summaryrefslogtreecommitdiffstats
path: root/src/VBox/ExtPacks/VBoxDTrace/onnv/common/ctf/ctf_open.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/VBox/ExtPacks/VBoxDTrace/onnv/common/ctf/ctf_open.c')
-rw-r--r--src/VBox/ExtPacks/VBoxDTrace/onnv/common/ctf/ctf_open.c972
1 files changed, 972 insertions, 0 deletions
diff --git a/src/VBox/ExtPacks/VBoxDTrace/onnv/common/ctf/ctf_open.c b/src/VBox/ExtPacks/VBoxDTrace/onnv/common/ctf/ctf_open.c
new file mode 100644
index 00000000..f86a0cfd
--- /dev/null
+++ b/src/VBox/ExtPacks/VBoxDTrace/onnv/common/ctf/ctf_open.c
@@ -0,0 +1,972 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License, Version 1.0 only
+ * (the "License"). You may not use this file except in compliance
+ * with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#ifndef VBOX
+#pragma ident "%Z%%M% %I% %E% SMI"
+#endif
+
+#ifndef VBOX
+#include <ctf_impl.h>
+#include <sys/mman.h>
+#include <sys/zmod.h>
+#else /* VBOX */
+# define CTF_OLD_VERSIONS
+# include <ctf_impl.h>
+# include <zlib.h>
+# define z_compress compress
+# define z_uncompress uncompress
+# define z_strerror zError
+#endif /* VBOX */
+
+static const ctf_dmodel_t _libctf_models[] = {
+ { "ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4 },
+ { "LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8 },
+ { NULL, 0, 0, 0, 0, 0, 0 }
+};
+
+const char _CTF_SECTION[] = ".SUNW_ctf";
+const char _CTF_NULLSTR[] = "";
+
+int _libctf_version = CTF_VERSION; /* library client version */
+int _libctf_debug = 0; /* debugging messages enabled */
+
+static ushort_t
+get_kind_v1(ushort_t info)
+{
+ return (CTF_INFO_KIND_V1(info));
+}
+
+static ushort_t
+get_kind_v2(ushort_t info)
+{
+ return (CTF_INFO_KIND(info));
+}
+
+static ushort_t
+get_root_v1(ushort_t info)
+{
+ return (CTF_INFO_ISROOT_V1(info));
+}
+
+static ushort_t
+get_root_v2(ushort_t info)
+{
+ return (CTF_INFO_ISROOT(info));
+}
+
+static ushort_t
+get_vlen_v1(ushort_t info)
+{
+ return (CTF_INFO_VLEN_V1(info));
+}
+
+static ushort_t
+get_vlen_v2(ushort_t info)
+{
+ return (CTF_INFO_VLEN(info));
+}
+
+static const ctf_fileops_t ctf_fileops[] = {
+ { NULL, NULL },
+ { get_kind_v1, get_root_v1, get_vlen_v1 },
+ { get_kind_v2, get_root_v2, get_vlen_v2 },
+};
+
+/*
+ * Convert a 32-bit ELF symbol into GElf (Elf64) and return a pointer to it.
+ */
+static Elf64_Sym *
+sym_to_gelf(const Elf32_Sym *src, Elf64_Sym *dst)
+{
+ dst->st_name = src->st_name;
+ dst->st_value = src->st_value;
+ dst->st_size = src->st_size;
+ dst->st_info = src->st_info;
+ dst->st_other = src->st_other;
+ dst->st_shndx = src->st_shndx;
+
+ return (dst);
+}
+
+/*
+ * Initialize the symtab translation table by filling each entry with the
+ * offset of the CTF type or function data corresponding to each STT_FUNC or
+ * STT_OBJECT entry in the symbol table.
+ */
+static int
+init_symtab(ctf_file_t *fp, const ctf_header_t *hp,
+ const ctf_sect_t *sp, const ctf_sect_t *strp)
+{
+ const uchar_t *symp = sp->cts_data;
+ uint_t *xp = fp->ctf_sxlate;
+ uint_t *xend = xp + fp->ctf_nsyms;
+
+ uint_t objtoff = hp->cth_objtoff;
+ uint_t funcoff = hp->cth_funcoff;
+
+ ushort_t info, vlen;
+ Elf64_Sym sym, *gsp;
+ const char *name;
+
+ /*
+ * The CTF data object and function type sections are ordered to match
+ * the relative order of the respective symbol types in the symtab.
+ * If no type information is available for a symbol table entry, a
+ * pad is inserted in the CTF section. As a further optimization,
+ * anonymous or undefined symbols are omitted from the CTF data.
