriverInfoData;
+ LIST_ENTRY *DriverLink;
+ LIST_ENTRY *DriverInfoList;
+
+ DriverInfoList = ContextData->DriverInfoList;
+
+ for (DriverLink = DriverInfoList->ForwardLink;
+ DriverLink != DriverInfoList;
+ DriverLink = DriverLink->ForwardLink) {
+ DriverInfoData = CR (
+ DriverLink,
+ MEMORY_PROFILE_DRIVER_INFO_DATA,
+ Link,
+ MEMORY_PROFILE_DRIVER_INFO_SIGNATURE
+ );
+ DriverInfo = &DriverInfoData->DriverInfo;
+ if ((CompareGuid (&DriverInfo->FileName, FileName)) &&
+ (Address >= DriverInfo->ImageBase) &&
+ (Address < (DriverInfo->ImageBase + DriverInfo->ImageSize))) {
+ return DriverInfoData;
+ }
+ }
+
+ return NULL;
+}
+
+/**
+ Search image from memory profile.
+ It will return image, if (Address >= ImageBuffer) AND (Address < ImageBuffer + ImageSize).
+
+ @param ContextData Memory profile context.
+ @param Address Image or Function address.
+
+ @return Pointer to memory profile driver info.
+
+**/
+MEMORY_PROFILE_DRIVER_INFO_DATA *
+GetMemoryProfileDriverInfoFromAddress (
+ IN MEMORY_PROFILE_CONTEXT_DATA *ContextData,
+ IN PHYSICAL_ADDRESS Address
+ )
+{
+ MEMORY_PROFILE_DRIVER_INFO *DriverInfo;
+ MEMORY_PROFILE_DRIVER_INFO_DATA *DriverInfoData;
+ LIST_ENTRY *DriverLink;
+ LIST_ENTRY *DriverInfoList;
+
+ DriverInfoList = ContextData->DriverInfoList;
+
+ for (DriverLink = DriverInfoList->ForwardLink;
+ DriverLink != DriverInfoList;
+ DriverLink = DriverLink->ForwardLink) {
+ DriverInfoData = CR (
+ DriverLink,
+ MEMORY_PROFILE_DRIVER_INFO_DATA,
+ Link,
+ MEMORY_PROFILE_DRIVER_INFO_SIGNATURE
+ );
+ DriverInfo = &DriverInfoData->DriverInfo;
+ if ((Address >= DriverInfo->ImageBase) &&
+ (Address < (DriverInfo->ImageBase + DriverInfo->ImageSize))) {
+ return DriverInfoData;
+ }
+ }
+
+ return NULL;
+}
+
+/**
+ Unregister image from memory profile.
+
+ @param DriverEntry Image info.
+
+ @return EFI_SUCCESS Unregister successfully.
+ @return EFI_UNSUPPORTED Memory profile is unsupported,
+ or memory profile for the image is not required.
+ @return EFI_NOT_FOUND The image is not found.
+
+**/
+EFI_STATUS
+UnregisterMemoryProfileImage (
+ IN LOADED_IMAGE_PRIVATE_DATA *DriverEntry
+ )
+{
+ EFI_STATUS Status;
+ MEMORY_PROFILE_CONTEXT_DATA *ContextData;
+ MEMORY_PROFILE_DRIVER_INFO_DATA *DriverInfoData;
+ EFI_GUID *FileName;
+ PHYSICAL_ADDRESS ImageAddress;
+ VOID *EntryPointInImage;
+
+ if (!IS_UEFI_MEMORY_PROFILE_ENABLED) {
+ return EFI_UNSUPPORTED;
+ }
+
+ if (!NeedRecordThisDriver (DriverEntry->Info.FilePath)) {
+ return EFI_UNSUPPORTED;
+ }
+
+ ContextData = GetMemoryProfileContext ();
+ if (ContextData == NULL) {
+ return EFI_UNSUPPORTED;
+ }
+
+ DriverInfoData = NULL;
+ FileName = GetFileNameFromFilePath (DriverEntry->Info.FilePath);
+ ImageAddress = DriverEntry->ImageContext.ImageAddress;
+ if ((DriverEntry->ImageContext.EntryPoint < ImageAddress) || (DriverEntry->ImageContext.EntryPoint >= (ImageAddress + DriverEntry->ImageContext.ImageSize))) {
+ //
+ // If the EntryPoint is not in the range of image buffer, it should come from emulation environment.
+ // So patch ImageAddress here to align the EntryPoint.
+ //
+ Status = InternalPeCoffGetEntryPoint ((VOID *) (UINTN) ImageAddress, &EntryPointInImage);
+ ASSERT_EFI_ERROR (Status);
+ ImageAddress = ImageAddress + (UINTN) DriverEntry->ImageContext.EntryPoint - (UINTN) EntryPointInImage;
+ }
+ if (FileName != NULL) {
+ DriverInfoData = GetMemoryProfileDriverInfoByFileNameAndAddress (ContextData, FileName, ImageAddress);
+ }
+ if (DriverInfoData == NULL) {
+ DriverInfoData = GetMemoryProfileDriverInfoFromAddress (ContextData, ImageAddress);
+ }
+ if (DriverInfoData == NULL) {
+ return EFI_NOT_FOUND;
+ }
+
+ ContextData->Context.TotalImageSize -= DriverInfoData->DriverInfo.ImageSize;
+
+ // Keep the ImageBase for RVA calculation in Application.
+ //DriverInfoData->DriverInfo.ImageBase = 0;
+ DriverInfoData->DriverInfo.ImageSize = 0;
+
+ if (DriverInfoData->DriverInfo.PeakUsage == 0) {
+ ContextData->Context.ImageCount --;
+ RemoveEntryList (&DriverInfoData->Link);
+ //
+ // Use CoreInternalFreePool() that will not update profile for this FreePool action.
+ //
+ CoreInternalFreePool (DriverInfoData, NULL);
+ }
+
+ return EFI_SUCCESS;
+}
+
+/**
+ Return if this memory type needs to be recorded into memory profile.
+ If BIOS memory type (0 ~ EfiMaxMemoryType - 1), it checks bit (1 << MemoryType).
+ If OS memory type (0x80000000 ~ 0xFFFFFFFF), it checks bit63 - 0x8000000000000000.
+ If OEM memory type (0x70000000 ~ 0x7FFFFFFF), it checks bit62 - 0x4000000000000000.
+
+ @param MemoryType Memory type.
+
+ @retval TRUE This memory type need to be recorded.
+ @retval FALSE This memory type need not to be recorded.
+
+**/
+BOOLEAN
+CoreNeedRecordProfile (
+ IN EFI_MEMORY_TYPE MemoryType
+ )
+{
+ UINT64 TestBit;
+
+ if ((UINT32) MemoryType >= MEMORY_TYPE_OS_RESERVED_MIN) {
+ TestBit = BIT63;
+ } else if ((UINT32) MemoryType >= MEMORY_TYPE_OEM_RESERVED_MIN) {
+ TestBit = BIT62;
+ } else {
+ TestBit = LShiftU64 (1, MemoryType);
+ }
+
+ if ((PcdGet64 (PcdMemoryProfileMemoryType) & TestBit) != 0) {
+ return TRUE;
+ } else {
+ return FALSE;
+ }
+}
+
+/**
+ Convert EFI memory type to profile memory index. The rule is:
+ If BIOS memory type (0 ~ EfiMaxMemoryType - 1), ProfileMemoryIndex = MemoryType.
+ If OS memory type (0x80000000 ~ 0xFFFFFFFF), ProfileMemoryIndex = EfiMaxMemoryType.
+ If OEM memory type (0x70000000 ~ 0x7FFFFFFF), ProfileMemoryIndex = EfiMaxMemoryType + 1.
+
+ @param MemoryType Memory type.
+
+ @return Profile memory index.
+
+**/
+UINTN
+GetProfileMemoryIndex (
+ IN EFI_MEMORY_TYPE MemoryType
+ )
+{
+ if ((UINT32) MemoryType >= MEMORY_TYPE_OS_RESERVED_MIN) {
+ return EfiMaxMemoryType;
+ } else if ((UINT32) MemoryType >= MEMORY_TYPE_OEM_RESERVED_MIN) {
+ return EfiMaxMemoryType + 1;
+ } else {
+ return MemoryType;
+ }
+}
+
+/**
+ Update memory profile Allocate information.
+
+ @param CallerAddress Address of caller who call Allocate.
+ @param Action This Allocate action.
+ @param MemoryType Memory type.
+ @param Size Buffer size.
+ @param Buffer Buffer address.
+ @param ActionString String for memory profile action.
+
+ @return EFI_SUCCESS Memory profile is updated.
+ @return EFI_UNSUPPORTED Memory profile is unsupported,
+ or memory profile for the image is not required.
+ @return EFI_OUT_OF_RESOURCES No enough resource to update memory profile for allocate action.
+
+**/
+EFI_STATUS
+CoreUpdateProfileAllocate (
+ IN PHYSICAL_ADDRESS CallerAddress,
+ IN MEMORY_PROFILE_ACTION Action,
+ IN EFI_MEMORY_TYPE MemoryType,
+ IN UINTN Size,
+ IN VOID *Buffer,
+ IN CHAR8 *ActionString OPTIONAL
+ )
+{
+ EFI_STATUS Status;
+ MEMORY_PROFILE_CONTEXT *Context;
+ MEMORY_PROFILE_DRIVER_INFO *DriverInfo;
+ MEMORY_PROFILE_ALLOC_INFO *AllocInfo;
+ MEMORY_PROFILE_CONTEXT_DATA *ContextData;
+ MEMORY_PROFILE_DRIVER_INFO_DATA *DriverInfoData;
+ MEMORY_PROFILE_ALLOC_INFO_DATA *AllocInfoData;
+ UINTN ProfileMemoryIndex;
+ MEMORY_PROFILE_ACTION BasicAction;
+ UINTN ActionStringSize;
+ UINTN ActionStringOccupiedSize;
+
+ BasicAction = Action & MEMORY_PROFILE_ACTION_BASIC_MASK;
+
+ ContextData = GetMemoryProfileContext ();
+ if (ContextData == NULL) {
+ return EFI_UNSUPPORTED;
+ }
+
+ DriverInfoData = GetMemoryProfileDriverInfoFromAddress (ContextData, CallerAddress);
+ if (DriverInfoData == NULL) {
+ return EFI_UNSUPPORTED;
+ }
+
+ ActionStringSize = 0;
+ ActionStringOccupiedSize = 0;
+ if (ActionString != NULL) {
+ ActionStringSize = AsciiStrSize (ActionString);
+ ActionStringOccupiedSize = GET_OCCUPIED_SIZE (ActionStringSize, sizeof (UINT64));
+ }
+
+ //
+ // Use CoreInternalAllocatePool() that will not update profile for this AllocatePool action.
+ //
+ AllocInfoData = NULL;
+ Status = CoreInternalAllocatePool (
+ EfiBootServicesData,
+ sizeof (*AllocInfoData) + ActionStringSize,
+ (VOID **) &AllocInfoData
+ );
+ if (EFI_ERROR (Status)) {
+ return EFI_OUT_OF_RESOURCES;
+ }
+ ASSERT (AllocInfoData != NULL);
+
+ //
+ // Only update SequenceCount if and only if it is basic action.
+ //
+ if (Action == BasicAction) {
+ ContextData->Context.SequenceCount ++;
+ }
+
+ AllocInfo = &AllocInfoData->AllocInfo;
+ AllocInfoData->Signature = MEMORY_PROFILE_ALLOC_INFO_SIGNATURE;
+ AllocInfo->Header.Signature = MEMORY_PROFILE_ALLOC_INFO_SIGNATURE;
+ AllocInfo->Header.Length = (UINT16) (sizeof (MEMORY_PROFILE_ALLOC_INFO) + ActionStringOccupiedSize);
+ AllocInfo->Header.Revision = MEMORY_PROFILE_ALLOC_INFO_REVISION;
+ AllocInfo->CallerAddress = CallerAddress;
+ AllocInfo->SequenceId = ContextData->Context.SequenceCount;
+ AllocInfo->Action = Action;
+ AllocInfo->MemoryType = MemoryType;
+ AllocInfo->Buffer = (PHYSICAL_ADDRESS) (UINTN) Buffer;
+ AllocInfo->Size = Size;
+ if (ActionString != NULL) {
+ AllocInfo->ActionStringOffset = (UINT16) sizeof (MEMORY_PROFILE_ALLOC_INFO);
+ AllocInfoData->ActionString = (CHAR8 *) (AllocInfoData + 1);
+ CopyMem (AllocInfoData->ActionString, ActionString, ActionStringSize);
+ } else {
+ AllocInfo->ActionStringOffset = 0;
+ AllocInfoData->ActionString = NULL;
+ }
+
+ InsertTailList (DriverInfoData->AllocInfoList, &AllocInfoData->Link);
+
+ Context = &ContextData->Context;
+ DriverInfo = &DriverInfoData->DriverInfo;
+ DriverInfo->AllocRecordCount ++;
+
+ //
+ // Update summary if and only if it is basic action.
+ //
+ if (Action == BasicAction) {
+ ProfileMemoryIndex = GetProfileMemoryIndex (MemoryType);
+
+ DriverInfo->CurrentUsage += Size;
+ if (DriverInfo->PeakUsage < DriverInfo->CurrentUsage) {
+ DriverInfo->PeakUsage = DriverInfo->CurrentUsage;
+ }
+ DriverInfo->CurrentUsageByType[ProfileMemoryIndex] += Size;
+ if (DriverInfo->PeakUsageByType[ProfileMemoryIndex] < DriverInfo->CurrentUsageByType[ProfileMemoryIndex]) {
+ DriverInfo->PeakUsageByType[ProfileMemoryIndex] = DriverInfo->CurrentUsageByType[ProfileMemoryIndex];
+ }
+
+ Context->CurrentTotalUsage += Size;
+ if (Context->PeakTotalUsage < Context->CurrentTotalUsage) {
+ Context->PeakTotalUsage = Context->CurrentTotalUsage;
+ }
+ Context->CurrentTotalUsageByType[ProfileMemoryIndex] += Size;
+ if (Context->PeakTotalUsageByType[ProfileMemoryIndex] < Context->CurrentTotalUsageByType[ProfileMemoryIndex]) {
+ Context->PeakTotalUsageByType[ProfileMemoryIndex] = Context->CurrentTotalUsageByType[ProfileMemoryIndex];
+ }
+ }
+
+ return EFI_SUCCESS;
+}
+
+/**
+ Get memory profile alloc info from memory profile.
+
+ @param DriverInfoData Driver info.
+ @param BasicAction This Free basic action.
+ @param Size Buffer size.
+ @param Buffer Buffer address.
+
+ @return Pointer to memory profile alloc info.
+
+**/
+MEMORY_PROFILE_ALLOC_INFO_DATA *
+GetMemoryProfileAllocInfoFromAddress (
+ IN MEMORY_PROFILE_DRIVER_INFO_DATA *DriverInfoData,
+ IN MEMORY_PROFILE_ACTION BasicAction,
+ IN UINTN Size,
+ IN VOID *Buffer
+ )
+{
+ LIST_ENTRY *AllocInfoList;
+ LIST_ENTRY *AllocLink;
+ MEMORY_PROFILE_ALLOC_INFO *AllocInfo;
+ MEMORY_PROFILE_ALLOC_INFO_DATA *AllocInfoData;
+
+ AllocInfoList = DriverInfoData->AllocInfoList;
+
+ for (AllocLink = AllocInfoList->ForwardLink;
+ AllocLink != AllocInfoList;
+ AllocLink = AllocLink->ForwardLink) {
+ AllocInfoData = CR (
+ AllocLink,
+ MEMORY_PROFILE_ALLOC_INFO_DATA,
+ Link,
+ MEMORY_PROFILE_ALLOC_INFO_SIGNATURE
+ );
+ AllocInfo = &AllocInfoData->AllocInfo;
+ if ((AllocInfo->Action & MEMORY_PROFILE_ACTION_BASIC_MASK) != BasicAction) {
+ continue;
+ }
+ switch (BasicAction) {
+ case MemoryProfileActionAllocatePages:
+ if ((AllocInfo->Buffer <= (PHYSICAL_ADDRESS) (UINTN) Buffer) &&
+ ((AllocInfo->Buffer + AllocInfo->Size) >= ((PHYSICAL_ADDRESS) (UINTN) Buffer + Size))) {
+ return AllocInfoData;
+ }
+ break;
+ case MemoryProfileActionAllocatePool:
+ if (AllocInfo->Buffer == (PHYSICAL_ADDRESS) (UINTN) Buffer) {
+ return AllocInfoData;
+ }
+ break;
+ default:
+ ASSERT (FALSE);
+ break;
+ }
+ }
+
+ return NULL;
+}
+
+/**
+ Update memory profile Free information.
+
+ @param CallerAddress Address of caller who call Free.
+ @param Action This Free action.
+ @param Size Buffer size.
+ @param Buffer Buffer address.
+
+ @return EFI_SUCCESS Memory profile is updated.
+ @return EFI_UNSUPPORTED Memory profile is unsupported.
+ @return EFI_NOT_FOUND No matched allocate info found for free action.
+
+**/
+EFI_STATUS
+CoreUpdateProfileFree (
+ IN PHYSICAL_ADDRESS CallerAddress,
+ IN MEMORY_PROFILE_ACTION Action,
+ IN UINTN Size,
+ IN VOID *Buffer
+ )
+{
+ MEMORY_PROFILE_CONTEXT *Context;
+ MEMORY_PROFILE_DRIVER_INFO *DriverInfo;
+ MEMORY_PROFILE_ALLOC_INFO *AllocInfo;
+ MEMORY_PROFILE_CONTEXT_DATA *ContextData;
+ MEMORY_PROFILE_DRIVER_INFO_DATA *DriverInfoData;
+ LIST_ENTRY *DriverLink;
+ LIST_ENTRY *DriverInfoList;
+ MEMORY_PROFILE_DRIVER_INFO_DATA *ThisDriverInfoData;
+ MEMORY_PROFILE_ALLOC_INFO_DATA *AllocInfoData;
+ UINTN ProfileMemoryIndex;
+ MEMORY_PROFILE_ACTION BasicAction;
+ BOOLEAN Found;
+
+ BasicAction = Action & MEMORY_PROFILE_ACTION_BASIC_MASK;
+
+ ContextData = GetMemoryProfileContext ();
+ if (ContextData == NULL) {
+ return EFI_UNSUPPORTED;
+ }
+
+ DriverInfoData = GetMemoryProfileDriverInfoFromAddress (ContextData, CallerAddress);
+
+ //
+ // Do not return if DriverInfoData == NULL here,
+ // because driver A might free memory allocated by driver B.
