summaryrefslogtreecommitdiffstats
path: root/src/VBox/Runtime/common/checksum/alt-sha256.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/VBox/Runtime/common/checksum/alt-sha256.cpp')
-rw-r--r--src/VBox/Runtime/common/checksum/alt-sha256.cpp693
1 files changed, 693 insertions, 0 deletions
diff --git a/src/VBox/Runtime/common/checksum/alt-sha256.cpp b/src/VBox/Runtime/common/checksum/alt-sha256.cpp
new file mode 100644
index 00000000..28acca96
--- /dev/null
+++ b/src/VBox/Runtime/common/checksum/alt-sha256.cpp
@@ -0,0 +1,693 @@
+/* $Id: alt-sha256.cpp $ */
+/** @file
+ * IPRT - SHA-256 and SHA-224 hash functions, Alternative Implementation.
+ */
+
+/*
+ * Copyright (C) 2009-2023 Oracle and/or its affiliates.
+ *
+ * This file is part of VirtualBox base platform packages, as
+ * available from https://www.virtualbox.org.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation, in version 3 of the
+ * License.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, see <https://www.gnu.org/licenses>.
+ *
+ * The contents of this file may alternatively be used under the terms
+ * of the Common Development and Distribution License Version 1.0
+ * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
+ * in the VirtualBox distribution, in which case the provisions of the
+ * CDDL are applicable instead of those of the GPL.
+ *
+ * You may elect to license modified versions of this file under the
+ * terms and conditions of either the GPL or the CDDL or both.
+ *
+ * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
+ */
+
+
+/*********************************************************************************************************************************
+* Defined Constants And Macros *
+*********************************************************************************************************************************/
+/** The SHA-256 block size (in bytes). */
+#define RTSHA256_BLOCK_SIZE 64U
+
+/** Enables the unrolled code. */
+#define RTSHA256_UNROLLED 1
+
+
+/*********************************************************************************************************************************
+* Header Files *
+*********************************************************************************************************************************/
+#include "internal/iprt.h"
+#include <iprt/types.h>
+#include <iprt/assert.h>
+#include <iprt/asm.h>
+#include <iprt/string.h>
+
+
+/** Our private context structure. */
+typedef struct RTSHA256ALTPRIVATECTX
+{
+ /** The W array.
+ * Buffering happens in the first 16 words, converted from big endian to host
+ * endian immediately before processing. The amount of buffered data is kept
+ * in the 6 least significant bits of cbMessage. */
+ uint32_t auW[64];
+ /** The message length (in bytes). */
+ uint64_t cbMessage;
+ /** The 8 hash values. */
+ uint32_t auH[8];
+} RTSHA256ALTPRIVATECTX;
+
+#define RT_SHA256_PRIVATE_ALT_CONTEXT
+#include <iprt/sha.h>
+
+
+AssertCompile(RT_SIZEOFMEMB(RTSHA256CONTEXT, abPadding) >= RT_SIZEOFMEMB(RTSHA256CONTEXT, AltPrivate));
+AssertCompileMemberSize(RTSHA256ALTPRIVATECTX, auH, RTSHA256_HASH_SIZE);
+
+
+/*********************************************************************************************************************************
+* Global Variables *
+*********************************************************************************************************************************/
+#ifndef RTSHA256_UNROLLED
+/** The K constants */
+static uint32_t const g_auKs[] =
+{
+ UINT32_C(0x428a2f98), UINT32_C(0x71374491), UINT32_C(0xb5c0fbcf), UINT32_C(0xe9b5dba5),
+ UINT32_C(0x3956c25b), UINT32_C(0x59f111f1), UINT32_C(0x923f82a4), UINT32_C(0xab1c5ed5),
+ UINT32_C(0xd807aa98), UINT32_C(0x12835b01), UINT32_C(0x243185be), UINT32_C(0x550c7dc3),