+ */
+ for (; xp < xend; xp++, symp += sp->cts_entsize) {
+ if (sp->cts_entsize == sizeof (Elf32_Sym))
+ gsp = sym_to_gelf((Elf32_Sym *)(uintptr_t)symp, &sym);
+ else
+ gsp = (Elf64_Sym *)(uintptr_t)symp;
+
+ if (gsp->st_name < strp->cts_size)
+ name = (const char *)strp->cts_data + gsp->st_name;
+ else
+ name = _CTF_NULLSTR;
+
+ if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF ||
+ strcmp(name, "_START_") == 0 ||
+ strcmp(name, "_END_") == 0) {
+ *xp = ~0u /*VBOX: -1u*/;
+ continue;
+ }
+
+ switch (ELF64_ST_TYPE(gsp->st_info)) {
+ case STT_OBJECT:
+ if (objtoff >= hp->cth_funcoff ||
+ (gsp->st_shndx == SHN_ABS && gsp->st_value == 0)) {
+ *xp = ~0u /*VBOX: -1u*/;
+ break;
+ }
+
+ *xp = objtoff;
+ objtoff += sizeof (ushort_t);
+ break;
+
+ case STT_FUNC:
+ if (funcoff >= hp->cth_typeoff) {
+ *xp = ~0u /*VBOX: -1u*/;
+ break;
+ }
+
+ *xp = funcoff;
+
+ info = *(ushort_t *)((uintptr_t)fp->ctf_buf + funcoff);
+ vlen = LCTF_INFO_VLEN(fp, info);
+
+ /*
+ * If we encounter a zero pad at the end, just skip it.
+ * Otherwise skip over the function and its return type
+ * (+2) and the argument list (vlen).
+ */
+ if (LCTF_INFO_KIND(fp, info) == CTF_K_UNKNOWN &&
+ vlen == 0)
+ funcoff += sizeof (ushort_t); /* skip pad */
+ else
+ funcoff += sizeof (ushort_t) * (vlen + 2);
+ break;
+
+ default:
+ *xp = ~0u /*VBOX: -1u*/;
+ break;
+ }
+ }
+
+ ctf_dprintf("loaded %lu symtab entries\n", fp->ctf_nsyms);
+ return (0);
+}
+
+/*
+ * Initialize the type ID translation table with the byte offset of each type,
+ * and initialize the hash tables of each named type.
+ */
+static int
+init_types(ctf_file_t *fp, const ctf_header_t *cth)
+{
+ /* LINTED - pointer alignment */
+ const ctf_type_t *tbuf = (ctf_type_t *)(fp->ctf_buf + cth->cth_typeoff);
+ /* LINTED - pointer alignment */
+ const ctf_type_t *tend = (ctf_type_t *)(fp->ctf_buf + cth->cth_stroff);
+
+ ulong_t pop[CTF_K_MAX + 1] = { 0 };
+ const ctf_type_t *tp;
+ ctf_hash_t *hp;
+ ushort_t id, dst;
+ uint_t *xp;
+
+ /*
+ * We initially determine whether the container is a child or a parent
+ * based on the value of cth_parname. To support containers that pre-
+ * date cth_parname, we also scan the types themselves for references
+ * to values in the range reserved for child types in our first pass.
+ */
+ int child = cth->cth_parname != 0;
+ int nlstructs = 0, nlunions = 0;
+ int err;
+
+ /*
+ * We make two passes through the entire type section. In this first
+ * pass, we count the number of each type and the total number of types.
+ */
+ for (tp = tbuf; tp < tend; fp->ctf_typemax++) {
+ ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
+ ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
+ ssize_t size, increment;
+
+ size_t vbytes;
+ uint_t n;
+
+ (void) ctf_get_ctt_size(fp, tp, &size, &increment);
+
+ switch (kind) {
+ case CTF_K_INTEGER:
+ case CTF_K_FLOAT:
+ vbytes = sizeof (uint_t);
+ break;
+ case CTF_K_ARRAY:
+ vbytes = sizeof (ctf_array_t);
+ break;
+ case CTF_K_FUNCTION:
+ vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
+ break;
+ case CTF_K_STRUCT:
+ case CTF_K_UNION:
+ if (fp->ctf_version == CTF_VERSION_1 ||
+ size < CTF_LSTRUCT_THRESH) {
+ ctf_member_t *mp = (ctf_member_t *)
+ ((uintptr_t)tp + increment);
+
+ vbytes = sizeof (ctf_member_t) * vlen;
+ for (n = vlen; n != 0; n--, mp++)
+ child |= CTF_TYPE_ISCHILD(mp->ctm_type);
+ } else {
+ ctf_lmember_t *lmp = (ctf_lmember_t *)
+ ((uintptr_t)tp + increment);
+
+ vbytes = sizeof (ctf_lmember_t) * vlen;
+ for (n = vlen; n != 0; n--, lmp++)
+ child |=
+ CTF_TYPE_ISCHILD(lmp->ctlm_type);
+ }
+ break;
+ case CTF_K_ENUM:
+ vbytes = sizeof (ctf_enum_t) * vlen;
+ break;
+ case CTF_K_FORWARD:
+ /*
+ * For forward declarations, ctt_type is the CTF_K_*
+ * kind for the tag, so bump that population count too.