+ //
+
+ //
+ // Need use do-while loop to find all possible records,
+ // because one address might be recorded multiple times.
+ //
+ Found = FALSE;
+ AllocInfoData = NULL;
+ do {
+ if (DriverInfoData != NULL) {
+ switch (BasicAction) {
+ case MemoryProfileActionFreePages:
+ AllocInfoData = GetMemoryProfileAllocInfoFromAddress (DriverInfoData, MemoryProfileActionAllocatePages, Size, Buffer);
+ break;
+ case MemoryProfileActionFreePool:
+ AllocInfoData = GetMemoryProfileAllocInfoFromAddress (DriverInfoData, MemoryProfileActionAllocatePool, 0, Buffer);
+ break;
+ default:
+ ASSERT (FALSE);
+ AllocInfoData = NULL;
+ break;
+ }
+ }
+ if (AllocInfoData == NULL) {
+ //
+ // Legal case, because driver A might free memory allocated by driver B, by some protocol.
+ //
+ DriverInfoList = ContextData->DriverInfoList;
+
+ for (DriverLink = DriverInfoList->ForwardLink;
+ DriverLink != DriverInfoList;
+ DriverLink = DriverLink->ForwardLink) {
+ ThisDriverInfoData = CR (
+ DriverLink,
+ MEMORY_PROFILE_DRIVER_INFO_DATA,
+ Link,
+ MEMORY_PROFILE_DRIVER_INFO_SIGNATURE
+ );
+ switch (BasicAction) {
+ case MemoryProfileActionFreePages:
+ AllocInfoData = GetMemoryProfileAllocInfoFromAddress (ThisDriverInfoData, MemoryProfileActionAllocatePages, Size, Buffer);
+ break;
+ case MemoryProfileActionFreePool:
+ AllocInfoData = GetMemoryProfileAllocInfoFromAddress (ThisDriverInfoData, MemoryProfileActionAllocatePool, 0, Buffer);
+ break;
+ default:
+ ASSERT (FALSE);
+ AllocInfoData = NULL;
+ break;
+ }
+ if (AllocInfoData != NULL) {
+ DriverInfoData = ThisDriverInfoData;
+ break;
+ }
+ }
+
+ if (AllocInfoData == NULL) {
+ //
+ // If (!Found), no matched allocate info is found for this free action.
+ // It is because the specified memory type allocate actions have been filtered by
+ // CoreNeedRecordProfile(), but free actions may have no memory type information,
+ // they can not be filtered by CoreNeedRecordProfile(). Then, they will be
+ // filtered here.
+ //
+ // If (Found), it is normal exit path.
+ return (Found ? EFI_SUCCESS : EFI_NOT_FOUND);
+ }
+ }
+
+ ASSERT (DriverInfoData != NULL);
+ ASSERT (AllocInfoData != NULL);
+
+ Found = TRUE;
+
+ Context = &ContextData->Context;
+ DriverInfo = &DriverInfoData->DriverInfo;
+ AllocInfo = &AllocInfoData->AllocInfo;
+
+ DriverInfo->AllocRecordCount --;
+ //
+ // Update summary if and only if it is basic action.
+ //
+ if (AllocInfo->Action == (AllocInfo->Action & MEMORY_PROFILE_ACTION_BASIC_MASK)) {
+ ProfileMemoryIndex = GetProfileMemoryIndex (AllocInfo->MemoryType);
+
+ Context->CurrentTotalUsage -= AllocInfo->Size;
+ Context->CurrentTotalUsageByType[ProfileMemoryIndex] -= AllocInfo->Size;
+
+ DriverInfo->CurrentUsage -= AllocInfo->Size;
+ DriverInfo->CurrentUsageByType[ProfileMemoryIndex] -= AllocInfo->Size;
+ }
+
+ RemoveEntryList (&AllocInfoData->Link);
+
+ if (BasicAction == MemoryProfileActionFreePages) {
+ if (AllocInfo->Buffer != (PHYSICAL_ADDRESS) (UINTN) Buffer) {
+ CoreUpdateProfileAllocate (
+ AllocInfo->CallerAddress,
+ AllocInfo->Action,
+ AllocInfo->MemoryType,
+ (UINTN) ((PHYSICAL_ADDRESS) (UINTN) Buffer - AllocInfo->Buffer),
+ (VOID *) (UINTN) AllocInfo->Buffer,
+ AllocInfoData->ActionString
+ );
+ }
+ if (AllocInfo->Buffer + AllocInfo->Size != ((PHYSICAL_ADDRESS) (UINTN) Buffer + Size)) {
+ CoreUpdateProfileAllocate (
+ AllocInfo->CallerAddress,
+ AllocInfo->Action,
+ AllocInfo->MemoryType,
+ (UINTN) ((AllocInfo->Buffer + AllocInfo->Size) - ((PHYSICAL_ADDRESS) (UINTN) Buffer + Size)),
+ (VOID *) ((UINTN) Buffer + Size),
+ AllocInfoData->ActionString
+ );
+ }
+ }
+
+ //
+ // Use CoreInternalFreePool() that will not update profile for this FreePool action.
+ //
+ CoreInternalFreePool (AllocInfoData, NULL);
+ } while (TRUE);
+}
+
+/**
+ Update memory profile information.
+
+ @param CallerAddress Address of caller who call Allocate or Free.
+ @param Action This Allocate or Free action.
+ @param MemoryType Memory type.
+ EfiMaxMemoryType means the MemoryType is unknown.
+ @param Size Buffer size.
+ @param Buffer Buffer address.
+ @param ActionString String for memory profile action.
+ Only needed for user defined allocate action.
+
+ @return EFI_SUCCESS Memory profile is updated.
+ @return EFI_UNSUPPORTED Memory profile is unsupported,
+ or memory profile for the image is not required,
+ or memory profile for the memory type is not required.
+ @return EFI_ACCESS_DENIED It is during memory profile data getting.
+ @return EFI_ABORTED Memory profile recording is not enabled.
+ @return EFI_OUT_OF_RESOURCES No enough resource to update memory profile for allocate action.
+ @return EFI_NOT_FOUND No matched allocate info found for free action.
+
+**/
+EFI_STATUS
+EFIAPI
+CoreUpdateProfile (
+ IN PHYSICAL_ADDRESS CallerAddress,
+ IN MEMORY_PROFILE_ACTION Action,
+ IN EFI_MEMORY_TYPE MemoryType,
+ IN UINTN Size, // Valid for AllocatePages/FreePages/AllocatePool
+ IN VOID *Buffer,
+ IN CHAR8 *ActionString OPTIONAL
+ )
+{
+ EFI_STATUS Status;
+ MEMORY_PROFILE_CONTEXT_DATA *ContextData;
+ MEMORY_PROFILE_ACTION BasicAction;
+
+ if (!IS_UEFI_MEMORY_PROFILE_ENABLED) {
+ return EFI_UNSUPPORTED;
+ }
+
+ if (mMemoryProfileGettingStatus) {
+ return EFI_ACCESS_DENIED;
+ }
+
+ if (!mMemoryProfileRecordingEnable) {
+ return EFI_ABORTED;
+ }
+
+ //
+ // Get the basic action to know how to process the record
+ //
+ BasicAction = Action & MEMORY_PROFILE_ACTION_BASIC_MASK;
+
+ //
+ // EfiMaxMemoryType means the MemoryType is unknown.
+ //
+ if (MemoryType != EfiMaxMemoryType) {
+ //
+ // Only record limited MemoryType.
+ //
+ if (!CoreNeedRecordProfile (MemoryType)) {
+ return EFI_UNSUPPORTED;
+ }
+ }
+
+ ContextData = GetMemoryProfileContext ();
+ if (ContextData == NULL) {
+ return EFI_UNSUPPORTED;
+ }
+
+ CoreAcquireMemoryProfileLock ();
+ switch (BasicAction) {
+ case MemoryProfileActionAllocatePages:
+ Status = CoreUpdateProfileAllocate (CallerAddress, Action, MemoryType, Size, Buffer, ActionString);
+ break;
+ case MemoryProfileActionFreePages:
+ Status = CoreUpdateProfileFree (CallerAddress, Action, Size, Buffer);
+ break;
+ case MemoryProfileActionAllocatePool:
+ Status = CoreUpdateProfileAllocate (CallerAddress, Action, MemoryType, Size, Buffer, ActionString);
+ break;
+ case MemoryProfileActionFreePool:
+ Status = CoreUpdateProfileFree (CallerAddress, Action, 0, Buffer);
+ break;
+ default:
+ ASSERT (FALSE);
+ Status = EFI_UNSUPPORTED;
+ break;
+ }
+ CoreReleaseMemoryProfileLock ();
+
+ return Status;
+}
+
+////////////////////
+
+/**
+ Get memory profile data size.
+
+ @return Memory profile data size.
+
+**/
+UINTN
+MemoryProfileGetDataSize (
+ VOID
+ )
+{
+ MEMORY_PROFILE_CONTEXT_DATA *ContextData;
+ MEMORY_PROFILE_DRIVER_INFO_DATA *DriverInfoData;
+ MEMORY_PROFILE_ALLOC_INFO_DATA *AllocInfoData;
+ LIST_ENTRY *DriverInfoList;
+ LIST_ENTRY *DriverLink;
+ LIST_ENTRY *AllocInfoList;
+ LIST_ENTRY *AllocLink;
+ UINTN TotalSize;
+
+
+ ContextData = GetMemoryProfileContext ();
+ if (ContextData == NULL) {
+ return 0;
+ }
+
+ TotalSize = sizeof (MEMORY_PROFILE_CONTEXT);
+
+ DriverInfoList = ContextData->DriverInfoList;
+ for (DriverLink = DriverInfoList->ForwardLink;
+ DriverLink != DriverInfoList;
+ DriverLink = DriverLink->ForwardLink) {
+ DriverInfoData = CR (
+ DriverLink,
+ MEMORY_PROFILE_DRIVER_INFO_DATA,
+ Link,
+ MEMORY_PROFILE_DRIVER_INFO_SIGNATURE
+ );
+ TotalSize += DriverInfoData->DriverInfo.Header.Length;
+
+ AllocInfoList = DriverInfoData->AllocInfoList;
+ for (AllocLink = AllocInfoList->ForwardLink;
+ AllocLink != AllocInfoList;
+ AllocLink = AllocLink->ForwardLink) {
+ AllocInfoData = CR (
+ AllocLink,
+ MEMORY_PROFILE_ALLOC_INFO_DATA,
+ Link,
+ MEMORY_PROFILE_ALLOC_INFO_SIGNATURE
+ );
+ TotalSize += AllocInfoData->AllocInfo.Header.Length;
+ }
+ }
+
+ return TotalSize;
+}
+
+/**
+ Copy memory profile data.
+
+ @param ProfileBuffer The buffer to hold memory profile data.
+
+**/
+VOID
+MemoryProfileCopyData (
+ IN VOID *ProfileBuffer
+ )
+{
+ MEMORY_PROFILE_CONTEXT *Context;
+ MEMORY_PROFILE_DRIVER_INFO *DriverInfo;
+ MEMORY_PROFILE_ALLOC_INFO *AllocInfo;
+ MEMORY_PROFILE_CONTEXT_DATA *ContextData;
+ MEMORY_PROFILE_DRIVER_INFO_DATA *DriverInfoData;
+ MEMORY_PROFILE_ALLOC_INFO_DATA *AllocInfoData;
+ LIST_ENTRY *DriverInfoList;
+ LIST_ENTRY *DriverLink;
+ LIST_ENTRY *AllocInfoList;
+ LIST_ENTRY *AllocLink;
+ UINTN PdbSize;
+ UINTN ActionStringSize;
+
+ ContextData = GetMemoryProfileContext ();
+ if (ContextData == NULL) {
+ return ;
+ }
+
+ Context = ProfileBuffer;
+ CopyMem (Context, &ContextData->Context, sizeof (MEMORY_PROFILE_CONTEXT));
+ DriverInfo = (MEMORY_PROFILE_DRIVER_INFO *) (Context + 1);
+
+ DriverInfoList = ContextData->DriverInfoList;
+ for (DriverLink = DriverInfoList->ForwardLink;
+ DriverLink != DriverInfoList;
+ DriverLink = DriverLink->ForwardLink) {
+ DriverInfoData = CR (
+ DriverLink,
+ MEMORY_PROFILE_DRIVER_INFO_DATA,
+ Link,
+ MEMORY_PROFILE_DRIVER_INFO_SIGNATURE
+ );
+ CopyMem (DriverInfo, &DriverInfoData->DriverInfo, sizeof (MEMORY_PROFILE_DRIVER_INFO));
+ if (DriverInfo->PdbStringOffset != 0) {
+ PdbSize = AsciiStrSize (DriverInfoData->PdbString);
+ CopyMem ((VOID *) ((UINTN) DriverInfo + DriverInfo->PdbStringOffset), DriverInfoData->PdbString, PdbSize);
+ }
+ AllocInfo = (MEMORY_PROFILE_ALLOC_INFO *) ((UINTN) DriverInfo + DriverInfo->Header.Length);
+
+ AllocInfoList = DriverInfoData->AllocInfoList;
+ for (AllocLink = AllocInfoList->ForwardLink;
+ AllocLink != AllocInfoList;
+ AllocLink = AllocLink->ForwardLink) {
+ AllocInfoData = CR (
+ AllocLink,
+ MEMORY_PROFILE_ALLOC_INFO_DATA,
+ Link,
+ MEMORY_PROFILE_ALLOC_INFO_SIGNATURE
+ );
+ CopyMem (AllocInfo, &AllocInfoData->AllocInfo, sizeof (MEMORY_PROFILE_ALLOC_INFO));
+ if (AllocInfo->ActionStringOffset != 0) {
+ ActionStringSize = AsciiStrSize (AllocInfoData->ActionString);
+ CopyMem ((VOID *) ((UINTN) AllocInfo + AllocInfo->ActionStringOffset), AllocInfoData->ActionString, ActionStringSize);
+ }
+ AllocInfo = (MEMORY_PROFILE_ALLOC_INFO *) ((UINTN) AllocInfo + AllocInfo->Header.Length);
+ }
+
+ DriverInfo = (MEMORY_PROFILE_DRIVER_INFO *) AllocInfo;
+ }
+}
+
+/**
+ Get memory profile data.
+
+ @param[in] This The EDKII_MEMORY_PROFILE_PROTOCOL instance.
+ @param[in, out] ProfileSize On entry, points to the size in bytes of the ProfileBuffer.
+ On return, points to the size of the data returned in ProfileBuffer.
+ @param[out] ProfileBuffer Profile buffer.
+
+ @return EFI_SUCCESS Get the memory profile data successfully.
+ @return EFI_UNSUPPORTED Memory profile is unsupported.
+ @return EFI_BUFFER_TO_SMALL The ProfileSize is too small for the resulting data.
+ ProfileSize is updated with the size required.
+
+**/
+EFI_STATUS
+EFIAPI
+ProfileProtocolGetData (
+ IN EDKII_MEMORY_PROFILE_PROTOCOL *This,
+ IN OUT UINT64 *ProfileSize,
+ OUT VOID *ProfileBuffer
+ )
+{
+ UINTN Size;
+ MEMORY_PROFILE_CONTEXT_DATA *ContextData;
+ BOOLEAN MemoryProfileGettingStatus;
+
+ ContextData = GetMemoryProfileContext ();
+ if (ContextData == NULL) {
+ return EFI_UNSUPPORTED;
+ }
+
+ MemoryProfileGettingStatus = mMemoryProfileGettingStatus;
+ mMemoryProfileGettingStatus = TRUE;
+
+ Size = MemoryProfileGetDataSize ();
+
+ if (*ProfileSize < Size) {
+ *ProfileSize = Size;
+ mMemoryProfileGettingStatus = MemoryProfileGettingStatus;
+ return EFI_BUFFER_TOO_SMALL;
+ }
+
+ *ProfileSize = Size;
+ MemoryProfileCopyData (ProfileBuffer);
+
+ mMemoryProfileGettingStatus = MemoryProfileGettingStatus;
+ return EFI_SUCCESS;
+}
+
+/**
+ Register image to memory profile.
+
+ @param[in] This The EDKII_MEMORY_PROFILE_PROTOCOL instance.
+ @param[in] FilePath File path of the image.
+ @param[in] ImageBase Image base address.
+ @param[in] ImageSize Image size.
+ @param[in] FileType File type of the image.
+
+ @return EFI_SUCCESS Register successfully.
+ @return EFI_UNSUPPORTED Memory profile is unsupported,
+ or memory profile for the image is not required.
+ @return EFI_OUT_OF_RESOURCES No enough resource for this register.
+
+**/
+EFI_STATUS
+EFIAPI
+ProfileProtocolRegisterImage (
+ IN EDKII_MEMORY_PROFILE_PROTOCOL *This,
+ IN EFI_DEVICE_PATH_PROTOCOL *FilePath,
+ IN PHYSICAL_ADDRESS ImageBase,
+ IN UINT64 ImageSize,
+ IN EFI_FV_FILETYPE FileType
+ )
+{
+ EFI_STATUS Status;
+ LOADED_IMAGE_PRIVATE_DATA DriverEntry;
+ VOID *EntryPointInImage;
+
+ ZeroMem (&DriverEntry, sizeof (DriverEntry));
+ DriverEntry.Info.FilePath = FilePath;
+ DriverEntry.ImageContext.ImageAddress = ImageBase;
+ DriverEntry.ImageContext.ImageSize = ImageSize;
+ Status = InternalPeCoffGetEntryPoint ((VOID *) (UINTN) ImageBase, &EntryPointInImage);
+ ASSERT_EFI_ERROR (Status);
+ DriverEntry.ImageContext.EntryPoint = (PHYSICAL_ADDRESS) (UINTN) EntryPointInImage;
+ DriverEntry.ImageContext.ImageType = InternalPeCoffGetSubsystem ((VOID *) (UINTN) ImageBase);
+
+ return RegisterMemoryProfileImage (&DriverEntry, FileType);
+}
+
+/**
+ Unregister image from memory profile.