+ UINT32_C(0x72be5d74), UINT32_C(0x80deb1fe), UINT32_C(0x9bdc06a7), UINT32_C(0xc19bf174),
+ UINT32_C(0xe49b69c1), UINT32_C(0xefbe4786), UINT32_C(0x0fc19dc6), UINT32_C(0x240ca1cc),
+ UINT32_C(0x2de92c6f), UINT32_C(0x4a7484aa), UINT32_C(0x5cb0a9dc), UINT32_C(0x76f988da),
+ UINT32_C(0x983e5152), UINT32_C(0xa831c66d), UINT32_C(0xb00327c8), UINT32_C(0xbf597fc7),
+ UINT32_C(0xc6e00bf3), UINT32_C(0xd5a79147), UINT32_C(0x06ca6351), UINT32_C(0x14292967),
+ UINT32_C(0x27b70a85), UINT32_C(0x2e1b2138), UINT32_C(0x4d2c6dfc), UINT32_C(0x53380d13),
+ UINT32_C(0x650a7354), UINT32_C(0x766a0abb), UINT32_C(0x81c2c92e), UINT32_C(0x92722c85),
+ UINT32_C(0xa2bfe8a1), UINT32_C(0xa81a664b), UINT32_C(0xc24b8b70), UINT32_C(0xc76c51a3),
+ UINT32_C(0xd192e819), UINT32_C(0xd6990624), UINT32_C(0xf40e3585), UINT32_C(0x106aa070),
+ UINT32_C(0x19a4c116), UINT32_C(0x1e376c08), UINT32_C(0x2748774c), UINT32_C(0x34b0bcb5),
+ UINT32_C(0x391c0cb3), UINT32_C(0x4ed8aa4a), UINT32_C(0x5b9cca4f), UINT32_C(0x682e6ff3),
+ UINT32_C(0x748f82ee), UINT32_C(0x78a5636f), UINT32_C(0x84c87814), UINT32_C(0x8cc70208),
+ UINT32_C(0x90befffa), UINT32_C(0xa4506ceb), UINT32_C(0xbef9a3f7), UINT32_C(0xc67178f2),
+};
+#endif /* !RTSHA256_UNROLLED */
+
+
+
+RTDECL(void) RTSha256Init(PRTSHA256CONTEXT pCtx)
+{
+ pCtx->AltPrivate.cbMessage = 0;
+ pCtx->AltPrivate.auH[0] = UINT32_C(0x6a09e667);
+ pCtx->AltPrivate.auH[1] = UINT32_C(0xbb67ae85);
+ pCtx->AltPrivate.auH[2] = UINT32_C(0x3c6ef372);
+ pCtx->AltPrivate.auH[3] = UINT32_C(0xa54ff53a);
+ pCtx->AltPrivate.auH[4] = UINT32_C(0x510e527f);
+ pCtx->AltPrivate.auH[5] = UINT32_C(0x9b05688c);
+ pCtx->AltPrivate.auH[6] = UINT32_C(0x1f83d9ab);
+ pCtx->AltPrivate.auH[7] = UINT32_C(0x5be0cd19);
+}
+RT_EXPORT_SYMBOL(RTSha256Init);
+
+
+/** Function 4.2. */
+DECL_FORCE_INLINE(uint32_t) rtSha256Ch(uint32_t uX, uint32_t uY, uint32_t uZ)
+{
+#if 1
+ /* Optimization that saves one operation and probably a temporary variable. */
+ uint32_t uResult = uY;
+ uResult ^= uZ;
+ uResult &= uX;
+ uResult ^= uZ;
+ return uResult;
+#else
+ /* The original. */
+ uint32_t uResult = uX & uY;
+ uResult ^= ~uX & uZ;
+ return uResult;
+#endif
+}
+
+
+/** Function 4.3. */
+DECL_FORCE_INLINE(uint32_t) rtSha256Maj(uint32_t uX, uint32_t uY, uint32_t uZ)
+{
+#if 1
+ /* Optimization that save one operation and probably a temporary variable. */
+ uint32_t uResult = uY;
+ uResult ^= uZ;
+ uResult &= uX;
+ uResult ^= uY & uZ;
+ return uResult;
+#else
+ /* The original. */
+ uint32_t uResult = uX & uY;
+ uResult ^= uX & uZ;
+ uResult ^= uY & uZ;
+ return uResult;
+#endif
+}
+
+
+/** Function 4.4. */
+DECL_FORCE_INLINE(uint32_t) rtSha256CapitalSigma0(uint32_t uX)
+{
+ uint32_t uResult = uX = ASMRotateRightU32(uX, 2);
+ uX = ASMRotateRightU32(uX, 13 - 2);
+ uResult ^= uX;
+ uX = ASMRotateRightU32(uX, 22 - 13);
+ uResult ^= uX;
+ return uResult;
+}
+
+
+/** Function 4.5. */
+DECL_FORCE_INLINE(uint32_t) rtSha256CapitalSigma1(uint32_t uX)
+{
+ uint32_t uResult = uX = ASMRotateRightU32(uX, 6);
+ uX = ASMRotateRightU32(uX, 11 - 6);
+ uResult ^= uX;
+ uX = ASMRotateRightU32(uX, 25 - 11);
+ uResult ^= uX;
+ return uResult;
+}
+
+
+/** Function 4.6. */
+DECL_FORCE_INLINE(uint32_t) rtSha256SmallSigma0(uint32_t uX)
+{
+ uint32_t uResult = uX >> 3;
+ uX = ASMRotateRightU32(uX, 7);
+ uResult ^= uX;
+ uX = ASMRotateRightU32(uX, 18 - 7);
+ uResult ^= uX;
+ return uResult;
+}
+
+
+/** Function 4.7. */
+DECL_FORCE_INLINE(uint32_t) rtSha256SmallSigma1(uint32_t uX)
+{
+ uint32_t uResult = uX >> 10;
+ uX = ASMRotateRightU32(uX, 17);
+ uResult ^= uX;
+ uX = ASMRotateRightU32(uX, 19 - 17);
+ uResult ^= uX;
+ return uResult;
+}
+
+
+/**
+ * Initializes the auW array from the specfied input block.