+ * If ctt_type is unknown, treat the tag as a struct.
+ */
+ if (tp->ctt_type == CTF_K_UNKNOWN ||
+ tp->ctt_type >= CTF_K_MAX)
+ pop[CTF_K_STRUCT]++;
+ else
+ pop[tp->ctt_type]++;
+ RT_FALL_THRU();
+ case CTF_K_UNKNOWN:
+ vbytes = 0;
+ break;
+ case CTF_K_POINTER:
+ case CTF_K_TYPEDEF:
+ case CTF_K_VOLATILE:
+ case CTF_K_CONST:
+ case CTF_K_RESTRICT:
+ child |= CTF_TYPE_ISCHILD(tp->ctt_type);
+ vbytes = 0;
+ break;
+ default:
+ ctf_dprintf("detected invalid CTF kind -- %u\n", kind);
+ return (ECTF_CORRUPT);
+ }
+ tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
+ pop[kind]++;
+ }
+
+ /*
+ * If we detected a reference to a child type ID, then we know this
+ * container is a child and may have a parent's types imported later.
+ */
+ if (child) {
+ ctf_dprintf("CTF container %p is a child\n", (void *)fp);
+ fp->ctf_flags |= LCTF_CHILD;
+ } else
+ ctf_dprintf("CTF container %p is a parent\n", (void *)fp);
+
+ /*
+ * Now that we've counted up the number of each type, we can allocate
+ * the hash tables, type translation table, and pointer table.
+ */
+ if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0)
+ return (err);
+
+ if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0)
+ return (err);
+
+ if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0)
+ return (err);
+
+ if ((err = ctf_hash_create(&fp->ctf_names,
+ pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] +
+ pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] +
+ pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0)
+ return (err);
+
+ fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1));
+ fp->ctf_ptrtab = ctf_alloc(sizeof (ushort_t) * (fp->ctf_typemax + 1));
+
+ if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
+ return (EAGAIN); /* memory allocation failed */
+
+ xp = fp->ctf_txlate;
+ *xp++ = 0; /* type id 0 is used as a sentinel value */
+
+ bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1));
+ bzero(fp->ctf_ptrtab, sizeof (ushort_t) * (fp->ctf_typemax + 1));
+
+ /*
+ * In the second pass through the types, we fill in each entry of the
+ * type and pointer tables and add names to the appropriate hashes.
+ */
+ for (id = 1, tp = tbuf; tp < tend; xp++, id++) {
+ ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
+ ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
+ ssize_t size, increment;
+
+ const char *name;
+ size_t vbytes;
+ ctf_helem_t *hep;
+ ctf_encoding_t cte;
+
+ (void) ctf_get_ctt_size(fp, tp, &size, &increment);
+ name = ctf_strptr(fp, tp->ctt_name);
+
+ switch (kind) {
+ case CTF_K_INTEGER:
+ case CTF_K_FLOAT:
+ /*
+ * Only insert a new integer base type definition if
+ * this type name has not been defined yet. We re-use
+ * the names with different encodings for bit-fields.
+ */
+ if ((hep = ctf_hash_lookup(&fp->ctf_names, fp,
+ name, strlen(name))) == NULL) {
+ err = ctf_hash_insert(&fp->ctf_names, fp,
+ CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
+ if (err != 0 && err != ECTF_STRTAB)
+ return (err);
+ } else if (ctf_type_encoding(fp, hep->h_type,
+ &cte) == 0 && cte.cte_bits == 0) {
+ /*
+ * Work-around SOS8 stabs bug: replace existing
+ * intrinsic w/ same name if it was zero bits.