+
+ @param[in] This The EDKII_MEMORY_PROFILE_PROTOCOL instance.
+ @param[in] FilePath File path of the image.
+ @param[in] ImageBase Image base address.
+ @param[in] ImageSize Image size.
+
+ @return EFI_SUCCESS Unregister successfully.
+ @return EFI_UNSUPPORTED Memory profile is unsupported,
+ or memory profile for the image is not required.
+ @return EFI_NOT_FOUND The image is not found.
+
+**/
+EFI_STATUS
+EFIAPI
+ProfileProtocolUnregisterImage (
+ IN EDKII_MEMORY_PROFILE_PROTOCOL *This,
+ IN EFI_DEVICE_PATH_PROTOCOL *FilePath,
+ IN PHYSICAL_ADDRESS ImageBase,
+ IN UINT64 ImageSize
+ )
+{
+ EFI_STATUS Status;
+ LOADED_IMAGE_PRIVATE_DATA DriverEntry;
+ VOID *EntryPointInImage;
+
+ ZeroMem (&DriverEntry, sizeof (DriverEntry));
+ DriverEntry.Info.FilePath = FilePath;
+ DriverEntry.ImageContext.ImageAddress = ImageBase;
+ DriverEntry.ImageContext.ImageSize = ImageSize;
+ Status = InternalPeCoffGetEntryPoint ((VOID *) (UINTN) ImageBase, &EntryPointInImage);
+ ASSERT_EFI_ERROR (Status);
+ DriverEntry.ImageContext.EntryPoint = (PHYSICAL_ADDRESS) (UINTN) EntryPointInImage;
+
+ return UnregisterMemoryProfileImage (&DriverEntry);
+}
+
+/**
+ Get memory profile recording state.
+
+ @param[in] This The EDKII_MEMORY_PROFILE_PROTOCOL instance.
+ @param[out] RecordingState Recording state.
+
+ @return EFI_SUCCESS Memory profile recording state is returned.
+ @return EFI_UNSUPPORTED Memory profile is unsupported.
+ @return EFI_INVALID_PARAMETER RecordingState is NULL.
+
+**/
+EFI_STATUS
+EFIAPI
+ProfileProtocolGetRecordingState (
+ IN EDKII_MEMORY_PROFILE_PROTOCOL *This,
+ OUT BOOLEAN *RecordingState
+ )
+{
+ MEMORY_PROFILE_CONTEXT_DATA *ContextData;
+
+ ContextData = GetMemoryProfileContext ();
+ if (ContextData == NULL) {
+ return EFI_UNSUPPORTED;
+ }
+
+ if (RecordingState == NULL) {
+ return EFI_INVALID_PARAMETER;
+ }
+ *RecordingState = mMemoryProfileRecordingEnable;
+ return EFI_SUCCESS;
+}
+
+/**
+ Set memory profile recording state.
+
+ @param[in] This The EDKII_MEMORY_PROFILE_PROTOCOL instance.
+ @param[in] RecordingState Recording state.
+
+ @return EFI_SUCCESS Set memory profile recording state successfully.
+ @return EFI_UNSUPPORTED Memory profile is unsupported.
+
+**/
+EFI_STATUS
+EFIAPI
+ProfileProtocolSetRecordingState (
+ IN EDKII_MEMORY_PROFILE_PROTOCOL *This,
+ IN BOOLEAN RecordingState
+ )
+{
+ MEMORY_PROFILE_CONTEXT_DATA *ContextData;
+
+ ContextData = GetMemoryProfileContext ();
+ if (ContextData == NULL) {
+ return EFI_UNSUPPORTED;
+ }
+
+ mMemoryProfileRecordingEnable = RecordingState;
+ return EFI_SUCCESS;
+}
+
+/**
+ Record memory profile of multilevel caller.
+
+ @param[in] This The EDKII_MEMORY_PROFILE_PROTOCOL instance.
+ @param[in] CallerAddress Address of caller.
+ @param[in] Action Memory profile action.
+ @param[in] MemoryType Memory type.
+ EfiMaxMemoryType means the MemoryType is unknown.
+ @param[in] Buffer Buffer address.
+ @param[in] Size Buffer size.
+ @param[in] ActionString String for memory profile action.
+ Only needed for user defined allocate action.
+
+ @return EFI_SUCCESS Memory profile is updated.
+ @return EFI_UNSUPPORTED Memory profile is unsupported,
+ or memory profile for the image is not required,
+ or memory profile for the memory type is not required.
+ @return EFI_ACCESS_DENIED It is during memory profile data getting.
+ @return EFI_ABORTED Memory profile recording is not enabled.
+ @return EFI_OUT_OF_RESOURCES No enough resource to update memory profile for allocate action.
+ @return EFI_NOT_FOUND No matched allocate info found for free action.
+
+**/
+EFI_STATUS
+EFIAPI
+ProfileProtocolRecord (
+ IN EDKII_MEMORY_PROFILE_PROTOCOL *This,
+ IN PHYSICAL_ADDRESS CallerAddress,
+ IN MEMORY_PROFILE_ACTION Action,
+ IN EFI_MEMORY_TYPE MemoryType,
+ IN VOID *Buffer,
+ IN UINTN Size,
+ IN CHAR8 *ActionString OPTIONAL
+ )
+{
+ return CoreUpdateProfile (CallerAddress, Action, MemoryType, Size, Buffer, ActionString);
+}
+
+////////////////////
diff --git a/src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/Page.c b/src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/Page.c
new file mode 100644
index 00000000..d5bbbb16
--- /dev/null
+++ b/src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/Page.c
@@ -0,0 +1,2105 @@
+/** @file
+ UEFI Memory page management functions.
+
+Copyright (c) 2007 - 2018, Intel Corporation. All rights reserved.<BR>
+SPDX-License-Identifier: BSD-2-Clause-Patent
+
+**/
+
+#include "DxeMain.h"
+#include "Imem.h"
+#include "HeapGuard.h"
+
+//
+// Entry for tracking the memory regions for each memory type to coalesce similar memory types
+//
+typedef struct {
+ EFI_PHYSICAL_ADDRESS BaseAddress;
+ EFI_PHYSICAL_ADDRESS MaximumAddress;
+ UINT64 CurrentNumberOfPages;
+ UINT64 NumberOfPages;
+ UINTN InformationIndex;
+ BOOLEAN Special;
+ BOOLEAN Runtime;
+} EFI_MEMORY_TYPE_STATISTICS;
+
+//
+// MemoryMap - The current memory map
+//
+UINTN mMemoryMapKey = 0;
+
+#define MAX_MAP_DEPTH 6
+
+///
+/// mMapDepth - depth of new descriptor stack
+///
+UINTN mMapDepth = 0;
+///
+/// mMapStack - space to use as temp storage to build new map descriptors
+///
+MEMORY_MAP mMapStack[MAX_MAP_DEPTH];
+UINTN mFreeMapStack = 0;
+///
+/// This list maintain the free memory map list
+///
+LIST_ENTRY mFreeMemoryMapEntryList = INITIALIZE_LIST_HEAD_VARIABLE (mFreeMemoryMapEntryList);
+BOOLEAN mMemoryTypeInformationInitialized = FALSE;
+
+EFI_MEMORY_TYPE_STATISTICS mMemoryTypeStatistics[EfiMaxMemoryType + 1] = {
+ { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiReservedMemoryType
+ { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiLoaderCode
+ { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiLoaderData
+ { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiBootServicesCode
+ { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiBootServicesData
+ { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiRuntimeServicesCode
+ { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiRuntimeServicesData
+ { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiConventionalMemory
+ { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiUnusableMemory
+ { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiACPIReclaimMemory
+ { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiACPIMemoryNVS
+ { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiMemoryMappedIO
+ { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiMemoryMappedIOPortSpace
+ { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiPalCode
+ { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiPersistentMemory
+ { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE } // EfiMaxMemoryType
+};
+
+EFI_PHYSICAL_ADDRESS mDefaultMaximumAddress = MAX_ALLOC_ADDRESS;
+EFI_PHYSICAL_ADDRESS mDefaultBaseAddress = MAX_ALLOC_ADDRESS;
+
+EFI_MEMORY_TYPE_INFORMATION gMemoryTypeInformation[EfiMaxMemoryType + 1] = {
+ { EfiReservedMemoryType, 0 },
+ { EfiLoaderCode, 0 },
+ { EfiLoaderData, 0 },
+ { EfiBootServicesCode, 0 },
+ { EfiBootServicesData, 0 },
+ { EfiRuntimeServicesCode, 0 },
+ { EfiRuntimeServicesData, 0 },
+ { EfiConventionalMemory, 0 },
+ { EfiUnusableMemory, 0 },
+ { EfiACPIReclaimMemory, 0 },
+ { EfiACPIMemoryNVS, 0 },
+ { EfiMemoryMappedIO, 0 },
+ { EfiMemoryMappedIOPortSpace, 0 },
+ { EfiPalCode, 0 },
+ { EfiPersistentMemory, 0 },
+ { EfiMaxMemoryType, 0 }
+};
+//
+// Only used when load module at fixed address feature is enabled. True means the memory is alreay successfully allocated
+// and ready to load the module in to specified address.or else, the memory is not ready and module will be loaded at a
+// address assigned by DXE core.
+//
+GLOBAL_REMOVE_IF_UNREFERENCED BOOLEAN gLoadFixedAddressCodeMemoryReady = FALSE;
+
+/**
+ Enter critical section by gaining lock on gMemoryLock.
+
+**/
+VOID
+CoreAcquireMemoryLock (
+ VOID
+ )
+{
+ CoreAcquireLock (&gMemoryLock);
+}
+
+
+
+/**
+ Exit critical section by releasing lock on gMemoryLock.
+
+**/
+VOID
+CoreReleaseMemoryLock (
+ VOID
+ )
+{
+ CoreReleaseLock (&gMemoryLock);
+}
+
+
+
+
+/**
+ Internal function. Removes a descriptor entry.
+
+ @param Entry The entry to remove
+
+**/
+VOID
+RemoveMemoryMapEntry (
+ IN OUT MEMORY_MAP *Entry
+ )
+{
+ RemoveEntryList (&Entry->Link);
+ Entry->Link.ForwardLink = NULL;
+
+ if (Entry->FromPages) {
+ //
+ // Insert the free memory map descriptor to the end of mFreeMemoryMapEntryList
+ //
+ InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link);
+ }
+}
+
+/**
+ Internal function. Adds a ranges to the memory map.
+ The range must not already exist in the map.
+
+ @param Type The type of memory range to add
+ @param Start The starting address in the memory range Must be
+ paged aligned
+ @param End The last address in the range Must be the last
+ byte of a page
+ @param Attribute The attributes of the memory range to add
+
+**/
+VOID
+CoreAddRange (
+ IN EFI_MEMORY_TYPE Type,
+ IN EFI_PHYSICAL_ADDRESS Start,
+ IN EFI_PHYSICAL_ADDRESS End,
+ IN UINT64 Attribute
+ )
+{
+ LIST_ENTRY *Link;
+ MEMORY_MAP *Entry;
+
+ ASSERT ((Start & EFI_PAGE_MASK) == 0);
+ ASSERT (End > Start) ;
+
+ ASSERT_LOCKED (&gMemoryLock);
+
+ DEBUG ((DEBUG_PAGE, "AddRange: %lx-%lx to %d\n", Start, End, Type));
+
+ //
+ // If memory of type EfiConventionalMemory is being added that includes the page
+ // starting at address 0, then zero the page starting at address 0. This has
+ // two benifits. It helps find NULL pointer bugs and it also maximizes
+ // compatibility with operating systems that may evaluate memory in this page
+ // for legacy data structures. If memory of any other type is added starting
+ // at address 0, then do not zero the page at address 0 because the page is being
+ // used for other purposes.
+ //
+ if (Type == EfiConventionalMemory && Start == 0 && (End >= EFI_PAGE_SIZE - 1)) {
+ if ((PcdGet8 (PcdNullPointerDetectionPropertyMask) & BIT0) == 0) {
+ SetMem ((VOID *)(UINTN)Start, EFI_PAGE_SIZE, 0);
+ }
+ }
+
+ //
+ // Memory map being altered so updated key
+ //
+ mMemoryMapKey += 1;
+
+ //
+ // UEFI 2.0 added an event group for notificaiton on memory map changes.
+ // So we need to signal this Event Group every time the memory map changes.
+ // If we are in EFI 1.10 compatability mode no event groups will be
+ // found and nothing will happen we we call this function. These events
+ // will get signaled but since a lock is held around the call to this
+ // function the notificaiton events will only be called after this function
+ // returns and the lock is released.
+ //
+ CoreNotifySignalList (&gEfiEventMemoryMapChangeGuid);
+
+ //
+ // Look for adjoining memory descriptor
+ //
+
+ // Two memory descriptors can only be merged if they have the same Type
+ // and the same Attribute
+ //
+
+ Link = gMemoryMap.ForwardLink;
+ while (Link != &gMemoryMap) {
+ Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
+ Link = Link->ForwardLink;
+
+ if (Entry->Type != Type) {
+ continue;
+ }
+
+ if (Entry->Attribute != Attribute) {
+ continue;
+ }
+
+ if (Entry->End + 1 == Start) {
+
+ Start = Entry->Start;
+ RemoveMemoryMapEntry (Entry);
+
+ } else if (Entry->Start == End + 1) {
+
+ End = Entry->End;
+ RemoveMemoryMapEntry (Entry);
+ }
+ }
+
+ //
+ // Add descriptor
+ //
+
+ mMapStack[mMapDepth].Signature = MEMORY_MAP_SIGNATURE;
+ mMapStack[mMapDepth].FromPages = FALSE;
+ mMapStack[mMapDepth].Type = Type;
+ mMapStack[mMapDepth].Start = Start;
+ mMapStack[mMapDepth].End = End;
+ mMapStack[mMapDepth].VirtualStart = 0;
+ mMapStack[mMapDepth].Attribute = Attribute;
+ InsertTailList (&gMemoryMap, &mMapStack[mMapDepth].Link);
+
+ mMapDepth += 1;
+ ASSERT (mMapDepth < MAX_MAP_DEPTH);
+
+ return ;
+}
+
+/**
+ Internal function. Deque a descriptor entry from the mFreeMemoryMapEntryList.
+ If the list is emtry, then allocate a new page to refuel the list.
+ Please Note this algorithm to allocate the memory map descriptor has a property
+ that the memory allocated for memory entries always grows, and will never really be freed
+ For example, if the current boot uses 2000 memory map entries at the maximum point, but
+ ends up with only 50 at the time the OS is booted, then the memory associated with the 1950
+ memory map entries is still allocated from EfiBootServicesMemory.
+
+
+ @return The Memory map descriptor dequed from the mFreeMemoryMapEntryList
+
+**/
+MEMORY_MAP *
+AllocateMemoryMapEntry (
+ VOID
+ )
+{
+ MEMORY_MAP* FreeDescriptorEntries;
+ MEMORY_MAP* Entry;
+ UINTN Index;
+
+ if (IsListEmpty (&mFreeMemoryMapEntryList)) {
+ //
+ // The list is empty, to allocate one page to refuel the list
+ //
+ FreeDescriptorEntries = CoreAllocatePoolPages (
+ EfiBootServicesData,
+ EFI_SIZE_TO_PAGES (DEFAULT_PAGE_ALLOCATION_GRANULARITY),
+ DEFAULT_PAGE_ALLOCATION_GRANULARITY,
+ FALSE
+ );
+ if (FreeDescriptorEntries != NULL) {
+ //
+ // Enque the free memmory map entries into the list
+ //
+ for (Index = 0; Index < DEFAULT_PAGE_ALLOCATION_GRANULARITY / sizeof(MEMORY_MAP); Index++) {
+ FreeDescriptorEntries[Index].Signature = MEMORY_MAP_SIGNATURE;
+ InsertTailList (&mFreeMemoryMapEntryList, &FreeDescriptorEntries[Index].Link);
+ }
+ } else {
+ return NULL;
+ }
+ }
+ //
+ // dequeue the first descriptor from the list
+ //
+ Entry = CR (mFreeMemoryMapEntryList.ForwardLink, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
+ RemoveEntryList (&Entry->Link);
+
+ return Entry;
+}
+
+
+/**
+ Internal function. Moves any memory descriptors that are on the
+ temporary descriptor stack to heap.
+
+**/
+VOID
+CoreFreeMemoryMapStack (
+ VOID
+ )
+{
+ MEMORY_MAP *Entry;
+ MEMORY_MAP *Entry2;
+ LIST_ENTRY *Link2;
+
+ ASSERT_LOCKED (&gMemoryLock);
+
+ //
+ // If already freeing the map stack, then return
+ //
+ if (mFreeMapStack != 0) {
+ return ;
+ }
+
+ //
+ // Move the temporary memory descriptor stack into pool
+ //
+ mFreeMapStack += 1;
+
+ while (mMapDepth != 0) {
+ //
+ // Deque an memory map entry from mFreeMemoryMapEntryList
+ //
+ Entry = AllocateMemoryMapEntry ();
+
+ ASSERT (Entry);
+
+ //
+ // Update to proper entry
+ //
+ mMapDepth -= 1;
+
+ if (mMapStack[mMapDepth].Link.ForwardLink != NULL) {
+
+ //
+ // Move this entry to general memory
+ //
+ RemoveEntryList (&mMapStack[mMapDepth].Link);
+ mMapStack[mMapDepth].Link.ForwardLink = NULL;
+
+ CopyMem (Entry , &mMapStack[mMapDepth], sizeof (MEMORY_MAP));
+ Entry->FromPages = TRUE;
+
+ //
+ // Find insertion location
+ //
+ for (Link2 = gMemoryMap.ForwardLink; Link2 != &gMemoryMap; Link2 = Link2->ForwardLink) {
+ Entry2 = CR (Link2, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
+ if (Entry2->FromPages && Entry2->Start > Entry->Start) {
+ break;
+ }
+ }
+
+ InsertTailList (Link2, &Entry->Link);
+
+ } else {
+ //
+ // This item of mMapStack[mMapDepth] has already been dequeued from gMemoryMap list,
+ // so here no need to move it to memory.