+ *
+ * @param pCtx The SHA-256 context.
+ * @param pbBlock The block. Must be arch-bit-width aligned.
+ */
+DECLINLINE(void) rtSha256BlockInit(PRTSHA256CONTEXT pCtx, uint8_t const *pbBlock)
+{
+#ifdef RTSHA256_UNROLLED
+ /* Copy and byte-swap the block. Initializing the rest of the Ws are done
+ in the processing loop. */
+# ifdef RT_LITTLE_ENDIAN
+# if 0 /* Just an idea... very little gain as this isn't the expensive code. */
+ __m128i const uBSwapConst = { 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12 };
+ __m128i const *puSrc = (__m128i const *)pbBlock;
+ __m128i *puDst = (__m128i *)&pCtx->AltPrivate.auW[0];
+
+ _mm_storeu_si128(puDst, _mm_shuffle_epi8(_mm_loadu_si128(puSrc), uBSwapConst)); puDst++; puSrc++;
+ _mm_storeu_si128(puDst, _mm_shuffle_epi8(_mm_loadu_si128(puSrc), uBSwapConst)); puDst++; puSrc++;
+ _mm_storeu_si128(puDst, _mm_shuffle_epi8(_mm_loadu_si128(puSrc), uBSwapConst)); puDst++; puSrc++;
+ _mm_storeu_si128(puDst, _mm_shuffle_epi8(_mm_loadu_si128(puSrc), uBSwapConst)); puDst++; puSrc++;
+
+# elif ARCH_BITS == 64
+ uint64_t const *puSrc = (uint64_t const *)pbBlock;
+ uint64_t *puW = (uint64_t *)&pCtx->AltPrivate.auW[0];
+ Assert(!((uintptr_t)puSrc & 7));
+ Assert(!((uintptr_t)puW & 7));
+
+ /* b0 b1 b2 b3 b4 b5 b6 b7 --bwap--> b7 b6 b5 b4 b3 b2 b1 b0 --ror--> b3 b2 b1 b0 b7 b6 b5 b4; */
+ *puW++ = ASMRotateRightU64(ASMByteSwapU64(*puSrc++), 32);
+ *puW++ = ASMRotateRightU64(ASMByteSwapU64(*puSrc++), 32);
+ *puW++ = ASMRotateRightU64(ASMByteSwapU64(*puSrc++), 32);
+ *puW++ = ASMRotateRightU64(ASMByteSwapU64(*puSrc++), 32);
+
+ *puW++ = ASMRotateRightU64(ASMByteSwapU64(*puSrc++), 32);
+ *puW++ = ASMRotateRightU64(ASMByteSwapU64(*puSrc++), 32);
+ *puW++ = ASMRotateRightU64(ASMByteSwapU64(*puSrc++), 32);
+ *puW++ = ASMRotateRightU64(ASMByteSwapU64(*puSrc++), 32);
+
+# else
+ uint32_t const *puSrc = (uint32_t const *)pbBlock;
+ uint32_t *puW = &pCtx->AltPrivate.auW[0];
+ Assert(!((uintptr_t)puSrc & 3));
+ Assert(!((uintptr_t)puW & 3));
+
+ *puW++ = ASMByteSwapU32(*puSrc++);
+ *puW++ = ASMByteSwapU32(*puSrc++);
+ *puW++ = ASMByteSwapU32(*puSrc++);
+ *puW++ = ASMByteSwapU32(*puSrc++);
+
+ *puW++ = ASMByteSwapU32(*puSrc++);
+ *puW++ = ASMByteSwapU32(*puSrc++);
+ *puW++ = ASMByteSwapU32(*puSrc++);
+ *puW++ = ASMByteSwapU32(*puSrc++);
+
+ *puW++ = ASMByteSwapU32(*puSrc++);
+ *puW++ = ASMByteSwapU32(*puSrc++);
+ *puW++ = ASMByteSwapU32(*puSrc++);
+ *puW++ = ASMByteSwapU32(*puSrc++);
+
+ *puW++ = ASMByteSwapU32(*puSrc++);
+ *puW++ = ASMByteSwapU32(*puSrc++);
+ *puW++ = ASMByteSwapU32(*puSrc++);
+ *puW++ = ASMByteSwapU32(*puSrc++);
+# endif
+# else /* RT_BIG_ENDIAN */
+ memcpy(&pCtx->AltPrivate.auW[0], pbBlock, RTSHA256_BLOCK_SIZE);
+# endif /* RT_BIG_ENDIAN */
+
+#else /* !RTSHA256_UNROLLED */
+ uint32_t const *pu32Block = (uint32_t const *)pbBlock;
+ Assert(!((uintptr_t)pu32Block & 3));
+
+ unsigned iWord;
+ for (iWord = 0; iWord < 16; iWord++)
+ pCtx->AltPrivate.auW[iWord] = RT_BE2H_U32(pu32Block[iWord]);
+
+ for (; iWord < RT_ELEMENTS(pCtx->AltPrivate.auW); iWord++)
+ {
+ uint32_t u32 = rtSha256SmallSigma1(pCtx->AltPrivate.auW[iWord - 2]);
+ u32 += rtSha256SmallSigma0(pCtx->AltPrivate.auW[iWord - 15]);
+ u32 += pCtx->AltPrivate.auW[iWord - 7];
+ u32 += pCtx->AltPrivate.auW[iWord - 16];
+ pCtx->AltPrivate.auW[iWord] = u32;
+ }
+#endif /* !RTSHA256_UNROLLED */
+}
+
+
+/**
+ * Initializes the auW array from data buffered in the first part of the array.
