summaryrefslogtreecommitdiffstats
path: root/src/VBox/Devices/EFI/Firmware/UefiCpuPkg/Library/MpInitLib/PeiMpLib.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/VBox/Devices/EFI/Firmware/UefiCpuPkg/Library/MpInitLib/PeiMpLib.c')
-rw-r--r--src/VBox/Devices/EFI/Firmware/UefiCpuPkg/Library/MpInitLib/PeiMpLib.c729
1 files changed, 729 insertions, 0 deletions
diff --git a/src/VBox/Devices/EFI/Firmware/UefiCpuPkg/Library/MpInitLib/PeiMpLib.c b/src/VBox/Devices/EFI/Firmware/UefiCpuPkg/Library/MpInitLib/PeiMpLib.c
new file mode 100644
index 00000000..4ee7ef6a
--- /dev/null
+++ b/src/VBox/Devices/EFI/Firmware/UefiCpuPkg/Library/MpInitLib/PeiMpLib.c
@@ -0,0 +1,729 @@
+/** @file
+ MP initialize support functions for PEI phase.
+
+ Copyright (c) 2016 - 2020, Intel Corporation. All rights reserved.<BR>
+ SPDX-License-Identifier: BSD-2-Clause-Patent
+
+**/
+
+#include "MpLib.h"
+#include <Library/PeiServicesLib.h>
+#include <Guid/S3SmmInitDone.h>
+#include <Ppi/ShadowMicrocode.h>
+
+/**
+ S3 SMM Init Done notification function.
+
+ @param PeiServices Indirect reference to the PEI Services Table.
+ @param NotifyDesc Address of the notification descriptor data structure.
+ @param InvokePpi Address of the PPI that was invoked.
+
+ @retval EFI_SUCCESS The function completes successfully.
+
+**/
+EFI_STATUS
+EFIAPI
+NotifyOnS3SmmInitDonePpi (
+ IN EFI_PEI_SERVICES **PeiServices,
+ IN EFI_PEI_NOTIFY_DESCRIPTOR *NotifyDesc,
+ IN VOID *InvokePpi
+ );
+
+
+//
+// Global function
+//
+EFI_PEI_NOTIFY_DESCRIPTOR mS3SmmInitDoneNotifyDesc = {
+ EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST,
+ &gEdkiiS3SmmInitDoneGuid,
+ NotifyOnS3SmmInitDonePpi
+};
+
+/**
+ S3 SMM Init Done notification function.
+
+ @param PeiServices Indirect reference to the PEI Services Table.
+ @param NotifyDesc Address of the notification descriptor data structure.
+ @param InvokePpi Address of the PPI that was invoked.
+
+ @retval EFI_SUCCESS The function completes successfully.
+
+**/
+EFI_STATUS
+EFIAPI
+NotifyOnS3SmmInitDonePpi (
+ IN EFI_PEI_SERVICES **PeiServices,
+ IN EFI_PEI_NOTIFY_DESCRIPTOR *NotifyDesc,
+ IN VOID *InvokePpi
+ )
+{
+ CPU_MP_DATA *CpuMpData;
+
+ CpuMpData = GetCpuMpData ();
+
+ //
+ // PiSmmCpuDxeSmm driver hardcode change the loop mode to HLT mode.
+ // So in this notify function, code need to check the current loop
+ // mode, if it is not HLT mode, code need to change loop mode back
+ // to the original mode.
+ //
+ if (CpuMpData->ApLoopMode != ApInHltLoop) {
+ CpuMpData->WakeUpByInitSipiSipi = TRUE;
+ }
+
+ return EFI_SUCCESS;
+}
+
+
+/**
+ Enable Debug Agent to support source debugging on AP function.
+
+**/
+VOID
+EnableDebugAgent (
+ VOID
+ )
+{
+}
+
+/**
+ Get pointer to CPU MP Data structure.
+ For BSP, the pointer is retrieved from HOB.
+ For AP, the structure is just after IDT.