+ //
+ InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link);
+ }
+ }
+
+ mFreeMapStack -= 1;
+}
+
+/**
+ Find untested but initialized memory regions in GCD map and convert them to be DXE allocatable.
+
+**/
+BOOLEAN
+PromoteMemoryResource (
+ VOID
+ )
+{
+ LIST_ENTRY *Link;
+ EFI_GCD_MAP_ENTRY *Entry;
+ BOOLEAN Promoted;
+ EFI_PHYSICAL_ADDRESS StartAddress;
+ EFI_PHYSICAL_ADDRESS EndAddress;
+ EFI_GCD_MEMORY_SPACE_DESCRIPTOR Descriptor;
+
+ DEBUG ((DEBUG_PAGE, "Promote the memory resource\n"));
+
+ CoreAcquireGcdMemoryLock ();
+
+ Promoted = FALSE;
+ Link = mGcdMemorySpaceMap.ForwardLink;
+ while (Link != &mGcdMemorySpaceMap) {
+
+ Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);
+
+ if (Entry->GcdMemoryType == EfiGcdMemoryTypeReserved &&
+ Entry->EndAddress < MAX_ALLOC_ADDRESS &&
+ (Entry->Capabilities & (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED)) ==
+ (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED)) {
+ //
+ // Update the GCD map
+ //
+ if ((Entry->Capabilities & EFI_MEMORY_MORE_RELIABLE) == EFI_MEMORY_MORE_RELIABLE) {
+ Entry->GcdMemoryType = EfiGcdMemoryTypeMoreReliable;
+ } else {
+ Entry->GcdMemoryType = EfiGcdMemoryTypeSystemMemory;
+ }
+ Entry->Capabilities |= EFI_MEMORY_TESTED;
+ Entry->ImageHandle = gDxeCoreImageHandle;
+ Entry->DeviceHandle = NULL;
+
+ //
+ // Add to allocable system memory resource
+ //
+
+ CoreAddRange (
+ EfiConventionalMemory,
+ Entry->BaseAddress,
+ Entry->EndAddress,
+ Entry->Capabilities & ~(EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED | EFI_MEMORY_RUNTIME)
+ );
+ CoreFreeMemoryMapStack ();
+
+ Promoted = TRUE;
+ }
+
+ Link = Link->ForwardLink;
+ }
+
+ CoreReleaseGcdMemoryLock ();
+
+ if (!Promoted) {
+ //
+ // If freed-memory guard is enabled, we could promote pages from
+ // guarded free pages.
+ //
+ Promoted = PromoteGuardedFreePages (&StartAddress, &EndAddress);
+ if (Promoted) {
+ CoreGetMemorySpaceDescriptor (StartAddress, &Descriptor);
+ CoreAddRange (
+ EfiConventionalMemory,
+ StartAddress,
+ EndAddress,
+ Descriptor.Capabilities & ~(EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED |
+ EFI_MEMORY_TESTED | EFI_MEMORY_RUNTIME)
+ );
+ }
+ }
+
+ return Promoted;
+}
+/**
+ This function try to allocate Runtime code & Boot time code memory range. If LMFA enabled, 2 patchable PCD
+ PcdLoadFixAddressRuntimeCodePageNumber & PcdLoadFixAddressBootTimeCodePageNumber which are set by tools will record the
+ size of boot time and runtime code.
+
+**/
+VOID
+CoreLoadingFixedAddressHook (
+ VOID
+ )
+{
+ UINT32 RuntimeCodePageNumber;
+ UINT32 BootTimeCodePageNumber;
+ EFI_PHYSICAL_ADDRESS RuntimeCodeBase;
+ EFI_PHYSICAL_ADDRESS BootTimeCodeBase;
+ EFI_STATUS Status;
+
+ //
+ // Make sure these 2 areas are not initialzied.
+ //
+ if (!gLoadFixedAddressCodeMemoryReady) {
+ RuntimeCodePageNumber = PcdGet32(PcdLoadFixAddressRuntimeCodePageNumber);
+ BootTimeCodePageNumber= PcdGet32(PcdLoadFixAddressBootTimeCodePageNumber);
+ RuntimeCodeBase = (EFI_PHYSICAL_ADDRESS)(gLoadModuleAtFixAddressConfigurationTable.DxeCodeTopAddress - EFI_PAGES_TO_SIZE (RuntimeCodePageNumber));
+ BootTimeCodeBase = (EFI_PHYSICAL_ADDRESS)(RuntimeCodeBase - EFI_PAGES_TO_SIZE (BootTimeCodePageNumber));
+ //
+ // Try to allocate runtime memory.
+ //
+ Status = CoreAllocatePages (
+ AllocateAddress,
+ EfiRuntimeServicesCode,
+ RuntimeCodePageNumber,
+ &RuntimeCodeBase
+ );
+ if (EFI_ERROR(Status)) {
+ //
+ // Runtime memory allocation failed
+ //
+ return;
+ }
+ //
+ // Try to allocate boot memory.
+ //
+ Status = CoreAllocatePages (
+ AllocateAddress,
+ EfiBootServicesCode,
+ BootTimeCodePageNumber,
+ &BootTimeCodeBase
+ );
+ if (EFI_ERROR(Status)) {
+ //
+ // boot memory allocation failed. Free Runtime code range and will try the allocation again when
+ // new memory range is installed.
+ //
+ CoreFreePages (
+ RuntimeCodeBase,
+ RuntimeCodePageNumber
+ );
+ return;
+ }
+ gLoadFixedAddressCodeMemoryReady = TRUE;
+ }
+ return;
+}
+
+/**
+ Called to initialize the memory map and add descriptors to
+ the current descriptor list.
+ The first descriptor that is added must be general usable
+ memory as the addition allocates heap.
+
+ @param Type The type of memory to add
+ @param Start The starting address in the memory range Must be
+ page aligned
+ @param NumberOfPages The number of pages in the range
+ @param Attribute Attributes of the memory to add
+
+ @return None. The range is added to the memory map
+
+**/
+VOID
+CoreAddMemoryDescriptor (
+ IN EFI_MEMORY_TYPE Type,
+ IN EFI_PHYSICAL_ADDRESS Start,
+ IN UINT64 NumberOfPages,
+ IN UINT64 Attribute
+ )
+{
+ EFI_PHYSICAL_ADDRESS End;
+ EFI_STATUS Status;
+ UINTN Index;
+ UINTN FreeIndex;
+
+ if ((Start & EFI_PAGE_MASK) != 0) {
+ return;
+ }
+
+ if (Type >= EfiMaxMemoryType && Type < MEMORY_TYPE_OEM_RESERVED_MIN) {
+ return;
+ }
+ CoreAcquireMemoryLock ();
+ End = Start + LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT) - 1;
+ CoreAddRange (Type, Start, End, Attribute);
+ CoreFreeMemoryMapStack ();
+ CoreReleaseMemoryLock ();
+
+ ApplyMemoryProtectionPolicy (EfiMaxMemoryType, Type, Start,
+ LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT));
+
+ //
+ // If Loading Module At Fixed Address feature is enabled. try to allocate memory with Runtime code & Boot time code type
+ //
+ if (PcdGet64(PcdLoadModuleAtFixAddressEnable) != 0) {
+ CoreLoadingFixedAddressHook();
+ }
+
+ //
+ // Check to see if the statistics for the different memory types have already been established
+ //
+ if (mMemoryTypeInformationInitialized) {
+ return;
+ }
+
+
+ //
+ // Loop through each memory type in the order specified by the gMemoryTypeInformation[] array
+ //
+ for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {
+ //
+ // Make sure the memory type in the gMemoryTypeInformation[] array is valid
+ //
+ Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[Index].Type);
+ if ((UINT32)Type > EfiMaxMemoryType) {
+ continue;
+ }
+ if (gMemoryTypeInformation[Index].NumberOfPages != 0) {
+ //
+ // Allocate pages for the current memory type from the top of available memory
+ //
+ Status = CoreAllocatePages (
+ AllocateAnyPages,
+ Type,
+ gMemoryTypeInformation[Index].NumberOfPages,
+ &mMemoryTypeStatistics[Type].BaseAddress
+ );
+ if (EFI_ERROR (Status)) {
+ //
+ // If an error occurs allocating the pages for the current memory type, then
+ // free all the pages allocates for the previous memory types and return. This
+ // operation with be retied when/if more memory is added to the system
+ //
+ for (FreeIndex = 0; FreeIndex < Index; FreeIndex++) {
+ //
+ // Make sure the memory type in the gMemoryTypeInformation[] array is valid
+ //
+ Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[FreeIndex].Type);
+ if ((UINT32)Type > EfiMaxMemoryType) {
+ continue;
+ }
+
+ if (gMemoryTypeInformation[FreeIndex].NumberOfPages != 0) {
+ CoreFreePages (
+ mMemoryTypeStatistics[Type].BaseAddress,
+ gMemoryTypeInformation[FreeIndex].NumberOfPages
+ );
+ mMemoryTypeStatistics[Type].BaseAddress = 0;
+ mMemoryTypeStatistics[Type].MaximumAddress = MAX_ALLOC_ADDRESS;
+ }
+ }
+ return;
+ }
+
+ //
+ // Compute the address at the top of the current statistics
+ //
+ mMemoryTypeStatistics[Type].MaximumAddress =
+ mMemoryTypeStatistics[Type].BaseAddress +
+ LShiftU64 (gMemoryTypeInformation[Index].NumberOfPages, EFI_PAGE_SHIFT) - 1;
+
+ //
+ // If the current base address is the lowest address so far, then update the default
+ // maximum address
+ //
+ if (mMemoryTypeStatistics[Type].BaseAddress < mDefaultMaximumAddress) {
+ mDefaultMaximumAddress = mMemoryTypeStatistics[Type].BaseAddress - 1;
+ }
+ }
+ }
+
+ //
+ // There was enough system memory for all the the memory types were allocated. So,
+ // those memory areas can be freed for future allocations, and all future memory
+ // allocations can occur within their respective bins
+ //
+ for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {
+ //
+ // Make sure the memory type in the gMemoryTypeInformation[] array is valid
+ //
+ Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[Index].Type);
+ if ((UINT32)Type > EfiMaxMemoryType) {
+ continue;
+ }
+ if (gMemoryTypeInformation[Index].NumberOfPages != 0) {
+ CoreFreePages (
+ mMemoryTypeStatistics[Type].BaseAddress,
+ gMemoryTypeInformation[Index].NumberOfPages
+ );
+ mMemoryTypeStatistics[Type].NumberOfPages = gMemoryTypeInformation[Index].NumberOfPages;
+ gMemoryTypeInformation[Index].NumberOfPages = 0;
+ }
+ }
+
+ //
+ // If the number of pages reserved for a memory type is 0, then all allocations for that type
+ // should be in the default range.
+ //
+ for (Type = (EFI_MEMORY_TYPE) 0; Type < EfiMaxMemoryType; Type++) {
+ for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {
+ if (Type == (EFI_MEMORY_TYPE)gMemoryTypeInformation[Index].Type) {
+ mMemoryTypeStatistics[Type].InformationIndex = Index;
+ }
+ }
+ mMemoryTypeStatistics[Type].CurrentNumberOfPages = 0;
+ if (mMemoryTypeStatistics[Type].MaximumAddress == MAX_ALLOC_ADDRESS) {
+ mMemoryTypeStatistics[Type].MaximumAddress = mDefaultMaximumAddress;
+ }
+ }
+
+ mMemoryTypeInformationInitialized = TRUE;
+}
+
+
+/**
+ Internal function. Converts a memory range to the specified type or attributes.
+ The range must exist in the memory map. Either ChangingType or
+ ChangingAttributes must be set, but not both.
+
+ @param Start The first address of the range Must be page
+ aligned
+ @param NumberOfPages The number of pages to convert
+ @param ChangingType Boolean indicating that type value should be changed
+ @param NewType The new type for the memory range
+ @param ChangingAttributes Boolean indicating that attributes value should be changed
+ @param NewAttributes The new attributes for the memory range
+
+ @retval EFI_INVALID_PARAMETER Invalid parameter
+ @retval EFI_NOT_FOUND Could not find a descriptor cover the specified
+ range or convertion not allowed.
+ @retval EFI_SUCCESS Successfully converts the memory range to the
+ specified type.
+
+**/
+EFI_STATUS
+CoreConvertPagesEx (
+ IN UINT64 Start,
+ IN UINT64 NumberOfPages,
+ IN BOOLEAN ChangingType,
+ IN EFI_MEMORY_TYPE NewType,
+ IN BOOLEAN ChangingAttributes,
+ IN UINT64 NewAttributes
+ )
+{
+
+ UINT64 NumberOfBytes;
+ UINT64 End;
+ UINT64 RangeEnd;
+ UINT64 Attribute;
+ EFI_MEMORY_TYPE MemType;
+ LIST_ENTRY *Link;
+ MEMORY_MAP *Entry;
+
+ Entry = NULL;
+ NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);
+ End = Start + NumberOfBytes - 1;
+
+ ASSERT (NumberOfPages);
+ ASSERT ((Start & EFI_PAGE_MASK) == 0);
+ ASSERT (End > Start) ;
+ ASSERT_LOCKED (&gMemoryLock);
+ ASSERT ( (ChangingType == FALSE) || (ChangingAttributes == FALSE) );
+
+ if (NumberOfPages == 0 || ((Start & EFI_PAGE_MASK) != 0) || (Start >= End)) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ //
+ // Convert the entire range
+ //
+
+ while (Start < End) {
+
+ //
+ // Find the entry that the covers the range
+ //
+ for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {
+ Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
+
+ if (Entry->Start <= Start && Entry->End > Start) {
+ break;
+ }
+ }
+
+ if (Link == &gMemoryMap) {
+ DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: failed to find range %lx - %lx\n", Start, End));
+ return EFI_NOT_FOUND;
+ }
+
+ //
+ // If we are converting the type of the range from EfiConventionalMemory to
+ // another type, we have to ensure that the entire range is covered by a
+ // single entry.
+ //
+ if (ChangingType && (NewType != EfiConventionalMemory)) {
+ if (Entry->End < End) {
+ DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: range %lx - %lx covers multiple entries\n", Start, End));
+ return EFI_NOT_FOUND;
+ }
+ }
+ //
+ // Convert range to the end, or to the end of the descriptor
+ // if that's all we've got
+ //
+ RangeEnd = End;
+
+ ASSERT (Entry != NULL);
+ if (Entry->End < End) {
+ RangeEnd = Entry->End;
+ }
+
+ if (ChangingType) {
+ DEBUG ((DEBUG_PAGE, "ConvertRange: %lx-%lx to type %d\n", Start, RangeEnd, NewType));
+ }
+ if (ChangingAttributes) {
+ DEBUG ((DEBUG_PAGE, "ConvertRange: %lx-%lx to attr %lx\n", Start, RangeEnd, NewAttributes));
+ }
+
+ if (ChangingType) {
+ //
+ // Debug code - verify conversion is allowed
+ //
+ if (!(NewType == EfiConventionalMemory ? 1 : 0) ^ (Entry->Type == EfiConventionalMemory ? 1 : 0)) {
+ DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: Incompatible memory types, "));
+ if (Entry->Type == EfiConventionalMemory) {
+ DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "the pages to free have been freed\n"));
+ } else {
+ DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "the pages to allocate have been allocated\n"));
+ }
+ return EFI_NOT_FOUND;
+ }
+
+ //
+ // Update counters for the number of pages allocated to each memory type
+ //
+ if ((UINT32)Entry->Type < EfiMaxMemoryType) {
+ if ((Start >= mMemoryTypeStatistics[Entry->Type].BaseAddress && Start <= mMemoryTypeStatistics[Entry->Type].MaximumAddress) ||
+ (Start >= mDefaultBaseAddress && Start <= mDefaultMaximumAddress) ) {
+ if (NumberOfPages > mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages) {
+ mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages = 0;
+ } else {
+ mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages -= NumberOfPages;
+ }
+ }
+ }
+
+ if ((UINT32)NewType < EfiMaxMemoryType) {
+ if ((Start >= mMemoryTypeStatistics[NewType].BaseAddress && Start <= mMemoryTypeStatistics[NewType].MaximumAddress) ||
+ (Start >= mDefaultBaseAddress && Start <= mDefaultMaximumAddress) ) {
+ mMemoryTypeStatistics[NewType].CurrentNumberOfPages += NumberOfPages;
+ if (mMemoryTypeStatistics[NewType].CurrentNumberOfPages > gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages) {
+ gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages = (UINT32)mMemoryTypeStatistics[NewType].CurrentNumberOfPages;
+ }
+ }
+ }
+ }
+
+ //
+ // Pull range out of descriptor
+ //
+ if (Entry->Start == Start) {
+
+ //
+ // Clip start
+ //
+ Entry->Start = RangeEnd + 1;
+
+ } else if (Entry->End == RangeEnd) {
+
+ //
+ // Clip end
+ //
+ Entry->End = Start - 1;
+
+ } else {
+
+ //
+ // Pull it out of the center, clip current
+ //
+
+ //
+ // Add a new one
+ //
+ mMapStack[mMapDepth].Signature = MEMORY_MAP_SIGNATURE;
+ mMapStack[mMapDepth].FromPages = FALSE;
+ mMapStack[mMapDepth].Type = Entry->Type;
+ mMapStack[mMapDepth].Start = RangeEnd+1;
+ mMapStack[mMapDepth].End = Entry->End;
+
+ //
+ // Inherit Attribute from the Memory Descriptor that is being clipped
+ //
+ mMapStack[mMapDepth].Attribute = Entry->Attribute;
+
+ Entry->End = Start - 1;
+ ASSERT (Entry->Start < Entry->End);
+
+ Entry = &mMapStack[mMapDepth];
+ InsertTailList (&gMemoryMap, &Entry->Link);
+
+ mMapDepth += 1;
+ ASSERT (mMapDepth < MAX_MAP_DEPTH);
+ }
+
+ //
+ // The new range inherits the same Attribute as the Entry
+ // it is being cut out of unless attributes are being changed
+ //
+ if (ChangingType) {
+ Attribute = Entry->Attribute;
+ MemType = NewType;
+ } else {
+ Attribute = NewAttributes;
+ MemType = Entry->Type;
+ }
+
+ //
+ // If the descriptor is empty, then remove it from the map
+ //
+ if (Entry->Start == Entry->End + 1) {
+ RemoveMemoryMapEntry (Entry);
+ Entry = NULL;
+ }
+
+ //
+ // Add our new range in. Don't do this for freed pages if freed-memory
+ // guard is enabled.