+ */
+ hep->h_type = CTF_INDEX_TO_TYPE(id, child);
+ }
+ vbytes = sizeof (uint_t);
+ break;
+
+ case CTF_K_ARRAY:
+ vbytes = sizeof (ctf_array_t);
+ break;
+
+ case CTF_K_FUNCTION:
+ err = ctf_hash_insert(&fp->ctf_names, fp,
+ CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
+ if (err != 0 && err != ECTF_STRTAB)
+ return (err);
+ vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
+ break;
+
+ case CTF_K_STRUCT:
+ err = ctf_hash_define(&fp->ctf_structs, fp,
+ CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
+
+ if (err != 0 && err != ECTF_STRTAB)
+ return (err);
+
+ if (fp->ctf_version == CTF_VERSION_1 ||
+ size < CTF_LSTRUCT_THRESH)
+ vbytes = sizeof (ctf_member_t) * vlen;
+ else {
+ vbytes = sizeof (ctf_lmember_t) * vlen;
+ nlstructs++;
+ }
+ break;
+
+ case CTF_K_UNION:
+ err = ctf_hash_define(&fp->ctf_unions, fp,
+ CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
+
+ if (err != 0 && err != ECTF_STRTAB)
+ return (err);
+
+ if (fp->ctf_version == CTF_VERSION_1 ||
+ size < CTF_LSTRUCT_THRESH)
+ vbytes = sizeof (ctf_member_t) * vlen;
+ else {
+ vbytes = sizeof (ctf_lmember_t) * vlen;
+ nlunions++;
+ }
+ break;
+
+ case CTF_K_ENUM:
+ err = ctf_hash_define(&fp->ctf_enums, fp,
+ CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
+
+ if (err != 0 && err != ECTF_STRTAB)
+ return (err);
+
+ vbytes = sizeof (ctf_enum_t) * vlen;
+ break;
+
+ case CTF_K_TYPEDEF:
+ err = ctf_hash_insert(&fp->ctf_names, fp,
+ CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
+ if (err != 0 && err != ECTF_STRTAB)
+ return (err);
+ vbytes = 0;
+ break;
+
+ case CTF_K_FORWARD:
+ /*
+ * Only insert forward tags into the given hash if the
+ * type or tag name is not already present.
+ */
+ switch (tp->ctt_type) {
+ case CTF_K_STRUCT:
+ hp = &fp->ctf_structs;
+ break;
+ case CTF_K_UNION:
+ hp = &fp->ctf_unions;
+ break;
+ case CTF_K_ENUM:
+ hp = &fp->ctf_enums;
+ break;
+ default:
+ hp = &fp->ctf_structs;
+ }
+
+ if (ctf_hash_lookup(hp, fp,
+ name, strlen(name)) == NULL) {
+ err = ctf_hash_insert(hp, fp,
+ CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
+ if (err != 0 && err != ECTF_STRTAB)
+ return (err);
+ }
+ vbytes = 0;
+ break;
+
+ case CTF_K_POINTER:
+ /*
+ * If the type referenced by the pointer is in this CTF
+ * container, then store the index of the pointer type
+ * in fp->ctf_ptrtab[ index of referenced type ].
+ */
+ if (CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
+ CTF_TYPE_TO_INDEX(tp->ctt_type) <= (intptr_t/*vbox*/)fp->ctf_typemax)
+ fp->ctf_ptrtab[
+ CTF_TYPE_TO_INDEX(tp->ctt_type)] = id;
+ RT_FALL_THRU();
+
+ case CTF_K_VOLATILE:
+ case CTF_K_CONST:
+ case CTF_K_RESTRICT:
+ err = ctf_hash_insert(&fp->ctf_names, fp,
+ CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
+ if (err != 0 && err != ECTF_STRTAB)
+ return (err);
+ RT_FALL_THRU();
+
+ default:
+ vbytes = 0;
+ break;
+ }
+
+ *xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf);
+ tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
+ }
+
+ ctf_dprintf("%lu total types processed\n", fp->ctf_typemax);
+ ctf_dprintf("%u enum names hashed\n", ctf_hash_size(&fp->ctf_enums));
+ ctf_dprintf("%u struct names hashed (%d long)\n",
+ ctf_hash_size(&fp->ctf_structs), nlstructs);
+ ctf_dprintf("%u union names hashed (%d long)\n",
+ ctf_hash_size(&fp->ctf_unions), nlunions);
+ ctf_dprintf("%u base type names hashed\n",
+ ctf_hash_size(&fp->ctf_names));
+
+ /*
+ * Make an additional pass through the pointer table to find pointers
+ * that point to anonymous typedef nodes. If we find one, modify the
+ * pointer table so that the pointer is also known to point to the
+ * node that is referenced by the anonymous typedef node.