+ *
+ * @param pCtx The SHA-256 context.
+ */
+DECLINLINE(void) rtSha256BlockInitBuffered(PRTSHA256CONTEXT pCtx)
+{
+#ifdef RTSHA256_UNROLLED
+ /* Do the byte swap if necessary. Initializing the rest of the Ws are done
+ in the processing loop. */
+# ifdef RT_LITTLE_ENDIAN
+# if ARCH_BITS == 64
+ uint64_t *puW = (uint64_t *)&pCtx->AltPrivate.auW[0];
+ Assert(!((uintptr_t)puW & 7));
+ /* b0 b1 b2 b3 b4 b5 b6 b7 --bwap--> b7 b6 b5 b4 b3 b2 b1 b0 --ror--> b3 b2 b1 b0 b7 b6 b5 b4; */
+ *puW = ASMRotateRightU64(ASMByteSwapU64(*puW), 32); puW++;
+ *puW = ASMRotateRightU64(ASMByteSwapU64(*puW), 32); puW++;
+ *puW = ASMRotateRightU64(ASMByteSwapU64(*puW), 32); puW++;
+ *puW = ASMRotateRightU64(ASMByteSwapU64(*puW), 32); puW++;
+
+ *puW = ASMRotateRightU64(ASMByteSwapU64(*puW), 32); puW++;
+ *puW = ASMRotateRightU64(ASMByteSwapU64(*puW), 32); puW++;
+ *puW = ASMRotateRightU64(ASMByteSwapU64(*puW), 32); puW++;
+ *puW = ASMRotateRightU64(ASMByteSwapU64(*puW), 32); puW++;
+
+# else
+ uint32_t *puW = &pCtx->AltPrivate.auW[0];
+ Assert(!((uintptr_t)puW & 3));
+
+ *puW = ASMByteSwapU32(*puW); puW++;
+ *puW = ASMByteSwapU32(*puW); puW++;
+ *puW = ASMByteSwapU32(*puW); puW++;
+ *puW = ASMByteSwapU32(*puW); puW++;
+
+ *puW = ASMByteSwapU32(*puW); puW++;
+ *puW = ASMByteSwapU32(*puW); puW++;
+ *puW = ASMByteSwapU32(*puW); puW++;
+ *puW = ASMByteSwapU32(*puW); puW++;
+
+ *puW = ASMByteSwapU32(*puW); puW++;
+ *puW = ASMByteSwapU32(*puW); puW++;
+ *puW = ASMByteSwapU32(*puW); puW++;
+ *puW = ASMByteSwapU32(*puW); puW++;
+
+ *puW = ASMByteSwapU32(*puW); puW++;
+ *puW = ASMByteSwapU32(*puW); puW++;
+ *puW = ASMByteSwapU32(*puW); puW++;
+ *puW = ASMByteSwapU32(*puW); puW++;
+# endif
+# endif
+
+#else /* !RTSHA256_UNROLLED */
+ unsigned iWord;
+ for (iWord = 0; iWord < 16; iWord++)
+ pCtx->AltPrivate.auW[iWord] = RT_BE2H_U32(pCtx->AltPrivate.auW[iWord]);
+
+ for (; iWord < RT_ELEMENTS(pCtx->AltPrivate.auW); iWord++)
+ {
+ uint32_t u32 = rtSha256SmallSigma1(pCtx->AltPrivate.auW[iWord - 2]);
+ u32 += rtSha256SmallSigma0(pCtx->AltPrivate.auW[iWord - 15]);
+ u32 += pCtx->AltPrivate.auW[iWord - 7];
+ u32 += pCtx->AltPrivate.auW[iWord - 16];
+ pCtx->AltPrivate.auW[iWord] = u32;
+ }
+#endif /* !RTSHA256_UNROLLED */
+}
+
+
+/**
+ * Process the current block.