+ //
+ if (!IsHeapGuardEnabled (GUARD_HEAP_TYPE_FREED) ||
+ !ChangingType ||
+ MemType != EfiConventionalMemory) {
+ CoreAddRange (MemType, Start, RangeEnd, Attribute);
+ }
+
+ if (ChangingType && (MemType == EfiConventionalMemory)) {
+ //
+ // Avoid calling DEBUG_CLEAR_MEMORY() for an address of 0 because this
+ // macro will ASSERT() if address is 0. Instead, CoreAddRange() guarantees
+ // that the page starting at address 0 is always filled with zeros.
+ //
+ if (Start == 0) {
+ if (RangeEnd > EFI_PAGE_SIZE) {
+ DEBUG_CLEAR_MEMORY ((VOID *)(UINTN) EFI_PAGE_SIZE, (UINTN) (RangeEnd - EFI_PAGE_SIZE + 1));
+ }
+ } else {
+ DEBUG_CLEAR_MEMORY ((VOID *)(UINTN) Start, (UINTN) (RangeEnd - Start + 1));
+ }
+ }
+
+ //
+ // Move any map descriptor stack to general pool
+ //
+ CoreFreeMemoryMapStack ();
+
+ //
+ // Bump the starting address, and convert the next range
+ //
+ Start = RangeEnd + 1;
+ }
+
+ //
+ // Converted the whole range, done
+ //
+
+ return EFI_SUCCESS;
+}
+
+
+/**
+ Internal function. Converts a memory range to the specified type.
+ The range must exist in the memory map.
+
+ @param Start The first address of the range Must be page
+ aligned
+ @param NumberOfPages The number of pages to convert
+ @param NewType The new type for the memory range
+
+ @retval EFI_INVALID_PARAMETER Invalid parameter
+ @retval EFI_NOT_FOUND Could not find a descriptor cover the specified
+ range or convertion not allowed.
+ @retval EFI_SUCCESS Successfully converts the memory range to the
+ specified type.
+
+**/
+EFI_STATUS
+CoreConvertPages (
+ IN UINT64 Start,
+ IN UINT64 NumberOfPages,
+ IN EFI_MEMORY_TYPE NewType
+ )
+{
+ return CoreConvertPagesEx(Start, NumberOfPages, TRUE, NewType, FALSE, 0);
+}
+
+
+/**
+ Internal function. Converts a memory range to use new attributes.
+
+ @param Start The first address of the range Must be page
+ aligned
+ @param NumberOfPages The number of pages to convert
+ @param NewAttributes The new attributes value for the range.
+
+**/
+VOID
+CoreUpdateMemoryAttributes (
+ IN EFI_PHYSICAL_ADDRESS Start,
+ IN UINT64 NumberOfPages,
+ IN UINT64 NewAttributes
+ )
+{
+ CoreAcquireMemoryLock ();
+
+ //
+ // Update the attributes to the new value
+ //
+ CoreConvertPagesEx(Start, NumberOfPages, FALSE, (EFI_MEMORY_TYPE)0, TRUE, NewAttributes);
+
+ CoreReleaseMemoryLock ();
+}
+
+
+/**
+ Internal function. Finds a consecutive free page range below
+ the requested address.
+
+ @param MaxAddress The address that the range must be below
+ @param MinAddress The address that the range must be above
+ @param NumberOfPages Number of pages needed
+ @param NewType The type of memory the range is going to be
+ turned into
+ @param Alignment Bits to align with
+ @param NeedGuard Flag to indicate Guard page is needed or not
+
+ @return The base address of the range, or 0 if the range was not found
+
+**/
+UINT64
+CoreFindFreePagesI (
+ IN UINT64 MaxAddress,
+ IN UINT64 MinAddress,
+ IN UINT64 NumberOfPages,
+ IN EFI_MEMORY_TYPE NewType,
+ IN UINTN Alignment,
+ IN BOOLEAN NeedGuard
+ )
+{
+ UINT64 NumberOfBytes;
+ UINT64 Target;
+ UINT64 DescStart;
+ UINT64 DescEnd;
+ UINT64 DescNumberOfBytes;
+ LIST_ENTRY *Link;
+ MEMORY_MAP *Entry;
+
+ if ((MaxAddress < EFI_PAGE_MASK) ||(NumberOfPages == 0)) {
+ return 0;
+ }
+
+ if ((MaxAddress & EFI_PAGE_MASK) != EFI_PAGE_MASK) {
+
+ //
+ // If MaxAddress is not aligned to the end of a page
+ //
+
+ //
+ // Change MaxAddress to be 1 page lower
+ //
+ MaxAddress -= (EFI_PAGE_MASK + 1);
+
+ //
+ // Set MaxAddress to a page boundary
+ //
+ MaxAddress &= ~(UINT64)EFI_PAGE_MASK;
+
+ //
+ // Set MaxAddress to end of the page
+ //
+ MaxAddress |= EFI_PAGE_MASK;
+ }
+
+ NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);
+ Target = 0;
+
+ for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {
+ Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
+
+ //
+ // If it's not a free entry, don't bother with it
+ //
+ if (Entry->Type != EfiConventionalMemory) {
+ continue;
+ }
+
+ DescStart = Entry->Start;
+ DescEnd = Entry->End;
+
+ //
+ // If desc is past max allowed address or below min allowed address, skip it
+ //
+ if ((DescStart >= MaxAddress) || (DescEnd < MinAddress)) {
+ continue;
+ }
+
+ //
+ // If desc ends past max allowed address, clip the end
+ //
+ if (DescEnd >= MaxAddress) {
+ DescEnd = MaxAddress;
+ }
+
+ DescEnd = ((DescEnd + 1) & (~(Alignment - 1))) - 1;
+
+ // Skip if DescEnd is less than DescStart after alignment clipping
+ if (DescEnd < DescStart) {
+ continue;
+ }
+
+ //
+ // Compute the number of bytes we can used from this
+ // descriptor, and see it's enough to satisfy the request
+ //
+ DescNumberOfBytes = DescEnd - DescStart + 1;
+
+ if (DescNumberOfBytes >= NumberOfBytes) {
+ //
+ // If the start of the allocated range is below the min address allowed, skip it
+ //
+ if ((DescEnd - NumberOfBytes + 1) < MinAddress) {
+ continue;
+ }
+
+ //
+ // If this is the best match so far remember it
+ //
+ if (DescEnd > Target) {
+ if (NeedGuard) {
+ DescEnd = AdjustMemoryS (
+ DescEnd + 1 - DescNumberOfBytes,
+ DescNumberOfBytes,
+ NumberOfBytes
+ );
+ if (DescEnd == 0) {
+ continue;
+ }
+ }
+
+ Target = DescEnd;
+ }
+ }
+ }
+
+ //
+ // If this is a grow down, adjust target to be the allocation base
+ //
+ Target -= NumberOfBytes - 1;
+
+ //
+ // If we didn't find a match, return 0
+ //
+ if ((Target & EFI_PAGE_MASK) != 0) {
+ return 0;
+ }
+
+ return Target;
+}
+
+
+/**
+ Internal function. Finds a consecutive free page range below
+ the requested address
+
+ @param MaxAddress The address that the range must be below
+ @param NoPages Number of pages needed
+ @param NewType The type of memory the range is going to be
+ turned into
+ @param Alignment Bits to align with
+ @param NeedGuard Flag to indicate Guard page is needed or not
+
+ @return The base address of the range, or 0 if the range was not found.
+
+**/
+UINT64
+FindFreePages (
+ IN UINT64 MaxAddress,
+ IN UINT64 NoPages,
+ IN EFI_MEMORY_TYPE NewType,
+ IN UINTN Alignment,
+ IN BOOLEAN NeedGuard
+ )
+{
+ UINT64 Start;
+
+ //
+ // Attempt to find free pages in the preferred bin based on the requested memory type
+ //
+ if ((UINT32)NewType < EfiMaxMemoryType && MaxAddress >= mMemoryTypeStatistics[NewType].MaximumAddress) {
+ Start = CoreFindFreePagesI (
+ mMemoryTypeStatistics[NewType].MaximumAddress,
+ mMemoryTypeStatistics[NewType].BaseAddress,
+ NoPages,
+ NewType,
+ Alignment,
+ NeedGuard
+ );
+ if (Start != 0) {
+ return Start;
+ }
+ }
+
+ //
+ // Attempt to find free pages in the default allocation bin
+ //
+ if (MaxAddress >= mDefaultMaximumAddress) {
+ Start = CoreFindFreePagesI (mDefaultMaximumAddress, 0, NoPages, NewType,
+ Alignment, NeedGuard);
+ if (Start != 0) {
+ if (Start < mDefaultBaseAddress) {
+ mDefaultBaseAddress = Start;
+ }
+ return Start;
+ }
+ }
+
+ //
+ // The allocation did not succeed in any of the prefered bins even after
+ // promoting resources. Attempt to find free pages anywhere is the requested
+ // address range. If this allocation fails, then there are not enough
+ // resources anywhere to satisfy the request.
+ //
+ Start = CoreFindFreePagesI (MaxAddress, 0, NoPages, NewType, Alignment,
+ NeedGuard);
+ if (Start != 0) {
+ return Start;
+ }
+
+ //
+ // If allocations from the preferred bins fail, then attempt to promote memory resources.
+ //
+ if (!PromoteMemoryResource ()) {
+ return 0;
+ }
+
+ //
+ // If any memory resources were promoted, then re-attempt the allocation
+ //
+ return FindFreePages (MaxAddress, NoPages, NewType, Alignment, NeedGuard);
+}
+
+
+/**
+ Allocates pages from the memory map.
+
+ @param Type The type of allocation to perform
+ @param MemoryType The type of memory to turn the allocated pages
+ into
+ @param NumberOfPages The number of pages to allocate
+ @param Memory A pointer to receive the base allocated memory
+ address
+ @param NeedGuard Flag to indicate Guard page is needed or not
+
+ @return Status. On success, Memory is filled in with the base address allocated
+ @retval EFI_INVALID_PARAMETER Parameters violate checking rules defined in
+ spec.
+ @retval EFI_NOT_FOUND Could not allocate pages match the requirement.
+ @retval EFI_OUT_OF_RESOURCES No enough pages to allocate.
+ @retval EFI_SUCCESS Pages successfully allocated.
+
+**/
+EFI_STATUS
+EFIAPI
+CoreInternalAllocatePages (
+ IN EFI_ALLOCATE_TYPE Type,
+ IN EFI_MEMORY_TYPE MemoryType,
+ IN UINTN NumberOfPages,
+ IN OUT EFI_PHYSICAL_ADDRESS *Memory,
+ IN BOOLEAN NeedGuard
+ )
+{
+ EFI_STATUS Status;
+ UINT64 Start;
+ UINT64 NumberOfBytes;
+ UINT64 End;
+ UINT64 MaxAddress;
+ UINTN Alignment;
+ EFI_MEMORY_TYPE CheckType;
+
+ if ((UINT32)Type >= MaxAllocateType) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ if ((MemoryType >= EfiMaxMemoryType && MemoryType < MEMORY_TYPE_OEM_RESERVED_MIN) ||
+ (MemoryType == EfiConventionalMemory) || (MemoryType == EfiPersistentMemory)) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ if (Memory == NULL) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ Alignment = DEFAULT_PAGE_ALLOCATION_GRANULARITY;
+
+ if (MemoryType == EfiACPIReclaimMemory ||
+ MemoryType == EfiACPIMemoryNVS ||
+ MemoryType == EfiRuntimeServicesCode ||
+ MemoryType == EfiRuntimeServicesData) {
+
+ Alignment = RUNTIME_PAGE_ALLOCATION_GRANULARITY;
+ }
+
+ if (Type == AllocateAddress) {
+ if ((*Memory & (Alignment - 1)) != 0) {
+ return EFI_NOT_FOUND;
+ }
+ }
+
+ NumberOfPages += EFI_SIZE_TO_PAGES (Alignment) - 1;
+ NumberOfPages &= ~(EFI_SIZE_TO_PAGES (Alignment) - 1);
+
+ //
+ // If this is for below a particular address, then
+ //
+ Start = *Memory;
+
+ //
+ // The max address is the max natively addressable address for the processor
+ //
+ MaxAddress = MAX_ALLOC_ADDRESS;
+
+ //
+ // Check for Type AllocateAddress,
+ // if NumberOfPages is 0 or
+ // if (NumberOfPages << EFI_PAGE_SHIFT) is above MAX_ALLOC_ADDRESS or
+ // if (Start + NumberOfBytes) rolls over 0 or
+ // if Start is above MAX_ALLOC_ADDRESS or
+ // if End is above MAX_ALLOC_ADDRESS,
+ // if Start..End overlaps any tracked MemoryTypeStatistics range
+ // return EFI_NOT_FOUND.
+ //
+ if (Type == AllocateAddress) {
+ if ((NumberOfPages == 0) ||
+ (NumberOfPages > RShiftU64 (MaxAddress, EFI_PAGE_SHIFT))) {
+ return EFI_NOT_FOUND;
+ }
+ NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);
+ End = Start + NumberOfBytes - 1;
+
+ if ((Start >= End) ||
+ (Start > MaxAddress) ||
+ (End > MaxAddress)) {
+ return EFI_NOT_FOUND;
+ }
+
+ //
+ // A driver is allowed to call AllocatePages using an AllocateAddress type. This type of
+ // AllocatePage request the exact physical address if it is not used. The existing code
+ // will allow this request even in 'special' pages. The problem with this is that the
+ // reason to have 'special' pages for OS hibernate/resume is defeated as memory is
+ // fragmented.
+ //
+
+ for (CheckType = (EFI_MEMORY_TYPE) 0; CheckType < EfiMaxMemoryType; CheckType++) {
+ if (MemoryType != CheckType &&
+ mMemoryTypeStatistics[CheckType].Special &&
+ mMemoryTypeStatistics[CheckType].NumberOfPages > 0) {
+ if (Start >= mMemoryTypeStatistics[CheckType].BaseAddress &&
+ Start <= mMemoryTypeStatistics[CheckType].MaximumAddress) {
+ return EFI_NOT_FOUND;
+ }
+ if (End >= mMemoryTypeStatistics[CheckType].BaseAddress &&
+ End <= mMemoryTypeStatistics[CheckType].MaximumAddress) {
+ return EFI_NOT_FOUND;
+ }
+ if (Start < mMemoryTypeStatistics[CheckType].BaseAddress &&
+ End > mMemoryTypeStatistics[CheckType].MaximumAddress) {
+ return EFI_NOT_FOUND;
+ }
+ }
+ }
+ }
+
+ if (Type == AllocateMaxAddress) {
+ MaxAddress = Start;
+ }
+
+ CoreAcquireMemoryLock ();
+
+ //
+ // If not a specific address, then find an address to allocate
+ //
+ if (Type != AllocateAddress) {
+ Start = FindFreePages (MaxAddress, NumberOfPages, MemoryType, Alignment,
+ NeedGuard);
+ if (Start == 0) {
+ Status = EFI_OUT_OF_RESOURCES;
+ goto Done;
+ }
+ }
+
+ //
+ // Convert pages from FreeMemory to the requested type
+ //
+ if (NeedGuard) {
+ Status = CoreConvertPagesWithGuard(Start, NumberOfPages, MemoryType);
+ } else {
+ Status = CoreConvertPages(Start, NumberOfPages, MemoryType);
+ }
+
+Done:
+ CoreReleaseMemoryLock ();
+
+ if (!EFI_ERROR (Status)) {
+ if (NeedGuard) {
+ SetGuardForMemory (Start, NumberOfPages);
+ }
+ *Memory = Start;
+ }
+
+ return Status;
+}
+
+/**
+ Allocates pages from the memory map.
+
+ @param Type The type of allocation to perform
+ @param MemoryType The type of memory to turn the allocated pages
+ into
+ @param NumberOfPages The number of pages to allocate
+ @param Memory A pointer to receive the base allocated memory
+ address
+
+ @return Status. On success, Memory is filled in with the base address allocated
+ @retval EFI_INVALID_PARAMETER Parameters violate checking rules defined in
+ spec.
+ @retval EFI_NOT_FOUND Could not allocate pages match the requirement.
+ @retval EFI_OUT_OF_RESOURCES No enough pages to allocate.
+ @retval EFI_SUCCESS Pages successfully allocated.
+
+**/
+EFI_STATUS
+EFIAPI
+CoreAllocatePages (
+ IN EFI_ALLOCATE_TYPE Type,
+ IN EFI_MEMORY_TYPE MemoryType,
+ IN UINTN NumberOfPages,
+ OUT EFI_PHYSICAL_ADDRESS *Memory
+ )
+{
+ EFI_STATUS Status;
+ BOOLEAN NeedGuard;
+
+ NeedGuard = IsPageTypeToGuard (MemoryType, Type) && !mOnGuarding;
+ Status = CoreInternalAllocatePages (Type, MemoryType, NumberOfPages, Memory,
+ NeedGuard);
+ if (!EFI_ERROR (Status)) {
+ CoreUpdateProfile (
+ (EFI_PHYSICAL_ADDRESS) (UINTN) RETURN_ADDRESS (0),
+ MemoryProfileActionAllocatePages,
+ MemoryType,
+ EFI_PAGES_TO_SIZE (NumberOfPages),
+ (VOID *) (UINTN) *Memory,
+ NULL
+ );
+ InstallMemoryAttributesTableOnMemoryAllocation (MemoryType);
+ ApplyMemoryProtectionPolicy (EfiConventionalMemory, MemoryType, *Memory,
+ EFI_PAGES_TO_SIZE (NumberOfPages));
+ }
+ return Status;
+}
+
+/**
+ Frees previous allocated pages.