+ */
+ for (id = 1; id <= fp->ctf_typemax; id++) {
+ if ((dst = fp->ctf_ptrtab[id]) != 0) {
+ tp = LCTF_INDEX_TO_TYPEPTR(fp, id);
+
+ if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_TYPEDEF &&
+ strcmp(ctf_strptr(fp, tp->ctt_name), "") == 0 &&
+ CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
+ CTF_TYPE_TO_INDEX(tp->ctt_type) <= (intptr_t /*vbox*/)fp->ctf_typemax)
+ fp->ctf_ptrtab[
+ CTF_TYPE_TO_INDEX(tp->ctt_type)] = dst;
+ }
+ }
+
+ return (0);
+}
+
+/*
+ * Decode the specified CTF buffer and optional symbol table and create a new
+ * CTF container representing the symbolic debugging information. This code
+ * can be used directly by the debugger, or it can be used as the engine for
+ * ctf_fdopen() or ctf_open(), below.
+ */
+ctf_file_t *
+ctf_bufopen(const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
+ const ctf_sect_t *strsect, int *errp)
+{
+ const ctf_preamble_t *pp;
+ ctf_header_t hp;
+ ctf_file_t *fp;
+ void *buf, *base;
+ size_t size, hdrsz;
+ int err;
+
+ if (ctfsect == NULL || ((symsect == NULL) != (strsect == NULL)))
+ return (ctf_set_open_errno(errp, EINVAL));
+
+ if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) &&
+ symsect->cts_entsize != sizeof (Elf64_Sym))
+ return (ctf_set_open_errno(errp, ECTF_SYMTAB));
+
+ if (symsect != NULL && symsect->cts_data == NULL)
+ return (ctf_set_open_errno(errp, ECTF_SYMBAD));
+
+ if (strsect != NULL && strsect->cts_data == NULL)
+ return (ctf_set_open_errno(errp, ECTF_STRBAD));
+
+ if (ctfsect->cts_size < sizeof (ctf_preamble_t))
+ return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
+
+ pp = (const ctf_preamble_t *)ctfsect->cts_data;
+
+ ctf_dprintf("ctf_bufopen: magic=0x%x version=%u\n",
+ pp->ctp_magic, pp->ctp_version);
+
+ /*
+ * Validate each part of the CTF header (either V1 or V2).
+ * First, we validate the preamble (common to all versions). At that
+ * point, we know specific header version, and can validate the
+ * version-specific parts including section offsets and alignments.
+ */
+ if (pp->ctp_magic != CTF_MAGIC)
+ return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
+
+ if (pp->ctp_version == CTF_VERSION_2) {
+ if (ctfsect->cts_size < sizeof (ctf_header_t))
+ return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
+
+ bcopy(ctfsect->cts_data, &hp, sizeof (hp));
+ hdrsz = sizeof (ctf_header_t);
+
+ } else if (pp->ctp_version == CTF_VERSION_1) {
+ const ctf_header_v1_t *h1p =
+ (const ctf_header_v1_t *)ctfsect->cts_data;
+
+ if (ctfsect->cts_size < sizeof (ctf_header_v1_t))
+ return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
+
+ bzero(&hp, sizeof (hp));
+ hp.cth_preamble = h1p->cth_preamble;
+ hp.cth_objtoff = h1p->cth_objtoff;
+ hp.cth_funcoff = h1p->cth_funcoff;
+ hp.cth_typeoff = h1p->cth_typeoff;
+ hp.cth_stroff = h1p->cth_stroff;
+ hp.cth_strlen = h1p->cth_strlen;
+
+ hdrsz = sizeof (ctf_header_v1_t);
+ } else
+ return (ctf_set_open_errno(errp, ECTF_CTFVERS));
+
+ size = hp.cth_stroff + hp.cth_strlen;
+
+ ctf_dprintf("ctf_bufopen: uncompressed size=%lu\n", (ulong_t)size);
+
+ if (hp.cth_lbloff > size || hp.cth_objtoff > size ||
+ hp.cth_funcoff > size || hp.cth_typeoff > size ||
+ hp.cth_stroff > size)
+ return (ctf_set_open_errno(errp, ECTF_CORRUPT));
+
+ if (hp.cth_lbloff > hp.cth_objtoff ||
+ hp.cth_objtoff > hp.cth_funcoff ||
+ hp.cth_funcoff > hp.cth_typeoff ||
+ hp.cth_typeoff > hp.cth_stroff)
+ return (ctf_set_open_errno(errp, ECTF_CORRUPT));
+
+ if ((hp.cth_lbloff & 3) || (hp.cth_objtoff & 1) ||
+ (hp.cth_funcoff & 1) || (hp.cth_typeoff & 3))
+ return (ctf_set_open_errno(errp, ECTF_CORRUPT));
+
+ /*
+ * Once everything is determined to be valid, attempt to decompress
+ * the CTF data buffer if it is compressed. Otherwise we just put
+ * the data section's buffer pointer into ctf_buf, below.