+ *
+ * Requires one of the rtSha256BlockInit functions to be called first.
+ *
+ * @param pCtx The SHA-256 context.
+ */
+static void rtSha256BlockProcess(PRTSHA256CONTEXT pCtx)
+{
+ uint32_t uA = pCtx->AltPrivate.auH[0];
+ uint32_t uB = pCtx->AltPrivate.auH[1];
+ uint32_t uC = pCtx->AltPrivate.auH[2];
+ uint32_t uD = pCtx->AltPrivate.auH[3];
+ uint32_t uE = pCtx->AltPrivate.auH[4];
+ uint32_t uF = pCtx->AltPrivate.auH[5];
+ uint32_t uG = pCtx->AltPrivate.auH[6];
+ uint32_t uH = pCtx->AltPrivate.auH[7];
+
+#ifdef RTSHA256_UNROLLED
+ uint32_t *puW = &pCtx->AltPrivate.auW[0];
+# define RTSHA256_BODY(a_iWord, a_uK, a_uA, a_uB, a_uC, a_uD, a_uE, a_uF, a_uG, a_uH) \
+ do { \
+ if ((a_iWord) < 16) \
+ a_uH += *puW++; \
+ else \
+ { \
+ uint32_t u32 = puW[-16]; \
+ u32 += rtSha256SmallSigma0(puW[-15]); \
+ u32 += puW[-7]; \
+ u32 += rtSha256SmallSigma1(puW[-2]); \
+ if (a_iWord < 64-2) *puW++ = u32; else puW++; \
+ a_uH += u32; \
+ } \
+ \
+ a_uH += rtSha256CapitalSigma1(a_uE); \
+ a_uH += a_uK; \
+ a_uH += rtSha256Ch(a_uE, a_uF, a_uG); \
+ a_uD += a_uH; \
+ \
+ a_uH += rtSha256CapitalSigma0(a_uA); \
+ a_uH += rtSha256Maj(a_uA, a_uB, a_uC); \
+ } while (0)
+# define RTSHA256_EIGHT(a_uK0, a_uK1, a_uK2, a_uK3, a_uK4, a_uK5, a_uK6, a_uK7, a_iFirst) \
+ do { \
+ RTSHA256_BODY(a_iFirst + 0, a_uK0, uA, uB, uC, uD, uE, uF, uG, uH); \
+ RTSHA256_BODY(a_iFirst + 1, a_uK1, uH, uA, uB, uC, uD, uE, uF, uG); \
+ RTSHA256_BODY(a_iFirst + 2, a_uK2, uG, uH, uA, uB, uC, uD, uE, uF); \
+ RTSHA256_BODY(a_iFirst + 3, a_uK3, uF, uG, uH, uA, uB, uC, uD, uE); \
+ RTSHA256_BODY(a_iFirst + 4, a_uK4, uE, uF, uG, uH, uA, uB, uC, uD); \
+ RTSHA256_BODY(a_iFirst + 5, a_uK5, uD, uE, uF, uG, uH, uA, uB, uC); \
+ RTSHA256_BODY(a_iFirst + 6, a_uK6, uC, uD, uE, uF, uG, uH, uA, uB); \
+ RTSHA256_BODY(a_iFirst + 7, a_uK7, uB, uC, uD, uE, uF, uG, uH, uA); \
+ } while (0)
+ RTSHA256_EIGHT(UINT32_C(0x428a2f98), UINT32_C(0x71374491), UINT32_C(0xb5c0fbcf), UINT32_C(0xe9b5dba5),
+ UINT32_C(0x3956c25b), UINT32_C(0x59f111f1), UINT32_C(0x923f82a4), UINT32_C(0xab1c5ed5), 0);
+ RTSHA256_EIGHT(UINT32_C(0xd807aa98), UINT32_C(0x12835b01), UINT32_C(0x243185be), UINT32_C(0x550c7dc3),
+ UINT32_C(0x72be5d74), UINT32_C(0x80deb1fe), UINT32_C(0x9bdc06a7), UINT32_C(0xc19bf174), 8);
+ RTSHA256_EIGHT(UINT32_C(0xe49b69c1), UINT32_C(0xefbe4786), UINT32_C(0x0fc19dc6), UINT32_C(0x240ca1cc),
+ UINT32_C(0x2de92c6f), UINT32_C(0x4a7484aa), UINT32_C(0x5cb0a9dc), UINT32_C(0x76f988da), 16);
+ RTSHA256_EIGHT(UINT32_C(0x983e5152), UINT32_C(0xa831c66d), UINT32_C(0xb00327c8), UINT32_C(0xbf597fc7),