+
+ @param Memory Base address of memory being freed
+ @param NumberOfPages The number of pages to free
+ @param MemoryType Pointer to memory type
+
+ @retval EFI_NOT_FOUND Could not find the entry that covers the range
+ @retval EFI_INVALID_PARAMETER Address not aligned
+ @return EFI_SUCCESS -Pages successfully freed.
+
+**/
+EFI_STATUS
+EFIAPI
+CoreInternalFreePages (
+ IN EFI_PHYSICAL_ADDRESS Memory,
+ IN UINTN NumberOfPages,
+ OUT EFI_MEMORY_TYPE *MemoryType OPTIONAL
+ )
+{
+ EFI_STATUS Status;
+ LIST_ENTRY *Link;
+ MEMORY_MAP *Entry;
+ UINTN Alignment;
+ BOOLEAN IsGuarded;
+
+ //
+ // Free the range
+ //
+ CoreAcquireMemoryLock ();
+
+ //
+ // Find the entry that the covers the range
+ //
+ IsGuarded = FALSE;
+ Entry = NULL;
+ for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {
+ Entry = CR(Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
+ if (Entry->Start <= Memory && Entry->End > Memory) {
+ break;
+ }
+ }
+ if (Link == &gMemoryMap) {
+ Status = EFI_NOT_FOUND;
+ goto Done;
+ }
+
+ Alignment = DEFAULT_PAGE_ALLOCATION_GRANULARITY;
+
+ ASSERT (Entry != NULL);
+ if (Entry->Type == EfiACPIReclaimMemory ||
+ Entry->Type == EfiACPIMemoryNVS ||
+ Entry->Type == EfiRuntimeServicesCode ||
+ Entry->Type == EfiRuntimeServicesData) {
+
+ Alignment = RUNTIME_PAGE_ALLOCATION_GRANULARITY;
+
+ }
+
+ if ((Memory & (Alignment - 1)) != 0) {
+ Status = EFI_INVALID_PARAMETER;
+ goto Done;
+ }
+
+ NumberOfPages += EFI_SIZE_TO_PAGES (Alignment) - 1;
+ NumberOfPages &= ~(EFI_SIZE_TO_PAGES (Alignment) - 1);
+
+ if (MemoryType != NULL) {
+ *MemoryType = Entry->Type;
+ }
+
+ IsGuarded = IsPageTypeToGuard (Entry->Type, AllocateAnyPages) &&
+ IsMemoryGuarded (Memory);
+ if (IsGuarded) {
+ Status = CoreConvertPagesWithGuard (Memory, NumberOfPages,
+ EfiConventionalMemory);
+ } else {
+ Status = CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory);
+ }
+
+Done:
+ CoreReleaseMemoryLock ();
+ return Status;
+}
+
+/**
+ Frees previous allocated pages.
+
+ @param Memory Base address of memory being freed
+ @param NumberOfPages The number of pages to free
+
+ @retval EFI_NOT_FOUND Could not find the entry that covers the range
+ @retval EFI_INVALID_PARAMETER Address not aligned
+ @return EFI_SUCCESS -Pages successfully freed.
+
+**/
+EFI_STATUS
+EFIAPI
+CoreFreePages (
+ IN EFI_PHYSICAL_ADDRESS Memory,
+ IN UINTN NumberOfPages
+ )
+{
+ EFI_STATUS Status;
+ EFI_MEMORY_TYPE MemoryType;
+
+ Status = CoreInternalFreePages (Memory, NumberOfPages, &MemoryType);
+ if (!EFI_ERROR (Status)) {
+ GuardFreedPagesChecked (Memory, NumberOfPages);
+ CoreUpdateProfile (
+ (EFI_PHYSICAL_ADDRESS) (UINTN) RETURN_ADDRESS (0),
+ MemoryProfileActionFreePages,
+ MemoryType,
+ EFI_PAGES_TO_SIZE (NumberOfPages),
+ (VOID *) (UINTN) Memory,
+ NULL
+ );
+ InstallMemoryAttributesTableOnMemoryAllocation (MemoryType);
+ ApplyMemoryProtectionPolicy (MemoryType, EfiConventionalMemory, Memory,
+ EFI_PAGES_TO_SIZE (NumberOfPages));
+ }
+ return Status;
+}
+
+/**
+ This function checks to see if the last memory map descriptor in a memory map
+ can be merged with any of the other memory map descriptors in a memorymap.
+ Memory descriptors may be merged if they are adjacent and have the same type
+ and attributes.
+
+ @param MemoryMap A pointer to the start of the memory map.
+ @param MemoryMapDescriptor A pointer to the last descriptor in MemoryMap.
+ @param DescriptorSize The size, in bytes, of an individual
+ EFI_MEMORY_DESCRIPTOR.
+
+ @return A pointer to the next available descriptor in MemoryMap
+
+**/
+EFI_MEMORY_DESCRIPTOR *
+MergeMemoryMapDescriptor (
+ IN EFI_MEMORY_DESCRIPTOR *MemoryMap,
+ IN EFI_MEMORY_DESCRIPTOR *MemoryMapDescriptor,
+ IN UINTN DescriptorSize
+ )
+{
+ //
+ // Traverse the array of descriptors in MemoryMap
+ //
+ for (; MemoryMap != MemoryMapDescriptor; MemoryMap = NEXT_MEMORY_DESCRIPTOR (MemoryMap, DescriptorSize)) {
+ //
+ // Check to see if the Type fields are identical.
+ //
+ if (MemoryMap->Type != MemoryMapDescriptor->Type) {
+ continue;
+ }
+
+ //
+ // Check to see if the Attribute fields are identical.
+ //
+ if (MemoryMap->Attribute != MemoryMapDescriptor->Attribute) {
+ continue;
+ }
+
+ //
+ // Check to see if MemoryMapDescriptor is immediately above MemoryMap
+ //
+ if (MemoryMap->PhysicalStart + EFI_PAGES_TO_SIZE ((UINTN)MemoryMap->NumberOfPages) == MemoryMapDescriptor->PhysicalStart) {
+ //
+ // Merge MemoryMapDescriptor into MemoryMap
+ //
+ MemoryMap->NumberOfPages += MemoryMapDescriptor->NumberOfPages;
+
+ //
+ // Return MemoryMapDescriptor as the next available slot int he MemoryMap array
+ //
+ return MemoryMapDescriptor;
+ }
+
+ //
+ // Check to see if MemoryMapDescriptor is immediately below MemoryMap
+ //
+ if (MemoryMap->PhysicalStart - EFI_PAGES_TO_SIZE ((UINTN)MemoryMapDescriptor->NumberOfPages) == MemoryMapDescriptor->PhysicalStart) {
+ //
+ // Merge MemoryMapDescriptor into MemoryMap
+ //
+ MemoryMap->PhysicalStart = MemoryMapDescriptor->PhysicalStart;
+ MemoryMap->VirtualStart = MemoryMapDescriptor->VirtualStart;
+ MemoryMap->NumberOfPages += MemoryMapDescriptor->NumberOfPages;
+
+ //
+ // Return MemoryMapDescriptor as the next available slot int he MemoryMap array
+ //
+ return MemoryMapDescriptor;
+ }
+ }
+
+ //
+ // MemoryMapDescrtiptor could not be merged with any descriptors in MemoryMap.
+ //
+ // Return the slot immediately after MemoryMapDescriptor as the next available
+ // slot in the MemoryMap array
+ //
+ return NEXT_MEMORY_DESCRIPTOR (MemoryMapDescriptor, DescriptorSize);
+}
+
+/**
+ This function returns a copy of the current memory map. The map is an array of
+ memory descriptors, each of which describes a contiguous block of memory.
+
+ @param MemoryMapSize A pointer to the size, in bytes, of the
+ MemoryMap buffer. On input, this is the size of
+ the buffer allocated by the caller. On output,
+ it is the size of the buffer returned by the
+ firmware if the buffer was large enough, or the
+ size of the buffer needed to contain the map if
+ the buffer was too small.
+ @param MemoryMap A pointer to the buffer in which firmware places
+ the current memory map.
+ @param MapKey A pointer to the location in which firmware
+ returns the key for the current memory map.
+ @param DescriptorSize A pointer to the location in which firmware
+ returns the size, in bytes, of an individual
+ EFI_MEMORY_DESCRIPTOR.
+ @param DescriptorVersion A pointer to the location in which firmware
+ returns the version number associated with the
+ EFI_MEMORY_DESCRIPTOR.
+
+ @retval EFI_SUCCESS The memory map was returned in the MemoryMap
+ buffer.
+ @retval EFI_BUFFER_TOO_SMALL The MemoryMap buffer was too small. The current
+ buffer size needed to hold the memory map is
+ returned in MemoryMapSize.
+ @retval EFI_INVALID_PARAMETER One of the parameters has an invalid value.
+
+**/
+EFI_STATUS
+EFIAPI
+CoreGetMemoryMap (
+ IN OUT UINTN *MemoryMapSize,
+ IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap,
+ OUT UINTN *MapKey,
+ OUT UINTN *DescriptorSize,
+ OUT UINT32 *DescriptorVersion
+ )
+{
+ EFI_STATUS Status;
+ UINTN Size;
+ UINTN BufferSize;
+ UINTN NumberOfEntries;
+ LIST_ENTRY *Link;
+ MEMORY_MAP *Entry;
+ EFI_GCD_MAP_ENTRY *GcdMapEntry;
+ EFI_GCD_MAP_ENTRY MergeGcdMapEntry;
+ EFI_MEMORY_TYPE Type;
+ EFI_MEMORY_DESCRIPTOR *MemoryMapStart;
+ EFI_MEMORY_DESCRIPTOR *MemoryMapEnd;
+
+ //
+ // Make sure the parameters are valid
+ //
+ if (MemoryMapSize == NULL) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ CoreAcquireGcdMemoryLock ();
+
+ //
+ // Count the number of Reserved and runtime MMIO entries
+ // And, count the number of Persistent entries.
+ //
+ NumberOfEntries = 0;
+ for (Link = mGcdMemorySpaceMap.ForwardLink; Link != &mGcdMemorySpaceMap; Link = Link->ForwardLink) {
+ GcdMapEntry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);
+ if ((GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypePersistent) ||
+ (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) ||
+ ((GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) &&
+ ((GcdMapEntry->Attributes & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME))) {
+ NumberOfEntries ++;
+ }
+ }
+
+ Size = sizeof (EFI_MEMORY_DESCRIPTOR);
+
+ //
+ // Make sure Size != sizeof(EFI_MEMORY_DESCRIPTOR). This will
+ // prevent people from having pointer math bugs in their code.
+ // now you have to use *DescriptorSize to make things work.
+ //
+ Size += sizeof(UINT64) - (Size % sizeof (UINT64));
+
+ if (DescriptorSize != NULL) {
+ *DescriptorSize = Size;
+ }
+
+ if (DescriptorVersion != NULL) {
+ *DescriptorVersion = EFI_MEMORY_DESCRIPTOR_VERSION;
+ }
+
+ CoreAcquireMemoryLock ();
+
+ //
+ // Compute the buffer size needed to fit the entire map
+ //
+ BufferSize = Size * NumberOfEntries;
+ for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {
+ BufferSize += Size;
+ }
+
+ if (*MemoryMapSize < BufferSize) {
+ Status = EFI_BUFFER_TOO_SMALL;
+ goto Done;
+ }
+
+ if (MemoryMap == NULL) {
+ Status = EFI_INVALID_PARAMETER;
+ goto Done;
+ }
+
+ //
+ // Build the map
+ //
+ ZeroMem (MemoryMap, BufferSize);
+ MemoryMapStart = MemoryMap;
+ for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {
+ Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
+ ASSERT (Entry->VirtualStart == 0);
+
+ //
+ // Convert internal map into an EFI_MEMORY_DESCRIPTOR
+ //
+ MemoryMap->Type = Entry->Type;
+ MemoryMap->PhysicalStart = Entry->Start;
+ MemoryMap->VirtualStart = Entry->VirtualStart;
+ MemoryMap->NumberOfPages = RShiftU64 (Entry->End - Entry->Start + 1, EFI_PAGE_SHIFT);
+ //
+ // If the memory type is EfiConventionalMemory, then determine if the range is part of a
+ // memory type bin and needs to be converted to the same memory type as the rest of the
+ // memory type bin in order to minimize EFI Memory Map changes across reboots. This
+ // improves the chances for a successful S4 resume in the presence of minor page allocation
+ // differences across reboots.
+ //
+ if (MemoryMap->Type == EfiConventionalMemory) {
+ for (Type = (EFI_MEMORY_TYPE) 0; Type < EfiMaxMemoryType; Type++) {
+ if (mMemoryTypeStatistics[Type].Special &&
+ mMemoryTypeStatistics[Type].NumberOfPages > 0 &&
+ Entry->Start >= mMemoryTypeStatistics[Type].BaseAddress &&
+ Entry->End <= mMemoryTypeStatistics[Type].MaximumAddress) {
+ MemoryMap->Type = Type;
+ }
+ }
+ }
+ MemoryMap->Attribute = Entry->Attribute;
+ if (MemoryMap->Type < EfiMaxMemoryType) {
+ if (mMemoryTypeStatistics[MemoryMap->Type].Runtime) {
+ MemoryMap->Attribute |= EFI_MEMORY_RUNTIME;
+ }
+ }
+
+ //
+ // Check to see if the new Memory Map Descriptor can be merged with an
+ // existing descriptor if they are adjacent and have the same attributes
+ //
+ MemoryMap = MergeMemoryMapDescriptor (MemoryMapStart, MemoryMap, Size);
+ }
+
+
+ ZeroMem (&MergeGcdMapEntry, sizeof (MergeGcdMapEntry));
+ GcdMapEntry = NULL;
+ for (Link = mGcdMemorySpaceMap.ForwardLink; ; Link = Link->ForwardLink) {
+ if (Link != &mGcdMemorySpaceMap) {
+ //
+ // Merge adjacent same type and attribute GCD memory range
+ //
+ GcdMapEntry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);
+
+ if ((MergeGcdMapEntry.Capabilities == GcdMapEntry->Capabilities) &&
+ (MergeGcdMapEntry.Attributes == GcdMapEntry->Attributes) &&
+ (MergeGcdMapEntry.GcdMemoryType == GcdMapEntry->GcdMemoryType) &&
+ (MergeGcdMapEntry.GcdIoType == GcdMapEntry->GcdIoType)) {
+ MergeGcdMapEntry.EndAddress = GcdMapEntry->EndAddress;
+ continue;
+ }
+ }
+
+ if ((MergeGcdMapEntry.GcdMemoryType == EfiGcdMemoryTypeReserved) ||
+ ((MergeGcdMapEntry.GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) &&
+ ((MergeGcdMapEntry.Attributes & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME))) {
+ //
+ // Page Align GCD range is required. When it is converted to EFI_MEMORY_DESCRIPTOR,
+ // it will be recorded as page PhysicalStart and NumberOfPages.
+ //
+ ASSERT ((MergeGcdMapEntry.BaseAddress & EFI_PAGE_MASK) == 0);
+ ASSERT (((MergeGcdMapEntry.EndAddress - MergeGcdMapEntry.BaseAddress + 1) & EFI_PAGE_MASK) == 0);
+
+ //
+ // Create EFI_MEMORY_DESCRIPTOR for every Reserved and runtime MMIO GCD entries
+ //
+ MemoryMap->PhysicalStart = MergeGcdMapEntry.BaseAddress;
+ MemoryMap->VirtualStart = 0;
+ MemoryMap->NumberOfPages = RShiftU64 ((MergeGcdMapEntry.EndAddress - MergeGcdMapEntry.BaseAddress + 1), EFI_PAGE_SHIFT);
+ MemoryMap->Attribute = (MergeGcdMapEntry.Attributes & ~EFI_MEMORY_PORT_IO) |
+ (MergeGcdMapEntry.Capabilities & (EFI_CACHE_ATTRIBUTE_MASK | EFI_MEMORY_ATTRIBUTE_MASK));
+
+ if (MergeGcdMapEntry.GcdMemoryType == EfiGcdMemoryTypeReserved) {
+ MemoryMap->Type = EfiReservedMemoryType;
+ } else if (MergeGcdMapEntry.GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) {
+ if ((MergeGcdMapEntry.Attributes & EFI_MEMORY_PORT_IO) == EFI_MEMORY_PORT_IO) {
+ MemoryMap->Type = EfiMemoryMappedIOPortSpace;
+ } else {
+ MemoryMap->Type = EfiMemoryMappedIO;
+ }
+ }
+
+ //
+ // Check to see if the new Memory Map Descriptor can be merged with an
+ // existing descriptor if they are adjacent and have the same attributes
+ //
+ MemoryMap = MergeMemoryMapDescriptor (MemoryMapStart, MemoryMap, Size);
+ }
+
+ if (MergeGcdMapEntry.GcdMemoryType == EfiGcdMemoryTypePersistent) {
+ //
+ // Page Align GCD range is required. When it is converted to EFI_MEMORY_DESCRIPTOR,
+ // it will be recorded as page PhysicalStart and NumberOfPages.