+
+ @return The pointer to CPU MP Data structure.
+**/
+CPU_MP_DATA *
+GetCpuMpData (
+ VOID
+ )
+{
+ CPU_MP_DATA *CpuMpData;
+ MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;
+ IA32_DESCRIPTOR Idtr;
+
+ ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
+ if (ApicBaseMsr.Bits.BSP == 1) {
+ CpuMpData = GetCpuMpDataFromGuidedHob ();
+ ASSERT (CpuMpData != NULL);
+ } else {
+ AsmReadIdtr (&Idtr);
+ CpuMpData = (CPU_MP_DATA *) (Idtr.Base + Idtr.Limit + 1);
+ }
+ return CpuMpData;
+}
+
+/**
+ Save the pointer to CPU MP Data structure.
+
+ @param[in] CpuMpData The pointer to CPU MP Data structure will be saved.
+**/
+VOID
+SaveCpuMpData (
+ IN CPU_MP_DATA *CpuMpData
+ )
+{
+ UINT64 Data64;
+ //
+ // Build location of CPU MP DATA buffer in HOB
+ //
+ Data64 = (UINT64) (UINTN) CpuMpData;
+ BuildGuidDataHob (
+ &mCpuInitMpLibHobGuid,
+ (VOID *) &Data64,
+ sizeof (UINT64)
+ );
+}
+
+/**
+ Check if AP wakeup buffer is overlapped with existing allocated buffer.
+
+ @param[in] WakeupBufferStart AP wakeup buffer start address.
+ @param[in] WakeupBufferEnd AP wakeup buffer end address.
+
+ @retval TRUE There is overlap.
+ @retval FALSE There is no overlap.
+**/
+BOOLEAN
+CheckOverlapWithAllocatedBuffer (
+ IN UINT64 WakeupBufferStart,
+ IN UINT64 WakeupBufferEnd
+ )
+{
+ EFI_PEI_HOB_POINTERS Hob;
+ EFI_HOB_MEMORY_ALLOCATION *MemoryHob;
+ BOOLEAN Overlapped;
+ UINT64 MemoryStart;
+ UINT64 MemoryEnd;
+
+ Overlapped = FALSE;
+ //
+ // Get the HOB list for processing
+ //
+ Hob.Raw = GetHobList ();
+ //
+ // Collect memory ranges
+ //
+ while (!END_OF_HOB_LIST (Hob)) {
+ if (Hob.Header->HobType == EFI_HOB_TYPE_MEMORY_ALLOCATION) {
+ MemoryHob = Hob.MemoryAllocation;
+ MemoryStart = MemoryHob->AllocDescriptor.MemoryBaseAddress;
+ MemoryEnd = MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength;
+ if (!((WakeupBufferStart >= MemoryEnd) || (WakeupBufferEnd <= MemoryStart))) {
+ Overlapped = TRUE;
+ break;
+ }
+ }
+ Hob.Raw = GET_NEXT_HOB (Hob);
+ }
+ return Overlapped;
+}
+
+/**
+ Get available system memory below 1MB by specified size.
+
+ @param[in] WakeupBufferSize Wakeup buffer size required
+
+ @retval other Return wakeup buffer address below 1MB.
+ @retval -1 Cannot find free memory below 1MB.