+ UINT32_C(0xc6e00bf3), UINT32_C(0xd5a79147), UINT32_C(0x06ca6351), UINT32_C(0x14292967), 24);
+ RTSHA256_EIGHT(UINT32_C(0x27b70a85), UINT32_C(0x2e1b2138), UINT32_C(0x4d2c6dfc), UINT32_C(0x53380d13),
+ UINT32_C(0x650a7354), UINT32_C(0x766a0abb), UINT32_C(0x81c2c92e), UINT32_C(0x92722c85), 32);
+ RTSHA256_EIGHT(UINT32_C(0xa2bfe8a1), UINT32_C(0xa81a664b), UINT32_C(0xc24b8b70), UINT32_C(0xc76c51a3),
+ UINT32_C(0xd192e819), UINT32_C(0xd6990624), UINT32_C(0xf40e3585), UINT32_C(0x106aa070), 40);
+ RTSHA256_EIGHT(UINT32_C(0x19a4c116), UINT32_C(0x1e376c08), UINT32_C(0x2748774c), UINT32_C(0x34b0bcb5),
+ UINT32_C(0x391c0cb3), UINT32_C(0x4ed8aa4a), UINT32_C(0x5b9cca4f), UINT32_C(0x682e6ff3), 48);
+ RTSHA256_EIGHT(UINT32_C(0x748f82ee), UINT32_C(0x78a5636f), UINT32_C(0x84c87814), UINT32_C(0x8cc70208),
+ UINT32_C(0x90befffa), UINT32_C(0xa4506ceb), UINT32_C(0xbef9a3f7), UINT32_C(0xc67178f2), 56);
+
+#else /* !RTSHA256_UNROLLED */
+ for (unsigned iWord = 0; iWord < RT_ELEMENTS(pCtx->AltPrivate.auW); iWord++)
+ {
+ uint32_t uT1 = uH;
+ uT1 += rtSha256CapitalSigma1(uE);
+ uT1 += rtSha256Ch(uE, uF, uG);
+ uT1 += g_auKs[iWord];
+ uT1 += pCtx->AltPrivate.auW[iWord];
+
+ uint32_t uT2 = rtSha256CapitalSigma0(uA);
+ uT2 += rtSha256Maj(uA, uB, uC);
+
+ uH = uG;
+ uG = uF;
+ uF = uE;
+ uE = uD + uT1;
+ uD = uC;
+ uC = uB;
+ uB = uA;
+ uA = uT1 + uT2;
+ }
+#endif /* !RTSHA256_UNROLLED */
+
+ pCtx->AltPrivate.auH[0] += uA;
+ pCtx->AltPrivate.auH[1] += uB;
+ pCtx->AltPrivate.auH[2] += uC;
+ pCtx->AltPrivate.auH[3] += uD;
+ pCtx->AltPrivate.auH[4] += uE;
+ pCtx->AltPrivate.auH[5] += uF;
+ pCtx->AltPrivate.auH[6] += uG;
+ pCtx->AltPrivate.auH[7] += uH;
+}
+
+
+RTDECL(void) RTSha256Update(PRTSHA256CONTEXT pCtx, const void *pvBuf, size_t cbBuf)
+{
+ Assert(pCtx->AltPrivate.cbMessage < UINT64_MAX / 8);
+ uint8_t const *pbBuf = (uint8_t const *)pvBuf;
+
+ /*
+ * Deal with buffered bytes first.
+ */
+ size_t cbBuffered = (size_t)pCtx->AltPrivate.cbMessage & (RTSHA256_BLOCK_SIZE - 1U);
+ if (cbBuffered)
+ {
+ size_t cbMissing = RTSHA256_BLOCK_SIZE - cbBuffered;
+ if (cbBuf >= cbMissing)
+ {
+ memcpy((uint8_t *)&pCtx->AltPrivate.auW[0] + cbBuffered, pbBuf, cbMissing);
+ pCtx->AltPrivate.cbMessage += cbMissing;
+ pbBuf += cbMissing;
+ cbBuf -= cbMissing;
+
+ rtSha256BlockInitBuffered(pCtx);
+ rtSha256BlockProcess(pCtx);
+ }
+ else
+ {
+ memcpy((uint8_t *)&pCtx->AltPrivate.auW[0] + cbBuffered, pbBuf, cbBuf);
+ pCtx->AltPrivate.cbMessage += cbBuf;
+ return;
+ }
+ }
+
+ if (!((uintptr_t)pbBuf & (sizeof(void *) - 1)))
+ {
+ /*
+ * Process full blocks directly from the input buffer.