+ //
+ ASSERT ((MergeGcdMapEntry.BaseAddress & EFI_PAGE_MASK) == 0);
+ ASSERT (((MergeGcdMapEntry.EndAddress - MergeGcdMapEntry.BaseAddress + 1) & EFI_PAGE_MASK) == 0);
+
+ //
+ // Create EFI_MEMORY_DESCRIPTOR for every Persistent GCD entries
+ //
+ MemoryMap->PhysicalStart = MergeGcdMapEntry.BaseAddress;
+ MemoryMap->VirtualStart = 0;
+ MemoryMap->NumberOfPages = RShiftU64 ((MergeGcdMapEntry.EndAddress - MergeGcdMapEntry.BaseAddress + 1), EFI_PAGE_SHIFT);
+ MemoryMap->Attribute = MergeGcdMapEntry.Attributes | EFI_MEMORY_NV |
+ (MergeGcdMapEntry.Capabilities & (EFI_CACHE_ATTRIBUTE_MASK | EFI_MEMORY_ATTRIBUTE_MASK));
+ MemoryMap->Type = EfiPersistentMemory;
+
+ //
+ // Check to see if the new Memory Map Descriptor can be merged with an
+ // existing descriptor if they are adjacent and have the same attributes
+ //
+ MemoryMap = MergeMemoryMapDescriptor (MemoryMapStart, MemoryMap, Size);
+ }
+ if (Link == &mGcdMemorySpaceMap) {
+ //
+ // break loop when arrive at head.
+ //
+ break;
+ }
+ if (GcdMapEntry != NULL) {
+ //
+ // Copy new GCD map entry for the following GCD range merge
+ //
+ CopyMem (&MergeGcdMapEntry, GcdMapEntry, sizeof (MergeGcdMapEntry));
+ }
+ }
+
+ //
+ // Compute the size of the buffer actually used after all memory map descriptor merge operations
+ //
+ BufferSize = ((UINT8 *)MemoryMap - (UINT8 *)MemoryMapStart);
+
+ //
+ // Note: Some OSs will treat EFI_MEMORY_DESCRIPTOR.Attribute as really
+ // set attributes and change memory paging attribute accordingly.
+ // But current EFI_MEMORY_DESCRIPTOR.Attribute is assigned by
+ // value from Capabilities in GCD memory map. This might cause
+ // boot problems. Clearing all page-access permission related
+ // capabilities can workaround it. Following code is supposed to
+ // be removed once the usage of EFI_MEMORY_DESCRIPTOR.Attribute
+ // is clarified in UEFI spec and adopted by both EDK-II Core and
+ // all supported OSs.
+ //
+ MemoryMapEnd = MemoryMap;
+ MemoryMap = MemoryMapStart;
+ while (MemoryMap < MemoryMapEnd) {
+ MemoryMap->Attribute &= ~(UINT64)EFI_MEMORY_ACCESS_MASK;
+ MemoryMap = NEXT_MEMORY_DESCRIPTOR (MemoryMap, Size);
+ }
+ MergeMemoryMap (MemoryMapStart, &BufferSize, Size);
+ MemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *)((UINT8 *)MemoryMapStart + BufferSize);
+
+ Status = EFI_SUCCESS;
+
+Done:
+ //
+ // Update the map key finally
+ //
+ if (MapKey != NULL) {
+ *MapKey = mMemoryMapKey;
+ }
+
+ CoreReleaseMemoryLock ();
+
+ CoreReleaseGcdMemoryLock ();
+
+ *MemoryMapSize = BufferSize;
+
+ DEBUG_CODE (
+ DumpGuardedMemoryBitmap ();
+ );
+
+ return Status;
+}
+
+
+/**
+ Internal function. Used by the pool functions to allocate pages
+ to back pool allocation requests.
+
+ @param PoolType The type of memory for the new pool pages
+ @param NumberOfPages No of pages to allocate
+ @param Alignment Bits to align.
+ @param NeedGuard Flag to indicate Guard page is needed or not
+
+ @return The allocated memory, or NULL
+
+**/
+VOID *
+CoreAllocatePoolPages (
+ IN EFI_MEMORY_TYPE PoolType,
+ IN UINTN NumberOfPages,
+ IN UINTN Alignment,
+ IN BOOLEAN NeedGuard
+ )
+{
+ UINT64 Start;
+
+ //
+ // Find the pages to convert
+ //
+ Start = FindFreePages (MAX_ALLOC_ADDRESS, NumberOfPages, PoolType, Alignment,
+ NeedGuard);
+
+ //
+ // Convert it to boot services data
+ //
+ if (Start == 0) {
+ DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "AllocatePoolPages: failed to allocate %d pages\n", (UINT32)NumberOfPages));
+ } else {
+ if (NeedGuard) {
+ CoreConvertPagesWithGuard (Start, NumberOfPages, PoolType);
+ } else {
+ CoreConvertPages (Start, NumberOfPages, PoolType);
+ }
+ }
+
+ return (VOID *)(UINTN) Start;
+}
+
+
+/**
+ Internal function. Frees pool pages allocated via AllocatePoolPages ()
+
+ @param Memory The base address to free
+ @param NumberOfPages The number of pages to free
+
+**/
+VOID
+CoreFreePoolPages (
+ IN EFI_PHYSICAL_ADDRESS Memory,
+ IN UINTN NumberOfPages
+ )
+{
+ CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory);
+}
+
+
+
+/**
+ Make sure the memory map is following all the construction rules,
+ it is the last time to check memory map error before exit boot services.
+
+ @param MapKey Memory map key
+
+ @retval EFI_INVALID_PARAMETER Memory map not consistent with construction
+ rules.
+ @retval EFI_SUCCESS Valid memory map.
+
+**/
+EFI_STATUS
+CoreTerminateMemoryMap (
+ IN UINTN MapKey
+ )
+{
+ EFI_STATUS Status;
+ LIST_ENTRY *Link;
+ MEMORY_MAP *Entry;
+
+ Status = EFI_SUCCESS;
+
+ CoreAcquireMemoryLock ();
+
+ if (MapKey == mMemoryMapKey) {
+
+ //
+ // Make sure the memory map is following all the construction rules
+ // This is the last chance we will be able to display any messages on
+ // the console devices.
+ //
+
+ for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {
+ Entry = CR(Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
+ if (Entry->Type < EfiMaxMemoryType) {
+ if (mMemoryTypeStatistics[Entry->Type].Runtime) {
+ ASSERT (Entry->Type != EfiACPIReclaimMemory);
+ ASSERT (Entry->Type != EfiACPIMemoryNVS);
+ if ((Entry->Start & (RUNTIME_PAGE_ALLOCATION_GRANULARITY - 1)) != 0) {
+ DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: A RUNTIME memory entry is not on a proper alignment.\n"));
+ Status = EFI_INVALID_PARAMETER;
+ goto Done;
+ }
+ if (((Entry->End + 1) & (RUNTIME_PAGE_ALLOCATION_GRANULARITY - 1)) != 0) {
+ DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: A RUNTIME memory entry is not on a proper alignment.\n"));
+ Status = EFI_INVALID_PARAMETER;
+ goto Done;
+ }
+ }
+ }
+ }
+
+ //
+ // The map key they gave us matches what we expect. Fall through and
+ // return success. In an ideal world we would clear out all of
+ // EfiBootServicesCode and EfiBootServicesData. However this function
+ // is not the last one called by ExitBootServices(), so we have to
+ // preserve the memory contents.
+ //
+ } else {
+ Status = EFI_INVALID_PARAMETER;
+ }
+
+Done:
+ CoreReleaseMemoryLock ();
+
+ return Status;
+}
+
+
+
+
+
+
+
+
+
diff --git a/src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/Pool.c b/src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/Pool.c
new file mode 100644
index 00000000..0294ec5f
--- /dev/null
+++ b/src/VBox/Devices/EFI/Firmware/MdeModulePkg/Core/Dxe/Mem/Pool.c
@@ -0,0 +1,857 @@
+/** @file
+ UEFI Memory pool management functions.
+
+Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
+SPDX-License-Identifier: BSD-2-Clause-Patent
+
+**/
+
+#include "DxeMain.h"
+#include "Imem.h"
+#include "HeapGuard.h"
+
+STATIC EFI_LOCK mPoolMemoryLock = EFI_INITIALIZE_LOCK_VARIABLE (TPL_NOTIFY);
+
+#define POOL_FREE_SIGNATURE SIGNATURE_32('p','f','r','0')
+typedef struct {
+ UINT32 Signature;
+ UINT32 Index;
+ LIST_ENTRY Link;
+} POOL_FREE;
+
+
+#define POOL_HEAD_SIGNATURE SIGNATURE_32('p','h','d','0')
+#define POOLPAGE_HEAD_SIGNATURE SIGNATURE_32('p','h','d','1')
+typedef struct {
+ UINT32 Signature;
+ UINT32 Reserved;
+ EFI_MEMORY_TYPE Type;
+ UINTN Size;
+ CHAR8 Data[1];
+} POOL_HEAD;
+
+#define SIZE_OF_POOL_HEAD OFFSET_OF(POOL_HEAD,Data)
+
+#define POOL_TAIL_SIGNATURE SIGNATURE_32('p','t','a','l')
+typedef struct {
+ UINT32 Signature;
+ UINT32 Reserved;
+ UINTN Size;
+} POOL_TAIL;
+
+#define POOL_OVERHEAD (SIZE_OF_POOL_HEAD + sizeof(POOL_TAIL))
+
+#define HEAD_TO_TAIL(a) \
+ ((POOL_TAIL *) (((CHAR8 *) (a)) + (a)->Size - sizeof(POOL_TAIL)));
+
+//
+// Each element is the sum of the 2 previous ones: this allows us to migrate
+// blocks between bins by splitting them up, while not wasting too much memory
+// as we would in a strict power-of-2 sequence
+//
+STATIC CONST UINT16 mPoolSizeTable[] = {
+ 128, 256, 384, 640, 1024, 1664, 2688, 4352, 7040, 11392, 18432, 29824
+};
+
+#define SIZE_TO_LIST(a) (GetPoolIndexFromSize (a))
+#define LIST_TO_SIZE(a) (mPoolSizeTable [a])
+
+#define MAX_POOL_LIST (ARRAY_SIZE (mPoolSizeTable))
+
+#define MAX_POOL_SIZE (MAX_ADDRESS - POOL_OVERHEAD)
+
+//
+// Globals
+//
+
+#define POOL_SIGNATURE SIGNATURE_32('p','l','s','t')
+typedef struct {
+ INTN Signature;
+ UINTN Used;
+ EFI_MEMORY_TYPE MemoryType;
+ LIST_ENTRY FreeList[MAX_POOL_LIST];
+ LIST_ENTRY Link;
+} POOL;
+
+//
+// Pool header for each memory type.
+//
+POOL mPoolHead[EfiMaxMemoryType];
+
+//
+// List of pool header to search for the appropriate memory type.
+//
+LIST_ENTRY mPoolHeadList = INITIALIZE_LIST_HEAD_VARIABLE (mPoolHeadList);
+
+/**
+ Get pool size table index from the specified size.
+
+ @param Size The specified size to get index from pool table.
+
+ @return The index of pool size table.
+
+**/
+STATIC
+UINTN
+GetPoolIndexFromSize (
+ UINTN Size
+ )
+{
+ UINTN Index;
+
+ for (Index = 0; Index < MAX_POOL_LIST; Index++) {
+ if (mPoolSizeTable [Index] >= Size) {
+ return Index;
+ }
+ }
+ return MAX_POOL_LIST;
+}
+
+/**
+ Called to initialize the pool.
+
+**/
+VOID
+CoreInitializePool (
+ VOID
+ )
+{
+ UINTN Type;
+ UINTN Index;
+
+ for (Type=0; Type < EfiMaxMemoryType; Type++) {
+ mPoolHead[Type].Signature = 0;
+ mPoolHead[Type].Used = 0;
+ mPoolHead[Type].MemoryType = (EFI_MEMORY_TYPE) Type;
+ for (Index=0; Index < MAX_POOL_LIST; Index++) {
+ InitializeListHead (&mPoolHead[Type].FreeList[Index]);
+ }
+ }
+}
+
+
+/**
+ Look up pool head for specified memory type.
+
+ @param MemoryType Memory type of which pool head is looked for
+
+ @return Pointer of Corresponding pool head.
+
+**/
+POOL *
+LookupPoolHead (
+ IN EFI_MEMORY_TYPE MemoryType
+ )
+{
+ LIST_ENTRY *Link;
+ POOL *Pool;
+ UINTN Index;
+
+ if ((UINT32)MemoryType < EfiMaxMemoryType) {
+ return &mPoolHead[MemoryType];
+ }
+
+ //
+ // MemoryType values in the range 0x80000000..0xFFFFFFFF are reserved for use by UEFI
+ // OS loaders that are provided by operating system vendors.
+ // MemoryType values in the range 0x70000000..0x7FFFFFFF are reserved for OEM use.
+ //
+ if ((UINT32) MemoryType >= MEMORY_TYPE_OEM_RESERVED_MIN) {
+
+ for (Link = mPoolHeadList.ForwardLink; Link != &mPoolHeadList; Link = Link->ForwardLink) {
+ Pool = CR(Link, POOL, Link, POOL_SIGNATURE);
+ if (Pool->MemoryType == MemoryType) {
+ return Pool;
+ }
+ }
+
+ Pool = CoreAllocatePoolI (EfiBootServicesData, sizeof (POOL), FALSE);
+ if (Pool == NULL) {
+ return NULL;
+ }
+
+ Pool->Signature = POOL_SIGNATURE;
+ Pool->Used = 0;
+ Pool->MemoryType = MemoryType;
+ for (Index=0; Index < MAX_POOL_LIST; Index++) {
+ InitializeListHead (&Pool->FreeList[Index]);
+ }
+
+ InsertHeadList (&mPoolHeadList, &Pool->Link);
+
+ return Pool;
+ }
+
+ return NULL;
+}
+
+
+
+/**
+ Allocate pool of a particular type.
+
+ @param PoolType Type of pool to allocate
+ @param Size The amount of pool to allocate
+ @param Buffer The address to return a pointer to the allocated
+ pool
+
+ @retval EFI_INVALID_PARAMETER Buffer is NULL.
+ PoolType is in the range EfiMaxMemoryType..0x6FFFFFFF.
+ PoolType is EfiPersistentMemory.
+ @retval EFI_OUT_OF_RESOURCES Size exceeds max pool size or allocation failed.
+ @retval EFI_SUCCESS Pool successfully allocated.
+
+**/
+EFI_STATUS
+EFIAPI
+CoreInternalAllocatePool (
+ IN EFI_MEMORY_TYPE PoolType,
+ IN UINTN Size,
+ OUT VOID **Buffer
+ )
+{
+ EFI_STATUS Status;
+ BOOLEAN NeedGuard;
+
+ //
+ // If it's not a valid type, fail it
+ //
+ if ((PoolType >= EfiMaxMemoryType && PoolType < MEMORY_TYPE_OEM_RESERVED_MIN) ||
+ (PoolType == EfiConventionalMemory) || (PoolType == EfiPersistentMemory)) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ if (Buffer == NULL) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ *Buffer = NULL;
+
+ //
+ // If size is too large, fail it
+ // Base on the EFI spec, return status of EFI_OUT_OF_RESOURCES
+ //
+ if (Size > MAX_POOL_SIZE) {
+ return EFI_OUT_OF_RESOURCES;
+ }
+
+ NeedGuard = IsPoolTypeToGuard (PoolType) && !mOnGuarding;
+
+ //
+ // Acquire the memory lock and make the allocation
+ //
+ Status = CoreAcquireLockOrFail (&mPoolMemoryLock);
+ if (EFI_ERROR (Status)) {
+ return EFI_OUT_OF_RESOURCES;
+ }
+
+ *Buffer = CoreAllocatePoolI (PoolType, Size, NeedGuard);
+ CoreReleaseLock (&mPoolMemoryLock);
+ return (*Buffer != NULL) ? EFI_SUCCESS : EFI_OUT_OF_RESOURCES;
+}
+
+/**
+ Allocate pool of a particular type.
+
+ @param PoolType Type of pool to allocate
+ @param Size The amount of pool to allocate
+ @param Buffer The address to return a pointer to the allocated
+ pool
+
+ @retval EFI_INVALID_PARAMETER Buffer is NULL.
+ PoolType is in the range EfiMaxMemoryType..0x6FFFFFFF.
+ PoolType is EfiPersistentMemory.
+ @retval EFI_OUT_OF_RESOURCES Size exceeds max pool size or allocation failed.
+ @retval EFI_SUCCESS Pool successfully allocated.
+
+**/
+EFI_STATUS
+EFIAPI
+CoreAllocatePool (
+ IN EFI_MEMORY_TYPE PoolType,
+ IN UINTN Size,
+ OUT VOID **Buffer
+ )
+{
+ EFI_STATUS Status;
+
+ Status = CoreInternalAllocatePool (PoolType, Size, Buffer);
+ if (!EFI_ERROR (Status)) {
+ CoreUpdateProfile (
+ (EFI_PHYSICAL_ADDRESS) (UINTN) RETURN_ADDRESS (0),
+ MemoryProfileActionAllocatePool,
+ PoolType,
+ Size,
+ *Buffer,
+ NULL
+ );
+ InstallMemoryAttributesTableOnMemoryAllocation (PoolType);
+ }
+ return Status;
+}
+
+/**
+ Internal function. Used by the pool functions to allocate pages
+ to back pool allocation requests.
+
+ @param PoolType The type of memory for the new pool pages
+ @param NoPages No of pages to allocate
+ @param Granularity Bits to align.
+ @param NeedGuard Flag to indicate Guard page is needed or not
+
+ @return The allocated memory, or NULL
+
+**/
+STATIC
+VOID *
+CoreAllocatePoolPagesI (
+ IN EFI_MEMORY_TYPE PoolType,
+ IN UINTN NoPages,
+ IN UINTN Granularity,
+ IN BOOLEAN NeedGuard
+ )
+{
+ VOID *Buffer;
+ EFI_STATUS Status;
+
+ Status = CoreAcquireLockOrFail (&gMemoryLock);
+ if (EFI_ERROR (Status)) {
+ return NULL;
+ }
+
+ Buffer = CoreAllocatePoolPages (PoolType, NoPages, Granularity, NeedGuard);
+ CoreReleaseMemoryLock ();
+
+ if (Buffer != NULL) {
+ if (NeedGuard) {
+ SetGuardForMemory ((EFI_PHYSICAL_ADDRESS)(UINTN)Buffer, NoPages);
+ }
+ ApplyMemoryProtectionPolicy(EfiConventionalMemory, PoolType,
+ (EFI_PHYSICAL_ADDRESS)(UINTN)Buffer, EFI_PAGES_TO_SIZE (NoPages));
+ }
+ return Buffer;
+}
+
+/**
+ Internal function to allocate pool of a particular type.