+**/
+UINTN
+GetWakeupBuffer (
+ IN UINTN WakeupBufferSize
+ )
+{
+ EFI_PEI_HOB_POINTERS Hob;
+ UINT64 WakeupBufferStart;
+ UINT64 WakeupBufferEnd;
+
+ WakeupBufferSize = (WakeupBufferSize + SIZE_4KB - 1) & ~(SIZE_4KB - 1);
+
+ //
+ // Get the HOB list for processing
+ //
+ Hob.Raw = GetHobList ();
+
+ //
+ // Collect memory ranges
+ //
+ while (!END_OF_HOB_LIST (Hob)) {
+ if (Hob.Header->HobType == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
+ if ((Hob.ResourceDescriptor->PhysicalStart < BASE_1MB) &&
+ (Hob.ResourceDescriptor->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY) &&
+ ((Hob.ResourceDescriptor->ResourceAttribute &
+ (EFI_RESOURCE_ATTRIBUTE_READ_PROTECTED |
+ EFI_RESOURCE_ATTRIBUTE_WRITE_PROTECTED |
+ EFI_RESOURCE_ATTRIBUTE_EXECUTION_PROTECTED
+ )) == 0)
+ ) {
+ //
+ // Need memory under 1MB to be collected here
+ //
+ WakeupBufferEnd = Hob.ResourceDescriptor->PhysicalStart + Hob.ResourceDescriptor->ResourceLength;
+ if (WakeupBufferEnd > BASE_1MB) {
+ //
+ // Wakeup buffer should be under 1MB
+ //
+ WakeupBufferEnd = BASE_1MB;
+ }
+ while (WakeupBufferEnd > WakeupBufferSize) {
+ //
+ // Wakeup buffer should be aligned on 4KB
+ //
+ WakeupBufferStart = (WakeupBufferEnd - WakeupBufferSize) & ~(SIZE_4KB - 1);
+ if (WakeupBufferStart < Hob.ResourceDescriptor->PhysicalStart) {
+ break;
+ }
+ if (CheckOverlapWithAllocatedBuffer (WakeupBufferStart, WakeupBufferEnd)) {
+ //
+ // If this range is overlapped with existing allocated buffer, skip it
+ // and find the next range
+ //
+ WakeupBufferEnd -= WakeupBufferSize;
+ continue;
+ }
+ DEBUG ((DEBUG_INFO, "WakeupBufferStart = %x, WakeupBufferSize = %x\n",
+ WakeupBufferStart, WakeupBufferSize));
+ return (UINTN)WakeupBufferStart;
+ }
+ }
+ }
+ //
+ // Find the next HOB
+ //
+ Hob.Raw = GET_NEXT_HOB (Hob);
+ }
+
+ return (UINTN) -1;
+}
+
+/**
+ Get available EfiBootServicesCode memory below 4GB by specified size.
+
+ This buffer is required to safely transfer AP from real address mode to
+ protected mode or long mode, due to the fact that the buffer returned by
+ GetWakeupBuffer() may be marked as non-executable.
+
+ @param[in] BufferSize Wakeup transition buffer size.
+
+ @retval other Return wakeup transition buffer address below 4GB.
+ @retval 0 Cannot find free memory below 4GB.
+**/
+UINTN
+GetModeTransitionBuffer (
+ IN UINTN BufferSize
+ )
+{
+ //
+ // PEI phase doesn't need to do such transition. So simply return 0.
+ //
+ return 0;
+}
+
+/**
+ Return the address of the SEV-ES AP jump table.
+
+ This buffer is required in order for an SEV-ES guest to transition from
+ UEFI into an OS.
+
+ @return Return SEV-ES AP jump table buffer
+**/
+UINTN
+GetSevEsAPMemory (
+ VOID
+ )
+{
+ //
+ // PEI phase doesn't need to do such transition. So simply return 0.
+ //
+ return 0;
+}
+
+/**
+ Checks APs status and updates APs status if needed.
+
+**/
+VOID
+CheckAndUpdateApsStatus (
+ VOID
+ )
+{
+}
+
+/**
+ Build the microcode patch HOB that contains the base address and size of the
+ microcode patch stored in the memory.
+
+ @param[in] CpuMpData Pointer to the CPU_MP_DATA structure.
+
+**/
+VOID
+BuildMicrocodeCacheHob (
+ IN CPU_MP_DATA *CpuMpData
+ )
+{
+ EDKII_MICROCODE_PATCH_HOB *MicrocodeHob;
+ UINTN HobDataLength;
+ UINT32 Index;
+
+ HobDataLength = sizeof (EDKII_MICROCODE_PATCH_HOB) +
+ sizeof (UINT64) * CpuMpData->CpuCount;
+
+ MicrocodeHob = AllocatePool (HobDataLength);
+ if (MicrocodeHob == NULL) {
+ ASSERT (FALSE);
+ return;
+ }
+
+ //
+ // Store the information of the memory region that holds the microcode patches.