+ */
+ if (hp.cth_flags & CTF_F_COMPRESS) {
+#ifndef VBOX
+ size_t srclen, dstlen;
+#else
+ uLong srclen;
+ uLong dstlen;
+#endif
+ const void *src;
+ int rc = Z_OK;
+
+#ifndef VBOX
+ if (ctf_zopen(errp) == NULL)
+ return (NULL); /* errp is set for us */
+#endif
+
+ if ((base = ctf_data_alloc(size + hdrsz)) == MAP_FAILED)
+ return (ctf_set_open_errno(errp, ECTF_ZALLOC));
+
+ bcopy(ctfsect->cts_data, base, hdrsz);
+ ((ctf_preamble_t *)base)->ctp_flags &= ~CTF_F_COMPRESS;
+ buf = (uchar_t *)base + hdrsz;
+
+ src = (uchar_t *)ctfsect->cts_data + hdrsz;
+ srclen = VBDTCAST(uLong)(ctfsect->cts_size - hdrsz);
+ dstlen = VBDTCAST(uLong)size;
+
+ if ((rc = z_uncompress(buf, &dstlen, src, srclen)) != Z_OK) {
+ ctf_dprintf("zlib inflate err: %s\n", z_strerror(rc));
+ ctf_data_free(base, size + hdrsz);
+ return (ctf_set_open_errno(errp, ECTF_DECOMPRESS));
+ }
+
+ if (dstlen != size) {
+ ctf_dprintf("zlib inflate short -- got %lu of %lu "
+ "bytes\n", (ulong_t)dstlen, (ulong_t)size);
+ ctf_data_free(base, size + hdrsz);
+ return (ctf_set_open_errno(errp, ECTF_CORRUPT));
+ }
+
+ ctf_data_protect(base, size + hdrsz);
+
+ } else {
+ base = (void *)ctfsect->cts_data;
+ buf = (uchar_t *)base + hdrsz;
+ }
+
+ /*
+ * Once we have uncompressed and validated the CTF data buffer, we can
+ * proceed with allocating a ctf_file_t and initializing it.
+ */
+ if ((fp = ctf_alloc(sizeof (ctf_file_t))) == NULL)
+ return (ctf_set_open_errno(errp, EAGAIN));
+
+ bzero(fp, sizeof (ctf_file_t));
+ fp->ctf_version = hp.cth_version;
+ fp->ctf_fileops = &ctf_fileops[hp.cth_version];
+ bcopy(ctfsect, &fp->ctf_data, sizeof (ctf_sect_t));
+
+ if (symsect != NULL) {
+ bcopy(symsect, &fp->ctf_symtab, sizeof (ctf_sect_t));
+ bcopy(strsect, &fp->ctf_strtab, sizeof (ctf_sect_t));
+ }
+
+ if (fp->ctf_data.cts_name != NULL)
+ fp->ctf_data.cts_name = ctf_strdup(fp->ctf_data.cts_name);
+ if (fp->ctf_symtab.cts_name != NULL)
+ fp->ctf_symtab.cts_name = ctf_strdup(fp->ctf_symtab.cts_name);
+ if (fp->ctf_strtab.cts_name != NULL)
+ fp->ctf_strtab.cts_name = ctf_strdup(fp->ctf_strtab.cts_name);
+
+ if (fp->ctf_data.cts_name == NULL)
+ fp->ctf_data.cts_name = _CTF_NULLSTR;
+ if (fp->ctf_symtab.cts_name == NULL)
+ fp->ctf_symtab.cts_name = _CTF_NULLSTR;
+ if (fp->ctf_strtab.cts_name == NULL)
+ fp->ctf_strtab.cts_name = _CTF_NULLSTR;
+
+ fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *)buf + hp.cth_stroff;
+ fp->ctf_str[CTF_STRTAB_0].cts_len = hp.cth_strlen;
+
+ if (strsect != NULL) {
+ fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data;
+ fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size;
+ }
+
+ fp->ctf_base = base;
+ fp->ctf_buf = buf;
+ fp->ctf_size = size + hdrsz;
+
+ /*
+ * If we have a parent container name and label, store the relocated
+ * string pointers in the CTF container for easy access later.