+ Caller must have the memory lock held
+
+ @param PoolType Type of pool to allocate
+ @param Size The amount of pool to allocate
+ @param NeedGuard Flag to indicate Guard page is needed or not
+
+ @return The allocate pool, or NULL
+
+**/
+VOID *
+CoreAllocatePoolI (
+ IN EFI_MEMORY_TYPE PoolType,
+ IN UINTN Size,
+ IN BOOLEAN NeedGuard
+ )
+{
+ POOL *Pool;
+ POOL_FREE *Free;
+ POOL_HEAD *Head;
+ POOL_TAIL *Tail;
+ CHAR8 *NewPage;
+ VOID *Buffer;
+ UINTN Index;
+ UINTN FSize;
+ UINTN Offset, MaxOffset;
+ UINTN NoPages;
+ UINTN Granularity;
+ BOOLEAN HasPoolTail;
+ BOOLEAN PageAsPool;
+
+ ASSERT_LOCKED (&mPoolMemoryLock);
+
+ if (PoolType == EfiACPIReclaimMemory ||
+ PoolType == EfiACPIMemoryNVS ||
+ PoolType == EfiRuntimeServicesCode ||
+ PoolType == EfiRuntimeServicesData) {
+
+ Granularity = RUNTIME_PAGE_ALLOCATION_GRANULARITY;
+ } else {
+ Granularity = DEFAULT_PAGE_ALLOCATION_GRANULARITY;
+ }
+
+ //
+ // Adjust the size by the pool header & tail overhead
+ //
+
+ HasPoolTail = !(NeedGuard &&
+ ((PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) == 0));
+ PageAsPool = (IsHeapGuardEnabled (GUARD_HEAP_TYPE_FREED) && !mOnGuarding);
+
+ //
+ // Adjusting the Size to be of proper alignment so that
+ // we don't get an unaligned access fault later when
+ // pool_Tail is being initialized
+ //
+ Size = ALIGN_VARIABLE (Size);
+
+ Size += POOL_OVERHEAD;
+ Index = SIZE_TO_LIST(Size);
+ Pool = LookupPoolHead (PoolType);
+ if (Pool== NULL) {
+ return NULL;
+ }
+ Head = NULL;
+
+ //
+ // If allocation is over max size, just allocate pages for the request
+ // (slow)
+ //
+ if (Index >= SIZE_TO_LIST (Granularity) || NeedGuard || PageAsPool) {
+ if (!HasPoolTail) {
+ Size -= sizeof (POOL_TAIL);
+ }
+ NoPages = EFI_SIZE_TO_PAGES (Size) + EFI_SIZE_TO_PAGES (Granularity) - 1;
+ NoPages &= ~(UINTN)(EFI_SIZE_TO_PAGES (Granularity) - 1);
+ Head = CoreAllocatePoolPagesI (PoolType, NoPages, Granularity, NeedGuard);
+ if (NeedGuard) {
+ Head = AdjustPoolHeadA ((EFI_PHYSICAL_ADDRESS)(UINTN)Head, NoPages, Size);
+ }
+ goto Done;
+ }
+
+ //
+ // If there's no free pool in the proper list size, go get some more pages
+ //
+ if (IsListEmpty (&Pool->FreeList[Index])) {
+
+ Offset = LIST_TO_SIZE (Index);
+ MaxOffset = Granularity;
+
+ //
+ // Check the bins holding larger blocks, and carve one up if needed
+ //
+ while (++Index < SIZE_TO_LIST (Granularity)) {
+ if (!IsListEmpty (&Pool->FreeList[Index])) {
+ Free = CR (Pool->FreeList[Index].ForwardLink, POOL_FREE, Link, POOL_FREE_SIGNATURE);
+ RemoveEntryList (&Free->Link);
+ NewPage = (VOID *) Free;
+ MaxOffset = LIST_TO_SIZE (Index);
+ goto Carve;
+ }
+ }
+
+ //
+ // Get another page
+ //
+ NewPage = CoreAllocatePoolPagesI (PoolType, EFI_SIZE_TO_PAGES (Granularity),
+ Granularity, NeedGuard);
+ if (NewPage == NULL) {
+ goto Done;
+ }
+
+ //
+ // Serve the allocation request from the head of the allocated block
+ //
+Carve:
+ Head = (POOL_HEAD *) NewPage;
+
+ //
+ // Carve up remaining space into free pool blocks
+ //
+ Index--;
+ while (Offset < MaxOffset) {
+ ASSERT (Index < MAX_POOL_LIST);
+ FSize = LIST_TO_SIZE(Index);
+
+ while (Offset + FSize <= MaxOffset) {
+ Free = (POOL_FREE *) &NewPage[Offset];
+ Free->Signature = POOL_FREE_SIGNATURE;
+ Free->Index = (UINT32)Index;
+ InsertHeadList (&Pool->FreeList[Index], &Free->Link);
+ Offset += FSize;
+ }
+ Index -= 1;
+ }
+
+ ASSERT (Offset == MaxOffset);
+ goto Done;
+ }
+
+ //
+ // Remove entry from free pool list
+ //
+ Free = CR (Pool->FreeList[Index].ForwardLink, POOL_FREE, Link, POOL_FREE_SIGNATURE);
+ RemoveEntryList (&Free->Link);
+
+ Head = (POOL_HEAD *) Free;
+
+Done:
+ Buffer = NULL;
+
+ if (Head != NULL) {
+
+ //
+ // Account the allocation
+ //
+ Pool->Used += Size;
+
+ //
+ // If we have a pool buffer, fill in the header & tail info
+ //
+ Head->Signature = (PageAsPool) ? POOLPAGE_HEAD_SIGNATURE : POOL_HEAD_SIGNATURE;
+ Head->Size = Size;
+ Head->Type = (EFI_MEMORY_TYPE) PoolType;
+ Buffer = Head->Data;
+
+ if (HasPoolTail) {
+ Tail = HEAD_TO_TAIL (Head);
+ Tail->Signature = POOL_TAIL_SIGNATURE;
+ Tail->Size = Size;
+
+ Size -= POOL_OVERHEAD;
+ } else {
+ Size -= SIZE_OF_POOL_HEAD;
+ }
+
+ DEBUG_CLEAR_MEMORY (Buffer, Size);
+
+ DEBUG ((
+ DEBUG_POOL,
+ "AllocatePoolI: Type %x, Addr %p (len %lx) %,ld\n", PoolType,
+ Buffer,
+ (UINT64)Size,
+ (UINT64) Pool->Used
+ ));
+
+
+ } else {
+ DEBUG ((DEBUG_ERROR | DEBUG_POOL, "AllocatePool: failed to allocate %ld bytes\n", (UINT64) Size));
+ }
+
+ return Buffer;
+}
+
+
+
+/**
+ Frees pool.
+
+ @param Buffer The allocated pool entry to free
+ @param PoolType Pointer to pool type
+
+ @retval EFI_INVALID_PARAMETER Buffer is not a valid value.
+ @retval EFI_SUCCESS Pool successfully freed.
+
+**/
+EFI_STATUS
+EFIAPI
+CoreInternalFreePool (
+ IN VOID *Buffer,
+ OUT EFI_MEMORY_TYPE *PoolType OPTIONAL
+ )
+{
+ EFI_STATUS Status;
+
+ if (Buffer == NULL) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ CoreAcquireLock (&mPoolMemoryLock);
+ Status = CoreFreePoolI (Buffer, PoolType);
+ CoreReleaseLock (&mPoolMemoryLock);
+ return Status;
+}
+
+/**
+ Frees pool.
+
+ @param Buffer The allocated pool entry to free
+
+ @retval EFI_INVALID_PARAMETER Buffer is not a valid value.
+ @retval EFI_SUCCESS Pool successfully freed.
+
+**/
+EFI_STATUS
+EFIAPI
+CoreFreePool (
+ IN VOID *Buffer
+ )
+{
+ EFI_STATUS Status;
+ EFI_MEMORY_TYPE PoolType;
+
+ Status = CoreInternalFreePool (Buffer, &PoolType);
+ if (!EFI_ERROR (Status)) {
+ CoreUpdateProfile (
+ (EFI_PHYSICAL_ADDRESS) (UINTN) RETURN_ADDRESS (0),
+ MemoryProfileActionFreePool,
+ PoolType,
+ 0,
+ Buffer,
+ NULL
+ );
+ InstallMemoryAttributesTableOnMemoryAllocation (PoolType);
+ }
+ return Status;
+}
+
+/**
+ Internal function. Frees pool pages allocated via CoreAllocatePoolPagesI().
+
+ @param PoolType The type of memory for the pool pages
+ @param Memory The base address to free
+ @param NoPages The number of pages to free
+
+**/
+STATIC
+VOID
+CoreFreePoolPagesI (
+ IN EFI_MEMORY_TYPE PoolType,
+ IN EFI_PHYSICAL_ADDRESS Memory,
+ IN UINTN NoPages
+ )
+{
+ CoreAcquireMemoryLock ();
+ CoreFreePoolPages (Memory, NoPages);
+ CoreReleaseMemoryLock ();
+
+ GuardFreedPagesChecked (Memory, NoPages);
+ ApplyMemoryProtectionPolicy (PoolType, EfiConventionalMemory,
+ (EFI_PHYSICAL_ADDRESS)(UINTN)Memory, EFI_PAGES_TO_SIZE (NoPages));
+}
+
+/**
+ Internal function. Frees guarded pool pages.
+
+ @param PoolType The type of memory for the pool pages
+ @param Memory The base address to free
+ @param NoPages The number of pages to free
+
+**/
+STATIC
+VOID
+CoreFreePoolPagesWithGuard (
+ IN EFI_MEMORY_TYPE PoolType,
+ IN EFI_PHYSICAL_ADDRESS Memory,
+ IN UINTN NoPages
+ )
+{
+ EFI_PHYSICAL_ADDRESS MemoryGuarded;
+ UINTN NoPagesGuarded;
+
+ MemoryGuarded = Memory;
+ NoPagesGuarded = NoPages;
+
+ AdjustMemoryF (&Memory, &NoPages);
+ //
+ // It's safe to unset Guard page inside memory lock because there should
+ // be no memory allocation occurred in updating memory page attribute at
+ // this point. And unsetting Guard page before free will prevent Guard
+ // page just freed back to pool from being allocated right away before
+ // marking it usable (from non-present to present).
+ //
+ UnsetGuardForMemory (MemoryGuarded, NoPagesGuarded);
+ if (NoPages > 0) {
+ CoreFreePoolPagesI (PoolType, Memory, NoPages);
+ }
+}
+
+/**
+ Internal function to free a pool entry.
+ Caller must have the memory lock held
+
+ @param Buffer The allocated pool entry to free
+ @param PoolType Pointer to pool type
+
+ @retval EFI_INVALID_PARAMETER Buffer not valid
+ @retval EFI_SUCCESS Buffer successfully freed.
+
+**/
+EFI_STATUS
+CoreFreePoolI (
+ IN VOID *Buffer,
+ OUT EFI_MEMORY_TYPE *PoolType OPTIONAL
+ )
+{
+ POOL *Pool;
+ POOL_HEAD *Head;
+ POOL_TAIL *Tail;
+ POOL_FREE *Free;
+ UINTN Index;
+ UINTN NoPages;
+ UINTN Size;
+ CHAR8 *NewPage;
+ UINTN Offset;
+ BOOLEAN AllFree;
+ UINTN Granularity;
+ BOOLEAN IsGuarded;
+ BOOLEAN HasPoolTail;
+ BOOLEAN PageAsPool;
+
+ ASSERT(Buffer != NULL);
+ //
+ // Get the head & tail of the pool entry
+ //
+ Head = BASE_CR (Buffer, POOL_HEAD, Data);
+ ASSERT(Head != NULL);
+
+ if (Head->Signature != POOL_HEAD_SIGNATURE &&
+ Head->Signature != POOLPAGE_HEAD_SIGNATURE) {
+ ASSERT (Head->Signature == POOL_HEAD_SIGNATURE ||
+ Head->Signature == POOLPAGE_HEAD_SIGNATURE);
+ return EFI_INVALID_PARAMETER;
+ }
+
+ IsGuarded = IsPoolTypeToGuard (Head->Type) &&
+ IsMemoryGuarded ((EFI_PHYSICAL_ADDRESS)(UINTN)Head);
+ HasPoolTail = !(IsGuarded &&
+ ((PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) == 0));
+ PageAsPool = (Head->Signature == POOLPAGE_HEAD_SIGNATURE);
+
+ if (HasPoolTail) {
+ Tail = HEAD_TO_TAIL (Head);
+ ASSERT (Tail != NULL);
+
+ //
+ // Debug
+ //
+ ASSERT (Tail->Signature == POOL_TAIL_SIGNATURE);
+ ASSERT (Head->Size == Tail->Size);
+
+ if (Tail->Signature != POOL_TAIL_SIGNATURE) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ if (Head->Size != Tail->Size) {
+ return EFI_INVALID_PARAMETER;
+ }
+ }
+
+ ASSERT_LOCKED (&mPoolMemoryLock);
+
+ //
+ // Determine the pool type and account for it
+ //
+ Size = Head->Size;
+ Pool = LookupPoolHead (Head->Type);
+ if (Pool == NULL) {
+ return EFI_INVALID_PARAMETER;
+ }
+ Pool->Used -= Size;
+ DEBUG ((DEBUG_POOL, "FreePool: %p (len %lx) %,ld\n", Head->Data, (UINT64)(Head->Size - POOL_OVERHEAD), (UINT64) Pool->Used));
+
+ if (Head->Type == EfiACPIReclaimMemory ||
+ Head->Type == EfiACPIMemoryNVS ||
+ Head->Type == EfiRuntimeServicesCode ||
+ Head->Type == EfiRuntimeServicesData) {
+
+ Granularity = RUNTIME_PAGE_ALLOCATION_GRANULARITY;
+ } else {
+ Granularity = DEFAULT_PAGE_ALLOCATION_GRANULARITY;
+ }
+
+ if (PoolType != NULL) {
+ *PoolType = Head->Type;
+ }
+
+ //
+ // Determine the pool list
+ //
+ Index = SIZE_TO_LIST(Size);
+ DEBUG_CLEAR_MEMORY (Head, Size);
+
+ //
+ // If it's not on the list, it must be pool pages
+ //
+ if (Index >= SIZE_TO_LIST (Granularity) || IsGuarded || PageAsPool) {
+
+ //
+ // Return the memory pages back to free memory
+ //
+ NoPages = EFI_SIZE_TO_PAGES (Size) + EFI_SIZE_TO_PAGES (Granularity) - 1;
+ NoPages &= ~(UINTN)(EFI_SIZE_TO_PAGES (Granularity) - 1);
+ if (IsGuarded) {
+ Head = AdjustPoolHeadF ((EFI_PHYSICAL_ADDRESS)(UINTN)Head);
+ CoreFreePoolPagesWithGuard (
+ Pool->MemoryType,
+ (EFI_PHYSICAL_ADDRESS)(UINTN)Head,
+ NoPages
+ );
+ } else {
+ CoreFreePoolPagesI (
+ Pool->MemoryType,
+ (EFI_PHYSICAL_ADDRESS)(UINTN)Head,
+ NoPages
+ );
+ }
+
+ } else {
+
+ //
+ // Put the pool entry onto the free pool list
+ //
+ Free = (POOL_FREE *) Head;
+ ASSERT(Free != NULL);
+ Free->Signature = POOL_FREE_SIGNATURE;
+ Free->Index = (UINT32)Index;
+ InsertHeadList (&Pool->FreeList[Index], &Free->Link);
+
+ //
+ // See if all the pool entries in the same page as Free are freed pool
+ // entries
+ //
+ NewPage = (CHAR8 *)((UINTN)Free & ~(Granularity - 1));
+ Free = (POOL_FREE *) &NewPage[0];
+ ASSERT(Free != NULL);
+
+ if (Free->Signature == POOL_FREE_SIGNATURE) {
+
+ AllFree = TRUE;
+ Offset = 0;
+
+ while ((Offset < Granularity) && (AllFree)) {
+ Free = (POOL_FREE *) &NewPage[Offset];
+ ASSERT(Free != NULL);
+ if (Free->Signature != POOL_FREE_SIGNATURE) {
+ AllFree = FALSE;
+ }
+ Offset += LIST_TO_SIZE(Free->Index);
+ }
+
+ if (AllFree) {
+
+ //
+ // All of the pool entries in the same page as Free are free pool
+ // entries
+ // Remove all of these pool entries from the free loop lists.
+ //
+ Free = (POOL_FREE *) &NewPage[0];
+ ASSERT(Free != NULL);
+ Offset = 0;
+
+ while (Offset < Granularity) {
+ Free = (POOL_FREE *) &NewPage[Offset];
+ ASSERT(Free != NULL);
+ RemoveEntryList (&Free->Link);
+ Offset += LIST_TO_SIZE(Free->Index);
+ }
+
+ //
+ // Free the page
+ //
+ CoreFreePoolPagesI (Pool->MemoryType, (EFI_PHYSICAL_ADDRESS) (UINTN)NewPage,
+ EFI_SIZE_TO_PAGES (Granularity));
+ }
+ }
+ }
+
+ //
+ // If this is an OS/OEM specific memory type, then check to see if the last
+ // portion of that memory type has been freed. If it has, then free the
+ // list entry for that memory type
+ //
+ if (((UINT32) Pool->MemoryType >= MEMORY_TYPE_OEM_RESERVED_MIN) && Pool->Used == 0) {
+ RemoveEntryList (&Pool->Link);
+ CoreFreePoolI (Pool, NULL);
+ }
+
+ return EFI_SUCCESS;
+}
+