+ //
+ MicrocodeHob->MicrocodePatchAddress = CpuMpData->MicrocodePatchAddress;
+ MicrocodeHob->MicrocodePatchRegionSize = CpuMpData->MicrocodePatchRegionSize;
+
+ //
+ // Store the detected microcode patch for each processor as well.
+ //
+ MicrocodeHob->ProcessorCount = CpuMpData->CpuCount;
+ for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
+ if (CpuMpData->CpuData[Index].MicrocodeEntryAddr != 0) {
+ MicrocodeHob->ProcessorSpecificPatchOffset[Index] =
+ CpuMpData->CpuData[Index].MicrocodeEntryAddr - CpuMpData->MicrocodePatchAddress;
+ } else {
+ MicrocodeHob->ProcessorSpecificPatchOffset[Index] = MAX_UINT64;
+ }
+ }
+
+ BuildGuidDataHob (
+ &gEdkiiMicrocodePatchHobGuid,
+ MicrocodeHob,
+ HobDataLength
+ );
+
+ return;
+}
+
+/**
+ Initialize global data for MP support.
+
+ @param[in] CpuMpData The pointer to CPU MP Data structure.
+**/
+VOID
+InitMpGlobalData (
+ IN CPU_MP_DATA *CpuMpData
+ )
+{
+ EFI_STATUS Status;
+
+ BuildMicrocodeCacheHob (CpuMpData);
+ SaveCpuMpData (CpuMpData);
+
+ ///
+ /// Install Notify
+ ///
+ Status = PeiServicesNotifyPpi (&mS3SmmInitDoneNotifyDesc);
+ ASSERT_EFI_ERROR (Status);
+}
+
+/**
+ This service executes a caller provided function on all enabled APs.
+
+ @param[in] Procedure A pointer to the function to be run on
+ enabled APs of the system. See type
+ EFI_AP_PROCEDURE.
+ @param[in] SingleThread If TRUE, then all the enabled APs execute
+ the function specified by Procedure one by
+ one, in ascending order of processor handle
+ number. If FALSE, then all the enabled APs
+ execute the function specified by Procedure
+ simultaneously.
+ @param[in] WaitEvent The event created by the caller with CreateEvent()
+ service. If it is NULL, then execute in
+ blocking mode. BSP waits until all APs finish
+ or TimeoutInMicroSeconds expires. If it's
+ not NULL, then execute in non-blocking mode.
+ BSP requests the function specified by
+ Procedure to be started on all the enabled
+ APs, and go on executing immediately. If
+ all return from Procedure, or TimeoutInMicroSeconds
+ expires, this event is signaled. The BSP
+ can use the CheckEvent() or WaitForEvent()
+ services to check the state of event. Type
+ EFI_EVENT is defined in CreateEvent() in
+ the Unified Extensible Firmware Interface
+ Specification.
+ @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
+ APs to return from Procedure, either for
+ blocking or non-blocking mode. Zero means
+ infinity. If the timeout expires before
+ all APs return from Procedure, then Procedure
+ on the failed APs is terminated. All enabled
+ APs are available for next function assigned
+ by MpInitLibStartupAllAPs() or
+ MPInitLibStartupThisAP().
+ If the timeout expires in blocking mode,
+ BSP returns EFI_TIMEOUT. If the timeout
+ expires in non-blocking mode, WaitEvent
+ is signaled with SignalEvent().
+ @param[in] ProcedureArgument The parameter passed into Procedure for
+ all APs.
+ @param[out] FailedCpuList If NULL, this parameter is ignored. Otherwise,
+ if all APs finish successfully, then its
+ content is set to NULL. If not all APs
+ finish before timeout expires, then its
+ content is set to address of the buffer
+ holding handle numbers of the failed APs.