+ */
+ while (cbBuf >= RTSHA256_BLOCK_SIZE)
+ {
+ rtSha256BlockInit(pCtx, pbBuf);
+ rtSha256BlockProcess(pCtx);
+
+ pCtx->AltPrivate.cbMessage += RTSHA256_BLOCK_SIZE;
+ pbBuf += RTSHA256_BLOCK_SIZE;
+ cbBuf -= RTSHA256_BLOCK_SIZE;
+ }
+ }
+ else
+ {
+ /*
+ * Unaligned input, so buffer it.
+ */
+ while (cbBuf >= RTSHA256_BLOCK_SIZE)
+ {
+ memcpy((uint8_t *)&pCtx->AltPrivate.auW[0], pbBuf, RTSHA256_BLOCK_SIZE);
+ rtSha256BlockInitBuffered(pCtx);
+ rtSha256BlockProcess(pCtx);
+
+ pCtx->AltPrivate.cbMessage += RTSHA256_BLOCK_SIZE;
+ pbBuf += RTSHA256_BLOCK_SIZE;
+ cbBuf -= RTSHA256_BLOCK_SIZE;
+ }
+ }
+
+ /*
+ * Stash any remaining bytes into the context buffer.
+ */
+ if (cbBuf > 0)
+ {
+ memcpy((uint8_t *)&pCtx->AltPrivate.auW[0], pbBuf, cbBuf);
+ pCtx->AltPrivate.cbMessage += cbBuf;
+ }
+}
+RT_EXPORT_SYMBOL(RTSha256Update);
+
+
+/**
+ * Internal worker for RTSha256Final and RTSha224Final that finalizes the
+ * computation but does not copy out the hash value.
+ *
+ * @param pCtx The SHA-256 context.
+ */
+static void rtSha256FinalInternal(PRTSHA256CONTEXT pCtx)
+{
+ Assert(pCtx->AltPrivate.cbMessage < UINT64_MAX / 8);
+
+ /*
+ * Complete the message by adding a single bit (0x80), padding till
+ * the next 448-bit boundrary, the add the message length.
+ */
+ uint64_t const cMessageBits = pCtx->AltPrivate.cbMessage * 8;
+
+ unsigned cbMissing = RTSHA256_BLOCK_SIZE - ((unsigned)pCtx->AltPrivate.cbMessage & (RTSHA256_BLOCK_SIZE - 1U));
+ static uint8_t const s_abSingleBitAndSomePadding[12] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, };
+ if (cbMissing < 1U + 8U)
+ /* Less than 64+8 bits left in the current block, force a new block. */
+ RTSha256Update(pCtx, &s_abSingleBitAndSomePadding, sizeof(s_abSingleBitAndSomePadding));
+ else
+ RTSha256Update(pCtx, &s_abSingleBitAndSomePadding, 1);
+
+ unsigned cbBuffered = (unsigned)pCtx->AltPrivate.cbMessage & (RTSHA256_BLOCK_SIZE - 1U);
+ cbMissing = RTSHA256_BLOCK_SIZE - cbBuffered;
+ Assert(cbMissing >= 8);
+ memset((uint8_t *)&pCtx->AltPrivate.auW[0] + cbBuffered, 0, cbMissing - 8);
+
+ *(uint64_t *)&pCtx->AltPrivate.auW[14] = RT_H2BE_U64(cMessageBits);
+
+ /*
+ * Process the last buffered block constructed/completed above.
+ */
+ rtSha256BlockInitBuffered(pCtx);
+ rtSha256BlockProcess(pCtx);
+
+ /*
+ * Convert the byte order of the hash words and we're done.