+ */
+ if (hp.cth_parlabel != 0)
+ fp->ctf_parlabel = ctf_strptr(fp, hp.cth_parlabel);
+ if (hp.cth_parname != 0)
+ fp->ctf_parname = ctf_strptr(fp, hp.cth_parname);
+
+ ctf_dprintf("ctf_bufopen: parent name %s (label %s)\n",
+ fp->ctf_parname ? fp->ctf_parname : "<NULL>",
+ fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>");
+
+ /*
+ * If we have a symbol table section, allocate and initialize
+ * the symtab translation table, pointed to by ctf_sxlate.
+ */
+ if (symsect != NULL) {
+ fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize;
+ fp->ctf_sxlate = ctf_alloc(fp->ctf_nsyms * sizeof (uint_t));
+
+ if (fp->ctf_sxlate == NULL) {
+ (void) ctf_set_open_errno(errp, EAGAIN);
+ goto bad;
+ }
+
+ if ((err = init_symtab(fp, &hp, symsect, strsect)) != 0) {
+ (void) ctf_set_open_errno(errp, err);
+ goto bad;
+ }
+ }
+
+ if ((err = init_types(fp, &hp)) != 0) {
+ (void) ctf_set_open_errno(errp, err);
+ goto bad;
+ }
+
+ /*
+ * Initialize the ctf_lookup_by_name top-level dictionary. We keep an
+ * array of type name prefixes and the corresponding ctf_hash to use.
+ * NOTE: This code must be kept in sync with the code in ctf_update().
+ */
+ fp->ctf_lookups[0].ctl_prefix = "struct";
+ fp->ctf_lookups[0].ctl_len = strlen(fp->ctf_lookups[0].ctl_prefix);
+ fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs;
+ fp->ctf_lookups[1].ctl_prefix = "union";
+ fp->ctf_lookups[1].ctl_len = strlen(fp->ctf_lookups[1].ctl_prefix);
+ fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions;
+ fp->ctf_lookups[2].ctl_prefix = "enum";
+ fp->ctf_lookups[2].ctl_len = strlen(fp->ctf_lookups[2].ctl_prefix);
+ fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums;
+ fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR;
+ fp->ctf_lookups[3].ctl_len = strlen(fp->ctf_lookups[3].ctl_prefix);
+ fp->ctf_lookups[3].ctl_hash = &fp->ctf_names;
+ fp->ctf_lookups[4].ctl_prefix = NULL;
+ fp->ctf_lookups[4].ctl_len = 0;
+ fp->ctf_lookups[4].ctl_hash = NULL;
+
+ if (symsect != NULL) {
+ if (symsect->cts_entsize == sizeof (Elf64_Sym))
+ (void) ctf_setmodel(fp, CTF_MODEL_LP64);
+ else
+ (void) ctf_setmodel(fp, CTF_MODEL_ILP32);
+ } else
+ (void) ctf_setmodel(fp, CTF_MODEL_NATIVE);
+
+ fp->ctf_refcnt = 1;
+ return (fp);
+
+bad:
+ ctf_close(fp);
+ return (NULL);
+}
+
+/*
+ * Close the specified CTF container and free associated data structures. Note
+ * that ctf_close() is a reference counted operation: if the specified file is
+ * the parent of other active containers, its reference count will be greater
+ * than one and it will be freed later when no active children exist.