+ The buffer is allocated by MP Initialization
+ library, and it's the caller's responsibility to
+ free the buffer with FreePool() service.
+ In blocking mode, it is ready for consumption
+ when the call returns. In non-blocking mode,
+ it is ready when WaitEvent is signaled. The
+ list of failed CPU is terminated by
+ END_OF_CPU_LIST.
+
+ @retval EFI_SUCCESS In blocking mode, all APs have finished before
+ the timeout expired.
+ @retval EFI_SUCCESS In non-blocking mode, function has been dispatched
+ to all enabled APs.
+ @retval EFI_UNSUPPORTED A non-blocking mode request was made after the
+ UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
+ signaled.
+ @retval EFI_UNSUPPORTED WaitEvent is not NULL if non-blocking mode is not
+ supported.
+ @retval EFI_DEVICE_ERROR Caller processor is AP.
+ @retval EFI_NOT_STARTED No enabled APs exist in the system.
+ @retval EFI_NOT_READY Any enabled APs are busy.
+ @retval EFI_NOT_READY MP Initialize Library is not initialized.
+ @retval EFI_TIMEOUT In blocking mode, the timeout expired before
+ all enabled APs have finished.
+ @retval EFI_INVALID_PARAMETER Procedure is NULL.
+
+**/
+EFI_STATUS
+EFIAPI
+MpInitLibStartupAllAPs (
+ IN EFI_AP_PROCEDURE Procedure,
+ IN BOOLEAN SingleThread,
+ IN EFI_EVENT WaitEvent OPTIONAL,
+ IN UINTN TimeoutInMicroseconds,
+ IN VOID *ProcedureArgument OPTIONAL,
+ OUT UINTN **FailedCpuList OPTIONAL
+ )
+{
+ if (WaitEvent != NULL) {
+ return EFI_UNSUPPORTED;
+ }
+
+ return StartupAllCPUsWorker (
+ Procedure,
+ SingleThread,
+ TRUE,
+ NULL,
+ TimeoutInMicroseconds,
+ ProcedureArgument,
+ FailedCpuList
+ );
+}
+
+/**
+ This service lets the caller get one enabled AP to execute a caller-provided
+ function.
+
+ @param[in] Procedure A pointer to the function to be run on the
+ designated AP of the system. See type
+ EFI_AP_PROCEDURE.
+ @param[in] ProcessorNumber The handle number of the AP. The range is
+ from 0 to the total number of logical
+ processors minus 1. The total number of
+ logical processors can be retrieved by
+ MpInitLibGetNumberOfProcessors().
+ @param[in] WaitEvent The event created by the caller with CreateEvent()
+ service. If it is NULL, then execute in
+ blocking mode. BSP waits until this AP finish
+ or TimeoutInMicroSeconds expires. If it's
+ not NULL, then execute in non-blocking mode.
+ BSP requests the function specified by
+ Procedure to be started on this AP,
+ and go on executing immediately. If this AP
+ return from Procedure or TimeoutInMicroSeconds
+ expires, this event is signaled. The BSP
+ can use the CheckEvent() or WaitForEvent()
+ services to check the state of event. Type
+ EFI_EVENT is defined in CreateEvent() in
+ the Unified Extensible Firmware Interface
+ Specification.
+ @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
+ this AP to finish this Procedure, either for
+ blocking or non-blocking mode. Zero means
+ infinity. If the timeout expires before
+ this AP returns from Procedure, then Procedure
+ on the AP is terminated. The
+ AP is available for next function assigned
+ by MpInitLibStartupAllAPs() or
+ MpInitLibStartupThisAP().
+ If the timeout expires in blocking mode,
+ BSP returns EFI_TIMEOUT. If the timeout
+ expires in non-blocking mode, WaitEvent
+ is signaled with SignalEvent().
+ @param[in] ProcedureArgument The parameter passed into Procedure on the
+ specified AP.