+ */
+ pCtx->AltPrivate.auH[0] = RT_H2BE_U32(pCtx->AltPrivate.auH[0]);
+ pCtx->AltPrivate.auH[1] = RT_H2BE_U32(pCtx->AltPrivate.auH[1]);
+ pCtx->AltPrivate.auH[2] = RT_H2BE_U32(pCtx->AltPrivate.auH[2]);
+ pCtx->AltPrivate.auH[3] = RT_H2BE_U32(pCtx->AltPrivate.auH[3]);
+ pCtx->AltPrivate.auH[4] = RT_H2BE_U32(pCtx->AltPrivate.auH[4]);
+ pCtx->AltPrivate.auH[5] = RT_H2BE_U32(pCtx->AltPrivate.auH[5]);
+ pCtx->AltPrivate.auH[6] = RT_H2BE_U32(pCtx->AltPrivate.auH[6]);
+ pCtx->AltPrivate.auH[7] = RT_H2BE_U32(pCtx->AltPrivate.auH[7]);
+
+ RT_ZERO(pCtx->AltPrivate.auW);
+ pCtx->AltPrivate.cbMessage = UINT64_MAX;
+}
+RT_EXPORT_SYMBOL(RTSha256Final);
+
+
+RTDECL(void) RTSha256Final(PRTSHA256CONTEXT pCtx, uint8_t pabDigest[RTSHA256_HASH_SIZE])
+{
+ rtSha256FinalInternal(pCtx);
+ memcpy(pabDigest, &pCtx->AltPrivate.auH[0], RTSHA256_HASH_SIZE);
+ RT_ZERO(pCtx->AltPrivate.auH);
+}
+RT_EXPORT_SYMBOL(RTSha256Final);
+
+
+RTDECL(void) RTSha256(const void *pvBuf, size_t cbBuf, uint8_t pabDigest[RTSHA256_HASH_SIZE])
+{
+ RTSHA256CONTEXT Ctx;
+ RTSha256Init(&Ctx);
+ RTSha256Update(&Ctx, pvBuf, cbBuf);
+ RTSha256Final(&Ctx, pabDigest);
+}
+RT_EXPORT_SYMBOL(RTSha256);
+
+
+RTDECL(bool) RTSha256Check(const void *pvBuf, size_t cbBuf, uint8_t const pabHash[RTSHA256_HASH_SIZE])
+{
+ RTSHA256CONTEXT Ctx;
+ RTSha256Init(&Ctx);
+ RTSha256Update(&Ctx, pvBuf, cbBuf);
+ rtSha256FinalInternal(&Ctx);
+
+ bool fRet = memcmp(pabHash, &Ctx.AltPrivate.auH[0], RTSHA256_HASH_SIZE) == 0;
+
+ RT_ZERO(Ctx.AltPrivate.auH);
+ return fRet;
+}
+RT_EXPORT_SYMBOL(RTSha256Check);
+
+
+
+/*
+ * SHA-224 is just SHA-256 with different initial values an a truncated result.
+ */
+
+RTDECL(void) RTSha224Init(PRTSHA224CONTEXT pCtx)
+{
+ pCtx->AltPrivate.cbMessage = 0;
+ pCtx->AltPrivate.auH[0] = UINT32_C(0xc1059ed8);
+ pCtx->AltPrivate.auH[1] = UINT32_C(0x367cd507);
+ pCtx->AltPrivate.auH[2] = UINT32_C(0x3070dd17);
+ pCtx->AltPrivate.auH[3] = UINT32_C(0xf70e5939);
+ pCtx->AltPrivate.auH[4] = UINT32_C(0xffc00b31);
+ pCtx->AltPrivate.auH[5] = UINT32_C(0x68581511);
+ pCtx->AltPrivate.auH[6] = UINT32_C(0x64f98fa7);
+ pCtx->AltPrivate.auH[7] = UINT32_C(0xbefa4fa4);
+}
+RT_EXPORT_SYMBOL(RTSha224Init);
+
+
+RTDECL(void) RTSha224Update(PRTSHA224CONTEXT pCtx, const void *pvBuf, size_t cbBuf)
+{
+ RTSha256Update(pCtx, pvBuf, cbBuf);
+}
+RT_EXPORT_SYMBOL(RTSha224Update);
+
+
+RTDECL(void) RTSha224Final(PRTSHA224CONTEXT pCtx, uint8_t pabDigest[RTSHA224_HASH_SIZE])
+{
+ rtSha256FinalInternal(pCtx);
+ memcpy(pabDigest, &pCtx->AltPrivate.auH[0], RTSHA224_HASH_SIZE);
+ RT_ZERO(pCtx->AltPrivate.auH);
+}
+RT_EXPORT_SYMBOL(RTSha224Final);
+
+
+RTDECL(void) RTSha224(const void *pvBuf, size_t cbBuf, uint8_t pabDigest[RTSHA224_HASH_SIZE])
+{
+ RTSHA224CONTEXT Ctx;
+ RTSha224Init(&Ctx);
+ RTSha224Update(&Ctx, pvBuf, cbBuf);
+ RTSha224Final(&Ctx, pabDigest);
+}
+RT_EXPORT_SYMBOL(RTSha224);
+
+
+RTDECL(bool) RTSha224Check(const void *pvBuf, size_t cbBuf, uint8_t const pabHash[RTSHA224_HASH_SIZE])
+{
+ RTSHA224CONTEXT Ctx;
+ RTSha224Init(&Ctx);
+ RTSha224Update(&Ctx, pvBuf, cbBuf);
+ rtSha256FinalInternal(&Ctx);
+
+ bool fRet = memcmp(pabHash, &Ctx.AltPrivate.auH[0], RTSHA224_HASH_SIZE) == 0;
+
+ RT_ZERO(Ctx.AltPrivate.auH);
+ return fRet;
+}
+RT_EXPORT_SYMBOL(RTSha224Check);
+