+ */
+void
+ctf_close(ctf_file_t *fp)
+{
+ ctf_dtdef_t *dtd, *ntd;
+
+ if (fp == NULL)
+ return; /* allow ctf_close(NULL) to simplify caller code */
+
+ ctf_dprintf("ctf_close(%p) refcnt=%u\n", (void *)fp, fp->ctf_refcnt);
+
+ if (fp->ctf_refcnt > 1) {
+ fp->ctf_refcnt--;
+ return;
+ }
+
+ if (fp->ctf_parent != NULL)
+ ctf_close(fp->ctf_parent);
+
+ for (dtd = ctf_list_next(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) {
+ ntd = ctf_list_next(dtd);
+ ctf_dtd_delete(fp, dtd);
+ }
+
+ ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *));
+
+ if (fp->ctf_flags & LCTF_MMAP) {
+ if (fp->ctf_data.cts_data != NULL)
+ ctf_sect_munmap(&fp->ctf_data);
+ if (fp->ctf_symtab.cts_data != NULL)
+ ctf_sect_munmap(&fp->ctf_symtab);
+ if (fp->ctf_strtab.cts_data != NULL)
+ ctf_sect_munmap(&fp->ctf_strtab);
+ }
+
+ if (fp->ctf_data.cts_name != _CTF_NULLSTR &&
+ fp->ctf_data.cts_name != NULL) {
+ ctf_free((char *)fp->ctf_data.cts_name,
+ strlen(fp->ctf_data.cts_name) + 1);
+ }
+
+ if (fp->ctf_symtab.cts_name != _CTF_NULLSTR &&
+ fp->ctf_symtab.cts_name != NULL) {
+ ctf_free((char *)fp->ctf_symtab.cts_name,
+ strlen(fp->ctf_symtab.cts_name) + 1);
+ }
+
+ if (fp->ctf_strtab.cts_name != _CTF_NULLSTR &&
+ fp->ctf_strtab.cts_name != NULL) {
+ ctf_free((char *)fp->ctf_strtab.cts_name,
+ strlen(fp->ctf_strtab.cts_name) + 1);
+ }
+
+ if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL)
+ ctf_data_free((void *)fp->ctf_base, fp->ctf_size);
+
+ if (fp->ctf_sxlate != NULL)
+ ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms);
+
+ if (fp->ctf_txlate != NULL) {
+ ctf_free(fp->ctf_txlate,
+ sizeof (uint_t) * (fp->ctf_typemax + 1));
+ }
+
+ if (fp->ctf_ptrtab != NULL) {
+ ctf_free(fp->ctf_ptrtab,
+ sizeof (ushort_t) * (fp->ctf_typemax + 1));
+ }
+
+ ctf_hash_destroy(&fp->ctf_structs);
+ ctf_hash_destroy(&fp->ctf_unions);
+ ctf_hash_destroy(&fp->ctf_enums);
+ ctf_hash_destroy(&fp->ctf_names);
+
+ ctf_free(fp, sizeof (ctf_file_t));
+}
+
+/*
+ * Return the CTF handle for the parent CTF container, if one exists.
+ * Otherwise return NULL to indicate this container has no imported parent.
+ */
+ctf_file_t *
+ctf_parent_file(ctf_file_t *fp)
+{
+ return (fp->ctf_parent);
+}
+
+/*
+ * Return the name of the parent CTF container, if one exists. Otherwise
+ * return NULL to indicate this container is a root container.
+ */
+const char *
+ctf_parent_name(ctf_file_t *fp)
+{
+ return (fp->ctf_parname);
+}
+
+/*
+ * Import the types from the specified parent container by storing a pointer
+ * to it in ctf_parent and incrementing its reference count. Only one parent
+ * is allowed: if a parent already exists, it is replaced by the new parent.
+ */
+int
+ctf_import(ctf_file_t *fp, ctf_file_t *pfp)
+{
+ if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
+ return (ctf_set_errno(fp, EINVAL));
+
+ if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
+ return (ctf_set_errno(fp, ECTF_DMODEL));
+
+ if (fp->ctf_parent != NULL)
+ ctf_close(fp->ctf_parent);
+
+ if (pfp != NULL) {
+ fp->ctf_flags |= LCTF_CHILD;
+ pfp->ctf_refcnt++;
+ }
+
+ fp->ctf_parent = pfp;
+ return (0);
+}
+
+/*
+ * Set the data model constant for the CTF container.
+ */
+int
+ctf_setmodel(ctf_file_t *fp, int model)
+{
+ const ctf_dmodel_t *dp;
+
+ for (dp = _libctf_models; dp->ctd_name != NULL; dp++) {
+ if (dp->ctd_code == model) {
+ fp->ctf_dmodel = dp;
+ return (0);
+ }
+ }
+
+ return (ctf_set_errno(fp, EINVAL));
+}
+
+/*
+ * Return the data model constant for the CTF container.
+ */
+int
+ctf_getmodel(ctf_file_t *fp)
+{
+ return (fp->ctf_dmodel->ctd_code);
+}
+
+void
+ctf_setspecific(ctf_file_t *fp, void *data)
+{
+ fp->ctf_specific = data;
+}
+
+void *
+ctf_getspecific(ctf_file_t *fp)
+{
+ return (fp->ctf_specific);
+}