+ @param[out] Finished If NULL, this parameter is ignored. In
+ blocking mode, this parameter is ignored.
+ In non-blocking mode, if AP returns from
+ Procedure before the timeout expires, its
+ content is set to TRUE. Otherwise, the
+ value is set to FALSE. The caller can
+ determine if the AP returned from Procedure
+ by evaluating this value.
+
+ @retval EFI_SUCCESS In blocking mode, specified AP finished before
+ the timeout expires.
+ @retval EFI_SUCCESS In non-blocking mode, the function has been
+ dispatched to specified AP.
+ @retval EFI_UNSUPPORTED A non-blocking mode request was made after the
+ UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
+ signaled.
+ @retval EFI_UNSUPPORTED WaitEvent is not NULL if non-blocking mode is not
+ supported.
+ @retval EFI_DEVICE_ERROR The calling processor is an AP.
+ @retval EFI_TIMEOUT In blocking mode, the timeout expired before
+ the specified AP has finished.
+ @retval EFI_NOT_READY The specified AP is busy.
+ @retval EFI_NOT_READY MP Initialize Library is not initialized.
+ @retval EFI_NOT_FOUND The processor with the handle specified by
+ ProcessorNumber does not exist.
+ @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP.
+ @retval EFI_INVALID_PARAMETER Procedure is NULL.
+
+**/
+EFI_STATUS
+EFIAPI
+MpInitLibStartupThisAP (
+ IN EFI_AP_PROCEDURE Procedure,
+ IN UINTN ProcessorNumber,
+ IN EFI_EVENT WaitEvent OPTIONAL,
+ IN UINTN TimeoutInMicroseconds,
+ IN VOID *ProcedureArgument OPTIONAL,
+ OUT BOOLEAN *Finished OPTIONAL
+ )
+{
+ if (WaitEvent != NULL) {
+ return EFI_UNSUPPORTED;
+ }
+
+ return StartupThisAPWorker (
+ Procedure,
+ ProcessorNumber,
+ NULL,
+ TimeoutInMicroseconds,
+ ProcedureArgument,
+ Finished
+ );
+}
+
+/**
+ This service switches the requested AP to be the BSP from that point onward.
+ This service changes the BSP for all purposes. This call can only be performed
+ by the current BSP.
+
+ @param[in] ProcessorNumber The handle number of AP that is to become the new
+ BSP. The range is from 0 to the total number of
+ logical processors minus 1. The total number of
+ logical processors can be retrieved by
+ MpInitLibGetNumberOfProcessors().
+ @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an
+ enabled AP. Otherwise, it will be disabled.
+
+ @retval EFI_SUCCESS BSP successfully switched.
+ @retval EFI_UNSUPPORTED Switching the BSP cannot be completed prior to
+ this service returning.
+ @retval EFI_UNSUPPORTED Switching the BSP is not supported.
+ @retval EFI_DEVICE_ERROR The calling processor is an AP.
+ @retval EFI_NOT_FOUND The processor with the handle specified by
+ ProcessorNumber does not exist.
+ @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or
+ a disabled AP.
+ @retval EFI_NOT_READY The specified AP is busy.
+ @retval EFI_NOT_READY MP Initialize Library is not initialized.
+
+**/
+EFI_STATUS
+EFIAPI
+MpInitLibSwitchBSP (
+ IN UINTN ProcessorNumber,
+ IN BOOLEAN EnableOldBSP
+ )
+{
+ return SwitchBSPWorker (ProcessorNumber, EnableOldBSP);
+}
+
+/**
+ This service lets the caller enable or disable an AP from this point onward.
+ This service may only be called from the BSP.
+
+ @param[in] ProcessorNumber The handle number of AP.
+ The range is from 0 to the total number of
+ logical processors minus 1. The total number of
+ logical processors can be retrieved by
+ MpInitLibGetNumberOfProcessors().
+ @param[in] EnableAP Specifies the new state for the processor for
+ enabled, FALSE for disabled.
+ @param[in] HealthFlag If not NULL, a pointer to a value that specifies
+ the new health status of the AP. This flag
+ corresponds to StatusFlag defined in
+ EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only
+ the PROCESSOR_HEALTH_STATUS_BIT is used. All other
+ bits are ignored. If it is NULL, this parameter
+ is ignored.
+
+ @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.
+ @retval EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed
+ prior to this service returning.
+ @retval EFI_UNSUPPORTED Enabling or disabling an AP is not supported.
+ @retval EFI_DEVICE_ERROR The calling processor is an AP.
+ @retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber
+ does not exist.
+ @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP.
+ @retval EFI_NOT_READY MP Initialize Library is not initialized.
+
+**/
+EFI_STATUS
+EFIAPI
+MpInitLibEnableDisableAP (
+ IN UINTN ProcessorNumber,
+ IN BOOLEAN EnableAP,
+ IN UINT32 *HealthFlag OPTIONAL
+ )
+{
+ return EnableDisableApWorker (ProcessorNumber, EnableAP, HealthFlag);
+}
+
+/**
+ This funtion will try to invoke platform specific microcode shadow logic to
+ relocate microcode update patches into memory.
+
+ @param[in, out] CpuMpData The pointer to CPU MP Data structure.
+
+ @retval EFI_SUCCESS Shadow microcode success.
+ @retval EFI_OUT_OF_RESOURCES No enough resource to complete the operation.
+ @retval EFI_UNSUPPORTED Can't find platform specific microcode shadow
+ PPI/Protocol.
+**/
+EFI_STATUS
+PlatformShadowMicrocode (
+ IN OUT CPU_MP_DATA *CpuMpData
+ )
+{
+ EFI_STATUS Status;
+ EDKII_PEI_SHADOW_MICROCODE_PPI *ShadowMicrocodePpi;
+ UINTN CpuCount;
+ EDKII_PEI_MICROCODE_CPU_ID *MicrocodeCpuId;
+ UINTN Index;
+ UINTN BufferSize;
+ VOID *Buffer;
+
+ Status = PeiServicesLocatePpi (
+ &gEdkiiPeiShadowMicrocodePpiGuid,
+ 0,
+ NULL,
+ (VOID **) &ShadowMicrocodePpi
+ );
+ if (EFI_ERROR (Status)) {
+ return EFI_UNSUPPORTED;
+ }
+
+ CpuCount = CpuMpData->CpuCount;
+ MicrocodeCpuId = (EDKII_PEI_MICROCODE_CPU_ID *) AllocateZeroPool (sizeof (EDKII_PEI_MICROCODE_CPU_ID) * CpuCount);
+ if (MicrocodeCpuId == NULL) {
+ return EFI_OUT_OF_RESOURCES;
+ }
+
+ for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
+ MicrocodeCpuId[Index].ProcessorSignature = CpuMpData->CpuData[Index].ProcessorSignature;
+ MicrocodeCpuId[Index].PlatformId = CpuMpData->CpuData[Index].PlatformId;
+ }
+
+ Status = ShadowMicrocodePpi->ShadowMicrocode (
+ ShadowMicrocodePpi,
+ CpuCount,
+ MicrocodeCpuId,
+ &BufferSize,
+ &Buffer
+ );
+ FreePool (MicrocodeCpuId);
+ if (EFI_ERROR (Status)) {
+ return EFI_NOT_FOUND;
+ }
+
+ CpuMpData->MicrocodePatchAddress = (UINTN) Buffer;
+ CpuMpData->MicrocodePatchRegionSize = BufferSize;
+
+ DEBUG ((
+ DEBUG_INFO,
+ "%a: Required microcode patches have been loaded at 0x%lx, with size 0x%lx.\n",
+ __FUNCTION__, CpuMpData->MicrocodePatchAddress, CpuMpData->MicrocodePatchRegionSize
+ ));
+
+ return EFI_SUCCESS;
+}